WorldWideScience

Sample records for bow thrusters

  1. Fuel rod bowing

    International Nuclear Information System (INIS)

    The purpose of this investigation was to quantify the extent of fuel rod bowing in Westinghouse pressurized water reactors and to assess the effects of fuel rod bowing on plant safety and reliability. An empirical bow correlation was developed based on data from irradiated assemblies. Analyses conducted with these conservative empirical predictions show that: (1) generically identified DNBR margins are adequate to offset DNBR reductions due to rod bow, (2) the present design practice of increasing the highest calculated core peaking factor is sufficient to account for all deviations, including the effects of rod bow, and (3) fretting and corrosion of bowed rods are negligible. These conclusions indicate that fuel rod bowing results in no impact on plant safety or reliability

  2. Bow Crushing Forces

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    The purpose of these notes is to present a basis for the estimation of the internal collision forces between conventinal merchant vessels and large volume offshore structures in the form of gravity-supported offshore installations and bridges crossing international shipping routes.The main emphas...... is on the presentation of impact loads on fixed offshore structures due to bow collisions. The crushing forces are determined as functions of vessels size, vessels speed, bow profile, collision angles and eccentric impacts....

  3. Fuel pin bowing in CAGR

    International Nuclear Information System (INIS)

    Some of the more important mechanisms by which pin bowing can occur in Advanced Gas Cooled Reactors are examined. These include creep relaxation of the stresses which occur when thermal bowing is restrained and asymmetric axial clad creep. The clad temperature changes which accompany such bowing are also investigated and the theoretical results briefly compared with the empirical behaviour. (author)

  4. Bow shock: Power aspects

    Science.gov (United States)

    Sedykh, P. A.

    2014-07-01

    It is clear that the primary energy source for magnetospheric processes is the solar wind, but the process of energy transfer from the solar wind into the magnetosphere, or rather, to convecting magnetospheric plasma, appears to be rather complicated. Bow shock is a powerful transformer of the solar wind kinetic energy into the gas dynamic and electromagnetic energy. A jump of the magnetic field tangential component at front crossing means that the front carries an electric current. The solar wind kinetic energy partly transforms to gas kinetic and electromagnetic energy during its passage through the bow shock front. The transition layer (magnetosheath) can use part of this energy for accelerating of plasma, but can conversely spend part its kinetic energy on the electric power generation, which afterwards may be used by the magnetosphere. Thereby, transition layer can be both consumer (sink) and generator (source) of electric power depending upon special conditions. The direction of the current behind the bow shock front depends on the sign of the IMF Bz-component. It is this electric current which sets convection of plasma in motion.

  5. Magnetoplasmadynamic thruster applications

    International Nuclear Information System (INIS)

    Advance study activities within NASA indicate that electric propulsion will be required to make certain types of potential missions feasible. The large power levels under consideration make magnetoplasmadynamic thrusters a good candidate for these applications since this type of electric thruster is best suited to operation at high power levels. The status of the magnetoplasmadynamic thruster is examined and compared to the ion thruster which also is a candidate. The use of these two types of electric propulsion devices for orbit raising of a self-powered large satellite is examined from a cost standpoint. In addition the use of nuclear electric propulsion is described for use as both a near-earth space tug and for an interplanetary exploration vehicle. These preliminary examinations indicate that the magnetoplasmadynamic thruster is the lowest cost thruster and therefore merits serious consideration for these applications

  6. Conducting Wall Hall Thrusters

    Science.gov (United States)

    Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon

    2013-01-01

    A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.

  7. Multi-Thruster Propulsion Apparatus

    Science.gov (United States)

    Patterson, Michael J. (Inventor)

    2016-01-01

    An electric propulsion machine includes an ion thruster having a discharge chamber housing a large surface area anode. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, at least a second thruster may be disposed radially offset from the ion thruster.

  8. Atelier Bow-Wow DELIGHTS

    DEFF Research Database (Denmark)

    Kajita, Masashi

    2011-01-01

    Atelier Bow-Wow bruger det engelske ord 'delights' til at beskrive en arkitektonisk kvalitet, der dækker over fornøjelse, nydelse og glæde. Interviewet med Yoshiharu Tskukamoto, der sammen med Momoyo Kaijima leder Atelier Bow-Wow, udforsker baggrunden for begrebet 'delights', hvordan det spiller...

  9. Articulated coordination of the right arm underlies control of bow parameters and quick bow reversals in skilled cello bowing

    OpenAIRE

    JuliusVerrel; MarjorieHinesWoollacott

    2014-01-01

    Stringed instrument bowing is a complex coordinative motor skill acquired though years of intense practice. We apply a novel “freezing” analysis to investigate how movement at different joints contributes to bow transport (movement amplitude), stabilization of bow parameters (angle, velocity) during bow movements, and quick reversals of bow direction (acceleration amplitude). Participants were ten advanced or professional cellists (19–32 years, at least 10 years of practice) and ten age-match...

  10. Statistical modeling of violin bowing parameter contours

    OpenAIRE

    Maestre G??mez, Esteban

    2009-01-01

    We present a framework for modeling right-hand gestures in bowed-string instrument playing, applied to violin. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing gesture parameter cues. We model the temporal contour of bow transversal velocity, bow pressing force, and bow-bridge distance as sequences of short segments, in particular B??ezier cubic curve segments. Considering different articulations, dynamics, and contexts, a number of n...

  11. Oxygen-Methane Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orion Propulsion, Inc. proposes to develop an Oxygen and Methane RCS Thruster to advance the technology of alternate fuels. A successful Oxygen/CH4 RCS Thruster...

  12. Earth's bow shock: Power aspects.

    Science.gov (United States)

    Sedykh, Pavel

    2012-07-01

    The process of energy transfer from the solar wind into the magnetosphere, or rather, to convecting magnetospheric plasma, appears to be rather complicated. The bow shock front is the main converter of solar wind kinetic energy into electromagnetic energy [Ponomarev, Sedykh, J. of Atm. Solar-Terr. Phys. V. 68. 2006; Ponomarev, Sedykh et al., Geomagn. and Aeron., 2009]. Solar wind undergoes significant changes in its parameters during its passing through the bow shock front. Indeed, at the bow point, when crossing the front, the magnetic field tangential component and magnetic energy density increase by factors of almost 4 and approximately 15, respectively. In describing the bow shock, we followed [Whang, 1987; Ponomarev et al., 2006]. A jump of the magnetic field tangential component when crossing the bow shock front means that the front carries an electric current. It is possible to show that electric current is diverging in this layer, that is the front is the generator of the current. Since plasma with magnetic field passes through the bow shock front, electric field arises in the front reference system. Thus, the bow shock front is a source of electric power. The direction of electric current behind the bow shock front depends on the sign of the IMF Bz-component. It is this current which sets convection in motion. Energetically, this external current is necessary for maintaining convection of plasma in the inhomogeneous system (geomagnetosphere). The generator at the bow shock front can be a sufficient source of power for supplying energy to substorm processes [Sedykh, Sun and Geosphere, 2011]. The sign of power does not depend on the IMF sign, and energy flux is always directed into the magnetosphere. The magnitude of the power is different and is realized in different regions of the magnetosphere depending on the IMF direction. When the Bz-component is negative, the electric convection field is larger, with the anticonvection field being smaller, than for

  13. Iodine Hall Thruster

    Science.gov (United States)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  14. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  15. Magnesium Hall Thruster

    Science.gov (United States)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  16. Articulated coordination of the right arm underlies control of bow parameters and quick bow reversals in skilled cello bowing

    Directory of Open Access Journals (Sweden)

    JuliusVerrel

    2014-08-01

    Full Text Available Stringed instrument bowing is a complex coordinative motor skill acquired though years of intense practice. We apply a novel “freezing” analysis to investigate how movement at different joints contributes to bow transport (movement amplitude, stabilization of bow parameters (angle, velocity during bow movements, and quick reversals of bow direction (acceleration amplitude. Participants were ten advanced or professional cellists (19-32 years, at least 10 years of practice and ten age-matched novice players. Arm and bow movements were recorded using 3D motion capture. To assess how performance depends on articulated use of the right arm, actual data were compared to surrogate data, generated by artificially removing movement at (“freezing” individual joints in measured arm movements. This analysis showed that both elbow and shoulder significantly contribute to bow transport in experts, while only the shoulder contributed to bow transport in novices. Moreover, experts showed more strongly increased variability of bow parameters and reduced acceleration amplitudes at bow reversals for surrogate compared to actual movement data. This indicates that movement across joints was organized to reduce bow variability and achieve quick bow reversals. Corresponding effects were less pronounced or absent in the novices, in particular for the wrist and elbow. Our results demonstrate the importance of articulated use of the right arm and clarify the contribution of different joints in experts’ bowing performance. Moreover, they support theories of motor control and learning that propose exploitation of biomechanical degrees of freedom, in particular of distal joints, as a critical component in skilled motor performance.

  17. Helical plasma thruster

    Science.gov (United States)

    Beklemishev, A. D.

    2015-10-01

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR® rocket engine.

  18. Helical plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Beklemishev, A. D., E-mail: bekl@bk.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk (Russian Federation)

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  19. Dielectric Bow-tie Nanocavity

    CERN Document Server

    Lu, Qijing; Zou, Chang-Ling

    2013-01-01

    We propose a novel dielectric bow-tie nanocavity consisting of two tip-to-tip opposite triangle semiconductor nanowires, whose end faces are coated by silver nanofilms. Based on the advantages of the dielectric slot and tip structures, and the high reflectivity from the silver mirror, light can be confined in this nanocavity with low loss. We demonstrate that the mode excited in this nanocavity has a deep subwavelength mode volume of 2.8*10^-4 um3 and a high quality factor of 4.9*10^4 (401.3), consequently an ultrahigh Purcell factor of 1.6*10^7 (1.36*10^5), at 4.5 K (300 K) around the resonance wavelength of 1550 nm. This dielectric bow-tie nanocavity may find applications for integrated nanophotonic circuits, such as high-efficiency single photon source, thresholdless nanolaser, and cavity QED strong coupling experiments.

  20. Electron Transport in Hall Thrusters

    Science.gov (United States)

    McDonald, Michael Sean

    Despite high technological maturity and a long flight heritage, computer models of Hall thrusters remain dependent on empirical inputs and a large part of thruster development to date has been heavily experimental in nature. This empirical approach will become increasingly unsustainable as new high-power thrusters tax existing ground test facilities and more exotic thruster designs stretch and strain the boundaries of existing design experience. The fundamental obstacle preventing predictive modeling of Hall thruster plasma properties and channel erosion is the lack of a first-principles description of electron transport across the strong magnetic fields between the cathode and anode. In spite of an abundance of proposed transport mechanisms, accurate assessments of the magnitude of electron current due to any one mechanism are scarce, and comparative studies of their relative influence on a single thruster platform simply do not exist. Lacking a clear idea of what mechanism(s) are primarily responsible for transport, it is understandably difficult for the electric propulsion scientist to focus his or her theoretical and computational tools on the right targets. This work presents a primarily experimental investigation of collisional and turbulent Hall thruster electron transport mechanisms. High-speed imaging of the thruster discharge channel at tens of thousands of frames per second reveals omnipresent rotating regions of elevated light emission, identified with a rotating spoke instability. This turbulent instability has been shown through construction of an azimuthally segmented anode to drive significant cross-field electron current in the discharge channel, and suggestive evidence points to its spatial extent into the thruster near-field plume as well. Electron trajectory simulations in experimentally measured thruster electromagnetic fields indicate that binary collisional transport mechanisms are not significant in the thruster plume, and experiments

  1. Dielectric Bow-tie Nanocavity

    OpenAIRE

    Lu, Qijing; Shu, Fang-Jie; Zou, Chang-Ling

    2013-01-01

    We propose a novel dielectric bow-tie nanocavity consisting of two tip-to-tip opposite triangle semiconductor nanowires, whose end faces are coated by silver nanofilms. Based on the advantages of the dielectric slot and tip structures, and the high reflectivity from the silver mirror, light can be confined in this nanocavity with low loss. We demonstrate that the mode excited in this nanocavity has a deep subwavelength mode volume of 2.8*10^-4 um3 and a high quality factor of 4.9*10^4 (401.3)...

  2. Oxygen-Methane Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Two main innovations will be developed in the Phase II effort that are fundamentally associated with our gaseous oxygen/gaseous methane RCS thruster. The first...

  3. Shared Magnetics Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed Phase II program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...

  4. Shared Magnetics Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed Phase I program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...

  5. Iodine Hall Thruster for Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I program, Busek Co. Inc. tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high flow iodine feed system,...

  6. Fast Camera Imaging of Hall Thruster Ignition

    International Nuclear Information System (INIS)

    Hall thrusters provide efficient space propulsion by electrostatic acceleration of ions. Rotating electron clouds in the thruster overcome the space charge limitations of other methods. Images of the thruster startup, taken with a fast camera, reveal a bright ionization period which settles into steady state operation over 50 (micro)s. The cathode introduces azimuthal asymmetry, which persists for about 30 (micro)s into the ignition. Plasma thrusters are used on satellites for repositioning, orbit correction and drag compensation. The advantage of plasma thrusters over conventional chemical thrusters is that the exhaust energies are not limited by chemical energy to about an electron volt. For xenon Hall thrusters, the ion exhaust velocity can be 15-20 km/s, compared to 5 km/s for a typical chemical thruster.

  7. 75 FR 40820 - City of Broken Bow, Oklahoma; Project No. 12470-001-Oklahoma Broken Bow Re-Regulation Dam...

    Science.gov (United States)

    2010-07-14

    ... Energy Regulatory Commission City of Broken Bow, Oklahoma; Project No. 12470-001--Oklahoma Broken Bow Re... included in, or eligible for inclusion in, the National Register of Historic Places at the Broken Bow Re..., 2010, for the Broken Bow Re-Regulation Dam Hydroelectric Project No. 12470 is revised to add...

  8. 75 FR 33802 - City of Broken Bow, OK; Broken Bow Re-Regulation Dam; Hydropower Project; Notice of Proposed...

    Science.gov (United States)

    2010-06-15

    ... Energy Regulatory Commission City of Broken Bow, OK; Broken Bow Re-Regulation Dam; Hydropower Project... eligible for inclusion in, the National Register of Historic Places at the Broken Bow Re-Regulation Dam... the Broken Bow Re-Regulation Dam Hydropower Project would be fulfilled through the...

  9. High-Power Electromagnetic Thruster Being Developed

    Science.gov (United States)

    LaPointe, Michael R.; Mikellides, Pavlos G.

    2001-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT).

  10. Holographic Solar Photon Thrusters

    Science.gov (United States)

    Johnson, Les; Matloff, Greg

    2006-01-01

    A document discusses a proposal to incorporate holographic optical elements into solar photon thrusters (SPTs). First suggested in 1990, SPTs would be systems of multiple reflective, emissive, and absorptive surfaces (solar sails) that would be attached to spacecraft orbiting the Earth to derive small propulsive forces from radiation pressures. An SPT according to the proposal would include, among other things, a main sail. One side of the sail would be highly emissive and would normally face away from the Earth. The other side would be reflective and would be covered by white-light holographic images that would alternately become reflective, transmissive, and absorptive with small changes in the viewing angle. When the spacecraft was at a favorable orbital position, the main sail would be oriented to reflect sunlight in a direction to maximize the solar thrust; when not in a favorable position, the main sail would be oriented to present a substantially absorptive/emissive aspect to minimize the solar drag. By turning the main sail slightly to alternate between the reflective and absorptive/ emissive extremes, one could achieve nearly a doubling or halving of the radiational momentum transfer and, hence, of the solar thrust.

  11. Dielectric bow-tie nanocavity.

    Science.gov (United States)

    Lu, Qijing; Shu, Fang-Jie; Zou, Chang-Ling

    2013-12-15

    We propose a novel dielectric bow-tie (DBT) nanocavity consisting of two opposing tip-to-tip triangle semiconductor nanowires, whose end faces are coated by silver nanofilms. Based on the advantages of the dielectric slot and tip structures, and the high reflectivity of the silver mirror, light can be confined in this nanocavity with low loss. We demonstrate that at 4.5 K (300 K) around the resonance wavelength of 1550 nm, the mode excited in this nanocavity has a deep subwavelength mode volume of 2.8×10(-4) μm³ and a high quality factor of 4.9×10(4) (401.3), corresponding to an ultrahigh Purcell factor of 1.6×10(7) (1.36×10(5)). This DBT nanocavity may find applications for integrated nanophotonic circuits, such as high-efficiency single photon sources, thresholdless nanolasers, and strong coupling in cavity quantum electrodynamics experiments. PMID:24322245

  12. Electron dynamics in Hall thruster

    Science.gov (United States)

    Marini, Samuel; Pakter, Renato

    2015-11-01

    Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.

  13. NASA GRC High Power Electromagnetic Thruster Program

    Science.gov (United States)

    LaPointe, Michael R.; Pensil, Eric J.

    2004-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). This paper describes the MPD thruster and the test facility.

  14. Enhanced Performance of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    The cylindrical thruster differs significantly in its underlying physical mechanisms from the conventional annular Hall thruster. It features high ionization efficiency, quiet operation, ion acceleration in a large volume-to-surface ratio channel, and performance comparable with the state-of-the-art conventional Hall thrusters. Very significant plume narrowing, accompanied by the increase of the energetic ion fraction and improvement of ion focusing, led to 50-60% increase of the thruster anode efficiency. These improvements were achieved by overrunning the discharge current in the magnetized thruster plasma

  15. A Small Modular Laboratory Hall Effect Thruster

    Science.gov (United States)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  16. Modelling the bending/bowing of composite beams such as nuclear fuel: The BOW code

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, M. (Atomic Energy of Canada Ltd., Sheridan Park, Ontario. CANDU Operations)

    1989-09-01

    Arrays of tubes are used in many engineered structures, such as in nuclear fuel bundles and in steam generators. The tubes are bend (bow) due to in-service temperatures and loads. Assessments of bowing of nuclear fuel elements can help demonstrate the integrity of fuel and of surrounding components, as a function of operating conditions such as channel power. The BOW code calculates the bending of composite beams such as fuel elements, due to gradients of temperature and due to hydraulic forces. The deflections and rotations are calculated in both lateral directions, for given conditions of temperatures. Wet and dry operation of the sheath can be simulated. BOW accounts for the following physical phenomena: circumferential and axial variations in the temperatures of the sheath and of the pellet; cracking of pellets; grip and slip between the pellets and the sheath; hydraulic drag; restraints from endplates, from neighbouring elements, and from the pressure-tube; gravity; concentric or eccentric welds between endcaps and endplate; neutron flux gradients; and variations of material properties with temperature. The code is based on fundamental principles of mechanics. The governing equations are solved numerically using the finite element method. Several comparisons with closed-form equations show that the solutions of BOW are accurate. BOW's predictions for initial in-reactor bow are also consistent with two post-irradiation measurements. (orig.).

  17. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new pulsed electric thruster, named "pulsed electrogasdynamic thruster," for attitude control and orbit maneuver is proposed. In this thruster, propellant gas is...

  18. A Microwave Thruster for Spacecraft Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Chiravalle, Vincent P [Los Alamos National Laboratory

    2012-07-23

    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  19. D3BIER, a program for calculating bowing reactivities

    International Nuclear Information System (INIS)

    The report gives a description of the code D3BIER, which calculates the reactivity effects due to subassembly bowing in three-dimensional hexagonal geometry, based on pre-calculated bowing coefficients and subassembly bowing lines. The input and check of data and the data transfer correspond to the standard of the INTERATOM nuclear code system IANUS. The data blocks have variable dimensioning

  20. Electron-wall Interaction in Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Y. Raitses; D. Staack; M. Keidar; N.J. Fisch

    2005-02-11

    Electron-wall interaction effects in Hall thrusters are studied through measurements of the plasma response to variations of the thruster channel width and the discharge voltage. The discharge voltage threshold is shown to separate two thruster regimes. Below this threshold, the electron energy gain is constant in the acceleration region and therefore, secondary electron emission (SEE) from the channel walls is insufficient to enhance electron energy losses at the channel walls. Above this voltage threshold, the maximum electron temperature saturates.

  1. Low Mass Electromagnetic Plasmoid Thruster with Integrated PPU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Electromagnetic Plasmoid Thruster (EMPT) is a revolutionary electric propulsion thruster and power processing (PPU) system that will allow a dramatic decrease...

  2. Advanced Microwave Electrothermal Thruster (AMET) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) and the University of Alabama at Huntsville (UAH) propose to develop the Advanced Microwave Electrothermal Thruster...

  3. Cylindrical Hall Thrusters with Permanent Magnets

    International Nuclear Information System (INIS)

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT.

  4. Optimized Magnetic Nozzles for MPD Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Magnetoplasmadynamic (MPD) thrusters can provide the high-specific impulse, high-power propulsion required to enable ambitious human and robotic exploration...

  5. Whistler wave driven plasma thruster

    International Nuclear Information System (INIS)

    High density plasma can be generated by electron cyclotron resonance heating (ECRH) using whistler waves at densities for which the plasma frequency is much higher than the cyclotron frequency. This will result in a thruster operating at specific impulses of 103--104 s and much higher power and thrust densities than usual for ECRH devices. As the plasma generation is by electromagnetic waves, there are no electrodes, and wall material problems are greatly eased, permitting reliable, long lifetime operation. We report on the modeling of such a thruster, including plasma flow as well as losses to an end wall and ionization. A helical antenna to couple the waves into the plasma column is analyzed, including effects of the anisotropic plasma dielectric constant. An initial experiment to test the concept is planned

  6. The Statics of the Traditional Hungarian Composite Reflex Bow

    Directory of Open Access Journals (Sweden)

    Sándor Horváth

    2006-04-01

    Full Text Available The operation of the Hungarian bow raises several fascinating mechanicalquestions. To answer these questions a good number of experiments and calculations needto be made, moreover the mechanical model of the bow is needed to be prepared whichappropriately confirm the results of experiments. Teachers in the Bánki Donát MechanicalEngineering College of Budapest Polytechnic set up a small laboratory in 1997 in order tostudy and measure the physical characteristics of traditional bows. The mechanicalanalysis of bows is based on the experiments gained in the laboratory and the results ofmeasurements. The knowledge acquired about the mechanical model of bows facilitates notonly the analysis of the traditional Hungarian bow, but also provides a good foundation forthe comparison from the technical point of view of various composite reflex bows belongingto different historic ethnic groups.

  7. Electric thruster in the space field

    International Nuclear Information System (INIS)

    The interest of electric thruster over other techniques of propulsion by reaction is exposed. After a brief mention of the different planetary explorations missions using primary electric propulsion, the use of auxiliary propulsion for the station keeping of geosynchronous satellites is discussed. The principal technologies for the development of ion thrusters (ionization by bombardment and cesium surface ionization) are described and compared

  8. NEXT Propellant Management System Integration With Multiple Ion Thrusters

    Science.gov (United States)

    Sovey, James S.; Soulas, George C.; Herman, Daniel A.

    2011-01-01

    As a critical part of the NEXT test validation process, a multiple-string integration test was performed on the NEXT propellant management system and ion thrusters. The objectives of this test were to verify that the PMS is capable of providing stable flow control to multiple thrusters operating over the NEXT system throttling range and to demonstrate to potential users that the NEXT PMS is ready for transition to flight. A test plan was developed for the sub-system integration test for verification of PMS and thruster system performance and functionality requirements. Propellant management system calibrations were checked during the single and multi-thruster testing. The low pressure assembly total flow rates to the thruster(s) were within 1.4 percent of the calibrated support equipment flow rates. The inlet pressures to the main, cathode, and neutralizer ports of Thruster PM1R were measured as the PMS operated in 1-thruster, 2-thruster, and 3-thruster configurations. It was found that the inlet pressures to Thruster PM1R for 2-thruster and 3-thruster operation as well as single thruster operation with the PMS compare very favorably indicating that flow rates to Thruster PM1R were similar in all cases. Characterizations of discharge losses, accelerator grid current, and neutralizer performance were performed as more operating thrusters were added to the PMS. There were no variations in these parameters as thrusters were throttled and single and multiple thruster operations were conducted. The propellant management system power consumption was at a fixed voltage to the DCIU and a fixed thermal throttle temperature of 75 C. The total power consumed by the PMS was 10.0, 17.9, and 25.2 W, respectively, for single, 2-thruster, and 3-thruster operation with the PMS. These sub-system integration tests of the PMS, the DCIU Simulator, and multiple thrusters addressed, in part, the NEXT PMS and propulsion system performance and functionality requirements.

  9. Suprathermal electrons at Saturn's bow shock

    CERN Document Server

    Masters, A; Sergis, N; Stawarz, L; Fujimoto, M; Coates, A J; Dougherty, M K

    2016-01-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, 18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically onl...

  10. Bow shock formation in a complex plasma.

    Science.gov (United States)

    Saitou, Y; Nakamura, Y; Kamimura, T; Ishihara, O

    2012-02-10

    A bow shock is observed in a two-dimensional supersonic flow of charged microparticles in a complex plasma. A thin conducting needle is used to make a potential barrier as an obstacle for the particle flow in the complex plasma. The flow is generated and the flow velocity is controlled by changing a tilt angle of the device under the gravitational force. A void, microparticle-free region, is formed around the potential barrier surrounding the obstacle. The flow is bent around the leading edge of the void and forms an arcuate structure when the flow is supersonic. The structure is characterized by the bow shock as confirmed by a polytropic hydrodynamic theory as well as numerical simulation. PMID:22401079

  11. Bowing and interaction of fast reactor subassemblies

    International Nuclear Information System (INIS)

    Deformations of the subassembly structural components, in particular the bowing of the hexagonal wrapper which encloses the pin bundles, due to stainless steel swelling as a result of fast neutron irradiation give rise to operational and safety problems especially in large breeder reactors where the neutron flux is much larger than in smaller reactors. The restraint on bowing induces heavy restraint loads and high stresses in the wrapper, which tend to limit the target burn-up of the fast reactor fuels. Therefore, a realistic analysis has to include the phenomenon of creep to determine the extent to which the stresses in the wrapper would be relaxed due to both thermally induced and irradiation induced creep. Apart from this, determination of deformations of the subassemblies in the core due to the interaction among them is also necessary. (author)

  12. A survey for Hα pulsar bow shocks

    International Nuclear Information System (INIS)

    We report on a survey for Hα bow shock emission around nearby γ-detected energetic pulsars. This survey adds three Balmer-dominated neutron star bow shocks to the six previously confirmed examples. In addition to the shock around Fermi pulsar PSR J1741–2054, we now report Hα structures around two additional γ-ray pulsars, PSR J2030+4415 and PSR J1509–5850. These are the first known examples of Hα nebulae with pre-ionization halos. With new measurements, we show that a simple analytic model can account for the angular size and flux of the bow shocks' apices. The latter, in particular, provides a new pulsar probe and indicates large moments of inertia and smaller distances than previously assumed in several cases. In particular, we show that the re-measured PSR J0437–4715 shock flux implies I = (1.7 ± 0.2) × 1045/(f HIsin i) g cm2. We also derive a distance d ≈ 0.72 kpc for the γ-ray only pulsar PSR J2030+4415 and revised distances for PSRs J1959+2048 (1.4 kpc) and J2555+6535 (∼1 kpc), smaller than the conventional DM-estimated values. Finally, we report upper limits for 94 additional LAT pulsars. An estimate of the survey sensitivity indicates that for a warm neutral medium filling factor φWNM ∼ 0.3 there should be a total of approximately nine Hα bow shocks in our LAT-targeted survey; given that seven such objects are now known, a much larger φWNM seems problematic.

  13. The sacred weapon: bow and arrow combat in Iran

    Directory of Open Access Journals (Sweden)

    Manouchehr Moshtagh Khorasani

    2012-07-01

    Full Text Available The following article presents the development of the bow and arrow, and its important role in the history of Iran. The bow always played an important role not only on the battlefield, but also in hunting. It was also considered as a sacred weapon and additionally a royal symbol. Bow and arrow were considered as a superior weapon in comparison with other types of weapons because one could fight with them at a safer distance as one offered by swords, maces and axes. The first part of the article presents a short history of the bow in Iran. Based on historical Persian manuscripts, the next part explains the structure of the composite bow and the materials used for making it. The third part describes some types of bows based on the material, place of production, the usage, and bow type based on the length of the bow and the arrows. The following part talks about different types of arrows based on morphology of arrowheads, the type of plume/feather, the material of the shaft, the material of the arrowhead, the length of arrows, the target of arrows, the place of production of arrowheads and terms for describing its different features of an arrowhead. Then, the article talks about different types of thumb rings, bowstrings, quivers and bow cases and arrow guides for shooting short arrows. The next part discusses different principles of archery as explained in Persian manuscripts. Finally the article describes different archery targets.

  14. Discovery of a bow shock around Vela X-1

    CERN Document Server

    Kaper, L; Augusteijn, T; Goudfrooij, P; Patat, N; Zijlstra, A A; Waters, R; Kaper, Lex; Loon, Jacco van; Augusteijn, Thomas; Goudfrooij, Paul; Patat, Nando; Zijlstra, Albert; Waters, Rens

    1996-01-01

    We report the discovery of a symmetric bow shock around the well-known high-mass X-ray binary (HMXB) Vela X-1. Wind bow shocks are a ubiquitous phenomenon around OB-runaway stars, but now such a structure is found around a HMXB. The presence of a bow shock indicates that the system has a high (supersonic) velocity with respect to the interstellar medium. From the symmetry of the bow shock, the direction of motion and, moreover, the origin and age of the system can be derived. Our observation supports Blaauw's scenario for the formation of an OB-runaway star by the supernova explosion of the binary companion.

  15. Effects of pin bowing in the CAGR fuel element

    International Nuclear Information System (INIS)

    A theoretical and experimental investigation of the effects of bowing on pin temperatures in CAGR fuel elements is described. A subchannel code, SCANDAL, has been developed to calculate the effects of bow in arbitrary rod clusters with single phase coolant. The fundamental assumptions of the code and the extra components needed to handle pin bowing are presented. In order to validate SCANDAL a heat transfer experiment has been performed, in which selected pins in a 36 pin CAGR fuel element have been mechanically bowed and detailed temperature effects measured. Results from this experiment are presented and compared with SCANDAL predictions. (author)

  16. Mechanical design of SERT 2 thruster system

    Science.gov (United States)

    Zavesky, R. J.; Hurst, E. B.

    1972-01-01

    The mechanical design of the mercury bombardment thruster that was tested on SERT is described. The report shows how the structural, thermal, electrical, material compatibility, and neutral mercury coating considerations affected the design and integration of the subsystems and components. The SERT 2 spacecraft with two thrusters was launched on February 3, 1970. One thruster operated for 3782 hours and the other for 2011 hours. A high voltage short resulting from buildup of loose eroded material was believed to be the cause of failure.

  17. Electromagnetic thrusters for spacecraft prime propulsion

    Science.gov (United States)

    Rudolph, L. K.; King, D. Q.

    1984-01-01

    The benefits of electromagnetic propulsion systems for the next generation of US spacecraft are discussed. Attention is given to magnetoplasmadynamic (MPD) and arc jet thrusters, which form a subset of a larger group of electromagnetic propulsion systems including pulsed plasma thrusters, Hall accelerators, and electromagnetic launchers. Mission/system study results acquired over the last twenty years suggest that for future prime propulsion applications high-power self-field MPD thrusters and low-power arc jets have the greatest potential of all electromagnetic thruster systems. Some of the benefits they are expected to provide include major reductions in required launch mass compared to chemical propulsion systems (particularly in geostationary orbit transfer) and lower life-cycle costs (almost 50 percent less). Detailed schematic drawings are provided which describe some possible configurations for the various systems.

  18. Multiscale Modeling of Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New multiscale modeling capability for analyzing advanced Hall thrusters is proposed. This technology offers NASA the ability to reduce development effort of new...

  19. Acoustic Resonance Reaction Control Thruster (ARCTIC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate the innovative Acoustic Resonance Reaction Control Thruster (ARCTIC) to provide rapid and reliable in-space impulse...

  20. T6 Ion Thruster Technology Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Provide discharge chamber and grid modeling for the new T6 based on JPL expertise on ion thruster performance and life; Enable/guide the T6 upgrade development to...

  1. Dual Mode Low Power Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample and return missions desire and missions like Saturn Observer require a low power Hall thruster that can operate at high thrust to power as well as high...

  2. Iodine Hall Thruster for Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high power (high thrust) electric propulsion system featuring an iodine fueled Hall Effect Thruster (HET). The system to be...

  3. Magneto-plasma-dynamic arc thruster

    Science.gov (United States)

    Burkhart, J. A. (Inventor)

    1973-01-01

    The performance of a magnetoplasmadynamic arc thruster, in the 600 to 2,100 seconds specific impulse range, was improved by locating its cathode in the exhaust beam downstream of the anode and main propellant injection point.

  4. Q-thruster Breadboard Campaign Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Q-thruster technology is a mission enabling form of electric propulsion and is already being traded by NASA's Concept Architecture Team (CAT) & Human Space...

  5. Additive Manufacturing of Ion Thruster Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Plasma Controls will manufacture and test a set of ion optics for electric propulsion ion thrusters using additive manufacturing technology, also known as 3D...

  6. High Thrust Efficiency MPD Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Magnetoplasmadynamic (MPD) thrusters can provide the high-specific impulse, high-power propulsion required to support human and robotic exploration missions to the...

  7. Precision Electrospray Thruster Assembly (PETA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New low cost, low volume, low power, rugged electrospray thrusters will be ideal as actuators for precision thrusting, if provided with precision high voltage power...

  8. Light Metal Propellant Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop light metal Hall Effect thrusters that will help reduce the travel time, mass, and cost of SMD spacecraft. Busek has identified three...

  9. Advanced High Efficiency Durable DACS Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Systima is developing a high performance 25 lbf DACS thruster that operates with a novel non-toxic monopropellant. The monopropellant has a 30% higher...

  10. Low power arcjet thruster pulse ignition

    Science.gov (United States)

    Sarmiento, Charles J.; Gruber, Robert P.

    1987-01-01

    An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.

  11. Size effects in band gap bowing in nitride semiconducting alloys

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede;

    2011-01-01

    Chemical and size contributions to the band gap bowing of nitride semiconducting alloys (InxGa1-xN, InxAl1-xN, and AlxGa1-xN) are analyzed. It is shown that the band gap deformation potentials of the binary constituents determine the gap bowing in the ternary alloys. The particularly large gap...

  12. 46 CFR 45.69 - Correction for bow height.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Correction for bow height. 45.69 Section 45.69 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Freeboards § 45.69 Correction for bow height. (a) The minimum summer freeboard of all manned vessels must...

  13. Evolution of bow-tie architectures in biology.

    Directory of Open Access Journals (Sweden)

    Tamar Friedlander

    2015-03-01

    Full Text Available Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal determines the size of the narrowest part of the network-that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved.

  14. Evolution of bow-tie architectures in biology.

    Science.gov (United States)

    Friedlander, Tamar; Mayo, Avraham E; Tlusty, Tsvi; Alon, Uri

    2015-03-01

    Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network-that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved. PMID:25798588

  15. Control capability analysis for complex spacecraft thruster configurations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The set of forces and moments that can be generated by thrusters of a spacecraft is called the"control capability"with respect to the thruster configuration.If the control capability of a thruster configuration is adequate to fulfill a given space mission,we say this configuration is a feasible one with respect to the task.This study proposed a new way to analyze the control capability of the complex thruster configuration.Precise mathematical definitions of feasibility were proposed,based on which a criterion to judge the feasibility of the thruster configuration was presented through calculating the shortest distance to the boundary of the controllable region as a function of the thruster configuration.Finally,control capability analysis for the complex thruster configuration based on its feasibility with respect to the space mission was given followed by a 2-D thruster configuration example to demonstrate its validity.

  16. Coaxial plasma thrusters for high specific impulse propulsion

    Science.gov (United States)

    Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen

    1991-01-01

    A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.

  17. Bowing test of HTGR graphite sleeve

    International Nuclear Information System (INIS)

    Bowing characteristics were examined for IG-11 and H451 graphite sleeve specimens to which temperature gradients were given in the circumferential direction using a specially prepared rig. Measurements were also carried out on load or bending moment which was caused in the sleeve specimens under constraint as a result of temperature gradients. Experimental data were well analyzed on the basis of the elastic theory on the deflection of beams. Bending tests of the sleeve specimens indicated that the bending moment generated in the sleeve specimens under constraint was less than one-third of that at fracture even when the maximum temperature difference along the circumferential direction was more than 2000C. (author)

  18. Diagnostics Systems for Permanent Hall Thrusters Development

    Science.gov (United States)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  19. High vacuum facility for hydrazine thruster testing

    Science.gov (United States)

    Neary, Patrick F.

    1990-01-01

    An ongoing modification is described of a large vacuum chamber to accommodate the ignition of an arcjet hydrazine thruster while maintaining a vacuum level of 1 x 10(exp -5) torr or less. The vacuum facility consists of a 20 ft stainless steel vacuum tank with an internal LN2 shroud, four 35 in. cryopumps and an 8 in. turbopump. To maintain a vacuum level of 1 x 10(exp -5) torr or less, 900 sq ft of liquid helium (LHe) shroud surface was installed to maintain the vacuum level and pumping requirements. A vacuum level of 1 x 10(exp -5) torr or less will allow the hydrazine thrust to exit the thruster nozzle and radiate into a space type environment so that the plume flow field can be analyzed and compared to the analytical model density distribution profile. Some other arcjet thruster characteristics measured are the electromagnetic interference (EMI) and exhaust contamination. This data is used to evaluate if the arcjet thruster with its high specific impulse in comparison to current chemical propulsion thruster can be used for the next generation of communication satellites.

  20. Nonequilibrium diagnostics of plasma thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Grandy, J.D.

    1990-01-01

    This paper describes possible techniques by which the state of plasma thruster operation for space propulsion can be determined from a minimum set of experimental data in the laboratory. The kinetic properties of the nonequilibrium plasma plume usually can not be directly related to the observed radiation; hence, appropriate nonequilibrium diagnostic techniques must be employed. A newly developed multithermal, multichemical equilibrium method is discussed that uses measured line emission intensities and N equations to solve for N unknowns. The effect of arbitrarily changing the number of selected N unknowns and how one determines the optimum (minimum) number to be used for a given composition is also presented. The chemical nonequilibrium aspects and the application to molecular species have not yet been published. The important conclusions are that (1) complete thermodynamic systems in nonequilibrium can be described by relatively few variables if appropriate choices and filtering methods are used, (2) a few radiation measurements can yield valid kinetic properties, and (3) the major question in the relations to be used is in the form of the law of mass action. The results are substantiated in the laboratory by additional alternative methods of measurement of some of the kinetic properties. 13 refs., 1 fig.

  1. The sacred weapon: bow and arrow combat in Iran

    OpenAIRE

    Manouchehr Moshtagh Khorasani

    2012-01-01

    The following article presents the development of the bow and arrow, and its important role in the history of Iran. The bow always played an important role not only on the battlefield, but also in hunting. It was also considered as a sacred weapon and additionally a royal symbol. Bow and arrow were considered as a superior weapon in comparison with other types of weapons because one could fight with them at a safer distance as one offered by swords, maces and axes. The first part of the artic...

  2. Mode Transitions in Hall Effect Thrusters

    Science.gov (United States)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Mode transitions have been commonly observed in Hall Effect Thruster (HET) operation where a small change in a thruster operating parameter such as discharge voltage, magnetic field or mass flow rate causes the thruster discharge current mean value and oscillation amplitude to increase significantly. Mode transitions in a 6-kW-class HET called the H6 are induced by varying the magnetic field intensity while holding all other operating parameters constant and measurements are acquired with ion saturation probes and ultra-fast imaging. Global and local oscillation modes are identified. In the global mode, the entire discharge channel oscillates in unison and azimuthal perturbations (spokes) are either absent or negligible. Downstream azimuthally spaced probes show no signal delay between each other and are very well correlated to the discharge current signal. In the local mode, signals from the azimuthally spaced probes exhibit a clear delay indicating the passage of "spokes" and are not well correlated to the discharge current. These spokes are localized oscillations propagating in the ExB direction that are typically 10-20% of the mean value. In contrast, the oscillations in the global mode can be 100% of the mean value. The transition between global and local modes occurs at higher relative magnetic field strengths for higher mass flow rates or higher discharge voltages. The thrust is constant through mode transition but the thrust-to-power decreased by 25% due to increasing discharge current. The plume shows significant differences between modes with the global mode significantly brighter in the channel and the near-field plasma plume as well as exhibiting a luminous spike on thruster centerline. Mode transitions provide valuable insight to thruster operation and suggest improved methods for thruster performance characterization.

  3. An approach to predicting bowing control parameter contours in violin performance

    OpenAIRE

    Maestre E.; Ramirez R.

    2010-01-01

    We present a machine learning approach to modeling bowing control parameter contours in violin performance. Using accurate sensing techniques we obtain relevant timbre-related bowing control parameters such as bow transversal velocity, bow pressing force, and bow-bridge distance of each performed note. Each performed note is represented by a curve parameter vector and a number of note classes are defined. The principal components of the data represented by the set of curve p...

  4. On the Earth's bow shock motion and speed

    International Nuclear Information System (INIS)

    The Earth's bow shock has often been shown to have rather high speed (50-150 km s-1) on the basis of different methods of investigation (Formisano et al., 1971; Greenstadt et al., 1972; Formisano et al., 1973; Guha et al., 1972). Voelk and Auer (1973) have recently considered the interaction of Tangential Discontinuities (TD) and Alfven waves with the bow shock in order to explain the shock motion and speed. The conclusion of these authors was that Alfven waves can cause very slow shock motions (up to 10 km s-1) while a TD hitting the bow shock can generate much higher speeds if the density ratio across the TD is high enough. It is the intention, here, to verify experimentally with the HEOS-1 plasma data the importance of TD for the bow shock motion and speed. (Auth.)

  5. Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2016-06-01

    Full Text Available Plasma engines are used for space propulsion as an alternative to chemical thrusters. Due to the high exhaust velocity of the propellant, they are more efficient for long-distance interplanetary space missions than their conventional counterparts. An advanced laboratory of plasma space propulsion (PlaNS at the Institute of Plasma Physics and Laser Microfusion (IPPLM specializes in designing and testing various electric propulsion devices. Inside of a special vacuum chamber with three performance pumps, an environment similar to the one that prevails in space is created. An innovative Micro Pulsed Plasma Thruster (LμPPT with liquid propellant was built at the laboratory. Now it is used to test the second prototype of Hall effect thruster (HET operating on krypton propellant. Meantime, an improved prototype of krypton Hall thruster is constructed.

  6. Evolution of bow-tie architectures in biology

    OpenAIRE

    Friedlander, Tamar; Mayo, Avraham E.; Tlusty, Tsvi; Alon, Uri

    2014-01-01

    Bow-tie or hourglass structure is a common architectural feature found in biological and technological networks. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signalin...

  7. Congenital anterolateral tibial bowing and polydactyly: a case report

    Directory of Open Access Journals (Sweden)

    Lemire Edmond G

    2007-07-01

    Full Text Available Abstract Congenital anterolateral bowing of the tibia is a rare deformity that may lead to pseudarthrosis and risk of fracture. This is commonly associated with neurofibromatosis type 1. In this report, we describe a 15-month old male with congenital anterolateral bowing of the right tibia and associated hallux duplication. This is a distinct entity with a generally favourable prognosis that should not be confused with other conditions such as neurofibromatosis type 1. Previously published cases are reviewed.

  8. Anatomy of wood for bows of string instruments

    OpenAIRE

    Čufar, Katarina; Demšar, Blaž; Zupančič, Martin; Koch, Gerald; Oven, Primož

    2007-01-01

    Four specimens of wood originating from string instrument bows or from the material intended to be used for the repair of bows were obtained from the string instrument workshop "Atelje Demšar". Foreign wood traders supplied the specimens under their commercial names: (1) pernambouc, (2) horse flesh, (3) brasil, and (4) snakewood. Macroscopic and microscopic wood anatomical investigations were carried out in order to verify the nomenclature of the traded specimens. The microscopic identificati...

  9. Dual-Frequency Operation of Bow-Tie Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    钟顺时; 张需溥

    2005-01-01

    Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.

  10. Evolution of bow-tie architectures in biology.

    OpenAIRE

    Tamar Friedlander; Mayo, Avraham E.; Tsvi Tlusty; Uri Alon

    2015-01-01

    Bow-tie or hourglass structure is a common architectural feature found in biological and technological networks. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signalin...

