WorldWideScience

Sample records for bow thrusters

  1. 基于振动测量的船舶首侧推振动特征及原因分析%Analyze of vibration characteristic and reason of marine bow thruster based on measurement data

    Institute of Scientific and Technical Information of China (English)

    孙存楼; 史铭; 韩文玉

    2013-01-01

    为分析某船首侧推振动强烈原因,采用正负螺距交替增加方案,在锚泊状态下测量首侧推的振动数据.振动速度随着螺距角的增加而变大,当螺距小于70%时,振动速度在桨叶叶频处幅值最大,随着螺距继续增加,振动速度幅值转移至低于叶频区域.首侧推桨叶进流均匀度与桨叶空泡是引起振动的主要原因.因首侧推导臂增加了桨叶负螺距时进流的不均匀度,造成负螺距时振动强度大于正螺距;数值模拟结果显示,70%螺距时,桨叶叶梢区域存在明显空泡,随着螺距的增加,空泡逐渐向叶背区域扩展.根据振动测试分析结果,新设计船舶应优化设计进流条件,增加进流的均匀度.适当选取额定推力较大的侧推型号,以减小电机最大功率的桨叶螺距,降低空泡激励的振动.%In order to analyze the serious vibration problem of ship bow thruster,the vibration data is measured when the ship is anchored in anchorage ground.The propeller pitch is alternant added during the test.The test results show that the vibration level of bow thruster is increased with propeller pitch and the vibration magnitude is biggest at blade passing frequency when the pitch is lower than seventy percent.However,the vibration biggest magnitudes are transferd to other frequencies which are lower than blade passing frequency when the pitch is larger than seventy percent.The propeller inflow uniformity and cavitation are mainly take charger for the vibration.The inflow is more nonuniformity when the blades are adjusted to negative pitch and vibration level is more serious.Numerical results show the cavitation is just developed at blade tip region at seventy pitch,while the cavitation region is expanded to blade back region when the pitch is added.For the new designed similar ship,the inflow uniformity could be added by improving the inflow condition according to hull shape.A larger bow thruster is more suitable for the new ship

  2. Ship bow waves

    Institute of Scientific and Technical Information of China (English)

    NOBLESSE Francis; DELHOMMEAU Gerard; LIU Hua; WAN De-cheng; YANG Chi

    2013-01-01

    The bow wave generated by a ship hull that advances at constant speed in calm water is considered.The bow wave only depends on the shape of the ship bow (not on the hull geometry aft of the bow wave).This basic property makes it possible to determine the bow waves generated by a canonical family of ship bows defined in terms of relatively few parameters.Fast ships with fine bows generate overturning bow waves that consist of detached thin sheets of water,which are mostly steady until they hit the main free surface and undergo turbulent breaking up and diffusion.However,slow ships with blunt bows create highly unsteady and turbulent breaking bow waves.These two alternative flow regimes are due to a nonlinear constraint related to the Bernoulli relation at the free surface.Recent results about the overturning and breaking bow wave regimes,and the boundary that divides these two basic flow regimes,are reviewed.Questions and conjectures about the energy of breaking ship bow waves,and free-surface effects on flow circulation,are also noted.

  3. Fuel rod bowing

    International Nuclear Information System (INIS)

    The purpose of this investigation was to quantify the extent of fuel rod bowing in Westinghouse pressurized water reactors and to assess the effects of fuel rod bowing on plant safety and reliability. An empirical bow correlation was developed based on data from irradiated assemblies. Analyses conducted with these conservative empirical predictions show that: (1) generically identified DNBR margins are adequate to offset DNBR reductions due to rod bow, (2) the present design practice of increasing the highest calculated core peaking factor is sufficient to account for all deviations, including the effects of rod bow, and (3) fretting and corrosion of bowed rods are negligible. These conclusions indicate that fuel rod bowing results in no impact on plant safety or reliability

  4. Bow Crushing Forces

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    The purpose of these notes is to present a basis for the estimation of the internal collision forces between conventinal merchant vessels and large volume offshore structures in the form of gravity-supported offshore installations and bridges crossing international shipping routes.The main emphas...... is on the presentation of impact loads on fixed offshore structures due to bow collisions. The crushing forces are determined as functions of vessels size, vessels speed, bow profile, collision angles and eccentric impacts....

  5. Cylindrical geometry hall thruster

    Science.gov (United States)

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  6. Conducting Wall Hall Thrusters

    Science.gov (United States)

    Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon

    2013-01-01

    A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.

  7. Mercury ion thruster technology

    Science.gov (United States)

    Beattie, J. R.; Matossian, J. N.

