WorldWideScience

Sample records for bow thrusters

  1. The Asian war bow

    CERN Document Server

    Nieminen, Timo A

    2011-01-01

    The bow is one of the earliest complex machines, a prime example of the storage and transfer of energy. The physics of the bow illuminates compromises and design choices made in Asian military archery.

  2. Ship bow waves

    Institute of Scientific and Technical Information of China (English)

    NOBLESSE Francis; DELHOMMEAU Gerard; LIU Hua; WAN De-cheng; YANG Chi

    2013-01-01

    The bow wave generated by a ship hull that advances at constant speed in calm water is considered.The bow wave only depends on the shape of the ship bow (not on the hull geometry aft of the bow wave).This basic property makes it possible to determine the bow waves generated by a canonical family of ship bows defined in terms of relatively few parameters.Fast ships with fine bows generate overturning bow waves that consist of detached thin sheets of water,which are mostly steady until they hit the main free surface and undergo turbulent breaking up and diffusion.However,slow ships with blunt bows create highly unsteady and turbulent breaking bow waves.These two alternative flow regimes are due to a nonlinear constraint related to the Bernoulli relation at the free surface.Recent results about the overturning and breaking bow wave regimes,and the boundary that divides these two basic flow regimes,are reviewed.Questions and conjectures about the energy of breaking ship bow waves,and free-surface effects on flow circulation,are also noted.

  3. Thruster Module

    Science.gov (United States)

    Andersson, G.

    2015-09-01

    The thruster module described in this paper provides a low but controlled acceleration in a mission which would normally be labelled “microgravity”. The first mission was Cryofenix, where tanks containing liquid hydrogen were used in the experiment. The experiment utilizing the low acceleration is using liquids and requires a precise acceleration profile throughout the mission. Acceleration obtained by payload rotation is not feasible due to that the transversal forces required to change the acceleration will cause undesired liquid turbulence. In order to satisfy the experiment requirements a thruster module was developed by SSC for the Cryofenix mission funded by CNES. The Cryofenix mission had a payload weight of 380 kg and an apogee of about 260 km. The module produces a controlled thrust in flight direction by means of a cold gas system.

  4. Cylindrical geometry hall thruster

    Science.gov (United States)

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  5. Conducting Wall Hall Thrusters

    Science.gov (United States)

    Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon

    2013-01-01

    A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.

  6. Oxygen-Methane Thruster

    Science.gov (United States)

    Pickens, Tim

    2012-01-01

    An oxygen-methane thruster was conceived with integrated igniter/injector capable of nominal operation on either gaseous or liquid propellants. The thruster was designed to develop 100 lbf (approximately 445 N) thrust at vacuum conditions and use oxygen and methane as propellants. This continued development included refining the design of the thruster to minimize part count and manufacturing difficulties/cost, refining the modeling tools and capabilities that support system design and analysis, demonstrating the performance of the igniter and full thruster assembly with both gaseous and liquid propellants, and acquiring data from this testing in order to verify the design and operational parameters of the thruster. Thruster testing was conducted with gaseous propellants used for the igniter and thruster. The thruster was demonstrated to work with all types of propellant conditions, and provided the desired performance. Both the thruster and igniter were tested, as well as gaseous propellants, and found to provide the desired performance using the various propellant conditions. The engine also served as an injector testbed for MSFC-designed refractory combustion chambers made of rhenium.

  7. Bow and catapult internal dynamics

    CERN Document Server

    Denny, M

    2003-01-01

    A simple model of bow and arrow dynamics is presented, which makes clear the physical principles, and reproduces the features obtained via more detailed, but less accessible calculations. We apply this instructive model to determine the efficiency of bows and of torsion-spring catapults.

  8. Bow and catapult internal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Denny, Mark [4665 Amblewood Drive, Victoria, BC V8Y 1C1 (Canada)

    2003-07-01

    A simple model of bow and arrow dynamics is presented, which makes clear the physical principles, and reproduces the features obtained via more detailed, but less accessible calculations. We apply this instructive model to determine the efficiency of bows and of torsion-spring catapults.

  9. Bow shock data analysis

    Science.gov (United States)

    Zipf, Edward C.; Erdman, Peeter W.

    1994-08-01

    The University of Pittsburgh Space Physics Group in collaboration with the Army Research Office (ARO) modeling team has completed a systematic organization of the shock and plume spectral data and the electron temperature and density measurements obtained during the BowShock I and II rocket flights which have been submitted to the AEDC Data Center, has verified the presence of CO Cameron band emission during the Antares engine burn and for an extended period of time in the post-burn plume, and have adapted 3-D radiation entrapment codes developed by the University of Pittsburgh to study aurora and other atmospheric phenomena that involve significant spatial effects to investigate the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) envelope surrounding the re-entry that create an extensive plasma cloud by photoionization.

  10. Oxygen-Methane Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orion Propulsion, Inc. proposes to develop an Oxygen and Methane RCS Thruster to advance the technology of alternate fuels. A successful Oxygen/CH4 RCS Thruster will...

  11. Iodine Hall Thruster

    Science.gov (United States)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  12. Some aspects of vocal fold bowing.

    Science.gov (United States)

    Tanaka, S; Hirano, M; Chijiwa, K

    1994-05-01

    Bowing of the vocal fold frequently occurs in patients with vocal fold paralysis (VFP), those with sulcus vocalis, and those who have had laser surgery. Additionally, there are vocal folds that present bowing with no noticeable organic lesion. For the purpose of investigating the causes and mechanisms of vocal fold bowing, consecutive fiberscopic videorecordings of 127 patients with VFP, 33 with sulcus vocalis, 33 with laser surgery, and 33 with dysphonia having no clinically noticeable organic lesion were reviewed. Sixty-nine percent of the paralyzed vocal folds had bowing, and the occurrence of bowing was significantly related to the activity of the thyroarytenoid muscle as measured by electromyography. The cricothyroid activity had no significant relationship to vocal fold bowing. All vocal folds with sulcus presented with bowing. Thirty-five percent of the vocal folds that had had laser surgery had bowing. The extent of tissue removal was closely related to the occurrence of bowing. Twelve cases with no organic lesion had vocal fold bowing. Of these 12 patients, 8 were male and 9 were older than 60 years. Some aging process in the mucosa was presumed to be the cause of the bowing in this age group of patients without clinically noticeable organic lesions. Causes of vocal fold bowing in the younger group of patients without organic lesions were not determined in this study.

  13. Magnesium Hall Thruster

    Science.gov (United States)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  14. Dielectric Bow-tie Nanocavity

    CERN Document Server

    Lu, Qijing; Zou, Chang-Ling

    2013-01-01

    We propose a novel dielectric bow-tie nanocavity consisting of two tip-to-tip opposite triangle semiconductor nanowires, whose end faces are coated by silver nanofilms. Based on the advantages of the dielectric slot and tip structures, and the high reflectivity from the silver mirror, light can be confined in this nanocavity with low loss. We demonstrate that the mode excited in this nanocavity has a deep subwavelength mode volume of 2.8*10^-4 um3 and a high quality factor of 4.9*10^4 (401.3), consequently an ultrahigh Purcell factor of 1.6*10^7 (1.36*10^5), at 4.5 K (300 K) around the resonance wavelength of 1550 nm. This dielectric bow-tie nanocavity may find applications for integrated nanophotonic circuits, such as high-efficiency single photon source, thresholdless nanolaser, and cavity QED strong coupling experiments.

  15. Liquid micro pulsed plasma thruster

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2015-06-01

    Full Text Available A new type of pulsed plasma thruster (PPT for small satellite propulsion is investigated, of which the most innovative aspect is the use of a non-volatile liquid propellant. The thruster is based on an open capillary design. The thruster achieved a thrust-to-power ratio above 45 μN/W, which constitutes a 5-fold improvement over the water-propelled pulsed plasma thruster, and which is also slightly above the performance of a similarly sized PPT with a solid propellant.

  16. Helical plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Beklemishev, A. D., E-mail: bekl@bk.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk (Russian Federation)

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  17. Entropy Generation Across Earth's Bow Shock

    Science.gov (United States)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; Lin, Naiguo; Wilber, Mark

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  18. Temperature Gradient in Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    D. Staack; Y. Raitses; N.J. Fisch

    2003-11-24

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.

  19. Shared Magnetics Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed Phase I program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...

  20. Oxygen-Methane Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Two main innovations will be developed in the Phase II effort that are fundamentally associated with our gaseous oxygen/gaseous methane RCS thruster. The first...

  1. Dielectric bow-tie nanocavity.

    Science.gov (United States)

    Lu, Qijing; Shu, Fang-Jie; Zou, Chang-Ling

    2013-12-15

    We propose a novel dielectric bow-tie (DBT) nanocavity consisting of two opposing tip-to-tip triangle semiconductor nanowires, whose end faces are coated by silver nanofilms. Based on the advantages of the dielectric slot and tip structures, and the high reflectivity of the silver mirror, light can be confined in this nanocavity with low loss. We demonstrate that at 4.5 K (300 K) around the resonance wavelength of 1550 nm, the mode excited in this nanocavity has a deep subwavelength mode volume of 2.8×10(-4) μm³ and a high quality factor of 4.9×10(4) (401.3), corresponding to an ultrahigh Purcell factor of 1.6×10(7) (1.36×10(5)). This DBT nanocavity may find applications for integrated nanophotonic circuits, such as high-efficiency single photon sources, thresholdless nanolasers, and strong coupling in cavity quantum electrodynamics experiments.

  2. Iodine Hall Thruster for Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I program, Busek Co. Inc. tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high flow iodine feed system,...

  3. Effect of Buffer Bow Structure in Ship-Ship Collision

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Endo, Hisayoshi; Pedersen, Preben Terndrup

    2008-01-01

    tankers, the introduction of buffer bulbous bows has been proposed. Relatively soft buffer bows absorb part of the kinetic energy of the striking ship before penetrating the inner hull of the struck vessel. The purpose of the present paper is to verify the effectiveness of a prototype buffer bulbous bow......) and the forward velocity of the struck ship on the collapse mode of the bow of the striking vessel are investigated. Collapse modes, contact forces and energy absorption capabilities of the buffer bows are compared with those of conventional bows....

  4. Electron dynamics in Hall thruster

    Science.gov (United States)

    Marini, Samuel; Pakter, Renato

    2015-11-01

    Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.

  5. Bow-arrow interaction in archery.

    Science.gov (United States)

    Kooi, B W

    1998-11-01

    A mathematical model of the flight of the arrow during its discharge from a bow was proposed by Pekalski (1990). His description of the model was incomplete. In this paper, I give a full description of the model. Furthermore, I propose some improvements that make his model more consistent with reality. One achievement is the modelling of contact of the arrow and grip; the pressure button is modelled as a unilateral elastic support. The acceleration force acting upon the arrow during the launch is predicted by an advanced mathematical model of bow dynamics. There is a satisfactory conformity of the simulation and experimental results. The new model predicts that the arrow leaves the pressure button before it leaves the string, as reported previously. The ability to model arrow dynamics can be used to improve the adjustment of the bow-arrow system for optimal performance.

  6. 46 CFR 154.355 - Bow and stern loading piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Bow and stern loading piping. 154.355 Section 154.355... Arrangements § 154.355 Bow and stern loading piping. (a) Bow and stern loading piping must: (1) Meet § 154.310...; (3) Be clearly marked; (4) Be segregated from the cargo piping by a removable spool piece in...

  7. Propeller Design Optimization for Tunnel Bow Thrusters in the Bollard Pull Condition

    Science.gov (United States)

    2012-06-01

    rpm PWM Delay Brake/Stop Response Time 100 ms Torque Constant 0.927 N∙m/ Apk Gains Velocity Parameters Vp 32000 Velocity Tracking...brake/stop response time 100 ms Torque Constant 0.927 N∙m/ Apk Table 16: CME2 Motor Parameters Initial tuning for amplifier parameters. In

  8. Miniature Bipolar Electrostatic Ion Thruster

    Science.gov (United States)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  9. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new pulsed electric thruster, named "pulsed electrogasdynamic thruster," for attitude control and orbit maneuver is proposed. In this thruster, propellant gas is...

  10. A Microwave Thruster for Spacecraft Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Chiravalle, Vincent P [Los Alamos National Laboratory

    2012-07-23

    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  11. J series thruster thermal test results

    Science.gov (United States)

    Bechtel, R. T.; Dulgeroff, C. R.

    1982-01-01

    Test experience with J series ion thrusters have indicated that the present thruster design may result in excessive temperatures in areas which utilize organic materials such as wire insulation, with the resultant outgassing and potential contamination of insulating materials. Further, it appears that thermal data obtained with earlier thruster designs, such as the 700 series thruster, may not be directly applicable to the J series design. Two J series thrusters were fitted with thermocouples and critical temperatures measured for a variety of configurations and operating parameters. Completely enclosing the thruster to reduce facility contamination significantly increased temperatures prompting the selection of a compromise geometry for life testing. The operating parameter having the largest effect on temperatures was discharge power, while beam power affected little else than extraction system temperatures. Several off-normal operating modes were also investigated. Data believed to be sufficient to effectively modify existing thermal models were obtained from the tests.

  12. Low Mass Electromagnetic Plasmoid Thruster with Integrated PPU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Electromagnetic Plasmoid Thruster (EMPT) is a revolutionary electric propulsion thruster and power processing (PPU) system that will allow a dramatic decrease...

  13. Electron-wall Interaction in Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Y. Raitses; D. Staack; M. Keidar; N.J. Fisch

    2005-02-11

    Electron-wall interaction effects in Hall thrusters are studied through measurements of the plasma response to variations of the thruster channel width and the discharge voltage. The discharge voltage threshold is shown to separate two thruster regimes. Below this threshold, the electron energy gain is constant in the acceleration region and therefore, secondary electron emission (SEE) from the channel walls is insufficient to enhance electron energy losses at the channel walls. Above this voltage threshold, the maximum electron temperature saturates.

  14. Low-Voltage Hall Thruster Mode Transitions

    Science.gov (United States)

    2014-06-01

    Technical Paper 3. DATES COVERED (From - To) June 2014- July 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In-House Low-Voltage Hall Thruster Mode...ABSTRACT Past investigations of the 6kW-class H6 Hall thruster during low-voltage operation revealed two operating modes, corresponding to the...topologies were characterized for the H6 Hall thruster from 100V to 200V discharge, with variation in cathode flow fraction, cathode position inside and

  15. Advanced Microwave Electrothermal Thruster (AMET) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) and the University of Alabama at Huntsville (UAH) propose to develop the Advanced Microwave Electrothermal Thruster...

  16. Suprathermal electrons at Saturn's bow shock

    CERN Document Server

    Masters, A; Sergis, N; Stawarz, L; Fujimoto, M; Coates, A J; Dougherty, M K

    2016-01-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, 18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically onl...

  17. Plastic bowing of the ribs in children

    Energy Technology Data Exchange (ETDEWEB)

    Caro, P.A.; Borden, S. IV

    1988-06-01

    Four cases of plastic bowing of the ribs are presented. In three patients with Werdnig-Hoffman disease, plastic curvatures were associated with chronic pneumonia and atelectasis. We postulate that intrapulmonary retractive forces can deform ribs thinned by muscular atrophy. In turn, thoracic collapse can perpetuate lobar and segmental atelectasis. In one case of osteogenesis imperfecta without pneumonia, we believe normal muscle forces bent ribs weakened by deficiency of normal cortical architecture.

  18. Energetics of nearby stellar bow shocks

    CERN Document Server

    Benaglia, Paula

    2012-01-01

    The latest survey of stellar bow shocks (Peri et al. 2012) lists 28 candidates detected at IR wavelengths, associated with massive, early-type stars up to 3 kpc, along with the geometrical parameters of the structures found. I present here some considerations on the energetics involved, after the estimation of stellar wind power, infrared flux, stellar bolometric luminosity and radio flux limits for each source. The best candidates for relativistic particle acceleration are highlighted.

  19. Rotationnal and translational waves in a bowed string

    CERN Document Server

    Bavu, E; Placais, P Y; Smith, J; Wolfe, J; Bavu, Eric; Yew, Manfred; Placais, Pierre-Yves; Smith, John; Wolfe, Joe

    2005-01-01

    We measure and compare the rotational and transverse velocity of a bowed string. When bowed by an experienced player, the torsional motion is phase-locked to the transverse waves, producing highly periodic motion. The spectrum of the torsional motion includes the fundamental and harmonics of the transverse wave, with strong formants at the natural frequencies of the torsional standing waves in the whole string. Volunteers with no experience on bowed string instruments, however, often produced non-periodic motion. We present sound files of both the transverse and torsional velocity signals of well-bowed strings. The torsional signal has not only the pitch of the transverse signal, but it sounds recognisably like a bowed string, probably because of its rich harmonic structure and the transients and amplitude envelope produced by bowing.

  20. The sacred weapon: bow and arrow combat in Iran

    Directory of Open Access Journals (Sweden)

    Manouchehr Moshtagh Khorasani

    2012-07-01

    Full Text Available The following article presents the development of the bow and arrow, and its important role in the history of Iran. The bow always played an important role not only on the battlefield, but also in hunting. It was also considered as a sacred weapon and additionally a royal symbol. Bow and arrow were considered as a superior weapon in comparison with other types of weapons because one could fight with them at a safer distance as one offered by swords, maces and axes. The first part of the article presents a short history of the bow in Iran. Based on historical Persian manuscripts, the next part explains the structure of the composite bow and the materials used for making it. The third part describes some types of bows based on the material, place of production, the usage, and bow type based on the length of the bow and the arrows. The following part talks about different types of arrows based on morphology of arrowheads, the type of plume/feather, the material of the shaft, the material of the arrowhead, the length of arrows, the target of arrows, the place of production of arrowheads and terms for describing its different features of an arrowhead. Then, the article talks about different types of thumb rings, bowstrings, quivers and bow cases and arrow guides for shooting short arrows. The next part discusses different principles of archery as explained in Persian manuscripts. Finally the article describes different archery targets.

  1. Coil system for plasmoid thruster

    Science.gov (United States)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  2. 76 FR 13666 - Pitney Bowes, Inc., Mailing Solutions Management, Global Engineering Group, Including On-Site...

    Science.gov (United States)

    2011-03-14

    ... Employment and Training Administration Pitney Bowes, Inc., Mailing Solutions Management, Global Engineering... firm worker group should read: Pitney Bowes, Inc., Mailing Solutions Management, Global Engineering... workers of Pitney Bowes, Inc., Mailing Solutions Management, Global Engineering Group, including...

  3. Mechanical design of SERT 2 thruster system

    Science.gov (United States)

    Zavesky, R. J.; Hurst, E. B.

    1972-01-01

    The mechanical design of the mercury bombardment thruster that was tested on SERT is described. The report shows how the structural, thermal, electrical, material compatibility, and neutral mercury coating considerations affected the design and integration of the subsystems and components. The SERT 2 spacecraft with two thrusters was launched on February 3, 1970. One thruster operated for 3782 hours and the other for 2011 hours. A high voltage short resulting from buildup of loose eroded material was believed to be the cause of failure.

  4. Suprathermal Electrons at Saturn's Bow Shock

    Science.gov (United States)

    Masters, A.; Sulaiman, A. H.; Sergis, N.; Stawarz, L.; Fujimoto, M.; Coates, A. J.; Dougherty, M. K.

    2016-07-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, 18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ˜1 MeV).

  5. Muscular activation patterns of the bow arm in recurve archery.

    Science.gov (United States)

    Ertan, Hayri

    2009-05-01

    In archery shooting, the archer should hold the bow in place using only the pressure produced through drawing back the bowstring. Most coaches discourage the archer from gripping the bow as this is believed to produce a sideways deflecting torque on the bow and arrow during the release. The purpose of this study was to compare the bow hand forearm muscular activation patterns of elite archers with beginners to define the muscular contraction-relaxation strategies in the bow hand forearm muscles during archery shooting and investigate the effects of performance level on these strategies. Electromyographic activity of the M. flexor digitorum superficialis and the M. extensor digitorum of 10 elite and 10 beginner archers were recorded together with a pulse synchronized with the clicker snap. Raw electromyographic records as 1s before and after the clicker pulse were rectified, integrated, and normalized. The data was then averaged for successive shots of each subject and later for both groups of archers. The main difference between the elite and beginner archers was that the elite archers had a greater activation of the M. extensor digitorum, which indicates that they avoid gripping the bow-handle not only relaxing the flexor muscles, but also contracting the extensor muscle groups. This muscular contraction strategy secures the archer to not interfere with the forward movement of the bow, which is the forward acceleration of the bow caused by the pushing power of the bowstring.

  6. Evolution of bow-tie architectures in biology.

    Directory of Open Access Journals (Sweden)

    Tamar Friedlander

    2015-03-01

    Full Text Available Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal determines the size of the narrowest part of the network-that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved.

  7. Marble bowing: comparative studies of three different public building facades

    Science.gov (United States)

    Siegesmund, S.; Ruedrich, J.; Koch, A.

    2008-12-01

    The veneer cladding of the Oeconomicum (OEC, Göttingen), the State Theatre of Darmstadt (STD, Darmstadt) and of the State and University Library (SUB, Göttingen) is characterised by pronounced bowing after a short time of exposure. Direct comparison of bowing data related to measurements from 2000 to 2003 at the SUB clearly show that the amplitude in bowing had significantly increased. The bowing is different in intensity and orientation (concave, convex). The cladding material (Peccia marble, Rosa Estremoz marble and Carrara marble) are different in lattice preferred orientation, grain size distribution and grain interlocking. Depending on the bowing, panels may show cracks mostly initiated at the dowels. The percentage of visible cracks and breakouts increases with the amplitude of bowing except for the STD. Repetitive heating-cooling under dry conditions leads to considerable inelastic residual strain only after the first or second thermal cycle. The residual strain continuously increases again if water is present, whereby the moisture content after a thermal cycle has a certain impact on the decay rate. The water-enhanced thermal dilatation strongly correlates with the deterioration rate obtained from the laboratory bow test. Detailed petrophysical investigations provide evidence that with increasing bowing a decrease of mechanical properties (flexural strength or breaking load at dowel hole) occur. Marble degradation is also connected with the increase in porosity and a general shift of the maximum pore radii to larger pore sizes. On-site damage analyses were combined with laboratory tests of the bowing potential to constrain factors that may influence the risk failure. The experimental bowing data clearly demonstrate that after 40 heating cycles combined with the effect of moisture a certain impact on the decay rate is observed. In the case of demounted panels the bowing tests show that already strongly deformed panels from the building exhibit a lower

  8. Light Metal Propellant Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop light metal Hall Effect thrusters that will help reduce the travel time, mass, and cost of SMD spacecraft. Busek has identified three...

  9. Precision Electrospray Thruster Assembly (PETA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New low cost, low volume, low power, rugged electrospray thrusters will be ideal as actuators for precision thrusting, if provided with precision high voltage power...

  10. Multiscale Modeling of Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New multiscale modeling capability for analyzing advanced Hall thrusters is proposed. This technology offers NASA the ability to reduce development effort of new...

  11. Additive Manufacturing of Ion Thruster Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Plasma Controls will manufacture and test a set of ion optics for electric propulsion ion thrusters using additive manufacturing technology, also known as 3D...

  12. T6 Ion Thruster Technology Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Provide discharge chamber and grid modeling for the new T6 based on JPL expertise on ion thruster performance and life; Enable/guide the T6 upgrade development to...

  13. Q-thruster Breadboard Campaign Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Q-thruster technology is a mission enabling form of electric propulsion and is already being traded by NASA's Concept Architecture Team (CAT) & Human Space...

  14. Iodine Hall Thruster for Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high power (high thrust) electric propulsion system featuring an iodine fueled Hall Effect Thruster (HET). The system to be...

  15. Dual Mode Low Power Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample and return missions desire and missions like Saturn Observer require a low power Hall thruster that can operate at high thrust to power as well as high...

  16. High Thrust Efficiency MPD Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Magnetoplasmadynamic (MPD) thrusters can provide the high-specific impulse, high-power propulsion required to support human and robotic exploration missions to the...

  17. Optimized Magnetic Nozzles for MPD Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Magnetoplasmadynamic (MPD) thrusters can provide the high-specific impulse, high-power propulsion required to enable ambitious human and robotic exploration missions...

  18. Advanced High Efficiency Durable DACS Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Systima is developing a high performance 25 lbf DACS thruster that operates with a novel non-toxic monopropellant. The monopropellant has a 30% higher...

  19. Acoustic Resonance Reaction Control Thruster (ARCTIC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate the innovative Acoustic Resonance Reaction Control Thruster (ARCTIC) to provide rapid and reliable in-space impulse...

  20. MPD thruster research issues, activities, strategies

    Science.gov (United States)

    1991-01-01

    The following activities and plans in the MPD thruster development are summarized: (1) experimental and theoretical research (magnetic nozzles at present and high power levels, MPD thrusters with applied fields extending into the thrust chamber, and improved electrode performance); and (2) tools (MACH2 code for MPD and nozzle flow calculation, laser diagnostics and spectroscopy for non-intrusive measurements of flow conditions, and extension to higher power). National strategies are also outlined.

  1. Colloid Thrusters, Physics, Fabrication and Performance

    Science.gov (United States)

    2005-11-17

    response, including the time for reviewing in. tata needed, and completing and reviewing this collection of information. Send comments regarding this...a discussion with colleagues during the 2nd Colloid Thruster/ Nano Electrojet Workshop (MIT, April 14- 15, 2005, Ref. [11]) an agreement was reached...23 Jul 2003. 11. Second Colloid Thruster/ Nano Electrojet Workshop, CD with a collection of presentations by attendees to this Workshop. MIT, April 14

  2. Pickup ion processes associated with spacecraft thrusters: Implications for solar probe plus

    Science.gov (United States)

    Clemens, Adam; Burgess, David

    2016-03-01

    Chemical thrusters are widely used in spacecraft for attitude control and orbital manoeuvres. They create an exhaust plume of neutral gas which produces ions via photoionization and charge exchange. Measurements of local plasma properties will be affected by perturbations caused by the coupling between the newborn ions and the plasma. A model of neutral expansion has been used in conjunction with a fully three-dimensional hybrid code to study the evolution and ionization over time of the neutral cloud produced by the firing of a mono-propellant hydrazine thruster as well as the interactions of the resulting ion cloud with the ambient solar wind. Results are presented which show that the plasma in the region near to the spacecraft will be perturbed for an extended period of time with the formation of an interaction region around the spacecraft, a moderate amplitude density bow wave bounding the interaction region and evidence of an instability at the forefront of the interaction region which causes clumps of ions to be ejected from the main ion cloud quasi-periodically.

  3. Optimization of bow shape for a non ballast water ship

    Science.gov (United States)

    Van He, Ngo; Ikeda, Yoshiho

    2013-09-01

    In this research, a commercial CFD code "Fluent" was applied to optimization of bulbous bow shape for a non ballast water ships (NBS). The ship was developed at the Laboratory of the authors in Osaka Prefecture University, Japan. At first, accuracy of the CFD code was validated by comparing the CFD results with experimental results at towing tank of Osaka Prefecture University. In the optimizing process, the resistances acting on ships in calm water and in regular head waves were defined as the object function. Following features of bulbous bow shapes were considered as design parameters: volume of bulbous bow, height of its volume center, angle of bow bottom, and length of bulbous bow. When referring to the computed results given by the CFD like resistance, pressure and wave pattern made by ships in calm water and in waves, an optimal bow shape for ships was discovered by comparing the results in the series of bow shapes. In the computation on waves, the ship is in fully captured condition because shorter waves, λ/ L pp <0.6, are assumed.

  4. The static response of a bowed inclined hot wire

    Science.gov (United States)

    Smits, A. J.

    1984-01-01

    The directional sensitivity of a bowed, inclined hot wire is investigated using a simple model for the convective heat transfer. The static response is analyzed for subsonic and supersonic flows. It is shown that the effects of both end conduction and wire bowing are greater in supersonic flow. Regardless of the Mach number, however, these two phenomena have distinctly different effects; end conduction appears to be responsible for reducing the nonlinearity of the response, whereas bowing increases the directional sensitivity. Comparison with the available data suggests that the analysis is useful for interpreting the experimental results.

  5. Low Mass Electromagnetic Plasmoid Thruster with Integrated PPU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Electromagnetic Plasmoid Thruster (EMPT) is a revolutionary electric propulsion thruster and power processing (PPU) system that will allow a dramatic decrease in...

  6. Control capability analysis for complex spacecraft thruster configurations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The set of forces and moments that can be generated by thrusters of a spacecraft is called the"control capability"with respect to the thruster configuration.If the control capability of a thruster configuration is adequate to fulfill a given space mission,we say this configuration is a feasible one with respect to the task.This study proposed a new way to analyze the control capability of the complex thruster configuration.Precise mathematical definitions of feasibility were proposed,based on which a criterion to judge the feasibility of the thruster configuration was presented through calculating the shortest distance to the boundary of the controllable region as a function of the thruster configuration.Finally,control capability analysis for the complex thruster configuration based on its feasibility with respect to the space mission was given followed by a 2-D thruster configuration example to demonstrate its validity.

  7. Investigations of Probe Induced Perturbations in a Hall Thruster

    Energy Technology Data Exchange (ETDEWEB)

    D. Staack; Y. Raitses; N.J. Fisch

    2002-08-12

    An electrostatic probe used to measure spatial plasma parameters in a Hall thruster generates perturbations of the plasma. These perturbations are examined by varying the probe material, penetration distance, residence time, and the nominal thruster conditions. The study leads us to recommendations for probe design and thruster operating conditions to reduce discharge perturbations, including metal shielding of the probe insulator and operation of the thruster at lower densities.

  8. Coaxial plasma thrusters for high specific impulse propulsion

    Science.gov (United States)

    Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen

    1991-01-01

    A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.

  9. Design and operations of Hall thruster with segmented electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N.J.; Raitses, Y.; Dorf, L.A.; Litvak, A.A.

    1999-12-10

    Principles of the Hall thruster with segmented electrodes are explored. A suitable vacuum facility was put into service. For purposes of comparison between segmented and conventional thruster approaches, a modular laboratory prototype thruster was designed and built. Under conventional operation, the thruster achieves state-of-the-art efficiencies (56% at 300 V and 890 W). Very preliminary results under operation with segmented electrodes are also described.

  10. Design and Operation of Hall Thruster with Segmented Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    A.A. Litvak; L.A. Dorf; N.J. Fisch; Y. Raitses

    1999-07-01

    Principles of the Hall thruster with segmented electrodes are explored. A suitable vacuum facility was put into service. For purposes of comparison between segmented and conventional thruster approaches, a modular laboratory prototype thruster was designed and built. Under conventional operation, the thruster achieves state-of-the-art efficiencies (56% at 300 V and 890 W). Very preliminary results under operation with segmented electrodes are also described.

  11. Parametric Investigations of Non-Conventional Hall Thruster

    Energy Technology Data Exchange (ETDEWEB)

    Raitses, Y.; Fisch, N.J.

    2001-01-12

    Hall thrusters might better scale to low power with non-conventional geometry. A 9 cm cylindrical, ceramic-channel, Hall thruster with a cusp-type magnetic field distribution has been investigated. It exhibits discharge characteristics similar to conventional coaxial Hall thrusters, but does not expose as much channel surface. Significantly, its operation is not accompanied by large amplitude discharge low frequency oscillations.

  12. 76 FR 12016 - MedBow-Routt Resource Advisory Committee

    Science.gov (United States)

    2011-03-04

    ... meeting. SUMMARY: The MedBow-Routt Resource Advisory Committee will meet in Walden, Colorado. The... will be held at Parks Ranger District, 100 Main Street, Walden, Colorado. Written comments should...

  13. Electrostatic ion thrusters - towards predictive modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kalentev, O.; Matyash, K.; Duras, J.; Lueskow, K.F.; Schneider, R. [Ernst-Moritz-Arndt Universitaet Greifswald, D-17489 (Germany); Koch, N. [Technische Hochschule Nuernberg Georg Simon Ohm, Kesslerplatz 12, D-90489 Nuernberg (Germany); Schirra, M. [Thales Electronic Systems GmbH, Soeflinger Strasse 100, D-89077 Ulm (Germany)

    2014-02-15

    The development of electrostatic ion thrusters so far has mainly been based on empirical and qualitative know-how, and on evolutionary iteration steps. This resulted in considerable effort regarding prototype design, construction and testing and therefore in significant development and qualification costs and high time demands. For future developments it is anticipated to implement simulation tools which allow for quantitative prediction of ion thruster performance, long-term behavior and space craft interaction prior to hardware design and construction. Based on integrated numerical models combining self-consistent kinetic plasma models with plasma-wall interaction modules a new quality in the description of electrostatic thrusters can be reached. These open the perspective for predictive modeling in this field. This paper reviews the application of a set of predictive numerical modeling tools on an ion thruster model of the HEMP-T (High Efficiency Multi-stage Plasma Thruster) type patented by Thales Electron Devices GmbH. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Diagnostics Systems for Permanent Hall Thrusters Development

    Science.gov (United States)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  15. Femoral bowing plane adaptation to femoral anteversion

    Directory of Open Access Journals (Sweden)

    Alp Akman

    2017-01-01

    Full Text Available Background: Femoral bowing plane (FBP is the unattended subject in the literature. More over the femoral shaft with its bowing is neglected in established anteversion determination methods. There is limited information about the relationship between FBP and anteversion. Thus we focused on this subject and hypothesized that there could be an adaptation of FBP to anteversion. Materials and Methods: FBP is determined on three-dimensional solid models derived from the left femoral computerized tomography data of 47 patients which were taken before for another reason and comparatively evaluated with anteversion. There were 20 women and 27 men. The mean age of patients was 56 years (range 21-84 years. Results: The anteversion values were found as the angle between a distal condylar axis (DCA and femoral neck anteversion axis (FNAA along an imaginary longitudinal femoral axis (LFA in the true cranio-caudal view. The FBP was determined as a plane that passes through the centre-points of three pre-determinated sections on the femoral shaft. The angles between DCA, FNAA and FBP were comparatively evaluated. The independent samples t-test was used for statistical analysis. At the end, it was found that FBP lies nearly perpendicular to the anteversion axis for the mean of our sample which is around 89° in females and 93° in males (range 78-102°. On the other hand, FBP does not lie close to the sagittal femoral plane (SFP; instead, there is an average 12.5° external rotation relative to the SFP. FBP is correlated well with anteversion in terms of FBP inclination from SFP and femoral torsion (i.e., angle between FBP and femoral neck anteversion axis (P0 < 0.001; r = 0.680 and r = −0.682, respectively. Combined correlation is perfect (R[2] = 1 as the FBP, SFP, and posterior femoral plane forms a triangle in the cranio-caudal view. Conclusions: We found that FBP adapts to anteversion. As FBP lies close to perpendicularity for the mean, femoral component

  16. Femoral bowing plane adaptation to femoral anteversion

    Science.gov (United States)

    Akman, Alp; Demirkan, Fahir; Sabir, Nuran; Oto, Murat; Yorukoglu, Cagdas; Kiter, Esat

    2017-01-01

    Background: Femoral bowing plane (FBP) is the unattended subject in the literature. More over the femoral shaft with its bowing is neglected in established anteversion determination methods. There is limited information about the relationship between FBP and anteversion. Thus we focused on this subject and hypothesized that there could be an adaptation of FBP to anteversion. Materials and Methods: FBP is determined on three-dimensional solid models derived from the left femoral computerized tomography data of 47 patients which were taken before for another reason and comparatively evaluated with anteversion. There were 20 women and 27 men. The mean age of patients was 56 years (range 21–84 years). Results: The anteversion values were found as the angle between a distal condylar axis (DCA) and femoral neck anteversion axis (FNAA) along an imaginary longitudinal femoral axis (LFA) in the true cranio-caudal view. The FBP was determined as a plane that passes through the centre-points of three pre-determinated sections on the femoral shaft. The angles between DCA, FNAA and FBP were comparatively evaluated. The independent samples t-test was used for statistical analysis. At the end, it was found that FBP lies nearly perpendicular to the anteversion axis for the mean of our sample which is around 89° in females and 93° in males (range 78–102°). On the other hand, FBP does not lie close to the sagittal femoral plane (SFP); instead, there is an average 12.5° external rotation relative to the SFP. FBP is correlated well with anteversion in terms of FBP inclination from SFP and femoral torsion (i.e., angle between FBP and femoral neck anteversion axis (P < 0.001; r = 0.680 and r = −0.682, respectively). Combined correlation is perfect (R2 = 1) as the FBP, SFP, and posterior femoral plane forms a triangle in the cranio-caudal view. Conclusions: We found that FBP adapts to anteversion. As FBP lies close to perpendicularity for the mean, femoral component positioning

  17. Mesoscale Surface Pressure and Temperature Features Associated with Bow Echoes

    Science.gov (United States)

    2010-01-01

    contain several bowing segments. These multiple segments could occur at the same time and be located within the same bow, such as the serial derecho ...Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329–342. Fovell, R. G., 2002: Upstream influence of numerically...Se- vere Local Storms, Hyannis, MA, Amer. Meteor. Soc., 4.6. Johns, R. H., and W. D. Hirt, 1987: Derechos : Widespread con- vectively induced

  18. Dual-Frequency Operation of Bow-Tie Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    钟顺时; 张需溥

    2005-01-01

    Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.

  19. Bow-shock Pulsar Wind Nebulae Passing Through Density Discontinuities

    CERN Document Server

    Yoon, Doosoo

    2016-01-01

    Bow-shock pulsar wind nebulae are a subset of pulsar wind nebulae that form when the pulsar has high velocity due to the natal kick during the supernova explosion. The interaction between the relativistic wind from the fast-moving pulsar and the interstellar medium produces a bow-shock and a trail, which are detectable in H$_{\\alpha}$ emission. Among such bow-shock pulsar wind nebulae, the Guitar Nebula stands out for its peculiar morphology, which consists of a prominent bow-shock head and a series of bubbles further behind. We present a scenario in which multiple bubbles can be produced when the pulsar encounters a series of density discontinuities in the ISM. We tested the scenario using 2-D and 3-D hydrodynamic simulations. The shape of the guitar nebula can be reproduced if the pulsar traversed a region of declining low density. We also show that if a pulsar encounters an inclined density discontinuity, it produces an asymmetric bow-shock head, consistent with observations of the bow-shock of the millise...

  20. Bi-directional thruster development and test report

    Science.gov (United States)

    Jacot, A. D.; Bushnell, G. S.; Anderson, T. M.

    1990-01-01

    The design, calibration and testing of a cold gas, bi-directional throttlable thruster are discussed. The thruster consists of an electro-pneumatic servovalve exhausting through opposite nozzles with a high gain pressure feedback loop to optimize performance. The thruster force was measured to determine hysteresis and linearity. Integral gain was used to maximize performance for linearity, hysteresis, and minimum thrust requirements. Proportional gain provided high dynamic response (bandwidth and phase lag). Thruster performance is very important since the thrusters are intended to be used for active control.

  1. Mode Transitions in Hall Effect Thrusters

    Science.gov (United States)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Mode transitions have been commonly observed in Hall Effect Thruster (HET) operation where a small change in a thruster operating parameter such as discharge voltage, magnetic field or mass flow rate causes the thruster discharge current mean value and oscillation amplitude to increase significantly. Mode transitions in a 6-kW-class HET called the H6 are induced by varying the magnetic field intensity while holding all other operating parameters constant and measurements are acquired with ion saturation probes and ultra-fast imaging. Global and local oscillation modes are identified. In the global mode, the entire discharge channel oscillates in unison and azimuthal perturbations (spokes) are either absent or negligible. Downstream azimuthally spaced probes show no signal delay between each other and are very well correlated to the discharge current signal. In the local mode, signals from the azimuthally spaced probes exhibit a clear delay indicating the passage of "spokes" and are not well correlated to the discharge current. These spokes are localized oscillations propagating in the ExB direction that are typically 10-20% of the mean value. In contrast, the oscillations in the global mode can be 100% of the mean value. The transition between global and local modes occurs at higher relative magnetic field strengths for higher mass flow rates or higher discharge voltages. The thrust is constant through mode transition but the thrust-to-power decreased by 25% due to increasing discharge current. The plume shows significant differences between modes with the global mode significantly brighter in the channel and the near-field plasma plume as well as exhibiting a luminous spike on thruster centerline. Mode transitions provide valuable insight to thruster operation and suggest improved methods for thruster performance characterization.

  2. Measurements of Plasma Potential Distribution in Segmented Electrode Hall Thruster

    Energy Technology Data Exchange (ETDEWEB)

    Y. Raitses; D. Staack; N.J. Fisch

    2001-10-16

    Use of a segmented electrode placed at the Hall thruster exit can substantially reduce the voltage potential drop in the fringing magnetic field outside the thruster channel. In this paper, we investigate the dependence of this effect on thruster operating conditions and segmented electrode configuration. A fast movable emissive probe is used to measure plasma potential in a 1 kW laboratory Hall thruster with semented electrodes made of a graphite material. Relatively small probe-induced perturbations of the thruster discharge in the vicinity of the thruster exit allow a reasonable comparison of the measured results for different thruster configurations. It is shown that the plasma potential distribution is almost not sensitive to changes of the electrode potential, but depends on the magnetic field distribution and the electrode placement.

  3. Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2016-06-01

    Full Text Available Plasma engines are used for space propulsion as an alternative to chemical thrusters. Due to the high exhaust velocity of the propellant, they are more efficient for long-distance interplanetary space missions than their conventional counterparts. An advanced laboratory of plasma space propulsion (PlaNS at the Institute of Plasma Physics and Laser Microfusion (IPPLM specializes in designing and testing various electric propulsion devices. Inside of a special vacuum chamber with three performance pumps, an environment similar to the one that prevails in space is created. An innovative Micro Pulsed Plasma Thruster (LμPPT with liquid propellant was built at the laboratory. Now it is used to test the second prototype of Hall effect thruster (HET operating on krypton propellant. Meantime, an improved prototype of krypton Hall thruster is constructed.

  4. Hall Effect Thruster Ground Testing Challenges

    Science.gov (United States)

    2009-08-18

    conditional stability of the inverted pendulum thrust stand provides improved measurement sensitivity.5 With the displacement of the inverted pendulum...July 2005. 12Samiento, C., “RHETT2/ EPDM Hall Thruster Propulsion System Electromagnetic Compatability Evaluation,” Proceed- ings of the 25th

  5. Bow-tie diagrams for risk management in anaesthesia.

    Science.gov (United States)

    Culwick, M D; Merry, A F; Clarke, D M; Taraporewalla, K J; Gibbs, N M

    2016-11-01

    Bow-tie analysis is a risk analysis and management tool that has been readily adopted into routine practice in many high reliability industries such as engineering, aviation and emergency services. However, it has received little exposure so far in healthcare. Nevertheless, its simplicity, versatility, and pictorial display may have benefits for the analysis of a range of healthcare risks, including complex and multiple risks and their interactions. Bow-tie diagrams are a combination of a fault tree and an event tree, which when combined take the shape of a bow tie. Central to bow-tie methodology is the concept of an undesired or 'Top Event', which occurs if a hazard progresses past all prevention controls. Top Events may also occasionally occur idiosyncratically. Irrespective of the cause of a Top Event, mitigation and recovery controls may influence the outcome. Hence the relationship of hazard to outcome can be viewed in one diagram along with possible causal sequences or accident trajectories. Potential uses for bow-tie diagrams in anaesthesia risk management include improved understanding of anaesthesia hazards and risks, pre-emptive identification of absent or inadequate hazard controls, investigation of clinical incidents, teaching anaesthesia risk management, and demonstrating risk management strategies to third parties when required.

  6. Numerical simulations of Mach stem formation via intersecting bow shocks

    Science.gov (United States)

    Hansen, E. C.; Frank, A.; Hartigan, P.; Yirak, K.

    2015-12-01

    Hubble Space Telescope observations show bright knots of Hα emission within outflowing young stellar jets. Velocity variations in the flow create secondary bow shocks that may intersect and lead to enhanced emission. When the bow shocks intersect at or above a certain critical angle, a planar shock called a Mach stem is formed. These shocks could produce brighter Hα emission since the incoming flow to the Mach stem is parallel to the shock normal. In this paper we report first results of a study using 2-D numerical simulations designed to explore Mach stem formation at the intersection of bow shocks formed by hypersonic "bullets" or "clumps". Our 2-D simulations show how the bow shock shapes and intersection angles change as the adiabatic index γ changes. We show that the formation or lack of a Mach stem in our simulations is consistent with the steady-state Mach stem formation theory. Our ultimate goal, which is part of an ongoing research effort, is to characterize the physical and observational consequences of bow shock intersections including the formation of Mach stems.

  7. Social complexity and the bow in the Eastern Woodlands.

    Science.gov (United States)

    Blitz, John H; Porth, Erik S

    2013-01-01

    Bingham and Souza have presented an evolutionary theory that specifies a causal relationship between the advent of powerful projectile weapons such as the bow and radical rearrangements in social relations and histories. They propose that the acquisition of weapons that permitted humans to kill at ever-increasing distances provided the coercive means to suppress conflicts of interest among nonkin, self-interested individuals in social groups, thus paving the way for greater social complexity. An unprecedented reduction in projectile point size identifies the arrival of the bow ca. A.D. 300 in the Eastern Woodlands of North America, which initiated a causal chain of cultural changes. In the Midwest, the bow, combined with food production, precipitated the decline of Hopewell by conferring household autonomy and dispersal, which at first suppressed social complexity, but later created conditions favorable to maize intensification. In the lower Southeast, where food production was unimportant, populations aggregated at concentrated wild-food sources, and the bow did not confer household autonomy. The relationship between the bow and social complexity varied under different environmental, social, and historical conditions.

  8. BowTieBuilder: modeling signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Schröder Adrian

    2009-06-01

    Full Text Available Abstract Background Sensory proteins react to changing environmental conditions by transducing signals into the cell. These signals are integrated into core proteins that activate downstream target proteins such as transcription factors (TFs. This structure is referred to as a bow tie, and allows cells to respond appropriately to complex environmental conditions. Understanding this cellular processing of information, from sensory proteins (e.g., cell-surface proteins to target proteins (e.g., TFs is important, yet for many processes the signaling pathways remain unknown. Results Here, we present BowTieBuilder for inferring signal transduction pathways from multiple source and target proteins. Given protein-protein interaction (PPI data signaling pathways are assembled without knowledge of the intermediate signaling proteins while maximizing the overall probability of the pathway. To assess the inference quality, BowTieBuilder and three alternative heuristics are applied to several pathways, and the resulting pathways are compared to reference pathways taken from KEGG. In addition, BowTieBuilder is used to infer a signaling pathway of the innate immune response in humans and a signaling pathway that potentially regulates an underlying gene regulatory network. Conclusion We show that BowTieBuilder, given multiple source and/or target proteins, infers pathways with satisfactory recall and precision rates and detects the core proteins of each pathway.

  9. Microdischarge plasma thrusters for small satellite propulsion

    Science.gov (United States)

    Raja, Laxminarayan

    2009-10-01

    Small satellites weighing less than 100 kg are gaining importance in the defense and commercial satellite community owing to advantages of low costs to build and operate, simplicity of design, rapid integration and testing, formation flying, and multi-vehicle operations. The principal challenge in the design and development of small satellite subsystems is the severe mass, volume, and power constraints posed by the overall size of the satellite. The propulsion system in particular is hard to down scale and as such poses a major stumbling block for small satellite technology. Microdischarge-based miniaturized plasma thrusters are potentially a novel solution to this problem. In its most basic form a microdischarge plasma thruster is a simple extension of a cold gas micronozzle propulsion device, where a direct or alternating current microdischarge is used to preheat the gas stream to improve to specific impulse of the device. We study a prototypical thruster device using a detailed, self-consistent coupled plasma and fluid flow computational model. The model describes the microdischarge power deposition, plasma dynamics, gas-phase chemical kinetics, coupling of the plasma phenomena with high-speed flow, and overall propulsion system performance. Unique computational challenges associated with microdischarge modeling in the presence of high-speed flows are addressed. Compared to a cold gas micronozzle, a significant increase in specific impulse (50 to 100 %) is obtained from the power deposition in the diverging supersonic section of the thruster nozzle. The microdischarge remains mostly confined inside the micronozzle and operates in an abnormal glow discharge regime. Gas heating, primarily due to ion Joule heating, is found to have a strong influence on the overall discharge behavior. The study provides a validation of the concept as simple and effective approach to realizing a relatively high-specific impulse thruster device at small geometric scales.

  10. Bow and Oblique Shock Formation in Soap Film

    Science.gov (United States)

    Kim, Ildoo; Mandre, Shreyas; Sane, Aakash

    2015-11-01

    In recent years, soap films have been exploited primarily to approximate two-dimensional flows while their three-dimensional character is relatively unattended. An example of the three-dimensional character of the flow in a soap film is the observed Marangoni shock wave when the flow speed exceeds the wave speed. In this study, we investigated the formation of bow and oblique shocks in soap films generated by wedges with different deflection angles. When the wedge deflection angle is small and the film flows fast, oblique shocks are observed. When the oblique shock cannot exists, bow shock is formed upstream the wedge. We characterized the oblique shock angle as a function of the wedge deflection angle and the flow speed, and we also present the criteria for transition between bow and oblique Marangoni shocks in soap films.

  11. Foreshock ions observed behind the Martian bow shock

    Science.gov (United States)

    Frahm, R. A.; Yamauchi, M.; Winningham, J. D.; Lundin, R.; Sharber, J. R.; Nilsson, H.; Coates, A. J.

    2016-08-01

    The Mars Express Analyzer of Space Plasmas and Energetic Atoms experiment contains ion and electron instruments for conducting plasma measurements. On January 23, 2012, during in-bound travel of Mars Express in the southern hemisphere of Mars from its dawn side toward periapsis at dusk, the plasma instruments measured foreshock-like ion beams extending from outside the bow shock and into the magnetosphere, continuing to a distance of about a proton gyroradius from the bow shock. These ion beams were mostly protons, were observed to have energies greater than solar wind protons, and were not gyrating, in agreement with reflections of the solar wind proton beam. Furthermore, in the foreshock region the ion energy gradually decreased toward the magnetosheath, in agreement with an acceleration by outward-directed electric field in the bowshock. The observations also suggest that this electric field exists even inside the magnetosheath within the distance of a proton gyroradius from the bow shock.

  12. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    CERN Document Server

    Mann, Christopher R; Morris, Melissa M

    2016-01-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo's eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adia...