  11. Electron-wall interaction in Hall thrusters

    International Nuclear Information System (INIS)

    Electron-wall interaction effects in Hall thrusters are studied through measurements of the plasma response to variations of the thruster channel width and the discharge voltage. The discharge voltage threshold is shown to separate two thruster regimes. Below this threshold, the electron energy gain is constant in the acceleration region and therefore, secondary electron emission (SEE) from the channel walls is insufficient to enhance electron energy losses at the channel walls. Above this voltage threshold, the maximum electron temperature saturates. This result seemingly agrees with predictions of the temperature saturation, which recent Hall thruster models explain as a transition to space-charge saturated regime of the near-wall sheath. However, in the experiment, the maximum saturation temperature exceeds by almost three times the critical value estimated under the assumption of a Maxwellian electron energy distribution function. The channel narrowing, which should also enhance electron-wall collisions, causes unexpectedly larger changes of the plasma potential distribution than does the increase of the electron temperature with the discharge voltage. An enhanced anomalous crossed-field mobility (near wall or Bohm-type) is suggested by a hydrodynamic model as an explanation to the reduced electric field measured inside a narrow channel. We found, however, no experimental evidence of a coupling between the maximum electron temperature and the location of the accelerating voltage drop, which might have been expected due to the SEE-induced near-wall conductivity

  12. NASA's Evolutionary Xenon Thruster (NEXT) Project Qualification Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction After 450 kg

    Science.gov (United States)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 28,500 hr of operation and processed 466 kg of xenon throughput--more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  13. Los Alamos NEP research in advanced plasma thrusters

    Science.gov (United States)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  14. Plasma Diagnostic and Performance of a Permanent Magnet Hall Thruster

    CERN Document Server

    Ferreira, J L; Rego, I D S; Ferreira, I S; Ferreira, Jose Leonardo; Souza, Joao Henrique Campos De; Rego, Israel Da Silveira; Ferreira, Ivan Soares

    2004-01-01

    Electric propulsion is now a sucessfull method for primary propulsion of deep space long duration missions and for geosyncronous satellite attitude control. Closed Drift Plasma Thruster, so called Hall Thruster or SPT (stationary plasma thruster) were primarily conceived in USSR (the ancient Soviet Union) and now it is been developed by space agencies, space research institutes and industries in several countries such as France, USA, Israel, Russian Federation and Brazil. In this work, we show plasma characteristics and performance of a Hall Thruster designed with an innovative concept which uses an array of permanent magnets, instead of an eletromagnet, to produce a radial magnetic field inside its cylindrical plasma drift channel. Within this new concept, we expect to develop a Hall Thruster within power consuption that will scale up to small and medium size satellites. A plasma density and temperature space profiles inside and outside the thruster channel will be shown. Space plasma potential, ion temperat...

  15. Bowing behavior of subassemblies in experimental fast reactor ''JOYO''

    International Nuclear Information System (INIS)

    In JOYO, the measured power coefficients in the beginning of the operation cycle of MK-I and MK-II cores showed power dependence, while the calculation without taking account of bowing predicted little power dependence. The bowing analysis was performed in order to investigate the power dependence observed in the measured power coefficients and the following conclusions were obtained. (1) The evaluated power coefficients taking account of bowing effect agree better with measured ones than the calculated ones without taking account of bowing effect in MK-I core. (2) In MK-II core, although the analytical results show not so good agreement quantitatively with the measured power coefficients, it is suggested that they agree better depending on the uncertain parameters such as the heat generation in the reflector region, the threshold moment for leaning and the stiffness of the inner reflector. (3) It becomes clear from these results that the power dependence observed in the measured power coefficients in JOYO is due to the bowing effect. (author)

  16. BowTieBuilder: modeling signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Schröder Adrian

    2009-06-01

    Full Text Available Abstract Background Sensory proteins react to changing environmental conditions by transducing signals into the cell. These signals are integrated into core proteins that activate downstream target proteins such as transcription factors (TFs. This structure is referred to as a bow tie, and allows cells to respond appropriately to complex environmental conditions. Understanding this cellular processing of information, from sensory proteins (e.g., cell-surface proteins to target proteins (e.g., TFs is important, yet for many processes the signaling pathways remain unknown. Results Here, we present BowTieBuilder for inferring signal transduction pathways from multiple source and target proteins. Given protein-protein interaction (PPI data signaling pathways are assembled without knowledge of the intermediate signaling proteins while maximizing the overall probability of the pathway. To assess the inference quality, BowTieBuilder and three alternative heuristics are applied to several pathways, and the resulting pathways are compared to reference pathways taken from KEGG. In addition, BowTieBuilder is used to infer a signaling pathway of the innate immune response in humans and a signaling pathway that potentially regulates an underlying gene regulatory network. Conclusion We show that BowTieBuilder, given multiple source and/or target proteins, infers pathways with satisfactory recall and precision rates and detects the core proteins of each pathway.

  17. High-Pressure Lightweight Thrusters

    Science.gov (United States)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    interface realizes pseudo-plastic behavior with significant increase in the tensile strength. The investigation of high-temperature strength of C/Cs under high-rate heating (critical for thrust chambers) shows that tensile and compression strength increases from 70 MPa at room temperature to 110 MPa at 1,773 K, and up to 125 MPa at 2,473 K. Despite these unique properties, the use of C/Cs is limited by its high oxidation rate at elevated temperatures. Lining carbon/carbon chambers with a thin layer of iridium or iridium and rhenium is an innovative way to use proven refractory metals and provide the oxidation barrier necessary to enable the use of carbon/ carbon composites. Due to the lower density of C/Cs as compared to SiC/SiC composites, an iridium liner can be added to the C/C structure and still be below the overall thruster weight. Weight calculations show that C/C, C/C with 50 microns of Ir, and C/C with 100 microns of Ir are of less weight than alternative materials for the same construction.

  18. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    Science.gov (United States)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  19. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is to develop field emission electric propulsion (FEEP) thruster using carbon nanotubes (CNT) integrated anode. FEEP thrusters have gained...

  20. Pressure History Measurement in a Microwave Beaming Thruster

    International Nuclear Information System (INIS)

    In a microwave beaming thruster with a 1-dimensional nozzle, plasma and shock wave propagates in the nozzle absorbing microwave power. In this study, pressure histories in the thruster are measured using pressure gauges. Measured pressure history at the thruster wall shows constant pressure during plasma propagation in the nozzle. The result of measurement of the propagating velocities of shock wave and plasma shows that both propagate in the same velocity. These result shows that thrust producing model of analogy of pulse detonation engine is successful for the 1D thruster

  1. Control Valve for Miniature Xenon Ion Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is continuing its development of electric propulsion engines for various applications. Efforts have been directed toward both large and small thrusters,...

  2. Thermal Management of Superconducting Electromagnets in VASIMR Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned space exploration missions will require high power electric propulsion. VASIMR thrusters are the most attractive option because they offer short...

  3. High Efficiency Hall Thruster Discharge Power Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek leveraged previous, internally sponsored, high power, Hall thruster discharge converter development which allowed it to design, build, and test new printed...

  4. Foreshock ions observed behind the Martian bow shock

    Science.gov (United States)

    Frahm, R. A.; Yamauchi, M.; Winningham, J. D.; Lundin, R.; Sharber, J. R.; Nilsson, H.; Coates, A. J.

    2016-08-01

    The Mars Express Analyzer of Space Plasmas and Energetic Atoms experiment contains ion and electron instruments for conducting plasma measurements. On January 23, 2012, during in-bound travel of Mars Express in the southern hemisphere of Mars from its dawn side toward periapsis at dusk, the plasma instruments measured foreshock-like ion beams extending from outside the bow shock and into the magnetosphere, continuing to a distance of about a proton gyroradius from the bow shock. These ion beams were mostly protons, were observed to have energies greater than solar wind protons, and were not gyrating, in agreement with reflections of the solar wind proton beam. Furthermore, in the foreshock region the ion energy gradually decreased toward the magnetosheath, in agreement with an acceleration by outward-directed electric field in the bowshock. The observations also suggest that this electric field exists even inside the magnetosheath within the distance of a proton gyroradius from the bow shock.

  5. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    CERN Document Server

    Mann, Christopher R; Morris, Melissa M

    2016-01-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo's eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adia...

  6. Bow and stern waves triggered by the Moon's shadow boat

    Science.gov (United States)

    Liu, J. Y.; Sun, Y. Y.; Kakinami, Y.; Chen, C. H.; Lin, C. H.; Tsai, H. F.

    2011-09-01

    It has been predicted that the Moon's shadow, the cooling region, sweeping over the Earth's atmosphere with a supersonic speed could trigger bow waves since 1970. The longest total solar eclipse within next hundred years occurring on 22 July 2009 sweeps over the Eastern Asia region during the noontime period. An analysis of the Hilbert-Huang transform (HHT) is applied to study ionospheric TEC (total electron content) derived from ground-based GPS receivers in Taiwan and Japan. We not only find the feature of the predicted bow wave but also the stern wave on the equator side of the eclipse path, as well as the stern wake right behind the Moon's shadow boat. The bow and stern waves are formed by acoustic gravity waves of periods about 3 and/or 5 minutes traveling equatorward with a phase speed of about 100 m/s in the ionosphere.

  7. ECR-GDM Thruster for Fusion Propulsion

    International Nuclear Information System (INIS)

    The concept of the Gasdynamic Mirror (GDM) device for fusion propulsion was proposed by and Lee (1995) over a decade ago and several theoretical papers has supported the feasibility of the concept. A new ECR plasma source has been built to supply power to the GDM experimental thruster previously tested at the Marshall Space Flight Center (MSFC). The new plasma generator, powered by microwaves at 2.45 or 10 GHz. is currently being tested. This ECR plasma source operates in a number of distinct plasma modes, depending upon the strength and shape of the local magnetic field. Of particular interest is the compact plasma jet issuing form the plasma generator when operated in a mirror configuration. The measured velocity profile in the jet plume is bimodal, possibly as a result of the GDM effect in the ECR chamber of the thruster.

  8. ECR-GDM Thruster for Fusion Propulsion

    Science.gov (United States)

    Brainerd, Jerome J.; Reisz, Al

    2009-03-01

    The concept of the Gasdynamic Mirror (GDM) device for fusion propulsion was proposed by and Lee (1995) over a decade ago and several theoretical papers has supported the feasibility of the concept. A new ECR plasma source has been built to supply power to the GDM experimental thruster previously tested at the Marshall Space Flight Center (MSFC). The new plasma generator, powered by microwaves at 2.45 or 10 GHz. is currently being tested. This ECR plasma source operates in a number of distinct plasma modes, depending upon the strength and shape of the local magnetic field. Of particular interest is the compact plasma jet issuing form the plasma generator when operated in a mirror configuration. The measured velocity profile in the jet plume is bimodal, possibly as a result of the GDM effect in the ECR chamber of the thruster.

  9. Experimental and analytical ion thruster research

    Science.gov (United States)

    Ruyten, Wilhelmus M.; Friedly, V. J.; Peng, Xiaohang; Keefer, Dennis

    1993-01-01

    The results of further spectroscopic studies on the plume from a 3 cm ion source operated on an argon propellant is reported on. In particular, it is shown that it should be possible to use the spectroscopic technique to measure the plasma density of the ion plume close to the grids, where it is difficult to use electrical probe measurements. How the technique, along with electrical probe measurements in the far downstream region of the plume, can be used to characterize the operation of a three-grid, 15 cm diameter thruster from NASA JPL is outlined. Pumping speed measurements on the Vacuum Research Facility have shown that this facility should be adequate for testing the JPL thruster at pressures in the low 10(exp -5) Torr range. Finally, we describe a simple analytical model which can be used to calculate the grid impingement current which results from charge-exchange collisions in the ion plume.

  10. Determination of the Hall Thruster Operating Regimes

    Energy Technology Data Exchange (ETDEWEB)

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-04-09

    A quasi one-dimensional (1-D) steady-state model of the Hall thruster is presented. For the same discharge voltage two operating regimes are possible -- with and without the anode sheath. For given mass flow rate, magnetic field profile and discharge voltage a unique solution can be constructed, assuming that the thruster operates in one of the regimes. However, we show that for a given temperature profile the applied discharge voltage uniquely determines the operating regime: for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. It is also shown that a good correlation between the quasi 1-D model and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile.

  11. Modelling tunnel thrusters for autonomous underwater vehicles

    OpenAIRE

    Palmer, A.; Hearn, G.E.; Stevenson, P

    2008-01-01

    With 900 Autonomous Underwater Vehicles (AUVs) required over the next decade (Newman et al., 2007) existing survey-style AUVs need improved utilization factors. Additional control devices to extend operational capability need consideration together with the interchange between AUV control approaches. This paper considers supplementary through-body tunnel thruster control during the transition from survey operation to low-speed manoeuvring. Modified manoeuvring equations permit investigation o...

  12. [Forensic medical characteristics of the injuries inflicted by modern sport bow].

    Science.gov (United States)

    Babakhanian, R V; Isakov, V D; Gusev, N Iu; Lebedev, V N

    2006-01-01

    Modern bows are classified as representatives of darts. Construction characteristics of bows and arrows, damage to experimental cotton targets from shooting distance of 1-15 m are described. PMID:16826840

  13. Crushing of ship bows in head-on collision

    DEFF Research Database (Denmark)

    Ocakli, H.; Zhang, S.; Pedersen, Preben Terndrup

    2004-01-01

    Semi-analytical methods for analysis of plate crushing and ship bow damage in head-on collisions are developed in this paper. Existing experimental and theoretical studies for crushing analysis of plated structures are summarized and compared. Simple formulae for determining the crushing force...... approach developed can be used easily to determine the crushing resistance and damage extent of the ship bow when ship length and collision speed are known. The method can be used in probabilistic analysis of damage extents in ship collisions where a large number of calculations are generally required....

  14. A Study on Self Centering of Face Bows

    OpenAIRE

    Veerareddy, Chandrika; Srividya, S.; Chandrasekharan Nair, K.; Shetty, Jayakar; Vishwanath, G.

    2010-01-01

    Hanau spring bow has been in use since 1986. Hanau spring bow is claimed to maintain self centering property when it is positioned in the patient as well as in the articulator. However there is no documented evidence to prove that feature. Mainly it was due to the absence of a testing device. Exclusively for the present study, the testing device consisting of a platform, stops and distance measuring system was designed by the third author. This study proved that Hanau has the capability of se...

  15. A Multichannel THz Detector Using Integrated Bow-Tie Antennas

    OpenAIRE

    Hairui Liu; Junsheng Yu; Peter Huggard; Byron Alderman

    2013-01-01

    This paper presents a kind of a multichannel THz detector using lens-based bow-tie array. A hyperhemispherical silicon lens is employed to provide a focal plane; 8 bow-tie elements are arranged on the focal plane with careful design to show a performance of broadband, high gain, well compact, and easy assembling. These characteristics of the detector are preferred for detecting weak THz signal. Measured far field shows that the radiation pattern of each element is shifted angularly, by ≈9°, w...

  16. Understanding CANDU fuel bowing in dryout: an industry approach

    International Nuclear Information System (INIS)

    Fuel element bow induced by dryout could potentially perturb the coolant flow distribution and heat transfer from the fuel element to the coolant. Some accident scenarios leading to dryout of the fuel element are: loss of power regulation pump trip, pump seizure, small and large break loss of coolant accidents. In these accidents, it is desirable to show with confidence that the fuel remains sufficiently cooled to maintain its geometry, even if it is in dryout. This can be demonstrated if fuel elements are separated from each other and from the pressure tube, with a sufficient (and stable) gap. Therefore, the prediction of the amount of bow, and its effect on heat transfer conditions is required for the assessments. The utilities have joined force in launching an experimental investigation at Stern Laboratories to characterize the bowing phenomena. This program will investigate the amount of deflection, transient and permanent, that results from accident conditions which cause a dry patch on one side of the sheath. This is expected to bound the consequences of fuel bowing due to dryout. Since the accident transients begin at full power and high coolant pressure (about 10 MPa) they generate sharp thermal gradients (dry patch) and it is necessary to develop a simulation with representative dry fuel sheath conditions initiated from a normal full power and coolant state. The amount of bow is driven by thermal gradients in both the fuel pellets and the sheath, therefore, the thermal gradients should be representative. This program is structured in a series of tests progressing from simple representation to complex simulation. It is divided into 3 experimental phases: Phase 1 - Thermalhydraulic simulation of fuel element bow by a heated tube; Phase 2 - Thermal and mechanical bow with a simulator which accounts for pellet / fuel sheath interaction with internal pellet temperature distributions; and Phase 3 - Fuel element bow with a simulator using Zircaloy-4 fuel sheath

  17. Smashing the Guitar: An Evolving Neutron Star Bow Shock

    OpenAIRE

    S Chatterjee; Cordes, J. M.

    2003-01-01

    The Guitar nebula is a spectacular example of an H-alpha bow shock nebula produced by the interaction of a neutron star with its environment. The radio pulsar B2224+65 is traveling at ~800--1600 km/s (for a distance of 1--2 kpc), placing it on the high-velocity tail of the pulsar velocity distribution. Here we report time evolution in the shape of the Guitar nebula, the first such observations for a bow shock nebula, as seen in H-alpha imaging with the Hubble Space Telescope. The morphology o...

  18. 77 FR 19661 - City of Broken Bow, OK; Notice of Technical Conference

    Science.gov (United States)

    2012-04-02

    ... Energy Regulatory Commission City of Broken Bow, OK; Notice of Technical Conference March 21, 2012. Take.... Forest Service on November 16, 2007 for the Broken Bow Re-Regulation Dam Hydroelectric Project No. 12470.... Forest Service's Hochatown Office, Route 4, Broken Bow, OK 74728. All local, state, and federal...

  19. Hall-Effect Thruster Utilizing Bismuth as Propellant

    Science.gov (United States)

    Szabo, James; Gasdaska, Charles; Hruby, Vlad; Robin, Mike

    2008-01-01

    A laboratory-model Hall-effect spacecraft thruster was developed that utilizes bismuth as the propellant. Xenon was used in most prior Hall-effect thrusters. Bismuth is an attractive alternative because it has a larger atomic mass, a larger electron-impact-ionization cross-section, and is cheaper and more plentiful.

  20. Monopropellant Thruster Firing Test using KC12GA Catalyst

    Science.gov (United States)

    Goto, D.; Kagawa, H.; Hattori, A.; Kajiwara, K.

    2004-10-01

    Many monopropellant thrusters use a catalyst for decomposing the propellant, hydrazine. The catalyst directly affects the thruster performance and lifetime. Therefore, it is important to confirm that the catalyst is suitable for our thrusters. Until 2002, we used Shell405 catalyst for satellite and H-IIA launch vehicle upperstage RCS thrusters. In 2002, however, Shell Chemical Inc. ceased manufacturing Shell405 catalyst and transferred the product to AEROJET, where it was renamed S405. We found KC12GA (Hydrazine decomposition catalyst, manufactured by Solvay, Belgium) as well as S405 and checked physical properties of KC12GA and S405. We then conducted a series of spontaneous tests, including life firing tests on various monopropellant thrusters (20N, 4N and 1N) loaded with KC12GA. The result showed that KC12GA was compatible with Shell 405, and that thrusters with KC12GA might have longer life than thrusters with Shell 405. This paper reports our comparison of Shell 405 and KC12GA applied to JAXA/lA monopropellant thrusters.

  1. Search for systemic mass loss in Algols with bow shocks

    Science.gov (United States)

    Mayer, A.; Deschamps, R.; Jorissen, A.

    2016-03-01

    Aims: Various studies indicate that interacting binary stars of Algol type evolve non-conservatively. However, direct detections of systemic mass loss in Algols have been scarce so far. We study the systemic mass loss in Algols by looking for the presence of infrared excesses originating from the thermal emission of dust grains, which is linked to the presence of a stellar wind. Methods: In contrast to previous studies, we make use of the fact that stellar and interstellar material is piled up at the edge of the astrosphere where the stellar wind interacts with the interstellar medium. We analyse WISE W3 12 μm and WISE W4 22 μm data of Algol-type binary Be and B[e] stars and the properties of their bow shocks. From the stand-off distance of the bow shock we are able to determine the mass-loss rate of the binary system. Results: Although the velocities of the stars with respect to the interstellar medium are quite low, we find bow shocks present in two systems, namely π Aqr, and ϕ Per; a third system, CX Dra, shows a more irregular circumstellar environment morphology which might somehow be related to systemic mass loss. The properties of the two bow shocks point to mass-loss rates and wind velocities typical of single B stars, which do not support an enhanced systemic mass loss.

  2. THE JET-DRIVEN BOW SHOCK IN OUTFLOWS

    Institute of Scientific and Technical Information of China (English)

    ZhangQing; ZhengXingwu

    1999-01-01

    Recent high resolution observations show the high collimated bipolar molecular outflows from young stellar objects, such as NGC 2 264G and NGC 2 024. Existing models can not yet give complete interpretations of the structure and properties of the observed flow. Here, we propose a jet-driven bow

  3. Multi-Spacecraft Investigation of Terrestrial Bow Shock: Cluster Observations

    Czech Academy of Sciences Publication Activity Database

    Krupařová, Oksana; Krupař, Vratislav; Santolík, Ondřej; Souček, Jan; Šafránková, J.; Němeček, Z.; Němec, F.; Maksimovic, M.

    San Francisco: American Geophysical Union, 2015. SM13C-2516. [AGU Fall Meeting 2015. 14.12.2015-18.12.2015, San Francisco] Institutional support: RVO:68378289 Keywords : magnetosphere * bow shock * Cluster Subject RIV: BL - Plasma and Gas Discharge Physics https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/81554

  4. Accurate methodology for channel bow impact on CPR

    International Nuclear Information System (INIS)

    An overview is given of existing CPR design criteria and the methods used in BWR reload analysis to evaluate the impact of channel bow on CPR margins. Potential weaknesses in today's methodologies are discussed. Westinghouse in collaboration with KKL and Axpo - operator and owner of the Leibstadt NPP - has developed an enhanced CPR methodology based on a new criterion to protect against dryout during normal operation and with a more rigorous treatment of channel bow. The new steady-state criterion is expressed in terms of an upper limit of 0.01 for the dryout failure probability per year. This is considered a meaningful and appropriate criterion that can be directly related to the probabilistic criteria set-up for the analyses of Anticipated Operation Occurrences (AOOs) and accidents. In the Monte Carlo approach a statistical modeling of channel bow and an accurate evaluation of CPR response functions allow the associated CPR penalties to be included directly in the plant SLMCPR and OLMCPR in a best-estimate manner. In this way, the treatment of channel bow is equivalent to all other uncertainties affecting CPR. The enhanced CPR methodology has been implemented in the Westinghouse Monte Carlo code, McSLAP. The methodology improves the quality of dryout safety assessments by supplying more valuable information and better control of conservatisms in establishing operational limits for CPR. The methodology is demonstrated with application examples from the introduction at KKL. (orig.)

  5. Modeling non-thermal emission from stellar bow shocks

    CERN Document Server

    Pereira, V; Miceli, M; Bonito, R; de Castro, E

    2016-01-01

    Runaway O- and early B-type stars passing throughout the interstellar medium at supersonic velocities and characterized by strong stellar winds may produce bow shocks that can serve as particle acceleration sites. Previous theoretical models predict the production of high energy photons by non-thermal radiative processes, but their efficiency is still debated. We aim to test and explain the possibility of emission from the bow shocks formed by runaway stars traveling through the interstellar medium by using previous theoretical models. We apply our model to AE Aurigae, the first reported star with an X-ray detected bow shock, to BD+43 3654, in which the observations failed in detecting high energy emission, and to the transition phase of a supergiant star in the late stages of its life.From our analysis, we confirm that the X-ray emission from the bow shock produced by AE Aurigae can be explained by inverse Compton processes involving the infrared photons of the heated dust. We also predict low high energy fl...

  6. Application of Bow-tie methodology to improve patient safety.

    Science.gov (United States)

    Abdi, Zhaleh; Ravaghi, Hamid; Abbasi, Mohsen; Delgoshaei, Bahram; Esfandiari, Somayeh

    2016-05-01

    Purpose - The purpose of this paper is to apply Bow-tie methodology, a proactive risk assessment technique based on systemic approach, for prospective analysis of the risks threatening patient safety in intensive care unit (ICU). Design/methodology/approach - Bow-tie methodology was used to manage clinical risks threatening patient safety by a multidisciplinary team in the ICU. The Bow-tie analysis was conducted on incidents related to high-alert medications, ventilator associated pneumonia, catheter-related blood stream infection, urinary tract infection, and unwanted extubation. Findings - In total, 48 potential adverse events were analysed. The causal factors were identified and classified into relevant categories. The number and effectiveness of existing preventive and protective barriers were examined for each potential adverse event. The adverse events were evaluated according to the risk criteria and a set of interventions were proposed with the aim of improving the existing barriers or implementing new barriers. A number of recommendations were implemented in the ICU, while considering their feasibility. Originality/value - The application of Bow-tie methodology led to practical recommendations to eliminate or control the hazards identified. It also contributed to better understanding of hazard prevention and protection required for safe operations in clinical settings. PMID:27142951

  7. Hierarchical modularity of nested bow-ties in metabolic networks

    Directory of Open Access Journals (Sweden)

    Luo Jian-Hua

    2006-08-01

    Full Text Available Abstract Background The exploration of the structural topology and the organizing principles of genome-based large-scale metabolic networks is essential for studying possible relations between structure and functionality of metabolic networks. Topological analysis of graph models has often been applied to study the structural characteristics of complex metabolic networks. Results In this work, metabolic networks of 75 organisms were investigated from a topological point of view. Network decomposition of three microbes (Escherichia coli, Aeropyrum pernix and Saccharomyces cerevisiae shows that almost all of the sub-networks exhibit a highly modularized bow-tie topological pattern similar to that of the global metabolic networks. Moreover, these small bow-ties are hierarchically nested into larger ones and collectively integrated into a large metabolic network, and important features of this modularity are not observed in the random shuffled network. In addition, such a bow-tie pattern appears to be present in certain chemically isolated functional modules and spatially separated modules including carbohydrate metabolism, cytosol and mitochondrion respectively. Conclusion The highly modularized bow-tie pattern is present at different levels and scales, and in different chemical and spatial modules of metabolic networks, which is likely the result of the evolutionary process rather than a random accident. Identification and analysis of such a pattern is helpful for understanding the design principles and facilitate the modelling of metabolic networks.

  8. Effects of Enhanced Eathode Electron Emission on Hall Thruster Operation

    Energy Technology Data Exchange (ETDEWEB)

    Y. Raitses, A. Smirnov and N. J. Fisch

    2009-04-24

    Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steadystate parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction of the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction of the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes of the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations.

  9. Double tibial osteotomy for bow leg patients: A case series

    Directory of Open Access Journals (Sweden)

    Khalilollah Nazem

    2013-01-01

    Full Text Available Background: High tibia osteotomy (HTO is a common surgical operation for correction of genu varum deformity. In some patients, there are concurrent tibia vara and genu varum (bow leg. This study aimed to consider the possibility of better correction of bow leg deformity after double level tibial osteotomy (DLTO. Materials and Methods: A case series of 10 patients of genu varum in addition to tibia vara (bow leg deformity who were referred to orthopedic ward of an academic hospital of Isfahan- Iran during 2009-2011 were included in the study. The mean age was 17.3 ± 3.1 years and all of them underwent DLTO. The results of treatment have been assessed based on clinical and radiological parameters before and after surgery. Results: The mean pre- and post operative values for Tibia-Femoral Angle, Medial Proximal of Tibia Angle (MPTA, and Lateral Distal of Tibia Angle (LDTA were 18.13 ± 3.05° vs. 3.93 ± 0.66°, 79.13 ± 3.4° vs. 89.7 ± 1.8° and 96.40 ± 1.8° vs. 88.73 ± 3.0° respectively (P < 0.05. Improvement of all radiological parameters was meaningful. Seventy three percent of patients had normal mechanical axis of limb after surgery. The remaining cases had varus deformity in distal femur that was corrected by valgus supracondylar osteotomy in an additional operation. Limited range of motion (ROM near knee and ankle was not observed. Conclusion : DLTO correct bow leg deformity in the point of alignment of limb and paralleling of knee and ankle joint more effectively. This method can be used in metabolic and congenital bow leg which deformities are present in throughout of the lower limb. We described this technique for the first time.

  10. Azimuthal Spoke Propagation in Hall Effect Thrusters

    Science.gov (United States)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Spokes are azimuthally propagating perturbations in the plasma discharge of Hall Effect Thrusters (HETs) that travel in the E x B direction and have been observed in many different systems. The propagation of azimuthal spokes are investigated in a 6 kW HET known as the H6 using ultra-fast imaging and azimuthally spaced probes. A spoke surface is a 2-D plot of azimuthal light intensity evolution over time calculated from 87,500 frames/s videos. The spoke velocity has been determined using three methods with similar results: manual fitting of diagonal lines on the spoke surface, linear cross-correlation between azimuthal locations and an approximated dispersion relation. The spoke velocity for three discharge voltages (300, 400 and 450 V) and three anode mass flow rates (14.7, 19.5 and 25.2 mg/s) yielded spoke velocities between 1500 and 2200 m/s across a range of normalized magnetic field settings. The spoke velocity was inversely dependent on magnetic field strength for low B-field settings and asymptoted at B-field higher values. The velocities and frequencies are compared to standard drifts and plasma waves such as E x B drift, electrostatic ion cyclotron, magnetosonic and various drift waves. The empirically approximated dispersion relation yielded a characteristic velocity that matched the ion acoustic speed for 5 eV electrons that exist in the near-anode and near-field plume regions of the discharge channel based on internal measurements. Thruster performance has been linked to operating mode where thrust-to-power is maximized when azimuthal spokes are present so investigating the underlying mechanism of spokes will benefit thruster operation.

  11. Simplified power supplies for ion thrusters

    Science.gov (United States)

    Gruber, R. P.

    1981-01-01

    A program addressing less complex and potentially lower cost ion thruster systems has been started at the NASA Lewis Research Center. This paper discusses the initial development and demonstration of power supplies with an order of magnitude reduction in parts count, leading to increased reliability at lower weight, while still maintaining thrust system performance. Two new self-regulating keeper power supply circuits were developed and tested. One supply comprises 14 parts and uses an input voltage range of 18 to 36 volts, the other operates from 200 to 400 volts and requires 22 components. A new technique for controlling heater power is also demonstrated.

  12. Small satellites are beautiful. [Ion thruster propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Furniss, Tim

    AEA Technology, the commercial arm of the UK Atomic Energy Authority, is conducting an internally funded, detailed definition study of a spacecraft 'bus' and propulsion system for small, economical, off-the-shelf satellites, launched quickly by low cost boosters. These 'lightsats', as they are called, could use an ion thruster to increase payload capability or launcher enhancement. This article discusses the concept and its novel propulsion system, which may fly a demonstration mission later this decade. (Author).

  13. Global model of an iodine gridded plasma thruster

    Science.gov (United States)

    Grondein, P.; Lafleur, T.; Chabert, P.; Aanesland, A.

    2016-03-01

    Most state-of-the-art electric space propulsion systems such as gridded and Hall effect thrusters use xenon as the propellant gas. However, xenon is very rare, expensive to produce, and used in a number of competing industrial applications. Alternatives to xenon are currently being investigated, and iodine has emerged as a potential candidate. Its lower cost and larger availability, its solid state at standard temperature and pressure, its low vapour pressure and its low ionization potential make it an attractive option. In this work, we compare the performances of a gridded ion thruster operating separately with iodine and xenon, under otherwise identical conditions using a global model. The thruster discharge properties such as neutral, ion, and electron densities and electron temperature are calculated, as well as the thruster performance parameters such as thrust, specific impulse, and system efficiencies. For similar operating conditions, representative of realistic thrusters, the model predicts similar thrust levels and performances for both iodine and xenon. The thruster efficiency is however slightly higher for iodine compared with xenon, due to its lower ionization potential. This demonstrates that iodine could be a viable alternative propellant for gridded plasma thrusters.

  14. Cassini Thruster Calibration Algorithm Using Reaction Wheel Biasing Data

    Science.gov (United States)

    Rizvi, Farheen

    2012-01-01

    Thrust force estimates for the reaction control thrusters on-board Cassini spacecraft are presented in this paper. Cassini consists of two thruster branches (A and B) each with eight thrusters. The four Z-thrusters control the X and Y-axes, while the four Y-thrusters control the Z-axis. It is important to track the thrust force estimates in order to detect any thruster degradation and for supporting various activities in spacecraft operations (Titan flyby, spacecraft maneuvers). The Euler equation, which describes the rotational motion of the spacecraft during a reaction wheel bias event, is used to develop the algorithm. The thrust estimates are obtained from the pseudo inverse solution using flight telemetry during the bias. Results show that the A-branch Z3A and Z4A thrusters exhibited degraded thrust in November 2008. Due to the degraded thrust performance of Z3A and Z4A, A-branch usage was discontinued and prime branch was swapped to B-branch in March 2009. The thrust estimates from the B-branch do not show any degradation to date. The algorithm is used to trend the B-branch thrust force estimates as the mission continues.

  15. Optimisation of a quantum pair space thruster

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2012-06-01

    Full Text Available The paper addresses the problem of propulsion for long term space missions. Traditionally a space propulsion unit has a propellant mass which is ejected trough a nozzle to generate thrust; this is also the case with inert gases energized by an on-board power unit. Unconventional methods for propulsion include high energy LASERs that rely on the momentum of photons to generate thrust. Anti-matter has also been proposed for energy storage. Although the momentum of ejected gas is significantly higher, the LASER propulsion offers the perspective of unlimited operational time – provided there is a power source. The paper will propose the use of the quantum pair formation for generating a working mass, this is different than conventional anti-matter thrusters since the material particles generated are used as propellant not as energy storage.Two methods will be compared: LASER and positron-electron, quantum pair formation. The latter will be shown to offer better momentum above certain energy levels.For the demonstrations an analytical solution is obtained and provided in the form of various coefficients. The implications are, for now, theoretical however the practicality of an optimized thruster using such particles is not to be neglected for long term space missions.

  16. Sputtering erosion in ion and plasma thrusters

    Science.gov (United States)

    Ray, Pradosh K.

    1995-08-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  17. High temperature thruster technology for spacecraft propulsion

    Science.gov (United States)

    Schneider, Steven J.

    A technology program has been underway since 1985 to develop high temperature oxidation-resistant thrusters for spacecraft applications. The successful development of this technology will provide the basis for the design of higher performance satellite engines with reduced plume contamination. Alternatively, this technology program will provide a material with high thermal margin to operate at conventional temperatures and provide increased life for refuelable or reusable spacecraft. The new chamber material consists of a rhenium substrate coated with iridium for oxidation protection. This material increases the operating temperature of thrusters to 2200°C, a significant increase over the 1400°C of the silicide-coated niobium chambers currently used. Stationkeeping class 22 N engines fabricated from iridium-coated rhenium have demonstrated steady state specific impulses 20 to 25 seconds higher than niobium chambers. Ir-Re apogee class 440 N engines are expected to deliver an additional 10 to 15 seconds. These improved performances are obtained by reducing or eliminating the fuel film cooling requirements in the combustion chamber while operating at the same overall mixture ratio as conventional engines. The program is attempting to envelope flight qualification requirements to reduce the potential risks and costs of flight qualification programs.

  18. Arctic Bowyery – the Use of Compression Wood in Bows in the Subarctic and Arctic Regions of Eurasia and America

    Directory of Open Access Journals (Sweden)

    Marcus Lepola

    2015-06-01

    Full Text Available This paper is a study of the traditional use of a special kind of wood in bow construction in Eurasia and North America. This special kind of wood, called compression wood and coming from coniferous trees, has unique qualities that makes it suitable for bow construction. Bows made using this special wood have been referred to as Finno-Ugric bows, Sámi bows, Two-Wood bows and Eurasia laminated bows. These bows appear to have developed from archaic forms of compression wood self bows that were made from a single piece of wood. Recently features similar to the Eurasian compression wood bows have been discovered in bows originating from Alaska, and the use of compression wood for bow manufacture has been known to some Canadian Inuit groups. This paper addresses the origin and possible diffusion pattern of this innovation in bow technology in Eurasia and suggests a timeframe and a possible source for the transfer of this knowledge to North America. This paper also discusses the role of the Asiatic composite bow in the development of bows in Eurasia.

  19. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    International Nuclear Information System (INIS)

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  20. Plasma diagnostic systems for Hall-effect plasma thrusters

    International Nuclear Information System (INIS)

    A joint programme, involving research laboratories from CNRS (Centre National de le Recherche Scientifique) and ONERA (Office National de Recherches Aerospatiales), was developed in France in connection with the French Space Agency (CNES) and industry (SNECMA) for the understanding of Hall-effect plasma thrusters. Different activities are pursued in parallel: an experimental test of different laboratories' thrusters; the development of diagnostic techniques to characterize the plasma inside and outside the thrusters; and the development of simulation and modelling able to describe characteristics and evaluate the thrusters' performances. This paper will be focused on diagnostics systems implemented in the PIVOINE facility. Time- and space-resolved measurements of the ion beam energy, distribution electron density and concentration in the plume are performed with a retarding potential analyser (RPA) and Langmuir probes mounted on a 2.5 m movable drive. The thruster can be moved axially to allow a 40x90 cm2 exploration of the plume. The investigation of the plasma inside the thruster is made by optical diagnostics. A CCD camera used in fast imaging mode is set outside the tank. The 45 deg. sight axis allows an internal view of the thruster's channel. Furthermore, a spectroscopic analysis is made by focusing the channel's light to a set of optical fibres connected to an imaging spectrometer equipped with a CCD camera. A specific laboratory thruster of 100 mm external diameter called SPT100-ML was studied in more detail, this model being designed to allow the implementation of optical fibres and wall probes diagnostics inside the channel's thruster. The stationary plasma thruster discharge is almost always characterized by low-frequency instabilities of the order of 10 kHz where the discharge current can reach a very high instantaneous level. The variation of the discharge and ion beam flux currents has been related to the spatiotemporal dynamic of the plasma inside

  1. Cluster Close Separation at the Bow Shock Campaign: Initial Results.

    Science.gov (United States)

    Balikhin, M. A.; Sagdeev, R.; Walker, S. N.; Malkov, M.; Krasnoselskikh, V.; Khotyaintsev, Y. V.; Fazakerley, A. N.; Doss, N.

    2015-12-01

    The Cluster close separation at the terrestrial bow shock campaign was aimed at probing the terrestrial bow shock front using multi-scale spacecraft separations. The closest separation (structure of the magnetic ramp. It is shown that the magnetic field perturbations observed within the ramp along the shock normal possess spatial scales a few times shorter than the ramp region itself, and are accompanied by variations in the electric field with magnitudes of a few tens mV/m. Using dual spacecraft measurements enables us to show that in the plane of the shock front the characteristic width of these structures corresponds to electron scales. Comparison of the magnetic field profile obtained from Cluster 3 and 4 indicates possibility that the initial stage of the front reformation is observed. However alternative explanations ( kinetic instabilities, corrugation instability) are also discussed.

  2. Energy band bowing parameter in MgZnO alloys

    International Nuclear Information System (INIS)

    We report on bandgap bowing parameters for wurtzite and cubic MgZnO alloys from a study of high quality and single phase films in all Mg content range. The Mg contents in the MgZnO films were accurately determined using the energy dispersive spectrometer and X-ray photoelectron spectroscopy (XPS). The measurement of bandgap energies by examining the onset of inelastic energy loss in core-level atomic spectra from XPS is proved to be valid for determining the bandgap of MgZnO films. The dependence of the energy bandgap on Mg content is found to deviate downwards from linearity. Fitting of the bandgap data resulted in two bowing parameters of 2.01 ± 0.04 eV and 1.48 ± 0.11 eV corresponding to wurtzite and cubic MgZnO films, respectively

  3. Mass-loading of bow shock pulsar wind nebulae

    CERN Document Server

    Morlino, G; Vorster, M

    2016-01-01

    We investigate the dynamics of bow shock nebulae created by pulsars moving supersonically through a partially ionized interstellar medium. A fraction of interstellar neutral hydrogen atoms penetrating into the tail region of a pulsar wind will undergo photo-ionization due to the UV light emitted by the nebula, with the resulting mass loading dramatically changing the flow dynamics of the light leptonic pulsar wind. Using a quasi 1-D hydrodynamic model of relativistic flow we find that if a relatively small density of neutral hydrogen, as low as $10^{-4}$ cm$^{-3}$, penetrate inside the pulsar wind, this is sufficient to strongly affect the tail flow. Mass loading leads to the fast expansion of the pulsar wind tail, making the tail flow intrinsically non-stationary. The shapes predicted for the bow shock nebulae compare well with observations, both in H$\\alpha$ and X-rays.

  4. A Multichannel THz Detector Using Integrated Bow-Tie Antennas

    Directory of Open Access Journals (Sweden)

    Hairui Liu

    2013-01-01

    Full Text Available This paper presents a kind of a multichannel THz detector using lens-based bow-tie array. A hyperhemispherical silicon lens is employed to provide a focal plane; 8 bow-tie elements are arranged on the focal plane with careful design to show a performance of broadband, high gain, well compact, and easy assembling. These characteristics of the detector are preferred for detecting weak THz signal. Measured far field shows that the radiation pattern of each element is shifted angularly, by ≈9°, which can be used for THz imaging. Tested responsivity of the detector shows a good spectral performance from 260 to 400 GHz: respective values were ≥220 V/W, and the best NEP is achieved at about 60 pW/. Besides that, the proposed antenna has advantages of simple structure, easy fabrication, and low cost.

  5. Organizing learning processes on risks by using the bow-tie representation

    International Nuclear Information System (INIS)

    The Aramis method proposes a complete and efficient way to manage risk analysis by using the bow-tie representation. This paper shows how the bow-tie representation can also be appropriate for experience learning. It describes how a pharmaceutical production plant uses bow-ties for incident and accident analysis. Two levels of bow-ties are constructed: standard bow-ties concern generic risks of the plant whereas local bow-ties represent accident scenarios specific to each workplace. When incidents or accidents are analyzed, knowledge that is gained is added to existing local bow-ties. Regularly, local bow-ties that have been updated are compared to standard bow-ties in order to revise them. Knowledge on safety at the global and at local levels is hence as accurate as possible and memorized in a real time framework. As it relies on the communication between safety experts and local operators, this use of the bow-ties contributes therefore to organizational learning for safety

  6. Organizing learning processes on risks by using the bow-tie representation.

    Science.gov (United States)

    Chevreau, F R; Wybo, J L; Cauchois, D

    2006-03-31

    The Aramis method proposes a complete and efficient way to manage risk analysis by using the bow-tie representation. This paper shows how the bow-tie representation can also be appropriate for experience learning. It describes how a pharmaceutical production plant uses bow-ties for incident and accident analysis. Two levels of bow-ties are constructed: standard bow-ties concern generic risks of the plant whereas local bow-ties represent accident scenarios specific to each workplace. When incidents or accidents are analyzed, knowledge that is gained is added to existing local bow-ties. Regularly, local bow-ties that have been updated are compared to standard bow-ties in order to revise them. Knowledge on safety at the global and at local levels is hence as accurate as possible and memorized in a real time framework. As it relies on the communication between safety experts and local operators, this use of the bow-ties contributes therefore to organizational learning for safety. PMID:16125315

  7. Statistical modeling of bowing control applied to violin sound synthesis

    OpenAIRE

    Maestre E.; Blaauw M.; Bonada J.; Guaus E.; Perez A.

    2010-01-01

    Excitation-continuous music instrument control patterns are often not explicitly represented in current sound synthesis techniques when applied to automatic performance. Both physical model-based and sample-based synthesis paradigms would benefit from a flexible and accurate instrument control model, enabling the improvement of naturalness and realism. We present a framework for modeling bowing control parameters in violin performance. Nearly non-intrusive sensing techniques allow fo...

  8. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    OpenAIRE

    Mann, Christopher R.; Boley, Aaron C.; Morris, Melissa M.

    2016-01-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo's eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting t...

  9. BowTieBuilder: modeling signal transduction pathways

    OpenAIRE

    Schröder Adrian; Dräger Andreas; Planatscher Hannes; Spangenberg Lucía; Supper Jochen; Zell Andreas

    2009-01-01

    Abstract Background Sensory proteins react to changing environmental conditions by transducing signals into the cell. These signals are integrated into core proteins that activate downstream target proteins such as transcription factors (TFs). This structure is referred to as a bow tie, and allows cells to respond appropriately to complex environmental conditions. Understanding this cellular processing of information, from sensory proteins (e.g., cell-surface proteins) to target proteins (e.g...

  10. Performance Characterization of Radial Stub Microstrip Bow-Tie Antenna

    OpenAIRE

    B.T.P.Madhav; S.S. Mohan Reddy; Neha Sharma; J. Ravindranath Chowdary; Bala Rama Pavithra; K.N.V.S. Kishore; G Sriram; B. Sachin Kumar

    2013-01-01

    In this paper a novel radial stub feeding microstrip bow-tie antenna is designed to operate between C and X band and its performance characterization is presented. This antenna is having simple structure and topology over other stub loaded antennas. In addition the proposed antenna adjusts to the desired frequency easily. Antenna output parameters like radiation pattern, axial ratio, directive gain andquality factor are simulated and presented in this current work.

  11. Performance Characterization of Radial Stub Microstrip Bow-Tie Antenna

    Directory of Open Access Journals (Sweden)

    B.T.P.Madhav

    2013-04-01

    Full Text Available In this paper a novel radial stub feeding microstrip bow-tie antenna is designed to operate between C and X band and its performance characterization is presented. This antenna is having simple structure and topology over other stub loaded antennas. In addition the proposed antenna adjusts to the desired frequency easily. Antenna output parameters like radiation pattern, axial ratio, directive gain andquality factor are simulated and presented in this current work.

  12. Broadband bow-tie antenna with tapered balun

    OpenAIRE

    Jaafar, Hussein Mohammed

    2014-01-01

    ABSTRACT: In microwave applications spectrum Industrial, Scientific and Medical (ISM) band, especially in wireless communication systems applications such as GSM, 3G, Wi-Fi and Wi-MAX applications, high antenna characteristics such as high gain and wide bandwidth are required. In this thesis, a broadband Bow Tie Antenna (BTA) with high performance characteristics has been designed, to cover the wireless application requirements. One of the fundamental problems of the transmission line in the ...