  13. Featured Image: A Search for Stellar Bow Shock Nebulae

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    These dynamic infrared images (click for the full view!) reveal what are known as bow shock nebulae nebulae that form at the interface between the interstellar medium and the stellar wind from a high-speed star zipping through the galaxy (the arrows show the direction of motion of the star). When the relative speed between the two is supersonic, an arc-shaped bow shock forms ahead of the star, like the six prototypical ones pictured here. A team of scientists led by Henry Kobulnicky (University of Wyoming) has recently searched through survey data from the Spitzer Space Telescope and the Wide Field Infrared Explorer (WISE) to build a catalog of more than 700 such bow-shock nebula candidates, the vast majority of which are new discoveries. To find out more about their sample, check out the paper below!CitationHenry A. Kobulnicky et al 2016 ApJS 227 18. doi:10.3847/0067-0049/227/2/18

  14. Transport of Solar Wind Across Earth's Bow Shock

    Science.gov (United States)

    Parks, G. K.; Lee, E.; Yang, Z.; Liu, Y.; Fu, S.; Canu, P.; Goldstein, M. L.; Dandouras, I. S.; Reme, H.; Hong, J.

    2015-12-01

    Observations have established that about 20% of the solar wind (SW) is reflected and 80% directly transmitted across Earth's bow shock (Skopke et al, Adv. Space Sci., 15, No. 8/9, 269, 1995). The transmitted SW is not immediately thermalized and the magnetosheath plasma distribution can remain non-Maxwellian for a long time. Cluster observations have further established that most of the magnetosheath bulk flow remains super-Alfvenic except in the polar altitudes near the cusp region (Longmore et al., Anna. Geophysicae, 23, 3351-3364, 2005). We have studied SW ion distributions before and after entering the bow shock to examine the details of the solar wind-bow shock interaction. Preliminary findings indicate that a typical SW H+ beam with thermal kT ~10 eV drifting at 400 km/s in front of the bow shock appears as ~12 eV beam drifting at 250 km/s after it penetrates the shock barrier. The small kT increase is possibly due to wave-particle interaction at the boundary. While the He++ ion beam kT behaves similarly as H+ ions, the drift velocities of He++ ions do not always slow down as H+ ions. These observations indicate the physics of SW-bow shock interaction is much more complicated than the models that explain SW slow down as resulting from an electrostatic potential at the shock that decelerates the SW. We have started PIC simulation of SW transport across the bow shock and the results will be presented together with observations.

  15. Crushing of ship bows in head-on collision

    DEFF Research Database (Denmark)

    Ocakli, H.; Zhang, S.; Pedersen, Preben Terndrup

    2004-01-01

    Semi-analytical methods for analysis of plate crushing and ship bow damage in head-on collisions are developed in this paper. Existing experimental and theoretical studies for crushing analysis of plated structures are summarized and compared. Simple formulae for determining the crushing force....... The approach developed can be used easily to determine the crushing resistance and damage extent of the ship bow when ship length and collision speed are known. The method can be used in probabilistic analysis of damage extents in ship collisions where a large number of calculations are generally required....

  16. Plasma Diagnostic and Performance of a Permanent Magnet Hall Thruster

    CERN Document Server

    Ferreira, J L; Rego, I D S; Ferreira, I S; Ferreira, Jose Leonardo; Souza, Joao Henrique Campos De; Rego, Israel Da Silveira; Ferreira, Ivan Soares

    2004-01-01

    Electric propulsion is now a sucessfull method for primary propulsion of deep space long duration missions and for geosyncronous satellite attitude control. Closed Drift Plasma Thruster, so called Hall Thruster or SPT (stationary plasma thruster) were primarily conceived in USSR (the ancient Soviet Union) and now it is been developed by space agencies, space research institutes and industries in several countries such as France, USA, Israel, Russian Federation and Brazil. In this work, we show plasma characteristics and performance of a Hall Thruster designed with an innovative concept which uses an array of permanent magnets, instead of an eletromagnet, to produce a radial magnetic field inside its cylindrical plasma drift channel. Within this new concept, we expect to develop a Hall Thruster within power consuption that will scale up to small and medium size satellites. A plasma density and temperature space profiles inside and outside the thruster channel will be shown. Space plasma potential, ion temperat...

  17. Los Alamos NEP research in advanced plasma thrusters

    Science.gov (United States)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  18. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is to develop field emission electric propulsion (FEEP) thruster using carbon nanotubes (CNT) integrated anode. FEEP thrusters have gained...

  19. High-Pressure Lightweight Thrusters

    Science.gov (United States)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    interface realizes pseudo-plastic behavior with significant increase in the tensile strength. The investigation of high-temperature strength of C/Cs under high-rate heating (critical for thrust chambers) shows that tensile and compression strength increases from 70 MPa at room temperature to 110 MPa at 1,773 K, and up to 125 MPa at 2,473 K. Despite these unique properties, the use of C/Cs is limited by its high oxidation rate at elevated temperatures. Lining carbon/carbon chambers with a thin layer of iridium or iridium and rhenium is an innovative way to use proven refractory metals and provide the oxidation barrier necessary to enable the use of carbon/ carbon composites. Due to the lower density of C/Cs as compared to SiC/SiC composites, an iridium liner can be added to the C/C structure and still be below the overall thruster weight. Weight calculations show that C/C, C/C with 50 microns of Ir, and C/C with 100 microns of Ir are of less weight than alternative materials for the same construction.

  20. Pseudospectral Model for Hybrid PIC Hall-effect Thruster Simulation

    Science.gov (United States)

    2015-07-01

    1149. 8Goebel, D. M. and Katz, I., Fundamentals of Electric Propulsion : Ion and Hall Thrusters, John Wiley & Sons, Inc., 2008. 9Martin, R., J.W., K...Bilyeu, D., and Tran, J., “Dynamic Particle Weight Remapping in Hybrid PIC Hall -effect Thruster Simulation,” 34th Int. Electric Propulsion Conf...Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Pseudospectral model for hybrid PIC Hall -effect thruster simulationect

  1. Performance Characterization of a Three-Axis Hall Effect Thruster

    Science.gov (United States)

    2010-12-01

    the local plasma . A non - Maxwellian electron velocity distribution in the plasma invalidates some of the assumptions made in the above equations. The...further development before they can be flown in space [6]. 1.1.2 Hall Effect Thrusters. Hall effect thrusters (HET), also known as stationary plasma ...D. H., “Plume Mod- eling of Stationary Plasma Thrusters and Interactions with the Express-A Space - craft,” Journal of Spacecraft and Rockets , Vol

  2. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    Science.gov (United States)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  3. Studies of Non-Conventional Configuration Closed Electron Drift Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Y. Raitses; D. Staack; A. Smirnov; A.A. Litvak; L.A. Dorf; T. Graves; and N.J. Fisch

    2001-09-10

    In this paper, we review recent results obtained for segmented electrode and cylindrical Hall thrusters. A low sputtering graphite segmented electrode, placed at the exit of the annular thruster, is shown to affect the plasma potential distribution in the ceramic channel. This effect appears to be correlated with an observed plume reduction compared to a conventional, nonsegmented thruster. In preliminary experiments a 3-cm thruster was operated in the 50-200 W power range. Two operating regimes, stable and oscillating, were observed and investigated.

  4. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    Science.gov (United States)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2015-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in-space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This paper describes the electrical configuration testing of the HERMeS TDU-1 Hall thruster in NASA Glenn Research Center's Vacuum Facility 5. The three electrical configurations examined were 1) thruster body tied to facility ground, 2) thruster floating, and 3) thruster body electrically tied to cathode common. The HERMeS TDU-1 Hall thruster was also configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  5. High Throughput 600 Watt Hall Effect Thruster for Space Exploration

    Science.gov (United States)

    Szabo, James; Pote, Bruce; Tedrake, Rachel; Paintal, Surjeet; Byrne, Lawrence; Hruby, Vlad; Kamhawi, Hani; Smith, Tim

    2016-01-01

    A nominal 600-Watt Hall Effect Thruster was developed to propel unmanned space vehicles. Both xenon and iodine compatible versions were demonstrated. With xenon, peak measured thruster efficiency is 46-48% at 600-W, with specific impulse from 1400 s to 1700 s. Evolution of the thruster channel due to ion erosion was predicted through numerical models and calibrated with experimental measurements. Estimated xenon throughput is greater than 100 kg. The thruster is well sized for satellite station keeping and orbit maneuvering, either by itself or within a cluster.

  6. Thermal Management of Superconducting Electromagnets in VASIMR Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned space exploration missions will require high power electric propulsion. VASIMR thrusters are the most attractive option because they offer short...

  7. Control Valve for Miniature Xenon Ion Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is continuing its development of electric propulsion engines for various applications. Efforts have been directed toward both large and small thrusters,...

  8. High Efficiency Hall Thruster Discharge Power Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek leveraged previous, internally sponsored, high power, Hall thruster discharge converter development which allowed it to design, build, and test new printed...

  9. A collisionless plasma thruster plume expansion model

    Science.gov (United States)

    Merino, Mario; Cichocki, Filippo; Ahedo, Eduardo

    2015-06-01

    A two-fluid model of the unmagnetized, collisionless far region expansion of the plasma plume for gridded ion thrusters and Hall effect thrusters is presented. The model is integrated into two semi-analytical solutions valid in the hypersonic case. These solutions are discussed and compared against the results from the (exact) method of characteristics; the relative errors in density and velocity increase slowly axially and radially and are of the order of 10-2-10-3 in the cases studied. The plasma density, ion flux and ambipolar electric field are investigated. A sensitivity analysis of the problem parameters and initial conditions is carried out in order to characterize the far plume divergence angle in the range of interest for space electric propulsion. A qualitative discussion of the physics of the secondary plasma plume is also provided.

  10. Application of Bow-tie methodology to improve patient safety.

    Science.gov (United States)

    Abdi, Zhaleh; Ravaghi, Hamid; Abbasi, Mohsen; Delgoshaei, Bahram; Esfandiari, Somayeh

    2016-05-09

    Purpose - The purpose of this paper is to apply Bow-tie methodology, a proactive risk assessment technique based on systemic approach, for prospective analysis of the risks threatening patient safety in intensive care unit (ICU). Design/methodology/approach - Bow-tie methodology was used to manage clinical risks threatening patient safety by a multidisciplinary team in the ICU. The Bow-tie analysis was conducted on incidents related to high-alert medications, ventilator associated pneumonia, catheter-related blood stream infection, urinary tract infection, and unwanted extubation. Findings - In total, 48 potential adverse events were analysed. The causal factors were identified and classified into relevant categories. The number and effectiveness of existing preventive and protective barriers were examined for each potential adverse event. The adverse events were evaluated according to the risk criteria and a set of interventions were proposed with the aim of improving the existing barriers or implementing new barriers. A number of recommendations were implemented in the ICU, while considering their feasibility. Originality/value - The application of Bow-tie methodology led to practical recommendations to eliminate or control the hazards identified. It also contributed to better understanding of hazard prevention and protection required for safe operations in clinical settings.

  11. A Study of Uranus' Bow Shock Motions Using Langmuir Waves

    Science.gov (United States)

    Xue, S.; Cairns, I. H.; Smith, C. W.; Gurnett, D. A.

    1996-01-01

    During the Voyager 2 flyby of Uranus, strong electron plasma oscillations (Langmuir waves) were detected by the plasma wave instrument in the 1.78-kHz channel on January 23-24, 1986, prior to the inbound bow shock crossing. Langmuir waves are excited by energetic electrons streaming away from the bow shock. The goal of this work is to estimate the location and motion of Uranus' bow shock using Langmuir wave data, together with the spacecraft positions and the measured interplanetary magnetic field. The following three remote sensing analyses were performed: the basic remote sensing method, the lag time method, and the trace-back method. Because the interplanetary magnetic field was highly variable, the first analysis encountered difficulties in obtaining a realistic estimation of Uranus' bow shock motion. In the lag time method developed here, time lags due to the solar wind's finite convection speed are taken into account when calculating the shock's standoff distance. In the new trace-back method, limits on the standoff distance are obtained as a function of time by reconstructing electron paths. Most of the results produced by the latter two analyses are consistent with predictions based on the standard theoretical model and the measured solar wind plasma parameters. Differences between our calculations and the theoretical model are discussed.

  12. Analysis of the Giacobini-Zinner bow wave

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.J.; Slavin, J.A.; Bame, S.J.; Thomsen, M.F.; Cowley, S.W.H.; Richardson, I.G.; Hovestadt, D.; Ipavich, F.M.; Ogilvie, K.W.; Coplan, M.A.

    1986-01-01

    The cometary bow wave of P/Giacobini-Zinner has been analyzed using the complete set of ICE field and particle observations to determine if it is a shock. Changes in the magnetic field and plasma flow velocities from upstream to downstream have been analyzed to determine the direction of the normal and the propagation velocity of the bow wave. The velocity has then been compared with the fast magnetosonic wave speed upstream to derive the Mach number and establish whether it is ''supersonic'', i.e., a shock, or ''subsonic,'' i.e., a large amplitude wave. The various measurements have also been compared with values derived from a Rankine-Hugoniot analysis. The results indicate that, inbound, the bow wave is a shock with M = 1.5. Outbound, a subsonic mach number is obtained, however, arguments are presented that the bow wave is also likely to be a shock at this location. 11 refs., 4 figs., 2 tabs.

  13. Modeling non-thermal emission from stellar bow shocks

    CERN Document Server

    Pereira, V; Miceli, M; Bonito, R; de Castro, E

    2016-01-01

    Runaway O- and early B-type stars passing throughout the interstellar medium at supersonic velocities and characterized by strong stellar winds may produce bow shocks that can serve as particle acceleration sites. Previous theoretical models predict the production of high energy photons by non-thermal radiative processes, but their efficiency is still debated. We aim to test and explain the possibility of emission from the bow shocks formed by runaway stars traveling through the interstellar medium by using previous theoretical models. We apply our model to AE Aurigae, the first reported star with an X-ray detected bow shock, to BD+43 3654, in which the observations failed in detecting high energy emission, and to the transition phase of a supergiant star in the late stages of its life.From our analysis, we confirm that the X-ray emission from the bow shock produced by AE Aurigae can be explained by inverse Compton processes involving the infrared photons of the heated dust. We also predict low high energy fl...

  14. Fatigue analysis of the bow structure of FPSO

    Institute of Scientific and Technical Information of China (English)

    HU Zhi-qiang; GAO Zhen; GU Yong-ning

    2003-01-01

    The bow structure of FPSO moored by the single mooring system is rather complicated. There are many potential hot spots in connection parts of structures between the mooring support frame and the forecastle. Mooring forces, which are induced by wave excitation and transferred by the YOKE and the mooring support frame, may cause fatigue damage to the bow structure. Different from direct wave-induced-forces, the mooring force consists of wave frequency force (WF) and 2nd draft low frequency force (LF)[3], which are represented by two sets of short-term distribution respectively. Based on two sets of short-term distribution of mooring forces obtained by the model test, the fatigue damage of the bow structure of FPSO is analyzed, with emphasis on two points. One is the procedure and position selection for fatigue check, and the other is the application of new formulae for the calculation of accumulative fatigue damage caused by two sets of short-term distribution of hot spot stress range. From the results distinguished features of fatigue damage to the FPSO's bow structure can be observed.

  15. Numerical Simulations of Mach Stem Formation via Intersecting Bow Shocks

    CERN Document Server

    Hansen, Edward C; Hartigan, Patrick

    2014-01-01

    Hubble Space Telescope observations show bright knots of H$\\alpha$ emission within outflowing young stellar jets. Velocity variations in the flow create secondary bow shocks that may intersect and lead to enhanced emission. When the bow shocks intersect at or above a certain critical angle, a planar shock called a Mach stem is formed. These shocks could produce brighter H$\\alpha$ emission since the incoming flow to the Mach stem is parallel to the shock normal. In this paper we report first results of a study using 2-D numerical simulations designed to explore Mach stem formation at the intersection of bow shocks formed by hypersonic "bullets" or "clumps". Our 2-D simulations show how the bow shock shapes and intersection angles change as the adiabatic index $\\gamma$ changes. We show that the formation or lack of a Mach stem in our simulations is consistent with the steady-state Mach stem formation theory. Our ultimate goal, which is part of an ongoing research effort, is to characterize the physical and obse...

  16. THE JET-DRIVEN BOW SHOCK IN OUTFLOWS

    Institute of Scientific and Technical Information of China (English)

    ZhangQing; ZhengXingwu

    1999-01-01

    Recent high resolution observations show the high collimated bipolar molecular outflows from young stellar objects, such as NGC 2 264G and NGC 2 024. Existing models can not yet give complete interpretations of the structure and properties of the observed flow. Here, we propose a jet-driven bow

  17. Multi-Scale Modeling of Plasma Thrusters

    Science.gov (United States)

    Batishchev, Oleg

    2004-11-01

    Plasma thrusters are characterized with multiple spatial and temporal scales, which are due to the intrinsic physical processes such as gas ionization, wall effects and plasma acceleration. Characteristic times for hot plasma and cold gas are differing by 6-7 orders of magnitude. The typical collisional mean-free-paths vary by 3-5 orders along the devices. These make questionable a true self-consistent modeling of the thrusters. The latter is vital to the understanding of complex physics, non-linear dynamics and optimization of the performance. To overcome this problem we propose the following approach. All processes are divided into two groups: fast and slow. The slow ones include gas evolution with known sources and ionization sink. The ionization rate, transport coefficients, energy sources are defined during "fast step". Both processes are linked through external iterations. Multiple spatial scales are handled using moving adaptive mesh. Development and application of this method to the VASIMR helicon plasma source and other thrusters will be discussed. Supported by NASA.

  18. ELECTROSTATIC ION THRUSTERS - TOWARDS PREDICTIVE MODELING

    Directory of Open Access Journals (Sweden)

    Julia Duras

    2015-02-01

    Full Text Available For satellite missions, thrusters have to be qualified in large vacuum vessels to simulate space environment. One caveat of these experiments is the possible  modification of the beam properties due to the interaction of the energetic ions with the  vessel walls. Impinging ions can produce sputtered impurities or secondary  electrons from the wall. These can stream back into the acceleration channel of the  thruster and produce co-deposited layers. Over the long operation time of thousands  of hours, such layers can modify the optimized geometry and induce changes of the ion beam properties, e.g. broadening of the angular distribution and thrust reduction. To study such effects, a Monte Carlo code for the simulation of the interaction of ion thruster beams with vessel  walls was developed. Strategies to overcome sputter limitations by additional baffles are  studied with the help of this Monte-Carlo erosion code.

  19. Plume Comparisons between Segmented Channel Hall Thrusters

    Science.gov (United States)

    Niemack, Michael; Staack, David; Raitses, Yevgeny; Fisch, Nathaniel

    2001-10-01

    Angular ion flux plume measurements were taken in several configurations of segmented channel Hall thrusters. The configurations differed by the placement of relatively short rings made from materials with different conductive and secondary electron emission properties along the boron nitride ceramic channel of the thrusters (these have been shown to affect the plume [1]). The ion fluxes are compared with ion trajectory simulations based on plasma potential data acquired with a high speed emissive probe [2]. Preliminary results indicate that in addition to the physical properties of the segments, the plume angle can be strongly affected by the placement of segmented rings relative to the external and internal walls of the channel. [1] Y. Raitses, L. Dorf, A. Litvak and N. J. Fisch, Journal of Applied Physics 88, 1263, 2000 [2] D. Staack, Y. Raitses, N. J. Fisch, Parametric Investigations of Langmuir Probe Induced Perturbations in a Hall Thruster, DPP01 Poster Presentation This work was supported by the U.S. DOE Contract No. DE-ACO2-76-CHO3073.

  20. Small Arms of the Scythians. On the Time of Sigmoid Bow Appearance in Eastern Europe

    Directory of Open Access Journals (Sweden)

    Lukyashko Sergey Ivanovich

    2015-12-01

    Full Text Available Horse archers well-known in the ancient world used composite sigmoid bows for shooting (archery, the specific constructive features of which have been studied by the researchers. This type of a bow was convergently formed in Eastern China in the middle of the 2nd millennium B.C. and in the North Caucasus in the middle of the 4th millennium B.C. It gets transferred to the Northern Black Sea Region by the Scythians in the late 7th - early 6th centuries B.C. that resulted in the dramatic transformation of arrowheads’ types. The Greeks became aware of this weapon in the last third of the 6th century B.C. Bows can be divided into simple and complex ones. The simple bows are made from one solid bar, while the complex bows are made of several layers of different wood species. Composite bows are constructed from a few consequently connected bars. These types also include a reinforced bow – the bow springing qualities of which are reinforced by bone or tendon plates. Since the ancient masters combined different production methods, the definition of a composite reinforced bow can be found in the literature. European small arms development was focused on improving a simple bow. The strength of such bow was achieved by its size. However, massive bows are unsuitable for firing from a horse. Therefore, in cultures associated with the development of riding the search of methods of bow strength increase at the condition of reducing its size, was going on. In Asia, the focus was made on the material rather than shoulders design. As a result, complex composite bows appear in the East, which were made from several pieces of wood, connected with the central part of the handle at an angle. After the appearance of the Scythians in the middle East the angular design of bows was replaced by a sigmoid shape (scythicus acrus.

  1. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    Science.gov (United States)

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This presentation will cover the electrical configuration testing of the TDU-1 HERMeS Hall thruster in NASA Glenn Research Centers Vacuum Facility 5. The three electrical configurations examined are the thruster body tied to facility ground, thruster floating, and finally the thruster body electrically tied to cathode common. The TDU-1 HERMeS was configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  2. A high power ion thruster for deep space missions

    Science.gov (United States)

    Polk, James E.; Goebel, Dan M.; Snyder, John S.; Schneider, Analyn C.; Johnson, Lee K.; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  3. Magnetic field fluctuations across the Earth’s bow shock

    Directory of Open Access Journals (Sweden)

    A. Czaykowska

    Full Text Available We present a statistical analysis of 132 dayside (LT 0700-1700 bow shock crossings of the AMPTE/IRM spacecraft. We perform a superposed epoch analysis of low frequency, magnetic power spectra some minutes up-stream and downstream of the bow shock. The events are devided into categories depending on the angle θBn between bow shock normal and interplanetary magnetic field, and on plasma-β. In the foreshock upstream of the quasi-parallel bow shock, the power of the magnetic fluctuations is roughly 1 order of magnitude larger (δB ~ 4 nT for frequencies 0.01–0.04 Hz than upstream of the quasi-perpendicular shock. There is no significant difference in the magnetic power spectra upstream and downstream of the quasi-parallel bow shock; only at the shock itself, is the magnetic power enhanced by a factor of 4. This enhancement may be due to either an amplification of convecting upstream waves or to wave generation at the shock interface. On the contrary, downstream of the quasi-perpendicular shock, the magnetic wave activity is considerably higher than upstream. Down-stream of the quasi-perpendicular low-β bow shock, we find a dominance of the left-hand polarized component at frequencies just below the ion-cyclotron frequency, with amplitudes of about 3 nT. These waves are identified as ion-cyclotron waves, which grow in a low-β regime due to the proton temperature anisotropy. We find a strong correlation of this anisotropy with the intensity of the left-hand polarized component. Downstream of some nearly perpendicular (θBn ≈ 90° high-β crossings, mirror waves are identified. However, there are also cases where the conditions for mirror modes are met downstream of the nearly perpendicular shock, but no mirror waves are observed.

    Key words. Interplanetary physics (plasma waves and turbulence – Magnetospheric physics (magnetosheath; plasma waves and

  4. Mass-loading of bow shock pulsar wind nebulae

    CERN Document Server

    Morlino, G; Vorster, M

    2016-01-01

    We investigate the dynamics of bow shock nebulae created by pulsars moving supersonically through a partially ionized interstellar medium. A fraction of interstellar neutral hydrogen atoms penetrating into the tail region of a pulsar wind will undergo photo-ionization due to the UV light emitted by the nebula, with the resulting mass loading dramatically changing the flow dynamics of the light leptonic pulsar wind. Using a quasi 1-D hydrodynamic model of relativistic flow we find that if a relatively small density of neutral hydrogen, as low as $10^{-4}$ cm$^{-3}$, penetrate inside the pulsar wind, this is sufficient to strongly affect the tail flow. Mass loading leads to the fast expansion of the pulsar wind tail, making the tail flow intrinsically non-stationary. The shapes predicted for the bow shock nebulae compare well with observations, both in H$\\alpha$ and X-rays.

  5. Face bow and articulator for planning orthognathic surgery: 2 articulator.

    Science.gov (United States)

    Walker, Fraser; Ayoub, Ashraf F; Moos, Khursheed F; Barbenel, Joseph

    2008-10-01

    Patients who require orthognathic surgery may have asymmetry of the position of the temporomandibular joints relative to the maxilla, which is impossible to reproduce on the current semiadjustable articulators used for surgical planning. We describe a highly-adjustable spirit level orthognathic face bow that allows records to be made of patients with asymmetrical maxillae. The orthognathic articulator also allows the position of the condylar components of the articulator to be adjusted in three dimensions. The use of the new face bow and articulator made it possible to mount the dental casts of asymmetrical faces to reproduce their clinical appearance. The devices were evaluated by comparing the measurements of anatomical variables obtained from cephalometric radiographs with equivalent values obtained from the orthognathic articulator and casts mounted on the articulator. Although the measurements showed significant intersubject variability, the angle between the horizontal and maxillary occlusal plane, occlusal cant angle, and intercondylar widths, were not significantly different.

  6. Breaking the BOWS Watermarking System: Key Guessing and Sensitivity Attacks

    Directory of Open Access Journals (Sweden)

    Comesaña Pedro

    2007-01-01

    Full Text Available From December 15, 2005 to June 15, 2006, the watermarking community was challenged to remove the watermark from 3 different 512×512 watermarked images while maximizing the peak signal-to-noise ratio (PSNR measured by comparing the watermarked signals with their attacked counterparts. This challenge, which bore the inviting name of Break Our Watermarking System (BOWS, had as its main objective to enlarge the current knowledge on attacks to watermarking systems. In this paper, the main results obtained by the authors when attacking the BOWS system are presented and compared with strategies followed by other groups. Essentially, two different approaches have been followed: exhaustive search of the secret key and blind sensitivity attacks.

  7. Mass-loading of bow shock pulsar wind nebulae

    CERN Document Server

    Morlino, G; Vorster, M J

    2015-01-01

    We investigate the dynamics of bow shock nebulae created by pulsars moving supersonically through a partially ionized interstellar. A fraction of interstellar neutrals penetrating into the tail region of a pulsar wind will undergo photo-ionization due to the UV light emitted by the nebula, with the resulting mass loading dramatically changing the flow dynamics of the light leptonic pulsar wind. Using a quasi 1-D hydrodynamic model of both non-relativistic and relativistic flow, and focusing on scales much larger than the stand-off distance, we find that a relatively small density of neutrals, as low as $n_{\\rm ISM}=10^{-4}\\,\\text{cm}^{-3}$, is sufficient to strongly affect the tail flow. Mass loading leads to the fast expansion of the pulsar wind tail, making the tail flow intrinsically non-stationary. The shapes predicted for the bow shock nebulae compare well with observations, both in H$\\alpha$ and X-rays.

  8. Azimuthal Spoke Propagation in Hall Effect Thrusters

    Science.gov (United States)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Spokes are azimuthally propagating perturbations in the plasma discharge of Hall Effect Thrusters (HETs) that travel in the E x B direction and have been observed in many different systems. The propagation of azimuthal spokes are investigated in a 6 kW HET known as the H6 using ultra-fast imaging and azimuthally spaced probes. A spoke surface is a 2-D plot of azimuthal light intensity evolution over time calculated from 87,500 frames/s videos. The spoke velocity has been determined using three methods with similar results: manual fitting of diagonal lines on the spoke surface, linear cross-correlation between azimuthal locations and an approximated dispersion relation. The spoke velocity for three discharge voltages (300, 400 and 450 V) and three anode mass flow rates (14.7, 19.5 and 25.2 mg/s) yielded spoke velocities between 1500 and 2200 m/s across a range of normalized magnetic field settings. The spoke velocity was inversely dependent on magnetic field strength for low B-field settings and asymptoted at B-field higher values. The velocities and frequencies are compared to standard drifts and plasma waves such as E x B drift, electrostatic ion cyclotron, magnetosonic and various drift waves. The empirically approximated dispersion relation yielded a characteristic velocity that matched the ion acoustic speed for 5 eV electrons that exist in the near-anode and near-field plume regions of the discharge channel based on internal measurements. Thruster performance has been linked to operating mode where thrust-to-power is maximized when azimuthal spokes are present so investigating the underlying mechanism of spokes will benefit thruster operation.

  9. Arctic Bowyery – the Use of Compression Wood in Bows in the Subarctic and Arctic Regions of Eurasia and America

    Directory of Open Access Journals (Sweden)

    Marcus Lepola

    2015-06-01

    Full Text Available This paper is a study of the traditional use of a special kind of wood in bow construction in Eurasia and North America. This special kind of wood, called compression wood and coming from coniferous trees, has unique qualities that makes it suitable for bow construction. Bows made using this special wood have been referred to as Finno-Ugric bows, Sámi bows, Two-Wood bows and Eurasia laminated bows. These bows appear to have developed from archaic forms of compression wood self bows that were made from a single piece of wood. Recently features similar to the Eurasian compression wood bows have been discovered in bows originating from Alaska, and the use of compression wood for bow manufacture has been known to some Canadian Inuit groups. This paper addresses the origin and possible diffusion pattern of this innovation in bow technology in Eurasia and suggests a timeframe and a possible source for the transfer of this knowledge to North America. This paper also discusses the role of the Asiatic composite bow in the development of bows in Eurasia.

  10. Micro-Discharge Micro-Thruster

    Science.gov (United States)

    2005-06-01

    breakdown at the maximum applied voltage (900 V) in Argon. The back side of the Paschen curve for Ar occurs at a pressure-length (P·d) product of less than...significant capacitance to ground from either lead (~ 100 nF). As small as this is, it had a profound effect on the discharge (see next section). A more space... effect in most thrusters even in the 100 Watt class. For a micro-discharge, even a stray coupling capacitance 50 pF observed for the power leads

  11. PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Christopher R.; Boley, Aaron C. [Department of Physics and Astronomy University of British Columbia Vancouver, BC V6T 1Z1 (Canada); Morris, Melissa A. [Physics Department State University of New York at Cortland Cortland, NY 13045 (United States)

    2016-02-20

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  12. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    Science.gov (United States)

    Mann, Christopher R.; Boley, Aaron C.; Morris, Melissa A.

    2016-02-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s-1 are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  13. Global model of an iodine gridded plasma thruster

    Science.gov (United States)

    Grondein, P.; Lafleur, T.; Chabert, P.; Aanesland, A.

    2016-03-01

    Most state-of-the-art electric space propulsion systems such as gridded and Hall effect thrusters use xenon as the propellant gas. However, xenon is very rare, expensive to produce, and used in a number of competing industrial applications. Alternatives to xenon are currently being investigated, and iodine has emerged as a potential candidate. Its lower cost and larger availability, its solid state at standard temperature and pressure, its low vapour pressure and its low ionization potential make it an attractive option. In this work, we compare the performances of a gridded ion thruster operating separately with iodine and xenon, under otherwise identical conditions using a global model. The thruster discharge properties such as neutral, ion, and electron densities and electron temperature are calculated, as well as the thruster performance parameters such as thrust, specific impulse, and system efficiencies. For similar operating conditions, representative of realistic thrusters, the model predicts similar thrust levels and performances for both iodine and xenon. The thruster efficiency is however slightly higher for iodine compared with xenon, due to its lower ionization potential. This demonstrates that iodine could be a viable alternative propellant for gridded plasma thrusters.

  14. High-Power, High-Thrust Ion Thruster (HPHTion)

    Science.gov (United States)

    Peterson, Peter Y.

    2015-01-01

    Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.

  15. Performance and flow characteristics of MHD seawater thruster

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  16. Optimisation of a quantum pair space thruster

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2012-06-01

    Full Text Available The paper addresses the problem of propulsion for long term space missions. Traditionally a space propulsion unit has a propellant mass which is ejected trough a nozzle to generate thrust; this is also the case with inert gases energized by an on-board power unit. Unconventional methods for propulsion include high energy LASERs that rely on the momentum of photons to generate thrust. Anti-matter has also been proposed for energy storage. Although the momentum of ejected gas is significantly higher, the LASER propulsion offers the perspective of unlimited operational time – provided there is a power source. The paper will propose the use of the quantum pair formation for generating a working mass, this is different than conventional anti-matter thrusters since the material particles generated are used as propellant not as energy storage.Two methods will be compared: LASER and positron-electron, quantum pair formation. The latter will be shown to offer better momentum above certain energy levels.For the demonstrations an analytical solution is obtained and provided in the form of various coefficients. The implications are, for now, theoretical however the practicality of an optimized thruster using such particles is not to be neglected for long term space missions.

  17. Transient tests on an MHD thruster

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, E.S. (Purdue Univ., Hammond, IN (United States). Dept. of Engineering); Libera, J.; Petrick, M. (Argonne National Lab., IL (United States). Energy Systems Div.)

    1993-01-01

    Three different types of transient tests were made -- coast downs to zero voltage and current under open circuit and short circuit conditions, reverses where the applied voltage was reversed to the same or a different value, and jumps where the voltage applied to the thruster was increased without a change in polarity. Most except the coast downs were dons both quickly (voltage changes as fast as possible) and slowly (6 s to complete the voltage change). A few slower (12 s) transients were done. Transient runs were made for water conductivities of 16.2 and 5.09 S/m. In all cases steady-state conditions were established and several seconds of data taken before initiating the transients. Data were measured every 0.75 to 1 .5 second over the time interval of interest. Particular attention was paid to looking for evidence of gas bubbles, and to the chance of the voltage profiles between the electrodes. The data are interpreted based on the behavior of the power supply and the thruster.

  18. Digital computer control of a 30-cm mercury ion thruster

    Science.gov (United States)

    Low, C. A., Jr.

    1975-01-01

    The major objective was to define the exact role of an onboard spacecraft computer in the control of ion thrusters. An initial computer control system with accurate high speed capability was designed, programmed, and tested with the computer as the sole control element for an operating ion thruster. The command functions and a code format for a spacecraft digital control system were established. A second computer control system was constructed to operate with these functions and format. A throttle program sequence was established and tested. A two thruster array was tested with these computer control systems and the results reported.

  19. Numerical Study on the Effect of Buffer Bow Structure in Ship-to-ship Collisions

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Endo, Hisayoshi; Pedersen, Preben Terndrup

    2005-01-01

    structure in ship-ship collisions as compared with that of standard bulbous bows. This is demonstrated by conducting a series of large-scale finite element analyses. The finite element analyses are conducted with the general-purpose nonlinear structural code “LS-DYNA”. The applied scenario is one where......) and the forward velocity of the struck ship on the collapse mode of the bow of the striking vessel are investigated. Collapse modes, contact forces and energy absorption capabilities of the buffer bows are compared with those of conventional bows....

  20. Interaction between an interplanetary magnetic cloud and the Earth's magnetosphere: Motions of the bow shock

    Science.gov (United States)

    Wu, D. J.; Chao, J. K.; Lepping, R. P.

    2000-06-01

    An interplanetary magnetic cloud (IMC) is an important solar-terrestrial connection event. It is an ideal object for the study of solar-terrestrial relations and space weather because the Earth's space environment can be affected considerably during an IMC passage. An IMC was observed to pass the Earth during October 18-20, 1995. Wind recorded its interplanetary characteristics at ~175RE upstream of the Earth's bow shock, and ~45 min later, Geotail, being near the nominal location of the dawn bow shock, detected IMC-related multiple bow shock crossings. Using simultaneous measurements from Wind and Geotail, we analyzed, with a semiempirical bow shock model with two parameters, the bow shock motion caused by the interaction of the IMC with the magnetosphere during the passage. We also compared the bow shock motion predicted by the model, and hence the predicted Geotail bow shock crossings, with Geotail observations of the actual crossings. The results showed that the observed multiple bow shock crossings, which were obviously due to temporal variations of the upstream solar wind, can be well explained by the model-predicted bow shock motion.

  1. Self consistent kinetic simulations of SPT and HEMP thrusters including the near-field plume region

    CERN Document Server

    Matyash, K; Mutzke, A; Kalentev, O; Taccogna, F; Koch, N; Schirra, M

    2009-01-01

    The Particle-in-Cell (PIC) method was used to study two different ion thruster concepts - Stationary Plasma Thrusters (SPT) and High Efficiency Multistage Plasma Thrusters (HEMP-T), in particular the plasma properties in the discharge chamber due to the different magnetic field configurations. Special attention was paid to the simulation of plasma particle fluxes on the thrusters channel surfaces. In both cases, PIC proved itself as a powerful tool, delivering important insight into the basic physics of the different thruster concepts. The simulations demonstrated that the new HEMP thruster concept allows for a high thermal efficiency due to both minimal energy dissipation and high acceleration efficiency. In the HEMP thruster the plasma contact to the wall is limited only to very small areas of the magnetic field cusps, which results in much smaller ion energy flux to the thruster channel surface as compared to SPT. The erosion yields for dielectric discharge channel walls of SPT and HEMP thrusters were calc...

  2. Four Thruster Microfluidic Electrospray Propulsion (MEP) Cubesat Board Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cubesat Microfluidic Electrospray Propulsion (MEP) system module prototype will be designed, built and tested to demonstrate that a four MEP thruster system can...

  3. Magnesium Hall Thruster for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation being developed in this program is a Mg Hall Effect Thruster system that would open the door for In-Situ Resource Utilization based solar system...

  4. Three Phase Resonant DC Power Converter for Ion Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The new generation of, high performance electric propulsion missions will require high mass throughput and most likely the use of grided ion thruster equipped with...

  5. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek is developing a high throughput nominal 100-W Hall Effect Thruster. This device is well sized for spacecraft ranging in size from several tens of kilograms to...

  6. Modeling Common Cause Failures of Thrusters on ISS Visiting Vehicles

    Science.gov (United States)

    Haught, Megan

    2014-01-01

    This paper discusses the methodology used to model common cause failures of thrusters on the International Space Station (ISS) Visiting Vehicles. The ISS Visiting Vehicles each have as many as 32 thrusters, whose redundancy makes them susceptible to common cause failures. The Global Alpha Model (as described in NUREG/CR-5485) can be used to represent the system common cause contribution, but NUREG/CR-5496 supplies global alpha parameters for groups only up to size six. Because of the large number of redundant thrusters on each vehicle, regression is used to determine parameter values for groups of size larger than six. An additional challenge is that Visiting Vehicle thruster failures must occur in specific combinations in order to fail the propulsion system; not all failure groups of a certain size are critical.

  7. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high throughput, nominal 100 W Hall Effect Thruster (HET). This HET will be sized for small spacecraft (< 180 kg), including...

  8. 20mN, Variable Specific Impulse Colloid Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Colloid thrusters have long been known for their exceptional thrust efficiency and ability to operate over a range of specific impulse due to easily variable...

  9. Magnesium Hall Thruster for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to prove the feasibility of a Mg Hall effect thruster system that would open the door for In-Situ Resource Utilization (ISRU) based solar system...

  10. Long Life Cold Cathodes for Hall effect Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...

  11. High Input Voltage Hall Thruster Discharge Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall scope of this Phase I/II effort is the development of a high efficiency 15kW (nominal) Hall thruster discharge converter. In Phase I, Busek Co. Inc. will...

  12. Thruster Modelling for Underwater Vehicle Using System Identification Method

    Directory of Open Access Journals (Sweden)

    Mohd Shahrieel Mohd Aras

    2013-05-01

    Full Text Available This paper describes a study of thruster modelling for a remotely operated underwater vehicle (ROV by system identification using Microbox 2000/2000C. Microbox 2000/2000C is an XPC target machine device to interface between an ROV thruster with the MATLAB 2009 software. In this project, a model of the thruster will be developed first so that the system identification toolbox in MATLAB can be used. This project also presents a comparison of mathematical and empirical modelling. The experiments were carried out by using a mini compressor as a dummy depth pressure applied to a pressure sensor. The thruster model will thrust and submerge until it reaches a set point and maintain the set point depth. The depth was based on pressure sensor measurement. A conventional proportional controller was used in this project and the results gathered justified its selection.

  13. Radio Frequency Micro Ion Thruster for Precision Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop radio frequency discharge, gridded micro-ion thruster that produces sub-mN thrust precisely adjustable over a wide dynamic thrust range....

  14. Radio Frequency Micro Ion Thruster for Precision Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to continue development of an engineering model radio frequency discharge, gridded micro ion thruster that produces sub-mN to mN thrust precisely...

  15. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I program we successfully demonstrated the feasibility of the Pulsed ElectroGasdynamic (PEG) thruster for attitude control and orbital maneuvering. In...

  16. 20mN, Variable Specific Impulse Colloid Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During Phase I, Busek designed and manufactured an electrospray emitter capable of generating 20 mN in a 7" x 7" x 1.7" package. The thruster consists of nine...

  17. A High Performance Cathode Heater for Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High current hollow cathodes are the baseline electron source for next generation high power Hall thrusters. Currently for electron sources providing current levels...

  18. Tibial bowing in children - what is normal? A radiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Zbinden, Isabella [University of Basel, Department of Radiology, Basel (Switzerland); Rutz, Erich [University Children' s Hospital, Department of Orthopedic Surgery, Basel (Switzerland); Jacobson, Jon A. [University of Michigan, Department of Radiology, Ann Arbor, MI (United States); Magerkurth, Olaf [University Children' s Hospital, Department of Radiology, Basel (Switzerland); Kantonsspital Baden, Department of Radiology, Baden (Switzerland)

    2015-12-15

    To define osseous landmarks on tibia radiographs in order to establish age-related normal values characterizing physiological tibial bowing in children. Five hundred and twenty-six patients aged 0-17 years with normal radiographs of the lower legs were identified and retrospectively reviewed by two blinded radiologists. In anteroposterior (ap)/lateral (lat)-views, 3 lines defined tibial length and angulation. Line-A connecting proximal to distal corner of tibial metaphysic, lines B and C corresponding to corners of tibial metaphysis. Angle A/B defines proximal, A/C distal tibial-angulation. Tibial curvature is defined by distance of line-D parallel to A and tangential to tibial cortex. Normal values were calculated with linear-regression. Intra-/Interreader agreement were tested with a Bland-Altman-plot. Intrareader-agreement: Reader 1 showed a bias of -0.1, standard-deviation of bias was 1.9 and 95 %-limits-of-agreement -3.9- 3.7. Reader 2: -0.01, 2.4 and -4.7- 4.7. Interreader: 0.2, 1.6 and -2.9- 3.3. Angle-A/B ap was 80-100 , increasing with age (86.5-88); angle-AC ap was 82-107 (96.8-90.5), angle-AB lat was 81-107 (93.0-98.0); angle-AC lat was 76-102 (89.5-86.5); depth of curve ap was 0-11 % (8-3.5) and lat 2-13 %, (8.5-3.5). Age dependent tibial bowing can be assessed with this new measurement system and age-related normal-values characterizing physiological tibial bowing in children is established. (orig.)

  19. Capillary Discharge Thruster Experiments and Modeling (Briefing Charts)

    Science.gov (United States)

    2016-06-01

    PROPULSION MODELS & EXPERIMENTS Spacecraft Propulsion Relevant Plasma: From hall thrusters to plumes and fluxes on components Complex reaction physics i.e...PROPULSION MODELS & EXPERIMENTS Spacecraft Propulsion Relevant Plasma: From hall thrusters to plumes and fluxes on components Complex reaction ...Conductivity h is the Enthalpy Cs is the Sound Speed Θ is the Wall Energy Flux Pekker, 40th AIAA Plasmadynamics and Laser Conference, 2009. R.S. MARTIN (ERC INC

  20. Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters

    Science.gov (United States)

    Pfaff, Michael

    Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.

  1. Plume Characterization of Busek 600W Hall Thruster

    Science.gov (United States)

    2012-03-09

    APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/ GA /ENY/12-M05 PLUME CHARACTERIZATION OF BUSEK 600W HALL THRUSTER Duc Minh Bui, BS...Electric propulsion is a technology that has not been investigated as much compared to conventional cold gas or chemical engines [42]. It was not until... Thruster Using Thermal Imaging,” Air Force Institute of Technology, Dayton, OH, Master‟s Thesis AFIT/ GA /ENY/07- , March 2007. [14]Bohnert, A

  2. Preliminary Results of Plasma Flow Measurements in a 2 KW Segmented Hall Thruster

    Energy Technology Data Exchange (ETDEWEB)

    Y. Raitses; D. Staack; A. Dunaevsky; L. Dorf; N.J. Fisch

    2003-03-01

    A 2-kW Hall thruster was developed, built, and operated in an upgraded vacuum facility. The thruster performance and parameters of the plasma flow were measured by new diagnostics for plume measurements and plasma measurements inside the thruster channel. The thruster demonstrated efficient operation in terms of propellant and current utilization efficiencies in the input power range of 0.5-3.5 kW. Preliminary measurements of the ion energy spectra from the thruster axis region and the distribution of plasma parameters in the vicinity of the thruster exit are reported.

  3. Modeling of the Archery Bow and Arrow Vibrations

    Directory of Open Access Journals (Sweden)

    I. Zaniewski

    2009-01-01

    Full Text Available Vibration processes in the compound and open kinematical chain with an external link, as a model of an archery bow and arrow system, are evaluated. A mechanical and mathematical model of bend oscillations of the system during accelerate motion of the external link is proposed. Correlation between longitudinal acceleration and natural frequencies is obtained. There are recommendations regarding determination of virtual forms to study arrow vibrations and buckling. The models and methods have been adapted for realization into the engineering method using well-known mathematical software packages.

  4. Properties of bow-shock sources at the Galactic center

    Science.gov (United States)

    Sanchez-Bermudez, J.; Schödel, R.; Alberdi, A.; Muzić, K.; Hummel, C. A.; Pott, J.-U.

    2014-07-01

    Context. There exists an enigmatic population of massive stars around the Galactic center (GC) that were formed some Myr ago. A fraction of these stars has been found to orbit the supermassive black hole, Sgr A*, in a projected clockwise disk-like structure, which suggests that they were formed in a formerly existing dense disk around Sgr A*. Aims: We focus on a subgroup of objects, the extended, near-infrared (NIR) bright sources IRS 1W, IRS 5, IRS 10W, and IRS 21, that have been suggested to be young, massive stars that form bow shocks through their interaction with the interstellar medium (ISM). Their nature has impeded accurate determinations of their orbital parameters. We aim at establishing their nature and kinematics to test whether they form part of the clockwise disk. Methods: We performed NIR multiwavelength imaging with NACO/VLT using direct adaptive optics (AO) and AO-assisted sparse aperture masking (SAM). We introduce a new method for self-calibration of the SAM point spread function in dense stellar fields. The emission mechanism, morphology, and kinematics of the targets were examined via 3D models, combined with existing models of the gas flow in the central parsec. Results: We confirm previous findings that IRS 21, IRS 1W, and IRS 5 are bow-shocks created by the interaction between mass-losing stars and the interstellar gas. The nature of IRS 10W remains unclear. Our modeling shows that the bow-shock emission is caused by thermal emission, while the scattering of stellar light does not play a significant role. IRS 1W shows a morphology that is consistent with a bow shock produced by an anisotropic stellar wind or by locally inhomogeneous ISM density. Our best-fit models provide estimates of the local proper motion of the ISM in the Northern Arm that agree with previously published models that were based on radio interferometry and NIR spectroscopy. Assuming that all of the sources are gravitationally tied to Sagittarius A*, their orbital planes

  5. Power aspects of processes in the bow shock region

    Science.gov (United States)

    Sedykh, Pavel

    Bow shock is a powerful transformer of the solar wind kinetic energy into the gas dynamic and electromagnetic energy. The solar wind energy also feeds the ion acceleration process, the generation of waves in the region of bow shock, and the energy necessary to build up the foreshock. A jump of the magnetic field tangential component at front crossing means that the front carries an electric current. The solar wind kinetic energy partly transforms to gas kinetic and electromagnetic energy during its passage through the bow shock front. The transition layer (magnetosheath) can use part of this energy for accelerating of plasma, but can conversely spend part its kinetic energy on the electric power generation, which afterwards may be used by the magnetosphere. Thereby, transition layer can be both consumer (sink) and generator (source) of electric power depending upon special conditions. The direction of the current behind the bow shock front depends on the sign of the IMF B _{z}-component. It is this electric current which sets convection of plasma in motion. The process of current penetration into the magnetosphere is two-step. First, a polarization field is formed that penetrates layer-by-layer into the magnetosphere. More exactly, a pulse corresponding to this field penetrates into the plasma. Then, if the system is inhomogeneous, the flow may redistribute the pressure so that gradients appearing in the plasma induce an electric current. In power terms, this electric current is required to maintain convection in the inhomogeneous system. Any change in the external current through the magnetosphere causes a convection restructuring within a time on the order of travel time of the magnetosonic wave from the magnetopause to the center of the system, because the restructuring wave comes from both flanks. Using the expressions obtained in this paper for normal components of the electric current, the flow of matter brought into the magnetosphere can be estimated. A

  6. Mercury's magnetopause and bow shock from MESSENGER observations

    Science.gov (United States)

    Winslow, R. M.; Anderson, B. J.; Johnson, C. L.; Slavin, J. A.; Korth, H.; Purucker, M. E.; Baker, D. N.; Solomon, S. C.

    2012-12-01

    We establish the time-averaged shape and location of Mercury's magnetopause and bow shock from orbital observations by the MESSENGER Magnetometer. We fit empirical models to the midpoints of boundary crossings as well as to probability density maps of the magnetopause and bow shock positions. The magnetopause is fit by two different surfaces: (1) a paraboloid, and (2) a surface for which the position R from the planetary dipole varies as [1+cos(θ)]-α, where θ is the angle between R and the dipole-Sun line, and α is a flaring parameter that governs whether the magnetotail is closed (α fit simultaneously both the dayside and nightside magnetopause crossings, but the second surface gives the best-fit overall shape to the observations with a subsolar stand-off distance, Rss, of 1.45 RM (where RM is Mercury's radius), and a flaring parameter α = 0.5. The average magnetopause shape and location were determined under a mean solar wind ram pressure, PRam, of 14.3 nPa. The best-fit bow shock shape established under an average Alfvén Mach number (MA ) of 6.6 is described by a hyperboloid having Rss = 1.96 RM and an eccentricity of 1.02. These boundaries move as PRam and MA vary, but their shape remains unchanged. The magnetopause Rss varies from 1.55 RM to 1.35 RM for PRam in the range 8.8 to 21.6 nPa. The bow shock Rss varies from 2.29 RM to 1.89 RM for MA in the range 4.12 to 11.8. To first order, the boundaries are well approximated by figures of revolution. Additional effects of the interplanetary magnetic field are masked by the large dynamic variability of these boundaries. Despite the moderate average magnetic shear conditions at Mercury, the magnetotail surface is nearly cylindrical, with a radius of ~2.7 RM at a distance 3 RM downstream of Mercury. By comparison, Earth's magnetotail flaring continues until a downstream distance of ~10 Rss. This result may indicate that reconnection in Mercury's magnetotail does not take place beyond ~3 RM downstream of the

  7. Low-Mass, Low-Power Hall Thruster System

    Science.gov (United States)

    Pote, Bruce

    2015-01-01

    NASA is developing an electric propulsion system capable of producing 20 mN thrust with input power up to 1,000 W and specific impulse ranging from 1,600 to 3,500 seconds. The key technical challenge is the target mass of 1 kg for the thruster and 2 kg for the power processing unit (PPU). In Phase I, Busek Company, Inc., developed an overall subsystem design for the thruster/cathode, PPU, and xenon feed system. This project demonstrated the feasibility of a low-mass power processing architecture that replaces four of the DC-DC converters of a typical PPU with a single multifunctional converter and a low-mass Hall thruster design employing permanent magnets. In Phase II, the team developed an engineering prototype model of its low-mass BHT-600 Hall thruster system, with the primary focus on the low-mass PPU and thruster. The goal was to develop an electric propulsion thruster with the appropriate specific impulse and propellant throughput to enable radioisotope electric propulsion (REP). This is important because REP offers the benefits of nuclear electric propulsion without the need for an excessively large spacecraft and power system.

  8. Performance Evaluation of the Prototype Model NEXT Ion Thruster

    Science.gov (United States)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The performance testing results of the first prototype model NEXT ion engine, PM1, are presented. The NEXT program has developed the next generation ion propulsion system to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. The PM1 thruster exhibits operational behavior consistent with its predecessors, the engineering model thrusters, with substantial mass savings, enhanced thermal margins, and design improvements for environmental testing compliance. The dry mass of PM1 is 12.7 kg. Modifications made in the thruster design have resulted in improved performance and operating margins, as anticipated. PM1 beginning-of-life performance satisfies all of the electric propulsion thruster mission-derived technical requirements. It demonstrates a wide range of throttleability by processing input power levels from 0.5 to 6.9 kW. At 6.9 kW, the PM1 thruster demonstrates specific impulse of 4190 s, 237 mN of thrust, and a thrust efficiency of 0.71. The flat beam profile, flatness parameters vary from 0.66 at low-power to 0.88 at full-power, and advanced ion optics reduce localized accelerator grid erosion and increases margins for electron backstreaming, impingement-limited voltage, and screen grid ion transparency. The thruster throughput capability is predicted to exceed 750 kg of xenon, an equivalent of 36,500 hr of continuous operation at the full-power operating condition.

  9. Thrust Stand Measurements of a Conical Inductive Pulsed Plasma Thruster

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.

    2013-01-01

    Inductive Pulsed Plasma Thrusters (iPPT) spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current Propellant is accelerated and expelled at a high exhaust velocity (O(10 -- 100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, inductive pulsed plasma thrusters can suffer from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, inductive pulsed plasma thrusters can suffer from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. A conical coil geometry may offer higher propellant utilization efficiency over that of a at inductive coil, however an increase in propellant utilization may be met with a decrease in axial electromagnetic acceleration, and in turn, a decrease in the total axially-directed kinetic energy imparted to the propellant.

  10. Design and development of the Army KE ASAT ACS thruster

    Science.gov (United States)

    Craddock, Jeff; Janeski, Bruce

    1993-06-01

    Increasingly ambitious missions for advanced kinetic energy (KE) weapons have necessitated the development of a lightweight storable-propellant attitude control system (ACS) thruster capable of very fast response and long duration firings. This paper summarizes the results of a ACS thruster design and development test effort, performed for the U.S. Army Space and Strategic Defense Command (USASSDC) on the KE Anti Satellite (KE ASAT) weapon system program. Design approaches used to achieve long-duration continuous firing with a composite combustion chamber are detailed. This design effort culminated in a 6.7 lbf. thruster assembly weighing less than 0.2 pounds, approximately one-sixth that of a conventional satellite ACS thruster. Results of tests of flightweight engines with nitrogen tetroxide and monomethyl hydrazine hypergolic propellants are included. The test series culminated in what is believed to be the industry's longest continuous firing of a composite combustion chamber. This thruster will be integrated into the KE ASAT kinetic vehicle for its first free-flight hover test in early FY94. The demonstrated fast response, high pulse performance, and long-duration capabilities of this engine suggest that this thruster can significantly increase the capability of other spacecraft.

  11. NASA Brief: Q-Thruster Physics

    Science.gov (United States)

    White, Harold

    2013-01-01

    Q-thrusters are a low-TRL form of electric propulsion that operates on the principle of pushing off of the quantum vacuum. A terrestrial analog to this is to consider how a submarine uses its propeller to push a column of water in one direction, while the sub recoils in the other to conserve momentum -the submarine does not carry a "tank" of sea water to be used as propellant. In our case, we use the tools of Magnetohydrodynamics (MHD) to show how the thruster pushes off of the quantum vacuum which can be thought of as a sea of virtual particles -principally electrons and positrons that pop into and out of existence, and where fields are stronger, there are more virtual particles. The idea of pushing off the quantum vacuum has been in the technical literature for a few decades, but to date, the obstacle has been the magnitude of the predicted thrust which has been derived analytically to be very small, and therefore not likely to be useful for human spaceflight. Our recent theoretical model development and test data suggests that we can greatly increase the magnitude of the negative pressure of the quantum vacuum and generate a specific force such that technology based on this approach can be competitive for in-space propulsion approx. 0.1N/kW), and possibly for terrestrial applications (approx. 10N/kW). As an additional validation of the approach, the theory allows calculation of physics constants from first principles: Gravitational constant, Planck constant, Bohr radius, dark energy fraction, electron mass.

  12. Design and model experiments on thruster assisted mooring system; Futaishiki kaiyo kozobutsu no thruster ni yoru choshuki doyo seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Koterayama, W. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Kajiwara, H. [Kyushu Institute of Technology, Kitakyushu (Japan). Faculty of Computer Science and System Engineering; Hyakudome, T. [Kyushu University, Fukuoka (Japan)

    1996-12-31

    Described herein are dynamics and model experiments of the system in which positioning of a floating marine structure by mooring is combined with thruster-controlled positioning. Coefficients of dynamic forces acting on a floating structure model are determined experimentally and by the three-dimensional singularity distribution method, and the controller is designed by the PID, LQI and H{infinity} control theories. A model having a scale ratio of 1/100 was used for the experiments, where 2 thrusters were arranged in a diagonal line, one on the X-axis. It is found that the LQI and H{infinity} controllers of the thruster can control long-cycle rolling of the floating structure. They allow thruster control which is insensitive to wave cycle motion, and efficiently reduce positioning energy. The H{infinity} control regulates frequency characteristics of a closed loop more finely than the LQI control, and exhibits better controllability. 25 refs., 25 figs.

  13. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  14. Design and Analysis of the First BOWS Contest

    Directory of Open Access Journals (Sweden)

    Barni M

    2007-01-01

    Full Text Available The break our watermarking system (BOWS contest was launched in the framework of the activities carried out by the European Network of Excellence for Cryptology ECRYPT. The aim of the contest was to investigate how and when an image watermarking system can be broken while preserving the highest possible quality of the content, in the case the watermarking system is subject to a massive worldwide attack. The great number of participants and the echo that the contest has had in the watermarking community contributed to make BOWS a great success. From a scientific point of view, many insights into the problems attackers have to face with when operating in a practical scenario have been obtained, confirming the threat posed by the sensitivity attack, which turned out to be the most successful attack. At the same time, several interesting modifications of such an attack have been proposed to make it work in a real scenario under limited communication and time resources. This paper describes how the contest has been designed and analyzes the general progress of the attacks during the contest.

  15. Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin

    2009-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.

  16. Smashing the Guitar: An Evolving Neutron Star Bow Shock

    CERN Document Server

    Chatterjee, S

    2003-01-01

    The Guitar nebula is a spectacular example of an H-alpha bow shock nebula produced by the interaction of a neutron star with its environment. The radio pulsar B2224+65 is traveling at ~800--1600 km/s (for a distance of 1--2 kpc), placing it on the high-velocity tail of the pulsar velocity distribution. Here we report time evolution in the shape of the Guitar nebula, the first such observations for a bow shock nebula, as seen in H-alpha imaging with the Hubble Space Telescope. The morphology of the nebula provides no evidence for anisotropy in the pulsar wind, nor for fluctuations in the pulsar wind luminosity. The nebula shows morphological changes over two epochs spaced by seven years that imply the existence of significant gradients and inhomogeneities in the ambient interstellar medium. These observations offer astrophysically unique, in situ probes of length scales between 5E-4 pc and 0.012 pc. Model fitting suggests that the nebula axis -- and thus the three-dimensional velocity vector -- lies within 20 ...

  17. Far-UV bow shock nebula around PSR J0437-4715

    CERN Document Server

    Rangelov, Blagoy; Kargaltsev, Oleg; Durant, Martin; Bykov, Andrei M; Krassilchtchikov, Alexandre

    2016-01-01

    Pulsars traveling at supersonic speeds are often accompanied by cometary bow shocks seen in Halpha. We report on the first detection of a pulsar bow shock in the far-ultraviolet (FUV). We detected it in FUV images of the nearest millisecond pulsar J0437-4715 obtained with the Hubble Space Telescope. The images reveal a bow-like structure positionally coincident with part of the previously detected Halpha bow shock, with an apex at 10'' ahead of the moving pulsar. Its FUV luminosity, L(1250-2000 A) ~ 5x10^28 erg/s, exceeds the Halpha luminosity from the same area by a factor of 10. The FUV emission could be produced by the shocked ISM matter or, less likely, by relativistic pulsar wind electrons confined by strong magnetic field fluctuations in the bow shock. In addition, in the FUV images we found a puzzling extended (~3'' in size) structure overlapping with the limb of the bow shock. If related to the bow shock, it could be produced by an inhomogeneity in the ambient medium or an instability in the bow shock...

  18. The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain

    Science.gov (United States)

    Siegesmund, S.; Mosch, S.; Scheffzük, Ch.; Nikolayev, D. I.

    2008-10-01

    The bowing of natural stone panels is especially known for marble slabs. The bowing of granite is mainly known from tombstones in subtropical humid climate. Field inspections in combination with laboratory investigations with respect to the thermal expansion and the bowing potential was performed on two different granitoids (Cezlak granodiorite and Flossenbürg granite) which differ in the composition and rock fabrics. In addition, to describe and explain the effect of bowing of granitoid facade panels, neutron time-of-flight diffraction was applied to determine residual macro- and microstrain. The measurements were combined with investigations of the crystallographic preferred orientation of quartz and biotite. Both samples show a significant bowing as a function of panel thickness and destination temperature. In comparison to marbles the effect of bowing is more pronounced in granitoids at temperatures of 120°C. The bowing as well as the thermal expansion of the Cezlak sample is also anisotropic with respect to the rock fabrics. A quantitative estimate was performed based on the observed textures. The effect of the locked-in stresses may also have a control on the bowing together with the thermal stresses related to the different volume expansion of the rock-forming minerals.

  19. Bow Shock Leads the Way for a Speeding Hot Jupiter

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    As hot Jupiters whip around their host stars, their speeds can exceed the speed of sound in the surrounding material, theoretically causing a shock to form ahead of them. Now, a study has reported the detection of such a shock ahead of transiting exoplanet HD 189733b, providing a potential indicator of the remarkably strong magnetic field of the planet.Rushing PlanetsDue to their proximity to their hosts, hot Jupiters move very quickly through the stellar wind and corona surrounding the star. When this motion is supersonic, the material ahead of the planet can be compressed by a bow shock and for a transiting hot Jupiter, this shock will cross the face of the host star in advance of the planets transit.In a recent study, a team of researchers by Wilson Cauley of Wesleyan University report evidence of just such a pre-transit. The teams target is exoplanet HD 189733b, one of the closest hot Jupiters to our solar system. When the authors examined high-resolution transmission spectra of this system, they found that prior to the optical transit of the planet, there was a large dip in the transmission of the first three hydrogen Balmer lines. This could well be the absorption of an optically-thick bow shock as it moves past the face of the star.Tremendous MagnetismOperating under this assumption, the authors create a model of the absorption expected from a hot Jupiter transiting with a bow shock ahead of it. Using this model, they show that a shock leading the planet at a distance of 12.75 times the planets radius reproduces the key features of the transmission spectrum.This stand-off distance is surprisingly large. Assuming that the location of the bow shock is set by the point where the planets magnetospheric pressure balances the pressure of the stellar wind or corona that it passes through, the planetary magnetic field would have to be at least 28 Gauss. This is seven times the strength of Jupiters magnetic field!Understanding the magnetic fields of exoplanets is

  20. Lifetime Improvement of Large Scale Green Monopropellant Thrusters via Novel, Long-Life Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop and life-test a flight-weight, 5N class green monopropellant thruster in Phase II. The most important feature that sets this thruster apart...

  1. Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop a flight version of a high power Hall Effect thruster. While numerous high power Hall Effect thrusters have been demonstrated in the...

  2. High Performance Plasma Channel Insulators for High Power Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA missions for planetary exploration require high power, long-life Hall thrusters. However, thruster power and lifetime are limited by the erosion of plasma...

  3. Micro Pulsed Inductive Thruster with Solid Fuel Option (uPIT_SF) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Micro Pulsed Inductive Thruster with Solid Fuel Option (5PIT_SF) is a high-precision impulse bit electromagnetic plasma micro-thruster. The 5PIT prototype is a...

  4. Simulation of the oscillation regimes of bowed bars: a non-linear modal approach

    Science.gov (United States)

    Inácio, Octávio; Henrique, Luís.; Antunes, José

    2003-06-01

    It is still a challenge to properly simulate the complex stick-slip behavior of multi-degree-of-freedom systems. In the present paper we investigate the self-excited non-linear responses of bowed bars, using a time-domain modal approach, coupled with an explicit model for the frictional forces, which is able to emulate stick-slip behavior. This computational approach can provide very detailed simulations and is well suited to deal with systems presenting a dispersive behavior. The effects of the bar supporting fixture are included in the model, as well as a velocity-dependent friction coefficient. We present the results of numerical simulations, for representative ranges of the bowing velocity and normal force. Computations have been performed for constant-section aluminum bars, as well as for real vibraphone bars, which display a central undercutting, intended to help tuning the first modes. Our results show limiting values for the normal force FN and bowing velocity ẏbow for which the "musical" self-sustained solutions exist. Beyond this "playability space", double period and even chaotic regimes were found for specific ranges of the input parameters FN and ẏbow. As also displayed by bowed strings, the vibration amplitudes of bowed bars also increase with the bow velocity. However, in contrast to string instruments, bowed bars "slip" during most of the motion cycle. Another important difference is that, in bowed bars, the self-excited motions are dominated by the system's first mode. Our numerical results are qualitatively supported by preliminary experimental results.

  5. Evaluation of externally heated pulsed MPD thruster cathodes

    Science.gov (United States)

    Myers, Roger M.; Domonkos, Matthew; Gallimore, Alec D.

    1993-01-01

    Recent interest in solar electric orbit transfer vehicles (SEOTV's) has prompted a reevaluation of pulsed magnetoplasmadynamic (MPD) thruster systems due to their ease of power scaling and reduced test facility requirements. In this work the use of externally heated cathodes was examined in order to extend the lifetime of these thrusters to the 1000 to 3000 hours required for SEOTV missions. A pulsed MPD thruster test facility was assembled, including a pulse-forming network (PFN), ignitor supply and propellant feed system. Results of cold cathode tests used to validate the facility, PFN, and propellant feed system design are presented, as well as a preliminary evaluation of externally heated impregnated tungsten cathodes. The cold cathode thruster was operated on both argon and nitrogen propellants at peak discharge power levels up to 300 kW. The results confirmed proper operation of the pulsed thruster test facility, and indicated that large amounts of gas were evolved from the BaO-CaO-Al2O3 cathodes during activation. Comparison of the expected space charge limited current with the measured vacuum current when using the heated cathode indicate that either that a large temperature difference existed between the heater and the cathode or that the surface work function was higher than expected.

  6. Magnetic Field Tailored Annular Hall Thruster with Anode Layer

    Science.gov (United States)

    Lee, Seunghun; Kim, Holak; Kim, Junbum; Lim, Youbong; Choe, Wonho; Korea Institute of Materials Science Collaboration

    2016-09-01

    Plasma propulsion system is one of the key components for advanced missions of satellites as well as deep space exploration. A typical plasma propulsion system is Hall effect thruster that uses crossed electric and magnetic fields to ionize a propellant gas and to accelerate the ionized gas to generate momentum. In Hall thruster plasmas, magnetic field configuration is important due to the fact that electron confinement in the electromagnetic fields affects both plasma and ion beam characteristics as well as thruster performance parameters including thrust, specific impulse, power efficiency, and life time. In this work, development of an anode layer Hall thruster (TAL) with magnetic field tailoring has been attempted. The TAL is possible to keep discharge in 1 to 2 kilovolts of anode voltage, which is useful to obtain high specific impulse. The magnetic field tailoring is used to minimize undesirable heat dissipation and secondary electron emission from the wall surrounding the plasma. We will report 3 W and 200 W thrusters performances measured by a pendulum thrust stand according to the magnetic field configuration. Also, the measured result will be compared with the plasma diagnostics conducted by an angular Faraday probe, a retarding potential analyzer, and a ExB probe.

  7. Thrust Stand Measurements of a Conical Pulsed Inductive Plasma Thruster

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters can su er from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA)[4], shown in Fig. 1 is a pulsed inductive plasma thruster that is able to operate at lower pulse energies by partially ionizing propellant with an electron cyclotron resonance (ECR) discharge inside a conical inductive coil whose geometry serves to potentially increase propellant and plasma plume containment relative to at coil geometries. The ECR plasma is created with the use of permanent mag- nets arranged to produce a thin resonance region along the inner surface of the coil, restricting plasma formation and, in turn, current sheet formation to areas of high magnetic coupling to the driving coil.

  8. The bowed catheter sign: a risk for pericardial tamponade

    Energy Technology Data Exchange (ETDEWEB)

    Towbin, Richard [Phoenix Children' s Hospital, Department of Radiology, Phoenix, AZ (United States)

    2008-03-15

    The use of a central venous catheter (CVC) has become commonplace in the care of children with a wide variety of medical and surgical problems. Complications resulting from the insertion of these catheters are well recognized and can be life-threatening. When a temporary CVC or other catheter is inserted into the central venous system it is secured to the skin with a combination of sutures and sterile dressing. This fixes the catheter in place and does not allow it to retract, thereby putting pressure on the right atrial wall via the catheter tip if it is too long. The probability of wall penetration is increased if a catheter or device is tapered at the point of contact. The purpose of this case report is to present the bowed catheter sign and to review the anatomy of the cavotricuspid isthmus, a possible predisposing factor to cardiac perforation and tamponade. (orig.)

  9. Violin Pedagogy and the Physics of the Bowed String

    Science.gov (United States)

    McLeod, Alexander Rhodes

    The paper describes the mechanics of violin tone production using non-specialist language, in order to present a scientific understanding of tone production accessible to a broad readership. As well as offering an objective understanding of tone production, this model provides a powerful tool for analyzing the technique of string playing. The interaction between the bow and the string is quite complex. Literature reviewed for this study reveals that scientific investigations have provided important insights into the mechanics of string playing, offering explanations for factors which both contribute to and limit the range of tone colours and dynamics that stringed instruments can produce. Also examined in the literature review are significant works of twentieth century violin pedagogy exploring tone production on the violin, based on the practical experience of generations of teachers and performers. Hermann von Helmholtz described the stick-slip cycle which drives the string in 1863, which replaced earlier ideas about the vibration of violin strings. Later, scientists such as John Schelleng and Lothar Cremer were able to demonstrate how the mechanics of the bow-string interaction can create different tone colours. Recent research by Anders Askenfelt, Knut Guettler, and Erwin Schoonderwaldt have continued to refine earlier research in this area. The writings of Lucien Capet, Leopold Auer, Carl Flesch, Paul Rolland, Kato Havas, Ivan Galamian, and Simon Fischer are examined and analyzed. Each author describes a different approach to tone production on the violin, representing a different understanding of the underlying mechanism. Analyzing these writings within the context of a scientific understanding of tone production makes it possible to compare these approaches more consistently, and to synthesize different concepts drawn from the diverse sources evaluated.

  10. Bowing of marble panels: On-site damage analysis from the oeconomicum building at Goettingen (Germany)

    Science.gov (United States)

    Koch, A.; Siegesmund, S.

    2003-04-01

    The use of natural stone panels or cladding material for building facades has led to some durability problems, especially with marble slabs. To examine the effects of intrinsic and extrinsic parameters on bowing a very detailed study was performed on the Oeconomicum Building at the University of Goettingen. In total 1556 panels from the whole building were measured with respect to the bowing using a bow-meter. The variation of bowing ranges from concave (up to 23 mm/m) to convex (up to -11 mm/m). The variation is not controlled by the position with respect to the geographical coordinates, height above ground, shadows, temperature etc.. On the north facade the different rock structures visible on the panel surfaces are a result of the marble slabs being cut in different directions. The different degree in bowing is associated with the structure of the marble since all other influencing factors are relatively constant (position, temperature, moisture content, building physics). Experimental data on the expansion behaviour under dry and/or wet conditions reveal a different degree in bowing with respect to the rock fabric and may help to explain the observed differences in bowing. The effect of the rock fabric especially of the lattice preferred orientation in this case clearly controls the deterioration of the marble and the degree of bowing. The bowing is also characterized by an increase in the porosity, decreasing values of ultrasonic wave velocities and flexural strength. The loss of cohesion in the strongly deteriorated panels is clearly visible in the microstructure by the open grain boundaries which are interconnected to intergranular microcracks.

  11. Continuous Wheel Momentum Dumping Using Magnetic Torquers and Thrusters

    Science.gov (United States)

    Oh, Hwa-Suk; Choi, Wan-Sik; Eun, Jong-Won

    1996-12-01

    Two momentum management schemes using magnetic torquers and thrusters are sug-gested. The stability of the momentum dumping logic is proved at a general attitude equilibrium. Both momentum dumping control laws are implemented with Pulse-Width- Pulse-Frequency Modulated on-off control, and shown working equally well with the original continuous and variable strength control law. Thrusters are assummed to be asymmetrically configured as a contingency case. Each thruster is fired following separated control laws rather than paired thrusting. Null torque thrusting control is added on the thrust control calculated from the momentum control law for the gener-ation of positive thrusting force. Both magnetic and thrusting control laws guarantee the momentum dumping, however, the wheel inner loop control is needed for the "wheel speed" dumping, The control laws are simulated on the KOrea Multi-Purpose SATellite (KOMPSAT) model.

  12. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    Science.gov (United States)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  13. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    Science.gov (United States)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  14. Experimental characterization of radio frequency microthermal thruster performance

    Science.gov (United States)

    Williams, Shae E.

    Microsatellite (cold gas thrusters. Design constraints rule out much of traditional propulsion, requiring new and nonobvious technologies to advance the state of the art and enable longer and more flexible missions. The radio frequency microthermal thruster is shown to be worth thorough study for this application. A basic analytical model is constructed to look at expected performance, and the theory behind that model is explained. Calibration and the challenges in working with extremely low forces and displacements are also examined. The results of extensive testing on this thruster type are presented. Important trends are confirmed and validated, such as a linearity of specific impulse with power, and consistent nonlinearities with frequency and mass flow rate. Additionally, tests indicate a nonlinear relationship between applied frequency and thruster internal geometry that can more than triple the heating occurring in the thruster. Further tests focus on this relationship, and find more information about how these parameters couple are found to be primarily due to induced inefficiencies in stochastic heating and the inability of a vibrating voltage sheath to transfer energy into the flow. Additionally, first steps towards optimizing a design for performance are taken, such as analyzing the effect of adding a converging/diverging nozzle and finding an optimal length of inner electrode to be exposed to plasma. Overall, specific impulses of up to 85 seconds are found with argon as the propellant, doubling cold gas specific impulse, and an error on specific impulse is calculated to be less than 3% in either direction. These results after only slight efforts at design optimization indicate much more improvement is possible with this technology that would make an RF microthermal thruster viable as a commercial product.

  15. Power Electronics Development for the SPT-100 Thruster

    Science.gov (United States)

    Hamley, John A.; Hill, Gerald M.; Sankovic, John M.

    1994-01-01

    Russian electric propulsion technologies have recently become available on the world market. Of significant interest is the Stationary Plasma Thruster (SPT) which has a significant flight heritage in the former Soviet space program. The SPT has performance levels of up to 1600 seconds of specific impulse at a thrust efficiency of 0.50. Studies have shown that this level of performance is well suited for stationkeeping applications, and the SPT-100, with a 1.35 kW input power level, is presently being evaluated for use on Western commercial satellites. Under a program sponsored by the Innovative Science and Technology Division of the Ballistic Missile Defense Organization, a team of U.S. electric propulsion specialists observed the operation of the SPT-100 in Russia. Under this same program, power electronics were developed to operate the SPT-100 to characterize thruster performance and operation in the U.S. The power electronics consisted of a discharge, cathode heater, and pulse igniter power supplies to operate the thruster with manual flow control. A Russian designed matching network was incorporated in the discharge supply to ensure proper operation with the thruster. The cathode heater power supply and igniter were derived from ongoing development projects. No attempts were made to augment thruster electromagnet current in this effort. The power electronics successfully started and operated the SPT-100 thruster in performance tests at NASA Lewis, with minimal oscillations in the discharge current. The efficiency of the main discharge supply was measured at 0.92, and straightforward modifications were identified which could increase the efficiency to 0.94.

  16. Physics and Dynamics of Current Sheets in Pulsed Plasma Thrusters

    Science.gov (United States)

    2007-11-02

    pulsed plasma thruster. A simple experiment would involve measuring the impulse bit of a coaxial gas-fed pulsed plasma thruster operated in both positive...Princeton, NJ, 2002. [2] J. Marshal. Performance of a hydromagnetic plasma gun . The Physics of Fluids, 3(1):134–135, January-February 1960. [3] R.G. Jahn...Jahn and K.E. Clark. A large dielecteic vacuum facility. AIAA Jour- nal, 1966. [16] L.C. Burkhardt and R.H. Lovberg. Current sheet in a coaxial plasma

  17. Fault-Tolerant Region-Based Control of an Underwater Vehicle with Kinematically Redundant Thrusters

    Directory of Open Access Journals (Sweden)

    Zool H. Ismail

    2014-01-01

    Full Text Available This paper presents a new control approach for an underwater vehicle with a kinematically redundant thruster system. This control scheme is derived based on a fault-tolerant decomposition for thruster force allocation and a region control scheme for the tracking objective. Given a redundant thruster system, that is, six or more pairs of thrusters are used, the proposed redundancy resolution and region control scheme determine the number of thruster faults, as well as providing the reference thruster forces in order to keep the underwater vehicle within the desired region. The stability of the presented control law is proven in the sense of a Lyapunov function. Numerical simulations are performed with an omnidirectional underwater vehicle and the results of the proposed scheme illustrate the effectiveness in terms of optimizing the thruster forces.

  18. Coaxial microwave electrothermal thruster performance in hydrogen

    Science.gov (United States)

    Richardson, W.; Asmussen, J.; Hawley, M.

    1994-01-01

    The microwave electro thermal thruster (MET) is an electric propulsion concept that offers the promise of high performance combined with a long lifetime. A unique feature of this electric propulsion concept is its ability to create a microwave plasma discharge separated or floating away from any electrodes or enclosing walls. This allows propellant temperatures that are higher than those in resistojets and reduces electrode and wall erosion. It has been demonstrated that microwave energy is coupled into discharges very efficiently at high input power levels. As a result of these advantages, the MET concept has been identified as a future high power electric propulsion possibility. Recently, two additional improvements have been made to the coaxial MET. The first was concerned with improving the microwave matching. Previous experiments were conducted with 10-30 percent reflected power when incident power was in excess of 600 W(exp 6). Power was reflected back to the generator because the impedance of the MET did not match the 50 ohm impedance of the microwave circuit. To solve this problem, a double stub tuning system has been inserted between the MET and the microwave power supply. The addition of the double stub tuners reduces the reflected power below 1 percent. The other improvement has prepared the coaxial MET for hydrogen experiments. To operate with hydrogen, the vacuum window which separates the coaxial line from the discharge chamber has been changed from teflon to boron nitride. All the microwave energy delivered to the plasma discharge passes through this vacuum window. This material change had caused problems in the past because of the increased microwave reflection coefficients associated with the electrical properties of boron nitride. However, by making the boron nitride window electrically one-half of a wavelength long, power reflection in the window has been eliminated. This technical note summarizes the experimental performance of the improved

  19. Bow-tie topological features of metabolic networks and the functional significance

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jing; TAO Lin; YU Hong; LUO JianHua; GAO ZhiWei; LI YiXue

    2007-01-01

    Exploring the structural topology of genome-based large-scale metabolic network is essential for in vestigating possible relations between structure and functionality. Visualization would be helpful for obtaining immediate information about structural organization. In this work, metabolic networks of 75 organisms were investigated from a topological point of view. A spread bow-tie model was proposed to give a clear visualization of the bow-tie structure for metabolic networks. The revealed topological pattern helps to design more efficient algorithm specifically for metabolic networks. This coarsegrained graph also visualizes the vulnerable connections in the network, and thus could have important implication for disease studies and drug target identifications. In addition, analysis on the reciprocal links and main cores in the GSC part of bow-tie also reveals that the bow-tie structure of metabolic networks has its own intrinsic and significant features which are significantly different from those of random networks.

  20. The Effect of Buffer Bow Structures on Collision Damages of Oil Tankers

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Pedersen, Preben Terndrup; Friis-Hansen, Peter

    2007-01-01

    In order to investigate the effectiveness of buffer bow structures on prevention of oil spills in tanker collisions, probabilistic collision damage analyses were performed using a newly developed Simplified Ship Collision Analysis Tool (SSCAT). Monte Carlo Simulation (MCS) was carried out using...... the striking ships use conventional bulbous bows. The probability of oil spill from the VLCC, given a collision, is estimated and the risk reducing effect of introducing buffer bow structures is discussed....... SSCAT for collision scenarios where striking ships at various speeds, sizes and bulb shapes collide perpendicularly with a VLCC in fully loaded condition. The probability of oil spill from the struck VLCC in cases where all the striking ships use buffer bulbous bows was compared with the case where all...

  1. Oxygen foreshock of Mars and its implication on ion acceleration in the bow shock

    Science.gov (United States)

    Yamauchi, Masatoshi; Lundin, Rickard; Frahm, Rudy; Sauvaud, Jean-Andre; Holmstrom, Mats; Barabash, Stas

    2016-04-01

    Ion acceleration inside the bow shock is one of the poorly understood phenomena that has been observed for more than 30 years as the foreshock phenomena. While the Fermi-acceleration mechanism explains the diffuse component of foreshock ions, we still do not know the detailed mechanism that produces the discrete intense ions flowing along the local magnetic field direction (with and without gyration). One of the reasons for such difficulty is that majority of the bow shock study was performed for the Earth's case where Oxygen ions cannot be used to understand the acceleration mechanisms. The planetary oxygen ions that reach the Earth's bow shock have already been significantly accelerated, and are not adequate for such a study. In this sense the Martian bow shock is an ideal place to study the acceleration mechanisms leading to foreshock ions, although the nature of the bow shock is slightly different between the Earth and Mars (Yamauchi et al., 2011). On 21 September 2008, the Mars Express (MEX) Ion Mass Analyser (IMA) detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock. This was the first time that a substantial amount of planetary oxygen was observed upstream of the bow shock. The oxygen energy increased from low energy (< 300 keV) inside the magnetosheath (or it should be called an extended bow shock) to nearly 2 keV at more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. The observation is consistent with an electric potential barrier at the bow shock that simultaneously accelerates the planetary oxygen ions outward (to form the foreshock oxygen ions) and reflects a portion of the solar wind (to

  2. Defense Modernization Plans Through the 2020s: Addressing the Bow Wave

    Science.gov (United States)

    2016-04-30

    45 p.m. Chair: Andrew Hunter, Senior Fellow in the International Security Program, Director of Defense-Industrial Initiatives Group , Center for...and has appeared on CNBC, CNN, NPR, Al Jazeera English, and Fox News. He has been a guest lecturer for organizations and teaches a class on the...their peak years of funding requirements at roughly the same time in the 2020s, creating a modernization bow wave. Just as a large bow wave slows a ship

  3. On the observability of bow shocks of Galactic runaway OB stars

    Science.gov (United States)

    Meyer, D. M.-A.; van Marle, A.-J.; Kuiper, R.; Kley, W.

    2016-06-01

    Massive stars that have been ejected from their parent cluster and supersonically sailing away through the interstellar medium (ISM) are classified as exiled. They generate circumstellar bow-shock nebulae that can be observed. We present two-dimensional, axisymmetric hydrodynamical simulations of a representative sample of stellar wind bow shocks from Galactic OB stars in an ambient medium of densities ranging from nISM = 0.01 up to 10.0 cm- 3. Independently of their location in the Galaxy, we confirm that the infrared is the most appropriated waveband to search for bow shocks from massive stars. Their spectral energy distribution is the convenient tool to analyse them since their emission does not depend on the temporary effects which could affect unstable, thin-shelled bow shocks. Our numerical models of Galactic bow shocks generated by high-mass ( ≈ 40 M⊙) runaway stars yield H α fluxes which could be observed by facilities such as the SuperCOSMOS H-Alpha Survey. The brightest bow-shock nebulae are produced in the denser regions of the ISM. We predict that bow shocks in the field observed at H α by means of Rayleigh-sensitive facilities are formed around stars of initial mass larger than about 20 M⊙. Our models of bow shocks from OB stars have the emission maximum in the wavelength range 3 ≤ λ ≤ 50 μm which can be up to several orders of magnitude brighter than the runaway stars themselves, particularly for stars of initial mass larger than 20 M⊙.

  4. A hydrodynamic optimization design methodology for a ship bulbous bow under multiple operating conditions

    OpenAIRE

    Yu Lu; Xin Chang; An-kang Hu

    2016-01-01

    The main objective of this article is to describe an innovative methodology for the hydrodynamic optimization of a ship bulbous bow which considers multiple operating conditions. The proposed method is more practical and effective than the traditional optimization process, which is only based on contractually specified design condition. Parametric form approaches are adopted by employing an F-spline curve in order to generate variants of the hull bulbous bow forms using form design parameters...

  5. Observations of Bow Shocks of Runaway Stars with H.E.S.S

    CERN Document Server

    Schulz, A; Klepser, S

    2016-01-01

    Runaway stars form bow shocks by sweeping up interstellar matter in their direction of motion. Theoretical models predict a spectrally wide non-thermal component reaching up to gamma-ray energies at a flux level detectable with current instruments. They were motivated by a detection of non-thermal radio emission from the bow shock of BD$+43^\\circ3654$ and a possible detection of non-thermal X-rays from AE Aurigae. A search in the high-energy regime using data from \\textit{Fermi}-LAT resulted in flux upper limits for 27 candidates listed in the first E-BOSS catalogue. We perform the first systematic search for TeV emission from bow shocks of runaway stars. Using all available archival H.E.S.S. I data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue. This catalogue comprises 73 bow shock candidates, 32 of which have been observed with the H.E.S.S. telescopes. None of the observed bow shock candidates shows significant emission in th...

  6. On the observability of bow shocks of Galactic runaway OB stars

    CERN Document Server

    Meyer, D M -A; Kuiper, R; Kley, W

    2016-01-01

    Massive stars that have been ejected from their parent cluster and supersonically sailing away through the interstellar medium (ISM) are classified as exiled. They generate circumstellar bow shock nebulae that can be observed. We present two-dimensional, axisymmetric hydrodynamical simulations of a representative sample of stellar wind bow shocks from Galactic OB stars in an ambient medium of densities ranging from n_ISM=0.01 up to 10.0/cm3. Independently of their location in the Galaxy, we confirm that the infrared is the most appropriated waveband to search for bow shocks from massive stars. Their spectral energy distribution is the convenient tool to analyze them since their emission does not depend on the temporary effects which could affect unstable, thin-shelled bow shocks. Our numerical models of Galactic bow shocks generated by high-mass (~40 Mo) runaway stars yield H$\\alpha$ fluxes which could be observed by facilities such as the SuperCOSMOS H-Alpha Survey. The brightest bow shock nebulae are produc...

  7. PENGARUH ANTI-SLAMMING BULBOUS BOW TERHADAP GERAKAN SLAMMING PADA KAPAL PERINTIS 200 DWT

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2016-02-01

    Full Text Available Analisis seakeeping (kemampuan olah gerak kapal merupakan aspek penting dalam perancangan kapal. Berdasarkan analisis tersebut, dapat diketahui batas operasional dari sebuah kapal. Salah satunya adalah dapat mengetahui kemampuan kapal pada tinggi gelombang signifikan (Hs tertentu. Memodifikasi bentuk haluan kapal dengan membuat dasar dari haluan tersebut lebih rendah dibandingkan dengan dasar lambung kapal nya (dibawah garis baseline kapal dinamakan Anti-Slamming Bow. Pada penelitian ini, anti-slamming bow ditambahkan dengan ­bulbous bow yang dinamakan dengn Anti-Slamming Bulbous Bow (ASB. Panjang (lasb dan tinggi (hasb Anti-Slamming Bulbous Bow divariasikan untuk mendapatkan probabilitas dan intensitas slamming yang paling rendah. Metode untuk menghitung RAO menggunakan Metode Panel. Hasil penelitian menunjukkan bahwa nilai probabilitas pada kapal existing (model awal pada Hs = 4 m dan Tave = 5 s pada kecepatan 14 knot tidak memenuhi standar kriteria Nordforsk ’87 karena memiliki nilai probabilitas slamming sebesar 12,19%. Selain model awal, model 1, model 3 dan model 5 juga tidak memenuhi standar kriteria karena memiliki nilai probabilitas slamming sebesar 5,19%, 5,04% dan 5,10%. Parameter ukuran anti-slamming bulbous bow terbaik terdapat pada model 6 dimana rasio panjang ASB terhadap Lpp kapal sebesar 0,4 dan rasio tinggi ASB terhadap sarat kapal sebesar 0,4. Sedangkan bentuk Bulbous terbaik adalah Bulbous A yaitu bulbous tipe bentuk titik air tergantung. Model ini memiliki nilai  probabilas sebesar 1,95% dan memenuhi kriteria Nordforsk ’87.

  8. Effect of bow-type initial imperfection on reliability of minimum-weight, stiffened structural panels

    Science.gov (United States)

    Stroud, W. Jefferson; Krishnamurthy, Thiagaraja; Sykes, Nancy P.; Elishakoff, Isaac

    1993-01-01

    Computations were performed to determine the effect of an overall bow-type imperfection on the reliability of structural panels under combined compression and shear loadings. A panel's reliability is the probability that it will perform the intended function - in this case, carry a given load without buckling or exceeding in-plane strain allowables. For a panel loaded in compression, a small initial bow can cause large bending stresses that reduce both the buckling load and the load at which strain allowables are exceeded; hence, the bow reduces the reliability of the panel. In this report, analytical studies on two stiffened panels quantified that effect. The bow is in the shape of a half-sine wave along the length of the panel. The size e of the bow at panel midlength is taken to be the single random variable. Several probability density distributions for e are examined to determine the sensitivity of the reliability to details of the bow statistics. In addition, the effects of quality control are explored with truncated distributions.

  9. Flow performance of highly loaded axial fan with bowed rotor blades

    Science.gov (United States)

    Chen, L.; Liu, X. J.; Yang, A. L.; Dai, R.

    2013-12-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved.

  10. Bow-shock pulsar-wind nebulae passing through density discontinuities

    Science.gov (United States)

    Yoon, Doosoo; Heinz, Sebastian

    2017-01-01

    Bow-shock pulsar-wind nebulae are a subset of pulsar-wind nebulae that form when the pulsar has high velocity due to the natal kick during the supernova explosion. The interaction between the relativistic wind from the fast-moving pulsar and the interstellar medium produces a bow-shock and a trail, which are detectable in Hα emission. Among such bow-shock pulsar-wind nebulae, the Guitar Nebula stands out for its peculiar morphology, which consists of a prominent bow-shock head and a series of bubbles further behind. We present a scenario in which multiple bubbles can be produced when the pulsar encounters a series of density discontinuities in the ISM. We tested the scenario using 2D and 3D hydrodynamic simulations. The shape of the Guitar Nebula can be reproduced if the pulsar traversed a region of declining low density. We also show that if a pulsar encounters an inclined density discontinuity, it produces an asymmetric bow-shock head, consistent with observations of the bow-shock of the millisecond pulsar J2124-3358.

  11. Global Explicit Particle-in-cell Simulations of the Nonstationary Bow Shock and Magnetosphere

    Science.gov (United States)

    Yang, Zhongwei; Huang, Can; Liu, Ying D.; Parks, George K.; Wang, Rui; Lu, Quanming; Hu, Huidong

    2016-07-01

    We carry out two-dimensional global particle-in-cell simulations of the interaction between the solar wind and a dipole field to study the formation of the bow shock and magnetosphere. A self-reforming bow shock ahead of a dipole field is presented by using relatively high temporal-spatial resolutions. We find that (1) the bow shock and the magnetosphere are formed and reach a quasi-stable state after several ion cyclotron periods, and (2) under the B z southward solar wind condition, the bow shock undergoes a self-reformation for low β i and high M A . Simultaneously, a magnetic reconnection in the magnetotail is found. For high β i and low M A , the shock becomes quasi-stationary, and the magnetotail reconnection disappears. In addition, (3) the magnetopause deflects the magnetosheath plasmas. The sheath particles injected at the quasi-perpendicular region of the bow shock can be convected downstream of an oblique shock region. A fraction of these sheath particles can leak out from the magnetosheath at the wings of the bow shock. Hence, the downstream situation is more complicated than that for a planar shock produced in local simulations.

  12. E-BOSS: an Extensive stellar BOw Shock Survey. I: Methods and First Catalogue

    CERN Document Server

    Peri, C S; Brookes, D P; Stevens, I R; Isequilla, N

    2011-01-01

    CONTEXT: Bow shocks are produced by many astrophysical objects where shock waves are present. Stellar bow-shocks, generated by runaway stars, have been previously detected in small numbers and well studied. Along with recent progress in model development and improved observing instruments, our knowledge of the emission produced by these objects and its origin can be better understood. AIMS: Our main goal is to produce a stellar bow-shock catalogue by applying uniform search criteria and a systematic search process. This catalogue is a starting point for statistical studies, and to address fundamental questions such as, for instance, which conditions make a stellar bow shock detectable. METHODS: By using the newest infrared data releases we carried out a search for bow shocks produced by early-type runaway stars. First, we explore whether the classical IRAS bow shock candidates of Noriega-Crespo et al. (1997) remain visible in the most recently available IR data, which has much better resolution and sensitivit...

  13. STS-39: OMS Pod Thruster Removal/Replace

    Science.gov (United States)

    1991-01-01

    Shown is the removal and replacement of the Discovery's orbital maneuvering systems (OMS) pod thruster. The OMS engine will be used to propel Discovery north, off of its previous orbital groundtrack, without changing the spacecraft's altitude. A burn with this lateral effect is known as "out-of-plane."

  14. Mode Transitions in Magnetically Shielded Hall Effect Thrusters

    Science.gov (United States)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Huang, Wensheng; Kamhawi, Hani; Hofer, Richard R.; Jorns, Benjamin A.; Polk, James E.

    2014-01-01

    A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development.

  15. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    Science.gov (United States)

    Rock, B. A.; Parsons, M. L.; Mantenieks, M. A.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputting rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  16. Thruster direction controlling of assembled spacecraft based on gimbal suspension

    Institute of Scientific and Technical Information of China (English)

    Hongliang Xu; Hai Huang

    2016-01-01

    The attitude control system design and its control effect are affected considerably by the mass-property pa-rameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are added or removed, the center of mass wil be changed in certain axe; conse-quently, some thrusters' directions are deviated from the center of mass (CM) in certain plane. The CM of assembled spacecraft estimation and thruster direction control are studied. Firstly, the attitude dynamics of the assembled spacecraft is established based on the Newton-Euler method. Secondly, the estimation can be identified by the least recursive squares algorithm. Then, a scheme to control the thrusters’ directions is proposed. By using the gimbal instaled at the end of the boom, the angle of the thruster is controled by driving the gimbal; therefore, thrusters can be directed to the CM again. Finaly, numerical simulations are used to verify this scheme. Results of the numerical simulations clearly show that this control scheme is rational and feasible.

  17. Experimental results of an iodine plasma in PEGASES gridded thruster

    Science.gov (United States)

    Grondein, Pascaline; Aanesland, Ane

    2015-09-01

    In the electric gridded thruster PEGASES, both positive and negative ions are expelled after extraction from an ion-ion plasma. This ion-ion plasma is formed downstream a localized magnetic field placed a few centimeters from the ionization region, trapping and cooling down the electron to allow a better attachment to an electronegative gas. For this thruster concept, iodine has emerged as the most attractive option. Heavy, under diatomic form and therefore good for high thrust, its low ionization threshold and high electronegativity lead to high ion-ion densities and low RF power. After the proof-of-concept of PEGASES using SF6 as propellant, we present here experimental results of an iodine plasma studied inside PEGASES thruster. At solid state at standard temperature and pressure, iodine is heated to sublimate, then injected inside the chamber where the neutral gas is heated and ionized. The whole injection system is heated to avoid deposition on surfaces and a mass flow controller allows a fine control on the neutral gas mass flow. A 3D translation stage inside the vacuum chamber allows volumetric plasma studies using electrostatic probes. The results are also compared with the global model dedicated to iodine as propellant for electric gridded thrusters. This work has been done within the LABEX Plas@par project, and received financial state aid managed by the Agence Nationale de la Recherche, as part of the programme ``Investissements d'avenir.''

  18. Simulations of a Plasma Thruster Utilizing the FRC Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cohen, B. I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-10

    This report describes work performed by LLNL to model the behavior and performance of a reverse-field configuration (FRC) type of plasma device as a plasma thruster as summarized by Razin et al. [1], which also describes the MNX device at PPPL used to study this concept.

  19. Whistler wave bursts upstream of the Uranian bow shock

    Science.gov (United States)

    Smith, Charles W.; Goldstein, Melvyn L.; Wong, Hung K.

    1989-01-01

    Observations of magnetic field wave bursts upstream of the Uranian bow shock are reported which were recorded prior to the inbound shock crossing. Three wave types are identified. One exhibits a broad spectral enhancement from a few millihertz to about 50 mHz and is seen from 17 to 10 hr prior to the inbound shock crossing. It is argued that these waves are whistler waves that have propagated upstream from the shock. A second wave type has a spacecraft frame frequency between 20 and 40 mHz, is seen only within or immediately upstream of the shock pedestal, is right-hand polarized in the spacecraft frame, and has a typical burst duration of 90 s. The third wave type has a spacecraft frame frequency of about 0.15 Hz, is seen exclusively within the shock pedestal, is left-hand polarized in the spacecraft frame, and has a burst duration lasting up to 4 min. It is argued that the low-frequency bursts are whistler waves with phase speed comparable to, but in excess of, the solar wind speed.

  20. Whistler waves associated with the Uranian bow shock - Outbound observations

    Science.gov (United States)

    Smith, Charles W.; Wong, Hung K.; Goldstein, Melvyn L.

    1991-01-01

    High-resolution magnetic field measurements from the first outbound crossing of the Uranian bowshock by the Voyager 2 spacecraft between January 27 and 30, 1986, are examined. Evidence is found of enhanced whistler wave activity in the vicinity of three shock crossings but little or no evidence of such activity elsewhere. Two wave events display two separate and simultaneous wave enhancements each. From an investigation of these events using high-resolution field data, it is concluded that they are analogous to those whistler waves upstream of the earth's bow shock that are driven by beams of electrons. An instability analysis is presented to show that a single electron beam with reasonable parameters can penetrate both of the upstream and downstream of a shock crossing. This event displays only one relatively broad spectral enhancement in the same frequency regime and is left-hand polarized in the spacecraft frame. It is argued that this event is the result of a gyrating proton distribution associated with the oblique shock.

  1. Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters

    Science.gov (United States)

    Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.

    2010-01-01

    Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.

  2. Carbon Back Sputter Modeling for Hall Thruster Testing

    Science.gov (United States)

    Gilland, James H.; Williams, George J.; Burt, Jonathan M.; Yim, John Tamin

    2016-01-01

    Lifetime requirements for electric propulsion devices, including Hall Effect thrusters, are continually increasing, driven in part by NASA's inclusion of this technology in it's exploration architecture. NASA will demonstrate high-power electric propulsion system on the Solar Electric Propulsion Technology Demonstration Mission (SEP TDM). The Asteroid Redirect Robotic mission is one candidate SEP TDM, which is projected to require tens of thousands of thruster life. As thruster life is increased, for example through the use of improved magnetic field designs, the relative influence of facility effects increases. One such effect is the sputtering and redeposition, or back sputter, of facility materials by the high energy thruster plumes. In support of wear testing for the Hall Effect Rocket with Magnetic Shielding (HERMeS) project, the back sputter from a Hall effect thruster plume has been modeled for the NASA Glenn Research Center's Vacuum Facility 5. The predicted wear at a near-worst case condition of 600 V, 12.5 kW was found to be on the order of 1 micron/kh in a fully carbon-lined chamber. A more detailed numerical Monte Carlo code was also modified to estimate back sputter for a detailed facility and pumping configuration. This code demonstrated similar back sputter rate distributions, but is not yet accurately modeling the magnitudes. The modeling has been benchmarked to recent HERMeS wear testing, using multiple microbalance measurements. These recent measurements have yielded values on the order of 1.5 - 2 micron/kh at 600 V and 12.5 kW.