  13. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    Science.gov (United States)

    Mann, Christopher R.; Boley, Aaron C.; Morris, Melissa A.

    2016-02-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s-1 are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  14. Spacer grid for reducing bowing in a nuclear fuel assembly

    International Nuclear Information System (INIS)

    A bi-metallic spacer grid having a zircaloy perimeter strip consisting of oppositely facing, thin walled metal plates for closely surrounding the array of fuel rods. A rigid, stainless steel cross member extends between internal surfaces of the oppositely facing perimeter plates. In the preferred embodiment, the perimeter plates have cantilevered portions extending above and below the main body of the perimeter strip. The cross members interact with the enlarged portion by urging them outward relative to the perimeter strip as the fuel assembly heats up during operation. The outwardly projecting interface surfaces of each assembly mechanically interact with the interface surfaces of adjacent assemblies providing a mechanical restraint which limits bowing of the assembly. The effectiveness of the spacer grids in limiting bowing is therefore not dependent upon controlling the mechanisms responsible for causing bow. When the reactor is in a cold condition such as during refueling , the exterior dimensions of the spacer grids are the same as those of the other zircaloy grids, which assures adequate clearance for insertion and withdrawal of individual fuel assemblies

  15. A Survey for H$\\alpha$ Pulsar Bow Shocks

    CERN Document Server

    Brownsberger, Sasha

    2014-01-01

    We report on a survey for H$\\alpha$ bow shock emission around nearby $\\gamma$-detected energetic pulsars. This survey adds three Balmer-dominated neutron star bow shocks to the six previously confirmed examples. In addition to the shock around {\\it Fermi} pulsar PSR J1741$-$2054, we now report H$\\alpha$ structures around two additional $\\gamma$-ray pulsars, PSR J2030+4415 and PSR J1509$-$5850. These are the first known examples of H$\\alpha$ nebulae with pre-ionization halos. With new measurements, we show that a simple analytic model can account for the angular size and flux of the bow shocks' apices. The latter, in particular, provides a new pulsar probe and indicates large moments of inertia and smaller distances than previously assumed, in several cases. In particular we show that the re-measured PSR J0437$-$4715 shock flux implies $I = (1.7\\pm 0.2) \\times 10^{45}/(f_{HI} {\\rm sin}i) {\\rm g\\,cm^2}$. We also derive a distance $d\\approx 0.72$kpc for the $\\gamma$-ray only pulsar PSR J2030+4415 and revised dis...

  16. Polarization of circumstellar bow shocks due to electron scattering

    Science.gov (United States)

    Shrestha, Manisha; Hoffman, J. L.; Neilson, H.; Ignace, R.

    2014-01-01

    Circumstellar material (CSM) provides a link between interacting supernovae and their massive progenitor stars. This CSM arises from stellar winds, outflows, or eruptions from a massive star before it explodes and can be detected around stars or supernovae with polarimetric observations. We use a Monte Carlo based radiative transfer code (SLIP) to investigate the polarization created by different models for the CSM surrounding a central source such as supernovae or massive stars. We vary parameters such as the shape, optical depth, temperature, and brightness of the CSM and compare the simulated flux and polarization behavior with observational data. We present results from new simulations that assume a bow shock shape for the CSM. Bow shocks are commonly observed around massive stars; this shape forms when a star moving more quickly than the speed of sound in the local interstellar medium emits a stellar wind that drives a shock wave into the ISM. Since a bow shock projects an aspherical shape onto the sky, light from the central source that scatters in the shock region becomes polarized. We present electron-scattering polarization maps for this geometry and discuss the behavior of observed polarization with viewing angle in the unresolved case.

  17. Sinogram bow-tie filtering in FBP PET reconstruction.

    Science.gov (United States)

    Abella, M; Vaquero, J J; Soto-Montenegro, M L; Lage, E; Desco, M

    2009-05-01

    Low-pass filtering of sinograms in the radial direction is the most common practice to limit noise amplification in filtered back projection (FBP) reconstruction of positron emission tomography studies. Other filtering strategies have been proposed to prevent the loss in resolution due to low-pass radial filters, although results have been diverse. Using the well-known properties of the Fourier transform of a sinogram, the authors defined a binary mask that matches the expected shape of the support region in the Fourier domain of the sinogram ("bow tie"). This mask was smoothed by a convolution with a ten-point Gaussian kernel which not only avoids ringing but also introduces a pre-emphasis at low frequencies. A new filtering scheme for FBP is proposed, comprising this smoothed bow-tie filter combined with a standard radial filter and an axial filter. The authors compared the performance of the bow-tie filtering scheme with that of other previously reported methods: Standard radial filtering, angular filtering, and stackgram-domain filtering. All the quantitative data in the comparisons refer to a baseline reconstruction using a ramp filter only. When using the smallest size of the Gaussian kernel in the stackgram domain, the authors achieved a noise reduction of 33% at the cost of degrading radial and tangential resolutions (14.5% and 16%, respectively, for cubic interpolation). To reduce the noise by 30%, the angular filter produced a larger degradation of contrast (3%) and tangential resolution (46% at 10 mm from the center of the field of view) and showed noticeable artifacts in the form of circular blurring dependent on the distance to the center of the field of view. For a similar noise reduction (33%), the proposed bow-tie filtering scheme yielded optimum results in resolution (gain in radial resolution of 10%) and contrast (1% increase) when compared with any of the other filters alone. Experiments with rodent images showed noticeable image quality

  18. Radio Frequency Micro Ion Thruster for Precision Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop radio frequency discharge, gridded micro-ion thruster that produces sub-mN thrust precisely adjustable over a wide dynamic thrust range....

  19. Radio Frequency Micro Ion Thruster for Precision Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to continue development of an engineering model radio frequency discharge, gridded micro ion thruster that produces sub-mN to mN thrust precisely...

  20. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high throughput, nominal 100 W Hall Effect Thruster (HET). This HET will be sized for small spacecraft (< 180 kg), including...

  1. Magnesium Hall Thruster for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation being developed in this program is a Mg Hall Effect Thruster system that would open the door for In-Situ Resource Utilization based solar system...

  2. 20mN, Variable Specific Impulse Colloid Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Colloid thrusters have long been known for their exceptional thrust efficiency and ability to operate over a range of specific impulse due to easily variable...

  3. A High Performance Cathode Heater for Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High current hollow cathodes are the baseline electron source for next generation high power Hall thrusters. Currently for electron sources providing current levels...

  4. Collective Thomson scattering investigations of the Hall thruster plasma

    Science.gov (United States)

    Tsikata, Sedina; Honore, Cyrille; Gresillon, Dominique; Lemoine, Nicolas; Cavalier, Jordan

    2012-10-01

    Anomalous electron transport outside the Hall thruster channel is believed to be due to plasma turbulence. Recent experiments using a specially-designed collective Thomson scattering diagnostic on a 5kW thruster have permitted the identification of a wave believed to be involved in transport. The observed properties of the mode, which is naturally driven by the fast azimuthal electron drift, are in line with predictions from PIC simulations and linear kinetic theory analysis. Detailed characterizations of mode properties, including dispersion relation, directivity, spatial extent and fluctuation amplitude have been obtained. These studies are now extended to consider the universality of mode features in a 200W permanent magnet Hall thruster and links between thruster performance, operating r'egimes and the presence of such a mode.

  5. Thruster Modelling for Underwater Vehicle Using System Identification Method

    Directory of Open Access Journals (Sweden)

    Mohd Shahrieel Mohd Aras

    2013-05-01

    Full Text Available This paper describes a study of thruster modelling for a remotely operated underwater vehicle (ROV by system identification using Microbox 2000/2000C. Microbox 2000/2000C is an XPC target machine device to interface between an ROV thruster with the MATLAB 2009 software. In this project, a model of the thruster will be developed first so that the system identification toolbox in MATLAB can be used. This project also presents a comparison of mathematical and empirical modelling. The experiments were carried out by using a mini compressor as a dummy depth pressure applied to a pressure sensor. The thruster model will thrust and submerge until it reaches a set point and maintain the set point depth. The depth was based on pressure sensor measurement. A conventional proportional controller was used in this project and the results gathered justified its selection.

  6. High Performance Power Module for Hall Effect Thrusters

    Science.gov (United States)

    Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.

    2002-01-01

    Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.

  7. High Input Voltage Hall Thruster Discharge Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall scope of this Phase I/II effort is the development of a high efficiency 15kW (nominal) Hall thruster discharge converter. In Phase I, Busek Co. Inc....

  8. Long Life Cold Cathodes for Hall effect Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...

  9. 20mN, Variable Specific Impulse Colloid Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During Phase I, Busek designed and manufactured an electrospray emitter capable of generating 20 mN in a 7" x 7" x 1.7" package. The thruster consists of nine...

  10. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I program we successfully demonstrated the feasibility of the Pulsed ElectroGasdynamic (PEG) thruster for attitude control and orbital maneuvering. In...

  11. Three Phase Resonant DC Power Converter for Ion Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The new generation of, high performance electric propulsion missions will require high mass throughput and most likely the use of grided ion thruster equipped with...

  12. Magnesium Hall Thruster for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to prove the feasibility of a Mg Hall effect thruster system that would open the door for In-Situ Resource Utilization (ISRU) based solar system...

  13. Four Thruster Microfluidic Electrospray Propulsion (MEP) Cubesat Board Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cubesat Microfluidic Electrospray Propulsion (MEP) system module prototype will be designed, built and tested to demonstrate that a four MEP thruster system can...

  14. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek is developing a high throughput nominal 100-W Hall Effect Thruster. This device is well sized for spacecraft ranging in size from several tens of kilograms to...

  15. Dependence of sound characteristics on the bowing position in a violin

    Science.gov (United States)

    Roh, YuJi; Kim, Young H.

    2014-12-01

    A quantitative analysis of violin sounds produced for different bowing positions over the full length of a violin string has been carried out. An automated bowing machine was employed in order to keep the bowing parameters constant. A 3-dimensional profile of the frequency spectrum was introduced in order to characterize the violin's sound. We found that the fundamental frequency did not change for different bowing positions, whereas the frequencies of the higher harmonics were different. Bowing the string at 30 mm from the bridge produced musical sounds. The middle of the string was confirmed to be a dead zone, as reported in previous works. In addition, the quarter position was also found to be a dead zone. Bowing the string 90 mm from the bridge dominantly produces a fundamental frequency of 864 Hz and its harmonics.

  16. Quantification of factors affecting thermally-induced bow in a CANDU fuel element simulator

    International Nuclear Information System (INIS)

    Thermally induced bow, caused by a circumferential temperature distribution around a fuel element, was investigated in this study using a fuel element simulator. The objective was to identify the factors affecting CANDU fuel element bow induced by dryout as a result of some predicted reactor transients in which the maximum fuel temperature reaches 600 deg C. The results showed that circumferential temperature distribution, pellet-to-sheath mechanical interaction and creep were the major factors affecting bow. Transient bow increased with increasing diametral sheath temperature difference and with mechanical interaction between the pellet and the sheath. Permanent bow of the fuel element was observed in some tests which was the result of creep. Mechanical interaction between the sheath and pellet produced the stresses necessary for creep deformation. A simplified ABAQUS model was developed to explain the experimental findings and could be used to predict the bow behaviour of fuel elements during reactor transients, where the dry patches are of different sizes. (author)

  17. Modelling and design optimisation of a hollow cathode thruster

    OpenAIRE

    Frollani, Daniele

    2014-01-01

    The present trend in spacecraft is to have two separate thrusters systems performing different tasks, a main electric propulsion system operating on xenon and a chemical system, usually bipropellants or cold gas. The development of a low power electric propulsion system operating on xenon to replace the chemical thrusters on board spacecrafts would be beneficial. It would be bring significant advantages in terms of mass saving from the sharing of the tanks, pipes and flow control unit, al...

  18. Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters

    Science.gov (United States)

    Pfaff, Michael

    Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.

  19. Thrust loss on azimuthing thrusters due to Coanda effect

    OpenAIRE

    Fjørtoft, Henrik

    2010-01-01

    The main objectives in this master's thesis is to investigate how the Coanda effect influences a thruster jet which further causes a thrust loss.The tendency of a thruster slipstream to be deflected towards a nearby surface, for most practical situations the hull of a vessel, is called the Coanda effect and is likely to produce a significant thrust loss under certain geometric conditions.The approach in this master's thesis is to perform an experiment measuring the direct thrust loss related ...

  20. Low-Cost, High-Performance Hall Thruster Support System

    Science.gov (United States)

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  1. Laser-Driven Mini-Thrusters

    International Nuclear Information System (INIS)

    Laser-driven mini-thrusters were studied using Delrin registered and PVC (Delrin registered is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse

  2. NASA Brief: Q-Thruster Physics

    Science.gov (United States)

    White, Harold

    2013-01-01

    Q-thrusters are a low-TRL form of electric propulsion that operates on the principle of pushing off of the quantum vacuum. A terrestrial analog to this is to consider how a submarine uses its propeller to push a column of water in one direction, while the sub recoils in the other to conserve momentum -the submarine does not carry a "tank" of sea water to be used as propellant. In our case, we use the tools of Magnetohydrodynamics (MHD) to show how the thruster pushes off of the quantum vacuum which can be thought of as a sea of virtual particles -principally electrons and positrons that pop into and out of existence, and where fields are stronger, there are more virtual particles. The idea of pushing off the quantum vacuum has been in the technical literature for a few decades, but to date, the obstacle has been the magnitude of the predicted thrust which has been derived analytically to be very small, and therefore not likely to be useful for human spaceflight. Our recent theoretical model development and test data suggests that we can greatly increase the magnitude of the negative pressure of the quantum vacuum and generate a specific force such that technology based on this approach can be competitive for in-space propulsion approx. 0.1N/kW), and possibly for terrestrial applications (approx. 10N/kW). As an additional validation of the approach, the theory allows calculation of physics constants from first principles: Gravitational constant, Planck constant, Bohr radius, dark energy fraction, electron mass.

  3. Performance Evaluation of the Prototype Model NEXT Ion Thruster

    Science.gov (United States)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The performance testing results of the first prototype model NEXT ion engine, PM1, are presented. The NEXT program has developed the next generation ion propulsion system to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. The PM1 thruster exhibits operational behavior consistent with its predecessors, the engineering model thrusters, with substantial mass savings, enhanced thermal margins, and design improvements for environmental testing compliance. The dry mass of PM1 is 12.7 kg. Modifications made in the thruster design have resulted in improved performance and operating margins, as anticipated. PM1 beginning-of-life performance satisfies all of the electric propulsion thruster mission-derived technical requirements. It demonstrates a wide range of throttleability by processing input power levels from 0.5 to 6.9 kW. At 6.9 kW, the PM1 thruster demonstrates specific impulse of 4190 s, 237 mN of thrust, and a thrust efficiency of 0.71. The flat beam profile, flatness parameters vary from 0.66 at low-power to 0.88 at full-power, and advanced ion optics reduce localized accelerator grid erosion and increases margins for electron backstreaming, impingement-limited voltage, and screen grid ion transparency. The thruster throughput capability is predicted to exceed 750 kg of xenon, an equivalent of 36,500 hr of continuous operation at the full-power operating condition.

  4. Design and model experiments on thruster assisted mooring system; Futaishiki kaiyo kozobutsu no thruster ni yoru choshuki doyo seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Koterayama, W. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Kajiwara, H. [Kyushu Institute of Technology, Kitakyushu (Japan). Faculty of Computer Science and System Engineering; Hyakudome, T. [Kyushu University, Fukuoka (Japan)

    1996-12-31

    Described herein are dynamics and model experiments of the system in which positioning of a floating marine structure by mooring is combined with thruster-controlled positioning. Coefficients of dynamic forces acting on a floating structure model are determined experimentally and by the three-dimensional singularity distribution method, and the controller is designed by the PID, LQI and H{infinity} control theories. A model having a scale ratio of 1/100 was used for the experiments, where 2 thrusters were arranged in a diagonal line, one on the X-axis. It is found that the LQI and H{infinity} controllers of the thruster can control long-cycle rolling of the floating structure. They allow thruster control which is insensitive to wave cycle motion, and efficiently reduce positioning energy. The H{infinity} control regulates frequency characteristics of a closed loop more finely than the LQI control, and exhibits better controllability. 25 refs., 25 figs.

  5. Asymmetries in the location of the Venus and Mars bow shock

    International Nuclear Information System (INIS)

    An examination of observations of the position of the terminator bow shock at Venus and Mars shows that the terminator bow shock varies with the angle between the local bow shock normal and the upstream magnetic field, θBN. The part of the shock on the quasi-parallel side is closer to the planet than the part on the quasi-perpendicular side, a result which had been sggested by an earlier computer simulation by Thomas and Winske [1990]. This bow shock asymmetry is observed to be larger at Mars than at Venus

  6. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbances

    DEFF Research Database (Denmark)

    Tatrallyay, M.; Erdos, G.; Nemeth, Z.;

    2012-01-01

    the cusp observed by the Cluster spacecraft were best predicted by the 3-D model of Lin et al. (2010). The applied empirical bow shock models and the 3-D semi-empiric bow shock model combined with magnetohydrodynamic (MHD) solution proved to be insufficient for predicting the observed unusual bow...... shock locations during large interplanetary disturbances. The results of a global 3-D MHD model were in good agreement with the Cluster observations on 17 January 2005, but they did not predict the bow shock crossings on 31 October 2003....

  7. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    Science.gov (United States)

    Caruso, Natalie R. S.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.

    2015-01-01

    Electronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V

  8. Trends and correlation analysis in diagnosing turbine rotor bow

    Directory of Open Access Journals (Sweden)

    Tomasz GAŁKA

    2009-01-01

    Full Text Available Permanent rotor bow in a steam turbine is a serious failure which usually demands a time-consuming and costly repair. Its vibration-related symptoms are not specific and qualitative diagnosis typically has to employ results obtained during transients.In a 230 MW power steam turbine, gradual dynamic behavior deterioration was observed, immediately after commissioning. Increase of the fundamental component of rear intermediate-pressure turbine bearing vertical vibration was detected, with the time constant of the order of months. Permanent rotor bow, exceeding 200 m, turned out to be the cause. Rotor repair resulted in a dramatic improvement of dynamic behavior, which, however, soon began to deteriorate again. Vibration spectra had been detected in the off-line mode since commissioning, which allowed to determine vibration time histories.Vibration trends analysis does not provide sufficient information to determine root cause, but allows for eliminating a number of possible malfunctions that give similar symptoms. In particular, the possibility of a sudden random-type damage due to human error is eliminated, which in fact is the most common cause of a permanent bow.Analysis of vibration amplitude correlation between vertical and axial directions reveals very strong correlation between fundamental components in the turbine under consideration, as well in the other one, in which similar failure has been observed. Third unit of the same type, apart from qualitatively different vibration trends, is characterized by correlation factors lower by a few times.This particular case is indicative of the importance of evolutionary symptoms (vibration amplitude time dependence and increase rate, as well as correlation factors in qualitative diagnosis. Such symptoms can be very useful in distinguishing between possible failures which result in similar changes of machine vibration behavior.

  9. Tibial bowing in children - what is normal? A radiographic study

    International Nuclear Information System (INIS)

    To define osseous landmarks on tibia radiographs in order to establish age-related normal values characterizing physiological tibial bowing in children. Five hundred and twenty-six patients aged 0-17 years with normal radiographs of the lower legs were identified and retrospectively reviewed by two blinded radiologists. In anteroposterior (ap)/lateral (lat)-views, 3 lines defined tibial length and angulation. Line-A connecting proximal to distal corner of tibial metaphysic, lines B and C corresponding to corners of tibial metaphysis. Angle A/B defines proximal, A/C distal tibial-angulation. Tibial curvature is defined by distance of line-D parallel to A and tangential to tibial cortex. Normal values were calculated with linear-regression. Intra-/Interreader agreement were tested with a Bland-Altman-plot. Intrareader-agreement: Reader 1 showed a bias of -0.1, standard-deviation of bias was 1.9 and 95 %-limits-of-agreement -3.9- 3.7. Reader 2: -0.01, 2.4 and -4.7- 4.7. Interreader: 0.2, 1.6 and -2.9- 3.3. Angle-A/B ap was 80-100 , increasing with age (86.5-88); angle-AC ap was 82-107 (96.8-90.5), angle-AB lat was 81-107 (93.0-98.0); angle-AC lat was 76-102 (89.5-86.5); depth of curve ap was 0-11 % (8-3.5) and lat 2-13 %, (8.5-3.5). Age dependent tibial bowing can be assessed with this new measurement system and age-related normal-values characterizing physiological tibial bowing in children is established. (orig.)

  10. Tibial bowing in children - what is normal? A radiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Zbinden, Isabella [University of Basel, Department of Radiology, Basel (Switzerland); Rutz, Erich [University Children' s Hospital, Department of Orthopedic Surgery, Basel (Switzerland); Jacobson, Jon A. [University of Michigan, Department of Radiology, Ann Arbor, MI (United States); Magerkurth, Olaf [University Children' s Hospital, Department of Radiology, Basel (Switzerland); Kantonsspital Baden, Department of Radiology, Baden (Switzerland)

    2015-12-15

    To define osseous landmarks on tibia radiographs in order to establish age-related normal values characterizing physiological tibial bowing in children. Five hundred and twenty-six patients aged 0-17 years with normal radiographs of the lower legs were identified and retrospectively reviewed by two blinded radiologists. In anteroposterior (ap)/lateral (lat)-views, 3 lines defined tibial length and angulation. Line-A connecting proximal to distal corner of tibial metaphysic, lines B and C corresponding to corners of tibial metaphysis. Angle A/B defines proximal, A/C distal tibial-angulation. Tibial curvature is defined by distance of line-D parallel to A and tangential to tibial cortex. Normal values were calculated with linear-regression. Intra-/Interreader agreement were tested with a Bland-Altman-plot. Intrareader-agreement: Reader 1 showed a bias of -0.1, standard-deviation of bias was 1.9 and 95 %-limits-of-agreement -3.9- 3.7. Reader 2: -0.01, 2.4 and -4.7- 4.7. Interreader: 0.2, 1.6 and -2.9- 3.3. Angle-A/B ap was 80-100 , increasing with age (86.5-88); angle-AC ap was 82-107 (96.8-90.5), angle-AB lat was 81-107 (93.0-98.0); angle-AC lat was 76-102 (89.5-86.5); depth of curve ap was 0-11 % (8-3.5) and lat 2-13 %, (8.5-3.5). Age dependent tibial bowing can be assessed with this new measurement system and age-related normal-values characterizing physiological tibial bowing in children is established. (orig.)

  11. New Performance and Reliability Results of the Thales HEMP Thruster

    Science.gov (United States)

    Kornfeld, G.; Koch, N.; Harmann, H.

    2004-10-01

    Electric Propulsion (EP), attracts in the last years an increasing interest for all types of space applications as for instance the north/south station-keeping and orbit transfer of commercial GEO-stationary satellites, the drag compensation for LEO- and MEO- satellites and constellations and navigation for scientific interplanetary missions. Reasons for that, as summarised in [1], are: - The propellant mass savings compared with chemical thrusters in the order of more than 90%. - The increasing availability of sufficient electric power on board of satellites (today >10 kW). - The demonstrated in orbit performance and life over more than 10 years of various thruster types (Hall effect thrusters, ion thrusters, arc jets). A new concept of a High Efficiency Multi-stage Plasma (HEMP) thruster to be used for satellite and space probe orbit control and navigation has recently been developed by THALES Electron Devices GmbH in Ulm. In the framework of a 3 year feasibility study sponsored by the German Space Agency DLR the HEMP thruster concept has been successfully realised. Not only its feasibility but very promising unique features have been verified by direct thrust measurements performed at ONERA, Palaiseau, in March 2003 and at University of Gießen in July 2003. Aside the clear advantage of a plasma confinement, which eliminates discharge chamber wall erosion, the HEMP thruster has shown performance characteristics already comparable to those of state-of-the-art grid and Hall-effect thrusters which are being developed for more than 40 years. At the test in the large vacuum chamber at the University of Gießen, the HEMP thruster model DM6 demonstrated for instance a maximum thrust of 139 mN, corresponding to an electric propulsion world record thrust density of 36mN/cm2 at a specific impulse of 3230 s and a total efficiency of 40% at the same operating point. Furthermore, the thermal efficiency (conversion from electric power into kinetic beam power) reached a unique

  12. Relative locations of the bow shocks of the terrestrial planets

    International Nuclear Information System (INIS)

    The observed bow shock encounters at Mercury, Venus and Mars are least square fit using the same technique so that their sizes and shapes can be intercompared. The shock front of Mercury most resembles the terrestrial shock in shape, and the shock stand off distance is consistent with the observed moment. The shapes of the Venus and Mars shock fronts more resemble each other than the earth's and the stand off distances are consistent with direct interaction of the solar wind with the ionosphere on the dayside. The Venus shock is closer to the planet than the Mars shock suggesting more absorption of the solar wind at Venus

  13. Effect of Buffer Bow Structure in Ship-Ship Collision

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Endo, Hisayoshi; Pedersen, Preben Terndrup

    2008-01-01

    structure in ship-ship collisions as compared with that of standard bulbous bows. This is demonstrated by conducting a series of large-scale finite element analyses. The finite element analyses are conducted with the general-purpose nonlinear structural code “LS-DYNA”. The applied scenario is one where a...... very large crude oil carrier (VLCC) in ballast condition collides with the midship region of a D/H VLCC in a laden condition. Fracture of fillet welds, elastic-plastic material properties and strain rate effects, are taken into account in the simulations. The effect of the equivalent failure strain (FS...

  14. Power aspects of processes in the bow shock region

    Science.gov (United States)

    Sedykh, Pavel

    Bow shock is a powerful transformer of the solar wind kinetic energy into the gas dynamic and electromagnetic energy. The solar wind energy also feeds the ion acceleration process, the generation of waves in the region of bow shock, and the energy necessary to build up the foreshock. A jump of the magnetic field tangential component at front crossing means that the front carries an electric current. The solar wind kinetic energy partly transforms to gas kinetic and electromagnetic energy during its passage through the bow shock front. The transition layer (magnetosheath) can use part of this energy for accelerating of plasma, but can conversely spend part its kinetic energy on the electric power generation, which afterwards may be used by the magnetosphere. Thereby, transition layer can be both consumer (sink) and generator (source) of electric power depending upon special conditions. The direction of the current behind the bow shock front depends on the sign of the IMF B _{z}-component. It is this electric current which sets convection of plasma in motion. The process of current penetration into the magnetosphere is two-step. First, a polarization field is formed that penetrates layer-by-layer into the magnetosphere. More exactly, a pulse corresponding to this field penetrates into the plasma. Then, if the system is inhomogeneous, the flow may redistribute the pressure so that gradients appearing in the plasma induce an electric current. In power terms, this electric current is required to maintain convection in the inhomogeneous system. Any change in the external current through the magnetosphere causes a convection restructuring within a time on the order of travel time of the magnetosonic wave from the magnetopause to the center of the system, because the restructuring wave comes from both flanks. Using the expressions obtained in this paper for normal components of the electric current, the flow of matter brought into the magnetosphere can be estimated. A

  15. Effect of Buffer Bow Structure in Ship-Ship Collision

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Endo, Hisayoshi; Pedersen, Preben Terndrup

    2008-01-01

    structure in ship-ship collisions as compared with that of standard bulbous bows. This is demonstrated by conducting a series of large-scale finite element analyses. The finite element analyses are conducted with the general-purpose nonlinear structural code “LS-DYNA”. The applied scenario is one where...... a very large crude oil carrier (VLCC) in ballast condition collides with the midship region of a D/H VLCC in a laden condition. Fracture of fillet welds, elastic-plastic material properties and strain rate effects, are taken into account in the simulations. The effect of the equivalent failure strain (FS...

  16. Design of Compact Trapezoidal Bow-Tie Chipless RFID Tag

    OpenAIRE

    Lei Xu; Kama Huang

    2015-01-01

    This paper presents a novel compact design of a low cost fully printable slot-loaded bowtie chipless RFID tag. The tag consists of two trapezoidal metallic patches loaded with multiple slot resonators. Slots with similar size or adjacent frequencies are loaded alternately on two bow-tie patches to double the number of data bits within the UWB frequency band without increasing the mutual coupling between slots. A coding capacity of 12 bits is obtained with 12 slots within a reasonable size of ...

  17. High Performance Plasma Channel Insulators for High Power Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA missions for planetary exploration require high power, long-life Hall thrusters. However, thruster power and lifetime are limited by the erosion of plasma...

  18. Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop a flight version of a high power Hall Effect thruster. While numerous high power Hall Effect thrusters have been demonstrated in the...

  19. Lifetime Improvement of Large Scale Green Monopropellant Thrusters via Novel, Long-Life Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop and life-test a flight-weight, 5N class green monopropellant thruster in Phase II. The most important feature that sets this thruster...

  20. Micro Pulsed Inductive Thruster with Solid Fuel Option (uPIT_SF) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Micro Pulsed Inductive Thruster with Solid Fuel Option (5PIT_SF) is a high-precision impulse bit electromagnetic plasma micro-thruster. The 5PIT prototype is a...

  1. Injector design and test for a high power electrodeless plasma thruster

    OpenAIRE

    Delanoë, Romain

    2011-01-01

    The HPEP (High Performance Electric Propulsion) thruster is expected to be the outcomecof an innovative project initiated by the Swedish Space Corporation. It combines the concept of a 10 kW electrodeless plasma thruster designed by the Elwing Company and the ADN based monopropellant LMP-103S developed by ECAPS and used in the HPGP thrusters of the Prisma Satellites. Using a chemically energetic propellant in an EP thruster will allow mass and cost reduction by providing two propulsion system...

  2. Experimental Investigation of Thruster Cathode Physics

    Science.gov (United States)

    Crofton, Mark

    2004-11-01

    Advanced ion propulsion technologies are being developed under the Nuclear Electric Xenon Ion System (NEXIS) program for use in outer planet exploration. A revolutionary approach to thruster cathode design is dictated by the very high lifetime and propellant throughput requirements for nuclear electric applications. In conventional dispenser hollow cathodes used in thrusters, processes leading to depletion, inadequate transport, or insufficient production of barium are among those limiting the lifetime. A reservoir hollow cathode is being developed to address each of these failure mechanisms, exploiting four design variables - matrix material, source material, geometry, and thermal design - to essentially eliminate established failure modes. The very long anticipated lifetime necessitates new life validation methods to augment or replace the conventional lifetest approach. One important tool for quickly evaluating design changes is the ability to measure barium density inside a hollow cathode and/or in the plume. The dependence of barium density on temperature and other factors is an extremely important indicator of cathode health, particularly if the ratio Ba:BaO is also obtained. Comparison of barium production for reservoir and conventional cathodes will enable an assessment of the efficacy of reservoir designs and the goal of reducing barium consumption at a given emission current level. This study describes benchmark measurements made on a conventional cathode previously operated in a 20-kW NEXIS laboratory engine. Data on cathode operation and life-limiting processes were obtained through direct, real-time monitoring of atoms and molecules. A high-resolution, tunable laser system was employed to detect absorption of the low-density barium atoms inside the cathode. The plume was monitored also, using a quadrupole mass spectrometer to monitor multiple species and measure ion charge ratios. Data obtained with retarding potential analyzers or other means are

  3. 75 FR 59706 - Medicine Bow Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2010-09-28

    ... Bow Pumped Storage Project (Medicine Bow Project) to be located in Carbon County, Idaho. The sole...-foot-high earth and rockfill or concrete-face rockfill dam; creating an 121-acre lower reservoir with a...-long concrete-lined low pressure tunnel; (4) a 19-foot-diameter, 5,060-foot-long high pressure...

  4. Far-UV bow shock nebula around PSR J0437-4715

    CERN Document Server

    Rangelov, Blagoy; Kargaltsev, Oleg; Durant, Martin; Bykov, Andrei M; Krassilchtchikov, Alexandre

    2016-01-01

    Pulsars traveling at supersonic speeds are often accompanied by cometary bow shocks seen in Halpha. We report on the first detection of a pulsar bow shock in the far-ultraviolet (FUV). We detected it in FUV images of the nearest millisecond pulsar J0437-4715 obtained with the Hubble Space Telescope. The images reveal a bow-like structure positionally coincident with part of the previously detected Halpha bow shock, with an apex at 10'' ahead of the moving pulsar. Its FUV luminosity, L(1250-2000 A) ~ 5x10^28 erg/s, exceeds the Halpha luminosity from the same area by a factor of 10. The FUV emission could be produced by the shocked ISM matter or, less likely, by relativistic pulsar wind electrons confined by strong magnetic field fluctuations in the bow shock. In addition, in the FUV images we found a puzzling extended (~3'' in size) structure overlapping with the limb of the bow shock. If related to the bow shock, it could be produced by an inhomogeneity in the ambient medium or an instability in the bow shock...

  5. Rare Etiology of Bow Hunter’s Syndrome and Systematic Review of Literature

    Science.gov (United States)

    Rastogi, Vaibhav; Rawls, Ashley; Moore, Omar; Victorica, Benjamin; Khan, Sheema; Saravanapavan, Pradeepan; Midivelli, Sunitha; Raviraj, Prathap; Khanna, Anna; Bidari, Sharathchandra; Hedna, Vishnumurthy S

    2015-01-01

    BACKGROUND Bow Hunter’s Syndrome is a mechanical occlusion of the vertebral artery which leads to a reduction in blood flow in posterior cerebral circulation resulting in transient reversible symptomatic vertebrobasilar insufficiency. CASE DESCRIPTION We present a case of Bow Hunter’s syndrome in a 53-year-old male that occurred after the patient underwent surgical correction of a proximal left subclavian artery aneurysm. Shortly after the surgery, the patient began to complain of transient visual changes, presyncopal spells, and dizziness upon turning his head to the left. A transcranial doppler ultrasound confirmed the diagnosis of Bow Hunter’s syndrome. SYSTEMIC REVIEW We analyzed the data on 153 patients with Bow Hunter’s syndrome from the literature. An osteophyte was the most common cause of vertebral artery occlusion, and left vertebral artery was more commonly involved in patients with Bow Hunter’s syndrome. Dynamic angiography was the definitive imaging modality to confirm the diagnosis, and surgery was most successful in alleviating symptoms. CONCLUSION We believe that this is the first case of iatrogenic Bow Hunter’s syndrome after surgical intervention for an aneurysm repair, and the largest review of literature of Bow Hunter’s syndrome. Dynamic angiography is the gold standard for the diagnosis of Bow Hunter’s syndrome. Surgery should be considered as the primary treatment approach in these patients, especially those who have bony compression as the etiology. PMID:26301025

  6. 76 FR 65717 - City of Broken Bow, OK; Notice of Availability of Final Environmental Assessment

    Science.gov (United States)

    2011-10-24

    ... Commission's (Commission or FERC) regulations, 18 CFR part 380 (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed the application for an Original Major License for the Broken Bow Re... Energy Regulatory Commission City of Broken Bow, OK; Notice of Availability of Final...

  7. 75 FR 33290 - City of Broken Bow, OK; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2010-06-11

    ... Regulatory Commission's (Commission) regulations, 18 CFR part 380 (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed the application for an Original Major License for the Broken Bow Re... Energy Regulatory Commission City of Broken Bow, OK; Notice of Availability of Environmental...

  8. Smashing the Guitar: An Evolving Neutron Star Bow Shock

    CERN Document Server

    Chatterjee, S

    2003-01-01

    The Guitar nebula is a spectacular example of an H-alpha bow shock nebula produced by the interaction of a neutron star with its environment. The radio pulsar B2224+65 is traveling at ~800--1600 km/s (for a distance of 1--2 kpc), placing it on the high-velocity tail of the pulsar velocity distribution. Here we report time evolution in the shape of the Guitar nebula, the first such observations for a bow shock nebula, as seen in H-alpha imaging with the Hubble Space Telescope. The morphology of the nebula provides no evidence for anisotropy in the pulsar wind, nor for fluctuations in the pulsar wind luminosity. The nebula shows morphological changes over two epochs spaced by seven years that imply the existence of significant gradients and inhomogeneities in the ambient interstellar medium. These observations offer astrophysically unique, in situ probes of length scales between 5E-4 pc and 0.012 pc. Model fitting suggests that the nebula axis -- and thus the three-dimensional velocity vector -- lies within 20 ...

  9. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  10. Design and Analysis of the First BOWS Contest

    Directory of Open Access Journals (Sweden)

    Barni M

    2007-01-01

    Full Text Available The break our watermarking system (BOWS contest was launched in the framework of the activities carried out by the European Network of Excellence for Cryptology ECRYPT. The aim of the contest was to investigate how and when an image watermarking system can be broken while preserving the highest possible quality of the content, in the case the watermarking system is subject to a massive worldwide attack. The great number of participants and the echo that the contest has had in the watermarking community contributed to make BOWS a great success. From a scientific point of view, many insights into the problems attackers have to face with when operating in a practical scenario have been obtained, confirming the threat posed by the sensitivity attack, which turned out to be the most successful attack. At the same time, several interesting modifications of such an attack have been proposed to make it work in a real scenario under limited communication and time resources. This paper describes how the contest has been designed and analyzes the general progress of the attacks during the contest.

  11. Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin

    2009-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.

  12. Modeling Neutral Densities Downstream of a Gridded Ion Thruster

    Science.gov (United States)

    Soulas, George C.

    2010-01-01

    The details of a model for determining the neutral density downstream of a gridded ion thruster are presented. An investigation of the possible sources of neutrals emanating from and surrounding a NEXT ion thruster determined that the most significant contributors to the downstream neutral density include discharge chamber neutrals escaping through the perforated grids, neutrals escaping from the neutralizer, and vacuum facility background neutrals. For the neutral flux through the grids, near- and far-field equations are presented for rigorously determining the neutral density downstream of a cylindrical aperture. These equations are integrated into a spherically-domed convex grid geometry with a hexagonal array of apertures for determining neutral densities downstream of the ion thruster grids. The neutrals escaping from an off-center neutralizer are also modeled assuming diffuse neutral emission from the neutralizer keeper orifice. Finally, the effect of the surrounding vacuum facility neutrals is included and assumed to be constant. The model is used to predict the neutral density downstream of a NEXT ion thruster with and without neutralizer flow and a vacuum facility background pressure. The impacts of past simplifying assumptions for predicting downstream neutral densities are also examined for a NEXT ion thruster.

  13. 4.5-kW Hall Effect Thruster Evaluated

    Science.gov (United States)

    Mason, Lee S.

    2000-01-01

    As part of an Interagency Agreement with the Air Force Research Lab (AFRL), a space simulation test of a Russian SPT 140 Hall Effect Thruster was completed in September 1999 at Vacuum Facility 6 at the NASA Glenn Research Center at Lewis Field. The thruster was subjected to a three-part test sequence that included thrust and performance characterization, electromagnetic interference, and plume contamination. SPT 140 is a 4.5-kW thruster developed under a joint agreement between AFRL, Atlantic Research Corp, and Space Systems/Loral, and was manufactured by the Fakal Experimental Design Bureau of Russia. All objectives were satisfied, and the thruster performed exceptionally well during the 120-hr test program, which comprised 33 engine firings. The Glenn testing provided a critical contribution to the thruster development effort, and the large volume and high pumping speed of this vacuum facility was key to the test s success. The low background pressure (1 10 6 torr) provided a more accurate representation of space vacuum than is possible in most vacuum chambers. The facility had been upgraded recently with new cryogenic pumps and sputter shielding to support the active electric propulsion program at Glenn. The Glenn test team was responsible for all test support equipment, including the thrust stand, power supplies, data acquisition, electromagnetic interference measurement equipment, and the contamination measurement system.

  14. Thrust Stand Measurements of a Conical Pulsed Inductive Plasma Thruster

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters can su er from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA)[4], shown in Fig. 1 is a pulsed inductive plasma thruster that is able to operate at lower pulse energies by partially ionizing propellant with an electron cyclotron resonance (ECR) discharge inside a conical inductive coil whose geometry serves to potentially increase propellant and plasma plume containment relative to at coil geometries. The ECR plasma is created with the use of permanent mag- nets arranged to produce a thin resonance region along the inner surface of the coil, restricting plasma formation and, in turn, current sheet formation to areas of high magnetic coupling to the driving coil.

  15. Particle-in-cell simulations of Hall plasma thrusters

    Science.gov (United States)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  16. Bow Shock Leads the Way for a Speeding Hot Jupiter

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    As hot Jupiters whip around their host stars, their speeds can exceed the speed of sound in the surrounding material, theoretically causing a shock to form ahead of them. Now, a study has reported the detection of such a shock ahead of transiting exoplanet HD 189733b, providing a potential indicator of the remarkably strong magnetic field of the planet.Rushing PlanetsDue to their proximity to their hosts, hot Jupiters move very quickly through the stellar wind and corona surrounding the star. When this motion is supersonic, the material ahead of the planet can be compressed by a bow shock and for a transiting hot Jupiter, this shock will cross the face of the host star in advance of the planets transit.In a recent study, a team of researchers by Wilson Cauley of Wesleyan University report evidence of just such a pre-transit. The teams target is exoplanet HD 189733b, one of the closest hot Jupiters to our solar system. When the authors examined high-resolution transmission spectra of this system, they found that prior to the optical transit of the planet, there was a large dip in the transmission of the first three hydrogen Balmer lines. This could well be the absorption of an optically-thick bow shock as it moves past the face of the star.Tremendous MagnetismOperating under this assumption, the authors create a model of the absorption expected from a hot Jupiter transiting with a bow shock ahead of it. Using this model, they show that a shock leading the planet at a distance of 12.75 times the planets radius reproduces the key features of the transmission spectrum.This stand-off distance is surprisingly large. Assuming that the location of the bow shock is set by the point where the planets magnetospheric pressure balances the pressure of the stellar wind or corona that it passes through, the planetary magnetic field would have to be at least 28 Gauss. This is seven times the strength of Jupiters magnetic field!Understanding the magnetic fields of exoplanets is

  17. Superconducting windings and screening techniques for MHD thrusters

    International Nuclear Information System (INIS)

    Naval propulsion using MHD needs very high magnetic fields in large volumes to reach attractive efficiencies. On the other hand, the electromagnetic stealth leads to use multi modular thrusters to minimize the leak fields, and to use internal and external shields, made with magnetic or superconducting materials in case of damaged operation. Up to now, the low temperature superconductors are the only materials able to fulfill these requirements. The encountered problems are of the same order than in fusion reactor systems, such as the ITER program now under study, but a MHD thruster has to be set aboard a ship (submarine for example). The sum of the electromagnetic, cryogenic, hydrodynamical and electrochemical problems will require long studies before the possibility to replace the classical line shafts by MHD thrusters can be foreseen. (author). 18 refs., 6 figs., 2 tabs

  18. The electrodeless Lorentz force (ELF) thruster experimental facility

    Science.gov (United States)

    Weber, T. E.; Slough, J. T.; Kirtley, D.

    2012-11-01

    An innovative facility for testing high-power, pulsed plasmoid thrusters has been constructed to develop the electrodeless Lorentz force (ELF) thruster concept. It is equipped with a suite of diagnostics optimized to study the physical processes taking place within ELF and evaluate its propulsive utility including magnetic field, neutral gas, and plasma flux diagnostics, a method to determine energy flow into the plasma from the pulsed power systems, and a new type of ballistic pendulum, which enables thrust to be measured without the need for installing the entire propulsion system on a thrust stand. Variable magnetic fields allow controlled studies of plume expansion in a small-scale experiment and dielectric chamber walls reduce electromagnetic influences on plasma behavior and thruster operation. The unique capabilities of this facility enable novel concept development to take place at greatly reduced cost and increased accessibility compared to testing at large user-facilities.

  19. Characteristics of the XHT-100 Low Power Hall Thruster Prototype

    Science.gov (United States)

    Andrenucci, M.; Berti, M.; Biagioni, L.; Cesari, U.; Saverdi, M.

    2004-10-01

    Several space applications indicate the possibility to adopt Mini Hall Thrusters, with discharge power in the range 50 to 200 W, among existing electric thruster propulsion technologies, to match mission propulsion requirements. A nominally 100W Hall Effect Thruster prototype (with an alumina acceleration chamber diameter slightly larger than 29 mm) has been recently designed and manufactured by Alta and Centrospazio, with the purpose of performing a wide range parametric exploration of the main engineering and physical aspects relevant to these devices at low power. During 2004 a preliminary experimental characterization has been performed in Alta's IV-4 test facility (in Pisa, Italy), a 2 m dia. 4 m length AISI 316 L vacuum chamber, equipped with a set of 6 tailored cryopumping surfaces with a total pumping speed on Xe in the order of 70000 l/s. Additional tests will be performed at ESA- ESTEC Electric Propulsion Laboratory (in the Netherlands).

  20. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    Science.gov (United States)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  1. The effects of aniline impurities on monopropellant hydrazine thruster performance

    Science.gov (United States)

    Holcomb, L.; Mattson, L.; Oshiro, R.