  3. Magnetoplasmadynamic electric propulsion thruster behavior at the hundred megawatt level

    Science.gov (United States)

    Marriott, Darin William

    Characteristic measurements were made of a hundred megawatt modified helium inverse pinch switch and compared against numerical modeling and theoretically expected behavior. Thruster voltage was measured for currents between three and three hundred kilo amps and for mass flow rates between 0.96 and 40 grams per second. From that, characteristic voltage, power, and resistance curves were generated. Electron temperature measurements made inside the plasma flow using triple Langmuir probes were found to be between three and thirty electron volts. General expected MPD thruster behavior, such as decreasing resistance with increasing mass flow rate, were confirmed. The quasi steady assumption was studied between 1.5 and 1.7 milliseconds and found to be appropriate. A theoretical model, based on integrating the magnetic field to determine thrust, as for an MPD thruster, was used to estimate fall voltages, pumping coefficients, and specific impulse. An empirical model for thruster voltage was then created to estimate the behavior of voltage as a function of the similarity parameter. The two models were then put together and found to be self consistent with the experimental data. Three sources of power loss were estimated given the experimental and theoretical model. The power lost due to fall voltage mechanisms was calculated from the theoretical model and the input current as a function of time. The ionization losses were estimated using a worst case scenario of complete double ionization of the input helium mass flow rate as a function of time. Thermal losses were calculated from the electron temperature and the input mass flow rate. Total temperature, specific impulse, and efficiency measurements were all presented as a function of a similarity parameter in line with MPD theory. Basic MPD thruster behavior was confirmed. Suggestions were made for future continuation of the project.

  4. Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars

    Directory of Open Access Journals (Sweden)

    M. Yamauchi

    2011-03-01

    Full Text Available Foreshock ions are compared between Venus and Mars at energies of 0.6~20 keV using the same ion instrument, the Ion Mass Analyser, on board both Venus Express and Mars Express. Venus Express often observes accelerated protons (2~6 times the solar wind energy that travel away from the Venus bow shock when the spacecraft location is magnetically connected to the bow shock. The observed ions have a large field-aligned velocity compared to the perpendicular velocity in the solar wind frame, and are similar to the field-aligned beams and intermediate gyrating component of the foreshock ions in the terrestrial upstream region. Mars Express does not observe similar foreshock ions as does Venus Express, indicating that the Martian foreshock does not possess the intermediate gyrating component in the upstream region on the dayside of the planet. Instead, two types of gyrating protons in the solar wind frame are observed very close to the Martian quasi-perpendicular bow shock within a proton gyroradius distance. The first type is observed only within the region which is about 400 km from the bow shock and flows tailward nearly along the bow shock with a similar velocity as the solar wind. The second type is observed up to about 700 km from the bow shock and has a bundled structure in the energy domain. A traversal on 12 July 2005, in which the energy-bunching came from bundling in the magnetic field direction, is further examined. The observed velocities of the latter population are consistent with multiple specular reflections of the solar wind at the bow shock, and the ions after the second reflection have a field-aligned velocity larger than that of the de Hoffman-Teller velocity frame, i.e., their guiding center has moved toward interplanetary space out from the bow shock. To account for the observed peculiarity of the Martian upstream region, finite gyroradius effects of the solar wind protons compared to the radius of the bow shock curvature and

  5. Exploiting biomechanical degrees of freedom for fast and accurate changes in movement direction: coordination underlying quick bow reversals during continuous cello bowing

    Directory of Open Access Journals (Sweden)

    Julius eVerrel

    2013-04-01

    Full Text Available Theoretical and empirical evidence suggests that accurate and efficient motor performance may be achieved by task-specific exploitation of biomechanical degrees of freedom. We investigate coordination of the right arm in a task requiring a sudden yet precisely controlled reversal of movement direction: bow reversals during continuous (legato tone production on a stringed instrument. Ten advanced or professional cello players (at least ten years of practice and ten age-matched novice players took part in the study. Kinematic data from the bow and the right arm were analyzed in terms of velocity and acceleration profiles, as well as temporal coordination along the arm. As expected, experts’ bow velocity and acceleration profiles differed markedly from those of novice participants, with higher peak accelerations and quicker direction changes. Importantly, experts achieved the change in movement direction with a single acceleration peak while novices tended to use multiple smaller acceleration peaks. Experts moreover showed a proximal-distal gradient in timing and amplitudes of acceleration peaks, with earlier and lower-amplitude reversals at more proximal joints. We suggest that this coordination pattern allows generating high accelerations at the end effector while reducing the required joint torques at the proximal joints. This may underlie experts’ ability to produce fast bow reversals efficiently and with high spatiotemporal accuracy. The findings are discussed in terms of motor control theory as well as potential implications for musicians’ performance and health.

  6. A bow-shaped thermal structure traveling upstream of the zonal wind flow of Venus atmosphere

    Science.gov (United States)

    Taguchi, Makoto; Fukuhara, Tetsuya; Imamura, Takeshi; Kouyama, Toru; Nakamura, Masato; Sato, Takao M.; Ueno, Munetaka; Suzuki, Makoto; Iwagami, Naomoto; Sato, Mitsuteru; Hashimoto, George L.; Takagi, Seiko; Akatsuki Science Team

    2016-10-01

    The Longwave Infrared Camera (LIR) onboard the Japanese Venus orbiter Akatsuki acquires a snap shot of Venus in the middle infrared region, and provides a brightness temperature distribution at the cloud-top altitudes of about 65 km. Hundreds of images taken by LIR have been transferred to the ground since the successful Venus orbit insertion of Akatsuki on Dec. 7, 2015. Here we report that a bow shaped thermal structure extending from the northern high latitudes to the southern high latitudes was found in the brightness temperature map on Dec. 7, 2015, and that it lasted for four days at least surprisingly at almost same geographical position. The bow shape structure looks symmetrical with the equator, and consists of a high temperature region in east or upstream of the background strong westward wind or the super rotation of the Venus atmosphere followed by a low temperature region in west with an amplitude of 5 K. It appeared close to the evening terminator in the dayside, and seems not to have stayed in the same local time rather to have co-rotated with the slowly rotating ground where the western part of Aphrodite Continent was below the center of the bow shape. Meridionally aligned dark filaments similar to the bow shape structure in shape but in much smaller scale were also identified in the brightness temperature map on Dec. 7, and they propagated upstream of the zonal wind as well. The bow shape structure disappeared when LIR observed the same local time and longitude in the earliest opportunity on Jan. 16, 2016. Similar events, though their amplitudes were less than 1 K, were found on Apr. 15 and 26, 2016, but they appeared in different local times and longitudes. A simulation of a gravity wave generated in the lower atmosphere and propagating upward reproduces the observed bow shape structure. The bow shape structure could be a signature of transferring momentum from the ground to the upper atmosphere.

  7. Thermal-environment testing of a 30-cm engineering model thruster

    Science.gov (United States)

    Mirtich, M. J.

    1976-01-01

    An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.

  8. Microwave ECR Ion Thruster Development Activities at NASA Glenn Research Center

    Science.gov (United States)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    Outer solar system missions will have propulsion system lifetime requirements well in excess of that which can be satisfied by ion thrusters utilizing conventional hollow cathode technology. To satisfy such mission requirements, other technologies must be investigated. One possible approach is to utilize electrodeless plasma production schemes. Such an approach has seen low power application less than 1 kW on earth-space spacecraft such as ARTEMIS which uses the rf thruster the RIT 10 and deep space missions such as MUSES-C which will use a microwave ion thruster. Microwave and rf thruster technologies are compared. A microwave-based ion thruster is investigated for potential high power ion thruster systems requiring very long lifetimes.

  9. Thermal-environmental testing of a 30-cm engineering model thruster

    Science.gov (United States)

    Mirtich, M. J.

    1976-01-01

    An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.

  10. Cathode-less gridded ion thrusters for small satellites

    Science.gov (United States)

    Aanesland, Ane

    2016-10-01

    Electric space propulsion is now a mature technology for commercial satellites and space missions that requires thrust in the order of hundreds of mN, and with available electric power in the order of kW. Developing electric propulsion for SmallSats (1 to 500 kg satellites) are challenging due to the small space and limited available electric power (in the worst case close to 10 W). One of the challenges in downscaling ion and Hall thrusters is the need to neutralize the positive ion beam to prevent beam stalling. This neutralization is achieved by feeding electrons into the downstream space. In most cases hollow cathodes are used for this purpose, but they are fragile and difficult to implement, and in particular for small systems they are difficult to downscale, both in size and electron current. We describe here a new alternative ion thruster that can provide thrust and specific impulse suitable for mission control of satellites as small as 3 kg. The originality of our thruster lies in the acceleration principles and propellant handling. Continuous ion acceleration is achieved by biasing a set of grids with Radio Frequency voltages (RF) via a blocking capacitor. Due to the different mobility of ions and electrons, the blocking capacitor charges up and rectifies the RF voltage. Thus, the ions are accelerated by the self-bias DC voltage. Moreover, due to the RF oscillations, the electrons escape the thruster across the grids during brief instants in the RF period ensuring a full space charge neutralization of the positive ion beam. Due to the RF nature of this system, the space charge limited current increases by almost a factor of 2 compared to classical DC biased grids, which translates into a specific thrust two times higher than for a similar DC system. This new thruster is called Neptune and operates with only one RF power supply for plasma generation, ion acceleration and electron neutralization. We will present the downscaling of this thruster to a 3cm

  11. Two-Dimensional, Time-Dependent Plasma Structures of a Hall Effect Thruster

    Science.gov (United States)

    2011-09-01

    thruster were published in international journals . The United States decided to focus their attention on the ion thruster while the Soviet space program...application of the lin- earized equations of two-fluid magneto hydrodynamics ( MHD ) of a cold, collisionless plasma. The MHD equations are written as...propelled Hall thrusters. I. Emission cross sec- tion”. Journal of Applied Physics, 99, 2006. 10. Chiu, Y., B. W. Ticknor, B. A. Fritz, J. R. Winick, M. K

  12. Development, Vibration, and Thermal Characterization of a Steady Operating Pulsed Power System for FRC Thrusters

    Science.gov (United States)

    2015-04-01

    Field (RMF) to produce large plasma currents inside a conical thruster creating a field-reversed configuration (FRC) plasmoid that is magnetically...in turn charges a high-Q capacitor. Connected in series with the thruster antenna, the resonant RLC circuit oscillates at high frequency with a...Field (RMF) to produce large plasma currents inside a conical thruster creating a field-reversed configuration (FRC) plasmoid that is magnetically

  13. Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Raitses, Y.; Staack, D.; Fisch, N.J.

    2002-09-04

    Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster.

  14. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Field emission electric propulsion (FEEP) thrusters have gained considerable attention for spacecrafts disturbance compensation because of excellent characteristics....

  15. Colloid Thruster for Attitude Control Systems (ACS) and Tip-off Control Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop and deliver a complete engineering model colloid thruster system, capable of thrust levels and lifetimes required for spacecraft...

  16. Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofery, Richard R.

    2013-01-01

    The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.

  17. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase I: Numerical Simulations

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.

    2011-01-01

    In a proof-of-principle effort to demonstrate the feasibility of magnetically shielded (MS) Hall thrusters, an existing laboratory thruster has been modified with the guidance of physics-based numerical simulation. When operated at a discharge power of 6-kilowatts the modified thruster has been designed to reduce the total energy and flux of ions to the channel insulators by greater than 1 and greater than 3 orders of magnitude, respectively. The erosion rates in this MS thruster configuration are predicted to be at least 2-4 orders of magnitude lower than those in the baseline (BL) configuration. At such rates no detectable erosion is expected to occur.

  18. Low-Cost High-Performance Hall Thruster Support System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Colorado Power Electronics (CPE) has built an innovative modular power processing unit (PPU) for Hall Thrusters, including discharge, magnet, heater and keeper...

  19. Global explicit particle-in-cell simulations of the nonstationary bow shock and magnetosphere

    CERN Document Server

    Yang, Zhongwei; Liu, Ying D; Parks, George K; Wang, Rui; Lu, Quanming; Hu, Huidong

    2016-01-01

    We carry out two-dimensional global particle-in-cell simulations of the interaction between the solar wind and a dipole field to study the formation of the bow shock and magnetosphere. A self-reforming bow shock ahead of a dipole field is presented by using relatively high temporal-spatial resolutions. We find that (1) the bow shock and the magnetosphere are formed and reach a quasi-stable state after several ion cyclotron periods, and (2) under the Bz southward solar wind condition the bow shock undergoes a self-reformation for low \\b{eta}i and high MA. Simultaneously, a magnetic reconnection in the magnetotail is found. For high \\b{eta}i and low MA, the shock becomes quasi-stationary, and the magnetotail reconnection disappears. In addition, (3) the magnetopause deflects the magnetosheath plasmas. The sheath particles injected at the quasi-perpendicular region of the bow shock can be convected to downstream of an oblique shock region. A fraction of these sheath particles can leak out from the magnetosheath ...

  20. Bow shock fragmentation driven by a thermal instability in laboratory-astrophysics experiments

    CERN Document Server

    Suzuki-Vidal, F; Ciardi, A; Pickworth, L A; Rodriguez, R; Gil, J M; Espinosa, G; Hartigan, P; Swadling, G F; Skidmore, J; Hall, G N; Bennett, M; Bland, S N; Burdiak, G; de Grouchy, P; Music, J; Suttle, L; Hansen, E; Frank, A

    2015-01-01

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counter-streaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame and the experiments are driven over many times the characteristic cooling time-scale. The initially smooth bow shock rapidly develops small-scale non-uniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with...

  1. The Milky Way Project: A Citizen Science Catalog of Infrared Bow Shock Nebulae

    Science.gov (United States)

    Dixon, Don; Jayasinghe, Tharindu; Povich, Matthew S.

    2017-01-01

    We present preliminary results from the first citizen-science search for infrared stellar-wind bow shock candidates. This search uses the Milky Way project, hosted by the Zooniverse, an online platform with over 1 million volunteer citizen scientists. Milky Way Project volunteers examine 77,000 randomly-distributed Spitzer image cutouts at varying zoom levels. Volunteers mark the infrared arc of potential bow shock candidates as well as the star likely driving the nebula. We produce lists of candidates from bow shocks flagged by multiple volunteers, which after merging and final visual review form the basis for our catalog. Comparing our new catalog to a recently-published catalog of 709 infrared bow shock candidates identified by a small team of (primarily undergraduate) researchers will allow us to assess the effectiveness of citizen science for this type of search and should yield a more complete catalog. Planned studies using these large catalogs will improve constraints on the mass-loss rates for the massive stars that create these bow shock nebulae. Mass-loss rates are highly uncertain but are a critical component of evolutionary models for massive stars. This work is supported by the National Science Foundation under grants CAREER-1454334, AST-1411851 (RUI) and AST-1412845.

  2. Bow-tie antennas on a dielectric half-space - Theory and experiment

    Science.gov (United States)

    Compton, Richard C.; Mcphedran, Ross C.; Popovic, Zorana; Rebeiz, Gabriel M.; Tong, Peter P.

    1987-01-01

    A new formulation is discussed for the rigous calculation of the radiation pattern of a bow-tie antenna of finite length and infinitesimal thickness, placed on a lossless dielectric substrate. The analysis is based on a representation of the current density on the metal surface of the antenna as a sum of an imposed (quasistatic) term and a set of current modes with unknown amplitudes. Free-space fields that are expressed in terms of continuous spectra of symmetrized plane waves are matched to the current modes using the method of moments. The resulting set of equations are solved for the unknown current amplitudes. The calculations show that for increasing bow length the antenna impedance spirals rapidly to a value predicted by transmission line theory. The theory also shows that the E-plane pattern of a two-wavelength, 60-deg bow-tie antenna is dominated by low-loss current modes propagating at the dielectric wavenumber. As the bow tie narrows, the loss of the modes increases, and the dominant wavenumber tends to the quasi-static value. Pattern measurements made at 94 GHz are shown to agree well with theoretical predictions. Measurements for a long-wire antenna, a linear array of bow-tie elements, and a log-periodic antenna are also presented.

  3. The dynamics of Bow-shock Pulsar Wind Nebula: Reconstruction of multi-bubbles

    Science.gov (United States)

    Yoon, Doosoo; Heinz, Sebastian

    2014-08-01

    Bow-shock pulsar wind nebulae (PWNe) exhibit a characteristic cometary shape due to the supersonic motion of the pulsar interacting with the interstellar medium (ISM). One of the spectacular bow-shock is the Guitar Nebula, which is produced by the fast pulsar PSR B2224+65 (vpsr > 1000 km s-1 ), and consists of a bright head, a faint neck, a two larger bubbles. We present that the peculiar mophology arises from variations in the interstellar medium density. We perform 3-D hydrodynamic simulation to understand the evolution of the pulsar as its moves through the density discontinuity. We found that when the pulsar encounters the low-density medium, the pressure balance at the head of the bow shock begins to collapse, producing the second bubble. The expansion rate of the bubble is related to the properties of both the pulsar and the ambient medium. Assuming that the pulsar’s properties, including spin-down energy, are constant, we conclude that the ambient density around the second bubble should be 4.46 times larger than around the first bubble in the Guitar body. We further found that when the pulsar encounters the inclined density dicontinuity, it can produce the asymmetric shape of the bow shock observed in a subset of bow-shock PWNe including J2124-3358.

  4. Bow Shocks from Neutron Stars Scaling Laws and HST Observations of the Guitar Nebula

    CERN Document Server

    Chatterjee, S

    2002-01-01

    The interaction of high-velocity neutron stars with the interstellar medium produces bow shock nebulae, where the relativistic neutron star wind is confined by ram pressure. We present multi-wavelength observations of the Guitar Nebula, including narrow-band H-alpha imaging with HST/WFPC2, which resolves the head of the bow shock. The HST observations are used to fit for the inclination of the pulsar velocity vector to the line of sight, and to determine the combination of spindown energy loss, velocity, and ambient density that sets the scale of the bow shock. We find that the velocity vector is most likely in the plane of the sky. We use the Guitar Nebula and other observed neutron star bow shocks to test scaling laws for their size and H-alpha emission, discuss their prevalence, and present criteria for their detectability in targeted searches. The set of H-alpha bow shocks shows remarkable consistency, in spite of the expected variation in ambient densities and orientations. Together, they support the ass...

  5. Flow separation control by using bowed blade in highly loaded turbine cascades

    Institute of Scientific and Technical Information of China (English)

    YAMAMOTO; Atsumasa

    2009-01-01

    Due to the serious flow separations and centralized vortices,there are high secondary losses in highly loaded turbines.It is imperative to find measures to control the flow separation and vortices hence improve the turbine performance.This paper reports our recent progress on flow separation and vor-tices control in highly loaded turbine cascades by using bowed blades.Two sets of highly loaded tur-bine cascades with the turning angles of 113° and 160°,and each with 7 bowed blade angles 0°(straight),±10°,±20° and ±30° were experimentally investigated.Both internal flow field measurement and flow visualization on the blade surfaces were conducted,and the effects of blade bowing on the flow topology,distribution of vorticity and the flow energy loss were discussed.The results show that,for the cascade with the turning angle of 113°,the appropriately positive bow angle could reduce the flow energy loss;whereas for the cascade with the turning angle of 160°,the well selected negative bow angle can give the better aerodynamic performance.

  6. Flow separation control by using bowed blade in highly loaded turbine cascades

    Institute of Scientific and Technical Information of China (English)

    TAN ChunQing; ZHANG HuaLiang; CHEN HaiSheng; DONG XueZhi; ZHAO HongLei; YAMAMOTO Atsumasa

    2009-01-01

    Due to the serious flow separations and centralized vortices, there are high secondary losses in highly loaded turbines. It is imperative to find measures to control the flow separation and vortices hence improve the turbine performance. This paper reports our recent progress on flow separation and vor-tices control in highly loaded turbine cascades by using bowed blades. Two sets of highly loaded tur-bine cascades with the turning angles of 113°and 160°, and each with 7 bowed blade angles 0°(straight),±10°, ±20° and ±30° were experimentally investigated. Both internal flow field measurement and flow visualization on the blade surfaces were conducted, and the effects of blade bowing on the flow topology, distribution of vorticity and the flow energy loss were discussed. The results show that, for the cascade with the turning angle of 113°, the appropriately positive bow angle could reduce the flow energy loss; whereas for the cascade with the turning angle of 160°, the well selected negative bow angle can give the better aerodynamic performance.

  7. Application of high-turning bowed compressor stator to redesign of highly loaded fan stage

    Institute of Scientific and Technical Information of China (English)

    Shaobin LI; Jiexian SU; Zhongqi WANG

    2008-01-01

    A redesign of a highly loaded fan stage by using high-turning bowed compressor stator was conducted. The original tandem stator was replaced by the highly loaded bowed stator which was applicable to highly sub-sonic flow conditions. 3D contouring technique and local modification of blade were applied to the design of the bowed blade in order to improve the aerodynamic per-formance and the matching of the rotor and stator blade rows. Performance curves at different rotating speeds and performances at different operating points for both the original fan stage and redesigned fan stage were obtained by numerical simulations. The results show that the highly loaded bowed stator can be used not only to improve the structure and the aerodynamic performances at various operating points of the compressor stage but also to pro-vide high performances at off-design conditions. It is believed that the highly loaded bowed stator can advance the design of high-performance compressor.

  8. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.; Swadling, G. F.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Burdiak, G.; De Grouchy, P.; Music, J.; Suttle, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Ciardi, A. [Sorbonne Universités, UPMC Univ. Paris 6, UMR 8112, LERMA, F-75005, Paris (France); Rodriguez, R.; Gil, J. M.; Espinosa, G. [Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria (Spain); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Hansen, E.; Frank, A., E-mail: f.suzuki@imperial.ac.uk [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

    2015-12-20

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.

  9. Geometrical characterization and performance optimization of monopropellant thruster injector

    Directory of Open Access Journals (Sweden)

    T.R. Nada

    2012-12-01

    Full Text Available The function of the injector in a monopropellant thruster is to atomize the liquid hydrazine and to distribute it over the catalyst bed as uniformly as possible. A second objective is to place the maximum amount of catalyst in contact with the propellant in as short time as possible to minimize the starting transient time. Coverage by the spray is controlled mainly by cone angle and diameter of the catalyst bed, while atomization quality is measured by the Sauter Mean Diameter, SMD. These parameters are evaluated using empirical formulae. In this paper, two main types of injectors are investigated; plain orifice and full cone pressure swirl injectors. The performance of these two types is examined for use with blow down monopropellant propulsion system. A comprehensive characterization is given and design charts are introduced to facilitate optimizing the performance of the injector. Full-cone injector is a more suitable choice for monopropellant thruster and it might be available commercially.

  10. Controllability of an underactuated spacecraft with one thruster under disturbance

    Institute of Scientific and Technical Information of China (English)

    Dong-Xia Wang; Ying-Hong Jia; Lei Jin; Hai-Chao Gui; Shi-Jie Xu

    2012-01-01

    For an underactuated spacecraft using only one thruster,the attitude controllability with respect to the orbit frame is studied in the presence of periodical oscillation disturbance,which provides a preconditional guide on designing control law for underactuated attitude control system.Firstly,attitude dynamic model was established for an underactuated spacecraft,and attitude motion was described using the special orthogonal group (SO (3)).Secondly,Liouville theorem was used to confirm that the flow generated by the drift vector of the underactuated attitude control system is volume-preserving.Furthermore,according to Poincaré's recurrence theorem,we draw conclusions that this drift field is weakly positively poisson stable (WPPS).Thirdly,the sufficient and necessary condition of controllability was obtained on the basis of lie algebra rank condition (LARC).Finally,the controllable conditions were analyzed and simulated in different cases of inertia matrix with the installed position of thruster.

  11. Convective heat flux in a laser-heated thruster

    Science.gov (United States)

    Wu, P. K. S.

    1978-01-01

    An analysis is performed to estimate the convective heating to the wall in a laser-heated thruster on the basis of a solution of the laminar boundary-layer equations with variable transport properties. A local similiarity approximation is used, and it is assumed that the gas phase is in equilibrium. For the thruster described by Wu (1976), the temperature and pressure distributions along the nozzle are obtained from the core calculation. The similarity solutions and heat flux are obtained from the freestream conditions of the boundary layer, in order to determine if it is necessary to couple the boundary losses directly to the core calculation. In addition, the effects of mass injection on the convective heat transfer across the boundary layer with large density-viscosity product gradient are examined.

  12. An Investigation into the Spectral Imaging of Hall Thruster Plumes

    Science.gov (United States)

    2015-07-01

    SUPPLEMENTARY NOTES Technical Paper and Briefing Charts presented at The 34th International Electric Propulsion Conference; Kobe, Japan; 1- 6 July 2015. PA...Space Technology and Science, 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium Hyogo-Kobe, Japan July 4–10, 2015 Michael...for Hall Thruster Plume Density Characterization,” Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit , 2005, AIAA

  13. Magnetic Nozzles for Plasma Thrusters: Acceleration, Thrust, and Detachment Mechanisms

    Science.gov (United States)

    2011-10-01

    A. Plasma flow layer features and Non - Maxwellian EEDF Essentially, a quasineutral steepening layer (QSL) is an electric potential fall of the order of...nozzle. It is needed to analyze the far beam. It requires a more sophisticated integration technique. 5. Plasma detachment via non -neutral...Magnetic nozzles for plasma thrusters: acceleration, thrust, and detachment mechanisms Eduardo Ahedo Mario Merino Plasmas and Space

  14. Hall Effect Thruster Plume Contamination and Erosion Study

    Science.gov (United States)

    Jaworske, Donald A.

    2000-01-01

    The objective of the Hall effect thruster plume contamination and erosion study was to evaluate the impact of a xenon ion plume on various samples placed in the vicinity of a Hall effect thruster for a continuous 100 hour exposure. NASA Glenn Research Center was responsible for the pre- and post-test evaluation of three sample types placed around the thruster: solar cell cover glass, RTV silicone, and Kapton(R). Mass and profilometer), were used to identify the degree of deposition and/or erosion on the solar cell cover glass, RTV silicone, and Kapton@ samples. Transmittance, reflectance, solar absorptance, and room temperature emittance were used to identify the degree of performance degradation of the solar cell cover glass samples alone. Auger spectroscopy was used to identify the chemical constituents found on the surface of the exposed solar cell cover glass samples. Chemical analysis indicated some boron nitride contamination on the samples, from boron nitride insulators used in the body of the thruster. However, erosion outweighted contamination. All samples exhibited some degree of erosion. with the most erosion occurring near the centerline of the plume and the least occurring at the +/- 90 deg positions. For the solar cell cover glass samples, erosion progressed through the antireflective coating and into the microsheet glass itself. Erosion occurred in the solar cell cover glass, RTV silicone and Kapton(R) at different rates. All optical properties changed with the degree of erosion, with solar absorptance and room temperature emittance increasing with erosion. The transmittance of some samples decreased while the reflectance of some samples increased and others decreased. All results are consistent with an energetic plume of xenon ions serving as a source for erosion.

  15. Vacuum arc plasma thrusters with inductive energy storage driver

    Science.gov (United States)

    Krishnan, Mahadevan (Inventor)

    2009-01-01

    A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.

  16. Thrusters Pairing Guidelines for Trajectory Corrections of Projectiles

    Science.gov (United States)

    2011-01-12

    Gill, J., “Experimental Investigation of Super- and Hypersonic Jet Interaction on Missile Configurations,” Journal of Spacecraft and Rockets, Vol. 35...Thrusters Pairing Guidelines for Trajectory Corrections of Projectiles Daniel Corriveau∗ Canadian Department of National Defence , Quebec City, Quebec...course correction process for a 30-mm fin-stabilized air- defense projectile and a standard 105-mm spin-stabilized artillery shell are presented

  17. Iodine Plasma Species Measurements in a Hall Effect Thruster Plume

    Science.gov (United States)

    2013-05-01

    60 90 0 2 4 6 8 Current (mA/cm^2) A n g l e ( d e g ) Xenon Iodine 500 V, 2 A, I2 Presented at 2012 JPC 33 Distribution A: Approved for public...Over 1 hour of operation on iodine – Additional 1/2 hour with thruster flowing Xe – Current up to ~50 A into anode Presented at 2012 JPC

  18. A novel laser ablation plasma thruster with electromagnetic acceleration

    Science.gov (United States)

    Zhang, Yu; Zhang, Daixian; Wu, Jianjun; He, Zhen; Zhang, Hua

    2016-10-01

    A novel laser ablation plasma thruster accelerated by electromagnetic means was proposed and investigated. The discharge characteristics and thrust performance were tested with different charged energy, structural parameters and propellants. The thrust performance was proven to be improved by electromagnetic acceleration. In contrast with the pure laser propulsion mode, the thrust performance in electromagnetic acceleration modes was much better. The effects of electrodes distance and the off-axis distance between ceramic tube and cathode were tested, and it's found that there were optimal structural parameters for achieving optimal thrust performance. It's indicated that the impulse bit and specific impulse increased with increasing charged energy. In our experiments, the thrust performance of the thruster was optimal in large charged energy modes. With the charged energy 25 J and the use of metal aluminum, a maximal impulse bit of 600 μNs, a specific impulse of approximate 8000 s and thrust efficiency of about 90% were obtained. For the PTFE propellant, a maximal impulse bit of about 350 μNs, a specific impulse of about 2400 s, and thrust efficiency of about 16% were obtained. Besides, the metal aluminum was proven to be the better propellant than PTFE for the thruster.

  19. High-Efficiency Hall Thruster Discharge Power Converter

    Science.gov (United States)

    Jaquish, Thomas

    2015-01-01

    Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.

  20. Experimental studies of anode sheath phenomena in a hall thruster.

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, L. A. (Leonid A.); Fisch, N. J.; Raitses, Yevgeny F.

    2004-01-01

    Both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in a Hall thruster were identified experimentally by performing accurate, non-disturbing near-anode measurements with biased and emissive probes. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. Probe measurements in a Hall thruster with three different magnetic field configurations show that an anode fall at the clean anode is a function of the radial magnetic field profile inside the channel. A positive anode fall formation mechanism suggested in this work is that: (1) when the anode front surface is coated with dielectric, a discharge current closes to the anode at the surfaces that remain conductive, (2) a total thermal electron current toward the conductive area is significantly smaller than the discharge current, therefore an additional electron flux needs to be attracted toward the conductive surfaces by the electronattracting sheath that appears at these surfaces.

  1. Two-dimensional model of stationary plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Pitchford, L.C.; Boeuf, J.P. [Universite Paul Sabatier, Toulouse (France)

    1995-12-31

    A stationary plasma thruster, SPT, (also called closed-drift thrusters or Hall thrusters) is an electromagnetic propulseur design which has been developed over the past thirty years in the former USSR. SPT`s are small devices with a thrust greater than 1000 s{sup -1}, and a lifetime of several 1000 hours or more. These properties make the SPT of interest for applications such as satellite station-keeping or orbit transfer. The geometry of the SPT is shown; it consists of a hollow, cylindrical dielectric (typically of several centimeters length and diameter) with a central dielectric rod. A voltage on the order of several 100`s of V is applied at the anode (at one end of the cylinder). The cathode is an externally powered hollow cathode or a hot filament positioned slightly past the exit of the dielectric cylinder. Gas, typically xenon, flows in from around the anode and is ionized by the electrons which are emitted from the cathode. A magnetic field is applied which is mainly in the radial direction. The magnetic strength is such that the electrons tend to be trapped along the magnetic field lines, but the ion trajectories are not significantly influenced by the magnetic field. For these conditions, the current at the anode is several amps. At the exit plane, the xenon is almost fully ionized. The ion flux at the exhaust provides the thrust.

  2. Estimating Thruster Impulses From IMU and Doppler Data

    Science.gov (United States)

    Lisano, Michael E.; Kruizinga, Gerhard L.

    2009-01-01

    A computer program implements a thrust impulse measurement (TIM) filter, which processes data on changes in velocity and attitude of a spacecraft to estimate the small impulsive forces and torques exerted by the thrusters of the spacecraft reaction control system (RCS). The velocity-change data are obtained from line-of-sight-velocity data from Doppler measurements made from the Earth. The attitude-change data are the telemetered from an inertial measurement unit (IMU) aboard the spacecraft. The TIM filter estimates the threeaxis thrust vector for each RCS thruster, thereby enabling reduction of cumulative navigation error attributable to inaccurate prediction of thrust vectors. The filter has been augmented with a simple mathematical model to compensate for large temperature fluctuations in the spacecraft thruster catalyst bed in order to estimate thrust more accurately at deadbanding cold-firing levels. Also, rigorous consider-covariance estimation is applied in the TIM to account for the expected uncertainty in the moment of inertia and the location of the center of gravity of the spacecraft. The TIM filter was built with, and depends upon, a sigma-point consider-filter algorithm implemented in a Python-language computer program.

  3. Average observed properties of the Earth's quasi-perpendicular and quasi-parallel bow shock

    CERN Document Server

    Czaykowska, A; Treumann, R A; Baumjohann, W

    2000-01-01

    We present a statistical analysis of 132 dayside (LT 0700-1700) bow shock crossings of the AMPTE/IRM spacecraft. We perform a superposed epoch analysis of plasma and magnetic field parameters as well as of low frequency magnetic power spectra some minutes upstream and downstream of the bow shock by dividing the events into categories depending on the angle between bow shock normal and interplanetary magnetic field and on the plasma-beta, i.e., the ratio of plasma to magnetic pressure. Downstream of the quasi-perpendicular low-beta (beta 1.0) crossings mirror waves are identified. However, there are also cases where the conditions for mirror modes are met downstream of the nearly perpendicular shock, but no mirror waves are observed.

  4. Transport of Solar Wind H+ and He++ Ions across Earth’s Bow Shock

    Science.gov (United States)

    Parks, G. K.; Lee, E.; Fu, S. Y.; Kim, H. E.; Ma, Y. Q.; Yang, Z. W.; Liu, Y.; Lin, N.; Hong, J.; Canu, P.; Dandouras, I.; Rème, H.; Goldstein, M. L.

    2016-07-01

    We have investigated the dependence of mass, energy, and charge of solar wind (SW) transport across Earth’s bow shock. An examination of 111 crossings during quiet SW in both quasi-perpendicular and quasi-parallel shock regions shows that 64 crossings had various degrees of heating and thermalization of SW. We found 22 crossings where the SW speed was flat top distribution is ˜50 Volts. We find that the temperatures of H+ and He++ beams that penetrate the shock can sometimes be nearly the same in the upstream and downstream regions, indicating little or no heating had occurred crossing the bow shock. None of the models predict that the SW can cross the bow shock without heating. Our observations are important constraints for new models of collisionless shocks.

  5. Particles upstream of the pre-dawn bow shock - ISEE-3 observations

    Energy Technology Data Exchange (ETDEWEB)

    Terasawa, T.; Scholer, M.; Hovestadt, D.; Klecker, B.; Ipavich, F.M.; Gloeckler, G.; Sanderson, T.R.; Wenzel, K.P.; Smith, E.J.

    1985-06-01

    The first observations of energetic ions (equal to or greater than 30 keV) in the region upstream of the pre-dawn bow shock (X between 0 and -60 Re inclusively) are presented. The intensity in this region is controlled by the direction of the interplanetary magnetic field (IMF) and is maximized when the IMF is around the spiral direction. The particle distributions are highly anisotropic with the anisotropy directed perpendicular to the magnetic field. In the E x B frame this perpendicular anisotropy is conserved and it is argued that the distribution is pancake-like. This indicates that the energetic particles in the pre-dawn upstream region have their origin in the near-earth upstream region, from where they are convected by the solar wind perpendicular to the magnetic field. It is therefore concluded that acceleration occurs mainly near the nose of the bow shock, and particle acceleration at the distant bow shock is weak. 15 references.

  6. Active current sheets and hot flow anomalies in Mercury's bow shock

    CERN Document Server

    Uritsky, V M; Boardsen, S A; Sundberg, T; Raines, J M; Gershman, D J; Collinson, G; Sibeck, D; Khazanov, G V; Anderson, B J; Korth, H

    2013-01-01

    Hot flow anomalies (HFAs) represent a subset of solar wind discontinuities interacting with collisionless bow shocks. They are typically formed when the normal component of motional (convective) electric field points toward the embedded current sheet on at least one of its sides. The core region of an HFA contains hot and highly deflected ion flows and rather low and turbulent magnetic field. In this paper, we report first observations of HFA-like events at Mercury identified over a course of two planetary years. Using data from the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, we identify a representative ensemble of active current sheets magnetically connected to Mercury's bow shock. We show that some of these events exhibit unambiguous magnetic and particle signatures of HFAs similar to those observed earlier at other planets, and present their key physical characteristics. Our analysis suggests that Mercury's bow shock does not only mediate the flo...

  7. Bow shock nebulae of hot massive stars in a magnetized medium

    CERN Document Server

    Meyer, D M -A; Kuiper, R; Raga, A; Kley, W

    2016-01-01

    A significant fraction of OB-type, main-sequence massive stars are classified as runaway and move supersonically through the interstellar medium (ISM). Their strong stellar winds interact with their surroundings where the typical strength of the local ISM magnetic field is about 3.5-7 micro-G, which can result in the formation of bow shock nebulae. We investigate the effects of such magnetic fields, aligned with the motion of the flow, on the formation and emission properties of these circumstellar structures. Our axisymmetric, magneto-hydrodynamical simulations with optically-thin radiative cooling, heating and anisotropic thermal conduction show that the presence of the background ISM magnetic field affects the projected optical emission our bow shocks at Ha and [OIII] lambda 5007 which become fainter by about 1-2 orders of magnitude, respectively. Radiative transfer calculations against dust opacity indicate that the magnetic field slightly diminishes their projected infrared emission and that our bow shoc...

  8. An Analytical Method for Calculating the Satellite Bow Shock/Magnetopause Interception Positions and Times

    CERN Document Server

    Atanassov, Atanas Marinov

    2010-01-01

    This paper contains a presentation of analytical solution of the problem of calculating the places and moments of intersection of satellite trajectories with elements of the Earth's magnetosphere (bow shock and magnetopause). The satellite motion is presented in a Kepler's approximation. Magnetopause and bow shock are described by second-order surfaces- elliptic paraboloides. These surfaces are employed as situational conditions for determining the points of intersection they have (if any) with the satellite trajectory. The situational condition is herein transformed into the plane of Kepler's orbit, thereafter it is reduced to a second-order plane curve- quadric (ellipse or parabola). The solution of this system, containing the equation of this curve and Kepler's ellipse equation, allows determining the places where orbits intersect with the magnetopause or the bow shock. The solution of this system is suggested to be given by reducing the system to a fourth-order equation.

  9. An IRAS/ISSA Survey of Bow Shocks Around Runaway Stars

    Science.gov (United States)

    van Buren, Dave; Noriega-Crespo, Alberto; Dgani, Ruth

    1995-12-01

    We searched the IRAS data for bow shock-like objects like those known around ζ Oph and α Cam near the positions of 188 runaway stars. Based primarily on the presence and morphology of excess 60 μm emission we identify 58 candidate bow shocks, for which we determine photometric and morphological parameters. Previously only a dozen or so were known. Well-resolved structures are present around 25 stars. A comparison of the distribution of symmetry axes of the infrared nebulae with the proper motions of the stars indicate the two directions are very significantly aligned. The observed alignment strongly suggests that the structures we see arise from the interaction of stellar winds with the interstellar medium, justifying the identification of these far-infrared objects as stellar wind bow shocks.

  10. Prenatal diagnosis of metatropic dysplasia: beware of the pseudo-bowing sign

    Energy Technology Data Exchange (ETDEWEB)

    Garel, Catherine [Trousseau Hospital, University Hospitals of the East of Paris, Department of Radiology, Paris (France); Hopital d' Enfants Armand-Trousseau, Department of Radiology, Paris (France); Dhouib, Amira; Sileo, Chiara; Ducou le Pointe, Hubert [Trousseau Hospital, University Hospitals of the East of Paris, Department of Radiology, Paris (France); Cormier-Daire, Valerie [Paris Descartes University, Sorbonne Paris Cite, Necker-Enfants-Malades Hospital, Department of Genetics, Paris (France)

    2014-03-15

    Metatropic dysplasia is a very rare form of osteochondrodysplasia with only one case of prenatal diagnosis described in the literature. It is characterized by marked shortening of the long bones with severe platyspondyly and dumbbell-shape metaphyses. We report a case of metatropic dysplasia that was diagnosed prenatally and describe the findings on US and CT. The pregnancy was terminated and the post-mortem radiographs are shown. The woman had been referred for short and bowed long bones. Severe metaphyseal enlargement was a misleading finding because it had been misinterpreted as limb bowing. Thus when abnormal curvature of the long bones is observed at prenatal US, attention should be drawn not only to the diaphyses but also to the metaphyses because severe metaphyseal enlargement might be responsible for pseudo-bowing. (orig.)

  11. Intervention of laser periphery iridectomy to posterior iris bowing in high myopic eyes

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-tao; WANG Ning-li; LI Shu-ning

    2012-01-01

    Background For some high myopic patients with posterior iris bowing,laser periphery iridectomy should be performed pre-operation to prevent pupil block glaucoma if these patients would have phakic intraocular lens implantation to correct high myopia.So we had the opportunity to analysis the influence of laser iridectomy on posterior iris bowing.Methods Eighteen high myopic patients with posterior iris bowing (11 males and 7 females) were involved in the study in Beijing Tongren Eye Center from March 2008 to July 2008.Phakic intraocular lens were implanted to correct their ametropia.The mean age was (32±6) years (range,25-40 years).The center anterior chamber depth,the pupil diameter,the posterior iris bowing depth and the anterior chamber angle were measured with anterior segment coherence tomography (AS-OCT) under the normal condition,myosis condition induced by 2% pilocarpine,laser periphery iridectomy after myosis,and 2% pilocarpine eluting condition respectively.Results There was no significant difference of center anterior chamber depth under the four conditions (P=0.512).The pupil constricted after pilocarpine (P=0.001).After laser iridectomy performed and pilocarpine eluted,posterior iris bowing depth reduced more than that in normal condition (P=0.003).The anterior chamber angle reduced significantly after laser periphery iridectomy and pilocarpine eluted (P=0.012).Conclusion Laser periphery iridectomy can reduce the posterior iris bowing,which might be due to the change in aqueous circulate pathway.

  12. Accuracy of two face-bow/semi-adjustable articulator systems in transferring the maxillary occlusal cant

    Directory of Open Access Journals (Sweden)

    Nazia Nazir

    2012-01-01

    Full Text Available Context: The precision of an arbitrary face-bow in accurately transferring the orientation of the maxillary cast to the articulator has been questioned because the maxillary cast is mounted in relation to arbitrary measurements and anatomic landmarks that vary among individuals. Aim: This study was intended to evaluate the sagittal inclination of mounted maxillary casts on two semi-adjustable articulator/face-bow systems in comparison to the occlusal cant on lateral cephalograms. Materials and Methods: Maxillary casts were mounted on the Hanau and Girrbach semi-adjustable articulators following face-bow transfer with their respective face-bows. The sagittal inclination of these casts was measured in relation to the fixed horizontal reference plane using physical measurements. Occlusal cant was measured on lateral cephalograms. SPSS software (version 11.0, Chicago, IL, USA was used for statistical analysis. Repeated measures analysis of variance and Tukey′s tests were used to evaluate the results (P < 0.05. Results: Comparison of the occlusal cant on the articulators and cephalogram revealed statistically significant differences. Occlusal plane was steeper on Girrbach Artex articulator in comparison to the Hanau articulator. Conclusion: Within the limitations of this study, it was found that the sagittal inclination of the mounted maxillary cast achieved with Hanau articulator was closer to the cephalometric occlusal cant as compared to that of the Girrbach articulator. Among the two articulators and face-bow systems, the steepness of sagittal inclination was greater on Girrbach semi-adjustable articulator. Different face-bow/articulator systems could result in different orientation of the maxillary cast, resulting in variation in stability, cuspal inclines and cuspal heights.

  13. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbances

    Directory of Open Access Journals (Sweden)

    M. Tátrallyay

    2012-12-01

    Full Text Available Three events are discussed from the declining phase of the last solar cycle when the magnetopause and/or the bow shock were observed unusually close to the Earth due to major interplanetary disturbances. The observed extreme locations of the discontinuities are compared with the predictions of three magnetopause and four bow shock models which describe them in considerably different ways using statistical methods based on observations. A new 2-D magnetopause model is introduced (based on Verigin et al., 2009 which takes into account the pressure of the compressed magnetosheath field raised by the interplanetary magnetic field (IMF component transverse to the solar wind flow. The observed magnetopause crossings could be predicted with a reasonable accuracy (0.1–0.2 RE by one of the presented models at least. For geosynchronous magnetopause crossings observed by the GOES satellites, (1 the new model provided the best predictions when the IMF was extremely large having a large negative Bz component, and (2 the predictions of the model of Shue et al. (1998 agreed best with the observations when the solar wind dynamic pressure was extremely large. The magnetopause crossings close to the cusp observed by the Cluster spacecraft were best predicted by the 3-D model of Lin et al. (2010. The applied empirical bow shock models and the 3-D semi-empiric bow shock model combined with magnetohydrodynamic (MHD solution proved to be insufficient for predicting the observed unusual bow shock locations during large interplanetary disturbances. The results of a global 3-D MHD model were in good agreement with the Cluster observations on 17 January 2005, but they did not predict the bow shock crossings on 31 October 2003.

  14. Asymmetric Outer Bow Length and Cervical Headgear Force System: 3D Analysis Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Allahyar Geramy

    2015-10-01

    Full Text Available Objectives: This study sought to assess distal and lateral forces and moments of asymmetric headgears by variable outer bow lengths.Materials and Methods: Four 3D finite element method (FEM models of a cer- vical headgear attached to the maxillary first molars were designed in SolidWorks2010 software and transferred to ANSYS Workbench ver. 11 software. Modelscontained the first molars, their periodontal ligament (PDL, cancellous and cor- tical bones, a mesiodistal slice of the maxillae and the headgear. Models were the same except for the outer bow length in headgears. The headgear was symmetric in model 1. In models 2 to 4, the headgears were asymmetric in length with dif- ferences of 5mm, 10mm and 15mm, respectively. A 2.5 N force in horizontal plane was applied and the loading manner of each side of the outer bow was cal- culated trigonometrically using data from a volunteer.Results: The 15mm difference in outer bow length caused the greatest difference in lateral (=0.21 N and distal (= 1.008 N forces and also generated moments (5.044 N.mm.Conclusion: As the difference in outer bow length became greater, asymmetric effects increased. Greater distal force in the longer arm side was associated with greater lateral force towards the shorter arm side and more net yawing moment. Clinical Relevance:A difference range of 1mm to 15 mm of length in cervical headgear can be consi-dered as a safe length of outer bow shortening in clinical use.

  15. Electron - whistler interaction at the Earth`s bow shock: 2. Electron pitch angle diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, P.; Zimbardo, G. [Universita della Calabria, Cosenza (Italy)

    1993-08-01

    In this paper the authors further examine the interactions of whistler waves with electrons in the bow shock, simulating a crossing made on Nov 7, 1977. The authors consider the effects of whistler waves and electrostatic noise on the electron distribution function, using a Monte Carlo technique. Their simulations are able to reproduce the moments of the distribution function, including spatial and velocity profiles. They conclude that the fields in the bow shock accelerate electrons, creating asymmetric distributions, which are filled in due to diffusion caused by the electrostatic noise, and which have the velocity distributions balanced due to pitch angle scattering of parallel electrons from whistler waves.

  16. A benchmark study of procedures for analysis of axial crushing of bulbous bows

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Pedersen, Preben Terndrup

    2008-01-01

    Simplified methods to estimate mean axial crushing forces of plated structures are reviewed and applied to a series of experimental results for axial crushing of large-scale bulbous bow models. Methods based on intersection unit elements such as L-, T- and X-type elements as well as methods based...... on plate unit elements are employed in the analyses. The crushing forces and the total absorbed energy obtained by the simplified analyses are compared with those obtained from large-scale bulbous bow experiments. The accuracy and the applicability of these methods are discussed in detail....

  17. Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.

  18. DESIGN AND DEVELOPMENT OF AUTO DEPTH CONTROL OF REMOTELY OPERATED VEHICLE USING THRUSTER SYSTEM

    Directory of Open Access Journals (Sweden)

    F.A. Ali

    2014-12-01

    Full Text Available Remotely Operated Vehicles are underwater robots designed specifically for surveillance, monitoring and collecting data for underwater activities. In the underwater vehicle industries, the thruster is an important part in controlling the direction, depth and speed of the ROV. However, there are some ROVs that cannot be maintained at the specified depth for a long time because of disturbance. This paper proposes an auto depth control using a thruster system. A prototype of a thruster with an auto depth control is developed and attached to the previously fabricated UTeM ROV. This paper presents the operation of auto depth control as well as thrusters for submerging and emerging purposes and maintaining the specified depth. The thruster system utilizes a microcontroller as its brain, a piezoresistive strain gauge pressure sensor and a DC brushless motor to run the propeller. Performance analysis of the auto depth control system is conducted to identify the sensitivity of the pressure sensor, and the accuracy and stability of the system. The results show that the thruster system performs well in maintaining a specified depth as well as stabilizing itself when a disturbanceoccurs even with a simple proportional controller used to control the thruster, where the thruster is an important component of the ROV.

  19. Investigation of Low Discharge Voltage Hall Thruster Operating Modes and Ionization Processes

    Science.gov (United States)

    2009-08-14

    a null-type, inverted pendulum thrust stand based on the NASA GRC design.11 The thruster is shown mounted to the thrust stand in Figure 3... cloud of neutral propellant. This thruster operation was studied in detail using the far-field diagnostics and characterized with variations in

  20. A Robust Digital Autopilot for Spacecraft Equipped with Pulse-Operated Thrusters

    Science.gov (United States)

    Thurman, S. W.; Flashner, H.

    1996-01-01

    The analysis and design of attitude control systems for spacecraft employing pulse-operated (on-off) thrusters is usually accomplished through a combination of modeling approximations and empirical techniques. In this paper a new thruster pulse-modulation scheme for pointing and tracking applications is developed from nonlinear control theory.

  1. Electron Cross-field Transport in a Low Power Cylindrical Hall Thruster

    Energy Technology Data Exchange (ETDEWEB)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant.

  2. Operation of a Segmented Hall Thruster with Low-sputtering Carbon-velvet Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Raitses, Y.; Staack, D.; Dunaevsky, A.; Fisch, N.J.

    2005-12-01

    Carbon fiber velvet material provides exceptional sputtering resistance properties exceeding those for graphite and carbon composite materials. A 2 kW Hall thruster with segmented electrodes made of this material was operated in the discharge voltage range of 200–700 V. The arcing between the floating velvet electrodes and the plasma was visually observed, especially, during the initial conditioning time, which lasted for about 1 h. The comparison of voltage versus current and plume characteristics of the Hall thruster with and without segmented electrodes indicates that the magnetic insulation of the segmented thruster improves with the discharge voltage at a fixed magnetic field. The observations reported here also extend the regimes wherein the segmented Hall thruster can have a narrower plume than that of the conventional nonsegmented thruster.

  3. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.

    Directory of Open Access Journals (Sweden)

    Fang Yan

    Full Text Available Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie analysis was proposed by mapping bow-tie analysis into Bayesian network (BN. Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures.

  4. Modeling and numerical investigation of the inlet circumferential fluctuations of swept and bowed blades

    Science.gov (United States)

    Tang, Mingzhi; Jin, Donghai; Gui, Xingmin

    2017-02-01

    The circumferential fluctuation (CF) source terms induced by the inviscid blade force can affect the inlet distribution of flow parameters and radial equilibrium of swept and bowed blades. However, these phenomena cannot be adequately described by throughflow methods based on the axisymmetric assumption. A transport model for the CF stresses is proposed and correlated to the distribution of circulation to reflect the effect of the inviscid blade force. To investigate the effect of the inlet CFs on swept and bowed blades, the model is integrated into a throughflow model and applied to a series of cascades with different sweep and bow angles. For swept cascades, the CF source terms change the distributions of incidence angles, as well as the radial equilibrium at the inlet of the blade passage. And the influence is enhanced as the absolute value of the sweep angle increases. For bowed cascades, the distributions of incidence angles are also altered. For both cases, the model can offer a good prediction of the inlet CF source terms, and prove to exert a better prediction of blade design key parameters such as flow angles.

  5. Further evidence for a dynamically generated secondary bow in $^{13}$C+$^{12}$C rainbow scattering

    CERN Document Server

    Ohkubo, S; Ogloblin, A A

    2015-01-01

    The existence of a secondary bow is confirmed for 13C+12C nuclear rainbow scattering in addition to the 16O+12C system. This is found by studying the experimental angular distribution of 13C+12C scattering at the incident 13C energy $E_L$=250 MeV with an extended double folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic wave functions for 12C using a density-dependent nucleon-nucleon force. The Airy minimum at \\theta$ $\\approx$70$^\\circ$, which is not reproduced by a conventional folding potential, is revealed to be a secondary bow generated dynamically by a coupling to the excited state 2+ (4.44 MeV) of 12C. The essential importance of the quadruple {\\it Y2} term (reorientation term) of potential of the excited state 2+ of 12C for the emergence of a secondary bow is found. The mechanism of the secondary bow is intuitively explained by showing how the trajectories are refracted dynamically into the classically forbidden angular region beyond t...

  6. Observed Foreshock Ions which are Actually Behind the Martian Bow Shock

    Science.gov (United States)

    Frahm, Rudy A.; Yamauchi, Masatoshi; Winningham, J. David; Lundin, Rickard; Sharber, James R.; Nilsson, Hans; Coates, Andrew J.; Mukherjee, Joey

    2016-04-01

    The Mars Express (MEx) Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment contains ion and electron instruments for conducting plasma measurements. On January 23, 2012, during in-bound travel of MEx in the southern hemisphere of Mars traveling from its dawn side toward periapsis at dusk, the plasma instruments measured foreshock-like ion beams extending from outside the bow shock and into the magnetosphere, continuing to a distance of about a proton gyroradius from the bow shock. These ion beams were mostly protons, were observed to have energies greater than solar wind protons, and were not gyrating, in agreement with reflections of the solar wind proton beam. Furthermore, in the foreshock region, the ion energy gradually decreased toward the magnetosheath, in agreement with an acceleration by an outward-directed electric field in the bow shock. The observations also suggest that this electric field exists even inside the magnetosheath, within the distance of a proton gyroradius from the bow shock.

  7. A three-dimensional analysis of finger and bow string movements during the release in archery.

    Science.gov (United States)

    Horsak, Brian; Heller, Mario

    2011-05-01

    The aim of this paper was to examine finger and bow string movements during archery by investigating a top Austrian athlete (FITA score = 1233) under laboratory conditions. Maximum lateral bow string deflection and angular displacements for index, third, and ring fingers between the full draw position and the end of the release were quantified using a motion tracking system. Stepwise multiple regression analyses were used to determine whether bow string deflection and finger movements are predictive for scoring. Joint ranges of motion during the shot itself were large in the proximal and distal interphalangeal joints, and much smaller in the metacarpophalangeal joints. Contrary to our expectations, greater deflection leads to higher scores (R2 = .18, p < .001) and the distal interphalangeal joint of the third finger weakly predicts the deflection (R2 = .11, p < .014). More variability in the joint angles of the third finger was found in bad shots than in good shots. Findings in this study let presume that maximum lateral bow string deflection does not adversely affect the archer's performance.

  8. Cherkis bow varieties and Coulomb branches of quiver gauge theories of affine type $A$

    CERN Document Server

    Nakajima, Hiraku

    2016-01-01

    We show that Coulomb branches of quiver gauge theories of affine type $A$ are Cherkis bow varieties, which have been introduced as ADHM type description of moduli space of instantons on the Taub-NUT space equivariant under a cyclic group action.

  9. Exoplanet Transit Variability: Bow Shocks and Winds Around HD 189733b

    CERN Document Server

    Llama, J; Jardine, M; Wood, K; Fares, R; Gombosi, T I

    2013-01-01

    By analogy with the solar system, it is believed that stellar winds will form bow shocks around exoplanets. For hot Jupiters the bow shock will not form directly between the planet and the star, causing an asymmetric distribution of mass around the exoplanet and hence an asymmetric transit. As the planet orbits thorough varying wind conditions, the strength and geometry of its bow shock will change, thus producing transits of varying shape. We model this process using magnetic maps of HD 189733 taken one year apart, coupled with a 3D stellar wind model, to determine the local stellar wind conditions throughout the orbital path of the planet. We predict the time-varying geometry and density of the bow shock that forms around the magnetosphere of the planet and simulate transit light curves. Depending on the nature of the stellar magnetic field, and hence its wind, we find that both the transit duration and ingress time can vary when compared to optical light curves. We conclude that consecutive near-UV transit...

  10. Extended Red Objects and Stellar Wind Bow Shocks in the Carina Nebula

    CERN Document Server

    Sexton, Remington O; Smith, Nathan; Babler, Brian L; Meade, Marilyn R; Rudolph, Alexander L

    2014-01-01

    We report the results of infrared photometry on 39 extended red objects (EROs) in the Carina Nebula, observed with the Spitzer Space Telescope. Most EROs are identified by bright, extended 8.0 um emission, which ranges from 10'' to 40'' in size, but our sample also includes 4 EROs identified by extended 24 um emission. Of particular interest are nine EROs associated with late O or early B-type stars and characterized by arc-shaped morphology, suggesting dusty, stellar-wind bow shocks. These objects are preferentially oriented towards the central regions of the Carina Nebula, suggesting that these bow shocks are generally produced by the interactions of OB winds with the bulk expansion of the H II region rather than high proper motion. We identify preferred regions of mid-infrared color space occupied by our bow shock candidates, which also contain bow shock candidates in M17 and RCW 49 but are well-separated from polycyclic aromatic hydrocarbon emission or circumstellar discs. Color cuts identify an additiona...

  11. Double bow shocks around young, runaway red supergiants: application to Betelgeuse

    CERN Document Server

    Mackey, Jonathan; Neilson, Hilding R; Langer, Norbert; Meyer, Dominique M -A

    2012-01-01

    A significant fraction of massive stars are moving supersonically through the interstellar medium (ISM), either due to disruption of a binary system or ejection from their parent star cluster. The interaction of their wind with the ISM produces a bow shock. In late evolutionary stages these stars may undergo rapid transitions from red to blue and vice versa on the Hertzsprung-Russell diagram, with accompanying rapid changes to their stellar winds and bow shocks. Recent 3D simulations of the bow shock produced by the nearby runaway red supergiant (RSG) Betelgeuse, under the assumption of a constant wind, indicate that the bow shock is very young (<30000 years old), hence Betelgeuse may have only recently become a RSG. To test this possibility, we have calculated stellar evolution models for single stars which match the observed properties of Betelgeuse in the RSG phase. The resulting evolving stellar wind is incorporated into 2D hydrodynamic simulations in which we model a runaway blue supergiant (BSG) as i...

  12. "Heaven Starts at Your Parents' Feet": Adolescent Bowing to Parents and Associated Spiritual Attitudes

    Science.gov (United States)

    Thanissaro, Phra Nicholas

    2010-01-01

    In a quantitative survey of religious attitudes and practices in a multi-religious sample of 369 school pupils aged between 13 and 15 in London, the practice of bowing to parents was found widespread in 22% of adolescents spanning several religious affiliations and ethnicities--especially Buddhists, Hindus and those of Indian, African and…

  13. X-ray Emission Line Profiles from Wind Clump Bow Shocks in Massive Stars

    CERN Document Server

    Ignace, R; Cassinelli, J P

    2012-01-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two component flow structure of wind and clumps using two "beta" velocity laws. While individual bow shocks tend to generate double horned emission line profiles, a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the...

  14. Human Outer Solar System Exploration via Q-Thruster Technology

    Science.gov (United States)

    Joosten, B. Kent; White, Harold G.

    2014-01-01

    Propulsion technology development efforts at the NASA Johnson Space Center continue to advance the understanding of the quantum vacuum plasma thruster (QThruster), a form of electric propulsion. Through the use of electric and magnetic fields, a Q-thruster pushes quantum particles (electrons/positrons) in one direction, while the Qthruster recoils to conserve momentum. This principle is similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Based on laboratory results, it appears that continuous specific thrust levels of 0.4 - 4.0 N/kWe are achievable with essentially no onboard propellant consumption. To evaluate the potential of this technology, a mission analysis tool was developed utilizing the Generalized Reduced Gradient non-linear parameter optimization engine contained in the Microsoft Excel® platform. This tool allowed very rapid assessments of "Q-Ship" minimum time transfers from earth to the outer planets and back utilizing parametric variations in thrust acceleration while enforcing constraints on planetary phase angles and minimum heliocentric distances. A conservative Q-Thruster specific thrust assumption (0.4 N/kWe) combined with "moderate" levels of space nuclear power (1 - 2 MWe) and vehicle specific mass (45 - 55 kg/kWe) results in continuous milli-g thrust acceleration, opening up realms of human spaceflight performance completely unattainable by any current systems or near-term proposed technologies. Minimum flight times to Mars are predicted to be as low as 75 days, but perhaps more importantly new "retro-phase" and "gravity-augmented" trajectory shaping techniques were revealed which overcome adverse planetary phasing and allow virtually unrestricted departure and return opportunities. Even more impressively, the Jovian and Saturnian systems would be opened up to human exploration with round-trip times of 21 and 32 months respectively including 6 to 12 months of

  15. Design of automatic thruster assisted mooring systems for ships

    Directory of Open Access Journals (Sweden)

    Jan P. Strand

    1998-04-01

    Full Text Available This paper addresses the mathematical modelling and controller design of an automatic thruster assisted position mooring system. Such control systems are applied to anchored floating production offloading and storage vessels and semi-subs. The controller is designed using model based control with a LQG feedback controller in conjunction with a Kalman filter. The controller design is in addition to the environmental loads accounting for the mooring forces acting on the vessel. This is reflected in the model structure and in the inclusion of new functionality.

  16. Polarization signatures of bow shocks: A diagnostic tool to constrain the properties of stellar winds and ISM

    Science.gov (United States)

    Shrestha, Manisha; Hoffman, Jennifer L.; Nielson, Hilding R.; Ignace, Richard

    2017-01-01

    When a stellar wind traveling at supersonic speed interacts with almost stationary ISM, a bow shock shape is formed. By studying a bow shock, we can obtain information about the properties of the stellar wind as well as the surrounding ISM. Bow shocks are asymmetric structures, and thus produce net polarization even if they are unresolved. Hence, polarization studies of bow shocks can provide complementary constraints on their properties.We simulate the polarization signatures of circumstellar material with bow shock geometries using a Monte Carlo radiative transfer code called SLIP. We use the analytic solution from Wilkin (1996) to define the geometry and mass surface density of the bow shock in our models. We present results from our simulations showing how changing CSM optical depth, CSM albedo, photon source, and scattering particles (electrons or different types of dust particles) affects the observed polarization in both resolved and unresolved cases. In the optically thin regime of the unresolved electron-scattering case, the polarization peaks at an inclination angle of 90°, in agreement with analytical single-scattering models. In optically thick cases, a second polarization peak appears near 130°, which we propose is due to multiple scattering. Given these results, an observed polarization value can constrain the inclination of an unresolved bow shock to two possible angles, which in turn constrain the motion of the star. In case of resolved bow shocks, our simulations produce polarization maps which we compare with observations.We also present results from our dust-scattering simulations, which show that multicolor broadband polarization observations can constrain the characteristics of the dust in a resolved or unresolved bow shock-shaped CSM configuration.

  17. THE ROLE OF PICKUP IONS ON THE STRUCTURE OF THE VENUSIAN BOW SHOCK AND ITS IMPLICATIONS FOR THE TERMINATION SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Lu Quanming; Shan Lican; Zhang Tielong; Wu Mingyu; Wang Shui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China); Zank, Gary P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Yang Zhongwei [SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai (China); Du Aimin, E-mail: qmlu@ustc.edu.cn [Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2013-08-20

    The recent crossing of the termination shock by Voyager 2 has demonstrated the important role of pickup ions (PUIs) in the physics of collisionless shocks. The Venus Express (VEX) spacecraft orbits Venus in a 24 hr elliptical orbit that crosses the bow shock twice a day. VEX provides a unique opportunity to investigate the role of PUIs on the structure of collisionless shocks more generally. Using VEX observations, we find that the strength of the Venusian bow shock is weaker when solar activity is strong. We demonstrate that this surprising anti-correlation is due to PUIs mediating the Venusian bow shock.

  18. A comparative analysis of 3D flow fields between straight and bowed blades in a steam turbine

    Institute of Scientific and Technical Information of China (English)

    M.HASSANVAND; WANG Zhong-qi 王仲奇; WANG Song-tao 王松涛

    2004-01-01

    A commercial Navier-Stokes flow solver has been employed tor simulating steady subsonic flow characteristics and analyzing the comparative features of flow fields between straight and bowed blades applied to the stator of a high pressure steam turbine. For comparison, we have studied the effects of bowed blades on the wakes of stator trailing edge and horse shoe vortex in the rotor. It was found that the position of wakes for bowed blades is shifted toward the blade suction side. Also, we have discussed and compared the entropy generation and energy loss caused by dissipation mechanism within the boundary layers on the hub and shroud; and temperature gradient in meridional plane.

  19. Space Shuttle reaction control system thruster metal nitrate removal and characterization

    Science.gov (United States)

    Saulsberry, R. L.; Mccartney, P. A.

    1993-01-01

    The Space Shuttle hypergolic primary reaction control system (PRCS) thrusters continue to fail-leak or fail-off at a rate of approximately 1.5 per flight, attributed primarily to metal nitrate formation in the nitrogen tetroxide (N2O4) pilot operated valves (POV's). The failures have continued despite ground support equipment (GSE) and subsystem operational improvements. As a result, the Johnson Space Center (JSC) White Sands Test Facility (WSTF) performed a study to characterize the contamination in the N204 valves. This study prompted the development and implementation of a highly successful flushing technique using deionized (DI) water and gaseous nitrogen (GN2) to remove the contamination while minimizing Teflon seat damage. Following flushing a comprehensive acceptance test is performed before the thruster is deemed recovered. Between the time WSTF was certified to process flight thrusters (March 1992) and September 1993, a 68 percent thruster recovery rate was achieved. The contamination flushed from these thrusters was analyzed and has provided insight into the corrosion process, which is reported in this publication. Additionally, the long-term performance of 24 flushed thrusters installed in the WSTF Fleet Leader Shuttle reaction control subsystem (RCS) test articles is being assessed. WSTF continues to flush flight and test article thrusters and compile data to investigate metal nitrate formation characteristics in leaking and nonleaking valves.

  20. Design of a cusped field thruster for drag-free flight

    Science.gov (United States)

    Liu, H.; Chen, P. B.; Sun, Q. Q.; Hu, P.; Meng, Y. C.; Mao, W.; Yu, D. R.

    2016-09-01

    Drag-free flight has played a more and more important role in many space missions. The thrust control system is the key unit to achieve drag-free flight by providing a precise compensation for the disturbing force except gravity. The cusped field thruster has shown a significant potential to be capable of the function due to its long life, high efficiency, and simplicity. This paper demonstrates a cusped field thruster's feasibility in drag-free flight based on its instinctive characteristics and describes a detailed design of a cusped field thruster made by Harbin Institute of Technology (HIT). Furthermore, the performance test is conducted, which shows that the cusped field thruster can achieve a continuously variable thrust from 1 to 20 mN with a low noise and high resolution below 650 W, and the specific impulse can achieve 1800 s under a thrust of 18 mN and discharge voltage of 1000 V. The thruster's overall performance indicates that the cusped field thruster is quite capable of achieving drag-free flight. With the further optimization, the cusped field thruster will exhibit a more extensive application value.

  1. Elementary scaling laws for the design of low and high power hall effect thrusters

    Science.gov (United States)

    Dannenmayer, K.; Mazouffre, S.

    2011-10-01

    An advanced set of scaling laws for Hall effect thrusters running with Xenon as propellant is established on the basis of the existence of an optimum atom number density that warrants a high efficiency thruster operation. A set of general relationships between macroscopic quantities, like thrust and input power, dimensions, including the channel length, the channel width and the channel mean diameter, and magnetic field strength are inferred from the main physical processes at work in a Hall thruster discharge. The "atom density constraint" of which the nature is here critically interpreted allows simplifying those relationships as it leads to a linear dependency between the channel length and mean diameter. Scaling laws which represent an essential tool for sizing up and down Hall thrusters are eventually obtained after proportionnality coefficients are determined. This last step is realized by means of a vast database that presently encompasses 33 single-stage Hall thrusters. In order to illustrate the usefulness of this new set of scaling laws, two practical applications are given and discussed. The scaling laws are first employed to calculate the dimensions and the operating parameters for a 20-kilowatt Hall thruster capable of producing 1 N of thrust. Such an electrical engine would permit orbit transfer of large communication satellites. Finally, the geometry of a Hall thruster is determined for tolerating 100 kW, an interesting power level for interplanetary trips.

  2. Effect of Inductive Coil Geometry on the Operating Characteristics of an Inductive Pulsed Plasma Thruster

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.; Perdue, Kevin A.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with conical theta pinch coils of different cone angles are explored through thrust stand measurements and time- integrated, unfiltered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass flow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass flow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  3. Experimental Study of the Microdischarge Plasma Thruster (MDPT)

    Science.gov (United States)

    Kc, Utsav; Varghese, Philip; Raja, Laxminarayan

    2008-10-01

    Small satellite propulsion requirements dictate the need for a scaled down propulsion device capable of providing low thrust with small impulse bits. We have designed and studied a simple miniaturized thruster called Microdischarge Plasma Thruster (MDPT). It comprises a tri-layer sandwich structure with a dielectric layer sandwiched between two electrode layers, and a contoured through hollow drilled into the structure. Each layer is 100's microns in thickness and the hole diameter of the same order. Argon is used as the propellant gas with flow rates of ˜ 1 SCCM. The pressure is adequate to produce a stable microdischarge between the electrodes even with modest voltages (˜1000 V). The microdischarge adds heat to the supersonic portion of the flowing gas which is shown to produce additional thrust over the baseline cold gas flow. The studies have also demonstrated that the MDPT exhaust plume is composed of ions albeit at low concentrations, suggesting possibility of MDPT to be operated in a mixed electrothermal/electrostatic mode. We present discussion of multiple discharge operating modes and electrical characteristics of the MDPT. Spectral measurements of the plume are used to determine its composition and calculate its temperature. The momentum thrust of the MDPT is measured with a torsion balance.

  4. Space Shuttle vernier thruster long-life chamber development

    Science.gov (United States)

    Krohn, Douglas D.

    1990-01-01

    The Space Shuttle Reaction Control Subsystem (RCS) vernier thruster is a pressure fed engine that utilizes storable propellants to provide precise attitude control for the Orbiter. The current vernier thruster is life limited due to its chamber material. By developing an iridium-lined rhenium chamber for the vernier, substantial gains could be achieved in the operational life of the chamber. The present RCS vernier, its requirements, operating characteristics, and life limitations are described. The current technology status of iridium-lined rhenium is presented along with a description of the operational life capabilities to be gained from implementing this material into the design of a long life vernier chamber. Discussion of the proposed demonstration program to be performed by the NASA Lyndon B. Johnson Space Center to attain additional insight into the application of this technology to the RCS vernier, includes the technical objectives, approach, and program schedule. The plans for further development and integration with the Orbiter and the Shuttle system are also presented.

  5. Assessment of Pole Erosion in a Magnetically Shielded Hall Thruster

    Science.gov (United States)

    Mikellides, Ioannis G.; Ortega, Alejandro L.

    2014-01-01

    Numerical simulations of a 6-kW laboratory Hall thruster called H6 have been performed to quantify the erosion rate at the inner pole. The assessments have been made in two versions of the thruster, namely the unshielded (H6US) and magnetically shielded (H6MS) configurations. The simulations have been performed with the 2-D axisymmetric code Hall2De which employs a new multi-fluid ion algorithm to capture the presence of low-energy ions in the vicinity of the poles. It is found that the maximum computed erosion rate at the inner pole of the H6MS exceeds the measured rate of back-sputtered deposits by 4.5 times. This explains only part of the surface roughening that was observed after a 150-h wear test, which covered most of the pole area exposed to the plasma. For the majority of the pole surface the computed erosion rates are found to be below the back-sputter rate and comparable to those in the H6US which exhibited little to no sputtering in previous tests. Possible explanations for the discrepancy are discussed.

  6. MEMS-Based Solid Propellant Rocket Array Thruster

    Science.gov (United States)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  7. Engineering Risk Assessment of Space Thruster Challenge Problem

    Science.gov (United States)

    Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie

    2014-01-01

    The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.

  8. Ion angular distribution simulation of the HEMP Thruster

    Science.gov (United States)

    Duras, Julia; Koch, Norbert; Kahnfeld, Daniel; Bandelow, Gunnar; Matthias, Paul; Lüskow, Karl Felix; Schneider, Ralf; Kemnitz, Stefan

    2016-10-01

    Ion angular current and energy distributions are important parameters for ion thrusters, which are typically measured at a few tens of centimetres to a few meters distance from thruster exit. However, fully kinetic Particle-in-Cell simulations are not able to simulate such domain sizes, due to high computational costs. Therefore, a parallelisation strategy of the code is presented to reduce computational time. To map diagnostics information from the domain boundary of the calculational domain to the positions of experimental diagnostics the concept of transfer functions is introduced. The calculated ion beam angular distributions in the plume region are quite sensitive to boundary conditions of the potential, possible additional source contributions, e.g. from secondary electron emission at vessel walls, and charge exchange collisions. This work was supported by the Bavarian State Ministry of Education Science and the Arts and the German Space Agency DLR. We also like to thank R. Heidemann from THALES Electron Devices GmbH, for interesting and stimulating discussions.

  9. Optimization of energy transfer in microwave electrothermal thrusters

    Science.gov (United States)

    Sullivan, D. J.; Micci, M. M.

    1993-01-01

    Results are presented from preliminary tests conducted to evaluate the performance of a prototype microwave electrothermal thruster. The primary component of the device is a microwave resonant cavity. The device produces stable axial plasmas within a pressurized section of the cavity with the plasma positioned in the inlet region of the nozzle. Plasma stability is enhanced by axial power coupling, an optimal distribution of electric power density within the cavity, and a propellant gas flow which has a large vortical velocity component. The thruster has been operated with a number of propellant gases: helium, nitrogen, ammonia, and hydrogen. Plasmas can be formed in a reliable manner at cavity pressures of 1 kPa and incident power levels ranging from 50 W to 350 W, depending on the gas used, and can be operated at pressures up to 300 kPa at power levels up to 2200 W. Ideal performance results of vacuum Isp and thermal efficiency vs. specific power are presented for each gas. Representative results of this preliminary work are: He - Isp = 625 s, eta-thermal = 90 percent; N2 - Isp = 270 s, eta-thermal = 41 percent; NH3 - Isp = 475 s, eta-thermal= 55 percent; H2 - Isp = 1040 s, eta-thermal = 53 percent.

  10. Global Linear Stability Analysis of the Spoke Oscillation in Hall Effect Thrusters

    Science.gov (United States)

    2014-07-15

    1):2088–2094, 2008. [52] J.L. Rovey, M.P. Giacomi, R.A. Stubbers, and B.E. Jurczyk. A planar Hall thruster for investigating electron mobility in ExB...AFRL-AFOSR-UK-TR-2014-0046 GLOBAL LINEAR STABILITY ANALYSIS OF THE SPOKE OSCILLATION IN HALL EFFECT THRUSTERS D. Escobar E...IN HALL EFFECT THRUSTERS 5a. CONTRACT NUMBER FA8655-13-1-3033 5b. GRANT NUMBER Grant 13-3033 5c. PROGRAM ELEMENT NUMBER 61102F 6

  11. Effects of Anode Temperature on Working Characteristics and Performance of a Low Power Arcjet Thruster

    Institute of Scientific and Technical Information of China (English)

    PAN Wen-Xia; LI Teng; WU Cheng-Kang

    2009-01-01

    An arc-heated thruster of 130-800 W input power is tested in a vacuum chamber at pressures lower than 20 Pa with argon or H_2-N_2 gas mixture as propellant.The time-dependent arc voltage-current curve,outside-surface temperature of the anode nozzle and the produced thrust of the firing arcjet thruster are measured in situ simultaneously,in order to analyze and evaluate the dependence of thruster working characteristics and output properties,such as specific impulse and thrust efficiency,on nozzle temperature.

  12. Attenuation Distance of Low Frequency Waves Upstream of the Pre-Dawn Bow Shock: GEOTAIL snd ISEE-3 Comparison

    Science.gov (United States)

    Sugiyama, T.; Terasawa, T.; Kawano, H.; Yamamoto, T.; Kokubun, S.; Frank, L.; Ackerson, K.; Tsurutani, B.

    1994-01-01

    This paper presents a statistical study of the spatial distribution of low frequency waves in the region upstream of the pre-dawn to dawn side bow shock using both GEOTAIL and ISEE-3 magnetometer data.

  13. Half-bow sliding knot: modified suture technique for scleral fixation using the corneoscleral pocket.

    Science.gov (United States)

    Chee, Soon-Phaik

    2011-09-01

    A modified suture technique for precise knot placement in the Hoffman corneoscleral pocket technique of scleral fixation is described. Both loops of the polypropylene suture passing from the intraocular device through the sclera and conjunctiva are retrieved from the pocket. A loop of suture is pulled through 3 suture throws made using the second suture loop, forming a half bow. Centration of the intraocular lens (IOL)-capsular bag is checked. If the suture tension is too tight, the surgeon can easily undo the knot of the half-bow knot by pulling it free and can then retie the sliding knot. When the IOL-capsular bag is centered, the suture loop is cut and the free end removed. The second suture end is retrieved from the pocket, and knot tying is completed without further adjustment to the tension. Posterior pressure on the intraocular device centers it and settles the knot within the sclera at the fixation point.

  14. In situ plume radiance measurements from the bow shock ultraviolet 2 rocket flight

    Science.gov (United States)

    Erdman, Peter W.; Zipf, Edward C.; Espy, Patrick; Howlett, Carl; Christou, Carol; Levin, Deborah A.; Collins, Robert J.; Candler, Graham V.

    1993-10-01

    The ultraviolet spectrum (200-400 nm) of the plumes generated by the second- and third-stage engines of a Strypi XI rocket and of the Mach 17 re-entry bow shock were obtained by a sounding rocket experiment launched from the Barking Sands Research Range (Kauai, Hawaii) on February 18, 1991 at 14:30 GMT. The re-entry optical data were obtained as the payload descended from 120 to 65 km with a vehicle velocity of 5.1 km/s. The intensities of the vacuum ultraviolet resonance radiation emitted by atomic oxygen and hydrogen in the bow shock at 130.4 and 121.5 nm, respectively, were also measured. Complementary Langmuir probe measurements provided data on the total plasma density and electron temperature in the boundary layer.

  15. The Effect of Metallic TPS Panel Bowing on the Surface Heating of the X-33 Vehicle

    Science.gov (United States)

    Palmer, Grant; Kontinos, Dean; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    The thermal protection system of the windward surface of the X-33 vehicle consists of metallic honeycomb sandwich panels. Thermal gradients experienced during the descent phase of the trajectory result in a different rate of thermal expansion between the inner and outer face sheets of the metallic panels. This causes the panels to bow outward when the temperature of the outer face sheet is larger than that of the inner face sheet and inward when the temperature of the outer face sheet is less than that of he inner face sheet. This results in a quilted-type body surface. Using computational fluid dynamic analysis, this study will determine the effect the metallic TPS panel bowing has on the surface heating.

  16. Nonthermal ions and associated magnetic field behavior at a quasi-parallel earth's bow shock

    Science.gov (United States)

    Wilkinson, W. P.; Pardaens, A. K.; Schwartz, S. J.; Burgess, D.; Luehr, H.; Kessel, R. L.; Dunlop, M.; Farrugia, C. J.

    1993-01-01

    Attention is given to ion and magnetic field measurements at the earth's bow shock from the AMPTE-UKS and -IRM spacecraft, which were examined in high time resolution during a 45-min interval when the field remained closely aligned with the model bow shock normal. Dense ion beams were detected almost exclusively in the midst of short-duration periods of turbulent magnetic field wave activity. Many examples of propagation at large elevation angles relative to the ecliptic plane, which is inconsistent with reflection in the standard model shock configuration, were discovered. The associated waves are elliptically polarized and are preferentially left-handed in the observer's frame of reference, but are less confined to the maximum variance plane than other previously studied foreshock waves. The association of the wave activity with the ion beams suggests that the former may be triggered by an ion-driven instability, and possible candidates are discussed.

  17. Dissecting a Molecular Shock: Spatially Resolved H2 Line Ratios Across the HH7 Bow Shock

    Science.gov (United States)

    Pike, Rosemary E.; Geballe, Thomas R.; Burton, Michael G.; Chrysostomou, Antonio; Brand, Peter

    2015-01-01

    We report on a detailed study of the physics of molecular shocks using Gemini NIFS (Near-Infrared Field Spectrometer) K-band spectra of a 3.'2 x 2.'9 region near the tip of the HH7 bow shock. The IFU data have an angular resolution of 0.3", much higher resolution then in any previous study of a molecular shock, and a velocity resolution of 60 km/s. We have detected 20 H2 emission lines with upper state energies as high as 28,000 K, and 6 additional unidentified lines which share the same bow shock morphology as the H2. We use excitation temperatures derived from line pairs measured in 0.15' x 0.15' bins to attempt to constrain the shock type and distinguish between low velocity jump shocks, continuous shocks, and dissociative shocks in which the H2 line emission arises from newly reformed H2.

  18. Modelling multi-wavelength observational characteristics of bow shocks from runaway early type stars

    CERN Document Server

    Acreman, David M; Harries, Tim J

    2015-01-01

    We assess the multi-wavelength observable properties of the bow shock around a runaway early type star using a combination of hydrodynamical modelling, radiative transfer calculations and synthetic imaging. Instabilities associated with the forward shock produce dense knots of material which are warm, ionised and contain dust. These knots of material are responsible for the majority of emission at far infra-red, H alpha and radio wavelengths. The large scale bow shock morphology is very similar and differences are primarily due to variations in the assumed spatial resolution. However infra-red intensity slices (at 22 microns and 12 microns) show that the effects of a temperature gradient can be resolved at a realistic spatial resolution for an object at a distance of 1 kpc.

  19. Diagnosis of the Thermal Bow of a Shaft in a Three Stage Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In practice many turbo-machines driven by motors are started up to operational speed within a very short time, i.e. in less than 20 seconds. For this type of machines the compatibility of thermal deformation of the rotor structure must be taken into account in the machine design, or the thermal deformation will be constrained and a huge resultant force can cause the shaft bending and consequently resulting in violent vibrations. In this paper, detection of thermal bow of a shaft in a three stage centrifugal compressor in a petrochemical plant is presented. The diagnostic results show that the thermal bow was induced by the incompatibility of axial thermal deformation of the rotor structure. A remedial action allowing free axial thermal expansion of the outer parts of the rotor is suggested.

  20. Characterization of Saturn's bow shock: Magnetic field observations of quasi-perpendicular shocks

    CERN Document Server

    Sulaiman, A H; Dougherty, M K

    2016-01-01

    Collisionless shocks vary drastically from terrestrial to astrophysical regimes resulting in radically different characteristics. This poses two complexities. Firstly, separating the influences of these parameters on physical mechanisms such as energy dissipation. Secondly, correlating observations of shock waves over a wide range of each parameter, enough to span across different regimes. Investigating the latter has been restricted since the majority of studies on shocks at exotic regimes (such as supernova remnants) have been achieved either remotely or via simulations, but rarely by means of in-situ observations. Here we present the parameter space of MA bow shock crossings from 2004-2014 as observed by the Cassini spacecraft. We find that Saturn's bow shock exhibits characteristics akin to both terrestrial and astrophysical regimes (MA of order 100), which is principally controlled by the upstream magnetic field strength. Moreover, we determined the {\\theta}Bn of each crossing to show that Saturn's (days...

  1. FAILURES AND DEFECTS IN THE BUILDING PROCESS – APPLYING THE BOW-TIE APPROACH

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2009-01-01

    Function failures, defects, mistakes and poor communication are major problems for the construction sector. A Danish research project focusing on failures and defects in building processes has been carried out over the last 2 years. As the empirical element in the research, a large construction...... site was observed from the very start to the very end and all failures and defects of a certain size were recorded and analysed. The methodological approach used in this analysis was the bow-tie model from the area of safety research. It combines critical-event analysis for both causes and effects...... with event-tree analysis. The paper describes this analytical approach as an introduction to a new concept for understanding failures and defects in construction. Analysing the many critical events in the building process with the bow-tie model visualises the complexity of causes. This visualisation offers...

  2. Studies on CFD simulation of hydrodynamic phenomena with vortex flow around the bow of a blunt ship

    OpenAIRE

    上浦, 鉄平

    2014-01-01

    In the present studies, hydrodynamic phenomena with vortex flow around the bow of a blunt ship are simulated by using various CFD (Computational Fluid Dynamics) codes. In the conventional experimental studies, some flow properties in front of the bow beneath the free surface have been found out and reported; for example, a necklace vortex based on the wave breaking phenomena is the typical one. In CFD simulations, however, reliable results have not been obtained yet.In this study, the authors...

  3. Contribution from the Earth's Bow Shock to Region 1 Current under Low Alfvén Mach Numbers

    Institute of Scientific and Technical Information of China (English)

    PENG Zhong; HU You-Qiu

    2009-01-01

    @@ Using global MHD simulations of the solar wind-magnetosphere--ionosphere system, we investigate the depen-dence of the contribution from the Earth's bow shock (I1bs) to ionospheric region I field aligned current (FAC) (I1). It is found that I1bs increases with increasing southward interplanetary magnetic field (IMF) strength Bs, if the Alfven Mach number MA of the solar wind exceeds 2, a similar result as obtained by previous authors. However, if MA becomes close to or falls below 2, I1bs will decrease with B8 in both magnitude and percentage (i.e., I1bs/I1) because of the resultant reduction of the bow shock strength. Both the surface current density Jbs at the nose of the bow shock and the total bow shock current lb, share nearly the same relationship with MA, and vary non-monotonically with MA or Bs. The maximum point is found to be located at MA = 2.7. Three conclusions are then made as follows: (1) The surface current density at the nose, which is much easier to be evaluated, may be used to largely describe the behaviour of the bow shock instead of the total bow shock current. (2) The peak of the total bow shock current is reached at about MA = 2.7 when only Bs is adjusted. (3) The non-monotonic variation of the bow shock current with MA causes a similar variation of its contribution to region 1 FAC. The turning point for such contribution is found to be nearly MA= 2. The implication of these conclusions to the saturation of the ionospheric transpolar potential is briefly discussed.

  4. First Detection of a Pulsar Bow Shock Nebula in Far-UV: PSR J0437-4715

    Science.gov (United States)

    Rangelov, Blagoy; Pavlov, George G.; Kargaltsev, Oleg; Durant, Martin; Bykov, Andrei M.; Krassilchtchikov, Alexandre

    2016-11-01

    Pulsars traveling at supersonic speeds are often accompanied by cometary bow shocks seen in Hα. We report on the first detection of a pulsar bow shock in the far-ultraviolet (FUV). We detected it in FUV images of the nearest millisecond pulsar J0437-4715 obtained with the Hubble Space Telescope. The images reveal a bow-like structure positionally coincident with part of the previously detected Hα bow shock, with an apex at 10″ ahead of the moving pulsar. Its FUV luminosity, L(1250{--}2000 \\mathringA )≈ 5 × {10}28 erg s-1, exceeds the Hα luminosity from the same area by a factor of 10. The FUV emission could be produced by the shocked interstellar medium matter or, less likely, by relativistic pulsar wind electrons confined by strong magnetic field fluctuations in the bow shock. In addition, in the FUV images we found a puzzling extended (≃3″ in size) structure overlapping with the limb of the bow shock. If related to the bow shock, it could be produced by an inhomogeneity in the ambient medium or an instability in the bow shock. We also report on a previously undetected X-ray emission extending for about 5″ ahead of the pulsar, possibly a pulsar wind nebula created by shocked pulsar wind, with a luminosity L(0.5-8 keV) ˜ 3 × 1028 erg s-1. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO 12917 and GO 10568.

  5. Deflection Reduction of GaN Wafer Bowing by Coating or Cutting Grooves in the Substrates

    Institute of Scientific and Technical Information of China (English)

    SUN Tao; WANG Ming-Qing; SUN Yong-Jian; WANG Bo-Ping; ZHANG Guo-Yi; TONG Yu-Zhen; DUAN Hui-Ling

    2011-01-01

    @@ GaN films on sapphire substrates are obtained using the metal-organic chemical vapor deposition growth technique.We present two methods to reduce the GaN wafer bowing caused by the mismatch of the thermal expansion coefficients(TECs)between the film and the substrate.The first method is to use coating materials on the back side of the substrate whose TECs are smaller than that of the GaN films.The second is to cut grooves on the back side of the sapphire substrate and filling the grooves with appropriate materials(e.g., tungsten, silicon nitride).For each method, we minimize wafer bowing and even reduce it to zero.Moreover, the two methods can reduce stress concentration and suppress the propagation of cracks in the GaN/sapphire structure.%GaN films on sapphire substrates are obtained using the metal-organic chemical vapor deposition growth technique. We present two methods to reduce the GaN wafer bowing caused by the mismatch of the thermal expansion coefficients (TECs) between the film and the substrate. The first method is to use coating materials on the back side of the substrate whose TECs are smaller than that of the GaN films. The second is to cut grooves on the back side of the sapphire substrate and filling the grooves with appropriate materials (e.g., tungsten, silicon nitride).For each method, we minimize wafer bowing and even reduce it to zero. Moreover, the two methods can reduce stress concentration and suppress the propagation of cracks in the GaN/sapphire structure.

  6. [A drill-bow in Horace, Odes 3.6.7].

    Science.gov (United States)

    Moog, Ferdinand Peter

    2004-01-01

    With the short poem Odes 3.26 Horaces says--ostensibly--farewell to the subject of love. A symbol of his retreat is the order given to his followers: they ought to lay in the Temple of Venus the three objects which he has used in his night escapades struggling for the girls' love: lucida funalia (torches), vectis (jemmies), and arcus. The last words has been puzzling the scholars for centuries. Many took offence at the transmitted text and offered conjectures of their own. Some, however, defended arcus using different arguemtns, for instance that arcus refers to bows and arrows as weapons of the lascivious night-reveller. Also the author of this article retains arcus in the text. The context and grammatical construction let assume that also this noun denotes a tool of a burglar, preferably a drill driven by a fiddle-bow. Such instruments were use by carpenters, joiners, and surgeons. Apart from this, gigantic drill-bows were known among military machines. These were frequently applied in sieges. Horace might have seen descriptions and drawings of them in military handbooks which he presumably read in order to prepare himself for his short and rather inglorious career as an officer in the army of Caesar's murderers. For Romans without military experience who suddenly obtained a high rank at war this was a typical way of making good their shortcomings. The parallel between the siege of a town and the attack upon the beloved girl's house must be regarded as a poetic exaggeration; the reader should be amused by an impracticable idea. Furthermore, a possible connection between Horace's poem and the Heracles of Euripides is pointed out here for the first time. In Heracles 942-6 the hero, driven insane by Lyssa's work, asks for his bow, his arrows and siege instruments to take Mycenae, the fortress of his tormentor Eurystheus. In fact he brakes into his own bedroom and kills his spouse and his son.

  7. PENGARUH ANTI-SLAMMING BULBOUS BOW TERHADAP GERAKAN SLAMMING PADA KAPAL PERINTIS 200 DWT

    OpenAIRE

    Muhammad Iqbal; Good Rindo

    2016-01-01

    Analisis seakeeping (kemampuan olah gerak kapal) merupakan aspek penting dalam perancangan kapal. Berdasarkan analisis tersebut, dapat diketahui batas operasional dari sebuah kapal. Salah satunya adalah dapat mengetahui kemampuan kapal pada tinggi gelombang signifikan (Hs) tertentu. Memodifikasi bentuk haluan kapal dengan membuat dasar dari haluan tersebut lebih rendah dibandingkan dengan dasar lambung kapal nya (dibawah garis baseline kapal) dinamakan Anti-Slamming Bow. Pada penelitian ini, ...

  8. Laboratory studies of stagnating plasma flows with applications to inner solar system and stellar bow shocks

    Science.gov (United States)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2016-10-01

    Supercritical magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe by converting flow kinetic energy to other forms such as thermal and supra-thermal populations, magnetic field enhancement, turbulence, and energetic particles. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those of inner solar system and stellar bow shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to 100s of km/s; resulting in β 1, collisionless plasma flows with Msonic and MAlfvén 10. The drifting FRC can be made to impinge upon a variety of static obstacles including: a strong mirror or cusp magnetic field (mimicking magnetically excited shocks such as the Earth's bow shock), plasma pileup from a solid obstacle (similar to the bow shocks of Mercury and the Moon), and a neural gas puff (bow shocks of Venus or the comets). Characteristic shock length and time scales that are both large enough to observe yet small enough to fit within the experiment, enabling study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental program will be presented, including recent results. This work is supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences under Contract No. DE-AC52-06NA25369.

  9. Increase The Absorptive Capacity Of Light Of The Photocells By Embedded In Bow-tie Antenna

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Chenguang [School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876 (China); Lang Peilin [Key Laboratory of Information Photonics and Optical Communications (BUPT), Ministry of Education, Beijing 100876 (China); Zhang Ru, E-mail: napolles@sohu.com

    2011-02-01

    The application of silicon photocells has been widely used in biological and energy field, how to improve the efficiency of silicon photocells has become the research hot spots. The light absorption efficiency is not ideal, only 10% to 20% of solar energy can be transformed into electricity, the paper embeds metal bow-tie antenna in the crystals of silicon, by the field enhancement of the surface plasma, it highly increase the absorptive capacity of light of the silicon photocells.

  10. Variation of the ratio of specific heats across a detached bow shock

    Science.gov (United States)

    Chao, J. K.; Wiskerchen, M. J.

    1974-01-01

    Equations are derived which allow the ratio of specific heats behind the earth's bow shock to be evaluated if several pre-shock parameters (the specific-heat ratio, the Alfvenic Mach number, the sonic Mach number, and the angle between the shock normal at the stagnation point and the magnetic field) and the density jump across the shock are known. Numerical examples show that the dependence of the post-shock ratio on the pre-shock ratio is weak.

  11. Phenomenology of the earth's bow shock system - A summary description of experimental results

    Science.gov (United States)

    Greenstadt, E. W.

    1976-01-01

    Observational data on the earth's bow shock system are classified and characterized. Foreshock components, midshock components, and aftershock components are discussed separately. Schematic representations of the field and plasma particle parameters are elaborated, with attention given to quasi-perpendicular geometry and quasi-parallel geometry. Magnetic pulsation structure is delineated. Schematic profiles of field, particle, and wave behavior through a representative quasi-perpendicular shock crossing are displayed.

  12. Venus Express Observations of Electromagnetic Waves at the Bow Shock and Magnetosheath

    Science.gov (United States)

    Wei, H.; Russell, C.; Hart, R. A.; Strangeway, R. J.; Zhang, T.

    2015-12-01

    The interaction between the solar wind and the ionosphere of Venus forms an induced magnetosphere around the planet, which consists of regions near the planet and in its wake where magnetic pressure dominates the other pressure contributions. This induced magnetosphere and the ionosphere of Venus act as a barrier to the solar wind, leading to a bow shock with standoff distance very close the planet. Upstream of the bow shock, there is abundant wave activity generated by the shock or by the back-streaming ions and electrons from the shock. Previous studies found upstream waves with 1 Hz or lower frequencies, but Venus Express occasionally provides 128 Hz data that cover the regions up to the bow shock and allow us the search for and analyze higher frequency waves. Inside the magnetosheath and at the Venus ionopause, there are lightning-associated whistler waves detected from the 128 Hz data, which generally propagate along the magnetic field lines. Besides, there is another type of waves at such high frequencies which propagate quasi-perpendicular to the magnetic field and strongly associated with current sheets near the ionopause. They either occur at the center of a sharp current, or at the edge of a current. These waves may be generated from the free energy of currents at the ionopause and could lead to dissipation of those currents. In this paper, we perform statistical studies on the current-associated waves and examine their effects on current dissipation and on plasma heating. We examine waves at the bow shock in this higher frequency range.

  13. Coordination of degrees of freedom and stabilization of task variables in a complex motor skill: expertise-related differences in cello bowing.

    Science.gov (United States)

    Verrel, Julius; Pologe, Steven; Manselle, Wayne; Lindenberger, Ulman; Woollacott, Marjorie

    2013-02-01

    Stringed instrument bowing is a complex sensorimotor skill, involving fine regulation of bow orientation and motion relative to the string. In this study, we characterize this skill in terms of stabilization of specific bow parameters as well as the underlying use and coordination of the degrees of freedom (DOF) of the right bowing arm. Age-matched samples of 10 advanced cellists and 10 cello novices took part in the study. Kinematic bow movement data were analyzed with respect to task variables suggested by the cello teaching literature: position and orientation of the bow relative to the string, bow velocity, and timing. Joint motion of the bowing arm was analyzed in terms of movement amplitude and inter-joint coordination (principal component analysis). As expected, novices showed poorer control of bowing parameters. In addition, novices differed markedly from advanced players in the use and coordination of the DOF of the bowing arm, with the elbow and wrist showing less overall movement and a reduced proportion of variance explained by the first principal component (PC1). In contrast, larger amounts of shoulder variance were explained by PC1 in novices compared to experts. Our findings support Bernstein's theory of graded skill acquisition, according to which early stages of motor skill learning are characterized by a "freezing" of movement DOF, while later learning stages exploit the DOF, possibly following a proximal-to-distal sequence, for improved task performance.

  14. The Procedure for Determination of Special Margin Factors to Account for a Bow of the VVER-1000 Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganov, Sergey V.; Marin, Stanislav V.; Shishkov, Lev K. [Russian Research Center ' Kurchatov Institute' , 1., Kurchatov sq., 123182 Moscow (Russian Federation)

    2008-07-01

    Starting from 1980's, the problem of bow of the VVER-1000 reactor FAs and the effect of that on the operational safety is being discussed. At the initial period of time, the extension of time for dropping control rods of the control and protection system associated with this bow posed the highest threat. Later on, new more rigid structures were developed for FAs that eliminated the problems of control rods. However, bow of the VVER-1000 reactor FAs is observed up to now. The scale of this bow reduced significantly but it still effects safety. Even a minor bow available may lead to the noticeable increase of power of individual fuel pins associated with the local variation of the coolant amount. This effect must be taken into account on designing fuel loadings to eliminate the exceeding of set limitations. The introduction of additional special margins is the standard method for taking this effect into account. The present paper describes the conservative technique for the assessment of additional margins for bow of FAs of state-of-the-art designs. This technique is employed in the VVER-1000 reactor designing. The chosen conservatism degree is discussed as well as the method for its assurance and acceptable ways for its slackening. The example of the margin evaluation for the up-to-date fuel loading is given. (authors)

  15. Design and Testing of a Small Inductive Pulsed Plasma Thruster

    Science.gov (United States)

    Martin, Adam K.; Eskridge, Richard H.; Dominguez, Alexandra; Polzin, Kurt A.; Riley, Daniel P.; Kimberlin, Adam C.

    2015-01-01

    The design and testing of a small inductive pulsed plasma thruster (IPPT), shown in Fig. 1 with all the major subsystems required for a thruster of this kind are described. Thrust measurements and imaging of the device operated in rep-rated mode are presented to quantify the performance envelope of the device. The small IPPT described in this paper was designed to serve as a test-bed for the pulsed gas-valves and solid-state switches required for a IPPTs. A modular design approach was used to permit future modifications and upgrades. The thruster consists of the following sub-systems: a) a multi-turn, spiral-wound acceleration coil (27 cm o.d., 10 cm i.d.) driven by a 10 microFarad capacitor and switched with a high-voltage thyristor, b) a fast pulsed gas-valve, and c.) a glow-discharge pre-ionizer (PI) circuit. The acceleration-coil circuit may be operated at voltages up to 4 kV (the thyristor limit is 4.5 kV). The device may be operated at rep-rates up to 30 Hz with the present gas-valve. Thrust measurements and imaging of the device operated in rep-rated mode will be presented. The pre-ionizer consists of a 0.3 microFarad capacitor charged to 4 kV and connected to two annular stainless-steel electrodes bounding the area of the coil-face. The 4 kV potential is held across them and when the gas is puffed in over the coil, the PI circuit is completed, and a plasma is formed. Even at the less than optimal base-pressure in the chamber (approximately 5 × 10(exp -4) torr), the PI held-off the applied voltage, and only discharged upon command. For a capacitor charge of 2 kV the peak coil current is 4.1 kA, and during this pulse a very bright discharge (much brighter than from the PI alone) was observed (see Fig. 2). Interestingly, for discharges at this charge voltage the PI was not required as the current rise rate, dI/dt, of the coil itself was sufficient to ionize the gas.