    1976-01-01

    Both a 0.45-N and a 0.9-N thruster representative of the designs being flown on 3-axis stabilized spacecraft were used in testing various grades of hydrazine for the phenomenon of monopropellant hydrazine thruster catalyst bed poisoning. Both designs employed Shell 405 ABSG spontaneous catalyst. It is found that pulse shape distortion can be minimized, if not eliminated, by using aniline-free hydrazine. The mechanisms for both steady-state and pulse-mode performance loss are associated with the formation of a catalyst coke similar to the polycyclic aromatic poisons encountered in the petroleum industry. These poisoning mechanisms are reversible, with high-temperature operation being required to drive off the aniline coke deposits. It is recommended that a purified-grade hydrazine be considered for any mission that imposes operational conditions on a thruster which can result in aniline-induced poisoning of the catalyst bed.

  2. Power Electronics Development for the SPT-100 Thruster

    Science.gov (United States)

    Hamley, John A.; Hill, Gerald M.; Sankovic, John M.

    1994-01-01

    Russian electric propulsion technologies have recently become available on the world market. Of significant interest is the Stationary Plasma Thruster (SPT) which has a significant flight heritage in the former Soviet space program. The SPT has performance levels of up to 1600 seconds of specific impulse at a thrust efficiency of 0.50. Studies have shown that this level of performance is well suited for stationkeeping applications, and the SPT-100, with a 1.35 kW input power level, is presently being evaluated for use on Western commercial satellites. Under a program sponsored by the Innovative Science and Technology Division of the Ballistic Missile Defense Organization, a team of U.S. electric propulsion specialists observed the operation of the SPT-100 in Russia. Under this same program, power electronics were developed to operate the SPT-100 to characterize thruster performance and operation in the U.S. The power electronics consisted of a discharge, cathode heater, and pulse igniter power supplies to operate the thruster with manual flow control. A Russian designed matching network was incorporated in the discharge supply to ensure proper operation with the thruster. The cathode heater power supply and igniter were derived from ongoing development projects. No attempts were made to augment thruster electromagnet current in this effort. The power electronics successfully started and operated the SPT-100 thruster in performance tests at NASA Lewis, with minimal oscillations in the discharge current. The efficiency of the main discharge supply was measured at 0.92, and straightforward modifications were identified which could increase the efficiency to 0.94.

  3. A model for nitrogen chemisorption in ion thrusters

    Science.gov (United States)

    Wilbur, P. J.

    1979-01-01

    A theoretical model describing the formation of nitrogen species subject to chemisorption on ion thruster discharge chamber surfaces is presented. Molecules, atoms, atomic ions and molecular ions are identified as the important species in the analysis. Current densities of the atomic and molecular ions predicted by the model are compared to current densities measured in the beam of a SERT II thruster. The predicted and measured values of these two current densities are shown to agree within about + or - 100%. The mechanisms involved in the erosion of a surface subjected to simultaneous nitrogen chemisorption and sputter erosion by high energy ions are also discussed.

  4. The baffle aperture region of an ion thruster

    International Nuclear Information System (INIS)

    During the period of this research project, electron bombardment ion thrusters have passed from an advanced state of development to highly successful flight demonstrations (e.g. Deep Space 1). Such advances made by NASA have been quickly followed in the commercial sector (e.g. NSSK of communications satellites). In the next few years, these early successes will be followed by many new electric propulsion missions, planned by the world's space agencies and commercial space organisations. These early successes will spawn more ambitious and demanding missions, necessitating thrusters of different power demands, thrusts and sizes. Scaling of the UK series of electron bombardment ion thrusters has previously been carried out by semi- empirical scaling laws. These scaling laws have worked well within a certain range of thruster sizes with some iterative redesign necessary to produce acceptable efficiencies. However, when scaling beyond the ranges of the T5, T6 and UK25, the current scaling laws cannot be used due to the conflicting requirements of magnetic field strength in the discharge chamber and baffle aperture region. The baffle aperture region contains a plasma double layer that accelerates primary electrons into the discharge chamber and thus controls ionisation in the ion thruster. Previously, the baffle aperture region was poorly understood. An extensive and unique experimental investigation of the plasma properties around this critical baffle aperture region has been carried out using Langmuir probes. The externally applied magnetic field has been mapped and the Langmuir probe results have been validated using emissive probes. Results are presented on both argon and xenon propellant and high- resolution maps of an extensive range of plasma properties are plotted over a continuous area from the coupling plasma, through the baffle aperture and into the discharge plasma. Maps were taken over a unique and wide range of thruster operating conditions in which all

  5. Recycle Requirements for NASA's 30 cm Xenon Ion Thruster

    Science.gov (United States)

    Pinero, Luis R.; Rawlin, Vincent K.

    1994-01-01

    Electrical breakdowns have been observed during ion thruster operation. These breakdowns, or arcs, can be caused by several conditions. In flight systems, the power processing unit must be designed to handle these faults autonomously. This has a strong impact on power processor requirements and must be understood fully for the power processing unit being designed for the NASA Solar Electric Propulsion Technology Application Readiness program. In this study, fault conditions were investigated using a NASA 30 cm ion thruster and a power console. Power processing unit output specifications were defined based on the breakdown phenomena identified and characterized.

  6. Computational fluid dynamics simulation of a rim driven thruster

    OpenAIRE

    Dubas, Aleksander J.; Bressloff, N. W.; Fangohr, H.; Sharkh, S.M.

    2011-01-01

    An electric rim driven thruster is a relatively new marine propulsion device that uses a motor in its casing to drive a propeller by its rim and the fluid dynamics associated with their operation have not been fully investigated. There are many interacting flow features that make up the flow field of a rim driven thruster that pose a number of challenges when it comes to simulating the device using computational fluid dynamics. The purpose of this work is to develop a computational fluid dyna...

  7. Effect of nozzle geometry on the performance of laser ablative propulsion thruster

    Science.gov (United States)

    Li, Long; Jiao, Long; Tang, Zhiping; Hu, Xiaojun; Peng, Jie

    2016-05-01

    The performance of "ablation mode" laser propulsion thrusters can be improved obviously by nozzle constraint. The nozzle geometry of "ablation mode" laser propulsion thrusters has been studied experimentally with CO2 lasers. Experimental results indicate that the propulsion performance of cylindrical nozzle thrusters is better than expansionary nozzle thrusters at the same lengths. The cylindrical nozzle thrusters were optimized by different laser energies. The results show that two important factors, the length-to-diameter ratio α and the thruster diameter to laser-spot diameter ratio β, affect the propulsion performance of the thruster obviously. The momentum coupling coefficient C m increases with the increase of α, while C m increases at first and then decreases with the increase of β.

  8. Trade Study of Multiple Thruster Options for the Mars Airplane Concept

    Science.gov (United States)

    Kuhl, Christopher A.; Gayle, Steven W.; Hunter, Craig A.; Kenney, Patrick S.; Scola, Salvatore; Paddock, David A.; Wright, Henry S.; Gasbarre, Joseph F.

    2009-01-01

    A trade study was performed at NASA Langley Research Center under the Planetary Airplane Risk Reduction (PARR) project (2004-2005) to examine the option of using multiple, smaller thrusters in place of a single large thruster on the Mars airplane concept with the goal to reduce overall cost, schedule, and technical risk. The 5-lbf (22N) thruster is a common reaction control thruster on many satellites. Thousands of these types of thrusters have been built and flown on numerous programs, including MILSTAR and Intelsat VI. This study has examined the use of three 22N thrusters for the Mars airplane propulsion system and compared the results to those of the baseline single thruster system.

  9. Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Cannat, F., E-mail: felix.cannat@onera.fr, E-mail: felix.cannat@gmail.com; Lafleur, T. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France); Jarrige, J.; Elias, P.-Q.; Packan, D. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Chabert, P. [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)

    2015-05-15

    A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.

  10. Method of straightening a bowed nuclear fuel assembly

    International Nuclear Information System (INIS)

    A method of removing bow in a nuclear fuel assembly is disclosed. The fuel assembly has top and bottom ends fittings and a plurality of longitudinally extending thimble tube members interconnecting top and bottom end fittings. At least two transverse fuel rod support grids are axially spaced along the thimble tube members. A plurality of fuel rods are transversely spaced and supported by the fuel rod support grids. In one embodiment, a weight of known magnitude is secured on the bottom end fitting and the fuel assembly is raised with the weight secured thereon so that the weight exerts a downward force on the fuel assembly for straightening the fuel assembly and eliminating compressive stresses within the fuel assembly. In another embodiment, the bottom end fitting is secured onto the upender used for transporting fuel assemblies into and out of the containment building and the fuel assembly is pulled for straightening the fuel assembly and eliminating compressive stresses within the fuel assembly. (Author)

  11. Method of straightening a bowed nuclear fuel assembly

    International Nuclear Information System (INIS)

    This patent describes a method of removing the bow in a nuclear fuel assembly, the fuel assembly having top and bottom end fittings, a plurality of longitudinally extending thimble tube members interconnecting top and bottom end fittings, at least two transverse fuel rod support grids axially spaced along the thimble tube members, and a plurality of fuel rods transversely spaced and supported by the fuel rod support grids, the method comprising the steps of securing the bottom end fitting to a predetermined location under water within the containment building of a nuclear fuel reactor and pulling vertically upward along the longitudinal axis of the nuclear fuel assembly with a force on the top end fitting so that a force of between three thousand and four thousand pounds is exerted on the nuclear fuel assembly for substantially straightening the fuel assembly and eliminating most of the compressive stresses within the fuel assembly

  12. On the peculiar shapes of some pulsar bow-shock nebulae

    Science.gov (United States)

    Bandiera, Rino

    Pulsar bow-shock nebulae are pulsar-wind nebulae formed by the direct interaction of pulsar relativistic winds with the interstellar medium. The bow-shock morphology, well outlined in Hα for some objects, is an effect of the supersonic pulsar motion with respect to the ambient medium. However, in a considerable fraction of cases (e.g. the nebulae associated to PSR B2224+65, PSR B0740-28, PSR J2124-3358) clear deviations from the classical bow shock shape are observed. Such deviations are usually interpreted as due to ambient density gradients and/or to pulsar-wind anisotropies. Here I present a different interpretation, aiming at explaining deviations from the standard morphology as signs of the peculiar physical conditions present in these objects. Using dimensional arguments, I show that, unlike normal pulsar-wind nebulae, in pulsar bow-shock nebulae the mean free path of the highest-energy particles may be comparable with the bow-shock head. I then investigate whether this may affect the shape of the bow-shock; for instance, whether a conical bow shock (like that observed in the "Guitar", the nebula associated to PSR B2224+65) does really imply an ambient density gradient. Finally, I discuss some other possible signatures of these high-energy, long mean-free-path particles.

  13. Using numerical models of bow shocks to investigate the circumstellar medium of massive stars

    International Nuclear Information System (INIS)

    Many massive stars travel through the interstellar medium at supersonic speeds. As a result they form bow shocks at the interface between the stellar wind. We use numerical hydrodynamics to reproduce such bow shocks numerically, creating models that can be compared to observations. In this paper we discuss the influence of two physical phenomena, interstellar magnetic fields and the presence of interstellar dust grains on the observable shape of the bow shocks of massive stars. We find that the interstellar magnetic field, though too weak to restrict the general shape of the bow shock, reduces the size of the instabilities that would otherwise be observed in the bow shock of a red supergiant. The interstellar dust grains, due to their inertia can penetrate deep into the bow shock structure of a main sequence O-supergiant, crossing over from the ISM into the stellar wind. Therefore, the dust distribution may not always reflect the morphology of the gas. This is an important consideration for infrared observations, which are dominated by dust emission. Our models clearly show, that the bow shocks of massive stars are useful diagnostic tools that can used to investigate the properties of both the stellar wind as well as the interstellar medium

  14. BOW. A computer code to predict lateral deflections of composite beams

    International Nuclear Information System (INIS)

    Arrays of tubes are used in many engineered structures, such as in nuclear fuel bundles and in steam generators. The tubes can bend (bow) due to in-service temperatures and loads. Assessments of bowing of nuclear fuel elements can help demonstrate the integrity of fuel and of surrounding components, as a function of operating conditions such as channel power. The BOW code calculates the bending of composite beams such as fuel elements, due to gradients of temperature and due to hydraulic forces. The deflections and rotations are calculated in both lateral directions, for given conditions of temperatures. Wet and dry operation of the sheath can be simulated. Bow accounts for the following physical phenomena: circumferential and axial variations in the temperatures of the sheath and of the pellet; cracking of pellets; grip and slip between the pellets and the sheath; hydraulic drag; restraints from endplates, from neighbouring elements, and from the pressure-tube; gravity; concentric or eccentric welds between endcap and endplate; neutron flux gradients; and variations of material properties with temperature. The code is based on fundamental principles of mechanics. The governing equations are solved numerically using the finite element method. Several comparisons with closed-form equations show that the solutions of BOW are accurate. BOW's predictions for initial in-reactor bow are also consistent with two post-irradiation measurements

  15. On the shape and motion of the Earth's bow shock

    Science.gov (United States)

    Meziane, K.; Alrefay, T. Y.; Hamza, A. M.

    2014-04-01

    Multipoint-measurements by the magnetic field Cluster-FGM (Flux Gate Magnetometer) are used to determine the local shock normal, and in turn allow the study of shock location shape and the velocity of the Earth's bow shock. The shock crossings cover orbits in which the spacecraft separation is of the order of ~600 km or less. A data selection of 133 bow shock crossings, ranging from quasi-steady perpendicular to moderately noisy oblique geometries, have been analyzed using a standard timing analysis. Prior to applying the timing technique, the magnetic field fluctuations, when present, are suppressed using low band-pass filtering. The present study contributes to similar studies conducted in the past and available in the literature through the inclusion of a larger data set. The shock standoff distance is determined conjointly with a paraboloid model and the results from a timing analysis. A statistical study reveals a standoff distance well in agreement with the standard gas dynamics model prediction for high Mach number MA. We have also found that for about half the crossings, the timing shock normals agree, within 11°, with a conic-based shock model. Our results strongly indicate that the motion of the shock is predominantly along the Sun-Earth direction; a departure from this direction is not related to the shock-crossing location. Shock velocities below ~80 km/s satisfactorily follow a nearly Gaussian distribution with zero mean and a standard deviation of ~42 km/s. Finally, we show that high speed motions are correlated with sharp increases in the solar wind upstream ram pressure, and are consistent with gas dynamics model predictions.

  16. Hybrid simulation of comet Shoemaker-Levy 9 interaction with Jovian bow shock

    Science.gov (United States)

    Lipatov, A. S.; Sharma, A. S.

    1994-01-01

    The interaction of the solar wind with comet Shoemaker-Levy 9 leading to the formation of the cometary magnetosphere and its interaction with the Jovian bow shock is simulated using a one dimensional hybrid code. The mass loading of the solar wind by the cometary ions leads to the formation of a bow shock behind which the plasma density is 2-3/cu cm and the electron temperature is 4 eV. The interaction of this system with the Jovian bow shock yields local enhancements of the magnetic field and the plasma density by factors of 4-5 and the electron temperature by 2-3.

  17. Bow shock fragmentation driven by a thermal instability in laboratory-astrophysics experiments

    OpenAIRE

    Suzuki-Vidal, F.; Lebedev, S. V.; Ciardi, A.; Pickworth, L. A.; Rodriguez, R.; Gil, J. M.; Espinosa, G. (Gaudencio); Hartigan, P.; Swadling, G. F.; Skidmore, J.; Hall, G. N.; Bennett, M; Bland, S. N.; Burdiak, G.; de Grouchy, P.

    2015-01-01

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counter-streaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame and the exper...

  18. Robust Control Allocation among Overactuated Spacecraft Thrusters under Ellipsoidal Uncertainty

    Directory of Open Access Journals (Sweden)

    Chenyang Duan

    2014-01-01

    Full Text Available Spacecrafts with overactuated and redundant thrusters can work normally once some of them are out of work, which improves the reliability of spacecraft in orbit. In this way, the desired command of controller needs to be dynamically allocated among thrusters. Considering that uncertain factors may appear in forms of dynamics, installation errors, thrust deviations, or failures, this paper proposes a robust control allocation under ellipsoidal uncertainty. This method uses the uncertainty ellipsoid set to describe the uncertainty of the thrusters firstly and establish the thrust allocation robust reference model and then transforms it into a cone optimization model which can be solved as an optimized problem. Finally, this paper adopts the interior-point method for solving the optimization problem. In this way, difficulties of solving the problem caused by parameter uncertainties are avoided effectively. Finally, we take satellite rendezvous and docking as simulation scenarios; it is verified that the cumulative distribution error and maximum error can be reduced by more than 15% when the random error of control efficiency matrix is 5%–20%; also, precision of thruster allocation is improved.

  19. iSat Surface Charging and Thruster Plume Interactions Analysis

    Science.gov (United States)

    Parker, L. Neergaard; Willis, E. M.; Minow, J. I.

    2016-01-01

    Characterizing the electromagnetic interaction of a satellite in low Earth, high inclination orbit with the space plasma environment and identifying viable charging mitigation strategies is a critical mission design task. High inclination orbits expose the vehicle to auroral charging environments that can potentially charge surfaces to kilovolt potentials and electric thruster propulsion systems will interact with the ambient plasma environment throughout the orbit. NASA is designing the Iodine Satellite (iSAT) cubesat mission to demonstrate operations of an iodine electric thruster system. The spacecraft will be deployed as a secondary payload from a launch vehicle which has not yet been identified so the program must plan for the worst case environments over a range of orbital inclinations. We will first present results from a NASA and Air Force Charging Analyzer Program (Nascap) -2k surface charging calculation used to evaluate the effects of auroral charging on the spacecraft and to provide the charging levels at other locations in orbit for a thruster plume interaction analysis for the iSAT mission. We will then discuss results from the thruster interactions analysis using the Electric Propulsion Interactions Code (EPIC) with inputs from Nascap-2k. The results of these analyses are being used by the iSAT program to better understand how their spacecraft will interact with the space plasma environment in the range of environments that could be encountered when the final mission orbit is selected.

  20. NASA's Evolutionary Xenon Thruster (NEXT) Ion Propulsion System Information Summary

    Science.gov (United States)

    Pencil, Eirc S.; Benson, Scott W.

    2008-01-01

    This document is a guide to New Frontiers mission proposal teams. The document describes the development and status of the NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system (IPS) technology, its application to planetary missions, and the process anticipated to transition NEXT to the first flight mission.

  1. Parametric studies of the Hall Thruster at Soreq

    International Nuclear Information System (INIS)

    An electric propulsion program was initiated at Soreq a few years ago, aiming at the research and development of advanced Hall thrusters for various space applications. The Hall thruster accelerates a plasma jet by an axial electric field and an applied radial magnetic field in an annular ceramic channel. A relatively large current density (> 0.1 A/cm2) can be obtained, since the acceleration mechanism is not limited by space charge effects. Such a device can be used as a small rocket engine onboard spacecraft with the advantage of a large jet velocity compared with conventional rocket engines (10,000-30,000 m/s vs. 2,000-4,800 m/s). An experimental Hall thruster was constructed at Soreq and operated under a broad range of operating conditions and under various configurational variations. Electrical, magnetic and plasma diagnostics, as well as accurate thrust and gas flow rate measurements, have been used to investigate the dependence of thruster behavior on the applied voltage, gas flow rate, magnetic field, channel geometry and wall material. Representative results highlighting the major findings of the studies conducted so far are presented

  2. Experimental results of an iodine plasma in PEGASES gridded thruster

    Science.gov (United States)

    Grondein, Pascaline; Aanesland, Ane

    2015-09-01

    In the electric gridded thruster PEGASES, both positive and negative ions are expelled after extraction from an ion-ion plasma. This ion-ion plasma is formed downstream a localized magnetic field placed a few centimeters from the ionization region, trapping and cooling down the electron to allow a better attachment to an electronegative gas. For this thruster concept, iodine has emerged as the most attractive option. Heavy, under diatomic form and therefore good for high thrust, its low ionization threshold and high electronegativity lead to high ion-ion densities and low RF power. After the proof-of-concept of PEGASES using SF6 as propellant, we present here experimental results of an iodine plasma studied inside PEGASES thruster. At solid state at standard temperature and pressure, iodine is heated to sublimate, then injected inside the chamber where the neutral gas is heated and ionized. The whole injection system is heated to avoid deposition on surfaces and a mass flow controller allows a fine control on the neutral gas mass flow. A 3D translation stage inside the vacuum chamber allows volumetric plasma studies using electrostatic probes. The results are also compared with the global model dedicated to iodine as propellant for electric gridded thrusters. This work has been done within the LABEX Plas@par project, and received financial state aid managed by the Agence Nationale de la Recherche, as part of the programme ``Investissements d'avenir.''

  3. Mode Transitions in Magnetically Shielded Hall Effect Thrusters

    Science.gov (United States)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Huang, Wensheng; Kamhawi, Hani; Hofer, Richard R.; Jorns, Benjamin A.; Polk, James E.

    2014-01-01

    A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development.

  4. Low power pulsed MPD thruster system analysis and applications

    Science.gov (United States)

    Myers, Roger M.; Domonkos, Matthew; Gilland, James H.

    1993-01-01

    Pulsed magnetoplasmadynamic (MPD) thruster systems were analyzed for application to solar-electric orbit transfer vehicles at power levels ranging from 10 to 40 kW. Potential system level benefits of pulsed propulsion technology include ease of power scaling without thruster performance changes, improved transportability from low power flight experiments to operational systems, and reduced ground qualification costs. Required pulsed propulsion system components include a pulsed applied-field MPD thruster, a pulse-forming network, a charge control unit, a cathode heater supply, and high speed valves. Mass estimates were obtained for each propulsion subsystem and spacecraft component using off-the-shelf technology whenever possible. Results indicate that for payloads of 1000 and 2000 kg pulsed MPD thrusters can reduce launch mass by between 1000 and 2500 kg over those achievable with hydrogen arcjets, which can be used to reduce launch vehicle class and the associated launch cost. While the achievable mass savings depends on the trip time allowed for the mission, cases are shown in which the launch vehicle required for a mission is decreased from an Atlas IIAS to an Atlas I or Delta 7920.

  5. Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters

    Science.gov (United States)

    Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.

    2010-01-01

    Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.

  6. Calculation of the reactivity feedback due to core assembly bowing in LMFBRs

    International Nuclear Information System (INIS)

    A computational model to calculate the reactivity feedback due to material displacements induced by assembly bowing effects has been developed and embodied in a new code called BOWPERT. While previous bowing feedback models were based on an R-Z representation of the core with user defined worth tables, the BOWPERT model is Hex-Z and requires only unambiguously defined quantities such as cross sections and fluxes. The nonuniformity of the temperature distribution in an LMFBR leads to differential thermal expansion of the walls of the assembly hexcans. These thermal expansion differentials cause the hexcan to distort or bow. Consequentially, the assembly experiences a spatial displacement, thereby resulting in a change in reactivity for the core. Although bowing effects are not expected to be sizable in large heterogeneous LMFBRs, it is important to quantify these effects

  7. Effect of Ship Bow Overhang on Water Shipping for Ship Advancing in Regular Head Waves

    Institute of Scientific and Technical Information of China (English)

    Abdeljalil Benmansour; Benameur Hamoudi; Lahouari Adjlout

    2016-01-01

    This paper presents the results of an experimental investigation dealing with the effect of bow overhang extensions on the quantity of shipping water over the foredeck in case of ships advancing in regular head waves. To perform this investigation, a series of free-running tests was conducted in regular waves using an experimental model of a multipurpose cargo ship to quantify the amount of shipping water. The tests were performed on five bow overhang variants with several combinations of wavelength and ship speed conditions. It was observed that the quantity of shipping water was affected by some parameters such as wavelength, ship speed, and bow shape in terms of an overhang extension. The results show the significant influence of an overhang extension, which is associated with the bow flare shape, on the occurrence of water shipping. These results involve the combined incoming regular waves and model speed.

  8. Bow-tie topological features of metabolic networks and the functional significance

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jing; TAO Lin; YU Hong; LUO JianHua; GAO ZhiWei; LI YiXue

    2007-01-01

    Exploring the structural topology of genome-based large-scale metabolic network is essential for in vestigating possible relations between structure and functionality. Visualization would be helpful for obtaining immediate information about structural organization. In this work, metabolic networks of 75 organisms were investigated from a topological point of view. A spread bow-tie model was proposed to give a clear visualization of the bow-tie structure for metabolic networks. The revealed topological pattern helps to design more efficient algorithm specifically for metabolic networks. This coarsegrained graph also visualizes the vulnerable connections in the network, and thus could have important implication for disease studies and drug target identifications. In addition, analysis on the reciprocal links and main cores in the GSC part of bow-tie also reveals that the bow-tie structure of metabolic networks has its own intrinsic and significant features which are significantly different from those of random networks.

  9. Research on Hydrodynamic Noise Induced by Side Thruster of Observation Boat and Improvable Method%侧推器对测量船水动力噪声的影响和改善方法研究

    Institute of Scientific and Technical Information of China (English)

    范井峰

    2015-01-01

    This article analyzed the characteristics of hydrodynamic noise of an observation boat ,and summarized relevant experience abroad. Installing movable sealing cover on bow thruster was taken as an effective measure on a domestic ship which solved the problem of harmful effect on underwater sound equipment.%对某测量船水动力噪声进行了特性分析,并总结了国外船舶相关经验. 介绍了国内船舶为首侧推加装活动封闭盖板装置的有效措施,解决了首侧推的管口对水声设备的不良影响.

  10. Development of the Joyo MK-II core bowing reactivity calculation code

    International Nuclear Information System (INIS)

    The study on the passive safety test by using the Experimental Fast Reactor Joyo has been performed to demonstrate the inherent safety of fast breeder reactors. In this study, emphasis was placed on the improvement on the accuracy of the feedback reactivity analysis. As a bowing reactivity might play a significant roll in ATWS analysis because of its effectively short time constant and relatively large magnitude, an emphasis was placed upon the evaluation of the analysis precision of bowing reactivity. Taking into account of the refueling and irradiation history of the individual core component, the core bowing behavior in Joyo has been analyzed by using the MK-II core management code system MAGI, the interface code TETRAS which interpolate neutron flux and coolant temperature at the position of wrapper tube, and the core bowing calculation code BEACON. Calculation accuracy of above mentioned system was evaluated through the comparison of calculated and measured permanent distortion of subassemblies. In 1996, core bowing reactivity was calculated by AURORA code using the above calculated bowing behavior of individual core component as input. But because an approximate two dimensional material reactivity worth map was utilized in AURORA, it was made clear that some amount of error caused by extrapolation could not be neglected. Therefore calculation code ARCHCOM (Analysis of Reactivity Change due to Core Mechanics) which utilize three dimensional material reactivity worth map as input was developed for the Joyo MK-II core bowing reactivity calculation. This code reduces above mentioned extrapolation error that used to be occurred at isolated core component, such as control rod or irradiation rig and at the interface region between fuel and reflector which had sharp bowing reactivity worth gradient. (author)

  11. Numerical and experimantal analysis of a shaft bow influence on a rotor to stator contact dynamics:

    OpenAIRE

    Braut, Sanjin; Butković, Mirko; Žigulić, Roberto

    2008-01-01

    The shaft bow problem presents a real situation especially in case of slender rotors. This paper investigates the shaft bow influence on the rotor-stator contact dynamics. For this purpose the rotor is described as a simple Jeffcott model and the stator as an elastically suspended rigid ring. To test the numerical model, except a usual run down analysis, an emergency shut down after the sudden rotor unbalance increase is also analyzed. Numerical integration is carried out by the fourth-order ...

  12. Accuracy of two face-bow/semi-adjustable articulator systems in transferring the maxillary occlusal cant

    OpenAIRE

    Nazia Nazir; M Sujesh; Ravi Kumar; P Sreenivas

    2012-01-01

    Context: The precision of an arbitrary face-bow in accurately transferring the orientation of the maxillary cast to the articulator has been questioned because the maxillary cast is mounted in relation to arbitrary measurements and anatomic landmarks that vary among individuals. Aim: This study was intended to evaluate the sagittal inclination of mounted maxillary casts on two semi-adjustable articulator/face-bow systems in comparison to the occlusal cant on lateral cephalograms. Mat...

  13. Highly modular bow-tie gene circuits with programmable dynamic behavior

    OpenAIRE

    Prochazka, Laura; Angelici, Bartolomeo; Haefliger, Benjamin; Benenson, Yaakov

    2014-01-01

    Synthetic gene circuits often require extensive mutual optimization of their components for successful operation, while modular and programmable design platforms are rare. A possible solution lies in the “bow-tie” architecture, which stipulates a focal component - a “knot” - uncoupling circuits’ inputs and outputs, simplifying component swapping, and introducing additional layer of control. Here we construct, in cultured human cells, synthetic bow-tie circuits that transduce microRNA inputs i...

  14. Bow-tie topological features of metabolic networks and the functional significance

    OpenAIRE

    Jing, Zhao; Lin, Tao; Hong, Yu; Jian-Hua, Luo; Cao, Z W; Yixue, Li

    2006-01-01

    Exploring the structural topology of genome-based large-scale metabolic network is essential for investigating possible relations between structure and functionality. Visualization would be helpful for obtaining immediate information about structural organization. In this work, metabolic networks of 75 organisms were investigated from a topological point of view. A spread bow-tie model was proposed to give a clear visualization of the bow-tie structure for metabolic networks. The revealed top...

  15. On the observability of bow shocks of Galactic runaway OB stars

    CERN Document Server

    Meyer, D M -A; Kuiper, R; Kley, W

    2016-01-01

    Massive stars that have been ejected from their parent cluster and supersonically sailing away through the interstellar medium (ISM) are classified as exiled. They generate circumstellar bow shock nebulae that can be observed. We present two-dimensional, axisymmetric hydrodynamical simulations of a representative sample of stellar wind bow shocks from Galactic OB stars in an ambient medium of densities ranging from n_ISM=0.01 up to 10.0/cm3. Independently of their location in the Galaxy, we confirm that the infrared is the most appropriated waveband to search for bow shocks from massive stars. Their spectral energy distribution is the convenient tool to analyze them since their emission does not depend on the temporary effects which could affect unstable, thin-shelled bow shocks. Our numerical models of Galactic bow shocks generated by high-mass (~40 Mo) runaway stars yield H$\\alpha$ fluxes which could be observed by facilities such as the SuperCOSMOS H-Alpha Survey. The brightest bow shock nebulae are produc...

  16. Thermal-environmental testing of a 30-cm engineering model thruster

    Science.gov (United States)

    Mirtich, M. J.

    1976-01-01

    An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.

  17. Solid propellant micro thrusters for space application; Micropropulseur a propergol solide pour des applications spatiales

    Energy Technology Data Exchange (ETDEWEB)

    Larangot, B.; Rossi, C.; Esteve, D. [Laboratoire d' analyse et d' architecture des systemes (LAAS-CNRS), 31 - Toulouse (France); Orieux, S. [Laboratoire d' analyse et d' architecture des systemes (LAAS-CNRS/CNES), 31 - Toulouse (France)

    2003-07-01

    The paper presents the development of solid propellant micro thruster matrix on silicon. The concept is based on the pyrotechnic material combustion of propellant type stored in a micro machined silicon or Foturan tank. Each Thruster contains three parts: a thermal igniter, a tank and a nozzle. Due to the one shot characteristic, thrusters are fabricated in array configuration. The main field of application is the realization of micro propulsion modules for nano satellite. The micro thrusters array presented in this paper contains 16 individual thrusters on 64 mm{sup 2} surface. Each thruster has a combustion surface of 2.25 mm{sup 2} and throat diameters of 105 {mu}m and 150 {mu}m. The manufacturing process is described and preliminary ignition results and combustion rate are given. (authors)

  18. Multi-Spacecraft Investigation of Terrestrial Bow Shock: Cluster Observations

    Science.gov (United States)

    Kruparova, O.; Krupar, V.; Santolik, O.; Soucek, J.; Safrankova, J.; Nemecek, Z.; Nemec, F.; Maksimovic, M.

    2015-12-01

    Due to the interaction of the solar wind with the Earth's magnetosphere, a permanent collisionless bow shock (BS) is formed in front of the nose of the magnetopause. We investigate a large number of BS crossings observed by the Cluster spacecraft between years 2001 and 2015. The FGM instruments provide us with magnetic field measurements sampled at 22 Hz, which is sufficient for a precise identification of BS crossings. We compare observed BS locations with distances predicted by gas dynamical models based on upstream plasma parameters in the solar wind. We achieve a very good agreement in a case of a paraboloid with the Earth fixed in a focus point. We use a simple timing method for the estimation of a BS normal and velocity along this normal. We found that the deviations of calculated BS normals from the paraboloid shape are within 20 degrees. We compare calculated BS velocities with several upstream parameters. We also investigate BS ramp thickness which is comparable to the Larmor radius in the case of quasi-perpendicular BS crossings.

  19. Motion Prediction of Catamaran with a Semisubmersible Bow in Wave

    Directory of Open Access Journals (Sweden)

    Sun Hanbing

    2016-01-01

    Full Text Available Compared with standard vessels, a slender catamaran with a semi-submerged bow (SSB demonstrates superior seakeeping performance. To predict the motion of an SSB catamaran, computational fluid dynamics methods are adopted in this study and results are validated through small-scale model tests. The pitch, heave, and vertical acceleration are calculated at various wavelengths and speeds. Based on the overset grid and motion region methods, this study obtains the motion responses of an SSB catamaran in regular head waves. The results of the numerical studies are validated with the experimental data and show that the overset grid method is more accurate in predicting the motion of an SSB catamaran; the errors can be controlled within 20%. The movement data in regular waves shows that at a constant speed, the motion response initially increases and then decreases with increasing wavelength. This motion response peak is due to the encountering frequency being close to the natural frequency. Under identical sea conditions, the motion response increases with the increasing Froude number. The motion prediction results, that derive from a short-term irregular sea state, show that there is an optimal speed range that can effectively reduce the amplitude of motion.

  20. Design of Compact Trapezoidal Bow-Tie Chipless RFID Tag

    Directory of Open Access Journals (Sweden)

    Lei Xu

    2015-01-01

    Full Text Available This paper presents a novel compact design of a low cost fully printable slot-loaded bowtie chipless RFID tag. The tag consists of two trapezoidal metallic patches loaded with multiple slot resonators. Slots with similar size or adjacent frequencies are loaded alternately on two bow-tie patches to double the number of data bits within the UWB frequency band without increasing the mutual coupling between slots. A coding capacity of 12 bits is obtained with 12 slots within a reasonable size of 35 mm × 33 mm. RCS of the tag has been given by simulation. Measurements have been done using a bistatic radar configuration in the frequency domain and transmission coefficient is measured. The agreement between the simulation and measurement validates this new concept of design. This tag has high data capacity and low cost and can be directly printed on product such as personal ID, credit cards, paper, and textile because it needs only one conductive layer.

  1. Modelling and verification of monopropellant thruster performance degradation due to silica contamination

    Science.gov (United States)

    Hinds, J. W.; Demaire, A.; Brandt, R.; Schmitz, H. D.

    1992-07-01

    Monopropellant hydrazine thrusters have been found to be degraded by such nonvolatile residues as silica, when the hydrazine has been exposed to propellant tank diaphragm materials. Attention is given to the experimental investigation of 5-20 N output thruster systems' silica-contamination problem, with a view to modeling the mechanism of such degradation. The mechanism is found to be complex and dependent on overall fuel consumption, burn history, and tank/thruster combination. Prospective solutions are discussed.

  2. Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars

    Directory of Open Access Journals (Sweden)

    M. Yamauchi

    2011-03-01

    Full Text Available Foreshock ions are compared between Venus and Mars at energies of 0.6~20 keV using the same ion instrument, the Ion Mass Analyser, on board both Venus Express and Mars Express. Venus Express often observes accelerated protons (2~6 times the solar wind energy that travel away from the Venus bow shock when the spacecraft location is magnetically connected to the bow shock. The observed ions have a large field-aligned velocity compared to the perpendicular velocity in the solar wind frame, and are similar to the field-aligned beams and intermediate gyrating component of the foreshock ions in the terrestrial upstream region. Mars Express does not observe similar foreshock ions as does Venus Express, indicating that the Martian foreshock does not possess the intermediate gyrating component in the upstream region on the dayside of the planet. Instead, two types of gyrating protons in the solar wind frame are observed very close to the Martian quasi-perpendicular bow shock within a proton gyroradius distance. The first type is observed only within the region which is about 400 km from the bow shock and flows tailward nearly along the bow shock with a similar velocity as the solar wind. The second type is observed up to about 700 km from the bow shock and has a bundled structure in the energy domain. A traversal on 12 July 2005, in which the energy-bunching came from bundling in the magnetic field direction, is further examined. The observed velocities of the latter population are consistent with multiple specular reflections of the solar wind at the bow shock, and the ions after the second reflection have a field-aligned velocity larger than that of the de Hoffman-Teller velocity frame, i.e., their guiding center has moved toward interplanetary space out from the bow shock. To account for the observed peculiarity of the Martian upstream region, finite gyroradius effects of the solar wind protons compared to the radius of the bow shock curvature and

  3. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Field emission electric propulsion (FEEP) thrusters have gained considerable attention for spacecrafts disturbance compensation because of excellent...

  4. Near-field angular distributions of high velocity ions for low-power hall thrusters

    OpenAIRE

    Sullivan, Regina M.; Yost, Allison; Johnson, Lee K.

    2009-01-01

    Experimental angular distributions of high-energy primary ions in the near-field region of a small Hall thruster between 50-200 mm downstream of the thruster exit plane at a range of centerline angles have been determined using a highly-collimated, energy-selective diagnostic probe. The measurements reveal a wide angular distribution of ions exiting the thruster channel and the formation of a strong, axially-directed jet of ions along the thruster centerline. Comparisons are made to other exp...

  5. Low-Cost High-Performance Hall Thruster Support System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Colorado Power Electronics (CPE) has built an innovative modular power processing unit (PPU) for Hall Thrusters, including discharge, magnet, heater and keeper...

  6. Colloid Thruster for Attitude Control Systems (ACS) and Tip-off Control Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop and deliver a complete engineering model colloid thruster system, capable of thrust levels and lifetimes required for spacecraft...

  7. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase I: Numerical Simulations

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.

    2011-01-01

    In a proof-of-principle effort to demonstrate the feasibility of magnetically shielded (MS) Hall thrusters, an existing laboratory thruster has been modified with the guidance of physics-based numerical simulation. When operated at a discharge power of 6-kilowatts the modified thruster has been designed to reduce the total energy and flux of ions to the channel insulators by greater than 1 and greater than 3 orders of magnitude, respectively. The erosion rates in this MS thruster configuration are predicted to be at least 2-4 orders of magnitude lower than those in the baseline (BL) configuration. At such rates no detectable erosion is expected to occur.

  8. Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofery, Richard R.

    2013-01-01

    The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.

  9. Simulation of discharge channel wall erosion in Hall thruster

    International Nuclear Information System (INIS)

    To calculation the lifetime of a Hall thruster, a two-dimensional model of magnetic and electric fields was established for the discharge channel of the thruster, and the assumed propellant is the xenon. The movement of particles in the magnetic and electric fields was tracked using PIC method. The Laplace equation was used to calculate the magnetic field, and the Poisson equation to calculation the electric field. Electrons were injected from the cathode and then ions were generated from the atom-electron ionization collision. In the process of tracking, we recorded the number, angle and energy of ions hitting against the inner and outer walls. Then we calculated the erosion rate at the threshold energy of 10, 20, 30, 40 and 50 eV, respectively. The maximal erosion rate at the outlet is 1.7 × 10-9 m/s. (authors)

  10. Study of breakdown in an ablative pulsed plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tiankun; Wu, Zhiwen; Liu, Xiangyang; Xie, Kan; Wang, Ningfei; Cheng, Yue [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2015-10-15

    Breakdown in ablative pulsed plasma thrusters (APPTs) must be studied in order to design new types of APPTs and measure particular parameters. In this paper, we studied a parallel-plate ablative pulsed plasma thruster that used a coaxial semiconductor spark plug. By operating the APPT about 500 times with various capacitor voltages and electrode gaps, we measured and analyzed the voltage of the spark plug, the voltage between the electrodes, and the discharge current. These experiments revealed a time delay (∼1–10 μs) between spark plug ignition and capacitor discharge, which may affect the performance of high-pulsing-rate (>10 kHz) and double-discharge APPTs, and the measurements of some of the APPT parameters. The delay time decreased as the capacitor voltage increased, and it increased with an increasing electrode gap and increasing number of ignitions. We explain our results through a simple theoretical analysis.

  11. Preliminary scoping studies for nozzle-based coaxial plasma thrusters

    International Nuclear Information System (INIS)

    The ideal steady-state properties of nozzle-based coaxial plasma guns are modelled by means of a magnetic Bernoulli equation. Formulas for thrust, power usage, mass flow rate, and specific impulse using hydrogen are thereby obtained, and are used to approximately assess the mission performance capabilities of such thrusters. Parameters in the range of experience of the Los Alamos spheromak group are addressed within the context of orbit raising, slow (cargo) missions to mars, and fast missions to mars. The various internal atomic and plasma effects on hydrogen plasma thruster performance are approximately estimated or bounded. It is concluded that such devices may be relevant to mission performance at reasonable power levels

  12. Controllability of an underactuated spacecraft with one thruster under disturbance

    Institute of Scientific and Technical Information of China (English)

    Dong-Xia Wang; Ying-Hong Jia; Lei Jin; Hai-Chao Gui; Shi-Jie Xu

    2012-01-01

    For an underactuated spacecraft using only one thruster,the attitude controllability with respect to the orbit frame is studied in the presence of periodical oscillation disturbance,which provides a preconditional guide on designing control law for underactuated attitude control system.Firstly,attitude dynamic model was established for an underactuated spacecraft,and attitude motion was described using the special orthogonal group (SO (3)).Secondly,Liouville theorem was used to confirm that the flow generated by the drift vector of the underactuated attitude control system is volume-preserving.Furthermore,according to Poincaré's recurrence theorem,we draw conclusions that this drift field is weakly positively poisson stable (WPPS).Thirdly,the sufficient and necessary condition of controllability was obtained on the basis of lie algebra rank condition (LARC).Finally,the controllable conditions were analyzed and simulated in different cases of inertia matrix with the installed position of thruster.

  13. Numerical Study of Hall Thruster Plume and Sputtering Erosion

    Directory of Open Access Journals (Sweden)

    Li Yan

    2012-01-01

    Full Text Available Potential sputtering erosion caused by the interactions between spacecraft and plasma plume of Hall thrusters is a concern for electric propulsion. In this study, calculation model of Hall thruster’s plume and sputtering erosion is presented. The model is based on three dimensional hybrid particle-in-cell and direct simulation Monte Carlo method (PIC/DSMC method which is integrated with plume-wall sputtering yield model. For low-energy heavy-ion sputtering in Hall thruster plume, the Matsunami formula for the normal incidence sputtering yield and the Yamamura angular dependence of sputtering yield are used. The validation of the simulation model is realized through comparing plume results with the measured data. Then, SPT-70’s sputtering erosion on satellite surfaces is assessed and effect of mass flow rate on sputtering erosion is analyzed.

  14. Hall Thruster Modeling with a Given Temperature Profile

    International Nuclear Information System (INIS)

    A quasi one-dimensional steady-state model of the Hall thruster is presented. For given mass flow rate, magnetic field profile, and discharge voltage the unique solution can be constructed, assuming that the thruster operates in one of the two regimes: with or without the anode sheath. It is shown that for a given temperature profile, the applied discharge voltage uniquely determines the operating regime; for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. A good correlation between the quasi one-dimensional model and experimental results can be achieved by selecting an appropriate temperature profile. We also show how the presented model can be used to obtain a two-dimensional potential distribution

  15. Hall Thruster Modeling with a Given Temperature Profile

    Energy Technology Data Exchange (ETDEWEB)

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-06-12

    A quasi one-dimensional steady-state model of the Hall thruster is presented. For given mass flow rate, magnetic field profile, and discharge voltage the unique solution can be constructed, assuming that the thruster operates in one of the two regimes: with or without the anode sheath. It is shown that for a given temperature profile, the applied discharge voltage uniquely determines the operating regime; for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. A good correlation between the quasi one-dimensional model and experimental results can be achieved by selecting an appropriate temperature profile. We also show how the presented model can be used to obtain a two-dimensional potential distribution.

  16. Ship Bow Force-Deformation Curves for Ship-Impact Demand of Bridges considering Effect of Pile-Cap Depth

    OpenAIRE

    Wei Fan; Wancheng Yuan

    2014-01-01

    Since static analysis procedures in the vessel impact-resistant design codes neglect dynamic amplification effects related to bridge mass, ship-impact responses of bridges may be potentially underestimated. For this reason, several dynamic vessel-impact analysis techniques had been recently proposed, where a force-deformation curve was employed to model the vessel bow stiffness. Most of the recent works mainly focused on the force-deformation curves of the barge bows rather than the ship bows...

  17. Effects of Segmented Electrode in Hall Current Plasma Thrusters

    International Nuclear Information System (INIS)

    Segmented electrodes with a low secondary electron emission are shown to alter significantly plasma flow in the ceramic channel of the Hall thruster. The location of the axial acceleration region relative to the magnetic field can be moved. The radial potential distribution can also be altered near the channel walls. A hydrodynamic model shows that these effects are consistent with a lower secondary electron emission of the segmented electrode as compared to ceramic channel walls

  18. Vacuum arc plasma thrusters with inductive energy storage driver

    Science.gov (United States)

    Krishnan, Mahadevan (Inventor)

    2009-01-01

    A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.