  16. HIGH ENERGY REPLACEMENT FOR TEFLON PROPELLANT IN PULSED PLASMA THRUSTERS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...

  17. Colloid Thruster for Attitude Control Systems (ACS) and Tip-off Control Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test key technologies needed for an integrated, high thrust colloid thruster system with no moving parts, for spacecraft attitude control...

  18. Simulation of a Cold Gas Thruster System and Test Data Correlation

    Science.gov (United States)

    Hauser, Daniel M.; Quinn, Frank D.

    2012-01-01

    During developmental testing of the Ascent Abort 1 (AA-1) cold gas thruster system, unexpected behavior was detected. Upon further review the design as it existed may not have met the requirements. To determine the best approach for modifying the design, the system was modeled with a dynamic fluid analysis tool (EASY5). The system model consisted of the nitrogen storage tank, pressure regulator, thruster valve, nozzle, and the associated interconnecting line lengths. The regulator and thruster valves were modeled using a combination of the fluid and mechanical modules available in EASY5. The simulation results were then compared against actual system test data. The simulation results exhibited behaviors similar to the test results, such as the pressure regulators response to thruster firings. Potential design solutions were investigated using the analytical model parameters, including increasing the volume downstream of the regulator and increasing the orifice area. Both were shown to improve the regulator response.

  19. NASA Marshall Space Flight Center Tri-gas Thruster Performance Characterization

    Science.gov (United States)

    Dorado, Vanessa; Grunder, Zachary; Schaefer, Bryce; Sung, Meagan; Pedersen, Kevin

    2013-01-01

    Historically, spacecraft reaction control systems have primarily utilized cold gas thrusters because of their inherent simplicity and reliability. However, cold gas thrusters typically have a low specific impulse. It has been determined that a higher specific impulse can be achieved by passing a monopropellant fluid mixture through a catalyst bed prior to expulsion through the thruster nozzle. This research analyzes the potential efficiency improvements from using tri-gas, a mixture of hydrogen, oxygen, and an inert gas, which in this case is helium. Passing tri-gas through a catalyst causes the hydrogen and oxygen to react and form water vapor, ultimately heating the exiting fluid and generating a higher specific impulse. The goal of this project was to optimize the thruster performance by characterizing the effects of varying several system components including catalyst types, catalyst lengths, and initial catalyst temperatures.

  20. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The gasdynamic mirror (GDM) plasma thruster has the ability to confine high-density plasma for the length of time required to heat it to the temperatures...

  1. Wide Throttling, High Throughput Hall Thruster for Science and Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to Topic S3.04 "Propulsion Systems," Busek Co. Inc. will develop a high throughput Hall effect thruster with a nominal peak power of 1-kW and wide...

  2. Wide Throttling, High Throughput Hall Thruster for Science and Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to Topic S3-04 "Propulsion Systems," Busek proposes to develop a high throughput Hall effect thruster with a nominal peak power of 1-kW and wide...

  3. Low Cost Refractory Matrix Composite Thruster for Mars Ascent Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The long-term goal for this effort is to develop a low-cost, high-temperature thruster. Within the attitude control propulsion community, many efforts have focused...

  4. Modelling and Simulation of Variable Speed Thruster Drives with Full-Scale Verification

    Directory of Open Access Journals (Sweden)

    Jan F. Hansen

    2001-10-01

    Full Text Available In this paper considerations about modelling and simulation of variable speed thruster drives are made with comparison to full scale measurements from Varg FPSO. For special purpose vessels with electric propulsion operating in DP (Dynamic Positioning mode the thruster drives are essential for the vessel operation. Different model strategies of thruster drives are discussed. An advanced thruster drive model with a dynamic motor model and field vector control principle is shown. Simulations are performed with both the advanced model and a simplified model. These are compared with full-scale measurements from Varg FPSO. The simulation results correspond well with the measurements, for both the simplified model and the advanced model.

  5. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gasdynamic Mirror (GDM) thruster is an electric propulsion device, without electrodes, that will magnetically confine a plasma with such density and temperature...

  6. Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I Busek matured the design of an existing 15-kW laboratory thruster. Magnetic modeling was performed to generate a circuit incorporating magnetic shielding....

  7. Kinetic Molecular Dynamic Model of Hall Thruster Channel Wall Erosion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hall thrusters are being considered for many space missions because their high specific impulse delivers a larger payload mass fraction than chemical rockets. With a...

  8. Hot-Fire Testing of a 1N AF-M315E Thruster

    Science.gov (United States)

    Burnside, Christopher G.; Pedersen, Kevin; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends. NASA completed a hot-fire test of a 1N AF-M315E monopropellant thruster at the Marshall Space Flight Center in the small altitude test stand located in building 4205. The thruster is a ground test article used for basic performance determination and catalyst studies. The purpose of the hot-fire testing was for performance determination of a 1N size thruster and form a baseline from which to study catalyst performance and life with follow-on testing to be conducted at a later date. The thruster performed as expected. The result of the hot-fire testing are presented in this paper and presentation.

  9. Feasibility of a 5mN Laser-Driven Mini-Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a next-generation thruster under a Phase II SBIR which we believe can meet NASA requirements after some modifications and improvements. It is the...

  10. Lifetime Improvement of Large Scale Green Monopropellant Thrusters via Novel, Long-Life Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop a high performance, non-toxic storable, "green" monopropellant thruster suitable for in-space reaction control propulsion. The engine will...

  11. Propellantless Spacecraft Formation-Flying and Maneuvering with Photonic Laser Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Until the former NIAC was closed, we had investigated a nano-meter accuracy formation flight method based on photon thrusters and tethers, Photon Tether Formation...

  12. Cluster magnetic field observations at a quasi-parallel bow shock

    Directory of Open Access Journals (Sweden)

    E. A. Lucek

    Full Text Available We present four-point Cluster magnetic field data from a quasi-parallel shock crossing which allows us to probe the three-dimensional structure of this type of shock for the first time. We find that steepened ULF waves typically have a scale larger than the spacecraft separation ( ~ 400–1000 km, while SLAMS-like magnetic field enhancements have different signatures in | B | at the four spacecraft, suggesting that they have a smaller scale size. In the latter case, however, the angular variations of B are similar, consistent with the space-craft making different trajectories through the same structure. The field enhancements have different orientations relative to a model bow shock normal, which might arise from different degrees of deceleration and deflection of the surrounding solar wind plasma. The observed rotation of the magnetic field rising from a direction approximately parallel to the model bow shock normal to a direction more perpendicular to the model normal across the field enhancement is consistent with previously published results. Successive magnetic field enhancements or ULF waves, and the leading and trailing edges of the same structure, are found to have different orientations.

    Key words. Interplanetary physics (planetary bow shocks

  13. AKARI/FIS Mapping of the ISM-Wind Bow Shock around Alpha Ori

    CERN Document Server

    Ueta, Toshiya; Yamamura, Issei; Nakada, Yoshikazu; Matsuura, Mikako; Ita, Yoshifusa; Tanabe, Toshihiko; Fukushi, Hinako; Matsunaga, Noriyuki; Mito, Hiroyuki

    2008-01-01

    We present 10' x 50' scan maps around an M supergiant Alpha Ori at 65, 90, 140 and 160 microns obtained with the AKARI Infrared Astronomy Satellite. Higher spatial resolution data with the exact analytic solution permit us to fit the de-projected shape of the stellar wind bow shock around Alpha Ori to have the stand-off distance of 4.8', position angle of 55 degrees and inclination angle of 56 degrees. The shape of the bow shock suggests that the peculiar velocity of Alpha Ori with respect to the local medium is v_* = 40 (n_H)^(-1/2), where n_H is the hydrogen nucleus density at Alpha Ori. We find that the local medium is of n_H = 1.5 to 1.9 cm^(-3) and the velocity of the local flow is at 11 km s^(-1) by using the most recent astrometric solutions for Alpha Ori under the assumption that the local medium is moving away from the Orion OB 1 association. AKARI images may also reveal a vortex ring due to instabilities on the surface of the bow shock as demonstrated by numerical models. This research exemplifies t...

  14. Magnetosheath Filamentary Structures Formed by Ion Acceleration at the Quasi-Parallel Bow Shock

    Science.gov (United States)

    Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.

    2014-01-01

    Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.

  15. Recoil and Vibration in an Archery Bow Equipped with a Multi-Rod Stabilizer

    Directory of Open Access Journals (Sweden)

    Igor Zaniewski

    2012-01-01

    Full Text Available The aim of this research is to create a mechanical and mathematical model of a multi-rod stabilizer for the sport archery bow and to analyze its capability to damp disagreeable recoil and vibration of the bow during internal ballistic motion. The research methods are based on the Euler-Bernoulli theory of beam bending, Lagrange equations of the second kind, the Cauchy problem, and the Runge-Kutta method. A mathematical software package was used to analyze the problem. The approach to the problem of sport-bow stabilization in the vertical plane that is proposed in this paper addresses the practical needs both of applied engineering mechanics and of the sport of archery. Numerical results from computer simulation are presented in both tabular and graphical form. The common motion of the string and arrow (internal ballistic motion is accompanied by intense vibration which is caused by disruption of the static force balance at the moment of string release.

  16. Exploring Astrophysically Relevant Bow Shocks Using MIFEDS and the OMEGA Laser

    Science.gov (United States)

    Levesque, Joseph; Kuranz, Carolyn; Young, Rachel; Fiksel, Gennady; Manuel, Mario; Trantham, Matthew; Klein, Sallee; Hartigan, Patrick; Liao, Andy; Li, Chikang

    2016-10-01

    We present current experiments using the Omega Laser Facility and their magneto-inertial fusion electrical discharge system (MIFEDS) to observe the effect of magnetic pressure on bow shock dynamics in an astrophysically relevant regime. Astrophysical bow shocks are an interesting phenomenon in which a shock forms when incident supersonic flow encounters a sufficiently magnetized medium surrounding an object. The most well-known example of this phenomena is the interaction of the solar wind with the Earth's magnetic field, which creates our magnetosphere. In our experiment the magnetosphere will be emulated by a current flowing through a curved wire to create an azimuthal magnetic field. To create the analogous solar wind, lasers rear-irradiate two opposing graphite targets so the plasma outflows collide and then expand along the collision plane toward the magnetized wires. We use the UV Thomson scattering diagnostic technique to determine plasma parameters along with optical imaging and proton radiography to characterize the plasma flow and the bow shock that forms. This work is supported by the U.S. DOE, through NNSA Grants DE-NA0002956 (SSAA) and DE-NA0002719 (NLUF), by the LLE under DE-NA0001944, and by the LLNL under subcontract B614207 to DE-AC52-07NA27344.

  17. Interaction of single-pulse laser energy with bow shock in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Hong Yanji

    2014-04-01

    Full Text Available Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier–Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction. The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagnation point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the investigation of the mechanism of the interaction.

  18. Astrophysical bow shocks: An analytical solution for the hypersonic blunt body problem in the intergalactic medium

    CERN Document Server

    Schulreich, Michael Mathias

    2011-01-01

    Aims: Bow shock waves are a common feature of groups and clusters of galaxies since they are generated as a result of supersonic motion of galaxies through the intergalactic medium. The goal of this work is to present an analytical solution technique for such astrophysical hypersonic blunt body problems. Methods: A method, developed by Schneider (1968, JFM, 31, 397) in the context of aeronautics, allows calculation of the galaxy's shape as long as the shape of the bow shock wave is known (so-called inverse method). In contrast to other analytical models, the solution is valid in the whole flow region (from the stagnation point up to the bow shock wings) and in particular takes into account velocity gradients along the streamlines. We compare our analytical results with two-dimensional hydrodynamical simulations carried out with an extended version of the VH-1 hydrocode which is based on the piecewise parabolic method with a Lagrangian remap. Results: It is shown that the applied method accurately predicts the...

  19. Numerical Simulation of Star Formation by the Bow Shock of the Centaurus A Jet

    CERN Document Server

    Gardner, Carl L; Scannapieco, Evan; Windhorst, Rogier A

    2016-01-01

    Recent Hubble Space Telescope (HST) observations of the extragalactic radio source Centaurus A (Cen A) display a young stellar population around the southwest tip of the inner filament 8.5 kpc from the Cen A galactic center, with ages in the range of 1-3 Myr. Crockett et al. (2012) argue that the transverse bow shock of the Cen A jet triggered this star formation as it impacted dense molecular cores of clouds in the filament. To test this hypothesis, we perform three-dimensional numerical simulations of induced star formation by the jet bow shock in the inner filament of Cen A, using a positivity preserving WENO method to solve the equations of gas dynamics with radiative cooling. We find that star clusters form inside a bow-shocked molecular cloud when the maximum initial density of the cloud is > 40 H2 molecules/cm^3. In a typical molecular cloud of mass 10^6 M_sun and diameter 200 pc, approximately 20 star clusters of mass 10^3 M_sun are formed, matching the HST images.

  20. A search for systemic mass loss in Algols with bow shocks

    CERN Document Server

    Mayer, Andreas; Jorissen, Alain

    2016-01-01

    Aims. Various studies indicate that interacting binary stars of Algol type evolve non-conservatively. However, direct detection of systemic mass loss in Algols has been scarce so far. We aim at studying the systemic mass loss in Algols by looking for the presence of infrared excesses originating from the thermal emission of dust grains, which is linked to the presence of a stellar wind. Methods. In contrast to previous studies, we make use of the fact that stellar and interstellar material is piled up at the edge of the asterosphere where the stellar wind interacts with the interstellar medium. We analyse WISE W3 $12\\,\\mu$m and WISE W4 $22\\,\\mu$m data of Algol-type binary Be and B[e] stars and the properties of their bow shocks. From the stand-off distance of the bow shock we are able to determine the mass loss rate of the binary system. Results. Although the velocities of the stars with respect to the interstellar medium are quite low, we find bow shocks to be present in two systems, namely $\\pi$ Aqr, and $\\...

  1. Corporate-Feed Multilayer Bow-Tie Antenna Array Design Using a Simple Transmission Line Model

    Directory of Open Access Journals (Sweden)

    S. Didouh

    2012-01-01

    Full Text Available A transmission line model is used to design corporate-fed multilayered bow-tie antennas arrays; the simulated antennas arrays are designed to resonate at the frequencies 2.4 GHz, 5 GHz, and 8 GHz corresponding to RFID, WIFI, and radars applications. The contribution of this paper consists of modeling multilayer bow-tie antenna array fed through an aperture using transmission line model. The transmission line model is simple and precise and allows taking into account the whole geometrical, electrical, and technological characteristics of the antennas arrays. The proposed transmission line model showed its interest in the design of different multilayered bow-tie antennas and predicted the correct resonance frequency for different applications in telecommunications. To validate the proposed transmission line model, the simulation results obtained are compared with those obtained by the method of moments. The results of simulations are presented and discussed. Using this transmission line approach, the resonant frequency, input impedance, and return loss can be determined simultaneously. The paper reports several simulation results that confirm the validity of the developed model. The obtained results are then presented and discussed.

  2. Anomalous flow deflection at planetary bow shocks in the low Alfven Mach number regime

    Science.gov (United States)

    Nishino, Masaki N.; Fujimoto, Masaki; Tai, Phan-Duc; Mukai, Toshifumi; Saito, Yoshifumi; Kuznetsova, Masha M.; Rastaetter, Lutz

    A planetary magnetosphere is an obstacle to the super-sonic solar wind and the bow shock is formed in the front-side of it. In ordinary hydro-dynamics, the flow decelerated at the shock is diverted around the obstacle symmetrically about the planet-Sun line, which is indeed observed in the magnetosheath most of the time. Here we show a case under a very low density solar wind in which duskward flow was observed in the dawnside magnetosheath of the Earth's magnetosphere. A Rankine-Hugoniot test across the bow shock shows that the magnetic effect is crucial for this "wrong flow" to appear. A full three-dimensional Magneto- Hydro-Dynamics (MHD) simulation of the situation in this previously unexplored parameter regime is also performed. It is illustrated that in addition to the "wrong flow" feature, various peculiar characteristics appear in the global picture of the MHD flow interaction with the obstacle. The magnetic effect at the bow shock should become more conspicuously around the Mercury's magnetosphere, because stronger interplanetary magnetic field and slower solar wind around the Mercury let the Alfven Mach number low. Resultant strong deformation of the magnetosphere induced by the "wrong flow" will cause more complex interaction between the solar wind and the Mercury.

  3. Formation of Cosmic Crystals in Highly-Supersaturated Silicate Vapor Produced by Planetesimal Bow Shocks

    CERN Document Server

    Miura, H; Yamamoto, T; Nakamoto, T; Yamada, J; Tsukamoto, K; Nozawa, J

    2010-01-01

    Several lines of evidence suggest that fine silicate crystals observed in primitive meteorite and interplanetary dust particles (IDPs) nucleated in a supersaturated silicate vapor followed by crystalline growth. We investigated evaporation of $\\mu$m-sized silicate particles heated by a bow shock produced by a planetesimal orbiting in the gas in the early solar nebula and condensation of crystalline silicate from the vapor thus produced. Our numerical simulation of shock-wave heating showed that these {\\mu}m-sized particles evaporated almost completely when the bow shock is strong enough to cause melting of chondrule precursor dust particles. We found that the silicate vapor cools very rapidly with expansion into the ambient unshocked nebular region; the cooling rate is estimated, for instance, to be as high as 2000 K s$^{-1}$ for a vapor heated by a bow shock associated with a planetesimal of radius 1 km. The rapid cooling of the vapor leads to nonequilibrium gas-phase condensation of dust at temperatures muc...

  4. The propagation and growth of whistler mode waves generated by electron beams in earth's bow shock

    Science.gov (United States)

    Tokar, R. L.; Gurnett, D. A.

    1985-01-01

    In this study, the propagation and growth of whistler mode waves generated by electron beams within earth's bow shock is investigated using a planar model for the bow shock and a model electron distribution function. Within the shock, the model electron distribution function possesses a field-aligned T greater than T beam that is directed toward the magnetosheath. Waves with frequencies between about 1 and 100 Hz with a wide range of wave normal angles are generated by the beam via Landau and anomalous cyclotron resonances. However, because the growth rate is small and because the wave packets traverse the shock quickly, these waves do not attain large amplitudes. Waves with frequencies between about 30 and 150 Hz with a wide range of wave normal angles are generated by the beam via the normal cyclotron resonance. The ray paths for most of these waves are directed toward the solar wind although some wave packets, due to plasma convection travel transverse to the shock normal. These wave packets grow to large amplitudes because they spend a long time in the growth region. The results suggest that whistler mode noise within the shock should increase in amplitude with increasing upstream theta sub Bn. The study provides an explanation for the origin of much of the whistler mode turbulence observed at the bow shock.

  5. Comparative Study of Electromagnetic Waves at the Bow Shocks of Venus and Earth

    Science.gov (United States)

    Wei, Hanying; Russell, Christopher T.; Strangeway, Robert J.; Schwartz, Steven J.; Zhang, Tielong

    2016-04-01

    Although the solar interactions with Venus and Earth are quite different in many ways, they both have bow shocks formed upstream of the planet where the solar wind decelerates from a super- to sub- magnetosonic flow. In the upstream foreshock region, there is abundant wave activity generated by the shock or by the back-streaming ions and electrons from the shock. In the downstream magnetosheath region, there is also abundant wave activity either locally generated by the heated electrons or ions from the shock or transported from the shock or foreshock regions by the solar wind. The magnetometers of Venus Express and Magnetospheric Multiscale missions both occasionally record 128 Hz data during their shock crossing, which allow us the search for and analyze waves at such high frequencies. We have found short-duration wave bursts around both Venus and Earth bow shocks, with certain similarities. These waves are mostly quasi-perpendicular propagating and have amplitude and occurrence rate decreasing with distance from the bow shock. In this paper we perform statistical and comparative studies on wave properties to understand their generation mechanisms and their effects to the shock or magnetosheath plasmas.

  6. Overview of NASA GRCs Green Propellant Infusion Mission Thruster Testing and Plume Diagnostics

    Science.gov (United States)

    Deans, Matthew C.; Reed, Brian D.; Yim, John T.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The models describe the pressure, temperature, density, Mach number, and species concentration of the AF-M315E thruster exhaust plumes. The models are being used to assess the impingement effects of the AF-M315E thrusters on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters will be tested in a small rocket, altitude facility at NASA GRC. The GRC thruster testing will be conducted at duty cycles representatives of the planned GPIM maneuvers. A suite of laser-based diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, Schlieren imaging, and physical probes will be used to acquire plume measurements of AFM315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  7. Experimental Investigation of Two Interacting Thruster-Plumes Downstream of the Nozzles

    OpenAIRE

    Holz, André; Dettleff, Georg; Hannemann, Klaus; Ziegenhagen, Stefan

    2012-01-01

    The plume-plume interaction of two small cold gas thrusters is investigated under high vacuum conditions in the DLR high vacuum plume test facility STG-CT. In this paper we concentrate on the interaction downstream of the nozzles. After introducing the experimental equipment, characteristics of shock interaction are presented. Furthermore the appropriateness of the Penetration Knudsen Number for predicting the type of interaction also for thruster plumes is investigated.

  8. Preheating Cold Gas Thruster Flow Through a Thermal Energy Storage Conversion System

    Science.gov (United States)

    2013-01-01

    Journal Article 3. DATES COVERED (From - To) January 2013- October 2013 4. TITLE AND SUBTITLE Preheating Cold Gas Thruster Flow Through a Thermal Energy... Gas Thruster Flow through a Thermal Energy Storage Conversion System Michael R. Reid1 United States Air Force, Colorado Springs, CO, 80840 David B...specific impulse relative to a cold gas flow. Electric propulsion systems, the primary competitor to solar thermal propulsion systems, rely on the rather

  9. Dynamic Particle Weight Remapping in Hybrid PIC Hall-effect Thruster Simulation

    Science.gov (United States)

    2015-05-01

    International Electric Propulsion Conference and 6th Nano-satellite Symposium Hyogo-Kobe, Japan July 410, 2015 Robert Martin∗ ERC Incorporated, Huntsville...Algorithms, . 8Koo, J. and Martin, R., Pseudospectral model for hybrid PIC Hall -eect thruster simulation, 34th Int. Electric Propul- sion Conf...Paper 3. DATES COVERED (From - To) May 2015-July 2015 4. TITLE AND SUBTITLE Dynamic Particle Weight Remapping in Hybrid PIC Hall -effect Thruster

  10. Performance and Thermal Characterization of the NASA-300MS 20 kW Hall Effect Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Soulas, George; Smith, Timothy; Mikellides, Ioannis; Hofer, Richard

    2013-01-01

    NASA's Space Technology Mission Directorate is sponsoring the development of a high fidelity 15 kW-class long-life high performance Hall thruster for candidate NASA technology demonstration missions. An essential element of the development process is demonstration that incorporation of magnetic shielding on a 20 kW-class Hall thruster will yield significant improvements in the throughput capability of the thruster without any significant reduction in thruster performance. As such, NASA Glenn Research Center and the Jet Propulsion Laboratory collaborated on modifying the NASA-300M 20 kW Hall thruster to improve its propellant throughput capability. JPL and NASA Glenn researchers performed plasma numerical simulations with JPL's Hall2De and a commercially available magnetic modeling code that indicated significant enhancement in the throughput capability of the NASA-300M can be attained by modifying the thruster's magnetic circuit. This led to modifying the NASA-300M magnetic topology to a magnetically shielded topology. This paper presents performance evaluation results of the two NASA-300M magnetically shielded thruster configurations, designated 300MS and 300MS-2. The 300MS and 300MS-2 were operated at power levels between 2.5 and 20 kW at discharge voltages between 200 and 700 V. Discharge channel deposition from back-sputtered facility wall flux, and plasma potential and electron temperature measurements made on the inner and outer discharge channel surfaces confirmed that magnetic shielding was achieved. Peak total thrust efficiency of 64% and total specific impulse of 3,050 sec were demonstrated with the 300MS-2 at 20 kW. Thermal characterization results indicate that the boron nitride discharge chamber walls temperatures are approximately 100 C lower for the 300MS when compared to the NASA- 300M at the same thruster operating discharge power.

  11. Performance of a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Science.gov (United States)

    Polzin, Kurt A.; Raitses, Yevgeny; Fisch, Nathaniel J.

    2008-01-01

    While Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope down to 100W while maintaining an efficiency of 45- 55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from the order of 50 Watts up to 1 kW. These thrusters exhibit performance characteristics which are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHT has a lower insulator surface area to discharge chamber volume ratio. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion. This makes the CHT geometry promising for low-power applications. Recently, a CHT that uses permanent magnets to produce the magnetic field topology was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed electromagnets. Data are presented for two purposes: to expose the effect different controllable parameters have on the discharge and to summarize performance measurements (thrust, Isp, efficiency) obtained using a thrust stand. These data are used to gain insight into the thruster's operation and to allow for quantitative comparisons between the permanent magnet CHT and the electromagnet CHT.

  12. Erosion Measurements in a Diverging Cusped-Field Thruster (Pre Print)

    Science.gov (United States)

    2012-02-01

    precursor to the DCFT was the development of high efficiency multistage plasma ( HEMP ) thrusters by Kornfeld et al. in Germany [22]. HEMP thrusters also use ...flexibility, the use of small satellites allows more independent objectives to be met for a given cost, increasing accessibility to space. Advantages are...the gas via collisions with electrons accelerating upstream. Electromagnets are used to establish a mostly radial magnetic field with a maximum of

  13. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Y. Raitses; D. Staack; A. Smirnov; N.J. Fisch

    2005-03-16

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission.

  14. Study of Plume Characteristics of a Stationary Plasma Thruster

    Institute of Scientific and Technical Information of China (English)

    QIAN Zhong; WANG Pingyang; DU Zhaohui; KANG Xiaolu

    2008-01-01

    Electron density and temperature of the plume are measured by a double Langmuir probe in an experimental chamber.A numerical model based on both particle-in-cell scheme and direct simulation Monte Carlo hybrid method is developed to simulate the flow field of plume.The equation for plasma potential is solved by alternative direction implicit technique. The simulation is verified by comparing the computational results with the measured data.The study indicates that the electron temperature of flow field is about 2 eV and the electron density is about 2.5 × 1016 ~ 5 × 1015 m-3 at the central line with a distance of 0.3 ~ 1.0 m downstream of the thruster exit.The model can well predict the flow field parameters of the steady plume.The efforts of this paper are referable for further investigation.

  15. Elimination of Lifetime Limiting Mechanism of Hall Thrusters

    Science.gov (United States)

    Jacobson, David T. (Inventor); Manzella, David H. (Inventor)

    2009-01-01

    A Hall thruster includes inner and outer electromagnets, with the outer electromagnet circumferentially surrounding the inner electromagnet along a centerline axis and separated therefrom, inner and outer poles, in physical connection with their respective inner and outer electromagnets, with the inner pole having a mostly circular shape and the outer pole having a mostly annular shape, a discharge chamber separating the inner and outer poles, a combined anode electrode/gaseous propellant distributor, located at an upstream portion of the discharge chamber and supplying propellant gas and an actuator, in contact with a sleeve portion of the discharge chamber. The actuator is configured to extend the sleeve portion or portions of the discharge chamber along the centerline axis with respect to the inner and outer poles.

  16. Overview of NASA Iodine Hall Thruster Propulsion System Development

    Science.gov (United States)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  17. Optimal electric potential profile in a collisional magnetized thruster

    Science.gov (United States)

    Fruchtman, Amnon; Makrinich, Gennady

    2016-10-01

    A major figure of merit in propulsion in general and in electric propulsion in particular is the thrust per unit of deposited power, the ratio of thrust over power. We have recently demonstrated experimentally and theoretically that for a fixed deposited power in the ions, the momentum delivered by the electric force is larger if the accelerated ions collide with neutrals during the acceleration. As expected, the higher thrust for given power is achieved for a collisional plasma at the expense of a lower thrust per unit mass flow rate. Operation in the collisional regime can be advantageous for certain space missions. We analyze a Hall thruster configuration in which the flow is only weakly ionized but there are frequent ion-neutral collisions. With a variational method we seek an electric potential profile that maximizes thrust over power. We then examine what radial magnetic field profile should determine such a potential profile. Supported by the Israel Science Foundation Grant 765/11.

  18. Power electronics for a 1-kilowatt arcjet thruster

    Science.gov (United States)

    Gruber, R. P.

    1986-01-01

    After more than two decades, new space mission requirements have revived interest in arcjet systems. The preliminary development and demonstration of new, high efficiency, power electronic concepts for start up and steady state control of dc arcjets is reported. The design comprises a pulse width modulated power converter which is closed loop configured to give fast current control. An inductor, in series with the arcjet, serves the dual role of providing instantaneous current control, as well as a high voltage arc ignition pulse. Benchmark efficiency, transient response, regulation, and ripple data are presented. Tests with arcjets demonstrate that the power electronics breadboard can start thrusters consistently with no apparent damage and transfer reliably to the nondestructive high voltage arc mode in less than a second.

  19. Electric Propulsion Cables For Milli-Newton Thrusters

    Science.gov (United States)

    Jakob, Manfred; Bertrand, Arnaud; El-Idrissi, Mohamed; Schaper, Wolfgang, , Dr.

    2011-10-01

    AXON' Kabel GmbH, is developing and manufacturing cables and connectors up to complete interconnect systems for all types of applications needed in Space. As a request from ESA, AXON has developed a new generation of cables suitable for current and future applications to feed electric propulsion thruster systems in spacecraft with electric power. Under this project the main objectives were to find and select materials for the composition to produce a cable withstanding quite strongrequirements for operating temperature, radiation resistance, high voltage application and in variants to various current ratings (A); the cable construction will also include ESD immunisation. The paper will summarise the specification achieved and will give an overview on the test results with the prototype cables.

  20. Magnetic Field Effects on the Plume of a Diverging Cusped-Field Thruster

    KAUST Repository

    Matlock, Taylor

    2010-07-25

    The Diverging Cusped-Field Thruster (DCFT) uses three permanent ring magnets of alternating polarity to create a unique magnetic topology intended to reduce plasma losses to the discharge chamber surfaces. The magnetic field strength within the DCFT discharge chamber (up to 4 kG on axis) is much higher than in thrusters of similar geometry, which is believed to be a driving factor in the high measured anode efficiencies. The field strength in the near plume region is large as well, which may bear on the high beam divergences measured, with peaks in ion current found at angles of around 30-35 from the thruster axis. Characterization of the DCFT has heretofore involved only one magnetic topology. It is then the purpose of this study to investigate changes to the near-field plume caused by altering the shape and strength of the magnetic field. A thick magnetic collar, encircling the thruster body, is used to lower the field strength outside of the discharge chamber and thus lessen any effects caused by the external field. Changes in the thruster plume with field topology are monitored by the use of normal Langmuir and emissive probes interrogating the near-field plasma. Results are related to other observations that suggest a unified conceptual framework for the important near-exit region of the thruster.

  1. Hybrid-PIC Modeling of a High-Voltage, High-Specific-Impulse Hall Thruster

    Science.gov (United States)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani; Huang, Wensheng

    2013-01-01

    The primary life-limiting mechanism of Hall thrusters is the sputter erosion of the discharge channel walls by high-energy propellant ions. Because of the difficulty involved in characterizing this erosion experimentally, many past efforts have focused on numerical modeling to predict erosion rates and thruster lifespan, but those analyses were limited to Hall thrusters operating in the 200-400V discharge voltage range. Thrusters operating at higher discharge voltages (V(sub d) >= 500 V) present an erosion environment that may differ greatly from that of the lower-voltage thrusters modeled in the past. In this work, HPHall, a well-established hybrid-PIC code, is used to simulate NASA's High-Voltage Hall Accelerator (HiVHAc) at discharge voltages of 300, 400, and 500V as a first step towards modeling the discharge channel erosion. It is found that the model accurately predicts the thruster performance at all operating conditions to within 6%. The model predicts a normalized plasma potential profile that is consistent between all three operating points, with the acceleration zone appearing in the same approximate location. The expected trend of increasing electron temperature with increasing discharge voltage is observed. An analysis of the discharge current oscillations shows that the model predicts oscillations that are much greater in amplitude than those measured experimentally at all operating points, suggesting that the differences in oscillation amplitude are not strongly associated with discharge voltage.

  2. In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe

    Science.gov (United States)

    Polzin, Kurt; Korman, Valentin

    2009-01-01

    One potential life-limiting mechanism in a Hall thruster is the erosion of the ceramic material comprising the discharge channel. This is especially true for missions that require long thrusting periods and can be problematic for lifetime qualification, especially when attempting to qualify a thruster by analysis rather than a test lasting the full duration of the mission. In addition to lifetime, several analytical and numerical models include electrode erosion as a mechanism contributing to enhanced transport properties. However, there is still a great deal of dispute over the importance of erosion to transport in Hall thrusters. The capability to perform an in-situ measurement of discharge channel erosion is useful in addressing both the lifetime and transport concerns. An in-situ measurement would allow for real-time data regarding the erosion rates at different operating points, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over a thruster s operating envelope would also be useful in the modeling of the detailed physics inside the discharge chamber. There are many different sensors and techniques that have been employed to quantify discharge channel erosion in Hall thrusters. Snapshots of the wear pattern can be obtained at regular shutdown intervals using laser profilometry. Many non-intrusive techniques of varying complexity and sensitivity have been employed to detect the time-varying presence of erosion products in the thruster plume. These include the use quartz crystal microbalances, emission spectroscopy, laser induced flourescence, and cavity ring-down spectroscopy. While these techniques can provide a very accurate picture of the level of eroded material in the thruster plume, it is more difficult to use them to determine the location from which the material was eroded. Furthermore, none of the methods cited provide a true in-situ measure of erosion at the channel surface while

  3. Effect of bow-type initial imperfection on the buckling load and mass of graphite-epoxy blade-stiffened panels

    Science.gov (United States)

    Stroud, W. J.; Anderson, M. S.; Hennessy, K. W.

    1977-01-01

    A structural synthesis computer code which accounts for first order effects of an initial bow and which can be used for sizing stiffened composite panels having an arbitrary cross section is used to study graphite blade-stiffened panels. The effect of a small initial bow on both the load carrying ability of panels and on the mass of panels designed to carry a specified load is examined. Large reductions in the buckling load caused by a small initial bow emphasize the need for considering a bow when a panel is designed.

  4. Effects of facility backpressure on the performance and plume of a Hall thruster

    Science.gov (United States)

    Walker, Mitchell Louis Ronald

    2005-07-01

    This dissertation presents research aimed at understanding the relationship between facility background pressure, Hall thruster performance, and plume characteristics. Due to the wide range of facilities used in Hall thruster testing, it is difficult for researchers to make adequate comparisons between data sets because of both dissimilar instrumentation and backpressures. The differences in the data sets are due to the ingestion of background gas into the Hall thruster discharge channel and charge-exchange collisions in the plume. Thus, this research aims to understand facility effects and to develop the tools needed to allow researchers to obtain relevant plume and performance data for a variety of chambers and backpressures. The first portion of this work develops a technique for calibrating a vacuum chamber in terms of pressure to account for elevated backpressures while testing Hall thrusters. Neutral gas background pressure maps of the Large Vacuum Test Facility are created at a series of cold anode flow rates and one hot flow rate at two UM/AFRL P5 5 kW Hall thruster operating conditions. These data show that a cold flow pressure map can be used to approximate the neutral background pressure in the chamber with the thruster in operation. In addition, the data are used to calibrate a numerical model that accurately predicts facility backpressure within a vacuum chamber of specified geometry and pumping speed. The second portion of this work investigates how facility backpressure influences the plume, plume diagnostics, and performance of the P5 Hall thruster. Measurements of the plume and performance characteristics over a wide range of pressures show that ingestion, a decrease in the downstream plasma potential, and broadening of the ion energy distribution function cause the increase in thrust with backpressure. Furthermore, a magnetically-filtered Faraday probe accurately measures ion current density at elevated operating pressures. The third portion of

  5. Astrium Approach For Plume Flow And Impingement Of 10 N Bipropellant Thruster

    Science.gov (United States)

    Theroude, Christophe; Scremin, G.; Wartelski, Matias

    2011-05-01

    Plume impingement on spacecraft surfaces due to chemical propulsion is a major concern during satellite operations. Indeed, thrusters plume induces disturbing forces and torques, contamination as well as thermal fluxes on sensitive surfaces. These effects, that have to be accurately predicted, influence the satellite design: thrusters orientation, MLI design, instruments protections, etc. In order to implement an efficient process of analysis, Astrium uses a two steps approach: first the thruster undisturbed flow field is computed, then the impingement on spacecraft surfaces is evaluated. In this paper, Plumflow, the Astrium Satellites software for undisturbed thrusters’ plume computation, is presented. This software is made of several modules in order to accurately compute the flow field in the different parts of the plume. A first module computes the chemistry in the chamber, then Navier-Stokes equations are solved inside the nozzle where the flow is continuous. After that a DSMC code is used for the transitional regime near the thruster lip and finally an hybrid TPMC/source-flow method computes the free molecular far flow field. The studied case is the Astrium GmbH 10 N bipropellant thruster. Some comparisons are presented between Plumflow and Professor G.A. Bird DSMC software DS2V and with DLR experimental data. These comparisons have shown very satisfactory results. Finally, aiming at computing plume impingement, the plume flow field generated with Plumflow has been interfaced with Professor G.A. Bird 3D DSMC software DS3V. The plume impingement simulation is performed by introducing the undisturbed flow field at a boundary of DS3V computational domain. It allows us to evaluate thermal flux distribution due to Astrium 10 N thruster on a plate adjacent to the thruster and to compare with the Astrium plume impingement software.

  6. Macroscopic polarization and bowing constant of Al{sub x}Ga{sub 1−x}N

    Energy Technology Data Exchange (ETDEWEB)

    Pansari, A.; Gedam, V.; Sahoo, B.K., E-mail: bksahoo.phy@nitrr.ac.in

    2015-01-01

    In this work, we have theoretically investigated the effect of macroscopic polarization (sum of spontaneous and piezoelectric polarization) on various thermal parameters of Al{sub x}Ga{sub 1−x}N alloy. The macroscopic polarization contributes to the effective elastic constant of Al{sub x}Ga{sub 1−x}N alloy. This contribution modifies the phonon group velocity, Debye temperature and Debye frequency of the alloy. The revised values of these thermal parameters have been estimated as a function of Al composition. Our calculation shows that these thermal parameters are enhanced and vary non-linearly with Al composition i.e., they show bowing. The cause of this bowing is the non linear dependence of spontaneous and piezoelectric polarization on Al composition. The bowing constant of above thermal parameters (with and without polarization) has been theoretically predicted by method of best fit. The results show that polarization mechanism not only enhances the parameters but also contribute significantly to bowing constant. The macroscopic polarization contributes around 48% to bowing constant of above thermal parameters. The obtained result will be useful for simulation of nitride optoelectronics devices to predict the effect of polarization mechanism on thermoelectric properties of Al{sub x}Ga{sub 1−x}N alloy.

  7. Effect of an isotropic outflow from the Galactic centre on the bow-shock evolution along the orbit

    CERN Document Server

    Zajacek, Michal; Karas, Vladimir; Kunneriath, Devaky; Shahzamanian, Banafsheh; Sabha, Nadeen; Muzic, Koraljka; Valencia-Schneider, Monica

    2015-01-01

    Motivated by the observations of several infrared-excess bow-shock sources and proplyd-like objects near the Galactic centre, we analyse the effect of a potential outflow from the centre on bow shock properties. We show that due to the non-negligible isotropic central outflow the bow-shock evolution along the orbit becomes asymmetric between the pre-peribothron and post-peribothron phases. This is demonstrated by the calculation of the bow-shock size evolution, the velocity along the shocked layer, the surface density of the bow-shock, and by emission-measure maps close to the peribothron passage. Within the ambient velocity range of $\\lesssim 2000\\,{\\rm km\\, s^{-1}}$ the asymmetry is profound and the changes are considerable for different outflow velocities. As a case study we perform model calculations for the Dusty S-cluster Object (DSO/G2) as a potential young stellar object that is currently being monitored and has passed the pericentre at $\\sim 2000$ Schwarzschild radii from the supermassive black hole ...

  8. Discovering Massive Runaway Stars with Infrared Bow Shock Nebulae: Four OB Stars Found in WISE

    Science.gov (United States)

    Wernke, Heather N.; Kobulnicky, Henry A.; Dale, Daniel A.; Povich, Matthew S.; Andrews, Julian E.; Chick, William T.; Munari, Stephan; Olivier, Grace M.; Schurhammer, Danielle; Sorber, Rebecca L.

    2016-01-01

    Supernovae, pulsars, and gamma-ray bursts are examples of the result of the death of massive (late-O and early-B type) stars. Determining stellar mass loss rates can help us predict the type of death the star will endure. We focus on stars that are located at the center of an infrared bow shock nebula, indicating that the star was flung from its birthplace at supersonic speed. Observing these massive, high-velocity, runaway stars with bow shock nebulae to determine their spectral type will help in the measurements of their stellar mass loss rates. The spectra of four OB stars driving bow shock candidates are presented. These four candidates were found by searching through the Wide-field Infrared Survey Explorer (WISE) All-Sky Data Release and were the most visible in the WISE 21µm band. The spectrum for each star was obtained with the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO). The spectral types of G077.3617+01.16 (HD 229159), G079.8219+00.096 ([CPR2002]A10), G092.7265+00.18, and G076.0752-02.2044 (TYC 2697-1046-1) were found to be B1.0I, O9.0V, B0.0V, and B0.0V respectively. As predicted, the candidates are all either late-O or early-B type stars. Now that the spectral types of these stars are known, further analysis can be done to determine the velocities, temperatures, masses, and stellar mass loss rates.This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  9. Study of the Combination of FTA, ETA and Bow-tie Evaluation Methods and Its Application%基于FTA、ETA、Bow-tie三种评价方法的结合及其应用研究

    Institute of Scientific and Technical Information of China (English)

    李婷婷; 赵姚峰

    2013-01-01

    在FTA与ETA分析方法结合的基础上引入蝴蝶结分析法(Bow-tie法)能很好的克服FTA和ETA的局限性。本文将ETA、FTA及Bow-tie法进行结合并将其应用到燃气管道泄漏的安全评价及分析中。%Introducing Bow-tie analytical method into the combination of FTA and ETA can well overcome the limitation of FTA and ETA. This article combines ETA, FTA and Bon-tie method and apply it into the safety evaluation and analysis of gas pipeline leakage.

  10. Electron - whistler interaction at the Earth`s bow shock: 1. Whistler instability

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, P.; Zimbardo, G. [Universita della Calabria, Cosenza (Italy)

    1993-08-01

    The authors model the interaction of whistler waves with the quasi-perpendicular bow shock observed on Nov 7, 1977. Using a Monte Carlo technique they are able to construct the resulting electron distribution function. This distribution function is asymmetric, and includes a loss cone which the data supports. This distribution function asymmetry is able to drive instabilites which couple to generate additional whister energy. A significant amount of the whistler energy is observed to originate from the region where the loss cone is observed.

  11. Primary task-specific bowing tremor: an entity of its own?

    Science.gov (United States)

    Lee, André; Altenmüller, Eckart

    2012-12-01

    A professional violinist in his early 60s, playing in a prestigious German orchestra for more than 20 years, presented to our institute because of a task-induced tremor in his right arm when playing the violin. We describe the phenomenology of this tremor and its treatment options and compare it to findings in primary writing tremor (PWT). We then discuss whether primary bowing tremor is an entity of its own (similar to PWT) and propose hypotheses that would derive from such a definition.

  12. Printed Modified Bow-Tie Dipole Antenna for DVB/WLAN Applications

    Directory of Open Access Journals (Sweden)

    Ching-Chih Hung

    2013-01-01

    Full Text Available A printed modified bow-tie dipole antenna which consists of asymmetric-feed and inserted slots is presented to apply to the DVB and WLAN systems. This antenna combines omnidirectional radiation pattern, broad bandwidth, and band rejection in an easy way to fabricate. Experimental results of the constructed prototype indicate that the VSWR 2.5 : 1 bandwidths achieve 166.7%, 28.57%, and 23.63% at 660 MHz, 2450 MHz, and 5500 MHz, respectively.

  13. Heavy Solar Wind Ion Dynamics at and Downstream from the Bow Shock

    Science.gov (United States)

    Dougherty, Virginia M.

    1997-01-01

    This is a contract under the NASA Supporting Research and Technology Program for the analysis and interpretation of the scientific data from the Plasma Composition Experiment on the International Sun Earth Explorer 1 (ISEE-1) spacecraft and the Fast Plasma Experiment on the ISEE-1 and -2 spacecraft. These combined data sets will be used in a comprehensive study of the heavy solar wind ion dynamics at and downstream from the Earth's bow shock. The report summarizes activities during the above period and outlines expected activities during the forthcoming quarter.

  14. Asymptotic Steady State Solution to a Bow Shock with an Infinite Mach Number

    CERN Document Server

    Yalinewich, Almog

    2015-01-01

    The problem of a cold gas flowing past a stationary object is considered. It is shown that at large distances from the obstacle the shock front forms a parabolic solid of revolution. The interior of the shock front is obtained by solution of the hydrodynamic equations in parabolic coordinates. The results are verified with a hydrodynamic simulation. The drag force and expected spectra are calculated for such shock, both in case of an optically thin and thick media. Finally, relations to astrophysical bow shocks and other analytic works on oblique shocks are discussed.

  15. Homotopy method for inverse design of the bulbous bow of a container ship

    Science.gov (United States)

    Huang, Yu-jia; Feng, Bai-wei; Hou, Guo-xiang; Gao, Liang; Xiao, Mi

    2017-03-01

    The homotopy method is utilized in the present inverse hull design problem to minimize the wave-making coefficient of a 1300 TEU container ship with a bulbous bow. Moreover, in order to improve the computational efficiency of the algorithm, a properly smooth function is employed to update the homotopy parameter during iteration. Numerical results show that the homotopy method has been successfully applied in the inverse design of the ship hull. This method has an advantage of high performance on convergence and it is credible and valuable for engineering practice.

  16. Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, Javad N [Nano-Optics Group, National Center of Competence for Research in Nanoscale Science, Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Eisler, Hans-Juergen [Nano-Optics Group, National Center of Competence for Research in Nanoscale Science, Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Pohl, Dieter W [Nano-Optics Group, National Center of Competence for Research in Nanoscale Science, Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Pavius, Michael [Center of MicroNanoTechnology (CMI), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Flueckiger, Philippe [Center of MicroNanoTechnology (CMI), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Gasser, Philippe [EMPA, Swiss Federal Laboratories for Materials Testing and Research, Electronics/Metrology Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Hecht, Bert [Nano-Optics Group, National Center of Competence for Research in Nanoscale Science, Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2007-03-28

    A method for the fabrication of bow-tie optical antennas at the apex of pyramidal Si{sub 3}N{sub 4} atomic force microscopy tips is described. We demonstrate that these novel optical probes are capable of sub-wavelength imaging of single quantum dots at room temperature. The enhanced and confined optical near-field at the antenna feed gap leads to locally enhanced photoluminescence (PL) of single quantum dots. Photoluminescence quenching due to the proximity of metal is found to be insignificant. The method holds promise for single quantum emitter imaging and spectroscopy at spatial resolution limited by the engineered antenna gap width exclusively.

  17. Mapping the Structure of Directed Networks: Beyond the "Bow-tie" Diagram

    CERN Document Server

    Timár, G; Dorogovtsev, S N; Mendes, J F F

    2016-01-01

    We reveal a hierarchical organization of finite directed components---tendrils---around the giant components represented by the celebrated "bow-tie" diagram for directed networks. We develop an efficient algorithm to find tendril layers. It is used together with the message passing technique, generalized to directed graphs, to find the structure and attack tolerance of complex networks, such as the World Wide Web, the neural network of Caenorhabditis elegans, and others. We introduce a generalized susceptibility characterizing the response of directed networks to damage.

  18. Recent activities in the development of the MOA thruster

    Science.gov (United States)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2008-07-01

    More than 60 years after the later Nobel laureate Hannes Alfvén had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfvén waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfvén waves to accelerate ionised matter for propulsive purposes, is MOA-magnetic field oscillating amplified thruster. Alfvén waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfvén waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a corrosion free and highly flexible propulsion system, whose performance parameters might easily be adapted in flight, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13 116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. First tests-that are further described in this paper-have been conducted successfully and underline the feasibility of the concept. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an "afterburner system" for nuclear thermal propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space

  19. Performance Test Results of the NASA-457M v2 Hall Thruster

    Science.gov (United States)

    Soulas, George C.; Haag, Thomas W.; Herman, Daniel A.; Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63.

  20. Performance of a Cylindrical Hall-Effect Thruster Using Permanent Magnets

    Science.gov (United States)

    Polzin, Kurt A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    While annular Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope from 1 kW down to 100 W while maintaining an efficiency of 45-55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. In addition, the central magnetic pole piece defining the interior wall of the annular channel can experience excessive heat loads in a miniaturized Hall thruster, with the temperature eventually exceeding the Curie temperature of the material and in extreme circumstances leading to accelerated erosion of the channel wall. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from 50 W up to 1 kW. These thrusters exhibit performance characteristics that are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHTs insulator surface area to discharge chamber volume ratio is lower. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion, making the CHT geometry promising for low-power applications. This potential for high performance in the low-power regime has served as the impetus for research and development efforts aimed at understanding and improving CHT performance. Recently, a 2.6 cm channel diameter permanent magnet CHT (shown in Fig. 1) was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed

  1. Iodine Hall Thruster Propellant Feed System for a CubeSat

    Science.gov (United States)

    Polzin, Kurt A.