  19. Hall Effect Thruster Plume Contamination and Erosion Study

    Science.gov (United States)

    Jaworske, Donald A.

    2000-01-01

    The objective of the Hall effect thruster plume contamination and erosion study was to evaluate the impact of a xenon ion plume on various samples placed in the vicinity of a Hall effect thruster for a continuous 100 hour exposure. NASA Glenn Research Center was responsible for the pre- and post-test evaluation of three sample types placed around the thruster: solar cell cover glass, RTV silicone, and Kapton(R). Mass and profilometer), were used to identify the degree of deposition and/or erosion on the solar cell cover glass, RTV silicone, and Kapton@ samples. Transmittance, reflectance, solar absorptance, and room temperature emittance were used to identify the degree of performance degradation of the solar cell cover glass samples alone. Auger spectroscopy was used to identify the chemical constituents found on the surface of the exposed solar cell cover glass samples. Chemical analysis indicated some boron nitride contamination on the samples, from boron nitride insulators used in the body of the thruster. However, erosion outweighted contamination. All samples exhibited some degree of erosion. with the most erosion occurring near the centerline of the plume and the least occurring at the +/- 90 deg positions. For the solar cell cover glass samples, erosion progressed through the antireflective coating and into the microsheet glass itself. Erosion occurred in the solar cell cover glass, RTV silicone and Kapton(R) at different rates. All optical properties changed with the degree of erosion, with solar absorptance and room temperature emittance increasing with erosion. The transmittance of some samples decreased while the reflectance of some samples increased and others decreased. All results are consistent with an energetic plume of xenon ions serving as a source for erosion.

  20. Expanding the ADN-Based Monopropellant Thruster Family

    OpenAIRE

    Anflo, K.; S. Moore; Moog Inc., P.King

    2009-01-01

    The development of High Performance Green Propulsion (HPGP) was initiated with the goal of meeting the requirements for future satellite missions. The HPGP technology includes a storable monopropellant blend based on Ammonium DiNitramide (ADN) and a thruster with a high-temperature resistant thrust chamber and catalyst. After more than 10 years of R&D, the HPGP technology is emerging as an enabling technology for improved performance, enhanced volumetric efficiency, reduction of propellant ha...

  1. Mode transition of a Hall thruster discharge plasma

    International Nuclear Information System (INIS)

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulation that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.

  2. Thermal Storage Advanced Thruster System (TSATS) Experimental Program

    Science.gov (United States)

    Rose, M. Frank; Lisano, Michael E., II

    1991-01-01

    The Thermal Storage Advanced Thruster System (TSATS) rocket test stand is completely assembled and operational. The first trial experimental runs of a low-energy TSATS prototype rocket was made using the test stand. The features of the rocket test stand and the calibration of the associated diagnostics are described and discussed. Design and construction of the TSATS prototype are discussed, and experimental objectives, procedures, and results are detailed.

  3. Experimental Null test of a Mach Effect Thruster

    CERN Document Server

    Fearn, Heidi

    2013-01-01

    The Mach Effect Thruster (MET) is a device which utilizes fluctuations in the rest masses of accelerating objects (capacitor stacks, in which internal energy changes take place) to produce a steady linear thrust. The theory has been given in detail elsewhere [1, 2] and references therein, so here we discuss only an experiment. We show how to obtain thrust using a heavy reaction mass at one end of our capacitor stack and a lighter end cap on the other. Then we show how this thrust can be eliminated by having two heavy masses at either end of the stack with a central mounting bracket. We show the same capacitor stack being used as a thruster and then eliminate the thrust by arranging equal brass masses on either end, so that essentially the capacitor stack is trying to push in both directions at once. This arrangement in theory would only allow for a small oscillation but no net thrust. We find the thrust does indeed disappear in the experiment, as predicted. The device (in thruster mode) could in principle be ...

  4. Multipole gas thruster design. Ph.D. Thesis

    Science.gov (United States)

    Isaacson, G. C.

    1977-01-01

    The development of a low field strength multipole thruster operating on both argon and xenon is described. Experimental results were obtained with a 15-cm diameter multipole thruster and are presented for a wide range of discharge-chamber configurations. Minimum discharge losses were 300-350 eV/ion for argon and 200-250 eV/ion for xenon. Ion beam flatness parameters in the plane of the accelerator grid ranged from 0.85 to 0.93 for both propellants. Thruster performance is correlated for a range of ion chamber sizes and operating conditions as well as propellant type and accelerator system open area. A 30-cm diameter ion source designed and built using the procedure and theory presented here-in is shown capable of low discharge losses and flat ion-beam profiles without optimization. This indicates that by using the low field strength multipole design, as well as general performance correlation information provided herein, it should be possible to rapidly translate initial performance specifications into easily fabricated, high performance prototypes.

  5. A novel single thruster control strategy for spacecraft attitude stabilization

    Science.gov (United States)

    Godard; Kumar, Krishna Dev; Zou, An-Min

    2013-05-01

    Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.

  6. Chemical kinetic performance losses for a hydrogen laser thermal thruster

    Science.gov (United States)

    Mccay, T. D.; Dexter, C. E.

    1985-01-01

    Projected requirements for efficient, economical, orbit-raising propulsion systems have generated investigations into several potentially high specific impulse, moderate thrust, advanced systems. One of these systems, laser thermal propulsion, utilizes a high temperature plasma as the enthalpy source. The plasma is sustained by a focused laser beam which maintains the plasma temperature at levels near 20,000 K. Since such temperature levels lead to total dissociation and high ionization, the plasma thruster system potentially has a high specific impulse decrement due to recombination losses. The nozzle flow is expected to be sufficiently nonequilibrium to warrant concern over the achievable specific impluse. This investigation was an attempt at evaluation of those losses. The One-Dimensional Kinetics (ODK) option of the Two-Dimensional Kinetics (TDK) Computer Program was used with a chemical kinetics rate set obtained from available literature to determine the chemical kinetic energy losses for typical plasma thruster conditions. The rates were varied about the nominal accepted values to band the possible losses. Kinetic losses were shown to be highly significant for a laser thermal thruster using hydrogen. A 30 percent reduction in specific impulse is possible simply due to the inability to completely extract the molecular recombination energy.

  7. Scaling and Systems Considerations in Pulsed Inductive Thrusters

    Science.gov (United States)

    Polzin, Kurt A.

    2007-01-01

    Performance scaling in pulsed inductive thrusters is discussed in the context of previous experimental studies and modeling results. Two processes, propellant ionization and acceleration, are interconnected where overall thruster performance and operation are concerned, but they are separated here to gain physical insight into each process and arrive at quantitative criteria that should be met to address or mitigate inherent inductive thruster difficulties. The effects of preionization in lowering the discharge energy requirements relative to a case where no preionization is employed, and in influencing the location of the initial current sheet, are described. The relevant performance scaling parameters for the acceleration stage are reviewed, emphasizing their physical importance and the numerical values required for efficient acceleration. The scaling parameters are then related to the design of the pulsed power train providing current to the acceleration stage. The impact of various choices in pulsed power train and circuit topology selection are reviewed, paying special attention to how these choices mitigate or exacerbate switching, lifetime, and power consumption issues.

  8. Estimating Thruster Impulses From IMU and Doppler Data

    Science.gov (United States)

    Lisano, Michael E.; Kruizinga, Gerhard L.

    2009-01-01

    A computer program implements a thrust impulse measurement (TIM) filter, which processes data on changes in velocity and attitude of a spacecraft to estimate the small impulsive forces and torques exerted by the thrusters of the spacecraft reaction control system (RCS). The velocity-change data are obtained from line-of-sight-velocity data from Doppler measurements made from the Earth. The attitude-change data are the telemetered from an inertial measurement unit (IMU) aboard the spacecraft. The TIM filter estimates the threeaxis thrust vector for each RCS thruster, thereby enabling reduction of cumulative navigation error attributable to inaccurate prediction of thrust vectors. The filter has been augmented with a simple mathematical model to compensate for large temperature fluctuations in the spacecraft thruster catalyst bed in order to estimate thrust more accurately at deadbanding cold-firing levels. Also, rigorous consider-covariance estimation is applied in the TIM to account for the expected uncertainty in the moment of inertia and the location of the center of gravity of the spacecraft. The TIM filter was built with, and depends upon, a sigma-point consider-filter algorithm implemented in a Python-language computer program.

  9. Scattering of field-aligned beam ions upstream of Earth's bow shock

    Directory of Open Access Journals (Sweden)

    A. Kis

    2007-03-01

    Full Text Available Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.

  10. Global explicit particle-in-cell simulations of the nonstationary bow shock and magnetosphere

    CERN Document Server

    Yang, Zhongwei; Liu, Ying D; Parks, George K; Wang, Rui; Lu, Quanming; Hu, Huidong

    2016-01-01

    We carry out two-dimensional global particle-in-cell simulations of the interaction between the solar wind and a dipole field to study the formation of the bow shock and magnetosphere. A self-reforming bow shock ahead of a dipole field is presented by using relatively high temporal-spatial resolutions. We find that (1) the bow shock and the magnetosphere are formed and reach a quasi-stable state after several ion cyclotron periods, and (2) under the Bz southward solar wind condition the bow shock undergoes a self-reformation for low \\b{eta}i and high MA. Simultaneously, a magnetic reconnection in the magnetotail is found. For high \\b{eta}i and low MA, the shock becomes quasi-stationary, and the magnetotail reconnection disappears. In addition, (3) the magnetopause deflects the magnetosheath plasmas. The sheath particles injected at the quasi-perpendicular region of the bow shock can be convected to downstream of an oblique shock region. A fraction of these sheath particles can leak out from the magnetosheath ...

  11. Flow separation control by using bowed blade in highly loaded turbine cascades

    Institute of Scientific and Technical Information of China (English)

    YAMAMOTO; Atsumasa

    2009-01-01

    Due to the serious flow separations and centralized vortices,there are high secondary losses in highly loaded turbines.It is imperative to find measures to control the flow separation and vortices hence improve the turbine performance.This paper reports our recent progress on flow separation and vor-tices control in highly loaded turbine cascades by using bowed blades.Two sets of highly loaded tur-bine cascades with the turning angles of 113° and 160°,and each with 7 bowed blade angles 0°(straight),±10°,±20° and ±30° were experimentally investigated.Both internal flow field measurement and flow visualization on the blade surfaces were conducted,and the effects of blade bowing on the flow topology,distribution of vorticity and the flow energy loss were discussed.The results show that,for the cascade with the turning angle of 113°,the appropriately positive bow angle could reduce the flow energy loss;whereas for the cascade with the turning angle of 160°,the well selected negative bow angle can give the better aerodynamic performance.

  12. Flow separation control by using bowed blade in highly loaded turbine cascades

    Institute of Scientific and Technical Information of China (English)

    TAN ChunQing; ZHANG HuaLiang; CHEN HaiSheng; DONG XueZhi; ZHAO HongLei; YAMAMOTO Atsumasa

    2009-01-01

    Due to the serious flow separations and centralized vortices, there are high secondary losses in highly loaded turbines. It is imperative to find measures to control the flow separation and vortices hence improve the turbine performance. This paper reports our recent progress on flow separation and vor-tices control in highly loaded turbine cascades by using bowed blades. Two sets of highly loaded tur-bine cascades with the turning angles of 113°and 160°, and each with 7 bowed blade angles 0°(straight),±10°, ±20° and ±30° were experimentally investigated. Both internal flow field measurement and flow visualization on the blade surfaces were conducted, and the effects of blade bowing on the flow topology, distribution of vorticity and the flow energy loss were discussed. The results show that, for the cascade with the turning angle of 113°, the appropriately positive bow angle could reduce the flow energy loss; whereas for the cascade with the turning angle of 160°, the well selected negative bow angle can give the better aerodynamic performance.

  13. Application of high-turning bowed compressor stator to redesign of highly loaded fan stage

    Institute of Scientific and Technical Information of China (English)

    Shaobin LI; Jiexian SU; Zhongqi WANG

    2008-01-01

    A redesign of a highly loaded fan stage by using high-turning bowed compressor stator was conducted. The original tandem stator was replaced by the highly loaded bowed stator which was applicable to highly sub-sonic flow conditions. 3D contouring technique and local modification of blade were applied to the design of the bowed blade in order to improve the aerodynamic per-formance and the matching of the rotor and stator blade rows. Performance curves at different rotating speeds and performances at different operating points for both the original fan stage and redesigned fan stage were obtained by numerical simulations. The results show that the highly loaded bowed stator can be used not only to improve the structure and the aerodynamic performances at various operating points of the compressor stage but also to pro-vide high performances at off-design conditions. It is believed that the highly loaded bowed stator can advance the design of high-performance compressor.

  14. Bow Shocks from Neutron Stars Scaling Laws and HST Observations of the Guitar Nebula

    CERN Document Server

    Chatterjee, S

    2002-01-01

    The interaction of high-velocity neutron stars with the interstellar medium produces bow shock nebulae, where the relativistic neutron star wind is confined by ram pressure. We present multi-wavelength observations of the Guitar Nebula, including narrow-band H-alpha imaging with HST/WFPC2, which resolves the head of the bow shock. The HST observations are used to fit for the inclination of the pulsar velocity vector to the line of sight, and to determine the combination of spindown energy loss, velocity, and ambient density that sets the scale of the bow shock. We find that the velocity vector is most likely in the plane of the sky. We use the Guitar Nebula and other observed neutron star bow shocks to test scaling laws for their size and H-alpha emission, discuss their prevalence, and present criteria for their detectability in targeted searches. The set of H-alpha bow shocks shows remarkable consistency, in spite of the expected variation in ambient densities and orientations. Together, they support the ass...

  15. On the role of the bow shock in power of magnetospheric disturbances

    Science.gov (United States)

    Sedykh, P. A.

    2011-11-01

    Bow shock is a powerful transformer of the solar wind kinetic energy into the gas dynamic and electromagnetic energy. Indeed, the magnetic field tangential component and magnetic energy density increase by factors of almost 4 and approximately 15, respectively, at the bow point when the front is crossed. A jump of the magnetic field tangential component at front crossing means that the front carries an electric current. The solar wind kinetic energy partly transforms to gas kinetic and electromagnetic energy when passage through the bow shock front. The transition layer (magnetosheath) can use the part of this energy for accelerating of plasma, but can conversely spend the part its kinetic energy on the electric power generation, which afterwards may be used by the magnetosphere. Thereby, transition layer can be both consumer and generator of electric power depending upon special conditions. The direction of current behind the bow shock front depends on the sign of the IMF Bz-component. It is this current which sets plasma convection in motion. Energetically, this external current is necessary for maintaining convection of plasma in the inhomogeneous system (magnetosphere). The generator at the bow shock front can be a sufficient source of power for supplying energy to substorm processes in the geomagnetosphere.

  16. Bow shock fragmentation driven by a thermal instability in laboratory-astrophysics experiments

    CERN Document Server

    Suzuki-Vidal, F; Ciardi, A; Pickworth, L A; Rodriguez, R; Gil, J M; Espinosa, G; Hartigan, P; Swadling, G F; Skidmore, J; Hall, G N; Bennett, M; Bland, S N; Burdiak, G; de Grouchy, P; Music, J; Suttle, L; Hansen, E; Frank, A

    2015-01-01

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counter-streaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame and the experiments are driven over many times the characteristic cooling time-scale. The initially smooth bow shock rapidly develops small-scale non-uniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with...

  17. Bow-tie antennas on a dielectric half-space - Theory and experiment

    Science.gov (United States)

    Compton, Richard C.; Mcphedran, Ross C.; Popovic, Zorana; Rebeiz, Gabriel M.; Tong, Peter P.

    1987-01-01

    A new formulation is discussed for the rigous calculation of the radiation pattern of a bow-tie antenna of finite length and infinitesimal thickness, placed on a lossless dielectric substrate. The analysis is based on a representation of the current density on the metal surface of the antenna as a sum of an imposed (quasistatic) term and a set of current modes with unknown amplitudes. Free-space fields that are expressed in terms of continuous spectra of symmetrized plane waves are matched to the current modes using the method of moments. The resulting set of equations are solved for the unknown current amplitudes. The calculations show that for increasing bow length the antenna impedance spirals rapidly to a value predicted by transmission line theory. The theory also shows that the E-plane pattern of a two-wavelength, 60-deg bow-tie antenna is dominated by low-loss current modes propagating at the dielectric wavenumber. As the bow tie narrows, the loss of the modes increases, and the dominant wavenumber tends to the quasi-static value. Pattern measurements made at 94 GHz are shown to agree well with theoretical predictions. Measurements for a long-wire antenna, a linear array of bow-tie elements, and a log-periodic antenna are also presented.

  18. Unilateral Outer Bow Expanded Cervical Headgear Force System: 3D Analysis Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Allahyar Geramy

    2015-10-01

    Full Text Available Objectives: Headgears are among the effective orthodontic appliances to achieve treatment goals. Unilateral molar distal movement is sometimes needed during an orthodontic treat- ment, which can be achieved by an asymmetric headgear. Different unilateral headgears have been introduced. The main goal of this study was to analyze the force system of uni- lateral expanded outer bow asymmetric headgears by the finite element method (FEM.Materials and Methods: Six 3D finite element models of a mesiodistal slice of the maxilla containing upper first molars, their periodontal ligaments (PDLs, cancellous bone, cortical bone, and a cervical headgear with expanded outer bow attached to maxillary first molars were designed in SolidWorks 2010 and meshed in ANSYS Workbench ver. 12.1. The mod- els were the same except for the degree of outer bow expansion. The outer bow ends were loaded with 2-Newton force. The distal driving force and the net moment were evaluated.Results: A decrease in the distalizing force in the normal side molar from 1.69 N to 1.37 N was shown by increasing the degree of unilateral expansion. At the same time, the force increased from 2.19 N to 2.49 N in the expanded side molar. A net moment increasing from 2.26 N.mm to 4.64 N.mm was also shown.Conclusion: Unilateral outer bow expansion can produce different distalizing forces in mo- lars, which increase by increasing the expansion.

  19. High-Energy Two-Stage Pulsed Plasma Thruster

    Science.gov (United States)

    Markusic, Tom

    2003-01-01

    A high-energy (28 kJ per pulse) two-stage pulsed plasma thruster (MSFC PPT-1) has been constructed and tested. The motivation of this project is to develop a high power (approximately 500 kW), high specific impulse (approximately 10000 s), highly efficient (greater than 50%) thruster for use as primary propulsion in a high power nuclear electric propulsion system. PPT-1 was designed to overcome four negative characteristics which have detracted from the utility of pulsed plasma thrusters: poor electrical efficiency, poor propellant utilization efficiency, electrode erosion, and reliability issues associated with the use of high speed gas valves and high current switches. Traditional PPTs have been plagued with poor efficiency because they have not been operated in a plasma regime that fully exploits the potential benefits of pulsed plasma acceleration by electromagnetic forces. PPTs have generally been used to accelerate low-density plasmas with long current pulses. Operation of thrusters in this plasma regime allows for the development of certain undesirable particle-kinetic effects, such as Hall effect-induced current sheet canting. PPT-1 was designed to propel a highly collisional, dense plasma that has more fluid-like properties and, hence, is more effectively pushed by a magnetic field. The high-density plasma loading into the second stage of the accelerator is achieved through the use of a dense plasma injector (first stage). The injector produces a thermal plasma, derived from a molten lithium propellant feed system, which is subsequently accelerated by the second stage using mega-amp level currents, which eject the plasma at a speed on the order of 100 kilometers per second. Traditional PPTs also suffer from dynamic efficiency losses associated with snowplow loading of distributed neutral propellant. The twostage scheme used in PPT-I allows the propellant to be loaded in a manner which more closely approximates the optimal slug loading. Lithium propellant

  20. Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.

  1. DESIGN AND DEVELOPMENT OF AUTO DEPTH CONTROL OF REMOTELY OPERATED VEHICLE USING THRUSTER SYSTEM

    Directory of Open Access Journals (Sweden)

    F.A. Ali

    2014-12-01

    Full Text Available Remotely Operated Vehicles are underwater robots designed specifically for surveillance, monitoring and collecting data for underwater activities. In the underwater vehicle industries, the thruster is an important part in controlling the direction, depth and speed of the ROV. However, there are some ROVs that cannot be maintained at the specified depth for a long time because of disturbance. This paper proposes an auto depth control using a thruster system. A prototype of a thruster with an auto depth control is developed and attached to the previously fabricated UTeM ROV. This paper presents the operation of auto depth control as well as thrusters for submerging and emerging purposes and maintaining the specified depth. The thruster system utilizes a microcontroller as its brain, a piezoresistive strain gauge pressure sensor and a DC brushless motor to run the propeller. Performance analysis of the auto depth control system is conducted to identify the sensitivity of the pressure sensor, and the accuracy and stability of the system. The results show that the thruster system performs well in maintaining a specified depth as well as stabilizing itself when a disturbanceoccurs even with a simple proportional controller used to control the thruster, where the thruster is an important component of the ROV.

  2. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbances

    DEFF Research Database (Denmark)

    Tatrallyay, M.; Erdos, G.; Nemeth, Z.; Verigin, M. I.; Vennerstrøm, Susanne

    2012-01-01

    by the interplanetary magnetic field (IMF) component transverse to the solar wind flow. The observed magnetopause crossings could be predicted with a reasonable accuracy (0.1-0.2 RE) by one of the presented models at least. For geosynchronous magnetopause crossings observed by the GOES satellites, (1......) the new model provided the best predictions when the IMF was extremely large having a large negative Bz component, and (2) the predictions of the model of Shue et al. (1998) agreed best with the observations when the solar wind dynamic pressure was extremely large. The magnetopause crossings close to...... the cusp observed by the Cluster spacecraft were best predicted by the 3-D model of Lin et al. (2010). The applied empirical bow shock models and the 3-D semi-empiric bow shock model combined with magnetohydrodynamic (MHD) solution proved to be insufficient for predicting the observed unusual bow...

  3. Transport of Solar Wind H+ and He++ Ions across Earth’s Bow Shock

    Science.gov (United States)

    Parks, G. K.; Lee, E.; Fu, S. Y.; Kim, H. E.; Ma, Y. Q.; Yang, Z. W.; Liu, Y.; Lin, N.; Hong, J.; Canu, P.; Dandouras, I.; Rème, H.; Goldstein, M. L.

    2016-07-01

    We have investigated the dependence of mass, energy, and charge of solar wind (SW) transport across Earth’s bow shock. An examination of 111 crossings during quiet SW in both quasi-perpendicular and quasi-parallel shock regions shows that 64 crossings had various degrees of heating and thermalization of SW. We found 22 crossings where the SW speed was flat top distribution is ∼50 Volts. We find that the temperatures of H+ and He++ beams that penetrate the shock can sometimes be nearly the same in the upstream and downstream regions, indicating little or no heating had occurred crossing the bow shock. None of the models predict that the SW can cross the bow shock without heating. Our observations are important constraints for new models of collisionless shocks.

  4. A matched Bow-tie antenna at 433MHz for use in underwater wireless sensor networks

    International Nuclear Information System (INIS)

    Electromagnetic (EM) wave propagation underwater is been disregarded because of attenuation at high frequencies, however the theory predicts that propagation is possible at some useful distance in the lower Industrial, Scientific and Medical (ISM) band. Common transceivers rely on narrowband antennas and matching circuit. The aim of this paper is to design a broadband 433MHz bow-tie antenna and experiment it in air and water without a matching circuit. This antenna could be attached to wireless transceivers and form a Wireless Sensor Network for deployment in various underwater applications. The bow-tie antennas were designed, simulated and constructed in laboratory. Experiments were setup carefully by using a completely isolated transmitter from electronics to avoid airborne transmission. The 433MHz. bow-tie proved its suitability for use in Underwater.

  5. Prenatal diagnosis of metatropic dysplasia: beware of the pseudo-bowing sign

    Energy Technology Data Exchange (ETDEWEB)

    Garel, Catherine [Trousseau Hospital, University Hospitals of the East of Paris, Department of Radiology, Paris (France); Hopital d' Enfants Armand-Trousseau, Department of Radiology, Paris (France); Dhouib, Amira; Sileo, Chiara; Ducou le Pointe, Hubert [Trousseau Hospital, University Hospitals of the East of Paris, Department of Radiology, Paris (France); Cormier-Daire, Valerie [Paris Descartes University, Sorbonne Paris Cite, Necker-Enfants-Malades Hospital, Department of Genetics, Paris (France)

    2014-03-15

    Metatropic dysplasia is a very rare form of osteochondrodysplasia with only one case of prenatal diagnosis described in the literature. It is characterized by marked shortening of the long bones with severe platyspondyly and dumbbell-shape metaphyses. We report a case of metatropic dysplasia that was diagnosed prenatally and describe the findings on US and CT. The pregnancy was terminated and the post-mortem radiographs are shown. The woman had been referred for short and bowed long bones. Severe metaphyseal enlargement was a misleading finding because it had been misinterpreted as limb bowing. Thus when abnormal curvature of the long bones is observed at prenatal US, attention should be drawn not only to the diaphyses but also to the metaphyses because severe metaphyseal enlargement might be responsible for pseudo-bowing. (orig.)

  6. An Investigation of the Flow Structure Upstream of Slowly Moving Blunt Bows.

    Science.gov (United States)

    Strayer, T. Darton

    The structure of two dimensional bow waves generated by blunt bows is investigated experimentally, analytically, and numerically. In tow tank experiments, bow wave profiles ahead of cylindrical and box shaped bow models, having drafts of 0.136m and 0.11m respectively, are measured using a capacitance type probe for flows in the 0.21 to 0.74 Froude number range. Far upstream several waves are observed, and using linear wave theory they are shown to be transient in nature, generated during the initial acceleration of the bow models. Measured profiles closer to the towed model show a non-breaking bow wave characterized by a sharp monotonic free surface rise to a relatively flat elevated plateau region located adjacent of the bow. In addition small scale waves are shed from the bow and at moderate Froude numbers these waves completely dissipate inside the plateau region, while at lower Froude numbers they propagate further upstream. Using regular perturbation methods first and second order asymptotic solutions are derived for small draft Froude numbers and their subsequent comparison with experimental results shows that both the double body (leading order) and higher order flow solutions poorly approximate the actual flow near the bow. It is found, however, that if the bow geometry is modified to include a triangular shaped separation region the leading order solution mimics measured wave profiles. This non-negligible region located beneath the plateau region is found to extend upstream to the plateau's leading edge. Moreover, results indicate that the location of the so-called separation point, the point at which the flow separates from the free surface and passes beneath the recirculating flow, coincides with the plateau's leading edge and that the sharp free surface rise is an inviscid flow phenomenon. The generation of a free surface shear layer and the flow separation phenomenon are examined as well as a possible cause and effect relationship between them

  7. Transport of Solar Wind H+ and He++ Ions across Earth’s Bow Shock

    Science.gov (United States)

    Parks, G. K.; Lee, E.; Fu, S. Y.; Kim, H. E.; Ma, Y. Q.; Yang, Z. W.; Liu, Y.; Lin, N.; Hong, J.; Canu, P.; Dandouras, I.; Rème, H.; Goldstein, M. L.

    2016-07-01

    We have investigated the dependence of mass, energy, and charge of solar wind (SW) transport across Earth’s bow shock. An examination of 111 crossings during quiet SW in both quasi-perpendicular and quasi-parallel shock regions shows that 64 crossings had various degrees of heating and thermalization of SW. We found 22 crossings where the SW speed was flat top distribution is ˜50 Volts. We find that the temperatures of H+ and He++ beams that penetrate the shock can sometimes be nearly the same in the upstream and downstream regions, indicating little or no heating had occurred crossing the bow shock. None of the models predict that the SW can cross the bow shock without heating. Our observations are important constraints for new models of collisionless shocks.

  8. The bow shock structure of IRS 7 - Wind-wind collision near the Galactic center

    Science.gov (United States)

    Yusef-Zadeh, Farhad; Melia, Fulvio

    1992-01-01

    New structural details of ionized gas associated with IRS 7, a mass-losing supergiant near the Galactic center, are reported, and radio continuum and theoretical maps are compared. High-resolution multiconfiguration VLA observations of IRS 7 reveal ionized gas with a bow shock structure at a wavelength of 2 cm. The apex of the bow shock is facing more toward the cluster of blue stellar objects, known as IRS 16, than Sgr A*, the compact nonthermal source near the Galaxy's dynamical center. It is inferred that the shape of the mass-losing envelope of IRS 7 is influenced by Galactic winds from IRS 16. It is concluded from a comparison of the morphology of the ionized envelope of IRS 7 with simple theoretical modeling of the bow shock structure that the shape of the shock results from the collision between the Galactic center and stellar winds rather than from the motion of IRS 7 through the interstellar medium.

  9. Active current sheets and hot flow anomalies in Mercury's bow shock

    CERN Document Server

    Uritsky, V M; Boardsen, S A; Sundberg, T; Raines, J M; Gershman, D J; Collinson, G; Sibeck, D; Khazanov, G V; Anderson, B J; Korth, H

    2013-01-01

    Hot flow anomalies (HFAs) represent a subset of solar wind discontinuities interacting with collisionless bow shocks. They are typically formed when the normal component of motional (convective) electric field points toward the embedded current sheet on at least one of its sides. The core region of an HFA contains hot and highly deflected ion flows and rather low and turbulent magnetic field. In this paper, we report first observations of HFA-like events at Mercury identified over a course of two planetary years. Using data from the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, we identify a representative ensemble of active current sheets magnetically connected to Mercury's bow shock. We show that some of these events exhibit unambiguous magnetic and particle signatures of HFAs similar to those observed earlier at other planets, and present their key physical characteristics. Our analysis suggests that Mercury's bow shock does not only mediate the flo...

  10. Effects of the bow on social organization in Western North America.

    Science.gov (United States)

    Bettinger, Robert L

    2013-01-01

    The bow more than doubled, likely tripled, the success of individuals bent on killing animal or human targets (Box ). The advent of this revolutionary technology generated different responses in western North America depending on subsistence and sociopolitical organization at the time of its arrival, roughly 2300 - 1300 B.P. Its effect was substantial in California and the Great Basin, particularly on group size, which in many places diminished as a consequence of the bow's reliability. The counter-intuitive result was to increase within group-relatedness enough to encourage intensification of plant resources, previously considered too costly. The bow rose to greatest direct economic importance with the arrival of the horse, and was put to most effective use by former Great Basin groups who maintained the family band system that had developed around intensive Great Basin plant procurement, adapting the same organization to a lifestyle centered on the equestrian pursuit of buffalo and warfare. PMID:23776048

  11. A numerical study on bow shocks around the lightning return stroke channel

    International Nuclear Information System (INIS)

    Bow shock structures are important to various hydrodynamics and magnetohydrodynamics (MHD) phenomena in geophysics and astrophysics. The formation and propagation of bow shocks around the lightning return stroke channel are investigated based on the self-similar motion theory and simulated with a two-dimensional Eulerian finite volume resistive radiation MHD code. In this framework, as verification of theoretical models, the evolving structures of many quantities, such as the plasma density, temperature, pressure, shock velocity, and magnetic field, can be obtained, which present all the characteristics of bow shocks in the lightning return stroke processes. The evolution characteristics and the configuration of the curved return stroke channels, e.g., the non-ideal effects and the scaling laws, are discussed in detail. The results may have applications for some observed features of the return stroke channels and other phenomena in the lightning discharge plasmas

  12. A numerical study on bow shocks around the lightning return stroke channel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Yi, Yun [National Key Laboratory of Electromagnetic Environment and Electro-Optical Engineering, PLA University of Science and Technology, Nanjing 210007 (China); Chen, P. F., E-mail: chenpf@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Mao, Yunfei [The China Satellite Maritime Tracking and Control Department, Yuan Wang III, Jiangyin 214400 (China); Xiong, Run [Engineer Academy of PLA, Xuzhou 221004 (China)

    2015-03-15

    Bow shock structures are important to various hydrodynamics and magnetohydrodynamics (MHD) phenomena in geophysics and astrophysics. The formation and propagation of bow shocks around the lightning return stroke channel are investigated based on the self-similar motion theory and simulated with a two-dimensional Eulerian finite volume resistive radiation MHD code. In this framework, as verification of theoretical models, the evolving structures of many quantities, such as the plasma density, temperature, pressure, shock velocity, and magnetic field, can be obtained, which present all the characteristics of bow shocks in the lightning return stroke processes. The evolution characteristics and the configuration of the curved return stroke channels, e.g., the non-ideal effects and the scaling laws, are discussed in detail. The results may have applications for some observed features of the return stroke channels and other phenomena in the lightning discharge plasmas.

  13. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbances

    Directory of Open Access Journals (Sweden)

    M. Tátrallyay

    2012-12-01

    Full Text Available Three events are discussed from the declining phase of the last solar cycle when the magnetopause and/or the bow shock were observed unusually close to the Earth due to major interplanetary disturbances. The observed extreme locations of the discontinuities are compared with the predictions of three magnetopause and four bow shock models which describe them in considerably different ways using statistical methods based on observations. A new 2-D magnetopause model is introduced (based on Verigin et al., 2009 which takes into account the pressure of the compressed magnetosheath field raised by the interplanetary magnetic field (IMF component transverse to the solar wind flow. The observed magnetopause crossings could be predicted with a reasonable accuracy (0.1–0.2 RE by one of the presented models at least. For geosynchronous magnetopause crossings observed by the GOES satellites, (1 the new model provided the best predictions when the IMF was extremely large having a large negative Bz component, and (2 the predictions of the model of Shue et al. (1998 agreed best with the observations when the solar wind dynamic pressure was extremely large. The magnetopause crossings close to the cusp observed by the Cluster spacecraft were best predicted by the 3-D model of Lin et al. (2010. The applied empirical bow shock models and the 3-D semi-empiric bow shock model combined with magnetohydrodynamic (MHD solution proved to be insufficient for predicting the observed unusual bow shock locations during large interplanetary disturbances. The results of a global 3-D MHD model were in good agreement with the Cluster observations on 17 January 2005, but they did not predict the bow shock crossings on 31 October 2003.

  14. Accuracy of two face-bow/semi-adjustable articulator systems in transferring the maxillary occlusal cant

    Directory of Open Access Journals (Sweden)

    Nazia Nazir

    2012-01-01

    Full Text Available Context: The precision of an arbitrary face-bow in accurately transferring the orientation of the maxillary cast to the articulator has been questioned because the maxillary cast is mounted in relation to arbitrary measurements and anatomic landmarks that vary among individuals. Aim: This study was intended to evaluate the sagittal inclination of mounted maxillary casts on two semi-adjustable articulator/face-bow systems in comparison to the occlusal cant on lateral cephalograms. Materials and Methods: Maxillary casts were mounted on the Hanau and Girrbach semi-adjustable articulators following face-bow transfer with their respective face-bows. The sagittal inclination of these casts was measured in relation to the fixed horizontal reference plane using physical measurements. Occlusal cant was measured on lateral cephalograms. SPSS software (version 11.0, Chicago, IL, USA was used for statistical analysis. Repeated measures analysis of variance and Tukey′s tests were used to evaluate the results (P < 0.05. Results: Comparison of the occlusal cant on the articulators and cephalogram revealed statistically significant differences. Occlusal plane was steeper on Girrbach Artex articulator in comparison to the Hanau articulator. Conclusion: Within the limitations of this study, it was found that the sagittal inclination of the mounted maxillary cast achieved with Hanau articulator was closer to the cephalometric occlusal cant as compared to that of the Girrbach articulator. Among the two articulators and face-bow systems, the steepness of sagittal inclination was greater on Girrbach semi-adjustable articulator. Different face-bow/articulator systems could result in different orientation of the maxillary cast, resulting in variation in stability, cuspal inclines and cuspal heights.

  15. Intervention of laser periphery iridectomy to posterior iris bowing in high myopic eyes

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-tao; WANG Ning-li; LI Shu-ning

    2012-01-01

    Background For some high myopic patients with posterior iris bowing,laser periphery iridectomy should be performed pre-operation to prevent pupil block glaucoma if these patients would have phakic intraocular lens implantation to correct high myopia.So we had the opportunity to analysis the influence of laser iridectomy on posterior iris bowing.Methods Eighteen high myopic patients with posterior iris bowing (11 males and 7 females) were involved in the study in Beijing Tongren Eye Center from March 2008 to July 2008.Phakic intraocular lens were implanted to correct their ametropia.The mean age was (32±6) years (range,25-40 years).The center anterior chamber depth,the pupil diameter,the posterior iris bowing depth and the anterior chamber angle were measured with anterior segment coherence tomography (AS-OCT) under the normal condition,myosis condition induced by 2% pilocarpine,laser periphery iridectomy after myosis,and 2% pilocarpine eluting condition respectively.Results There was no significant difference of center anterior chamber depth under the four conditions (P=0.512).The pupil constricted after pilocarpine (P=0.001).After laser iridectomy performed and pilocarpine eluted,posterior iris bowing depth reduced more than that in normal condition (P=0.003).The anterior chamber angle reduced significantly after laser periphery iridectomy and pilocarpine eluted (P=0.012).Conclusion Laser periphery iridectomy can reduce the posterior iris bowing,which might be due to the change in aqueous circulate pathway.

  16. Asymmetric Outer Bow Length and Cervical Headgear Force System: 3D Analysis Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Allahyar Geramy

    2015-10-01

    Full Text Available Objectives: This study sought to assess distal and lateral forces and moments of asymmetric headgears by variable outer bow lengths.Materials and Methods: Four 3D finite element method (FEM models of a cer- vical headgear attached to the maxillary first molars were designed in SolidWorks2010 software and transferred to ANSYS Workbench ver. 11 software. Modelscontained the first molars, their periodontal ligament (PDL, cancellous and cor- tical bones, a mesiodistal slice of the maxillae and the headgear. Models were the same except for the outer bow length in headgears. The headgear was symmetric in model 1. In models 2 to 4, the headgears were asymmetric in length with dif- ferences of 5mm, 10mm and 15mm, respectively. A 2.5 N force in horizontal plane was applied and the loading manner of each side of the outer bow was cal- culated trigonometrically using data from a volunteer.Results: The 15mm difference in outer bow length caused the greatest difference in lateral (=0.21 N and distal (= 1.008 N forces and also generated moments (5.044 N.mm.Conclusion: As the difference in outer bow length became greater, asymmetric effects increased. Greater distal force in the longer arm side was associated with greater lateral force towards the shorter arm side and more net yawing moment. Clinical Relevance:A difference range of 1mm to 15 mm of length in cervical headgear can be consi-dered as a safe length of outer bow shortening in clinical use.

  17. Electron Cross-field Transport in a Low Power Cylindrical Hall Thruster

    Energy Technology Data Exchange (ETDEWEB)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant.

  18. Electron Cross-field Transport in a Miniaturized Cylindrical Hall Thruster

    International Nuclear Information System (INIS)

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. The present paper gives a review of the experimental and numerical investigations of electron crossfield transport in the 2.6 cm miniaturized cylindrical Hall thruster (100 W power level). We show that, in order to explain the discharge current observed for the typical operating conditions, the electron anomalous collision frequency νb has to be on the order of the Bohm value, νB ∼ ωc/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The optimal regimes of thruster operation at low background pressure (below 10-5 Torr) in the vacuum tank appear to be different from those at higher pressure (∼ 10-4 Torr)

  19. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper focuses on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of high-speed Langmuir probes. The results show a rise in the oscillation frequency of the "breathing" mode with rising background pressure, which is hypothesized to be due to a shortening acceleration/ionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  20. Study of monopropellants for electrothermal thrusters: Design and fabrication task summary report

    Science.gov (United States)

    Kuenzly, J. D.

    1974-01-01

    The feasibility of operating small thrust level electrothermal thrusters with monopropellants other than MIL-grade hydrazine was studied. Analytical study, design, and fabrication of demonstration thrusters was performed, and an evaluation test program was initiated to evaluate monopropellants with freezing points lower than MIL-grade hydrazine, and to determine their applicability to electrothermal thrusters for spacecraft attitude control. Five demonstration thrusters were fabricated to determine the feasibility of operation with monomethylhydrazine, Aerozine-50, 77 percent hydrazine-23 percent hydrazine azide, and a mixture of hydrazine monopropellants consisting of 35 percent hydrazine-50 percent monomethylhydrazine-15 percent ammonia. The present thruster is designed to produce a steady-state thrust level of 0.344 N at 1.724 x 1 million N/M sq feed pressure. Vacuum specific impulse goals were set at 1961 N-s/kg steady-state and 1716 N-s/kg pulsed-mode.

  1. Laboratory Reproduction and Failure Analysis of Cracked Orbiter Reaction Control System Niobium Thruster Injectors

    Science.gov (United States)

    Jacobs, Jeremy B.; Castner, Willard L.

    2007-01-01

    A viewgraph presentation describing cracks and failure analysis of an orbiter reaction control system is shown. The topics include: 1) Endeavour STS-113 Landing; 2) RCS Thruster; 3) Thruster Cross-Section; 4) RCS Injector; 5) RCS Thruster, S/N 120l 6) Counterbore Cracks; 7) Relief Radius Cracks; 8) RCS Thruster Cracking History; 9) Thruster Manufacturing Timelines; 10) Laboratory Reproduction of Injector Cracking; 11) The Brownfield Specimen; 12) HF EtchantTests/Specimen Loading; 13) Specimen #3 HF + 600F; 14) Specimen #3 IG Fracture; 15) Specimen #5 HF + 600F; 16) Specimen #5 Popcorn ; 17) Specimen #5 Cleaned and Bent; 18) HF Exposure Test Matrix; 19) Krytox143AC Tests; 20) KrytoxTests/Specimen Loading; 21) Specimen #13 Krytox + 600F; and 22) KrytoxExposure Test Matrix.

  2. 77 FR 16028 - Broken Bow Wind, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Science.gov (United States)

    2012-03-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Broken Bow Wind, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding of Broken Bow Wind, LLC's application for market-based rate authority, with...

  3. Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars

    OpenAIRE

    Yamauchi, M.; Y. Futaana; Fedorov, A.; Frahm, R. A.; Winningham, J. D.; Dubinin, E.; R. Lundin; Barabash, S.; Holmström, M.; Mazelle, C.; Sauvaud, J.-A.; T. L. Zhang; W. Baumjohann; A. J. Coates; Fraenz, M.

    2011-01-01

    Foreshock ions are compared between Venus and Mars at energies of 0.6 similar to 20 keV using the same ion instrument, the Ion Mass Analyser, on board both Venus Express and Mars Express. Venus Express often observes accelerated protons (2 similar to 6 times the solar wind energy) that travel away from the Venus bow shock when the spacecraft location is magnetically connected to the bow shock. The observed ions have a large field-aligned velocity compared to the perpendicular velocity in the ...

  4. Towards a real-time system for teaching novices good violin bowing technique

    OpenAIRE

    van der Linden, Janet; Schoonderwaldt, Erwin; Bird, Jon

    2009-01-01

    We describe the ongoing development of a system to support the teaching of good posture and bowing technique to novice violin players. Using an inertial motion capture system we can track in real-time: i) a player’s bowing action (and measure how it deviates from a target trajectory); ii) whether the player is holding their violin correctly. We detail some initial experiments that show that vibrotactile feedback can guide arm movements in one and two dimensions. We then present some prelimina...

  5. A benchmark study of procedures for analysis of axial crushing of bulbous bows

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Pedersen, Preben Terndrup

    2008-01-01

    Simplified methods to estimate mean axial crushing forces of plated structures are reviewed and applied to a series of experimental results for axial crushing of large-scale bulbous bow models. Methods based on intersection unit elements such as L-, T- and X-type elements as well as methods based...... on plate unit elements are employed in the analyses. The crushing forces and the total absorbed energy obtained by the simplified analyses are compared with those obtained from large-scale bulbous bow experiments. The accuracy and the applicability of these methods are discussed in detail....

  6. FAILURES AND DEFECTS IN THE BUILDING PROCESS – APPLYING THE BOW-TIE APPROACH

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2009-01-01

    site was observed from the very start to the very end and all failures and defects of a certain size were recorded and analysed. The methodological approach used in this analysis was the bow-tie model from the area of safety research. It combines critical-event analysis for both causes and effects with...... event-tree analysis. The paper describes this analytical approach as an introduction to a new concept for understanding failures and defects in construction. Analysing the many critical events in the building process with the bow-tie model visualises the complexity of causes. This visualisation offers...

  7. Corporate-Feed Multilayer Bow-Tie Antenna Array Design Using a Simple Transmission Line Model

    OpenAIRE

    Didouh, S.; Abri, M.; F. T. Bendimerad

    2012-01-01

    A transmission line model is used to design corporate-fed multilayered bow-tie antennas arrays; the simulated antennas arrays are designed to resonate at the frequencies 2.4 GHz, 5 GHz, and 8 GHz corresponding to RFID, WIFI, and radars applications. The contribution of this paper consists of modeling multilayer bow-tie antenna array fed through an aperture using transmission line model. The transmission line model is simple and precise and allows taking into account the whole geometrical, ele...

  8. Method for evaluating bow tie filter angle-dependent attenuation in CT: Theory and simulation results

    OpenAIRE

    Boone, John M.

    2009-01-01

    Purpose: Dosimetry in computed tomography (CT) is increasingly based on Monte Carlo studies that define the dose in the patient (in mGy) as a function of air kerma (free in air) at isocenter (mGy). The accuracy of Monte Carlo studies depends in part on the accuracy of the characterization of the bow tie filter for a given CT scanner model. A simple method for characterizing the bow tie filter attenuation profile in CT scanners would therefore be very useful. The theory behind such a method is...

  9. Ground-state magnetic phase diagram of bow-tie graphene nanoflakes in external magnetic field

    OpenAIRE

    Szałowski, Karol

    2013-01-01

    The magnetic phase diagram of a ground state is studied theoretically for graphene nanoflakes of bow-tie shape and various size in external in-plane magnetic field. The tight-binding Hamiltonian supplemented with Hubbard term is used to model the electronic structure of the systems in question. The existence of the antiferromagnetic phase with magnetic moments localized at the sides of the bow-tie is found for low field and a field-induced spin-flip transition to ferromagnetic state is predic...

  10. Analysis of Silver Ink Bow-Tie RFID Tag Antennas Printed on Paper Substrates

    OpenAIRE

    Sari Merilampi; Leena Ukkonen; Lauri Sydänheimo; Pekka Ruuskanen; Markku Kivikoski

    2007-01-01

    In this study, polymeric silver inks, paper substrates, and screen printing were used to produce prototype Bow-Tie tags. Because of increasing interest in applying passive UHF-RFID systems in paper industry, the Bow-Tie antenna used in this study was designed to work through paper. The maximum reliable read ranges of the tags were measured thorough stacked paper and also in air. The analysis and functioning of the antenna design are also discussed. All inks and paper substrates were suitable ...

  11. The distant bow shock and magnetotail of Venus - Magnetic field and plasma wave observations

    Science.gov (United States)

    Russell, C. T.; Luhmann, J. G.; Elphic, R. C.; Scarf, F. L.

    1981-01-01

    An examination of the magnetic field and plasma wave data obtained by the Pioneer Venus orbiter in the wake region behind Venus discloses a well developed bow shock whose location is similar to that observed on previous missions in contrast to the dayside bow shock. Venus also has a well developed magnetotail in which the field strenght is enhanced over magnetosheath values and in which the magnetic field is aligned approximately with the solar wind direction. The boundary between magnetosheath and magnetotail is also marked by a change in the plasma wave spectrum.

  12. Velocimetry of cathode particles in a magnetoplasmadynamic thruster discharge plasma

    Science.gov (United States)

    Walker, J.; Langendorf, S.; Walker, M.; Polzin, K.; Kimberlin, A.

    2015-07-01

    With high-speed imaging, it is possible to directly observe the time-evolution of the macroscopic behavior of the discharge plasma in a magnetoplasmadynamic thruster (MPDT). By utilizing direct high-speed imaging capable of capturing many images over the course of a single discharge, the velocity of the cathode erosion particles can be measured, opening the possibility of a novel, noninvasive technique for discharge plasma flow field velocimetry. In this work, an 8 kA argon MPDT discharge is imaged at 26 173 fps utilizing a 0.9 neutral density filter. The camera is aligned with thruster centerline 4 m downstream of the thruster exit plane. By tracking visible particles appearing in the multiple images, the particle motion in the radial and azimuthal directions is directly imaged. Through the use of traditional techniques in digital particle image velocimetry, the cathode particles emanating from the discharge are measured to have a mean radial velocity of 44.6 ± 6.0 m/s with a 95% confidence interval and a statistically insignificant azimuthal velocity. The setup and analysis employed permits measurement of the particle velocity in orthogonal direction to the image sensor plane using a single camera. By combining a background removal subtraction technique and knowledge of the optical focal plane, the estimated mean axial velocity of the particles is 1.59 km/s. This investigation ends with a discussion of important factors to consider for future MPDT high-speed imaging particle velocimetry, such as frame-rate, image size, spatial resolution, optics, and data handling selections.

  13. Electromagnetic Acceleration Characteristics of Laser-Electric Hybrid Thrusters

    International Nuclear Information System (INIS)

    A fundamental study on a laser-electric hybrid thruster was conducted, in which laser-induced plasmas were generated through laser beam irradiation on to a solid target and accelerated by electrical means instead of direct acceleration using only a laser beam. As two typical cases of the hybrid propulsion systems, a feasibility study on electrostatic acceleration mode and electromagnetic acceleration mode of the laser ablation plasma were conducted including thrust performance tests with a torsion-balance, ion current measurements, and ICCD camera observations. It was confirmed that the thrust performances could be improved with electric energy inputs

  14. Design of automatic thruster assisted mooring systems for ships

    Directory of Open Access Journals (Sweden)

    Jan P. Strand

    1998-04-01

    Full Text Available This paper addresses the mathematical modelling and controller design of an automatic thruster assisted position mooring system. Such control systems are applied to anchored floating production offloading and storage vessels and semi-subs. The controller is designed using model based control with a LQG feedback controller in conjunction with a Kalman filter. The controller design is in addition to the environmental loads accounting for the mooring forces acting on the vessel. This is reflected in the model structure and in the inclusion of new functionality.

  15. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    Science.gov (United States)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated

  16. Anode current density distribution in a cusped field thruster

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan, E-mail: wuhuan58@qq.com; Liu, Hui, E-mail: hlying@gmail.com; Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren [Mail Box 458, Harbin Institute of Technology (HIT), Harbin 150001 (China)

    2015-12-15

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  17. A thrust balance for low power hollow cathode thrusters

    International Nuclear Information System (INIS)

    A hanging thrust balance has been designed, manufactured and tested at the University of Southampton. The current design allows for direct steady thrust measurements ranging from 0.1 to 3 mN but this can be easily extended to measure thrust in a different range. Moreover the chosen balance design and the thrust measurement procedure allow for the cancellation of thermal drifts. The thrust balance was tested with a T6 hollow cathode thruster providing measurements with an uncertainty of about 9.7%. The thrust data were compared to those obtained with another direct thrust balance and they are in quantitative agreement—the maximum difference being only 6%. (paper)

  18. Improvement of the low frequency oscillation model for Hall thrusters

    Science.gov (United States)

    Wang, Chunsheng; Wang, Huashan

    2016-08-01

    The low frequency oscillation of the discharge current in Hall thrusters is a major aspect of these devices that requires further study. While the existing model captures the ionization mechanism of the low frequency oscillation, it unfortunately fails to express the dynamic characteristics of the ion acceleration. The analysis in this paper shows this is because of the simplification of the electron equation, which affects both the electric field distribution and the ion acceleration process. Additionally, the electron density equation is revised and a new model that is based on the physical properties of ion movement is proposed.

  19. Application of the Bow Tie method for evaluation of safety in the procedure of logging wells

    International Nuclear Information System (INIS)

    This work consists of an assessment of security in the practice of logging of oil wells, using the method of Bow Tie for being a simple method of evaluation of the risk, which makes it possible in a structured way to set priorities to manage risk

  20. X-ray Emission Line Profiles from Wind Clump Bow Shocks in Massive Stars

    CERN Document Server

    Ignace, R; Cassinelli, J P

    2012-01-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two component flow structure of wind and clumps using two "beta" velocity laws. While individual bow shocks tend to generate double horned emission line profiles, a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the...

  1. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification

    Science.gov (United States)

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  2. Beacon: A three-dimensional structural analysis code for bowing history of fast breeder reactor cores

    International Nuclear Information System (INIS)

    The core elements of an LMFBR are bowed due to radial gradients of both temperature and neutron flux in the core. Since all hexagonal elements are multiply supported by adjacent elements or the restraint system, restraint forces and bending stresses are induced. In turn, these forces and stresses are relaxed by irradiation enhanced creep of the material. The analysis of the core bowing behavior requires a three-dimensional consideration of the mechanical interactions among the core elements, because the core consists of different kinds of elements and of fuel assemblies with various burnup histories. A new computational code BEACON has been developed for analyzing the bowing behavior of an LMFBR's core in three dimensions. To evaluate mechanical interactions among core elements, the code uses the analytical method of the earlier SHADOW code. BEACON analyzes the mechanical interactions in three directions, which form angles of 600 with one another. BEACON is applied to the 600 sector of a typical LMFBR's core for analyzing the bowing history during one equilibrium cycle. 120 core elements are treated, assuming the boundary condition of rotational symmetry. The application confirms that the code can be an effective tool for parametric studies as well as for detailed structural analysis of LMFBR's core. (orig.)

  3. Non-stationarity of the quasi-perpendicular bow shock: comparison between Cluster observations and simulations

    Czech Academy of Sciences Publication Activity Database

    Comisel, H.; Scholer, M.; Souček, Jan; Matsukiyo, S.

    2011-01-01

    Roč. 29, č. 2 (2011), s. 263-274. ISSN 0992-7689 Institutional research plan: CEZ:AV0Z30420517 Keywords : bow shock * Cluster * plasma waves * shock waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.842, year: 2011 http://www.ann-geophys.net/29/263/2011/angeo-29-263-2011.pdf

  4. "Heaven Starts at Your Parents' Feet": Adolescent Bowing to Parents and Associated Spiritual Attitudes

    Science.gov (United States)

    Thanissaro, Phra Nicholas

    2010-01-01

    In a quantitative survey of religious attitudes and practices in a multi-religious sample of 369 school pupils aged between 13 and 15 in London, the practice of bowing to parents was found widespread in 22% of adolescents spanning several religious affiliations and ethnicities--especially Buddhists, Hindus and those of Indian, African and "Other…

  5. 26 CFR 48.4161(b)-1 - Imposition and rates of tax; bows and arrows.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Imposition and rates of tax; bows and arrows. 48.4161(b)-1 Section 48.4161(b)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Sporting Goods §...

  6. Beam-Steerable Microstrip-Fed Bow-Tie Antenna Array for Fifth Generation Cellular Communications

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert Frølund

    2016-01-01

    bow-tie antennas have been used at the top-edge region of mobile phone PCB. The antenna elements fed by microstrip lines are designed to operate at 17 GHz. The simulated results give good performances in terms of different antenna parameters. In addition, an investigation on the distance between...

  7. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.

    Science.gov (United States)

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  8. Turbulence at quasi-parallel and quasi-perpendicular bow shocks

    Science.gov (United States)

    Pitna, Alexander; Zastenker, Georgy; Nemecek, Zdenek; Safrankova, Jana

    2016-07-01

    A solar wind is a highly turbulent medium carrying various modes of magnetohydrodynamic and kinetic instabilities. During its supersonic expansion, it meets obstacles like planetary magnetospheres and bow shocks are formed. Depending on the orientation of the ambient magnetic field with respect to the local shock normal, either quasi-parallel or quasi-perpendicular shocks can be formed. Particles reflected at the ramp of the quasi-parallel shock are streaming far upstream along the magnetic field lines, giving rise to all sorts of instabilities like SLAMS and ULF waves. In the case of the quasi-perpendicular bow shock, the reflected particles influence only a narrow upstream region of the order of the proton gyroradius but the downstream plasma becomes highly turbulent regardless of the shock type. We analyze the high cadence (31 ms) data from the BMSW instrument onboard the Spektr-R spacecraft and compare the frequency spectra of observed turbulence in MHD and kinetic ranges in upstream and downstream regions of the supercritical quasi-parallel and quasi-perpendicular bow shocks. We found that the change in the fluctuation level (from upstream to downstream) as well as the spectral indices differ substantially in the MHD and kinetic ranges for both types of bow shock.

  9. Extended Red Objects and Stellar Wind Bow Shocks in the Carina Nebula

    CERN Document Server

    Sexton, Remington O; Smith, Nathan; Babler, Brian L; Meade, Marilyn R; Rudolph, Alexander L

    2014-01-01

    We report the results of infrared photometry on 39 extended red objects (EROs) in the Carina Nebula, observed with the Spitzer Space Telescope. Most EROs are identified by bright, extended 8.0 um emission, which ranges from 10'' to 40'' in size, but our sample also includes 4 EROs identified by extended 24 um emission. Of particular interest are nine EROs associated with late O or early B-type stars and characterized by arc-shaped morphology, suggesting dusty, stellar-wind bow shocks. These objects are preferentially oriented towards the central regions of the Carina Nebula, suggesting that these bow shocks are generally produced by the interactions of OB winds with the bulk expansion of the H II region rather than high proper motion. We identify preferred regions of mid-infrared color space occupied by our bow shock candidates, which also contain bow shock candidates in M17 and RCW 49 but are well-separated from polycyclic aromatic hydrocarbon emission or circumstellar discs. Color cuts identify an additiona...

  10. Further evidence for a dynamically generated secondary bow in $^{13}$C+$^{12}$C rainbow scattering

    CERN Document Server

    Ohkubo, S; Ogloblin, A A

    2015-01-01

    The existence of a secondary bow is confirmed for 13C+12C nuclear rainbow scattering in addition to the 16O+12C system. This is found by studying the experimental angular distribution of 13C+12C scattering at the incident 13C energy $E_L$=250 MeV with an extended double folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic wave functions for 12C using a density-dependent nucleon-nucleon force. The Airy minimum at \\theta$ $\\approx$70$^\\circ$, which is not reproduced by a conventional folding potential, is revealed to be a secondary bow generated dynamically by a coupling to the excited state 2+ (4.44 MeV) of 12C. The essential importance of the quadruple {\\it Y2} term (reorientation term) of potential of the excited state 2+ of 12C for the emergence of a secondary bow is found. The mechanism of the secondary bow is intuitively explained by showing how the trajectories are refracted dynamically into the classically forbidden angular region beyond t...

  11. Double-sided printed bow-tie antenna with notch filter for UWB applications

    OpenAIRE

    Hirata, Akimasa; ヒラタ, アキマサ; 平田, 晃正

    2009-01-01

    This letter proposes a double-sided printed bow-tie antenna with a notch band. The notch filter is based on a grounded patch inserted into the feeding microstrip line. The advantage of the structure is its tunability of the notch band.

  12. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.

    Directory of Open Access Journals (Sweden)

    Fang Yan

    Full Text Available Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie analysis was proposed by mapping bow-tie analysis into Bayesian network (BN. Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures.

  13. Double bow shocks around young, runaway red supergiants: application to Betelgeuse

    CERN Document Server

    Mackey, Jonathan; Neilson, Hilding R; Langer, Norbert; Meyer, Dominique M -A

    2012-01-01

    A significant fraction of massive stars are moving supersonically through the interstellar medium (ISM), either due to disruption of a binary system or ejection from their parent star cluster. The interaction of their wind with the ISM produces a bow shock. In late evolutionary stages these stars may undergo rapid transitions from red to blue and vice versa on the Hertzsprung-Russell diagram, with accompanying rapid changes to their stellar winds and bow shocks. Recent 3D simulations of the bow shock produced by the nearby runaway red supergiant (RSG) Betelgeuse, under the assumption of a constant wind, indicate that the bow shock is very young (<30000 years old), hence Betelgeuse may have only recently become a RSG. To test this possibility, we have calculated stellar evolution models for single stars which match the observed properties of Betelgeuse in the RSG phase. The resulting evolving stellar wind is incorporated into 2D hydrodynamic simulations in which we model a runaway blue supergiant (BSG) as i...

  14. A ballistic bow shock model for jet-driven protostellar outflow shells

    CERN Document Server

    Ostriker, E C; Stone, J M; Mundy, L G; Ostriker, Eve C.; Lee, Chin-Fei; Stone, James M.; Mundy, Lee G.

    2001-01-01

    We analyze the dynamics of the shell produced when a bow shock from a collimated jet propagates into the surrounding medium. Under interstellar conditions, the shock is radiative, and a ballistic approximation for the shell flow is appropriate beyond the working surface where the jet impacts its surroundings. The solution is then determined by the ambient and jet densities and velocities and by the momentum impulse applied in the working surface. Using estimates for these impulses (confirmed by separate numerical simulations), we obtain solutions for the shell structure, and for the range of velocities in the shell at any point. We provide predictions for the position-velocity and mass-velocity relations expected for plane-of-sky bow-shock shells, and for the bulk shell properties. In a companion paper, we show that these analytic solutions are in excellent agreement with the results of direct numerical simulations. We argue that classical molecular (CO) outflows cannot be purely jet-driven, because the bow-s...

  15. Liquid-Metal-Fed Pulsed Electromagnetic Thrusters For In-Space Propulsion

    Science.gov (United States)

    Markusic, T. E.

    2004-01-01

    We describe three pulsed electromagnetic thruster concepts, which span four orders of magnitude in power processing capability (100 W to >100 kW), for in-space propulsion applications. The primary motivation for using a pulsed system is to is to enable high (instantaneous) power operation, which provides high acceleration efficiency, while using considerably less (continuous) power from the spacecraft power system. Unfortunately, conventional pulsed thrusters require failure-prone electrical switches and gas-puff valves. The series of thrusters described here directly address this problem, through the use of liquid metal propellant, by either eliminating both components or providing less taxing operational requirements, thus yielding a path toward both efficient and reliable pulsed electromagnetic thrusters. The emphasis of this paper is to conceptually describe each of the thruster concepts; however, initial test results with gallium propellant in one thruster geometry are presented. These tests reveal that a greater understanding of gallium material compatibility, contamination, and wetting behavior will be necessary before a completely functional thruster can be developed. Initial experimental results aimed at providing insight into these issues are presented.

  16. Electron Transport and Ion Acceleration in a Low-power Cylindrical Hall Thruster

    Energy Technology Data Exchange (ETDEWEB)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The plasma density peak observed at the axis of the 2.6 cm cylindrical Hall thruster is likely to be due to the convergent flux of ions, which are born in the annular part of the channel and accelerated towards the thruster axis.

  17. Effect of Inductive Coil Geometry on the Operating Characteristics of an Inductive Pulsed Plasma Thruster

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.; Perdue, Kevin A.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with conical theta pinch coils of different cone angles are explored through thrust stand measurements and time- integrated, unfiltered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass flow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass flow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  18. Design of a cusped field thruster for drag-free flight

    Science.gov (United States)

    Liu, H.; Chen, P. B.; Sun, Q. Q.; Hu, P.; Meng, Y. C.; Mao, W.; Yu, D. R.

    2016-09-01

    Drag-free flight has played a more and more important role in many space missions. The thrust control system is the key unit to achieve drag-free flight by providing a precise compensation for the disturbing force except gravity. The cusped field thruster has shown a significant potential to be capable of the function due to its long life, high efficiency, and simplicity. This paper demonstrates a cusped field thruster's feasibility in drag-free flight based on its instinctive characteristics and describes a detailed design of a cusped field thruster made by Harbin Institute of Technology (HIT). Furthermore, the performance test is conducted, which shows that the cusped field thruster can achieve a continuously variable thrust from 1 to 20 mN with a low noise and high resolution below 650 W, and the specific impulse can achieve 1800 s under a thrust of 18 mN and discharge voltage of 1000 V. The thruster's overall performance indicates that the cusped field thruster is quite capable of achieving drag-free flight. With the further optimization, the cusped field thruster will exhibit a more extensive application value.

  19. Joyo MK-II core bowing analysis based on thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    A study on the inherent safety test at the Experimental Fast Reactor Joyo has been performed to demonstrate the inherent safety of fast breeder reactors. In this study, emphasis was placed on the improvement on the feedback reactivity calculation accuracy. The investigation work for core bowing calculation has been continued because it is expected to cause negative feedback reactivity that would improve the passive safety of a fast breeder reactor. The core bowing behavior in JOYO has been analyzed by the system which consists of the MK-II core management code system MAGI, the interface code TETRAS and the core bowing calculation code BEACON. As it was supposed that the coolant flow inside of the reactor vessel might effects on wrapper tube temperature, detailed coolant flow was calculated by single phase multidimensional thermal-hydraulic analysis code AQUA. (1) As a result of the AQUA calculation, it was made clear that the coolant flow effect on the coolant temperature was negligible in fuel region. (2) The coolant temperature at the outlet of reflectors adjacent to a fuel subassembly are affected by the coolant flow that comes from the outlet of reflectors in the 6th and the 7th row. It decreases the outlet temperature of the reflectors in the 5th row in AQUA calculation. (3) High temperature coolant flow exists in neighbor of the outlet of reflectors in the 8-10th row. As a result, coolant temperature calculated by AQUA are higher in 30-40degC than that calculated by TETRAS. It was made clear that the coolant flow inside of the reactor vessel had no effect on driver fuel bowing, which was the dominant factor of the core bowing reactivity. On the other hand, in reflectors region, it affects the wrapper tube temperature, which determine the irreversible swelling and creep. Essentially, in order to verify the feedback reactivity effect caused by the core bowing, it is desired to measure the mechanical behavior of the subassemblies under power operation, but it is

  20. Method for evaluating bow tie filter angle-dependent attenuation in CT: Theory and simulation results

    International Nuclear Information System (INIS)

    Purpose: Dosimetry in computed tomography (CT) is increasingly based on Monte Carlo studies that define the dose in the patient (in mGy) as a function of air kerma (free in air) at isocenter (mGy). The accuracy of Monte Carlo studies depends in part on the accuracy of the characterization of the bow tie filter for a given CT scanner model. A simple method for characterizing the bow tie filter attenuation profile in CT scanners would therefore be very useful. The theory behind such a method is proposed. Methods: A measurement protocol is discussed mathematically and demonstrated using computer simulation. The proposed method requires the placement of a radiation monitor at the periphery of the CT field, and the time domain signal (kerma rate versus time) is measured with good temporal resolution (∼200 Hz or better) and with all other objects (e.g., patient couch) retracted from the field of view. Knowledge of the source to isocenter distance (or alternately, the isocenter to probe distance) is required. The stationary detector records the kerma rate versus time signal as the gantry rotates through several revolutions. From this temporal data, signal processing techniques are used to extract in-phase peaks, as well as out-of-phase kerma rate levels. From these data, the distance from isocenter to the probe can be determined (or, alternatively, the source to isocenter distance), and the angle-dependent bow tie filter attenuation can be computed. By measuring the angle-dependent bow tie filter attenuation at several kVp settings, the bow tie composition versus fan angle can be computed using basis decomposition techniques. Results: The simulations illustrated that with 2% added noise in the kerma rate versus time signal, the attenuation properties of a hypothetical two component (aluminum and polymethyl methacrylate) bow tie filter could be determined (r2>0.99). Although the computed basis material thicknesses were not exactly equal to the actual thicknesses, their

  1. Grid Gap Measurement for an NSTAR Ion Thruster

    Science.gov (United States)

    Diaz, Esther M.; Soulas, George C.

    2006-01-01

    The change in gap between the screen and accelerator grids of an engineering model NSTAR ion optics assembly was measured during thruster operation with beam extraction. The molybdenum ion optics assembly was mounted onto an engineering model NSTAR ion thruster. The measurement technique consisted of measuring the difference in height of an alumina pin relative to the downstream accelerator grid surface. The alumina pin was mechanically attached to the center aperture of the screen grid and protruded through the center aperture of the accelerator grid. The change in pin height was monitored using a long distance microscope coupled to a digital imaging system. Transient and steady-state hot grid gaps were measured at three power levels: 0.5, 1.5 and 2.3 kW. Also, the change in grid gap was measured during the transition between power levels, and during the startup with high voltage applied just prior to discharge ignition. Performance measurements, such as perveance, electron backstreaming limit and screen grid ion transparency, were also made to confirm that this ion optics assembly performed similarly to past testing. Results are compared to a prior test of 30 cm titanium ion optics.

  2. Engineering Risk Assessment of Space Thruster Challenge Problem

    Science.gov (United States)

    Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie

    2014-01-01

    The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.

  3. Design of a Low-Energy FARAD Thruster

    Science.gov (United States)

    Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.; Owens, T.; Dankanich, J.

    2007-01-01

    The design of an electrodeless thruster that relies on a pulsed, rf-assisted discharge and electromagnetic acceleration using an inductive coil is presented. The thruster design is optimized using known performance,scaling parameters, and experimentally-determined design rules, with design targets for discharge energy, plasma exhaust velocity; and thrust efficiency of 100 J/pulse, 25 km/s, and 50%, respectively. Propellant is injected using a high-speed gas valve and preionized by a pulsed-RF signal supplied by a vector inversion generator, allowing for current sheet formation at lower discharge voltages and energies relative to pulsed inductive accelerators that do not employ preionization. The acceleration coil is designed to possess an inductance of at least 700 nH while the target stray (non-coil) inductance in the circuit is 70 nH. A Bernardes and Merryman pulsed power train or a pulse compression power train provide current to the acceleration coil and solid-state components are used to switch both powertrains.

  4. Assessment of Pole Erosion in a Magnetically Shielded Hall Thruster

    Science.gov (United States)

    Mikellides, Ioannis G.; Ortega, Alejandro L.

    2014-01-01

    Numerical simulations of a 6-kW laboratory Hall thruster called H6 have been performed to quantify the erosion rate at the inner pole. The assessments have been made in two versions of the thruster, namely the unshielded (H6US) and magnetically shielded (H6MS) configurations. The simulations have been performed with the 2-D axisymmetric code Hall2De which employs a new multi-fluid ion algorithm to capture the presence of low-energy ions in the vicinity of the poles. It is found that the maximum computed erosion rate at the inner pole of the H6MS exceeds the measured rate of back-sputtered deposits by 4.5 times. This explains only part of the surface roughening that was observed after a 150-h wear test, which covered most of the pole area exposed to the plasma. For the majority of the pole surface the computed erosion rates are found to be below the back-sputter rate and comparable to those in the H6US which exhibited little to no sputtering in previous tests. Possible explanations for the discrepancy are discussed.

  5. Experimental Investigations of a Krypton Stationary Plasma Thruster

    Directory of Open Access Journals (Sweden)

    A. I. Bugrova

    2013-01-01

    Full Text Available Stationary plasma thrusters are attractive electric propulsion systems for spacecrafts. The usual propellant is xenon. Among the other suggested propellants, krypton could be one of the best candidates. Most studies have been carried out with a Hall effect thruster previously designed for xenon. The ATON A-3 developed by MSTU MIREA (Moscow initially defined for xenon has been optimized for krypton. The stable high-performance ATON A-3 operation in Kr has been achieved after optimization of its magnetic field configuration and its optimization in different parameters: length and width of the channel, buffer volume dimensions, mode of the cathode operation, and input parameters. For a voltage of 400 V and the anode mass flow rate of 2.5 mg/s the anode efficiency reaches 60% and the specific impulse reaches 2900 s under A-3 operating with Kr. The achieved performances under operation A-3 with Kr are presented and compared with performances obtained with Xe.

  6. Effects of wall electrodes on Hall effect thruster plasma

    International Nuclear Information System (INIS)

    This paper investigates the physical mechanisms that cause beneficial and detrimental performance effect observed to date in Hall effect thrusters with wall electrodes. It is determined that the wall electrode sheath can reduce ion losses to the wall if positioned near the anode (outside the dense region of the plasma) such that an ion-repelling sheath is able to form. The ability of the wall electrode to form an ion-repelling sheath is inversely proportional to the current drawn—if the wall electrode becomes the dominant sink for the thruster discharge current, increases in wall electrode bias result in increased local plasma potential rather than an ion-repelling sheath. A single-fluid electron flow model gives results that mimic the observed potential structures and the current-sharing fractions between the anode and wall electrodes, showing that potential gradients in the presheath and bulk plasma come at the expense of current draw to the wall electrodes. Secondary electron emission from the wall electrodes (or lack thereof) is inferred to have a larger effect if the electrodes are positioned near the exit plane than if positioned near the anode, due to the difference in energy deposition from the plasma

  7. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 ± 30 K. Phase-locked Schlieren images are used to detect compression waves generated by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.

  8. CPR methodology with new steady-state criterion and more accurate statistical treatment of channel bow

    International Nuclear Information System (INIS)

    An overview is given of existing CPR design criteria and the methods used in BWR reload analysis to evaluate the impact of channel bow on CPR margins. Potential weaknesses in today's methodologies are discussed. Westinghouse in collaboration with KKL and Axpo - operator and owner of the Leibstadt NPP - has developed an optimized CPR methodology based on a new criterion to protect against dryout during normal operation and with a more rigorous treatment of channel bow. The new steady-state criterion is expressed in terms of an upper limit of 0.01 for the dryout failure probability per year. This is considered a meaningful and appropriate criterion that can be directly related to the probabilistic criteria set-up for the analyses of Anticipated Operation Occurrences (AOOs) and accidents. In the Monte Carlo approach a statistical modeling of channel bow and an accurate evaluation of CPR response functions allow the associated CPR penalties to be included directly in the plant SLMCPR and OLMCPR in a best-estimate manner. In this way, the treatment of channel bow is equivalent to all other uncertainties affecting CPR. Emphasis is put on quantifying the statistical distribution of channel bow throughout the core using measurement data. The optimized CPR methodology has been implemented in the Westinghouse Monte Carlo code, McSLAP. The methodology improves the quality of dryout safety assessments by supplying more valuable information and better control of conservatisms in establishing operational limits for CPR. The methodology is demonstrated with application examples from the introduction at KKL. (authors)

  9. Experimental Investigation of the Effect of Bow Profiles on Resistance of an Underwater Vehicle in Free Surface Motion

    Institute of Scientific and Technical Information of China (English)

    Mehran Javadi; Mojtaba Dehghan Manshadi; Saeid Kheradmand; Mohammad Moonesun

    2015-01-01

    In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total resistances for different Froude numbers are considered experimentally. The towing tank is equipped with a trolley that can operate in through 0.05–6 m/s speed with ±0.02 m/s accuracy. Furthermore, the study is done on hydrodynamic coefficients i.e. total, residual and friction resistance coefficients, and the results are compared. Finally, the study on flow of wave fields around bows is done and wave filed around two bows are compared. The Froude number interval is between 0.099 and 0.349. Blockage fraction for the model is fixed to 0.005 3. The results showed that the residual resistance of the standard bow in 0.19 to 0.3 Froude number is more than the tango bow in surface motion which causes more total resistance for the submarine. Finally, details of wave generated by the bow are depicted and the effects of flow pattern on resistance drag are discussed.

  10. A comparative analysis of 3D flow fields between straight and bowed blades in a steam turbine

    Institute of Scientific and Technical Information of China (English)

    M.HASSANVAND; WANG Zhong-qi 王仲奇; WANG Song-tao 王松涛

    2004-01-01

    A commercial Navier-Stokes flow solver has been employed tor simulating steady subsonic flow characteristics and analyzing the comparative features of flow fields between straight and bowed blades applied to the stator of a high pressure steam turbine. For comparison, we have studied the effects of bowed blades on the wakes of stator trailing edge and horse shoe vortex in the rotor. It was found that the position of wakes for bowed blades is shifted toward the blade suction side. Also, we have discussed and compared the entropy generation and energy loss caused by dissipation mechanism within the boundary layers on the hub and shroud; and temperature gradient in meridional plane.

  11. THE ROLE OF PICKUP IONS ON THE STRUCTURE OF THE VENUSIAN BOW SHOCK AND ITS IMPLICATIONS FOR THE TERMINATION SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Lu Quanming; Shan Lican; Zhang Tielong; Wu Mingyu; Wang Shui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China); Zank, Gary P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Yang Zhongwei [SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai (China); Du Aimin, E-mail: qmlu@ustc.edu.cn [Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2013-08-20

    The recent crossing of the termination shock by Voyager 2 has demonstrated the important role of pickup ions (PUIs) in the physics of collisionless shocks. The Venus Express (VEX) spacecraft orbits Venus in a 24 hr elliptical orbit that crosses the bow shock twice a day. VEX provides a unique opportunity to investigate the role of PUIs on the structure of collisionless shocks more generally. Using VEX observations, we find that the strength of the Venusian bow shock is weaker when solar activity is strong. We demonstrate that this surprising anti-correlation is due to PUIs mediating the Venusian bow shock.

  12. Bow shock specularly reflected ions in the presence of low-frequency electromagnetic waves: a case study

    OpenAIRE

    K. Meziane; Mazelle, C.; Wilber, M.; Lequéau, D.; J. P. Eastwood; H. Rème; Dandouras, I.; J. A. Sauvaud; Bosqued, J. M.; Parks, G. K.; Kistler, L. M.; McCarthy, M.; Klecker, B.; Korth, A.; M.-B. Bavassano-Cattaneo

    2004-01-01

    An energetic ion (E≤40) event observed by the CLUSTER/CIS experiment upstream of the Earth's bow shock is studied in detail. The ion event is observed in association with quasi-monochromatic ULF MHD-like waves, which we show modulate the ion fluxes. According to three statistical bow shock position models, the Cluster spacecrafts are located at ~0.5 Re from the shock and the averaged bow shock θ

  13. Plasma plume characterization of a vacuum arc thruster

    Science.gov (United States)

    Sekerak, Michael James

    A Vacuum Arc Thruster (VAT) is a thruster that uses the plasma created in a vacuum arc, an electrical discharge in a vacuum that creates high velocity and highly ionized plasmas, as the propellant without additional acceleration. A VAT would be a small and inexpensive low thrust ion thruster, ideal for small satellites and formation flying spacecraft. The purpose of this thesis was to quantitatively and qualitatively examine the VAT plasma plume to determine operating characteristics and limitations. A VAT with a titanium cathode was operated in two regimes: (A) single ˜100mus pulse, discharge current JD=510A, and (B) multiple ˜1500mus pulses at f=40.8Hz, JD=14A. The cathode was 3.18mm diameter Ti rod, surrounded by a 0.80mm thick alumina insulator, set in a molybdenum anode. Three Configurations were tested: Cfg1 (Regime A, cathode recessed 3.00mm from anode), Cfg2 (Regime A, cathode and anode flush), Cfg3 (Regime B, cathode recessed 3.00mm). A semi-empirical model was derived for VAT performance based on the MHD equation of motion using data for ion velocity, ion charge state distribution, ion current fraction (F), and ion current density distribution (ICDD). Additional performance parameters were a2, the peak ion current density angular offset from the cathode normal, and a3, the width of the ion current distribution. Measurements were taken at 162 points on a plane in the plasma plume using a custom faraday probe, and the ICDD empirical form was determined to be a Gaussian. The discharge voltage (VD) and F were Cfg1: VD=25.5V, F=0.025-0.035; Cfg2: VD=40.7V, F=0.08-0.10; Cfg3: VD=14.9V, F=0.006-0.021. For Cfg1, a2 started 15° off-axis while a2˜0 for Cfg2 and 3. In Cfg1, a 3=0.7-0.6, and in Cfg2 a3=1.0-1.1, so the recessed cathode focused the plasma more. However, F is more important for VAT performance because upper and lower bounds for thrust, specific impulse, thrust-to-power, and efficiency were calculated and Cfg2 had the highest performance. High

  14. Propellantless Spacecraft Formation-Flying and Maneuvering with Photonic Laser Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Until the former NIAC was closed, we had investigated a nano-meter accuracy formation flight method based on photon thrusters and tethers, Photon Tether Formation...

  15. Pulsed inductive thruster performance data base for megawatt-class engine applications

    International Nuclear Information System (INIS)

    The pulsed inductive thruster (PIT) is an electrodeless plasma accelerator employing a large (1m diameter) spiral coil energized by a capacitor bank discharge. The bank can be repetitively recharged by a nuclear electric generator for continuous MW level operation. The coil can be designed as a transformer that permits thruster operation at the generator voltage, which results in a low thruster specific mass. Specific impulse (Isp) can be readily altered by changing the propellant valve plenum pressure. Performance curves generated from mesausred impulse, injected mass and capacitor bank energy are presented for argon, ammonia, hydrazine, carbon dioxide and helium. The highest performance measured to date is 48% efficiency at 4000 seconds Isp with ammonia. The development of a theoretical model of the thruster, which assumes a fully ionized plasma, is presented in an appendix

  16. Pulsed inductive thruster performance data base for megawatt-class engine applications

    Science.gov (United States)

    Dailey, Charles L.; Lovberg, Ralph H.

    1993-01-01

    The pulsed inductive thruster (PIT) is an electrodeless plasma accelerator employing a large (1m diameter) spiral coil energized by a capacitor bank discharge. The bank can be repetitively recharged by a nuclear electric generator for continuous MW level operation. The coil can be designed as a transformer that permits thruster operation at the generator voltage, which results in a low thruster specific mass. Specific impulse (Isp) can be readily altered by changing the propellant valve plenum pressure. Performance curves generated from mesausred impulse, injected mass and capacitor bank energy are presented for argon, ammonia, hydrazine, carbon dioxide and helium. The highest performance measured to date is 48% efficiency at 4000 seconds Isp with ammonia. The development of a theoretical model of the thruster, which assumes a fully ionized plasma, is presented in an appendix.

  17. Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I Busek matured the design of an existing 15-kW laboratory thruster. Magnetic modeling was performed to generate a circuit incorporating magnetic...

  18. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The gasdynamic mirror (GDM) plasma thruster has the ability to confine high-density plasma for the length of time required to heat it to the temperatures...

  19. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gasdynamic Mirror (GDM) thruster is an electric propulsion device, without electrodes, that will magnetically confine a plasma with such density and temperature...

  20. Feasibility of a 5mN Laser-Driven Mini-Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a next-generation thruster under a Phase II SBIR which we believe can meet NASA requirements after some modifications and improvements. It is the...

  1. Kinetic Molecular Dynamic Model of Hall Thruster Channel Wall Erosion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hall thrusters are being considered for many space missions because their high specific impulse delivers a larger payload mass fraction than chemical rockets. With...

  2. Wide Throttling, High Throughput Hall Thruster for Science and Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to Topic S3.04 "Propulsion Systems," Busek Co. Inc. will develop a high throughput Hall effect thruster with a nominal peak power of 1-kW and wide...

  3. Low Cost Refractory Matrix Composite Thruster for Mars Ascent Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The long-term goal for this effort is to develop a low-cost, high-temperature thruster. Within the attitude control propulsion community, many efforts have focused...

  4. HIGH ENERGY REPLACEMENT FOR TEFLON PROPELLANT IN PULSED PLASMA THRUSTERS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...

  5. 8-cm Engineering Model Thruster technology - A review of recent developments

    Science.gov (United States)

    Williamson, W. S.; Dulgeroff, C. R.; Williams, R. L.; Bayless, J. R.

    1979-01-01

    Recent testing of the NASA Lewis Research Center/Hughes 8-cm Engineering Model Thruster (EMT) and Power Processing Unit has centered on two primary areas of investigation: integration of porous-tungsten dispenser-type cathode inserts into the thruster (replacing previous inserts of rolled-tantalum-foil design) and characterization of thruster operation with the new inserts. Characterization testing of the EMT and of the new cathodes has demonstrated acceptable thruster performance and cathode ignition parameters; the only perceived change in thuster performance has been that a small amount of cathode heater power is required to maintain nominal keeper voltages. Thermal modeling of the cathode structures has facilitated design revisions which reduce this power requirement.

  6. Wide Throttling, High Throughput Hall Thruster for Science and Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to Topic S3-04 "Propulsion Systems," Busek proposes to develop a high throughput Hall effect thruster with a nominal peak power of 1-kW and wide...

  7. Colloid Thruster for Attitude Control Systems (ACS) and Tip-off Control Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test key technologies needed for an integrated, high thrust colloid thruster system with no moving parts, for spacecraft attitude control...

  8. On the microscopic mechanism of ion-extraction of a gridded ion propulsion thruster

    CERN Document Server

    Kirmse, Danny

    2013-01-01

    The following paper includes a physical microscopic particle-description of the phenomena and mechanisms that lead to the extraction of ions with the aim to generate thrust. This theoretical treatise arose from the intention to visualize the behavior of the involved particles under effect of the involved electrical fields. By this way, an underlying basis for experimental investigations of the work of an ion thruster should be formed. So a foundation was created, which explains the ion extracting and so thrust generating function of an ion thruster. The theoretical work was related to the Radio-frequency Ion Thruster (RIT). But the model worked out can be generalized for all thruster types that use electrostatic fields to extract positively charged ions.

  9. Lifetime Improvement of Large Scale Green Monopropellant Thrusters via Novel, Long-Life Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop a high performance, non-toxic storable, "green" monopropellant thruster suitable for in-space reaction control propulsion. The engine will...

  10. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Y. Raitses; D. Staack; A. Smirnov; N.J. Fisch

    2005-03-16

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission.

  11. Field test of ultra-low head hydropower package based on marine thrusters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    The project includes the design, fabrication, assembly, installation, and field test of the first full-scale operating hydropower package (turbine, transmission, and generator) based on a design which incorporates a marine-thruster as the hydraulic prime mover. Included here are: the project overview; engineering design; ultra-low head hydropower package fabrication; component procurement, cost control, and scheduling; thruster hydraulic section installation; site modeling and resulting recommended modifications; testing; and baseline environmental conditions at Stone Drop. (MHR)

  12. Hollow Cathode and Low-Thrust Extraction Grid Analysis for a Miniature Ion Thruster

    OpenAIRE

    Wirz, Richard; Sullivan, Regina; Przybylowski, JoHanna; Silva, Mike

    2008-01-01

    Miniature ion thrusters are well suited for future space missions that require high efficiency, precision thrust, and low contamination in the mN to sub-mN range. JPL’s miniature xenon Ion (MiXI) thruster has demonstrated an efficient discharge and ion extraction grid assembly using filament cathodes and the internal conduction (IC) cathode. JPL is currently preparing to incorporate a miniature hollow cathode for the MiXI discharge. Computational analyses anticipate that an axially upstream h...

  13. Development of a particle in cell code for the simulation of dual stage ion thrusters

    OpenAIRE

    Bramer, Elinor C

    2014-01-01

    This thesis focuses on the design, development and testing of a two dimensional particle in cell (PIC) code (PICSIE) written in Matlab. The code is applied to the specific problem of modelling the performance of dual stage ion thrusters. The code simulates one full aperture within dual stage ion thruster systems, focusing on the flow of ions through the aperture. Only the ions have been included in the simulation in order to minimize running time. The results produced by th...

  14. Performance of a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Science.gov (United States)

    Polzin, Kurt A.; Raitses, Yevgeny; Fisch, Nathaniel J.

    2008-01-01

    While Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope down to 100W while maintaining an efficiency of 45- 55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from the order of 50 Watts up to 1 kW. These thrusters exhibit performance characteristics which are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHT has a lower insulator surface area to discharge chamber volume ratio. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion. This makes the CHT geometry promising for low-power applications. Recently, a CHT that uses permanent magnets to produce the magnetic field topology was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed electromagnets. Data are presented for two purposes: to expose the effect different controllable parameters have on the discharge and to summarize performance measurements (thrust, Isp, efficiency) obtained using a thrust stand. These data are used to gain insight into the thruster's operation and to allow for quantitative comparisons between the permanent magnet CHT and the electromagnet CHT.

  15. Performance and Thermal Characterization of the NASA-300MS 20 kW Hall Effect Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Soulas, George; Smith, Timothy; Mikellides, Ioannis; Hofer, Richard

    2013-01-01

    NASA's Space Technology Mission Directorate is sponsoring the development of a high fidelity 15 kW-class long-life high performance Hall thruster for candidate NASA technology demonstration missions. An essential element of the development process is demonstration that incorporation of magnetic shielding on a 20 kW-class Hall thruster will yield significant improvements in the throughput capability of the thruster without any significant reduction in thruster performance. As such, NASA Glenn Research Center and the Jet Propulsion Laboratory collaborated on modifying the NASA-300M 20 kW Hall thruster to improve its propellant throughput capability. JPL and NASA Glenn researchers performed plasma numerical simulations with JPL's Hall2De and a commercially available magnetic modeling code that indicated significant enhancement in the throughput capability of the NASA-300M can be attained by modifying the thruster's magnetic circuit. This led to modifying the NASA-300M magnetic topology to a magnetically shielded topology. This paper presents performance evaluation results of the two NASA-300M magnetically shielded thruster configurations, designated 300MS and 300MS-2. The 300MS and 300MS-2 were operated at power levels between 2.5 and 20 kW at discharge voltages between 200 and 700 V. Discharge channel deposition from back-sputtered facility wall flux, and plasma potential and electron temperature measurements made on the inner and outer discharge channel surfaces confirmed that magnetic shielding was achieved. Peak total thrust efficiency of 64% and total specific impulse of 3,050 sec were demonstrated with the 300MS-2 at 20 kW. Thermal characterization results indicate that the boron nitride discharge chamber walls temperatures are approximately 100 C lower for the 300MS when compared to the NASA- 300M at the same thruster operating discharge power.

  16. Plasma Sheet Velocity Measurement Techniques for the Pulsed Plasma Thruster SIMP-LEX

    Science.gov (United States)

    Nawaz, Anuscheh; Lau, Matthew

    2011-01-01

    The velocity of the first plasma sheet was determined between the electrodes of a pulsed plasma thruster using three measurement techniques: time of flight probe, high speed camera and magnetic field probe. Further, for time of flight probe and magnetic field probe, it was possible to determine the velocity distribution along the electrodes, as the plasma sheet is accelerated. The results from all three techniques are shown, and are compared for one thruster geometry.

  17. Development of the Multiple Use Plug Hybrid for Nanosats (Muphyn) Miniature Thruster

    OpenAIRE

    Eilers, Shannon Dean

    2013-01-01

    The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorporates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft. The MUPHyN thruster offers several features that are uniquely suited for small satellite applications. These features include 1) a non-explosive ignition system, 2) non-mechanical thrust vectoring using secondary fluid injection on an aerospike nozzle cooled with the oxidizer ...