    2014-01-01

    There has been significant work recently in the development of iodine-fed Hall thrusters for in-space propulsion applications.1 The use of iodine as a propellant provides many advantages over present xenon-gas-fed Hall thruster systems. Iodine is a solid at ambient temperature (no pressurization required) and has no special handling requirements, making it safe for secondary flight opportunities. It has exceptionally high ?I sp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing system level advantages over mid-term high power electric propulsion options. Iodine provides thrust and efficiency that are comparable to xenonfed Hall thrusters while operating in the same discharge current and voltage regime, making it possible to leverage the development of flight-qualified xenon Hall thruster power processing units for the iodine application. Work at MSFC is presently aimed at designing, integrating, and demonstrating a flight-like iodine feed system suitable for the Hall thruster application. This effort represents a significant advancement in state-of-the-art. Though Iodine thrusters have demonstrated high performance with mission enabling potential, a flight-like feed system has never been demonstrated and iodine compatible components do not yet exist. Presented in this paper is the end-to-end integrated feed system demonstration. The system includes a propellant tank with active feedback-control heating, fill and drain interfaces, latching and proportional flow control valves (PFCV), flow resistors, and flight-like CubeSat power and control electronics. Hardware is integrated into a CubeSat-sized structure, calibrated and tested under vacuum conditions, and operated under under hot-fire conditions using a Busek BHT-200 thruster designed for iodine. Performance of the system is evaluated thorugh accurate measurement of thrust and a calibrated of mass flow rate measurement, which is a function of

  2. The Green Propellant Infusion Mission Thruster Performance Testing for Plume Diagnostics

    Science.gov (United States)

    Deans, Matthew C.; Reed, Brian D.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters are currently being tested in a small rocket, altitude facility at NASA GRC. A suite of diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, and Schlieren imaging are being used to acquire plume measurements of AF-M315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  3. Measurements of neutral and ion velocity distribution functions in a Hall thruster

    Science.gov (United States)

    Svarnas, Panagiotis; Romadanov, Iavn; Diallo, Ahmed; Raitses, Yevgeny

    2015-11-01

    Hall thruster is a plasma device for space propulsion. It utilizes a cross-field discharge to generate a partially ionized weakly collisional plasma with magnetized electrons and non-magnetized ions. The ions are accelerated by the electric field to produce the thrust. There is a relatively large number of studies devoted to characterization of accelerated ions, including measurements of ion velocity distribution function using laser-induced fluorescence diagnostic. Interactions of these accelerated ions with neutral atoms in the thruster and the thruster plume is a subject of on-going studies, which require combined monitoring of ion and neutral velocity distributions. Herein, laser-induced fluorescence technique has been employed to study neutral and single-charged ion velocity distribution functions in a 200 W cylindrical Hall thruster operating with xenon propellant. An optical system is installed in the vacuum chamber enabling spatially resolved axial velocity measurements. The fluorescence signals are well separated from the plasma background emission by modulating the laser beam and using lock-in detectors. Measured velocity distribution functions of neutral atoms and ions at different operating parameters of the thruster are reported and analyzed. This work was supported by DOE contract DE-AC02-09CH11466.

  4. Non-Contact Thermal Characterization of NASA's HERMeS Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Meyers, James L.; Yim, John T.; Neff, Gregory

    2015-01-01

    The Thermal Characterization Test of NASAs 12.5-kW Hall thruster is being completed. This thruster is being developed to support of a number of potential Solar Electric Propulsion Technology Demonstration Mission concepts, including the Asteroid Redirect Robotic Mission concept. As a part of this test, an infrared-based, non-contact thermal imaging system was developed to measure Hall thruster surfaces that are exposed to high voltage or harsh environment. To increase the accuracy of the measurement, a calibration array was implemented, and a pilot test was performed to determine key design parameters for the calibration array. The raw data is analyzed in conjunction with a simplified thermal model of the channel to account for reflection. The reduced data will be used to refine the thruster thermal model, which is critical to the verification of the thruster thermal specifications. The present paper will give an overview of the decision process that led to identification of the need for a non-contact temperature diagnostic, the development of said diagnostic, the measurement results, and the simplified thermal model of the channel.

  5. Spatiotemporal study of gas heating mechanisms in a radio-frequency electrothermal plasma micro-thruster

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-10-01

    Full Text Available A spatiotemporal study of neutral gas temperature during the first 100 s of operation for a radio-frequency electrothermal plasma micro-thruster operating on nitrogen at 60 W and 1.5 Torr is performed to identify the heating mechanisms involved. Neutral gas temperature is estimated from rovibrational band fitting of the nitrogen second positive system. A set of baffles are used to restrict the optical image and separate the heating mechanisms occurring in the central bulk discharge region and near the thruster walls.For each spatial region there are three distinct gas heating mechanisms being fast heating from ion-neutral collisions with timescales of tens of milliseconds, intermediate heating with timescales of 10 s from ion bombardment on the inner thruster tube surface creating wall heating, and slow heating with timescales of 100 s from gradual warming of the entire thruster housing. The results are discussed in relation to optimising the thermal properties of future thruster designs.

  6. Development of a Micro-Thruster Test Facility which fulfils the LISA requirements

    Science.gov (United States)

    Hey, Franz Georg; Keller, A.; Johann, U.; Braxmaier, C.; Tajmar, M.; Fitzsimons, E.; Weise, D.

    2015-05-01

    In the context of investigations for a sufficient attitude control thruster for LISA, we have developed a thruster test facility which consists of a highly precise thrust balance coupled with plasma diagnostics. In parallel to the test facility development, investigations to downscale a High Efficiency Multistage Plasma Thruster (HEMP-T) are also being carried out. The thruster has been used to demonstrate the measurement capabilities of the facility. The setup allows a parallel operation of all instruments and can also be used for other types of μN propulsion systems including cold gas thrusters. The thrust balance consists of two pendulums. As read out a heterodyne laser interferometer is used. Differential wave front sensing (DWS) enables the measurement of the pendulum tilt which, via suitable calibration using an electrostatic comb, can be converted to a thrust. The whole setup is a symmetric configuration enabling a common-mode rejection of the dominant noise sources (e.g. seismic noise etc.). The thrust balance has a demonstrated precision of 0.1 μN. Based on our unique design, this precision can be attained down to 10-3 Hz. Thus, the measurement setup is especially suitable for characterising the thrust noise of potential eLISA propulsion candidates. We give an overview of the design, the present performance and the future plans.

  7. Research of the Fault Diagnosis Method for the Thruster of AUV Based on Information Fusion

    Science.gov (United States)

    Wang, Yu-Jia; Zhang, Ming-Jun; Wu, Juan

    Aiming at the problem of thruster fault diagnosis of AUV, the motion condition model of AUV based on the improved dynamic recursive Elman neural network, and the performance model of thruster based on the Radial Basis Function network were established. And the fault fusion diagnosis method was proposed according to the overall and local fault detection. Through comparing the output value of motion condition model with the measured value of actual speed and angle, it obtained the overall fault information. Also, it obtained the direct fault information through analyzing the residual which was produced by comparing the output of the performance model with the measured value of the actual voltage and current of the each thruster. According to the decision level information fusion of two kinds of information, it realized the fault diagnosis of thrusters and analyzed the fault degree and reliability. The results of the fault-simulation experiment show that the proposed fault fusion diagnosis method for the thruster of AUV is feasible and effective.

  8. Comparison of theory with atomic oxygen 130.4 nm radiation data from the Bow Shock ultraviolet 2 rocket flight

    Science.gov (United States)

    Levin, Deborah A.; Candler, Graham V.; Collins, Robert J.; Howlett, Carl L.; Espy, Patrick; Whiting, Ellis; Park, Chul

    1993-01-01

    Comparison is made between the results obtained from a state-of-the-art flow and radiative model and bow shock vacuum ultraviolet (VUV) data obtained the recent Bow Shock 2 Flight Experiment. An extensive data set was obtained from onboard rocket measurements at a reentry speed of 5 km/sec between the altitudes of approximately 65-85 km. A description of the NO photoionization cell used, the data, and the interpretation of the data will be presented. The primary purpose of the analyses is to assess the utility of the data and to propose a radiation model appropriate to the flight conditions of Bow Shock 2. Theoretical predictions based on flow modeling discussed in earlier work and a new radiation model are compared with data.

  9. Archery by the Apaches – implications of using the bow and arrow in hunter-gatherer communities

    Directory of Open Access Journals (Sweden)

    Žiga Šmit

    2016-12-01

    Full Text Available This review focuses on the technical and social details of production, training, and use of archery equipment by a Native American tribe, the Apaches. The study aims to understand the use of the bow in the Mesolithic and Early and Middle Neolithic societies of the Old World. The paper further describes arrow ballistics. An arrow and bow with similar dimensions and materials to those used by the Apaches was reconstructed and used in ballistic experiments. Shooting and the subsequent model calculation showed that the effective range of arrows made of reed and projected by a bow of medium strength (16–18kg was not more than approx. 20m. Due to the initial flat part of the ballistic trajectory, such arrows were quite efficient in close-range contests. Within the model calculation, a regression procedure was introduced to determine the arrow air-drag parameters from an ensemble of shots.

  10. Finite-element procedure for calculating the three-dimensional inelastic bowing of fuel rods (AWBA development program)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S E

    1982-05-01

    An incremental finite element procedure is developed for calculating the in-pile lateral bowing of nuclear fuel rods. The fuel rod is modeled as a viscoelastic beam whose material properties are derived as perturbations of the results of an axisymmetric stress analysis of the fuel rod. The effects which are taken into account in calculating the rod's lateral bowing include: (a) lateral, axial, and rotational motions and forces at the rod supports, (b) transverse gradients of temperature, fast-neutron flux, and fissioning rate, and (c) cladding circumferential wall thickness variation. The procedure developed in this report could be used to form the basis for a computer program to calculate the time-dependent bowing as a function of the fuel rod's operational and environmental history.

  11. A new technique to characterize CT scanner bow-tie filter attenuation and applications in human cadaver dosimetry simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinhua; Shi, Jim Q.; Zhang, Da; Singh, Sarabjeet; Padole, Atul; Otrakji, Alexi; Kalra, Mannudeep K.; Liu, Bob, E-mail: bliu7@mgh.harvard.edu [Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Xu, X. George [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Purpose: To present a noninvasive technique for directly measuring the CT bow-tie filter attenuation with a linear array x-ray detector. Methods: A scintillator based x-ray detector of 384 pixels, 307 mm active length, and fast data acquisition (model X-Scan 0.8c4-307, Detection Technology, FI-91100 Ii, Finland) was used to simultaneously detect radiation levels across a scan field-of-view. The sampling time was as short as 0.24 ms. To measure the body bow-tie attenuation on a GE Lightspeed Pro 16 CT scanner, the x-ray tube was parked at the 12 o’clock position, and the detector was centered in the scan field at the isocenter height. Two radiation exposures were made with and without the bow-tie in the beam path. Each readout signal was corrected for the detector background offset and signal-level related nonlinear gain, and the ratio of the two exposures gave the bow-tie attenuation. The results were used in the GEANT4 based simulations of the point doses measured using six thimble chambers placed in a human cadaver with abdomen/pelvis CT scans at 100 or 120 kV, helical pitch at 1.375, constant or variable tube current, and distinct x-ray tube starting angles. Results: Absolute attenuation was measured with the body bow-tie scanned at 80–140 kV. For 24 doses measured in six organs of the cadaver, the median or maximum difference between the simulation results and the measurements on the CT scanner was 8.9% or 25.9%, respectively. Conclusions: The described method allows fast and accurate bow-tie filter characterization.

  12. Oxygen-hydrogen thrusters for Space Station auxiliary propulsion systems

    Science.gov (United States)

    Berkman, D. K.

    1984-01-01

    The feasibility and technology requirements of a low-thrust, high-performance, long-life, gaseous oxygen (GO2)/gaseous hydrogen (GH2) thruster were examined. Candidate engine concepts for auxiliary propulsion systems for space station applications were identified. The low-thrust engine (5 to 100 lb sub f) requires significant departure from current applications of oxygen/hydrogen propulsion technology. Selection of the thrust chamber material and cooling method needed or long life poses a major challenge. The use of a chamber material requiring a minimum amount of cooling or the incorporation of regenerative cooling were the only choices available with the potential of achieving very high performance. The design selection for the injector/igniter, the design and fabrication of a regeneratively cooled copper chamber, and the design of a high-temperature rhenium chamber were documented and the performance and heat transfer results obtained from the test program conducted at JPL using the above engine components presented. Approximately 115 engine firings were conducted in the JPL vacuum test facility, using 100:1 expansion ratio nozzles. Engine mixture ratio and fuel-film cooling percentages were parametrically investigated for each test configuration.

  13. Characteristics of plasma properties in an ablative pulsed plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Schoenherr, Tony; Nees, Frank; Arakawa, Yoshihiro [Department of Aeronautics and Astronautics, University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Komurasaki, Kimiya [Department of Advanced Energy, University of Tokyo, Kashiwa, Chiba 277-8561 (Japan); Herdrich, Georg [Institute of Space Systems (IRS), University of Stuttgart, 70569 Stuttgart, Baden-Wuerttemberg (Germany)

    2013-03-15

    Pulsed plasma thrusters are electric space propulsion devices which create a highly transient plasma bulk in a short-time arc discharge that is expelled to create thrust. The transitional character and the dependency on the discharge properties are yet to be elucidated. In this study, optical emission spectroscopy and Mach-Zehnder interferometry are applied to investigate the plasma properties in variation of time, space, and discharge energy. Electron temperature, electron density, and Knudsen numbers are derived for the plasma bulk and discussed. Temperatures were found to be in the order of 1.7 to 3.1 eV, whereas electron densities showed maximum values of more than 10{sup 17} cm{sup -3}. Both values showed strong dependency on the discharge voltage and were typically higher closer to the electrodes. Capacitance and time showed less influence. Knudsen numbers were derived to be in the order of 10{sup -3}-10{sup -2}, thus, indicating a continuum flow behavior in the main plasma bulk.

  14. The ISR Asymmetrical Capacitor Thruster: Experimental Results and Improved Designs

    Science.gov (United States)

    Canning, Francis X.; Cole, John; Campbell, Jonathan; Winet, Edwin

    2004-01-01

    A variety of Asymmetrical Capacitor Thrusters has been built and tested at the Institute for Scientific Research (ISR). The thrust produced for various voltages has been measured, along with the current flowing, both between the plates and to ground through the air (or other gas). VHF radiation due to Trichel pulses has been measured and correlated over short time scales to the current flowing through the capacitor. A series of designs were tested, which were increasingly efficient. Sharp features on the leading capacitor surface (e.g., a disk) were found to increase the thrust. Surprisingly, combining that with sharp wires on the trailing edge of the device produced the largest thrust. Tests were performed for both polarizations of the applied voltage, and for grounding one or the other capacitor plate. In general (but not always) it was found that the direction of the thrust depended on the asymmetry of the capacitor rather than on the polarization of the voltage. While no force was measured in a vacuum, some suggested design changes are given for operation in reduced pressures.

  15. Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster (NEXT)

    Science.gov (United States)

    Diamant, Kevin D.; Pollard, James E.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.

    2010-01-01

    Direct thrust measurements have been made on the NASA Evolutionary Xenon Thruster (NEXT) ion engine using a standard pendulum style thrust stand constructed specifically for this application. Values have been obtained for the full 40-level throttle table, as well as for a few off-nominal operating conditions. Measurements differ from the nominal NASA throttle table 10 (TT10) values by 3.1 percent at most, while at 30 throttle levels (TLs) the difference is less than 2.0 percent. When measurements are compared to TT10 values that have been corrected using ion beam current density and charge state data obtained at The Aerospace Corporation, they differ by 1.2 percent at most, and by 1.0 percent or less at 37 TLs. Thrust correction factors calculated from direct thrust measurements and from The Aerospace Corporation s plume data agree to within measurement error for all but one TL. Thrust due to cold flow and "discharge only" operation has been measured, and analytical expressions are presented which accurately predict thrust based on thermal thrust generation mechanisms.

  16. Kinetic models for the VASIMR thruster helicon plasma source

    Science.gov (United States)

    Batishchev, Oleg; Molvig, Kim

    2001-10-01

    Helicon gas discharge [1] is widely used by industry because of its remarkable efficiency [2]. High energy and fuel efficiencies make it very attractive for space electrical propulsion applications. For example, helicon plasma source is used in the high specific impulse VASIMR [3] plasma thruster, including experimental prototypes VX-3 and upgraded VX-10 [4] configurations, which operate with hydrogen (deuterium) and helium plasmas. We have developed a set of models for the VASIMR helicon discharge. Firstly, we use zero-dimensional energy and mass balance equations to characterize partially ionized gas condition/composition. Next, we couple it to one-dimensional hybrid model [6] for gas flow in the quartz tube of the helicon. We compare hybrid model results to a purely kinetic simulation of propellant flow in gas feed + helicon source subsystem. Some of the experimental data [3-4] are explained. Lastly, we discuss full-scale kinetic modeling of coupled gas and plasmas [5-6] in the helicon discharge. [1] M.A.Lieberman, A.J.Lihtenberg, 'Principles of ..', Wiley, 1994; [2] F.F.Chen, Plas. Phys. Contr. Fus. 33, 339, 1991; [3] F.Chang-Diaz et al, Bull. APS 45 (7) 129, 2000; [4] J.Squire et al., Bull. APS 45 (7) 130, 2000; [5] O.Batishchev et al, J. Plasma Phys. 61, part II, 347, 1999; [6] O.Batishchev, K.Molvig, AIAA technical paper 2000-3754, -14p, 2001.

  17. A low power pulsed arcjet thruster for spacecraft propulsion

    Science.gov (United States)

    Willmes, Gary Francis

    1997-11-01

    An electrothermal thruster that operates in a pulsed mode at low power (pendulum-type thrust stand, and input power levels from 24 to 119 watts are determined from measurements of pulse rate and breakdown voltage. A maximum specific impulse of 305 seconds is achieved with 38% efficiency. A time-dependent, quasi-1D numerical model is developed to evaluate energy losses in the pulsed arcjet. The numerical model uses a time-marching procedure and the MacCormack predictor-corrector algorithm. Viscous and heat transfer effects are incorporated though a friction factor and an average heat transfer coefficient. A numerical study of nozzle parameters, capillary geometry, wall temperature, and pulse energy shows that the performance is insensitive to capillary and nozzle geometry and that thermal characteristics are the dominant factor affecting performance. The specific impulse and efficiency of the pulsed arcjet are found to be sensitive to wall temperature due to heat transfer losses in the subsonic region. A pulse-forming electrical circuit is developed to reduce energy losses in the storage capacitor, and greater than 85% of the initial stored energy is transferred to the arc in a unipolar pulse. A high current diode installed across the capacitor terminals is used to eliminate voltage reversals in the current. The experimental breakdown voltage of the helium gas between the electrodes is found to follow a Paschen relationship where the minimum electrode separation distance is used in evaluating the data.

  18. MHD seawater thruster performance: A comparison of predictions with experimental results from a two Tesla test facility

    Energy Technology Data Exchange (ETDEWEB)

    Picologlou, B.F.; Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (United States)); Sikes, W.C.; Ranellone, R.F. (Newport News Shipbuilding and Dry Dock Co., VA (United States))

    1992-01-01

    A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate a design oriented MHD thruster performance computer code. The thruster performance code consists of a one-dimensional MHD hydrodynamic model coupled to a two-dimensional electrical model. The code includes major loss mechanisms affecting the performance of the thruster. Among these losses are the joule dissipation losses, frictional losses, electrical end losses, and single electrode potential losses. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.

  19. Optical hydrogen absorption consistent with a thin bow shock leading the hot Jupiter HD 189733b

    CERN Document Server

    Cauley, P Wilson; Jensen, Adam G; Barman, Travis; Endl, Michael; Cochran, William D

    2015-01-01

    Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit, absorption signature around the hot Jupiter exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the time series absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric H-alpha detection although the absorption depth measured here is ~50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the ...

  20. A hydrodynamic optimization design methodology for a ship bulbous bow under multiple operating conditions

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-01-01

    Full Text Available The main objective of this article is to describe an innovative methodology for the hydrodynamic optimization of a ship bulbous bow which considers multiple operating conditions. The proposed method is more practical and effective than the traditional optimization process, which is only based on contractually specified design condition. Parametric form approaches are adopted by employing an F-spline curve in order to generate variants of the hull bulbous bow forms using form design parameters modified, resulting in an optimization system based on improved genetic algorithms. The Rankine source panel method is used for the hydrodynamic evaluation, wherein non-linear free surface conditions and the trim and sinkage of the ship are taken into consideration. The validity and effectiveness of the proposed methodology for a large container ship is investigated by comparing the computational results with experimental data, which demonstrates that the proposed methodology can engage well in the automation process and improve hydrodynamic performance during actual ship design practices.

  1. Modeling plasma glow discharges in Air near a Mach 3 bow shock with KRONOS

    Science.gov (United States)

    Rassou, Sebastien; Labaune, Julien; Packan, Denis; Elias, Paul-Quentin

    2016-09-01

    In this work, plasma glow discharge in Air is modeled near a Mach 3 bow shock. Numerical simulations are performed using the coupling KRONOS which have been developed at ONERA. The flow field is modeled using the code CFD: CEDRE from ONERA and the electrical and plasma part by the EDF open-source code CODE_SATURNE. The plasma kinetic modeling consists on a two-term Boltzmann equation solver and a chemical reaction solver depending of the electric field. The coupling KRONOS is fully parallelized and run on ONERA supercomputers. The shock wave is formed by the propagation of a supersonic flow (M = 3) through a truncated conical model mounted with a central spike. Depending on the spike's voltage value, corona, glow or arc regime could be obtained in a steady flow. The parameters for the supersonic flow and the spike configurations are chosen to be in glow discharge regime and to reproduce the experimental setup. In our simulations, 12 species and 80 reactions (ionization, electronic or vibrational excitation, attachment etc ...) are considered to properly model the glow discharge and the afterglow. In a stationary flow, glow discharge is observed only at the upstream of the shock wave near the high voltage spike. Behind the bow shock, in the afterglow, negative ions are provided by electrons attachment with O2. The negative ions flow convection ensures the electrical conduction and the establishment of the glow discharge.

  2. The excitation conditions of magnetospheric convection by the electric current generated in the bow shock

    Science.gov (United States)

    Sedykh, P. A.; Ponomarev, E. A.

    The solar wind undergoes the greatest change of its parameters during the passage through the bow shock front Its density in this case increases by the factor of four and gas and magnetic pressure increase more than by an order of magnitude In this paper we re-examine the consequences of the fact of electric current generation at the bow shock front that we considered at an earlier date and the dependence of the direction of this current on the sign of IMF Bz-component The first consequence is the closure of the aforementioned current through the magnetosphere It was found that this process is a two-stage one Initially the electric field penetrates and establishes in the medium a new convective regime After that depending on the degree of flow inhomogeneity a plasma density distribution can be established which corresponds to the electric current equal to the external current The new steady state to which the new convection velocity field and the new plasma pressure field correspond is established within the time of the order of the transit time taken by the magnetosonic wave to propagate through the entire system Also a linkage between the power dissipated inside the magnetosphere and the parameters of plasma convection existing therein is shown

  3. The properties of bow-shock sources at the Galactic Center

    CERN Document Server

    Sanchez-Bermudez, J; Alberdi, A; Muzic, K; Hummel, C A; Pott, J -U

    2014-01-01

    There are an enigmatic population of massive stars around the Galactic Center (GC) that were formed some Ma ago. A fraction of these stars has been found to orbit the supermassive black hole, SgrA*, in a projected clockwise disk, which suggests that they were formed in a formerly existing dense disk around SgrA*. We focus on the extended, near-infrared (NIR) sources IRS1W, IRS5, IRS10W, and IRS21 that have been suggested to be young, massive stars that form bow-shocks through their interaction with the ISM. Their nature has impeded accurate determination of their orbital parameters. We aim at establishing their nature and kinematics to test whether they form part of the clockwise disk. We performed NIR multi-wavelength imaging using adaptive optics (AO) and sparse aperture masking (SAM). We introduce a new method for self-calibration of the SAM PSF in dense stellar fields. The emission mechanism, morphology and kinematics of the targets were examined via 3D bow-shock models. We confirm previous findings that ...

  4. Reconstructing the Guitar: Blowing Bubbles with a Pulsar Bow Shock Back Flow

    CERN Document Server

    van Kerkwijk, Marten H

    2008-01-01

    The Guitar Nebula is an H-alpha nebula produced by the interaction of the relativistic wind of a very fast pulsar, PSR B2224+65, with the interstellar medium. It consists of a ram-pressure confined bow shock near its head and a series of semi-circular bubbles further behind, the two largest of which form the body of the Guitar. We present a scenario in which this peculiar morphology is due to instabilities in the back flow from the pulsar bow shock. From simulations, these back flows appear similar to jets and their kinetic energy is a large fraction of the total energy in the pulsar's relativistic wind. We suggest that, like jets, these flows become unstable some distance down-stream, leading to rapid dissipation of the kinetic energy into heat, and the formation of an expanding bubble. We show that in this scenario the sizes, velocities, and surface brightnesses of the bubbles depend mostly on observables, and that they match roughly what is seen for the Guitar. Similar instabilities may account for feature...

  5. Numerical modeling of a glow discharge through a supersonic bow shock in air

    Science.gov (United States)

    Rassou, S.; Packan, D.; Elias, P.-Q.; Tholin, F.; Chemartin, L.; Labaune, J.

    2017-03-01

    The interaction between a glow discharge and the bow shock of a Mach 3 air flow around a truncated conical model with a central spike is modeled, and comparison is made with prior experimental results. The KRONOS workflow for plasma modeling in flow fields, which has recently been developed at ONERA, was used for the modeling. Based on the quasi-neutral approximation, it couples hypersonic and reactive flow fields with electron chemistry, including the effect of non-Maxwellian electron energy distribution function. The model used for the discharge involves 12 species and 82 reactions, including ionization, electronic and vibrational excitation, and attachment. The simulations reproduce the main features of the discharge observed experimentally well, in particular, the very recognizable topology of the discharge. It was found from the simulations that behind the bow shock, in the afterglow, the negative ion flow ensures the electrical conduction and the establishment of the glow discharge. The influence of kinetic rates on the voltage-current characteristics is discussed.

  6. Diversity of sponges (Porifera) from cryptic habitats on the Belize barrier reef near Carrie Bow Cay.

    Science.gov (United States)

    Rützler, Klaus; Piantoni, Carla; Van Soest, Rob W M; Díaz, M Cristina

    2014-05-29

    The Caribbean barrier reef near Carrie Bow Cay, Belize, has been a focus of Smithsonian Institution (Washington) reef and mangrove investigations since the early 1970s. Systematics and biology of sponges (Porifera) were addressed by several researchers but none of the studies dealt with cryptic habitats, such as the shaded undersides of coral rubble, reef crevices, and caves, although a high species diversity was recognized and samples were taken for future reference and study. This paper is the result of processing samples taken between 1972 and 2012. In all, 122 species were identified, 14 of them new (including one new genus). The new species are Tetralophophora (new genus) mesoamericana, Geodia cribrata, Placospongia caribica, Prosuberites carriebowensis, Timea diplasterina, Timea oxyasterina, Rhaphidhistia belizensis, Wigginsia curlewensis, Phorbas aurantiacus, Myrmekioderma laminatum, Niphates arenata, Siphonodictyon occultum, Xestospongia purpurea, and Aplysina sciophila. We determined that about 75 of the 122 cryptic sponge species studied (61%) are exclusive members of the sciophilic community, 47 (39 %) occur in both, light-exposed and shaded or dark habitats. Since we estimate the previously known sponge population of Carrie Bow reefs and mangroves at about 200 species, the cryptic fauna makes up 38 % of total diversity.

  7. Compound semiconductor alloys: From atomic-scale structure to bandgap bowing

    Energy Technology Data Exchange (ETDEWEB)

    Schnohr, C. S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2015-09-15

    Compound semiconductor alloys such as In{sub x}Ga{sub 1−x}As, GaAs{sub x}P{sub 1−x}, or CuIn{sub x}Ga{sub 1−x}Se{sub 2} are increasingly employed in numerous electronic, optoelectronic, and photonic devices due to the possibility of tuning their properties over a wide parameter range simply by adjusting the alloy composition. Interestingly, the material properties are also determined by the atomic-scale structure of the alloys on the subnanometer scale. These local atomic arrangements exhibit a striking deviation from the average crystallographic structure featuring different element-specific bond lengths, pronounced bond angle relaxation and severe atomic displacements. The latter, in particular, have a strong influence on the bandgap energy and give rise to a significant contribution to the experimentally observed bandgap bowing. This article therefore reviews experimental and theoretical studies of the atomic-scale structure of III-V and II-VI zincblende alloys and I-III-VI{sub 2} chalcopyrite alloys and explains the characteristic findings in terms of bond length and bond angle relaxation. Different approaches to describe and predict the bandgap bowing are presented and the correlation with local structural parameters is discussed in detail. The article further highlights both similarities and differences between the cubic zincblende alloys and the more complex chalcopyrite alloys and demonstrates that similar effects can also be expected for other tetrahedrally coordinated semiconductors of the adamantine structural family.

  8. Elastic analysis of thermal gradient bowing in rod-type fuel elements subjected to axial thrust (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Newman, J.B.

    1968-01-01

    Thermal radient bowing of rod type fuel elements can be analyzed in terms of the deflections of a precurved beam. The fundamental aspects of an analysis of axially compressed multispan beams are given. Elasticity of supports in both axial and transverse directions is considered; the technique is applicable to problems in which the axial thrust depends on the transverse deflection as well as problems with prescribed axial thrust. The formulas presented constitute the theory for a computer program of broad applicability, not only in the analysis of fuel rod bowing, but also to almost any multispan beam, particularly when the effects of axial loads cannot be neglected. 17 references. (NSA 22: 22866)

  9. Offset semi-parabolic nanoantenna made of a photonic crystal parabolic mirror and a plasmonic bow-tie antenna.

    Science.gov (United States)

    Hattori, Haroldo T

    2014-10-10

    In a parabolic mirror, light coming parallel to the antenna passes through its focal point. In this work, a waveguide feeds a semi-parabolic photonic crystal mirror and the emerging beam feeds a bow-tie antenna placed at the mirror's focal point-it is shown that the antenna system can not only feed a bow-tie antenna (producing a localized moderately high electric field) but also produces a directional radiation beam. The semi-parabolic mirror is also modified to reduce reflection back to the feeding waveguide.

  10. Hydroelastic Response of Surface-Effect Ship Bow Seals: Large-Scale Experiments and Post-Buckling Analysis

    Science.gov (United States)

    Wiggins, Andrew D.

    Bow seals are critical components on advanced marine vehicles that rely on aerostatic support to reduce drag. They consist of a series of open-ended fabric cylinders ("fingers") that contact the free surface and, when inflated, form a compliant pressure barrier. Bow seals are unique in that, unlike a majority of structures in civil and mechanical engineering, bow seals operate in a buckled state. The response characteristics of these structures are of practical interest due to unacceptable wear rates on seal components and difficulties in predicting seal performance. Despite this, the hydroelastic response of the seal system, particularly basic information on seal vibration modes and the mechanisms responsible for seal wear, remains largely unknown. Similarly, estimates of the hydrodynamic loads on the seal system are inaccurate and based on heuristic scaling of data from small-scale experiments, where similitude is challenging to maintain. Thus, a large-scale test system is necessary to obtain accurate estimates of bow seal response. The work is comprised of three parts. Part one presents detailed observations of bow seal response acquired using a large-scale test platform developed as part of the present study. These high-resolution observations, the first of their kind, show bow seal response to be characterized by complex post-buckling behavior. Part two proposes an analytical framework for interpreting the wide range of behavior observed at large scale. Using this framework, key parameters driving seal conformation and stability are identified. It is found that, due to their buckled state, bow seals are highly susceptible to a mode switching instability, which may be a potential mechanism responsible for the damaging vibrations. In part three, a benchtop experiment is used to demonstrate that the scalings identified in this study hold across a wide range of bending rigidities. This work has implications for improving drag and wear characteristics in future bow

  11. Recent H-alpha Results on Pulsar B2224+65's Bow-Shock Nebula, the "Guitar"

    Science.gov (United States)

    Dolch, Timothy; Chatterjee, Shami; Clemens, Dan P.; Cordes, James M.; Cashmen, Lauren R.; Taylor, Brian W.

    2016-09-01

    We used the 4 m Discovery Channel Telescope (DCT) at Lowell observatory in 2014 to observe the Guitar Nebula, an Hα bow-shock nebula around the high-velocity radio pulsar B2224+65. Since the nebula's discovery in 1992, the structure of the bow-shock has undergone significant dynamical changes. We have observed the limb structure, targeting the “body” and “neck” of the guitar. Comparing the DCT observations to 1995 observations with the Palomar 200-inch Hale telescope, we found changes in both spatial structure and surface brightness in the tip, head, and body of the nebula.

  12. Prediction and experimental measurement of the electromagnetic thrust generated by a microwave thruster system

    Institute of Scientific and Technical Information of China (English)

    Yang Juan; Wang Yu-Quan; Ma Yan-Jie; Li Peng-Fei; Yang Le; Wang Yang; He Guo-Qiang

    2013-01-01

    A microwave thruster system that can convert microwave power directly to thrust without a gas propellant is developed.In the system,a cylindrical tapered resonance cavity and a magnetron microwave source are used respectively as the thruster cavity and the energy source to generate the electromagnetic wave.The wave is radiated into and then reflected from the cavity to form a pure standing wave with non-uniform electromagnetic pressure distribution.Consequently,a net electromagnetic thrust exerted on the axis of the thruster cavity appears,which is demonstrated through theoretical calculation based on the electromagnetic theory.The net electromagnetic thrust is also experimentally measured in the range from 70 mN to 720 mN when the microwave output power is from 80 W to 2500 W.

  13. Effect of Background Pressure on the Performance and Plume of the HiVHAc Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas

    2013-01-01

    During the Single String Integration Test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics include thrust stand, Faraday probe, ExB probe, and retarding potential analyzer. The test results indicated a rise in thrust and discharge current with background pressure. There was also a decrease in ion energy per charge, an increase in multiply-charged species production, a decrease in plume divergence, and a decrease in ion beam current with increasing background pressure. A simplified ingestion model was applied to determine the maximum acceptable background pressure for thrust measurement. The maximum acceptable ingestion percentage was found to be around 1%. Examination of the diagnostics results suggest the ionization and acceleration zones of the thruster were shifting upstream with increasing background pressure.

  14. Estimate of Lifetime of Ion Thruster Optics Based on Particle Simulation

    Institute of Scientific and Technical Information of China (English)

    LIU Chang; TANG Haibin; ZHANG Zhenpeng; GU Zuo; LIU Yu

    2008-01-01

    A three-dimensional particle simulation of ion thruster optics with charge-exchange collision was developed in this study. The simulation code was based on tracking ions using the particle-in-cell method, and the Monte Carlo technique was used to model the charge-exchange collision. Simulations were performed for a 20 cm ion thruster optics. The results were compared with the corresponding experimental data from a test of the ion thruster optics for a duration of 800 hours. The Depth-From-Focus (DFF) method was used to measure the erosion depth of the downstream surface of the accelerator grid. The predicted erosion depth of the accelerator grid was consistent reasonably with the corresponding experimental data. The simulation results showed that the accelerator grid would be burned through after 1333 hours.

  15. Description of the Prometheus Program Alternator/Thruster Integration Laboratory (ATIL)

    Science.gov (United States)

    Baez, Anastacio N.; Birchenough, Arthur G.; Lebron-Velilla, Ramon C.; Gonzalez, Marcelo C.

    2005-01-01

    The Project Prometheus Alternator Electric Thruster Integration Laboratory's (ATIL) primary two objectives are to obtain test data to influence the power conversion and electric propulsion systems design, and to assist in developing the primary power quality specifications prior to system Preliminary Design Review (PDR). ATIL is being developed in stages or configurations of increasing fidelity and complexity in order to support the various phases of the Prometheus program. ATIL provides a timely insight of the electrical interactions between a representative Permanent Magnet Generator, its associated control schemes, realistic electric system loads, and an operating electric propulsion thruster. The ATIL main elements are an electrically driven 100 kWe Alternator Test Unit (ATU), an alternator controller using parasitic loads, and a thruster Power Processing Unit (PPU) breadboard. This paper describes the ATIL components, its development approach, preliminary integration test results, and current status.

  16. Reduced power processor requirements for the 30-cm diameter HG ion thruster

    Science.gov (United States)

    Rawlin, V. K.

    1979-01-01

    The characteristics of power processors strongly impact the overall performance and cost of electric propulsion systems. A program was initiated to evaluate simplifications of the thruster-power processor interface requirements. The power processor requirements are mission dependent with major differences arising for those missions which require a nearly constant thruster operating point (typical of geocentric and some inbound planetary missions) and those requiring operation over a large range of input power (such as outbound planetary missions). This paper describes the results of tests which have indicated that as many as seven of the twelve power supplies may be eliminated from the present Functional Model Power Processor used with 30-cm diameter Hg ion thrusters.

  17. Characterization of ion accelerating systems on NASA LeRC's ion thrusters

    Science.gov (United States)

    Rawlin, Vincent K.

    1992-01-01

    An investigation is conducted regarding ion-accelerating systems for two NASA thrusters to study the limits of ion-extraction capability or perveance. A total of nine two-grid ion-accelerating systems are tested with the 30- and 50-cm-diam ring-cusp inert-gas ion thrusters emphasizing the extension of ion-extraction. The vacuum-tank testing is described using xenon, krypton, and argon propellants, and thruster performance is computed with attention given to theoretical design considerations. Reductions in perveance are noted with decreasing accelerator-hole-to-screen-hole diameter ratios. Perveance values vary indirectly with the ratio of discharge voltage to total accelerating voltage, and screen/accelerator electrode hole-pair alignment is also found to contribute to perveance values.

  18. Woods with physical, mechanical and acoustic properties similar to those of Caesalpinia echinata have high potential as alternative woods for bow makers

    Directory of Open Access Journals (Sweden)

    Eduardo Luiz Longui

    2014-09-01

    Full Text Available For nearly two hundred years, Caesalpinia echinata wood has been the standard for modern bows. However, the threat of extinction and the enforcement of trade bans have required bow makers to seek alternative woods. The hypothesis tested was that woods with physical, mechanical and acoustic properties similar to those of C. echinata would have high potential as alternative woods for bows. Accordingly, were investigated Handroanthus spp., Mezilaurus itauba, Hymenaea spp., Dipteryx spp., Diplotropis spp. and Astronium lecointei. Handroanthus and Diplotropis have the greatest number of similarities with C. echinata, but only Handroanthus spp. showed significant results in actual bow manufacture, suggesting the importance of such key properties as specific gravity, speed of sound propagation and modulus of elasticity. In practice, Handroanthus and Dipteryx produced bows of quality similar to that of C. echinata.

  19. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    Science.gov (United States)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e(sup 2), and 1/e(sup 3) times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  20. Implementation and Initial Validation of a 100-Kilowatt Class Nested-Channel Hall Thruster

    Science.gov (United States)

    Hall, Scott J.; Florenz, Roland E.; Gallimore, Alec D.; Kamhawi, Hani; Brown, Daniel L.; Polk, James E.; Goebel, Dan; Hofer, Richard R.

    2014-01-01

    The X3 is a 100-kilowatt class nested-channel Hall thruster developed by the Plasmadynamics and Electric Propulsion Laboratory at the University of Michigan in collaboration with the Air Force Research Laboratory and NASA. The cathode, magnetic circuit, boron nitride channel rings, and anodes all required specific design considerations during thruster development, and thermal modeling was used to properly account for thermal growth in material selection and component design. A number of facility upgrades were required at the University of Michigan to facilitate operation of the X3. These upgrades included a re-worked propellant feed system, a completely redesigned power and telemetry break-out box, and numerous updates to thruster handling equipment. The X3 was tested on xenon propellant at two current densities, 37% and 73% of the nominal design value. It was operated to a maximum steady-state discharge power of 60.8 kilowatts. The tests presented here served as an initial validation of thruster operation. Thruster behavior was monitored with telemetry, photography and high-speed current probes. The photography showed a uniform plume throughout testing. At constant current density, reductions in mass flow rate of 18% and 26% were observed in the three-channel operating configuration as compared to the superposition of each channel running individually. The high-speed current probes showed that the thruster was stable at all operating points and that the channels influence each other when more than one is operating simultaneously. Additionally, the ratio of peak-to-peak AC-coupled discharge current oscillations to mean discharge current did not exceed 51% for any operating points reported here, and did not exceed 17% at the higher current density.

  1. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a high-speed camera and a set of high-speed Langmuir probes were implemented to study the effect of varying facility background pressure on thruster operation. The results show a rise in the oscillation frequency of the breathing mode with rising background pressure, which is hypothesized to be due to a shortening accelerationionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  2. A Review of Density Holes Upstream of Earth's Bow Shock%A Review of Density Holes Upstream of Earth's Bow Shock

    Institute of Scientific and Technical Information of China (English)

    G K Parks; E Lee; N Lin; J B Cao; S Y Fu; J K Shi

    2011-01-01

    Larmor size transient structures with density depletions as large as 99% of ambient solar wind density levels occur commonly upstream of Earth's collisionless bow shock. These "density holes" have a mean duration of 17.9±10.4s but holes as short as 4 s have been observed. The average fractional density depletion (Sn/n) inside the holes is 0.68±0.14. The density of the upstream edge moving in the sunward direction can be enhanced by five or more times the solar wind density. Particle distributions show the steepened edge can behave like a shock, and measured local field geometries and Mach number support this view. Similarly shaped magnetic holes accompany the density holes indicating strong coupling between fields and particles. Current densities as large as 150 nA·m^-2 are observed at the leading compressed edge. The waves are elliptically polarized and rotating in the sense of ions (left hand) in the plasma frame. The waves appear to grow and steepen as the density holes convect with the solar wind toward the Earth. The transient nature of density holes suggests that the temporal features could represent the different stages of nonlinear evolutionary processes that produce a shock-like structure. The density holes are only observed with upstream particles, suggesting that back-streaming particles interacting with the solar wind are important. The significance of these observations is still being investigated.

  3. Application of the Bow Tie method for evaluation of safety in the procedure of logging wells; Aplicacion del metodo de Bow Tie para la evaluacion de seguridad en la practica de perfilaje de pozos

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso Pallares, C; Perez Reyes, Y.; Sarabia Molina, I.I. [Centro Nacional de Seguridad Nuclear (CNSN), La Habana (Cuba)

    2013-07-01

    This work consists of an assessment of security in the practice of logging of oil wells, using the method of Bow Tie for being a simple method of evaluation of the risk, which makes it possible in a structured way to set priorities to manage risk.

  4. Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow

    Institute of Scientific and Technical Information of China (English)

    FANG Juan; HONG Yanji; LI Qian

    2012-01-01

    The interaction of laser-induced plasma and bow shock over a blunt body is inves- tigated numerically in an M∞ =6.5 supersonic flow. A ray-tracing method is used for simulating the process of laser focusing. The gas located at the focused zone is ionized and broken down and transformed into plasma. In a supersonic flow the plasma moves downstream and begins to interact with the bow shock when it approaches the surface of the blunt body. The parameters of flowfield and blunt body surface are changed due to the interaction. By analyzing phenomena occurring in the complex unsteady flowfield during the interaction in detail, we can better under- stand the change of pressure on the blunt body surface and the mechanism of drag reduction by laser energy deposition. The results show that the bow shock is changed into an oblique shock due to the interaction of the laser-induced low-density zone with the bow shock, so the wave drag of the blunt body is reduced.

  5. Is "Bow" for an Arrow or for Hair? A Classroom Demonstration on Gender Differences in Interpreting Ambiguous Information

    Science.gov (United States)

    Fa-Kaji, Naomi; Nguyen, Linda; Hebl, Mikki; Skorinko, Jeanine

    2016-01-01

    This article details a classroom demonstration of how gender differences in cognitive schemas can result in men and women differentially interpreting the same information. Students heard a series of six homonyms (e.g., bow and nail) spoken aloud and wrote down the first word with which they free-associated each homonym. When hearing the words…

  6. 76 FR 78234 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland, Campbell County, WY...

    Science.gov (United States)

    2011-12-16

    ... Forest Service Medicine Bow-Routt National Forests and Thunder Basin National Grassland, Campbell County..., LLC to vacate and relocate portions of Campbell County Road 69, Mackey Road, onto National Forest... Sections 29-31 of T. 43 N., R. 69 W., 6th Principal Meridian, Campbell County, Wyoming. DATES:...

  7. Role of In-segregation in anomalously large band-gap bowings of (In,Al,Ga)N

    DEFF Research Database (Denmark)

    Gorczyka, I.; Suski, T.; Christensen, Niels Egede;

    2011-01-01

    Large bowings of the band gap and its pressure coefficient in In-containing nitride semiconductor alloys are observed. Photoluminescence measurements for InxGa1-xN and InxAl1-xN combined with other experimental data show large scatter of the results. A comparison with ab-initio calculations sugge...

  8. Identification of the nonlinear excitation force acting on a bowed string using the dynamical responses at remote locations

    Energy Technology Data Exchange (ETDEWEB)

    Debut, V.; Antunes, J. [ITN, ADL, P-2686 Sacavem Codex (Portugal); Delaune, X. [CEA Saclay, DEN, DM2S, SEMT, Lab Etud Dynam, F-01101 Gif Sur Yvette (France)

    2010-07-01

    For achieving realistic numerical simulations of bowed string instruments, based on physical modeling, a good understanding of the actual friction interaction phenomena is of great importance. Most work published in the field including our own has assumed that bow/string frictional forces behave according to the classical Coulomb stick-slip model, with an empirical velocity-dependent sliding friction coefficient. Indeed, the basic self-excited string motions (such as the Helmholtz regime) are well captured using such friction model. However, recent work has shown that the tribological behavior of the bow/string rosin interface is rather complex, therefore the basic velocity-dependent Coulomb model may be an over-simplistic representation of the friction force. More specifically, it was suggested that a more accurate model of the interaction force can be achieved by coupling the system dynamical equations with a thermal model which encapsulates the complex interface phenomena. In spite of the interesting work performed by Askenfelt, a direct measurement of the actual dynamical friction forces without disturbing the string motion is quite difficult. Therefore, in this work we develop a modal-based identification technique making use of inverse methods and optimization techniques, which enables the identification of the interface force, as well as the string self-excited motion, from the dynamical reactions measured at the string end supports. The method gives convincing results using simulated data originated from nonlinear computations of a bowed string. Furthermore, in cases where the force identifications are very sensitive to errors in the transfer function modal parameters, we suggest a method to improve the modal frequencies used for the identifications. Preliminary experimental results obtained using a basic bowing device, by which the string is excited with the stick of the bow, are then presented. Our identifications, from the two dynamical string reactions

  9. Preliminary Results of Performance Measurements on a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Science.gov (United States)

    Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2008-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.

  10. An advanced electric propulsion diagnostic (AEPD) platform for in-situ characterization of electric propulsion thrusters and ion beam sources

    Science.gov (United States)

    Bundesmann, Carsten; Eichhorn, Christoph; Scholze, Frank; Spemann, Daniel; Neumann, Horst; Pagano, Damiano; Scaranzin, Simone; Scortecci, Fabrizio; Leiter, Hans J.; Gauter, Sven; Wiese, Ruben; Kersten, Holger; Holste, Kristof; Köhler, Peter; Klar, Peter J.; Mazouffre, Stéphane; Blott, Richard; Bulit, Alexandra; Dannenmayer, Käthe

    2016-10-01

    Experimental characterization is an essential task in development, qualification and optimization process of electric propulsion thrusters or ion beam sources for material processing, because it can verify that the thruster or ion beam source fulfills the requested mission or application requirements, and it can provide parameters for thruster and plasma modeling. Moreover, there is a need for standardizing electric propulsion thruster diagnostics in order to make characterization results of different thrusters and also from measurements performed in different vacuum facilities reliable and comparable. Therefore, we have developed an advanced electric propulsion diagnostic (AEPD) platform, which allows a comprehensive in-situ characterization of electric propulsion thrusters (or ion beam sources) and could serve as a standard on-ground tool in the future. The AEPD platform uses a five-axis positioning system and provides the option to use diagnostic tools for beam characterization (Faraday probe, retarding potential analyzer, ExB probe, active thermal probe), for optical inspection (telemicroscope, triangular laser head), and for thermal characterization (pyrometer, thermocamera). Here we describe the capabilities of the diagnostic platform and provide first experimental results of the characterization of a gridded ion thruster RIT- μX.

  11. Failure Investigation of an Intra-Manifold Explosion in a Horizontally-Mounted 870 lbf Reaction Control Thruster

    Science.gov (United States)

    Durning, Joseph G., III; Westover, Shayne C.; Cone, Darren M.

    2011-01-01

    In June 2010, an 870 lbf Space Shuttle Orbiter Reaction Control System Primary Thruster experienced an unintended shutdown during a test being performed at the NASA White Sands Test Facility. Subsequent removal and inspection of the thruster revealed permanent deformation and misalignment of the thruster valve mounting plate. Destructive evaluation determined that after three nominal firing sequences, the thruster had experienced an energetic event within the fuel (monomethylhydrazine) manifold at the start of the fourth firing sequence. The current understanding of the phenomenon of intra-manifold explosions in hypergolic bipropellant thrusters is documented in literature where it is colloquially referred to as a ZOT. The typical ZOT scenario involves operation of a thruster in a gravitational field with environmental pressures above the triple point pressure of the propellants. Post-firing, when the thruster valves are commanded closed, there remains a residual quantity of propellant in both the fuel and oxidizer (nitrogen tetroxide) injector manifolds known as the "dribble volume". In an ambient ground test configuration, these propellant volumes will drain from the injector manifolds but are impeded by the local atmospheric pressure. The evacuation of propellants from the thruster injector manifolds relies on the fluids vapor pressure to expel the liquid. The higher vapor pressure oxidizer will evacuate from the manifold before the lower vapor pressure fuel. The localized cooling resulting from the oxidizer boiling during manifold draining can result in fuel vapor migration and condensation in the oxidizer passage. The liquid fuel will then react with the oxidizer that enters the manifold during the next firing and may produce a localized high pressure reaction or explosion within the confines of the oxidizer injector manifold. The typical ZOT scenario was considered during this failure investigation, but was ultimately ruled out as a cause of the explosion

  12. On the origin of hot diamagnetic cavities near the earth's bow shock

    Science.gov (United States)

    Thomsen, M. F.; Gosling, J. T.; Bame, S. J.; Quest, K. B.; Russell, C. T.

    1988-01-01

    The origin of hot diamagnetic cavities (HDCs) observed occasionally upstream from the earth's bow shock is investigated by examining the results of November 16, 1977, observation, when four of these events occurred on a single day, as well as plasma and field data from that day. The results suggest that HDCs may form as a result of an unusually strong interaction between shock-reflected ions and the incoming solar wind. It is proposed that this interaction stems from a temporary and localized reflection of a larger-than-normal fraction of the incident ions, which is stimulated by sudden changes in the upstream field orientation; the consequences of such a temporary overreflection are found to be consistent with many of the observed features of HDCs, including the strong slowing, deflection, and heating of the flow, as well as the localization, internal recoveries, and occasional formation upstream from the shock itself.