  18. RHETT2/EPDM Hall Thruster Propulsion System Electromagnetic Compatibility Evaluation

    Science.gov (United States)

    Sarmiento, Charles J.; Sankovic, John M.; Freitas, Joseph; Lynn, Peter R.

    1997-01-01

    Electromagnetic compatibility measurements were obtained as part of the Electric Propulsion Demonstration Module (EPDM) flight qualification program. Tests were conducted on a Hall thruster system operating at a nominal 66O W discharge power. Measurements of conducted and radiated susceptibility and emissions were obtained and referenced to MEL-STD-461 C. The power processor showed some conducted susceptibility below 4 kHz for the magnet current and discharge voltage. Radiated susceptibility testing yielded a null result. Conducted emissions showed slight violations of the specified limit for MIL-461C CE03. Radiated emissions exceeded the RE02 standard at low frequencies, below 300 MHz, by up to 40 dB RV/m/MHz.

  19. Plasma acceleration processes in an ablative pulsed plasma thruster

    International Nuclear Information System (INIS)

    Plasma acceleration processes in an ablative pulsed plasma thruster (APPT) were investigated. APPTs are space propulsion options suitable for microspacecraft, and have recently attracted much attention because of their low electric power requirements and simple, compact propellant system. The plasma acceleration mechanism, however, has not been well understood. In the present work, emission spectroscopy, high speed photography, and magnetic field measurements are conducted inside the electrode channel of an APPT with rectangular geometry. The successive images of neutral particles and ions give us a comprehensive understanding of their behavior under electromagnetic acceleration. The magnetic field profile clarifies the location where the electromagnetic force takes effect. As a result, it is shown that high density, ablated neutral gas stays near the propellant surface, and only a fraction of the neutrals is converted into plasma and electromagnetically accelerated, leaving the residual neutrals behind

  20. Overview of NASA Iodine Hall Thruster Propulsion System Development

    Science.gov (United States)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  1. Power electronics for a 1-kilowatt arcjet thruster

    Science.gov (United States)

    Gruber, R. P.

    1986-01-01

    After more than two decades, new space mission requirements have revived interest in arcjet systems. The preliminary development and demonstration of new, high efficiency, power electronic concepts for start up and steady state control of dc arcjets is reported. The design comprises a pulse width modulated power converter which is closed loop configured to give fast current control. An inductor, in series with the arcjet, serves the dual role of providing instantaneous current control, as well as a high voltage arc ignition pulse. Benchmark efficiency, transient response, regulation, and ripple data are presented. Tests with arcjets demonstrate that the power electronics breadboard can start thrusters consistently with no apparent damage and transfer reliably to the nondestructive high voltage arc mode in less than a second.

  2. Firing Control Optimization of Impulse Thrusters for Trajectory Correction Projectiles

    Directory of Open Access Journals (Sweden)

    Min Gao

    2015-01-01

    Full Text Available This paper presents an optimum control scheme of firing time and firing phase angle by taking impact point deviation as optimum objective function which takes account of the difference of longitudinal and horizontal correction efficiency, firing delay, roll rate, flight stability, and so forth. Simulations indicate that this control scheme can assure lateral impulse thrusters are activated at time and phase angle when the correction efficiency is higher. Further simulations show that the impact point dispersion is mainly influenced by the total impulse deployed, and the impulse, number, and firing interval need to be optimized to reduce the impact point dispersion of rockets. Live firing experiments with two trajectory correction rockets indicate that the firing control scheme works effectively.

  3. CASTOR: Cathode/Anode Satellite Thruster for Orbital Repositioning

    Science.gov (United States)

    Mruphy, Gloria A.

    2010-01-01

    The purpose of CASTOR (Cathode/Anode Satellite Thruster for Orbital Repositioning) satellite is to demonstrate in Low Earth Orbit (LEO) a nanosatellite that uses a Divergent Cusped Field Thruster (DCFT) to perform orbital maneuvers representative of an orbital transfer vehicle. Powered by semi-deployable solar arrays generating 165W of power, CASTOR will achieve nearly 1 km/s of velocity increment over one year. As a technology demonstration mission, success of CASTOR in LEO will pave the way for a low cost, high delta-V orbital transfer capability for small military and civilian payloads in support of Air Force and NASA missions. The educational objective is to engage graduate and undergraduate students in critical roles in the design, development, test, carrier integration and on-orbit operations of CASTOR as a supplement to their curricular activities. This program is laying the foundation for a long-term satellite construction program at MIT. The satellite is being designed as a part of AFRL's University Nanosatellite Program, which provides the funding and a framework in which student satellite teams compete for a launch to orbit. To this end, the satellite must fit within an envelope of 50cmx50cmx60cm, have a mass of less than 50kg, and meet stringent structural and other requirements. In this framework, the CASTOR team successfully completed PDR in August 2009 and CDR in April 2010 and will compete at FCR (Flight Competition Review) in January 2011. The complexity of the project requires implementation of many systems engineering techniques which allow for development of CASTOR from conception through FCR and encompass the full design, fabrication, and testing process.

  4. Magnetic Field Effects on the Plume of a Diverging Cusped-Field Thruster

    KAUST Repository

    Matlock, Taylor

    2010-07-25

    The Diverging Cusped-Field Thruster (DCFT) uses three permanent ring magnets of alternating polarity to create a unique magnetic topology intended to reduce plasma losses to the discharge chamber surfaces. The magnetic field strength within the DCFT discharge chamber (up to 4 kG on axis) is much higher than in thrusters of similar geometry, which is believed to be a driving factor in the high measured anode efficiencies. The field strength in the near plume region is large as well, which may bear on the high beam divergences measured, with peaks in ion current found at angles of around 30-35 from the thruster axis. Characterization of the DCFT has heretofore involved only one magnetic topology. It is then the purpose of this study to investigate changes to the near-field plume caused by altering the shape and strength of the magnetic field. A thick magnetic collar, encircling the thruster body, is used to lower the field strength outside of the discharge chamber and thus lessen any effects caused by the external field. Changes in the thruster plume with field topology are monitored by the use of normal Langmuir and emissive probes interrogating the near-field plasma. Results are related to other observations that suggest a unified conceptual framework for the important near-exit region of the thruster.

  5. Hybrid-PIC Modeling of a High-Voltage, High-Specific-Impulse Hall Thruster

    Science.gov (United States)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani; Huang, Wensheng

    2013-01-01

    The primary life-limiting mechanism of Hall thrusters is the sputter erosion of the discharge channel walls by high-energy propellant ions. Because of the difficulty involved in characterizing this erosion experimentally, many past efforts have focused on numerical modeling to predict erosion rates and thruster lifespan, but those analyses were limited to Hall thrusters operating in the 200-400V discharge voltage range. Thrusters operating at higher discharge voltages (V(sub d) >= 500 V) present an erosion environment that may differ greatly from that of the lower-voltage thrusters modeled in the past. In this work, HPHall, a well-established hybrid-PIC code, is used to simulate NASA's High-Voltage Hall Accelerator (HiVHAc) at discharge voltages of 300, 400, and 500V as a first step towards modeling the discharge channel erosion. It is found that the model accurately predicts the thruster performance at all operating conditions to within 6%. The model predicts a normalized plasma potential profile that is consistent between all three operating points, with the acceleration zone appearing in the same approximate location. The expected trend of increasing electron temperature with increasing discharge voltage is observed. An analysis of the discharge current oscillations shows that the model predicts oscillations that are much greater in amplitude than those measured experimentally at all operating points, suggesting that the differences in oscillation amplitude are not strongly associated with discharge voltage.

  6. Comparison of plasma wave measurements in the bow shocks at Earth, Jupiter, Saturn, Uranus and Neptune

    International Nuclear Information System (INIS)

    The authors present plasma wave measurements from the Voyager 2 crossing of Neptune's bow shock and compare them with measurements from the bow shocks of Earth, Jupiter, Saturn and Uranus. The wave amplitudes above 0.01fp, when normalized to the solar wind ion thermal energy density at each planet, are significantly higher at the outer planets than at Earth. Despite the differences in amplitude the shock spectra of all the planets can be fitted to curves of similar form in this frequency range. The total normalized electric field energy densities exhibit an exponential dependence on ion thermal Mach number. Magnetosheath wave energies are comparable at all of the planets when normalized to the downstream plasma pressure

  7. A Study of Near-Field Radiation Pattern of Bow-Tie Dipole on Ground

    Institute of Scientific and Technical Information of China (English)

    ZHAN Yi; LIANG Changhong; FANG Guangyou; YUAN Hongwei

    2001-01-01

    The study of bow-tie antenna forpulse'radiation in a ground penetrating radar systemis complicated due to the existence of reflections fromthe feed,the far end of the antenna,the air-groundinterface and their interactions.The FDTD methodsare applied in this paper by incorporating a trans-parent source,a bow-tie antenna above the ground,and a lossy soil to investigate the issues.Numeri-cal verifications are conducted to check the accuracyof the method.The radiation properties are demon-strated by near-field radiation patterns and time do-main waveforms at different positions.The influencesdue to different antenna heights and soil parametersare also discussed in detail.

  8. Characterization of Saturn's bow shock: Magnetic field observations of quasi-perpendicular shocks

    CERN Document Server

    Sulaiman, A H; Dougherty, M K

    2016-01-01

    Collisionless shocks vary drastically from terrestrial to astrophysical regimes resulting in radically different characteristics. This poses two complexities. Firstly, separating the influences of these parameters on physical mechanisms such as energy dissipation. Secondly, correlating observations of shock waves over a wide range of each parameter, enough to span across different regimes. Investigating the latter has been restricted since the majority of studies on shocks at exotic regimes (such as supernova remnants) have been achieved either remotely or via simulations, but rarely by means of in-situ observations. Here we present the parameter space of MA bow shock crossings from 2004-2014 as observed by the Cassini spacecraft. We find that Saturn's bow shock exhibits characteristics akin to both terrestrial and astrophysical regimes (MA of order 100), which is principally controlled by the upstream magnetic field strength. Moreover, we determined the {\\theta}Bn of each crossing to show that Saturn's (days...

  9. Diagnosis of the Thermal Bow of a Shaft in a Three Stage Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In practice many turbo-machines driven by motors are started up to operational speed within a very short time, i.e. in less than 20 seconds. For this type of machines the compatibility of thermal deformation of the rotor structure must be taken into account in the machine design, or the thermal deformation will be constrained and a huge resultant force can cause the shaft bending and consequently resulting in violent vibrations. In this paper, detection of thermal bow of a shaft in a three stage centrifugal compressor in a petrochemical plant is presented. The diagnostic results show that the thermal bow was induced by the incompatibility of axial thermal deformation of the rotor structure. A remedial action allowing free axial thermal expansion of the outer parts of the rotor is suggested.

  10. UWB Bi-directional Bow-tie antenna loaded by rings

    Science.gov (United States)

    Peng, Lin; Sun, Kai; Xie, Ji-yang; Qiu, Yu-jie; Jiang, Xing

    2016-07-01

    Performances of bow-tie antennae can be improved by loading a ring. Specially, the distorted radiation patterns of the reference bow-tie antenna (RBA) at high frequencies become less distorted when a ring is added. That is due to the disciplined current flows trained by the ring. Furthermore, when more rings are loaded, which act as reflectors, higher directivities are obtained and, patterns become bi-directional. Antennae with no ring (RBA), one ring, two rings (three cases), three rings, and four rings are investigated. Research find that loading more rings means better directivity. The directivity of the RBA varies from 2.29 dB to 3.66 dB for the frequency band from 2.5 to 7.5 GHz while the directivity for the four-ring-loaded case varies from 4.27 dB to 7.61 dB in that frequency band.

  11. Intensity and energy spectrum of electrons accelerated in the earth's bow shock

    Science.gov (United States)

    Anderson, K. A.

    1974-01-01

    Shock waves accelerate charged particles in the solar atmosphere, in interplanetary space and around the earth's magnetosphere. Acceleration of both electrons and protons occurs in the earth's bow-shock. The acceleration of protons up to 100 keV appears to be a steady state process and may even occur upstream from the bow shock due to waves generated by reflected solar wind protons. The electrons, on the other hand, are known to be accelerated in or near the shock. The intensity of these electrons ranges from about 100 to 2,000 per sr-sq cm-sec-keV at 14 keV. The energy spectrum is not a simple power low and is highly variable. If segments of the spectra are fitted to a power low, slopes ranging from -2 to -4.5 result over the energy range 0.5 to 100 keV.

  12. Analysis of Silver Ink Bow-Tie RFID Tag Antennas Printed on Paper Substrates

    Directory of Open Access Journals (Sweden)

    Sari Merilampi

    2007-01-01

    Full Text Available In this study, polymeric silver inks, paper substrates, and screen printing were used to produce prototype Bow-Tie tags. Because of increasing interest in applying passive UHF-RFID systems in paper industry, the Bow-Tie antenna used in this study was designed to work through paper. The maximum reliable read ranges of the tags were measured thorough stacked paper and also in air. The analysis and functioning of the antenna design are also discussed. All inks and paper substrates were suitable as antenna material and the prototype tag antennas had good reading performance. The maximum reliable read ranges were quite the same as for copper and aluminum tags studied elsewhere. This means that printed UHF tags are competitive solutions for the identification of simple mass products.

  13. Highly modular bow-tie gene circuits with programmable dynamic behaviour.

    Science.gov (United States)

    Prochazka, Laura; Angelici, Bartolomeo; Haefliger, Benjamin; Benenson, Yaakov

    2014-01-01

    Synthetic gene circuits often require extensive mutual optimization of their components for successful operation, while modular and programmable design platforms are rare. A possible solution lies in the 'bow-tie' architecture, which stipulates a focal component-a 'knot'-uncoupling circuits' inputs and outputs, simplifying component swapping, and introducing additional layer of control. Here we construct, in cultured human cells, synthetic bow-tie circuits that transduce microRNA inputs into protein outputs with independently programmable logical and dynamic behaviour. The latter is adjusted via two different knot configurations: a transcriptional activator causing the outputs to track input changes reversibly, and a recombinase-based cascade, converting transient inputs into permanent actuation. We characterize the circuits in HEK293 cells, confirming their modularity and scalability, and validate them using endogenous microRNA inputs in additional cell lines. This platform can be used for biotechnological and biomedical applications in vitro, in vivo and potentially in human therapy. PMID:25311543

  14. Use of an ions thruster to dispose of type II long-lived fission products into outer space

    International Nuclear Information System (INIS)

    To dispose of long-lived fission products (LLFPs) into outer space, an ions thruster can be used instead of a static accelerator. The specifications of the ions thrusters which are presently studied for space propulsion are presented, and their usability discussed. Using of a rocket with an ions thruster for disposing of the LLFPs directly into the sun requires a larger amount of energy than does the use of an accelerator. copyright 1997 American Institute of Physics

  15. Mapping the Structure of Directed Networks: Beyond the "Bow-tie" Diagram

    OpenAIRE

    Timár, G.; Goltsev, A. V.; Dorogovtsev, S. N.; Mendes, J. F. F.

    2016-01-01

    We reveal a hierarchical organization of finite directed components---tendrils---around the giant components represented by the celebrated "bow-tie" diagram for directed networks. We develop an efficient algorithm to find tendril layers. It is used together with the message passing technique, generalized to directed graphs, to find the structure and attack tolerance of complex networks, such as the World Wide Web, the neural network of Caenorhabditis elegans, and others. We introduce a genera...

  16. 3D hybrid simulations of the interaction of a magnetic cloud with a bow shock

    Science.gov (United States)

    Turc, L.; Fontaine, D.; Savoini, P.; Modolo, R.

    2015-08-01

    In this paper, we investigate the interaction of a magnetic cloud (MC) with a planetary bow shock using hybrid simulations. It is the first time to our knowledge that this interaction is studied using kinetic simulations which include self-consistently both the ion foreshock and the shock wave dynamics. We show that when the shock is in a quasi-perpendicular configuration, the MC's magnetic structure in the magnetosheath remains similar to that in the solar wind, whereas it is strongly altered downstream of a quasi-parallel shock. The latter can result in a reversal of the magnetic field north-south component in some parts of the magnetosheath. We also investigate how the MC affects in turn the outer parts of the planetary environment, i.e., from the foreshock to the magnetopause. We find the following: (i) The decrease of the Alfvén Mach number at the MC's arrival causes an attenuation of the foreshock region because of the weakening of the bow shock. (ii) The foreshock moves along the bow shock's surface, following the rotation of the MC's magnetic field. (iii) Owing to the low plasma beta, asymmetric flows arise inside the magnetosheath, due to the magnetic tension force which accelerates the particles in some parts of the magnetosheath and slows them down in others. (iv) The quasi-parallel region forms a depression in the shock's surface. Other deformations of the magnetopause and the bow shock are also highlighted. All these effects can contribute to significantly modify the solar wind/magnetosphere coupling during MC events.

  17. Serendipitous discovery of an infrared bow shock near PSR J1549–4848 with Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongxiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Morrell, Nidia [Las Campanas Observatory, Observatories of the Carnegie Institution of Washington, La Serena (Chile); Kaspi, Victoria M. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada)

    2013-06-01

    We report on the discovery of an infrared cometary nebula around PSR J1549–4848 in our Spitzer survey of a few middle-aged radio pulsars. Following the discovery, multi-wavelength imaging and spectroscopic observations of the nebula were carried out. We detected the nebula in Spitzer Infrared Array Camera 8.0, Multiband Imaging Photometer for Spitzer 24 and 70 μm imaging, and in Spitzer IRS 7.5-14.4 μm spectroscopic observations, and also in the Wide-field Infrared Survey Explorer all-sky survey at 12 and 22 μm. These data were analyzed in detail, and we find that the nebula can be described with a standard bow shock shape, and that its spectrum contains polycyclic aromatic hydrocarbon and H{sub 2} emission features. However, it is not certain which object drives the nebula. We analyze the field stars and conclude that none of them can be the associated object because stars with a strong wind or mass ejection that usually produce bow shocks are much brighter than the field stars. The pulsar is approximately 15'' away from the region in which the associated object is expected to be located. In order to resolve the discrepancy, we suggest that a highly collimated wind could be emitted from the pulsar and produce the bow shock. X-ray imaging to detect the interaction of the wind with the ambient medium- and high-spatial resolution radio imaging to determine the proper motion of the pulsar should be carried out, which will help verify the association of the pulsar with the bow shock nebula.

  18. Low-energy particles at the bow shock, magnetopause, and outer magnetosphere of Saturn

    International Nuclear Information System (INIS)

    Low-energy electron (>22 keV) and protons (> or approx. =30 keV) measured by the Low-Energy Charged Particle Experiment (LECP) during the encounters of the two Voyager spacecraft with Saturn are described. The characteristics of the dayside bow shock, magnetopause, and outer magnetosphere are emphasized. Only one crossing of the Saturian bow shock was observed inbound during the Voyager 1 encounter, whereas five crossings of the bow shock were identified during the Voyager 2 approach to the planet. During several of these bow shock crossings, low energy protons were observed to be streaming from the direction of the dawnside of the magnetosphere. In the magnetosheath the protons were observed to be oriented primarily with pitch angles of approx.900. Prior to the inbound magnetopause crossings (as defined by the magnetometer experiment on Voyager), the low-energy protons and electrons were observed to increase in intensity. Further, during Voyager 2 encounter, an increase in the proton and electron fluxes accompanied a change in orientation of the magnetosheath magnetioc field from one with a vertical component opposite to the planetary field to one with a vertical component in the direction of the planetary field. Examination of the flux distributions of the protons suggests that the magnetopuase was moving inward with a lower limit speed of approx.10 km/s during the Voyager 2 approach to the planet. The observed average subsolar magnetopause position at the time of Voyager 2 encounter was 18.5 R/sub S/, whereas during the Voyager 1 encounter it was considerably more extended, at 23.5 R/sub S/

  19. Potts critical frontiers of inhomogeneous and asymmetric bow-tie lattices

    OpenAIRE

    Scullard, Christian R.; Jacobsen, Jesper Lykke

    2012-01-01

    We study the critical frontiers of the Potts model on two-dimensional bow-tie lattices with fully inhomogeneous coupling constants. Generally, for the Potts critical frontier to be found exactly, the underlying lattice must be a 3-uniform hypergraph. A more general class of lattices are the 4-uniform ones, with unit cells contained within four boundary vertices. We demonstrate that in some cases, such lattices can be decomposed into triangular cells, and solved using a modification of standar...

  20. Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation

    OpenAIRE

    Pfullmann, N.; Waltermann, C.; Noack, M.; Rausch, S.; Nagy, T.; Reinhardt, C.; Kovacev, M.; Knittel, V.; Bratschitsch, R.; Akemeier, D.; Huetten, A.; Leitenstorfer, A.; Morgner, Uwe

    2013-01-01

    We report on the generation of extreme ultraviolet radiation utilizing the plasmonic field enhancement in arrays of bow-tie gold optical antennae. Furthermore, their suitability to support high-order harmonic generation is examined by means of finite-difference time-domain calculations and experiments. Particular emphasis is paid to the thermal properties, which become significant at the employed peak intensities. A damage threshold depending on the antenna length is predict...

  1. Self-assembled silver nanoparticles in a bow-tie antenna configuration.

    Science.gov (United States)

    Eskelinen, Antti-Pekka; Moerland, Robert J; Kostiainen, Mauri A; Törmä, Päivi

    2014-03-26

    The self-assembly of silver nanoparticles into a bow-tie antenna configuration is achieved with the DNA origami method. Instead of complicated particle geometries, spherical silver nanoparticles are used. Formation of the structures in high yields is verified with transmission electron microscopy and agarose gel electrophoresis. According to finite-difference time-domain simulations, the antenna configuration could be used as a DNA sensor. PMID:24659271

  2. Bow-tie wobble artifact: Effect of source assembly motion on cone-beam CT

    OpenAIRE

    Zheng, Dandan; John C. Ford; Lu, Jun; Lazos, Dimitrios; Hugo, Geoffrey D.; Pokhrel, Damodar; Zhang, Lisha; Williamson, Jeffrey F.

    2011-01-01

    Purpose: To investigate the cause of a bow-tie wobble artifact (BWA) discovered on Varian OBI CBCT images and to develop practical correction strategies.Method and Materials: The dependence of the BWA on phantom geometry, phantom position, specific system, and reconstruction algorithm was investigated. Simulations were conducted to study the dependence of the BWA on scatter and beam hardening corrections. Geometric calibration was performed to rule out other gantry-angle dependent mechanical ...

  3. Note: auto-relock system for a bow-tie cavity for second harmonic generation.

    Science.gov (United States)

    Haze, Shinsuke; Hata, Sousuke; Fujinaga, Munekazu; Mukaiyama, Takashi

    2013-02-01

    This Note reports on the implementation of an automatic relocking system for a bow-tie cavity for second harmonic generation to produce an ultra-violet laser source. The system is based on a sample-and-hold technique for controlling the cavity length using simple servo electronics. Long-term stabilization of the cavity output power is successfully achieved, which makes this system suitable for designing stable atomic physics experiments. PMID:23464273

  4. The critical manifolds of inhomogeneous bond percolation on bow-tie and checkerboard lattices

    OpenAIRE

    Ziff, Robert M.; Scullard, Christian R.; Wierman, John C.; Sedlock, Matthew R. A.

    2012-01-01

    We give a conditional derivation of the inhomogeneous critical percolation manifold of the bow-tie lattice with five different probabilities, a problem that does not appear at first to fall into any known solvable class. Although our argument is mathematically rigorous only on a region of the manifold, we conjecture that the formula is correct over its entire domain, and we provide a non-rigorous argument for this that employs the negative probability regime of the triangular lattice critical...

  5. Failures and Defects in the Building Process:Applying the Bow-Tie Approach

    OpenAIRE

    Jørgensen, Kirsten

    2009-01-01

    Function failures, defects, mistakes and poor communication are major problems for the construction sector. A Danish research project focusing on failures and defects in building processes has been carried out over the last 2 years. As the empirical element in the research, a large construction site was observed from the very start to the very end and all failures and defects of a certain size were recorded and analysed. The methodological approach used in this analysis was the bow-tie model ...

  6. Phenomenology of the earth's bow shock system - A summary description of experimental results

    Science.gov (United States)

    Greenstadt, E. W.

    1976-01-01

    Observational data on the earth's bow shock system are classified and characterized. Foreshock components, midshock components, and aftershock components are discussed separately. Schematic representations of the field and plasma particle parameters are elaborated, with attention given to quasi-perpendicular geometry and quasi-parallel geometry. Magnetic pulsation structure is delineated. Schematic profiles of field, particle, and wave behavior through a representative quasi-perpendicular shock crossing are displayed.

  7. Ship Bow Force-Deformation Curves for Ship-Impact Demand of Bridges considering Effect of Pile-Cap Depth

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2014-01-01

    Full Text Available Since static analysis procedures in the vessel impact-resistant design codes neglect dynamic amplification effects related to bridge mass, ship-impact responses of bridges may be potentially underestimated. For this reason, several dynamic vessel-impact analysis techniques had been recently proposed, where a force-deformation curve was employed to model the vessel bow stiffness. Most of the recent works mainly focused on the force-deformation curves of the barge bows rather than the ship bows. In this paper, a high-resolution finite element model is developed to obtain the ship bow force-deformation curves. The global and local characteristics of the ship bow force-deformation curves are discussed based on the finite element crush analyses between the ship bows and the rigid walls. Effect of pile-cap depth on the force-deformation curves (rather than only impact forces is studied in detail, and the corresponding empirical equations are developed using an energy ratio method. Finally, a practical example of ship-bridge collision is investigated to validate the force-deformation curves considering the effect of pile-cap depth. It is found from the case study that the effect of pile-cap depth plays an important role in quantifying structural demand under impact loads. The case study also indicates that the developed equations are reasonable in practical applications.

  8. The procedure for determination of special margin factors to account for a bow of the WWER-1000 fuel assemblies

    International Nuclear Information System (INIS)

    Starting from 1980s, the problem of bow of the WWER-1000 reactor fuel assemblies and the effect of that on the operational safety is being discussed. At the initial period of time, the extension of time for dropping control rods of the control and protection system associated with this bow posed the highest threat. Later on, new more rigid structures were developed for fuel assemblies that eliminated the problems of control rods. However, bow of the WWER-1000 reactor fuel assemblies is observed up to now. The scale of this bow reduced significantly but it still effects safety. Even a minor bow available may lead to the noticeable increase of power of individual fuel pins associated with the local variation of the coolant amount. This effect must be taken into account on designing fuel loadings to eliminate the exceeding of set limitations. The introduction of additional special margins is the standard method for taking this effect into account. The present paper describes the conservative technique for the assessment of additional margins for bow of fuel assemblies of state-of-the-art designs. This technique is employed in the WWER-1000 reactor designing. The chosen conservatism degree is discussed as well as the method for its assurance and acceptable ways for its slackening. The example of the margin evaluation for the up-to-date fuel loading is given. (authors)

  9. The Procedure for Determination of Special Margin Factors to Account for a Bow of the VVER-1000 Fuel Assemblies

    International Nuclear Information System (INIS)

    Starting from 1980's, the problem of bow of the VVER-1000 reactor FAs and the effect of that on the operational safety is being discussed. At the initial period of time, the extension of time for dropping control rods of the control and protection system associated with this bow posed the highest threat. Later on, new more rigid structures were developed for FAs that eliminated the problems of control rods. However, bow of the VVER-1000 reactor FAs is observed up to now. The scale of this bow reduced significantly but it still effects safety. Even a minor bow available may lead to the noticeable increase of power of individual fuel pins associated with the local variation of the coolant amount. This effect must be taken into account on designing fuel loadings to eliminate the exceeding of set limitations. The introduction of additional special margins is the standard method for taking this effect into account. The present paper describes the conservative technique for the assessment of additional margins for bow of FAs of state-of-the-art designs. This technique is employed in the VVER-1000 reactor designing. The chosen conservatism degree is discussed as well as the method for its assurance and acceptable ways for its slackening. The example of the margin evaluation for the up-to-date fuel loading is given. (authors)

  10. The Procedure for Determination of Special Margin Factors to Account for a Bow of the VVER-1000 Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganov, Sergey V.; Marin, Stanislav V.; Shishkov, Lev K. [Russian Research Center ' Kurchatov Institute' , 1., Kurchatov sq., 123182 Moscow (Russian Federation)

    2008-07-01

    Starting from 1980's, the problem of bow of the VVER-1000 reactor FAs and the effect of that on the operational safety is being discussed. At the initial period of time, the extension of time for dropping control rods of the control and protection system associated with this bow posed the highest threat. Later on, new more rigid structures were developed for FAs that eliminated the problems of control rods. However, bow of the VVER-1000 reactor FAs is observed up to now. The scale of this bow reduced significantly but it still effects safety. Even a minor bow available may lead to the noticeable increase of power of individual fuel pins associated with the local variation of the coolant amount. This effect must be taken into account on designing fuel loadings to eliminate the exceeding of set limitations. The introduction of additional special margins is the standard method for taking this effect into account. The present paper describes the conservative technique for the assessment of additional margins for bow of FAs of state-of-the-art designs. This technique is employed in the VVER-1000 reactor designing. The chosen conservatism degree is discussed as well as the method for its assurance and acceptable ways for its slackening. The example of the margin evaluation for the up-to-date fuel loading is given. (authors)

  11. The procedure for determination of special margin factors to account for a bow of the VVER-1000 fuel assemblies

    International Nuclear Information System (INIS)

    Starting from 1980's, the problem of bow of the VVER-1000 reactor FAs and the effect of that on the operational safety is being discussed. At the initial period of time, the extension of time for dropping control rods of the control and protection system associated with this bow posed the highest threat. Later on, new more rigid structures were developed for FAs that eliminated the problems of control rods. However, bow of the VVER-1000 reactor FAs is observed up to now. The scale of this bow reduced significantly but it still effects safety. Even a minor bow available may lead to the noticeable increase of power of individual fuel pins associated with the local variation of the coolant amount. This effect must be taken into account on designing fuel loadings to eliminate the exceeding of set limitations. The introduction of additional special margins is the standard method for taking this effect into account. The present paper describes the conservative technique for the assessment of additional margins for bow of FAs of state-of-the-art designs. This technique is employed in the VVER-1000 reactor designing. The chosen conservatism degree is discussed as well as the method for its assurance and acceptable ways for its slackening. The example of the margin evaluation for the up-to-date fuel loading is given. (authors)

  12. The procedure for determination of special margin factors to account for a bow of the VVER-1000 fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganov, S.V.; Marin, S.V.; Shishkov, L.K. [Russian Research Center ' Kurchatov Institute' , Moscow (Russian Federation)

    2008-07-01

    Starting from 1980's, the problem of bow of the VVER-1000 reactor FAs and the effect of that on the operational safety is being discussed. At the initial period of time, the extension of time for dropping control rods of the control and protection system associated with this bow posed the highest threat. Later on, new more rigid structures were developed for FAs that eliminated the problems of control rods. However, bow of the VVER-1000 reactor FAs is observed up to now. The scale of this bow reduced significantly but it still effects safety. Even a minor bow available may lead to the noticeable increase of power of individual fuel pins associated with the local variation of the coolant amount. This effect must be taken into account on designing fuel loadings to eliminate the exceeding of set limitations. The introduction of additional special margins is the standard method for taking this effect into account. The present paper describes the conservative technique for the assessment of additional margins for bow of FAs of state-of-the-art designs. This technique is employed in the VVER-1000 reactor designing. The chosen conservatism degree is discussed as well as the method for its assurance and acceptable ways for its slackening. The example of the margin evaluation for the up-to-date fuel loading is given. (authors)

  13. Corporate-Feed Multilayer Bow-Tie Antenna Array Design Using a Simple Transmission Line Model

    Directory of Open Access Journals (Sweden)

    S. Didouh

    2012-01-01

    Full Text Available A transmission line model is used to design corporate-fed multilayered bow-tie antennas arrays; the simulated antennas arrays are designed to resonate at the frequencies 2.4 GHz, 5 GHz, and 8 GHz corresponding to RFID, WIFI, and radars applications. The contribution of this paper consists of modeling multilayer bow-tie antenna array fed through an aperture using transmission line model. The transmission line model is simple and precise and allows taking into account the whole geometrical, electrical, and technological characteristics of the antennas arrays. The proposed transmission line model showed its interest in the design of different multilayered bow-tie antennas and predicted the correct resonance frequency for different applications in telecommunications. To validate the proposed transmission line model, the simulation results obtained are compared with those obtained by the method of moments. The results of simulations are presented and discussed. Using this transmission line approach, the resonant frequency, input impedance, and return loss can be determined simultaneously. The paper reports several simulation results that confirm the validity of the developed model. The obtained results are then presented and discussed.

  14. Interaction of single-pulse laser energy with bow shock in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Hong Yanji

    2014-04-01

    Full Text Available Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier–Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction. The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagnation point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the investigation of the mechanism of the interaction.

  15. Bow-shock instability induced by Helmholtz resonator-like feedback in slipstream

    Science.gov (United States)

    Ohnishi, Naofumi; Sato, Yosuke; Kikuchi, Yuta; Ohtani, Kiyonobu; Yasue, Kanako

    2015-06-01

    Bow-shock instability has been experimentally observed in a low-γ flow. To clarify its mechanism, a parametric study was conducted with three-dimensional numerical simulations for specific heat ratio γ and Mach number M. A critical boundary of the instability was found in the γ-M parametric space. The bow shock tends to be unstable with low γ and high M, and the experimental demonstration was designed based on this result. The experiments were conducted with the ballistic range of the single-stage powder gun mode using HFC-134a of γ = 1.12 at Mach 9.6. Because the deformation of the shock front was observed in a shadowgraph image, the numerical prediction was validated to some extent. The theoretical estimation of vortex formation in a curved shock wave indicates that the generated vorticity is proportional to the density ratio across the shock front and that the critical density ratio can be predicted as ˜10. A strong slipstream from the surface edge generates noticeable acoustic waves because it can be deviated by the upstream flow. The acoustic waves emitted by synchronizing the vortex formation can propagate upstream and may trigger bow-shock instability. This effect should be emphasized in terms of unstable shock formation around an edged flat body.

  16. A search for systemic mass loss in Algols with bow shocks

    CERN Document Server

    Mayer, Andreas; Jorissen, Alain

    2016-01-01

    Aims. Various studies indicate that interacting binary stars of Algol type evolve non-conservatively. However, direct detection of systemic mass loss in Algols has been scarce so far. We aim at studying the systemic mass loss in Algols by looking for the presence of infrared excesses originating from the thermal emission of dust grains, which is linked to the presence of a stellar wind. Methods. In contrast to previous studies, we make use of the fact that stellar and interstellar material is piled up at the edge of the asterosphere where the stellar wind interacts with the interstellar medium. We analyse WISE W3 $12\\,\\mu$m and WISE W4 $22\\,\\mu$m data of Algol-type binary Be and B[e] stars and the properties of their bow shocks. From the stand-off distance of the bow shock we are able to determine the mass loss rate of the binary system. Results. Although the velocities of the stars with respect to the interstellar medium are quite low, we find bow shocks to be present in two systems, namely $\\pi$ Aqr, and $\\...

  17. Study and comparison of the parameters of five hot flow anomalies at a bow shock front

    Science.gov (United States)

    Shestakov, A. Yu.; Vaisberg, O. L.

    2016-03-01

    Five hot flow anomalies ( HFA) recorded by the Tail Probe of the INTERBALL satellite in 1996 are analyzed in present work. For the five chosen events the authors determined the characteristics of current sheets whose interaction with the bow shock front led to formation of an HFA, as well as the directions of external electric fields and the directions of motion of these HFAs over a shock front. The analysis of plasma convection in an HFA body is carried out; the average velocities of plasma motion in the HFA are determined in a coordinate system linked with the normal to a current layer and with the normal to the bow shock. According to the character of plasma convection in an HFA body, these five events may be divided into two types, which also differ in the direction of the motion over the front of the bow shock. In the first-type HFAs, the convection of plasma has a component directed from the intermediate region confirming its identification as a source of energy for the formation of an HFA. In the second-type HFAs, plasma motion from the intermediate region in leading and trailing parts is less expressed. This fact, as well as the great variation of peculiar velocities in the body of anomalies, allowed the assumption that second-type anomalies are nonstationary. Evidence is presented that the anomalies considered in the paper are bordered with shocks formed in solar wind passing a large-scale, decelerated body of heated plasma.

  18. Congenital posteromedial bowing of the tibia and fibula: treatment option by multilevel osteotomy.

    Science.gov (United States)

    Napiontek, Marek; Shadi, Milud

    2014-03-01

    Few papers have described patients treated surgically with single osteotomy for congenital posteromedial bowing of the tibia and fibula. Only one paper has described two-level osteotomy for deformity correction: the first for deformity correction and the second for bone lengthening. There are no publications describing the surgical correction of deformation only by the method of multilevel tibial and fibular osteotomy. Research material included four children aged between 3.1 and 5.1 years (average age: 3.7 years) who were operated upon for bowing of the tibia and fibula exceeding 35° in the coronal plane. In all cases, tibial osteotomy was carried out at three or two levels accompanied by fibular osteotomy, and with intramedullary stabilization using K-wires (three patients) or Rush pin (one patient). Follow-up ranged from 3 to 7.7 years. In all cases, axis correction and bone healing were achieved. In large congenital posteromedial bowing of the tibia and fibula, a multilevel tibial and fibular osteotomy may be a better solution than an orthosis or a long time waiting for a spontaneous correction of the deformation. Large circumferential periosteal release that accompanied the surgery influenced the stimulation of bone growth. It may induce the process of lower limbs' equalization not to require the application of intensive surgical procedures. PMID:24390537

  19. Energetic protons and magnetic field fluctuations upstream of the Earth's bow shock

    International Nuclear Information System (INIS)

    The variety of temporal profiles, energy spectra and anisotropy of ions (assuming all being protons) with energies above 10 keV as measured in the dusk-afternoon sector upstream of the Earth's bow shock infers the nature of the flux formation. Several typical events were discussed. The coupled behaviour of waves and particles mutually interacting is stressed and the rough estimation of energy density of the two constituents agrees with the scenario of formation of upstream proton fluxes due to these interactions. The long-duration events exhibit a prolonged inverse velocity dispersion, a sign of regular (or first-order Fermi) acceleration. The rate of energy increase in the course of such a process is satisfactorily explained by the nonstationary regular acceleration at the shock. In several short upstream events inverse velocity dispersion was not observed. The spatial dispersion due to solar wind convection of magnetic field lines controlling the proton motion in the upstream region may significantly distort the pitch angle and energy distribution created near the bow shock if measured at larger distances near the field line tangential to the bow shock surface. Strong anisotropic events not accompanied by wave activity occur in such situations in quasiperpendicular shock geometry. There is some evidence that particle leakage from the magnetosphere contributes substantially to the observed population in one particular case, on May 2, 1985. (author). 6 figs., 18 refs

  20. Reconstructing the Guitar: Blowing Bubbles with a Pulsar Bow Shock Backflow

    Science.gov (United States)

    van Kerkwijk, Marten H.; Ingle, Ashleigh

    2008-08-01

    The Guitar Nebula is an Hα nebula produced by the interaction of the relativistic wind of a very fast pulsar, PSR B2224+65, with the interstellar medium. It consists of a ram-pressure confined bow shock near its head and a series of semicircular bubbles further behind, the two largest of which form the body of the Guitar. We present a scenario in which this peculiar morphology is due to instabilities in the backflow from the pulsar bow shock. From simulations, these backflows appear similar to jets and their kinetic energy is a large fraction of the total energy in the pulsar's relativistic wind. We suggest that, like jets, these flows become unstable some distance downstream, leading to rapid dissipation of the kinetic energy into heat, and the formation of an expanding bubble. We show that in this scenario the sizes, velocities, and surface brightnesses of the bubbles depend mostly on observables, and that they match roughly what is seen for the Guitar. Similar instabilities may account for features seen in other bow shocks.

  1. Comparative Study of Electromagnetic Waves at the Bow Shocks of Venus and Earth

    Science.gov (United States)

    Wei, Hanying; Russell, Christopher T.; Strangeway, Robert J.; Schwartz, Steven J.; Zhang, Tielong

    2016-04-01

    Although the solar interactions with Venus and Earth are quite different in many ways, they both have bow shocks formed upstream of the planet where the solar wind decelerates from a super- to sub- magnetosonic flow. In the upstream foreshock region, there is abundant wave activity generated by the shock or by the back-streaming ions and electrons from the shock. In the downstream magnetosheath region, there is also abundant wave activity either locally generated by the heated electrons or ions from the shock or transported from the shock or foreshock regions by the solar wind. The magnetometers of Venus Express and Magnetospheric Multiscale missions both occasionally record 128 Hz data during their shock crossing, which allow us the search for and analyze waves at such high frequencies. We have found short-duration wave bursts around both Venus and Earth bow shocks, with certain similarities. These waves are mostly quasi-perpendicular propagating and have amplitude and occurrence rate decreasing with distance from the bow shock. In this paper we perform statistical and comparative studies on wave properties to understand their generation mechanisms and their effects to the shock or magnetosheath plasmas.

  2. The propagation and growth of whistler mode waves generated by electron beams in earth's bow shock

    Science.gov (United States)

    Tokar, R. L.; Gurnett, D. A.

    1985-01-01

    In this study, the propagation and growth of whistler mode waves generated by electron beams within earth's bow shock is investigated using a planar model for the bow shock and a model electron distribution function. Within the shock, the model electron distribution function possesses a field-aligned T greater than T beam that is directed toward the magnetosheath. Waves with frequencies between about 1 and 100 Hz with a wide range of wave normal angles are generated by the beam via Landau and anomalous cyclotron resonances. However, because the growth rate is small and because the wave packets traverse the shock quickly, these waves do not attain large amplitudes. Waves with frequencies between about 30 and 150 Hz with a wide range of wave normal angles are generated by the beam via the normal cyclotron resonance. The ray paths for most of these waves are directed toward the solar wind although some wave packets, due to plasma convection travel transverse to the shock normal. These wave packets grow to large amplitudes because they spend a long time in the growth region. The results suggest that whistler mode noise within the shock should increase in amplitude with increasing upstream theta sub Bn. The study provides an explanation for the origin of much of the whistler mode turbulence observed at the bow shock.

  3. Origins of bandgap bowing in compound-semiconductor common-cation ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tit, Nacir; Obaidat, Ihab M [Department of Physics, UAE University, PO Box 17551, Al-Ain (United Arab Emirates); Alawadhi, Hussain [Department of Applied Physics, University of Sharjah, PO Box 27272, Sharjah (United Arab Emirates)], E-mail: ntit@uaeu.ac.ae

    2009-02-18

    We present an investigation into the existence and origins of bandgap bowing in compound-semiconductor common-cation ternary alloys. As examples, we consider CdSe{sub x}Te{sub 1-x} and ZnSe{sub 1-x}Te{sub x} alloys. A calculation, based on the sp{sup 3}s* tight-binding method including spin-orbit coupling within the framework of the virtual crystal approximation, is employed to determine the bandgap energy, local density of states and atomic charge states versus composition and valence-band offset. The results show that (i) in the valence band, the top states are mainly contributed by Te atoms. The degree of ionicity of all atoms is found to vary linearly with mole fraction x. (ii) There is a strong competition between the anions (Se and Te) in trapping/losing charges and this competition is the main reason for the bandgap bowing character. (iii) There is a reasonable agreement between the calculated results and the available photoluminescence data. (iv) The bowing parameter is found to increase with increasing valence-band offset and increasing lattice mismatch.

  4. In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe

    Science.gov (United States)

    Polzin, Kurt; Korman, Valentin

    2009-01-01

    One potential life-limiting mechanism in a Hall thruster is the erosion of the ceramic material comprising the discharge channel. This is especially true for missions that require long thrusting periods and can be problematic for lifetime qualification, especially when attempting to qualify a thruster by analysis rather than a test lasting the full duration of the mission. In addition to lifetime, several analytical and numerical models include electrode erosion as a mechanism contributing to enhanced transport properties. However, there is still a great deal of dispute over the importance of erosion to transport in Hall thrusters. The capability to perform an in-situ measurement of discharge channel erosion is useful in addressing both the lifetime and transport concerns. An in-situ measurement would allow for real-time data regarding the erosion rates at different operating points, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over a thruster s operating envelope would also be useful in the modeling of the detailed physics inside the discharge chamber. There are many different sensors and techniques that have been employed to quantify discharge channel erosion in Hall thrusters. Snapshots of the wear pattern can be obtained at regular shutdown intervals using laser profilometry. Many non-intrusive techniques of varying complexity and sensitivity have been employed to detect the time-varying presence of erosion products in the thruster plume. These include the use quartz crystal microbalances, emission spectroscopy, laser induced flourescence, and cavity ring-down spectroscopy. While these techniques can provide a very accurate picture of the level of eroded material in the thruster plume, it is more difficult to use them to determine the location from which the material was eroded. Furthermore, none of the methods cited provide a true in-situ measure of erosion at the channel surface while

  5. Measurement of bow tie profiles in CT scanners using a real-time dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Bruce R., E-mail: whitingbrucer@gmail.com [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States); Evans, Joshua D.; Williamson, Jeffrey F. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Dohatcu, Andreea C. [University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213 (United States); Politte, David G. [Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110 (United States)

    2014-10-15

    Purpose: Several areas of computed tomography (CT) research require knowledge about the intensity profile of the x-ray fan beam that is introduced by a bow tie filter. This information is considered proprietary by CT manufacturers, so noninvasive measurement methods are required. One method using real-time dosimeters has been proposed in the literature. A commercially available dosimeter was used to apply that method, and analysis techniques were developed to extract fan beam profiles from measurements. Methods: A real-time ion chamber was placed near the periphery of an empty CT gantry and the dose rate versus time waveform was recorded as the x-ray source rotated about the isocenter. In contrast to previously proposed analysis methods that assumed a pointlike detector, the finite-size ion chamber received varying amounts of coverage by the collimated x-ray beam during rotation, precluding a simple relationship between the source intensity as a function of fan beam angle and measured intensity. A two-parameter model for measurement intensity was developed that included both effective collimation width and source-to-detector distance, which then was iteratively solved to minimize the error between duplicate measurements at corresponding fan beam angles, allowing determination of the fan beam profile from measured dose-rate waveforms. Measurements were performed on five different scanner systems while varying parameters such as collimation, kVp, and bow tie filters. On one system, direct measurements of the bow tie profile were collected for comparison with the real-time dosimeter technique. Results: The data analysis method for a finite-size detector was found to produce a fan beam profile estimate with a relative error between duplicate measurement intensities of <5%. It was robust over a wide range of collimation widths (e.g., 1–40 mm), producing fan beam profiles that agreed with a relative error of 1%–5%. Comparison with a direct measurement technique on

  6. Effect of an isotropic outflow from the Galactic Centre on the bow-shock evolution along the orbit

    Science.gov (United States)

    Zajaček, M.; Eckart, A.; Karas, V.; Kunneriath, D.; Shahzamanian, B.; Sabha, N.; Mužić, K.; Valencia-S., M.