  13. Observational evidence on the origin of ions upstream of the earth's bow shock

    Science.gov (United States)

    Thomsen, M. F.; Gosling, J. T.; Schwartz, S. J.

    1983-01-01

    The kinematic formalism described by Schwartz et al. (1983) is used to quantitatively compare the zeroth order predicted energies for four different source hypotheses for ions detected upstream of the earth's bow shock with previously published observations of upstream field-aligned beams and gyrating ion events. Specular reflection of a fraction of the incident solar wind is found to be the most credible explanation of gyrating ion events observed upstream of shocks ranging from quasi-parallel to nearly perpendicular. The recent hypothesis that field-aligned beams are the result of leakage from the magnetosheath of ions which were originally specularly reflected at quasi-perpendicular portions of the shock provides good agreement with observed energies of many field-aligned beams. Only magnetic moment conserving reflection of solar wind ions is capable of accounting for two very energetic beam events.

  14. Quantitative spectroscopy on individual wire, slot, bow-tie, rectangular, and square-shaped optical antennas.

    Science.gov (United States)

    Husnik, Martin; Niegemann, Jens; Busch, Kurt; Wegener, Martin

    2013-11-15

    By using a recently introduced approach combining a focus-modulation technique with a common-path interferometer, we measure quantitatively the extinction, scattering, and absorption cross-section spectra of individual optical antennas. The experimental results on thin-wire antennas, slot antennas, bow-tie antennas, rectangular antennas, and square-shaped antennas resonating at around 1.4 μm wavelength are discussed. We find increased resonant scattering cross sections for the latter four antennas compared to the thin-wire antenna, both in absolute terms and relative to the absorption cross section. The square-shaped antenna's resonant extinction cross section approaches the limit of a coherent point dipole. However, the ratio of the resonant extinction cross section to the geometrical cross section of 38 is largest for the simple thin-wire antenna.

  15. Method for measuring violin sound radiation based on bowed glissandi and its application to sound synthesis.

    Science.gov (United States)

    Perez Carrillo, Alfonso; Bonada, Jordi; Patynen, Jukka; Valimaki, Vesa

    2011-08-01

    This work presents a method for measuring and computing violin-body directional frequency responses, which are used for violin sound synthesis. The approach is based on a frame-weighted deconvolution of excitation and response signals. The excitation, consisting of bowed glissandi, is measured with piezoelectric transducers built into the bridge. Radiation responses are recorded in an anechoic chamber with multiple microphones placed at different angles around the violin. The proposed deconvolution algorithm computes impulse responses that, when convolved with any source signal (captured with the same transducer), produce a highly realistic violin sound very similar to that of a microphone recording. The use of motion sensors allows for tracking violin movements. Combining this information with the directional responses and using a dynamic convolution algorithm, helps to improve the listening experience by incorporating the violinist motion effect in stereo.

  16. Band gap bowing and electron localization of (GaxIn1-x)N

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byounghak; Wang, Lin-Wang

    2006-05-09

    The band gap bowing and the electron localization ofGaxIn1-xN are calculated using both the local density approximation (LDA)and screened-exchange local density functional (sX-LDA) methods. Thecalculated sX-LDA band gaps are in good agreement with the experimentallyobserved values, with errors of -0.26 and 0.09 eV for bulk GaN and InN,respectively. The LDA band gap errors are 1.33 and 0.81 eV for GaN andInN, in order. In contrast to the gap itself, the band gap bowingparameter is found to be very similar in sX-LDA and LDA. We identify thelocalization of hole states in GaxIn1-xN alloys along In-N-In chains. Thepredicted localizationis stronger in sX-LDA.

  17. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbances

    DEFF Research Database (Denmark)

    Tatrallyay, M.; Erdos, G.; Nemeth, Z.

    2012-01-01

    by the interplanetary magnetic field (IMF) component transverse to the solar wind flow. The observed magnetopause crossings could be predicted with a reasonable accuracy (0.1-0.2 RE) by one of the presented models at least. For geosynchronous magnetopause crossings observed by the GOES satellites, (1) the new model...... provided the best predictions when the IMF was extremely large having a large negative Bz component, and (2) the predictions of the model of Shue et al. (1998) agreed best with the observations when the solar wind dynamic pressure was extremely large. The magnetopause crossings close to the cusp observed......Three events are discussed from the declining phase of the last solar cycle when the magnetopause and/or the bow shock were observed unusually close to the Earth due to major interplanetary disturbances. The observed extreme locations of the discontinuities are compared with the predictions...

  18. On the proper Mach number and ratio of specific heats for modeling the Venus bow shock

    Science.gov (United States)

    Tatrallyay, M.; Russell, C. T.; Luhmann, J. G.; Barnes, A.; Mihalov, J. D.

    1984-01-01

    Observational data from the Pioneer Venus Orbiter are used to investigate the physical characteristics of the Venus bow shock, and to explore some general issues in the numerical simulation of collisionless shocks. It is found that since equations from gas-dynamic (GD) models of the Venus shock cannot in general replace MHD equations, it is not immediately obvious what the optimum way is to describe the desired MHD situation with a GD code. Test case analysis shows that for quasi-perpendicular shocks it is safest to use the magnetospheric Mach number as an input to the GD code. It is also shown that when comparing GD predicted temperatures with MHD predicted temperatures total energy should be compared since the magnetic energy density provides a significant fraction of the internal energy of the MHD fluid for typical solar wind parameters. Some conclusions are also offered on the properties of the terrestrial shock.

  19. Large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock

    CERN Document Server

    Bale, S D

    2007-01-01

    Large parallel ($\\leq$ 100 mV/m) and perpendicular ($\\leq$ 600 mV/m) electric fields were measured in the Earth's bow shock by the vector electric field experiment on the Polar satellite. These are the first reported direct measurements of parallel electric fields in a collisionless shock. These fields exist on spatial scales comparable to or less than the electron skin depth (a few kilometers) and correspond to magnetic field-aligned potentials of tens of volts and perpendicular potentials up to a kilovolt. The perpendicular fields are amongst the largest ever measured in space, with energy densities of $\\epsilon_0 E^2/ n k_b T_e$ of order 10%. The measured parallel electric field implies that the electrons can be demagnetized, which may result in stochastic (rather than coherent) electron heating.

  20. STEREO measurements of electron acceleration beyond fast Fermi at the bow shock

    CERN Document Server

    Pulupa, Marc; Opitz, Andrea; Fedorov, Andrei; Lin, Robert P; Sauvaud, Jean-Andre

    2012-01-01

    Solar wind electrons are accelerated and reflected upstream by the terrestrial bow shock into a region known as the electron foreshock. Previously observed electron spectra at low energies are consistent with a fast Fermi mechanism, based on the adiabatic conservation of the magnetic moment ({\\mu}) of the accelerated electrons. At higher energies, suprathermal power law tails are observed beyond the level predicted by fast Fermi. The SWEA and STE electron detectors on STEREO enable measurements of foreshock electrons with good energy resolution and sensitivity over the entire foreshock beam. We investigate the electron acceleration mechanism by comparing observed STEREO electron spectra with predictions based on a Liouville mapping of upstream electrons through a shock encounter. The foreshock electron beam extends up to several tens of keV, energies for which the Larmor radii of electrons is tens of km or greater. These radii are comparable to the scale sizes of the shock, and {\\mu} conservation no longer ap...

  1. Dynamics of bow-tie shaped bursting: Forced pendulum with dynamic feedback

    Science.gov (United States)

    Hongray, Thotreithem; Balakrishnan, Janaki

    2016-12-01

    A detailed study is performed on the parameter space of the mechanical system of a driven pendulum with damping and constant torque under feedback control. We report an interesting bow-tie shaped bursting oscillatory behaviour, which is exhibited for small driving frequencies, in a certain parameter regime, which has not been reported earlier in this forced system with dynamic feedback. We show that the bursting oscillations are caused because of a transition of the quiescent state to the spiking state by a saddle-focus bifurcation, and because of another saddle-focus bifurcation, which leads to cessation of spiking, bringing the system back to the quiescent state. The resting period between two successive bursts (Trest) is estimated analytically.

  2. Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing

    Energy Technology Data Exchange (ETDEWEB)

    Tonkikh, Alexander A. [Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany); Institute for Physics of Microstructures RAS, GSP-105, Nizhniy Novgorod (Russian Federation); Eisenschmidt, Christian; Schmidt, Georg [Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3 D-01620, Halle (Saale) (Germany); Talalaev, Vadim G. [Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany); ZIK SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3 D-06120, Halle (Saale) (Germany); Zakharov, Nikolay D.; Werner, Peter [Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany); Schilling, Joerg [ZIK SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3 D-06120, Halle (Saale) (Germany)

    2013-07-15

    A study of the bandgap character of compressively strained GeSn{sub 0.060-0.091}/Ge(001) quantum wells grown by molecular beam epitaxy is reported. The built-in strain in GeSn wells leads to an increased separation between L and {Gamma} conduction band minima. The prevalent indirect interband transitions in GeSn were probed by photoluminescence spectroscopy. As a result we could simulate the L-valley bowing parameter in GeSn alloys, b{sub L} = 0.80 {+-} 0.06 eV at 10 K. From this we conclude that even compressively strained GeSn/Ge(001) alloys could become direct band gap semiconductors at the Sn-fraction higher than 17.0 at. %.

  3. Determination of main rational biomechanical characteristics in shooting from a bow

    Directory of Open Access Journals (Sweden)

    Adashevskiy V.M.

    2012-03-01

    Full Text Available The aim is to build rational parameters of technical actions of sportsman in shooting from a bow. It is worked out and decided mathematical model and the task of dynamics. Influence on having a special purpose exactness of corners of flight of arrow with an account and without the account of force of resistance of air environment is certain. It is distinguished the basic technical run-time errors of sportsman exercises. It is set that for successful realization of descriptions of target exactness and minimum values of deviations from an aim on different distances of shooting, sportsman must provide: maintenance of scene and rational pose, implementation of rational technical actions. It is shown directions of choice of necessary biomechanics descriptions that a sportsman can realize for providing target exactness and minimum values of deviations from aim on different distances of shooting.

  4. Treatment of pseudo Class III malocclusion by modified Hawleys appliance with inverted labial bow

    Directory of Open Access Journals (Sweden)

    K S Negi

    2011-01-01

    Full Text Available Pseudo Class III malocclusion is characterized by an anterior crossbite with functional forward mandibular displacement. Various appliances have been devised for early treatment of a pseudo Class III. The aim of this article is to highlight the method of construction and use a simple removable appliance termed as "Modified Hawleys appliance with inverted labial bow" to treat psuedo class III malocclusion in the mixed dentition period. It also emphasizes the importance of differentiating between true Class III and pseudo Class III. This appliance in this type of malocclusion enabled the correction of a dental malocclusion in a few months and therapeutic stability of a mesially positioned mandible encouraging favorable skeletal growth.

  5. Non-E x B ordered ion beams upstream of the earth's bow shock

    Science.gov (United States)

    Gurgiolo, C.; Parks, G. K.; Mauk, B. H.; Anderson, K. A.; Lin, R. P.; Reme, H.; Lin, C. S.

    1981-01-01

    The unexpected appearance of spin modulations in the fixed voltage electrostatic analyzer detectors on ISEE 1 and 2 has made it possible to study the plasma properties of the upstream ions in high time resolution. Using an isotropic flowing Maxwellian distribution to model the count rate modulations, estimates have been obtained of the local plasma temperature and three-dimensional flow velocity of the observed upstream ion population. It is found that in almost all of the observations of upstream particles there exist beam-like ions with temperatures in the range 5-80 eV. Their flow velocities cannot be ordered by E x B. This last point separates these observations from the previously reported reflected and diffuse populations of upstream ions. Mechanisms that can gyrophase bunch the ions reflected at the bow shock are discussed as a method of explaining the data.

  6. From Bows to Sound-Chests: Tracing the Ancestry of the Violin

    Directory of Open Access Journals (Sweden)

    Janelle R. Finley

    2016-04-01

    Full Text Available The ancestry of the violin is a subject that has been studied, researched, debated, and written about in great detail. However, despite all of the research and study, the ancestry of the violin is still not certain. This paper presents two schools of thought that propose different theories as to how the ancestry of the violin should be determined and what instruments should be included in the ancestry of the violin. The first school of thought proposes that the violin’s ancestry should be traced through the bow. The second theory proposes that the violin’s ancestry should be traced through the sound-chest of the violin. This paper also presents the different arguments for and against each theory, the importance of this topic, and the paper’s position on this topic. Research for this paper was accomplished through the use of scholarly books on the subject of the history of the violin.

  7. Lateralization of horizontal semicircular canal canalolithiasis and cupulopathy using bow and lean test and head-roll test.

    Science.gov (United States)

    Kim, Chang-Hee; Kim, Yong Gyu; Shin, Jung Eun; Yang, Young Soo; Im, Donghyuk

    2016-10-01

    Accurate lateralization is important to improve treatment outcomes in horizontal semicircular canal (HSCC) benign paroxysmal positional vertigo (BPPV). To determine the involved side in HSCC-BPPV, the intensity of nystagmus has been compared in a head-roll test (HRT) and the direction of nystagmus was evaluated in a bow and lean test (BLT). The aim of this study is to compare the results of a BLT with those of a HRT for lateralization of HSCC-canalolithiasis and cupulopathy (heavy cupula and light cupula), and evaluate treatment outcomes in patients with HSCC-canalolithiasis. We conducted retrospective case reviews in 66 patients with HSCC-canalolithiasis and 63 patients with HSCC-cupulopathy. The affected side was identified as the direction of bowing nystagmus on BLT in 55 % (36 of 66) of patients with canalolithiasis, which was concordant with the HRT result in 67 % (24 of 36) of cases (concordant group). Lateralization was determined by comparison of nystagmus intensity during HRT in 30 patients who did not show bowing or leaning nystagmus. The remission rate after the first treatment was 71 % (17 of 24) in the concordant group and 45 % (5 of 11) in the discordant group. Both bowing and leaning nystagmus were observed in all patients with cupulopathy, and the side of the null plane was identified as the affected side. In conclusion, bowing and/or leaning nystagmus were observed in only 55 % of patients with HSCC-canalolithiasis, and the first treatment based on the result of BLT alone was effective in only 45 % of the patients in whom the BLT and HRT were discordant, which may suggest that the usefulness of BLT in lateralizing the HSCC-canalolithiasis may be limited.

  8. Effect of direct and indirect face-bow transfer on the horizontal condylar guidance values: A pilot study

    Directory of Open Access Journals (Sweden)

    Aditi Mishra

    2014-01-01

    Full Text Available Aims and Objectives: This study aimed to evaluate the effect of direct and indirect face-bow transfer on the horizontal condylar guidance (HCG values obtained on the semi-adjustable articulator. Materials and Methods: A total of 15 subjects of age 20-30 years, of either sex were selected. Two sets of maxillary and mandibular casts were obtained. A single arbitrary face-bow record was used for mounting the maxillary casts by direct and indirect transfer for each subject. The mandibular casts were mounted using maximum intercuspation record. Protrusive records were made in Alu wax and used to program the directly and indirectly transferred casts. HCG values obtained from cephalometric records were taken as control. The data was subjected to ANOVA and Bonferroni post hoc test. Results: Mean values of HCG obtained in direct face-bow transfer were 24.93°, indirect transfer −27.66°, and cephalometric analysis −32.73°. One-way ANOVA test indicated that there was a significant difference between all the groups (P < 0.05. Tukey′s test with Bonferroni′s correction (P < 0.01 was significant for direct and indirect transfer (P = 0.008, and direct transfer and cephalometric readings (P = 0.0046. A nonsignificant difference was found between indirect transfer and cephalometric readings (P = 0.047. Conclusion : There is a statistically significant difference in HCG values obtained from direct and indirect face-bow transfer records. Lateral cephalograms gave higher mean HCG values than those obtained from protrusive records. Mean HCG values obtained from indirect face-bow transfers are significantly more than those obtained from direct transfers and are also closer to the values obtained from the lateral cephalograms.

  9. On nonstationarity and rippling of the quasiperpendicular zone of the Earth bow shock: Cluster observations

    Directory of Open Access Journals (Sweden)

    V. V. Lobzin

    2008-09-01

    Full Text Available A new method for remote sensing of the quasiperpendicular part of the bow shock surface is presented. The method is based on analysis of high frequency electric field fluctuations corresponding to Langmuir, upshifted, and downshifted oscillations in the electron foreshock. Langmuir waves usually have maximum intensity at the upstream boundary of this region. All these waves are generated by energetic electrons accelerated by quasiperpendicular zone of the shock front. Nonstationary behavior of the shock, in particular due to rippling, should result in modulation of energetic electron fluxes, thereby giving rise to variations of Langmuir waves intensity. For upshifted and downshifted oscillations, the variations of both intensity and central frequency can be observed. For the present study, WHISPER measurements of electric field spectra obtained aboard Cluster spacecraft are used to choose 48 crossings of the electron foreshock boundary with dominating Langmuir waves and to perform for the first time a statistical analysis of nonstationary behavior of quasiperpendicular zone of the Earth's bow shock. Analysis of hidden periodicities in plasma wave energy reveals shock front nonstationarity in the frequency range 0.33 fBiBi, where fBi is the proton gyrofrequency upstream of the shock, and shows that the probability to observe such a nonstationarity increases with Mach number. The profiles observed aboard different spacecraft and the dominating frequencies of the periodicities are usually different. Hence nonstationarity and/or rippling seem to be rather irregular both in space and time rather than resembling a quasiregular wave propagating on the shock surface.

  10. ION ACCELERATION AT THE QUASI-PARALLEL BOW SHOCK: DECODING THE SIGNATURE OF INJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Torbjörn; Haynes, Christopher T.; Burgess, D. [School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS (United Kingdom); Mazelle, Christian X. [IRAP, Université Paul Sabatier Toulouse III-CNRS, 31028 Toulouse Cedex 4 (France)

    2016-03-20

    Collisionless shocks are efficient particle accelerators. At Earth, ions with energies exceeding 100 keV are seen upstream of the bow shock when the magnetic geometry is quasi-parallel, and large-scale supernova remnant shocks can accelerate ions into cosmic-ray energies. This energization is attributed to diffusive shock acceleration; however, for this process to become active, the ions must first be sufficiently energized. How and where this initial acceleration takes place has been one of the key unresolved issues in shock acceleration theory. Using Cluster spacecraft observations, we study the signatures of ion reflection events in the turbulent transition layer upstream of the terrestrial bow shock, and with the support of a hybrid simulation of the shock, we show that these reflection signatures are characteristic of the first step in the ion injection process. These reflection events develop in particular in the region where the trailing edge of large-amplitude upstream waves intercept the local shock ramp and the upstream magnetic field changes from quasi-perpendicular to quasi-parallel. The dispersed ion velocity signature observed can be attributed to a rapid succession of ion reflections at this wave boundary. After the ions’ initial interaction with the shock, they flow upstream along the quasi-parallel magnetic field. Each subsequent wavefront in the upstream region will sweep the ions back toward the shock, where they gain energy with each transition between the upstream and the shock wave frames. Within three to five gyroperiods, some ions have gained enough parallel velocity to escape upstream, thus completing the injection process.

  11. Anatomy of the internal bow shocks in the IRAS 04166+2706 protostellar jet

    Science.gov (United States)

    Tafalla, M.; Su, Y.-N.; Shang, H.; Johnstone, D.; Zhang, Q.; Santiago-García, J.; Lee, C.-F.; Hirano, N.; Wang, L.-Y.

    2017-01-01

    Context. Highly collimated jets and wide-angle outflows are two related components of the mass-ejection activity associated with stellar birth. Despite decades of research, the relation between these two components remains poorly understood. Aims: We study the relation between the jet and the outflow in the IRAS 04166+2706 protostar. This Taurus protostar drives a molecular jet that contains multiple emission peaks symmetrically located from the central source. The protostar also drives a wide-angle outflow consisting of two conical shells. Methods: We have used the Atacama Large Millimeter/submillimeter Array (ALMA) interferometer to observe two fields along the IRAS 04166+2706 jet. The fields were centered on a pair of emission peaks that correspond to the same ejection event. The observations were carried out in CO(2-1), SiO(5-4), and SO(JN = 65-54). Results: Both ALMA fields present spatial distributions that are approximately elliptical and have their minor axes aligned with the jet direction. As the velocity increases, the emission in each field moves gradually across the elliptical region. This systematic pattern indicates that the emitting gas in each field lies in a disk-like structure that is perpendicular to the jet axis and whose gas is expanding away from the jet. A small degree of curvature in the first-moment maps indicates that the disks are slightly curved in the manner expected for bow shocks moving away from the IRAS source. A simple geometrical model confirms that this scenario fits the main emission features. Conclusions: The emission peaks in the IRAS 04166+2706 jet likely represent internal bow shocks where material is being ejected laterally away from the jet axis. While the linear momentum of the ejected gas is dominated by the component in the jet direction, the sideways component is not negligible, and can potentially affect the distribution of gas in the surrounding outflow and core.

  12. Numerical investigation of two interacting parallel thruster-plumes and comparison to experiment

    Science.gov (United States)

    Grabe, Martin; Holz, André; Ziegenhagen, Stefan; Hannemann, Klaus

    2014-12-01

    Clusters of orbital thrusters are an attractive option to achieve graduated thrust levels and increased redundancy with available hardware, but the heavily under-expanded plumes of chemical attitude control thrusters placed in close proximity will interact, leading to a local amplification of downstream fluxes and of back-flow onto the spacecraft. The interaction of two similar, parallel, axi-symmetric cold-gas model thrusters has recently been studied in the DLR High-Vacuum Plume Test Facility STG under space-like vacuum conditions, employing a Patterson-type impact pressure probe with slot orifice. We reproduce a selection of these experiments numerically, and emphasise that a comparison of numerical results to the measured data is not straight-forward. The signal of the probe used in the experiments must be interpreted according to the degree of rarefaction and local flow Mach number, and both vary dramatically thoughout the flow-field. We present a procedure to reconstruct the probe signal by post-processing the numerically obtained flow-field data and show that agreement to the experimental results is then improved. Features of the investigated cold-gas thruster plume interaction are discussed on the basis of the numerical results.

  13. A Strategy to Characterize the LISA-Pathfinder Cold Gas Thruster System

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; Garcia Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martin, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    The cold gas micro-propulsion system that will be used during the LISA-Pathfinder mission will be one of the most important component used to ensure the "free-fall" of the enclosed test masses. In this paper we present a possible strategy to characterize the effective direction and amplitude gain of each of the 6 thrusters of this system.

  14. Diagnostic Setup for Characterization of Near-Anode Processes in Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    L. Dorf; Y. Raitses; N.J. Fisch

    2003-09-08

    A diagnostic setup for characterization of near-anode processes in Hall-current plasma thrusters consisting of biased and emissive electrostatic probes, high-precision positioning system and low-noise electronic circuitry was developed and tested. Experimental results show that radial probe insertion does not cause perturbations to the discharge and therefore can be used for accurate near-anode measurements.

  15. Facility Effect Characterization Test of NASA's HERMeS Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.; Ortega, Alejandro Lopez; Mikellides, Ioannis G.

    2016-01-01

    A test to characterize the effect of varying background pressure on NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding had being completed. This thruster is the baseline propulsion system for the Solar Electric Propulsion Technology Demonstration Mission (SEP TDM). Potential differences in thruster performance and oscillation characteristics when in ground facilities versus on-orbit are considered a primary risk for the propulsion system of the Asteroid Redirect Robotic Mission, which is a candidate for SEP TDM. The first primary objective of this test was to demonstrate that the tools being developed to predict the zero-background-pressure behavior of the thruster can provide self-consistent results. The second primary objective of this test was to provide data for refining a physics-based model of the thruster plume that will be used in spacecraft interaction studies. Diagnostics deployed included a thrust stand, Faraday probe, Langmuir probe, retarding potential analyzer, Wien filter spectrometer, and high-speed camera. From the data, a physics-based plume model was refined. Comparisons of empirical data to modeling results are shown.

  16. Testing of an Arcjet Thruster with Capability of Direct-Drive Operation

    Science.gov (United States)

    Martin, Adam K.; Polzin, Kurt A.; Eskridge, Richard H.; Smith, James W.; Schoenfeld, Michael P.; Riley, Daniel P.

    2015-01-01

    Electric thrusters typically require a power processing unit (PPU) to convert the spacecraft provided power to the voltage-current that a thruster needs for operation. Testing has been initiated to study whether an arcjet thruster can be operated directly with the power produced by solar arrays without any additional conversion. Elimination of the PPU significantly reduces system-level complexity of the propulsion system, and lowers developmental cost and risk. The work aims to identify and address technical questions related to power conditioning and noise suppression in the system and heating of the thruster in long-duration operation. The apparatus under investigation has a target power level from 400-1,000 W. However, the proposed direct-drive arcjet is potentially a highly scalable concept, applicable to solar-electric spacecraft with up to 100's of kW and beyond. A direct-drive electric propulsion system would be comprised of a thruster that operates with the power supplied directly from the power source (typically solar arrays) with no further power conditioning needed between those two components. Arcjet thrusters are electric propulsion devices, with the power supplied as a high current at low voltage; of all the different types of electric thruster, they are best suited for direct drive from solar arrays. One advantage of an arcjet over Hall or gridded ion thrusters is that for comparable power the arcjet is a much smaller device and can provide more thrust and orders of magnitude higher thrust density (approximately 1-10 N/sq m), albeit at lower I(sub sp) (approximately 800-1000 s). In addition, arcjets are capable of operating on a wide range of propellant options, having been demonstrated on H2, ammonia, N2, Ar, Kr, Xe, while present SOA Hall and ion thrusters are primarily limited to Xe propellant. Direct-drive is often discussed in terms of Hall thrusters, but they require 250-300 V for operation, which is difficult even with high-voltage solar

  17. Time-Synchronized Continuous Wave Laser Induced Fluorescence Velocity Measurements of a 600 Watt Hall Thruster

    Science.gov (United States)

    2015-07-01

    used in previous work,21 but well within the linear regime of operation. 3 Joint Conference of 30th ISTS, 34th IEPC and 6th NSAT, Hyogo-Kobe, Japan July...PA Clearance No. 15329 4 BHT-600 Specifications • 600 W annular Hall thruster • Manufactured by Busek Co. • Tested in Chamber 6 at AFRL Nominal

  18. Comparison of Numerical and Experimental Time-Resolved Near-Field Hall Thruster Plasma Properties

    Science.gov (United States)

    2014-03-06

    ABSTRACT Unclassified c. THIS PAGE Unclassified SAR 8 19b. TELEPHONE NO (include area code ) 661-275-6799 Standard Form 298 (Rev. 8-98...81, no. 7, p. 073503, 2010. [14] D. Liu, R. E. Huffman , R. D. Branam, and W. A. Hargus, “Ultra- high speed imaging of Hall thruster discharge

  19. Rotating plasma structures in the cross-field discharge of Hall thrusters

    Science.gov (United States)

    Mazouffre, Stephane; Grimaud, Lou; Tsikata, Sedina; Matyash, Konstantin

    2016-09-01

    Rotating plasma structures, also termed rotating spokes, are observed in various types of low-pressure discharges with crossed electric and magnetic field configurations, such as Penning sources, magnetron discharges, negative ion sources and Hall thrusters. Such structures correspond to large-scale high-density plasma blocks that rotate in the E×B drift direction with a typical frequency on the order of a few kHz. Although such structures have been extensively studied in many communities, the mechanism at their origin and their role in electron transport across the magnetic field remain unknown. Here, we will present insights into the nature of spokes, gained from a combination of experiments and advanced particle-in-cell numerical simulations that aim at better understanding the physics and the impact of rotating plasma structures in the ExB discharge of the Hall thruster. As rotating spokes appear in the ionization region of such thrusters, and are therefore difficult to probe with diagnostics, experiments have been performed with a wall-less Hall thruster. In this configuration, the entire plasma discharge is pushed outside the dielectric cavity, through which the gas is injected, using the combination of specific magnetic field topology with appropriate anode geometry.

  20. Propulsion and control propellers with thruster nozzles primarily for aircraft applications

    Science.gov (United States)

    Pabst, W.

    1986-01-01

    A propulsion and control propeller with thruster nozzles, primarily for aircraft application is described. Adjustability of rotor blades at the hub and pressurized gas expulsion combined with an air propeller increase power. Both characteristics are combined in one simple device, and, furthermore, incorporate overall aircraft control so that mechanisms which govern lateral and horizontal movement become superfluous.

  1. Propellant Grade Hydrazine in Mono/Bi-propellant Thrusters: Preparation and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    S. Krishnamachary

    2015-03-01

    Full Text Available Propellant grade hydrazine was prepared with 64 per cent yield and 95.5 per cent purity. Purity of the propellant grade hydrazine was determined using wet chemical, gas chromatographic (GC and eudiometric methods. It was observed that the compositions containing blends of hydrazine-methyl alcohol-ammonium nitrate and hydrazine-methyl alcohol-ammonium perchlorate were not found to be frozen even after cooling to -65 °C for 30 minutes. Mono and bi-propellant thrusters were designed and developed to demonstrate the performance of prepared propellant grade hydrazine as a promising rocket fuel. Five static tests with 22 N thruster and one static test with 1 N thruster were performed successfully in mono-propellant mode. The hurdles of chamber pressure oscillations were overcome by compact packing of the catalyst. The desired decomposition and chamber pressure were achieved. One static test was performed successfully with 60 N bi-propellant thruster. The desired chamber pressure and thrust were achieved. The combustion was smooth and C* achieved was higher than that of UH-25, N2O4 combination. The performance of prepared propellant grade hydrazine shows it as a promising rocket fuels.Defence Science Journal, Vol. 65, No. 1, January 2015, pp.31-38, DOI:http://dx.doi.org/10.14429/dsj.65.7986

  2. Power Dependence of the Electron Mobility Profile in a Hall Thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofery, Richard H.; Mikellides, Ioannis G.

    2014-01-01

    The electron mobility profile is estimated in a 4.5 kW commercial Hall thruster as a function of discharge power. Internal measurements of plasma potential and electron temperature are made in the thruster channel with a high-speed translating probe. These measurements are presented for a range of throttling conditions from 150 - 400 V and 0.6 - 4.5 kW. The fluid-based solver, Hall2De, is used in conjunction with these internal plasma parameters to estimate the anomalous collision frequency profile at fixed voltage, 300 V, and three power levels. It is found that the anomalous collision frequency profile does not change significantly upstream of the location of the magnetic field peak but that the extent and magnitude of the anomalous collision frequency downstream of the magnetic peak does change with thruster power. These results are discussed in the context of developing phenomenological models for how the collision frequency profile depends on thruster operating conditions.

  3. Plume Characterization of a Laboratory Model 22 N GPIM Thruster via High-Frequency Raman Spectroscopy

    Science.gov (United States)

    Williams, George J.; Kojima, Jun J.; Arrington, Lynn A.; Deans, Matthew C.; Reed, Brian D.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions.

  4. Experimental Demonstration of Microwave Signal/Electric Thruster Plasma Interaction Effects

    Science.gov (United States)

    Zaman, Afroz J.; Lambert, Kevin M.; Curran, Frank M.

    1995-01-01

    An experiment was designed and conducted in the Electric Propulsion Laboratory of NASA Lewis Research Center to assess the impact of ion thruster exhaust plasma plume on electromagnetic signal propagation. A microwave transmission experiment was set up inside the propulsion test bed using a pair of broadband horn antennas and a 30 cm 2.3 kW ion thruster. Frequency of signal propagation covered from 6.5 to 18 GHz range. The stainless steel test bed when enclosed can be depressurized to simulate a near vacuum environment. A pulsed CW system with gating hardware was utilized to eliminate multiple chamber reflections from the test signal. Microwave signal was transmitted and received between the two hours when the thruster was operating at a given power level in such a way that the signal propagation path crossed directly through the plume volume. Signal attenuation and phase shift due to the plume was measured for the entire frequency band. Results for this worst case configuration simulation indicate that the effects of the ion thruster plume on microwave signals is a negligible attenuation (within 0.15 dB) and a small phase shift (within 8 deg.). This paper describes the detailed experiment and presents some of the results.

  5. Hybrid-PIC Modeling of the Transport of Atomic Boron in a Hall Thruster

    Science.gov (United States)

    Smith, Brandon D.; Boyd, Iaian D.; Kamhawi, Hani

    2015-01-01

    Computational analysis of the transport of boron eroded from the walls of a Hall thruster is performed by implementing sputter yields of hexagonal boron nitride and velocity distribution functions of boron within the hybrid-PIC model HPHall. The model is applied to simulate NASA's HiVHAc Hall thruster at a discharge voltage of 500V and discharge powers of 1-3 kW. The number densities of ground- and 4P-state boron are computed. The density of ground-state boron is shown to be a factor of about 30 less than the plasma density. The density of the excited state is shown to be about three orders of magnitude less than that of the ground state, indicating that electron impact excitation does not significantly affect the density of ground-state boron in the discharge channel or near-field plume of a Hall thruster. Comparing the rates of excitation and ionization suggests that ionization has a greater influence on the density of ground-state boron, but is still negligible. The ground-state boron density is then integrated and compared to cavity ring-down spectroscopy (CRDS) measurements for each operating point. The simulation results show good agreement with the measurements for all operating points and provide evidence in support of CRDS as a tool for measuring Hall thruster erosion in situ.

  6. Diagnosis and Fault-Tolerant Control for Thruster-Assisted Position Mooring System

    DEFF Research Database (Denmark)

    Nguyen, Trong Dong; Blanke, Mogens; Sørensen, Asgeir

    2007-01-01

    Development of fault-tolerant control systems is crucial to maintain safe operation of o®shore installations. The objective of this paper is to develop a fault- tolerant control for thruster-assisted position mooring (PM) system with faults occurring in the mooring lines. Faults in line...

  7. Effects of magnetic field strength in the discharge channel on the performance of a multi-cusped field thruster

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2016-09-01

    Full Text Available The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field strength in the discharge channel were investigated. Four thrusters with different outer diameters of the magnet rings were designed to change the magnetic field strength in the discharge channel. It is found that increasing the magnetic field strength could restrain the radial cross-field electron current and decrease the radial width of main ionization region, which gives rise to the reduction of propellant utilization and thruster performance. The test results in different anode voltage conditions indicate that both the thrust and anode efficiency are higher for the weaker magnetic field in the discharge channel.

  8. Magnetic field and quadruple Langmuir probe measurements in the plume of the plasmoid thruster experiment

    Science.gov (United States)

    Koelfgen, Syri Jo

    The development of high specific impulse rocket engines is essential for fast and efficient space travel. The plasmoid thruster, a novel propulsion concept with the potential for producing a high specific impulse, was investigated in light of this need. This pulsed inductive rocket utilizes the Lorentz force to accelerate plasmoids and produce thrust. The Plasmoid Thruster Experiment (PTX) was designed to experimentally evaluate the thruster concept. PTX operates by producing plasmoids in a conical theta-pinch coil and ejecting them at high velocity. Measurements of the plasmoid magnetic fields, electron temperature (Te), electron number density (n e) and Mach number (M) were taken in the PTX plume with a B˙ probe array and a quadruple Langmuir probe. The measurements were used for calculating exit velocity and Isp. High-speed photographs were also obtained for capturing images of the plasmoids and estimating their velocity. The magnetic field data showed behavior characteristic of plasmoids, such as the occurrence of the maximum axial magnetic field on axis and magnetic field reversal. The quadruple Langmuir probe data revealed several factors that influence thruster operation, including propellant choice, supply pressure and propellant injection timing (tpuff). For Ar propellant at supply pressures of 14--34 psig and tpuff = 2200 mus, Te ranged from 2--7 eV, ne ranged from 1.5 x 1020 m-3 to 3.5 x 1020 m-3, and M ranged from 3.3--3.8 in PTX. For H2 propellant, T e ranged from 15--27 eV, ne ranged from 0.8 x 1020 m-3 to 1.5 x 1020 m-3, and M ranged from 1.4--2.6, for supply pressures of 9--38 psig and tpuff = 1200--2400 mus. Analysis of the plume measurements yielded high thruster exit velocities, indicating that the plasmoid thruster can produce a high Isp. Velocities of 24 km/s, 35 km/s and 46 km/s were calculated for supply pressures of 38 psig, 24 psig and 9 psig of H2 propellant, respectively. These exit velocities deliver Isp values of 2,400 s, 3,500 s and 4

  9. Enhancing Micro-Cathode Arc Thruster (muCAT) Plasma Generation to Analyze Magnetic Field Angle Effects on Sheath Formation in Hall Thrusters

    Science.gov (United States)

    Lukas, Joseph Nicholas

    Using a Delta IV or Atlas V launch vehicle to send a payload into Low Earth Orbit can cost between 13,000 and 14,000 per kilogram. With payloads that utilize a propulsion system, maximizing the efficiency of that propulsion system would not only be financially beneficial, but could also increase the range of possible missions and allow for a longer mission lifetime. This dissertation looks into efficiency increases in the Micro-Cathode Arc Thruster (muCAT) and Hall Thruster. The muCAT is an electric propulsion device that ablates solid cathode material, through an electrical arc discharge, to create plasma and ultimately produce thrust. About 90% of the arc discharge current is conducted by electrons, which go toward heating the anode and contribute very little to thrust, with only the remaining 10% going toward thrust in the form of ion current. I will discuss the results of an experiment in which electron heating on a low melting point anode was shown to increase ion current, which theoretically should increase thrust levels at low frequencies. Another feature of the muCAT is the use of an external magnetic solenoid which increases thrust, ion current, and causes uniform cathode erosion. An experiment has shown that efficiency can also be increased by removing the external magnetic field power supply and, instead, utilizing the residual arc current to power the magnetic solenoid. A Hall Thruster is a type of electric propulsion device that accelerates ions across an electric potential between an anode and magnetically trapped electrons. The limiting factor in Hall Thruster operation is the lifetime of the wall material. During operation, a positively charged layer forms over the surface of the walls, known as a plasma sheath, which contributes to wall erosion. Therefore, by reducing or eliminating the sheath layer, Hall Thruster operational lifetime can increase. Computational modeling has shown that large magnetic field angles and large perpendicular electric

  10. Summary of the 2012 Inductive Pulsed Plasma Thruster Development and Testing Program

    Science.gov (United States)

    Polzin, K. A.; Martin, A. K.; Eskridge, R. H.; Kimberlin, A. C.; Addona, B. M.; Devineni, A. P.; Dugal-Whitehead, N. R.; Hallock, A. K.

    2013-01-01

    Inductive pulsed plasma thrusters are spacecraft propulsion devices in which energy is capacitively stored and then discharged through an inductive coil. While these devices have shown promise for operation at high efficiency on a range of propellants, many technical issues remain before they can be used in flight applications. A conical theta-pinch thruster geometry was fabricated and tested to investigate potential improvements in propellant utilization relative to more common, flat-plate planar coil designs. A capacitor charging system is used to permit repetitive discharging of thrusters at multiple cycles per second, with successful testing accomplished at a repetition-rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. The conical theta-pinch thruster geometry was tested at cone angles of 20deg, 38deg, and 60deg, with single-pulse operation at 500 J/pulse and repetitionrate operation with the 38deg model quantified through direct thrust measurement using a hanging pendulum thrust stand. A long-lifetime valve was designed and fabricated, and initial testing was performed to measure the valve response and quantify the leak rate at beginning-of-life. Subscale design and testing of a capacitor charging system required for operation on a spacecraft is reported, providing insights into the types of components needed in the circuit topology employed. On a spacecraft, this system would accept as input a lower voltage from the spacecraft DC bus and boost the output to the high voltage required to charge the capacitors of the thruster.

  11. Expanding the Capabilities of the Pulsed Plasma Thruster for In-Space and Atmospheric Operation

    Science.gov (United States)

    Johnson, Ian Kronheim

    Of all in-space propulsion systems to date, the Pulsed Plasma Thruster (PPT) is unique in its simplicity and wide range of operational parameters. This study examined multiple uses of the thruster for in-space and atmospheric propulsion, as well as the creation of a CubeSat satellite and atmospheric airship as test beds for the thruster. The PPT was tested as a solid-propellant feed source for the High Power Helicon Thruster, a compact plasma source capable of generating order of magnitude higher plasma densities than comparable power level systems. Replacing the gaseous feed system reduced the thruster size and complexity, as well as allowing for extremely discrete discharges, minimizing the influence of wall effects. Teflon (C2F4) has been the traditional propellant for PPTs due to a high exhaust velocity and ability to ablate without surface modification over long durations. A number of alternative propellants, including minerals and metallics commonly found on asteroids, were tested for use with the PPT. Compounds with significant fractions of sulfur showed the highest performance increase, with specific thrusts double that of Teflon. A PPT with sulfur propellant designed for CubeSat operation, as well as the subsystems necessary for autonomous operation, was built and tested in the laboratory. The PPT was modified for use at atmospheric pressures where the impulse was well defined as a function of the discharge chamber volume, capacitor energy, and background pressure. To demonstrate that the air-breathing PPT was a viable concept the device was launched on two atmospheric balloon flights.

  12. ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control

    Science.gov (United States)

    Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg

    2008-01-01

    In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.

  13. Electrospray Thrusters for Attitude Control of a 1-U CubeSat

    Science.gov (United States)

    Timilsina, Navin

    With a rapid increase in the interest in use of nanosatellites in the past decade, finding a precise and low-power-consuming attitude control system for these satellites has been a real challenge. In this thesis, it is intended to design and test an electrospray thruster system that could perform the attitude control of a 1-unit CubeSat. Firstly, an experimental setup is built to calculate the conductivity of different liquids that could be used as propellants for the CubeSat. Secondly, a Time-Of-Flight experiment is performed to find out the thrust and specific impulse given by these liquids and hence selecting the optimum propellant. On the other hand, a colloidal thruster system for a 1-U CubeSat is designed in Solidworks and fabricated using Lathe and CNC Milling Machine. Afterwards, passive propellant feeding is tested in this thruster system. Finally, the electronic circuit and wireless control system necessary to remotely control the CubeSat is designed and the final testing is performed. Among the propellants studied, Ethyl ammonium nitrate (EAN) was selected as the best propellant for the CubeSat. Theoretical design and fabrication of the thruster system was performed successfully and so was the passive propellant feeding test. The satellite was assembled for the final experiment but unfortunately the microcontroller broke down during the first test and no promising results were found out. However, after proving that one thruster works with passive feeding, it could be said that the ACS testing would have worked if we had performed vacuum compatibility tests for other components beforehand.

  14. The effect of easily ionized elements Na and K on the performance of pulsed plasma thruster using water propellant

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In view of the low thrust power ratio caused by the high resistance of pulsed plasma thruster using water propellant,the paper argues that the easily ionized elements Na and K with low ionic potentials are added in the water propellant to improve its performance. The measurement of the discharging current and plasma emission spectrographic analysis prove the improvement. The experiments show that the elements Na and K have certain effect on the improvement of the performance of pulsed plasma thruster: In comparison with water propellant,the NaCl and KCl water propellant has a lower total resistance and a higher ratio of thruster power and specific impulse,and the NaCl water propellant has a slightly stronger effect on pulsed plasma thruster than the KCl. The plasma emission spectrographic analysis is in consistent with the experiment of measuring the discharging current: The elements Na and K can intensify the plasma emission spectrographic signal.

  15. Predicting Hall Thruster Operational Lifetime Using a Kinetic Plasma Model and a Molecular Dynamics Simulation Method Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hall thrusters are being considered for many space missions because their high specific impulse delivers a larger payload mass fraction than chemical rockets. With a...

  16. Development of a cavity ring-down spectroscopy sensor for boron nitride sputter erosion in Hall thrusters

    CERN Document Server

    Tao, Lei; Gallimore, Alec D; Yalin, Azer P

    2010-01-01

    Sputter erosion of boron nitride (BN) is a critically important process in Hall thrusters from the point of view of both lifetime assessment and contamination effects. This contribution describes the development of a laser based sensor for in situ monitoring of sputtered BN from Hall thrusters. We present a continuous-wave cavity ring-down spectroscopy (cw-CRDS) system and its demonstrative measurement results from BN sputtering experiments.

  17. Bowing and expansion of natural stone panels: marble and limestone testing and assessment

    Directory of Open Access Journals (Sweden)

    Grelk, Bent

    2008-06-01

    Full Text Available Natural stone has been used as a building material for centuries. In the past, load bearing members were made of entirely of stone, but in the last 50 years new processing techniques have made the production and use of thin facade cladding a profitable venture. Unfortunately however, marble facades on buildings in Europe and elsewhere have undergone severe deterioration. The EC-financed TEAM project (2000-2005 studied the bowing observed on marble facades in both cold and warm climates. TEAM’s main objectives were to understand and explain the expansion, bowing, and strength loss mechanisms governing the decay of marble- and limestone-clad facades, and to draft new European standards to prevent the use of marble and limestone poorly suited to outdoor cladding. A survey of some 200 buildings afforded a clear picture of the geographical, geological and climatic scope of the problem. Detailed case studies of six buildings resulted in a facade assessment methodology that included a monitoring system and risk assessment. Both laboratory and field research was conducted on almost 100 different types of stone from different countries and in place in different climates. The outcome was the determination of the decay mechanisms and critical factors. Two test methods and respective precision statements, one for bowing and the other for irreversible thermal expansion in high humidity conditions, were prepared for submission to CEN TC 246.La piedra natural se ha empleado como material de construcción durante siglos. En el pasado, se solía utilizar en elementos de carga, pero en los últimos 50 años las nuevas técnicas de procesamiento han permitido que sea comercialmente rentable producir y utilizar revestimientos para fachadas de espesor reducido. Desafortunadamente, numerosas fachadas de mármol de edificios tanto en Europa como fuera de ella han sufrido graves problemas derivados del deterioro de la piedra. El proyecto TEAM (2000

  18. Experimental Investigation of the Near-Wall Region in the NASA HiVHAc EDU2 Hall Thruster

    Science.gov (United States)

    Shastry, Rohit; Kamhawi, Hani; Huang, Wensheng; Haag, Thomas W.

    2015-01-01

    The HiVHAc propulsion system is currently being developed to support Discovery-class NASA science missions. Presently, the thruster meets the required operational lifetime by utilizing a novel discharge channel replacement mechanism. As a risk reduction activity, an alternative approach is being investigated that modifies the existing magnetic circuit to shift the ion acceleration zone further downstream such that the magnetic components are not exposed to direct ion impingement during the thruster's lifetime while maintaining adequate thruster performance and stability. To measure the change in plasma properties between the original magnetic circuit configuration and the modified, "advanced" configuration, six Langmuir probes were flush-mounted within each channel wall near the thruster exit plane. Plasma potential and electron temperature were measured for both configurations across a wide range of discharge voltages and powers. Measurements indicate that the upstream edge of the acceleration zone shifted downstream by as much as 0.104 channel lengths, depending on operating condition. The upstream edge of the acceleration zone also appears to be more insensitive to operating condition in the advanced configuration, remaining between 0.136 and 0.178 channel lengths upstream of the thruster exit plane. Facility effects studies performed on the original configuration indicate that the plasma and acceleration zone recede further upstream into the channel with increasing facility pressure. These results will be used to inform further modifications to the magnetic circuit that will provide maximum protection of the magnetic components without significant changes to thruster performance and stability.

  19. The microwave thermal thruster and its application to the launch problem

    Science.gov (United States)

    Parkin, Kevin L. G.

    Nuclear thermal thrusters long ago bypassed the 50-year-old specific impulse (Isp) limitation of conventional thrusters, using nuclear powered heat exchangers in place of conventional combustion to heat a hydrogen propellant. These heat exchanger thrusters experimentally achieved an Isp of 825 seconds, but with a thrust-to-weight ratio (T/W) of less than ten they have thus far been too heavy to propel rockets into orbit. This thesis proposes a new idea to achieve both high Isp and high T/W The Microwave Thermal Thruster. This thruster covers the underside of a rocket aeroshell with a lightweight microwave absorbent heat exchange layer that may double as a re-entry heat shield. By illuminating the layer with microwaves directed from a ground-based phased array, an Isp of 700--900 seconds and T/W of 50--150 is possible using a hydrogen propellant. The single propellant simplifies vehicle design, and the high Isp increases payload fraction and structural margins. These factors combined could have a profound effect on the economics of building and reusing rockets. A laboratory-scale microwave thermal heat exchanger is constructed using a single channel in a cylindrical microwave resonant cavity, and new type of coupled electromagnetic-conduction-convection model is developed to simulate it. The resonant cavity approach to small-scale testing reveals several drawbacks, including an unexpected oscillatory behavior. Stable operation of the laboratory-scale thruster is nevertheless successful, and the simulations are consistent with the experimental results. In addition to proposing a new type of propulsion and demonstrating it, this thesis provides three other principal contributions: The first is a new perspective on the launch problem, placing it in a wider economic context. The second is a new type of ascent trajectory that significantly reduces the diameter, and hence cost, of the ground-based phased array. The third is an eclectic collection of data, techniques, and

  20. Domed, 40-cm-Diameter Ion Optics for an Ion Thruster

    Science.gov (United States)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.

    2006-01-01

    Improved accelerator and screen grids for an ion accelerator have been designed and tested in a continuing effort to increase the sustainable power and thrust at the high end of the accelerator throttling range. The accelerator and screen grids are undergoing development for intended use as NASA s Evolutionary Xenon Thruster (NEXT) a spacecraft thruster that would have an input-power throttling range of 1.2 to 6.9 kW. The improved accelerator and screen grids could also be incorporated into ion accelerators used in such industrial processes as ion implantation and ion milling. NEXT is a successor to the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) thruster - a state-of-the-art ion thruster characterized by, among other things, a beam-extraction diameter of 28 cm, a span-to-gap ratio (defined as this diameter divided by the distance between the grids) of about 430, and a rated peak input power of 2.3 kW. To enable the NEXT thruster to operate at the required higher peak power, the beam-extraction diameter was increased to 40 cm almost doubling the beam-extraction area over that of NSTAR (see figure). The span-to-gap ratio was increased to 600 to enable throttling to the low end of the required input-power range. The geometry of the apertures in the grids was selected on the basis of experience in the use of grids of similar geometry in the NSTAR thruster. Characteristics of the aperture geometry include a high open-area fraction in the screen grid to reduce discharge losses and a low open-area fraction in the accelerator grid to reduce losses of electrically neutral gas atoms or molecules. The NEXT accelerator grid was made thicker than that of the NSTAR to make more material available for erosion, thereby increasing the service life and, hence, the total impulse. The NEXT grids are made of molybdenum, which was chosen because its combination of high strength and low thermal expansion helps to minimize thermally and inertially induced