    2016-01-01

    Motivated by the observations of several infrared-excess bow-shock sources and proplyd-like objects near the Galactic Centre, we analyse the effect of a potential outflow from the centre on bow-shock properties. We show that due to the non-negligible isotropic central outflow the bow-shock evolution along the orbit becomes asymmetric between the pre-peribothron and post-peribothron phases. This is demonstrated by the calculation of the bow-shock size evolution, the velocity along the shocked layer, the surface density of the bow shock, and by emission-measure maps close to the peribothron passage. Within the ambient velocity range of ≲2000 km s-1 the asymmetry is profound and the changes are considerable for different outflow velocities. As a case study we perform model calculations for the Dusty S-cluster Object (DSO/G2) as a potential young stellar object that is currently being monitored and has passed the pericentre at ˜2000 Schwarzschild radii from the supermassive black hole (Sgr A*) in 2014. We show that the velocity field of the shocked layer can contribute to the observed increasing line width of the DSO source up to the peribothron. Subsequently, supposing that the line emission originates in the bow shock, a decrease of the line width is expected. Furthermore, the decline of the bow-shock emission measure in the post-peribothron phase could help to reveal the emission of the putative star. The dominant contribution of circumstellar matter (either inflow or outflow) is consistent with the observed stable luminosity and compactness of the DSO/G2 source during its pericentre passage.

  7. Effect of bow-type initial imperfection on the buckling load and mass of graphite-epoxy blade-stiffened panels

    Science.gov (United States)

    Stroud, W. J.; Anderson, M. S.; Hennessy, K. W.

    1977-01-01

    A structural synthesis computer code which accounts for first order effects of an initial bow and which can be used for sizing stiffened composite panels having an arbitrary cross section is used to study graphite blade-stiffened panels. The effect of a small initial bow on both the load carrying ability of panels and on the mass of panels designed to carry a specified load is examined. Large reductions in the buckling load caused by a small initial bow emphasize the need for considering a bow when a panel is designed.

  8. Performance of a Cylindrical Hall-Effect Thruster Using Permanent Magnets

    Science.gov (United States)

    Polzin, Kurt A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    While annular Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope from 1 kW down to 100 W while maintaining an efficiency of 45-55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. In addition, the central magnetic pole piece defining the interior wall of the annular channel can experience excessive heat loads in a miniaturized Hall thruster, with the temperature eventually exceeding the Curie temperature of the material and in extreme circumstances leading to accelerated erosion of the channel wall. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from 50 W up to 1 kW. These thrusters exhibit performance characteristics that are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHTs insulator surface area to discharge chamber volume ratio is lower. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion, making the CHT geometry promising for low-power applications. This potential for high performance in the low-power regime has served as the impetus for research and development efforts aimed at understanding and improving CHT performance. Recently, a 2.6 cm channel diameter permanent magnet CHT (shown in Fig. 1) was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed

  9. Performance Test Results of the NASA-457M v2 Hall Thruster

    Science.gov (United States)

    Soulas, George C.; Haag, Thomas W.; Herman, Daniel A.; Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63.

  10. Measurements of neutral and ion velocity distribution functions in a Hall thruster

    Science.gov (United States)

    Svarnas, Panagiotis; Romadanov, Iavn; Diallo, Ahmed; Raitses, Yevgeny

    2015-11-01

    Hall thruster is a plasma device for space propulsion. It utilizes a cross-field discharge to generate a partially ionized weakly collisional plasma with magnetized electrons and non-magnetized ions. The ions are accelerated by the electric field to produce the thrust. There is a relatively large number of studies devoted to characterization of accelerated ions, including measurements of ion velocity distribution function using laser-induced fluorescence diagnostic. Interactions of these accelerated ions with neutral atoms in the thruster and the thruster plume is a subject of on-going studies, which require combined monitoring of ion and neutral velocity distributions. Herein, laser-induced fluorescence technique has been employed to study neutral and single-charged ion velocity distribution functions in a 200 W cylindrical Hall thruster operating with xenon propellant. An optical system is installed in the vacuum chamber enabling spatially resolved axial velocity measurements. The fluorescence signals are well separated from the plasma background emission by modulating the laser beam and using lock-in detectors. Measured velocity distribution functions of neutral atoms and ions at different operating parameters of the thruster are reported and analyzed. This work was supported by DOE contract DE-AC02-09CH11466.

  11. Non-Contact Thermal Characterization of NASA's HERMeS Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Meyers, James L.; Yim, John T.; Neff, Gregory

    2015-01-01

    The Thermal Characterization Test of NASAs 12.5-kW Hall thruster is being completed. This thruster is being developed to support of a number of potential Solar Electric Propulsion Technology Demonstration Mission concepts, including the Asteroid Redirect Robotic Mission concept. As a part of this test, an infrared-based, non-contact thermal imaging system was developed to measure Hall thruster surfaces that are exposed to high voltage or harsh environment. To increase the accuracy of the measurement, a calibration array was implemented, and a pilot test was performed to determine key design parameters for the calibration array. The raw data is analyzed in conjunction with a simplified thermal model of the channel to account for reflection. The reduced data will be used to refine the thruster thermal model, which is critical to the verification of the thruster thermal specifications. The present paper will give an overview of the decision process that led to identification of the need for a non-contact temperature diagnostic, the development of said diagnostic, the measurement results, and the simplified thermal model of the channel.

  12. Spatiotemporal study of gas heating mechanisms in a radio-frequency electrothermal plasma micro-thruster

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-10-01

    Full Text Available A spatiotemporal study of neutral gas temperature during the first 100 s of operation for a radio-frequency electrothermal plasma micro-thruster operating on nitrogen at 60 W and 1.5 Torr is performed to identify the heating mechanisms involved. Neutral gas temperature is estimated from rovibrational band fitting of the nitrogen second positive system. A set of baffles are used to restrict the optical image and separate the heating mechanisms occurring in the central bulk discharge region and near the thruster walls.For each spatial region there are three distinct gas heating mechanisms being fast heating from ion-neutral collisions with timescales of tens of milliseconds, intermediate heating with timescales of 10 s from ion bombardment on the inner thruster tube surface creating wall heating, and slow heating with timescales of 100 s from gradual warming of the entire thruster housing. The results are discussed in relation to optimising the thermal properties of future thruster designs.

  13. Development of a Micro-Thruster Test Facility which fulfils the LISA requirements

    Science.gov (United States)

    Hey, Franz Georg; Keller, A.; Johann, U.; Braxmaier, C.; Tajmar, M.; Fitzsimons, E.; Weise, D.

    2015-05-01

    In the context of investigations for a sufficient attitude control thruster for LISA, we have developed a thruster test facility which consists of a highly precise thrust balance coupled with plasma diagnostics. In parallel to the test facility development, investigations to downscale a High Efficiency Multistage Plasma Thruster (HEMP-T) are also being carried out. The thruster has been used to demonstrate the measurement capabilities of the facility. The setup allows a parallel operation of all instruments and can also be used for other types of μN propulsion systems including cold gas thrusters. The thrust balance consists of two pendulums. As read out a heterodyne laser interferometer is used. Differential wave front sensing (DWS) enables the measurement of the pendulum tilt which, via suitable calibration using an electrostatic comb, can be converted to a thrust. The whole setup is a symmetric configuration enabling a common-mode rejection of the dominant noise sources (e.g. seismic noise etc.). The thrust balance has a demonstrated precision of 0.1 μN. Based on our unique design, this precision can be attained down to 10-3 Hz. Thus, the measurement setup is especially suitable for characterising the thrust noise of potential eLISA propulsion candidates. We give an overview of the design, the present performance and the future plans.

  14. Ion velocities in a micro-cathode arc thruster

    International Nuclear Information System (INIS)

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2×104 m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5×104 m/s were detected for the magnetic field of about 300 mT at distance of about 100–200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  15. Compatibility experiments of facilities, materials, and propellants for electrothermal thrusters

    Science.gov (United States)

    Whalen, M. V.; Grisnik, S. P.; Sovey, J. S.

    1985-01-01

    Experiments were performed to determine the compatibility of materials and propellants for electro-thermal thrusters. Candidate propellants for resistojet propulsion include carbon dioxide, methane, hydrogen, ammonia, and hydrazine. The materials being examined are grain stabilized platinum for resistojets for space station and rhenium for high performance resistojets for satellites. Heater mass loss and deterioration of materials were evaluated. A coiled tube of platinum, with yttria dispersed throughout the base material to inhibit grain growth, was tested in carbon dioxide at 1300 C for 2000 hr. Post-test examination indicated the platinum-yttria heater would last over 100,000 hr with less than 10 percent mass loss. Short-term compatibility tests were conducted to test the integrity of the platinum-yttria in hydrogen, methane, carbon dioxide/methane mixtures and ammonia environments. In each of these 100 hr tests, the platinum-yttria mass change indicated a minimum coil life of 100,000 hr. Facility related effects were investigated in materials tests using rhenium heated to high temperatures. Vacuum facility water reduction was monitored using a mass spectrometer. In vacuum environments obtained using only diffusion pumping and those obtained with the assistance of cryogenic equipment there were mass gains in the rhenium heaters. These mass gains were the result of the high amount of oxygen and water contained in the gas. Propellant purity and preferred test facility environments are discussed.

  16. Effect of an isotropic outflow from the Galactic centre on the bow-shock evolution along the orbit

    CERN Document Server

    Zajacek, Michal; Karas, Vladimir; Kunneriath, Devaky; Shahzamanian, Banafsheh; Sabha, Nadeen; Muzic, Koraljka; Valencia-Schneider, Monica

    2015-01-01

    Motivated by the observations of several infrared-excess bow-shock sources and proplyd-like objects near the Galactic centre, we analyse the effect of a potential outflow from the centre on bow shock properties. We show that due to the non-negligible isotropic central outflow the bow-shock evolution along the orbit becomes asymmetric between the pre-peribothron and post-peribothron phases. This is demonstrated by the calculation of the bow-shock size evolution, the velocity along the shocked layer, the surface density of the bow-shock, and by emission-measure maps close to the peribothron passage. Within the ambient velocity range of $\\lesssim 2000\\,{\\rm km\\, s^{-1}}$ the asymmetry is profound and the changes are considerable for different outflow velocities. As a case study we perform model calculations for the Dusty S-cluster Object (DSO/G2) as a potential young stellar object that is currently being monitored and has passed the pericentre at $\\sim 2000$ Schwarzschild radii from the supermassive black hole ...

  17. Effect of the variable cross-section channel on performance of a cusped field thruster at low power

    International Nuclear Information System (INIS)

    The cusped field thruster has drawn much attention from many institutions due to its wide thrust range, high impulse, and long lifetime. However, lots of experimental results reveal that the cusped field thruster at low power has a poor performance. A cusped field thruster with a variable cross-section channel by putting a ceramic spacer in the channel is introduced in this paper, aimed at improving the thruster performance at low power. The DSMC results validate that the upstream atom density can be increased by a spacer, especially near the wall. Based on simulated results, spacers are put into different positions of the channel. The experimental results show that a suitable spacer can enhance thruster performance at low power, which can be confirmed by the results that the anode efficiency can achieve 40% at 400 V anode voltage and 20 sccm gas flow rate by contrast to 35% without a spacer under the same condition. (paper)

  18. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor [Research Centre for Astronomy and Earth Sciences, Geodetic and Geophysical Institute, Sopron (Hungary); Agapitov, Oleksiy; Krasnoselskikh, Vladimir [LPC2E/CNRS, F-45071 Orleans (France); Khotyaintsev, Yuri V. [Swedish Institute of Space Physics, SE- 751 21 Uppsala (Sweden); Dandouras, Iannis, E-mail: akis@ggki.hu, E-mail: Kis.Arpad@csfk.mta.hu [CESR, F-31028 Toulouse (France)

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  19. Statistical analysis of diffuse ion events upstream of the Earth's bow shock

    Science.gov (United States)

    Trattner, K. J.; Mobius, E.; Scholer, M.; Klecker, B.; Hilchenbach, M.; Luehr, H.

    1994-01-01

    A statistical study of diffuse energetic ion events and their related waves upstream of the Earth's bow shock was performed using data from the Active Magnetospheric Particle Tracer Explorers/Ion Release Module (AMPTE/IRM) satellite over two 5-month periods in 1984 and 1985. The data set was used to test the assumption in the self-consistent model of the upstream wave and particle populations by Lee (1982) that the particle acceleration through hydromagnetic waves and the wave generation are directly coupled. The comparison between the observed wave power and the wave power predicted on the observed energetic particle energy density and solar wind parameters results in a high correlation coefficient of about 0.89. The intensity of diffuse ions falls off approximately exponentially with the distance upstream from the bow shock parallel to the magnetic field with e-folding distances which vary from approximately 3.3 R(sub E) to approximately 11.7 R(sub E) over the energy range from 10 keV/e to 67.3 keV/e for both protons and alpha particles. After normalizing the upstream particle densities to zero bow shock distance by using these exponential variations, a good correlation (0.7) of the density of the diffuse ions with the solar wind density was found. This supports the suggestion that the solar wind is the source of the diffuse ions. Furthermore, the spectral slope of the diffuse ions correlates well with the solar wind velocity component in the direction of the interplanetary magnetic field (0.68 and 0.66 for protons and alpha particles) which concurs with the notion that the solar wind plays an important role in the acceleration of the upstream particles.

  20. Study of the Combination of FTA, ETA and Bow-tie Evaluation Methods and Its Application%基于FTA、ETA、Bow-tie三种评价方法的结合及其应用研究

    Institute of Scientific and Technical Information of China (English)

    李婷婷; 赵姚峰

    2013-01-01

    在FTA与ETA分析方法结合的基础上引入蝴蝶结分析法(Bow-tie法)能很好的克服FTA和ETA的局限性。本文将ETA、FTA及Bow-tie法进行结合并将其应用到燃气管道泄漏的安全评价及分析中。%Introducing Bow-tie analytical method into the combination of FTA and ETA can well overcome the limitation of FTA and ETA. This article combines ETA, FTA and Bon-tie method and apply it into the safety evaluation and analysis of gas pipeline leakage.

  1. Helicon thruster plasma modeling: Two-dimensional fluid-dynamics and propulsive performances

    International Nuclear Information System (INIS)

    An axisymmetric macroscopic model of the magnetized plasma flow inside the helicon thruster chamber is derived, assuming that the power absorbed from the helicon antenna emission is known. Ionization, confinement, subsonic flows, and production efficiency are discussed in terms of design and operation parameters. Analytical solutions and simple scaling laws for ideal plasma conditions are obtained. The chamber model is then matched with a model of the external magnetic nozzle in order to characterize the whole plasma flow and assess thruster performances. Thermal, electric, and magnetic contributions to thrust are evaluated. The energy balance provides the power conversion between ions and electrons in chamber and nozzle, and the power distribution among beam power, ionization losses, and wall losses. Thruster efficiency is assessed, and the main causes of inefficiency are identified. The thermodynamic behavior of the collisionless electron population in the nozzle is acknowledged to be poorly known and crucial for a complete plasma expansion and good thrust efficiency.

  2. Prediction and experimental measurement of the electromagnetic thrust generated by a microwave thruster system

    International Nuclear Information System (INIS)

    A microwave thruster system that can convert microwave power directly to thrust without a gas propellant is developed. In the system, a cylindrical tapered resonance cavity and a magnetron microwave source are used respectively as the thruster cavity and the energy source to generate the electromagnetic wave. The wave is radiated into and then reflected from the cavity to form a pure standing wave with non-uniform electromagnetic pressure distribution. Consequently, a net electromagnetic thrust exerted on the axis of the thruster cavity appears, which is demonstrated through theoretical calculation based on the electromagnetic theory. The net electromagnetic thrust is also experimentally measured in the range from 70 mN to 720 mN when the microwave output power is from 80 W to 2500 W. (general)

  3. Measurements of Secondary Electron Emission Effects in the Hall Thruster Discharge

    Energy Technology Data Exchange (ETDEWEB)

    Raitses, Y.; Smirnov, A.; Staack, D.; Fisch, N.J.

    2005-12-01

    The dependence of the maximum electron temperature on the discharge voltage is studied for two Hall thruster configurations, in which a collisionless plasma is bounded by channel walls made of materials with different secondary electron emission (SEE) properties. The linear growth of the temperature with the discharge voltage, observed in the channel with a low SEE yield, suggests that SEE is responsible for the electron temperature saturation in the thruster configuration with the channel walls having a higher SEE yield. The fact that the values of the electron temperature at saturation are rather high may indirectly support the recently predicted kinetic regime of the space charge saturation of the near-wall sheath in the thruster discharge. A correlation between the effects of the channel wall material on the electron temperature and the electron cross-field current was also observed.

  4. Helicon thruster plasma modeling: Two-dimensional fluid-dynamics and propulsive performances

    Energy Technology Data Exchange (ETDEWEB)

    Ahedo, Eduardo; Navarro-Cavalle, Jaume [ETS Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2013-04-15

    An axisymmetric macroscopic model of the magnetized plasma flow inside the helicon thruster chamber is derived, assuming that the power absorbed from the helicon antenna emission is known. Ionization, confinement, subsonic flows, and production efficiency are discussed in terms of design and operation parameters. Analytical solutions and simple scaling laws for ideal plasma conditions are obtained. The chamber model is then matched with a model of the external magnetic nozzle in order to characterize the whole plasma flow and assess thruster performances. Thermal, electric, and magnetic contributions to thrust are evaluated. The energy balance provides the power conversion between ions and electrons in chamber and nozzle, and the power distribution among beam power, ionization losses, and wall losses. Thruster efficiency is assessed, and the main causes of inefficiency are identified. The thermodynamic behavior of the collisionless electron population in the nozzle is acknowledged to be poorly known and crucial for a complete plasma expansion and good thrust efficiency.

  5. Development Efforts Expanded in Ion Propulsion: Ion Thrusters Developed With Higher Power Levels

    Science.gov (United States)

    Patterson, Michael J.; Rawlin, Vincent K.; Sovey, James S.

    2003-01-01

    The NASA Glenn Research Center was the major contributor of 2-kW-class ion thruster technology to the Deep Space 1 mission, which was successfully completed in early 2002. Recently, NASA s Office of Space Science awarded approximately $21 million to Glenn to develop higher power xenon ion propulsion systems for large flagship missions such as outer planet explorers and sample return missions. The project, referred to as NASA's Evolutionary Xenon Thruster (NEXT), is a logical follow-on to the ion propulsion system demonstrated on Deep Space 1. The propulsion system power level for NEXT is expected to be as high as 25 kW, incorporating multiple ion thrusters, each capable of being throttled over a 1- to 6-kW power range. To date, engineering model thrusters have been developed, and performance and plume diagnostics are now being documented. The project team-Glenn, the Jet Propulsion Laboratory, General Dynamics, Boeing Electron Dynamic Devices, the Applied Physics Laboratory, the University of Michigan, and Colorado State University-is in the process of developing hardware for a ground demonstration of the NEXT propulsion system, which comprises a xenon feed system, controllers, multiple thrusters, and power processors. The development program also will include life assessments by tests and analyses, single-string tests of ion thrusters and power systems, and finally, multistring thruster system tests in calendar year 2005. In addition, NASA's Office of Space Science selected Glenn to lead the development of a 25-kW xenon thruster to enable NASA to conduct future missions to the outer planets of Jupiter and beyond, under the High Power Electric Propulsion (HiPEP) program. The development of a 100-kW-class ion propulsion system and power conversion systems are critical components to enable future nuclear-electric propulsion systems. In fiscal year 2003, a team composed of Glenn, the Boeing Company, General Dynamics, the Applied Physics Laboratory, the Naval Research

  6. Wheel Attitude Cancellation Thruster Torque of LEO Microsatellite during Orbital Maintenance

    Directory of Open Access Journals (Sweden)

    A.M. Si Mohammed

    2006-01-01

    Full Text Available A cold gas propulsion system is used for orbital maintenance on board microsatellite. Cold gas thrusters are the simplest way of achieving thrust. A microsatellite could be a part of the constellation and to maintain a daily coverage, it will be equipped with a propulsion system for an orbit control. A constellation of several microsatellites could be launched and put at the allocate position in the orbit. To do this, the satellites need few months to be in their final position. A propulsion system is used, among other things, to maintain the satellite at its nominal position. The wheels (reaction/momentum will be used to dump the thruster disturbances caused by misalignment. This paper describes the wheel attitude damping thruster disturbances of Low Earth Orbit (LEO microsatellite for orbit maintenance with the following points: 1 Attitude dynamics, 2 External disturbances, 3 Magnetic wheel control, 4 Simulation results will be presented to evaluate the performance and design objectives.

  7. Measurements of Secondary Electron Emission Effects in the Hall Thruster Discharge

    International Nuclear Information System (INIS)

    The dependence of the maximum electron temperature on the discharge voltage is studied for two Hall thruster configurations, in which a collisionless plasma is bounded by channel walls made of materials with different secondary electron emission (SEE) properties. The linear growth of the temperature with the discharge voltage, observed in the channel with a low SEE yield, suggests that SEE is responsible for the electron temperature saturation in the thruster configuration with the channel walls having a higher SEE yield. The fact that the values of the electron temperature at saturation are rather high may indirectly support the recently predicted kinetic regime of the space charge saturation of the near-wall sheath in the thruster discharge. A correlation between the effects of the channel wall material on the electron temperature and the electron cross-field current was also observed

  8. Plasma-wall interaction in Hall thrusters with magnetic lens configuration

    International Nuclear Information System (INIS)

    Some recently developed Hall thrusters utilize a magnetic field configuration in which the field lines penetrate the thruster walls at a high incidence angle. This so-called magnetic lens leads to an electric field pointing away from the walls, which is expected to reduce ion losses and improve thruster efficiency. This configuration also introduces an interesting behavior in the sheath formation. At sufficiently large angles, ions are repelled from the wall, and sheath collapse is expected. We use a plasma simulation code to investigate this phenomenon in detail. We consider the role of the magnetic field incidence angle, secondary electron emission, and a magnetic mirror. Numerical study confirms the theoretical predictions, and at large angles, ions are seen to turn away from the wall. We also consider the role of the magnetic field geometry on ion wall flux and channel erosion, and observe reduction in both quantities as the magnetic field incidence angle is increased.

  9. Magnetically-conformed, Variable Area Discharge Chamber for Hall Thruster, and Method

    Science.gov (United States)

    Hofer, Richard R. (Inventor)

    2013-01-01

    The invention is a Hall thruster that incorporates a discharge chamber having a variable area channel including an ionization zone, a transition region, and an acceleration zone. The variable area channel is wider through the acceleration zone than through the ionization zone. An anode is located in a vicinity of the ionization zone and a cathode is located in a vicinity of the acceleration zone. The Hall thruster includes a magnetic circuit which is capable of forming a local magnetic field having a curvature within the transition region of the variable area channel whereby the transition region conforms to the curvature of the local magnetic field. The Hall thruster optimizes the ionization and acceleration efficiencies by the combined effects of the variable area channel and magnetic conformity.

  10. Effect of Background Pressure on the Performance and Plume of the HiVHAc Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas

    2013-01-01

    During the Single String Integration Test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics include thrust stand, Faraday probe, ExB probe, and retarding potential analyzer. The test results indicated a rise in thrust and discharge current with background pressure. There was also a decrease in ion energy per charge, an increase in multiply-charged species production, a decrease in plume divergence, and a decrease in ion beam current with increasing background pressure. A simplified ingestion model was applied to determine the maximum acceptable background pressure for thrust measurement. The maximum acceptable ingestion percentage was found to be around 1%. Examination of the diagnostics results suggest the ionization and acceleration zones of the thruster were shifting upstream with increasing background pressure.

  11. Free-hanging bow measurements of LWBR fuel rods (LWBR Development Program)

    International Nuclear Information System (INIS)

    Special inspection equipment was developed to ensure that the fuel rods for the Light Water Breeder Reactor met the required straightness criteria. The fuel rods were hung in a vertical position and the free-hanging shape was measured. These data were then used analytically to predict both the forces required to constrain the rods in a grid array and the resultant restrained shape. The development of a computerized system which was used for measuring the free-hanging bow of fuel rods used in the LWBR core is described in this paper

  12. Determination of main rational biomechanical characteristics in shooting from a bow

    OpenAIRE

    Adashevskiy V.M.; Iermakov S.S.; Shabashov V.A.

    2012-01-01

    The aim is to build rational parameters of technical actions of sportsman in shooting from a bow. It is worked out and decided mathematical model and the task of dynamics. Influence on having a special purpose exactness of corners of flight of arrow with an account and without the account of force of resistance of air environment is certain. It is distinguished the basic technical run-time errors of sportsman exercises. It is set that for successful realization of descriptions of target exact...

  13. Planetary Evaporation and the Dynamics of Planet Wind/Stellar Wind Bow Shocks

    CERN Document Server

    Frank, A; Carroll-Nellenback, J; Quillen, A C; Kasting, J F; Dobbs-Dixon, I; Blackman, E G

    2015-01-01

    We present initial results of a new campaign of simulations focusing on the interaction of planetary winds with stellar environments using Adaptive Mesh Refinement methods. We have confirmed the results of Stone & Proga 2009 that an azimuthal flow structure is created in the planetary wind due to day/night temperatures differences. We show that a backflow towards the planet will occur with a strength that depends on the escape parameter. When a stellar outflow is included, we see unstable bow waves forming through the outflow's interaction with the planetary wind.

  14. Numerical Study on the Effect of Buffer Bow Structure in Ship-to-ship Collisions

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Endo, Hisayoshi; Pedersen, Preben Terndrup

    structure in ship-ship collisions as compared with that of standard bulbous bows. This is demonstrated by conducting a series of large-scale finite element analyses. The finite element analyses are conducted with the general-purpose nonlinear structural code “LS-DYNA”. The applied scenario is one where a...... very large crude oil carrier (VLCC) in ballast condition collides with the midship region of a D/H VLCC in a laden condition. Fracture of fillet welds, elastic-plastic material properties and strain rate effects, are taken into account in the simulations. The effect of the equivalent failure strain (FS...

  15. A benchmark study of procedures for analysis of axial crushing of bulbous bows

    OpenAIRE

    Yamada, Yasuhira; Pedersen, Preben Terndrup

    2008-01-01

    Simplified methods to estimate mean axial crushing forces of plated structures are reviewed and applied to a series of experimental results for axial crushing of large-scale bulbous bow models. Methods based on intersection unit elements such as L-, T- and X-type elements as well as methods based on plate unit elements are employed in the analyses. The crushing forces and the total absorbed energy obtained by the simplified analyses are compared with those obtained from large-scale bulbous bo...

  16. Asymptotic Steady State Solution to a Bow Shock with an Infinite Mach Number

    CERN Document Server

    Yalinewich, Almog

    2015-01-01

    The problem of a cold gas flowing past a stationary object is considered. It is shown that at large distances from the obstacle the shock front forms a parabolic solid of revolution. The interior of the shock front is obtained by solution of the hydrodynamic equations in parabolic coordinates. The results are verified with a hydrodynamic simulation. The drag force and expected spectra are calculated for such shock, both in case of an optically thin and thick media. Finally, relations to astrophysical bow shocks and other analytic works on oblique shocks are discussed.

  17. Mapping the Structure of Directed Networks: Beyond the "Bow-tie" Diagram

    CERN Document Server

    Timár, G; Dorogovtsev, S N; Mendes, J F F

    2016-01-01

    We reveal a hierarchical organization of finite directed components---tendrils---around the giant components represented by the celebrated "bow-tie" diagram for directed networks. We develop an efficient algorithm to find tendril layers. It is used together with the message passing technique, generalized to directed graphs, to find the structure and attack tolerance of complex networks, such as the World Wide Web, the neural network of Caenorhabditis elegans, and others. We introduce a generalized susceptibility characterizing the response of directed networks to damage.

  18. Analytic MHD Theory for Earth's Bow Shock at Low Mach Numbers

    Science.gov (United States)

    Grabbe, Crockett L.; Cairns, Iver H.

    1995-01-01

    A previous MHD theory for the density jump at the Earth's bow shock, which assumed the Alfven M(A) and sonic M(s) Mach numbers are both much greater than 1, is reanalyzed and generalized. It is shown that the MHD jump equation can be analytically solved much more directly using perturbation theory, with the ordering determined by M(A) and M(s), and that the first-order perturbation solution is identical to the solution found in the earlier theory. The second-order perturbation solution is calculated, whereas the earlier approach cannot be used to obtain it. The second-order terms generally are important over most of the range of M(A) and M(s) in the solar wind when the angle theta between the normal to the bow shock and magnetic field is not close to 0 deg or 180 deg (the solutions are symmetric about 90 deg). This new perturbation solution is generally accurate under most solar wind conditions at 1 AU, with the exception of low Mach numbers when theta is close to 90 deg. In this exceptional case the new solution does not improve on the first-order solutions obtained earlier, and the predicted density ratio can vary by 10-20% from the exact numerical MHD solutions. For theta approx. = 90 deg another perturbation solution is derived that predicts the density ratio much more accurately. This second solution is typically accurate for quasi-perpendicular conditions. Taken together, these two analytical solutions are generally accurate for the Earth's bow shock, except in the rare circumstance that M(A) is less than or = 2. MHD and gasdynamic simulations have produced empirical models in which the shock's standoff distance a(s) is linearly related to the density jump ratio X at the subsolar point. Using an empirical relationship between a(s) and X obtained from MHD simulations, a(s) values predicted using the MHD solutions for X are compared with the predictions of phenomenological models commonly used for modeling observational data, and with the predictions of a

  19. Bowing effect in elastic constants of dilute Ga(As,N) alloys

    Science.gov (United States)

    Berggren, Jonas; Hanke, Michael; Trampert, Achim

    2016-05-01

    We study the elastic properties of dilute Ga(As,N) thin films grown on GaAs(001) by means of nano-indentation and complementary dynamic finite element calculations. The experimental results of indentation modulus are compared with simulations in order to extract the cubic elastic constants cij as a function of nitrogen content of the Ga(As,N) alloys. Both, indentation modulus and elastic constants decrease with increasing nitrogen content, which proves a strong negative bowing effect in this system in contrast to Vegard's law.

  20. Numerical Study on the Effect of Buffer Bow Structure in Ship-to-ship Collisions

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Endo, Hisayoshi; Pedersen, Preben Terndrup

    2005-01-01

    structure in ship-ship collisions as compared with that of standard bulbous bows. This is demonstrated by conducting a series of large-scale finite element analyses. The finite element analyses are conducted with the general-purpose nonlinear structural code “LS-DYNA”. The applied scenario is one where...... a very large crude oil carrier (VLCC) in ballast condition collides with the midship region of a D/H VLCC in a laden condition. Fracture of fillet welds, elastic-plastic material properties and strain rate effects, are taken into account in the simulations. The effect of the equivalent failure strain (FS...

  1. Broadband millimeter-wave GaAs transmitters and receivers using planar bow-tie antennas

    Science.gov (United States)

    Konishi, Y.; Kamegawa, M.; Case, M.; Yu, R.; Rodwell, M. J. W.; York, R. A.; Rutledge, D. B.

    1992-01-01

    We report broadband monolithic transmitters and receivers IC's for mm-wave electromagnetic measurements. The IC's use nonlinear transmission lines (NLTL) and sampling circuits as picosecond pulse generators and detectors. The pulses are radiated and received by planar monolithic bow-tie antennas, collimated with silicon substrate lenses and off-axis parabolic reflectors. Through Fourier transformation of the received pulse, 30-250 GHz free space gain-frequency measurements are demonstrated with an accuracy approximately = 0.17 dB, RMS.

  2. Bi-Band Bow-Tie Antennas Array Design Using a Simple Equivalent Transmission Line Model

    Directory of Open Access Journals (Sweden)

    M. Abri

    2012-08-01

    Full Text Available In this paper we propose a simple equivalent and accurate transmission line model for bi-band bow-tie antennas array design over a band of frequencies for satellite communications. This model uses the resistance of a square element that appears at the edges of the antenna (radiating slots. To test this model, two antennas array were simulated and results were compared with those obtained by a rigorous method (moment’s method of the simulator ADS/Momentum. Using this transmission line approach the resonant frequency, return loss, VSWR, reflected phase, input impedance can be determined simultaneously. The results confirm the validity of the proposed model.

  3. Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna.

    Science.gov (United States)

    Li, Ling; Fang Lim, Shuang; Puretzky, Alexander A; Riehn, Robert; Hallen, H D

    2012-09-10

    An aluminum bow-tie nano-antenna is combined with the resonance Raman effect in the deep ultraviolet to dramatically increase the sensitivity of Raman spectra to a small volume of material, such as benzene used here. We further demonstrate gradient-field Raman peaks for several strong infrared modes. We achieve a gain of [Formula: see text] in signal intensity from the near field enhancement due to the surface plasmon resonance in the aluminum nanostructure. The on-line resonance enhancement contributes another factor of several thousands, limited by the laser line width. Thus, an overall gain of hundreds of million is achieved. PMID:23066168

  4. Bi-Band Bow-Tie Antennas Array Design Using a Simple Equivalent Transmission Line Model

    OpenAIRE

    Abri, M.; H. Abri Badaoui; Dib, H; A.S.E. Gharnaout

    2012-01-01

    In this paper we propose a simple equivalent and accurate transmission line model for bi-band bow-tie antennas array design over a band of frequencies for satellite communications. This model uses the resistance of a square element that appears at the edges of the antenna (radiating slots). To test this model, two antennas array were simulated and results were compared with those obtained by a rigorous method (moment’s method) of the simulator ADS/Momentum. Using this transmission line appro...

  5. Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna

    OpenAIRE

    Li, Ling; Fang Lim, Shuang; Puretzky, Alexander A.; Riehn, Robert; Hallen, H. D.

    2012-01-01

    An aluminum bow-tie nano-antenna is combined with the resonance Raman effect in the deep ultraviolet to dramatically increase the sensitivity of Raman spectra to a small volume of material, such as benzene used here. We further demonstrate gradient-field Raman peaks for several strong infrared modes. We achieve a gain of ∼105 in signal intensity from the near field enhancement due to the surface plasmon resonance in the aluminum nanostructure. The on-line resonance enhancement contributes ano...

  6. Liquid Crystal Bow-Tie Microstrip antenna for Wireless Communication Applications

    Directory of Open Access Journals (Sweden)

    B.T.P.Madhav

    2014-06-01

    Full Text Available In this paper we presented the design and analysis of Bow-Tie antenna on liquid crystal substrate, which is suitable for the Bluetooth/WLAN-2.4/WiBree/ZigBee applications. The Omni-directional radiation patterns along with moderate gain make the proposed antenna suitable for above mentioned applications. Details of the antenna design and simulated results Return loss, Input impedance, Radiation Patterns, E-Field, H-Field and Current Distributions, VSWR are presented and discussed. The proposed antenna is simulated at 2.4 GHz using Ansoft HFSS-11.

  7. Liquid Crystal Bow-Tie Microstrip antenna for Wireless Communication Applications

    OpenAIRE

    B.T.P.Madhav; VGKM Pisipati; Habibulla Khan; V.G.N.S Prasad; K. Praveen Kumar; KVL Bhavani; M. Ravi Kumar

    2014-01-01

    In this paper we presented the design and analysis of Bow-Tie antenna on liquid crystal substrate, which is suitable for the Bluetooth/WLAN-2.4/WiBree/ZigBee applications. The Omni-directional radiation patterns along with moderate gain make the proposed antenna suitable for above mentioned applications. Details of the antenna design and simulated results Return loss, Input impedance, Radiation Patterns, E-Field, H-Field and Current Distributions, VSWR are presented and discussed. The propose...

  8. Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy

    OpenAIRE

    Farahani, Javad N.; Eisler, Hans-Jürgen; Pohl, Dieter W; Pavius, Michaël; Flückiger, Philippe; Gasser, Philippe; Hecht, Bert

    2007-01-01

    A method for the fabrication of bow-tie optical antennas at the apex of pyramidal Si3N4 atomic force microscopy tips is described. We demonstrate that these novel optical probes are capable of sub-wavelength imaging of single quantum dots at room temperature. The enhanced and confined optical near-field at the antenna feed gap leads to locally enhanced photoluminescence (PL) of single quantum dots. Photoluminescence quenching due to the proximity of metal is found to be insignificant. The met...

  9. Millimeter-wave near-field imaging with bow-tie antennas.

    Science.gov (United States)

    Omarouayache, Rachid; Payet, Pierre; Raoult, Jérémy; Chusseau, Laurent

    2015-05-01

    A near-field reflectometry experiment operating at 60 GHz is built in view of material and circuit inspection. Experiments are always obtained in constant height mode of operation. The bow-tie near-field probe acts mostly as a linearly-polarized electric dipole and allows strongly subwavelength resolution of ≈ λ/130. Its interaction with sample is shown polarization dependent and sensitive to both the local topography and the local dielectric constant or metal conductivity. Resonant and non-resonant probes are both evaluated. PMID:25969302

  10. Printed Modified Bow-Tie Dipole Antenna for DVB/WLAN Applications

    Directory of Open Access Journals (Sweden)

    Ching-Chih Hung

    2013-01-01

    Full Text Available A printed modified bow-tie dipole antenna which consists of asymmetric-feed and inserted slots is presented to apply to the DVB and WLAN systems. This antenna combines omnidirectional radiation pattern, broad bandwidth, and band rejection in an easy way to fabricate. Experimental results of the constructed prototype indicate that the VSWR 2.5 : 1 bandwidths achieve 166.7%, 28.57%, and 23.63% at 660 MHz, 2450 MHz, and 5500 MHz, respectively.

  11. Printed Modified Bow-Tie Dipole Antenna for DVB/WLAN Applications

    OpenAIRE

    Ching-Chih Hung; Chia-Mei Peng; I-Fong Chen

    2013-01-01

    A printed modified bow-tie dipole antenna which consists of asymmetric-feed and inserted slots is presented to apply to the DVB and WLAN systems. This antenna combines omnidirectional radiation pattern, broad bandwidth, and band rejection in an easy way to fabricate. Experimental results of the constructed prototype indicate that the VSWR 2.5 : 1 bandwidths achieve 166.7%, 28.57%, and 23.63% at 660 MHz, 2450 MHz, and 5500 MHz, respectively.

  12. Beam-Steerable Microstrip-Fed Bow-Tie Antenna Array for Fifth Generation Cellular Communications

    OpenAIRE

    Ojaroudiparchin, Naser; Shen, Ming; Gert F. Pedersen

    2016-01-01

    The design and performance of mm-wave phased array antenna for 5G mobile broadband communication systems has been provided in this manuscript. The antenna is designed on a N9000 PTFE substrate with 0.787 mm thickness and 2.2 dielectric constant and 65×130 mm2 overall dimension. Eight elements of bow-tie antennas have been used at the top-edge region of mobile phone PCB. The antenna elements fed by microstrip lines are designed to operate at 17 GHz. The simulated results give good performances...

  13. Short term memory bowing effect is consistent with presentation rate dependent decay

    OpenAIRE

    Tarnow, Eugen

    2010-01-01

    I reanalyze the free recall data of Murdock, J Exp Psychol 64(5):482–488 (1962) and Murdock and Okada, J Verbal Learn and Verbal Behav 86:263–267 (1970) which show the famous bowing effect in which initial and recent items are recalled better than intermediate items (primacy and recency effects). Recent item recall probabilities follow a logarithmic decay with time of recall consistent with the tagging/retagging theory. The slope of the decay increases with increasing presentation rate. The i...

  14. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    Science.gov (United States)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e(sup 2), and 1/e(sup 3) times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  15. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  16. Implementation and Initial Validation of a 100-Kilowatt Class Nested-Channel Hall Thruster

    Science.gov (United States)

    Hall, Scott J.; Florenz, Roland E.; Gallimore, Alec D.; Kamhawi, Hani; Brown, Daniel L.; Polk, James E.; Goebel, Dan; Hofer, Richard R.

    2014-01-01

    The X3 is a 100-kilowatt class nested-channel Hall thruster developed by the Plasmadynamics and Electric Propulsion Laboratory at the University of Michigan in collaboration with the Air Force Research Laboratory and NASA. The cathode, magnetic circuit, boron nitride channel rings, and anodes all required specific design considerations during thruster development, and thermal modeling was used to properly account for thermal growth in material selection and component design. A number of facility upgrades were required at the University of Michigan to facilitate operation of the X3. These upgrades included a re-worked propellant feed system, a completely redesigned power and telemetry break-out box, and numerous updates to thruster handling equipment. The X3 was tested on xenon propellant at two current densities, 37% and 73% of the nominal design value. It was operated to a maximum steady-state discharge power of 60.8 kilowatts. The tests presented here served as an initial validation of thruster operation. Thruster behavior was monitored with telemetry, photography and high-speed current probes. The photography showed a uniform plume throughout testing. At constant current density, reductions in mass flow rate of 18% and 26% were observed in the three-channel operating configuration as compared to the superposition of each channel running individually. The high-speed current probes showed that the thruster was stable at all operating points and that the channels influence each other when more than one is operating simultaneously. Additionally, the ratio of peak-to-peak AC-coupled discharge current oscillations to mean discharge current did not exceed 51% for any operating points reported here, and did not exceed 17% at the higher current density.

  17. A mechanism to accelerate the late ablation in pulsed plasma thrusters

    OpenAIRE

    Intini Marques, Rodrigo

    2009-01-01

    Pulsed Plasma Thrusters (PPTs) are long standing electric propulsion thrusters that are reliable, relatively simple and low cost. One of the main issues with the PPT is its poor utilization of the propellant and low efficiency. Typically only 40-60% of the propellant contributes to the production significant impulse and the efficiency is around 8%. The cause of the PPT’s poor propellant utilization is the late time ablation (LTA), which has a major impact on the efficiency. LTA is the sublima...

  18. Experimental study of a low-thrust measurement system for thruster ground tests

    Science.gov (United States)

    Gong, Jingsong; Hou, Lingyun; Zhao, Wenhua

    2014-03-01

    The development of thrusters used for the control of position and orbit of micro-satellites requires thrust stands that can measure low thrust. A new method to measure low thrust is presented, and the measuring device is described. The test results show that the thrust range is up to 1000 mN, the measurement error of the device is lower than ±1% of full scale, and the drift of the zero offset is less than ±1% of full scale. Its response rise time is less than 15 ms. It is employed to measure the working process of a model chemical thruster with repeatability.

  19. The ion optics of a two grid electron-bombardment thruster

    Science.gov (United States)

    Aston, G.; Kaufman, H. R.

    1976-01-01

    A detailed experimental investigation has been performed to determine the ion beam divergence of an electron-bombardment ion thruster as a function of grid geometry changes. The results show that, to a good approximation, each geometrical grid parameter independently affects one aspect of grid set performance. These observations are used to develop a graphical technique for predicting the ion beam divergence of an arbitrary ion source and grid geometry combination. The usefulness of this technique is demonstrated by comparing predicted ion beam divergence of the 30-cm diameter Engineering Model ion thruster with independent experimental determinations. Good agreement is shown between predicted and experimental results.

  20. Mission Benefits of Gridded Ion and Hall Thruster Hybrid Propulsion Systems

    Science.gov (United States)

    Dankanich, John W.; Polsgrove, Tara

    2006-01-01

    The NASA In-Space Propulsion Technology (ISPT) Project Office has been developing the NEXT gridded ion thruster system and is planning to procure a low power Hall system. The new ion propulsion systems will join NSTAR as NASA's primary electric propulsion system options. Studies have been performed to show mission benefits of each of the stand alone systems. A hybrid ion propulsion system (IPS) can have the advantage of reduced cost, decreased flight time and greater science payload delivery over comparable homogeneous systems. This paper explores possible advantages of combining various thruster options for a single mission.