    1989-01-01

    The Mercury Ion Thruster Technology program was an investigation for improving the understanding of state-of-the-art mercury ion thrusters. Emphasis was placed on optimizing the performance and simplifying the design of the 30 cm diameter ring-cusp discharge chamber. Thruster performance was improved considerably; the baseline beam-ion production cost of the optimized configuration was reduced to Epsilon (sub i) perspective to 130 eV/ion. At a discharge propellant-utilization efficiency of 95 percent, the beam-ion production cost was reduced to about 155 eV/ion, representing a reduction of about 40 eV/ion over the corresponding value for the 30 cm diameter J-series thruster. Comprehensive Langmuir-probe surveys were obtained and compared with similar measurements for a J-series thruster. A successful volume-averaging scheme was developed to correlate thruster performance with the dominant plasma processes that prevail in the two thruster designs. The average Maxwellian electron temperature in the optimized ring-cusp design is as much as 1 eV higher than it is in the J-series thruster. Advances in ion-extraction electrode fabrication technology were made by improving materials selection criteria, hydroforming and stress-relieving tooling, and fabrications procedures. An ion-extraction performance study was conducted to assess the effect of screen aperture size on ion-optics performance and to verify the effectiveness of a beam-vectoring model for three-grid ion optics. An assessment of the technology readiness of the J-series thruster was completed, and operation of an 8 cm IAPS thruster using a simplified power processor was demonstrated.

  8. Bow shock: Power aspects

    Science.gov (United States)

    Sedykh, P. A.

    2014-07-01

    It is clear that the primary energy source for magnetospheric processes is the solar wind, but the process of energy transfer from the solar wind into the magnetosphere, or rather, to convecting magnetospheric plasma, appears to be rather complicated. Bow shock is a powerful transformer of the solar wind kinetic energy into the gas dynamic and electromagnetic energy. A jump of the magnetic field tangential component at front crossing means that the front carries an electric current. The solar wind kinetic energy partly transforms to gas kinetic and electromagnetic energy during its passage through the bow shock front. The transition layer (magnetosheath) can use part of this energy for accelerating of plasma, but can conversely spend part its kinetic energy on the electric power generation, which afterwards may be used by the magnetosphere. Thereby, transition layer can be both consumer (sink) and generator (source) of electric power depending upon special conditions. The direction of the current behind the bow shock front depends on the sign of the IMF Bz-component. It is this electric current which sets convection of plasma in motion.

  9. Iodine Hall Thruster

    Science.gov (United States)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  10. Oxygen-Methane Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orion Propulsion, Inc. proposes to develop an Oxygen and Methane RCS Thruster to advance the technology of alternate fuels. A successful Oxygen/CH4 RCS Thruster...

  11. Magnesium Hall Thruster

    Science.gov (United States)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  12. Statistical modeling of violin bowing parameter contours

    OpenAIRE

    Maestre G??mez, Esteban

    2009-01-01

    We present a framework for modeling right-hand gestures in bowed-string instrument playing, applied to violin. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing gesture parameter cues. We model the temporal contour of bow transversal velocity, bow pressing force, and bow-bridge distance as sequences of short segments, in particular B??ezier cubic curve segments. Considering different articulations, dynamics, and contexts, a number of n...

  13. Helical plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Beklemishev, A. D., E-mail: bekl@bk.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk (Russian Federation)

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  14. Earth's bow shock: Power aspects.

    Science.gov (United States)

    Sedykh, Pavel

    2012-07-01

    The process of energy transfer from the solar wind into the magnetosphere, or rather, to convecting magnetospheric plasma, appears to be rather complicated. The bow shock front is the main converter of solar wind kinetic energy into electromagnetic energy [Ponomarev, Sedykh, J. of Atm. Solar-Terr. Phys. V. 68. 2006; Ponomarev, Sedykh et al., Geomagn. and Aeron., 2009]. Solar wind undergoes significant changes in its parameters during its passing through the bow shock front. Indeed, at the bow point, when crossing the front, the magnetic field tangential component and magnetic energy density increase by factors of almost 4 and approximately 15, respectively. In describing the bow shock, we followed [Whang, 1987; Ponomarev et al., 2006]. A jump of the magnetic field tangential component when crossing the bow shock front means that the front carries an electric current. It is possible to show that electric current is diverging in this layer, that is the front is the generator of the current. Since plasma with magnetic field passes through the bow shock front, electric field arises in the front reference system. Thus, the bow shock front is a source of electric power. The direction of electric current behind the bow shock front depends on the sign of the IMF Bz-component. It is this current which sets convection in motion. Energetically, this external current is necessary for maintaining convection of plasma in the inhomogeneous system (geomagnetosphere). The generator at the bow shock front can be a sufficient source of power for supplying energy to substorm processes [Sedykh, Sun and Geosphere, 2011]. The sign of power does not depend on the IMF sign, and energy flux is always directed into the magnetosphere. The magnitude of the power is different and is realized in different regions of the magnetosphere depending on the IMF direction. When the Bz-component is negative, the electric convection field is larger, with the anticonvection field being smaller, than for

  15. Stability Analysis of Bow Shocks

    Science.gov (United States)

    Buren, David Van

    1995-01-01

    We present a linear stability analysis of bow shocks created by the interaction of a spherical wind moving with respect to its surrounding medium. The bounding shocks are assumed isothermal and with Mach number M = infinity. Following Soker (1990) we study the evolution of short wavelength perturbations. We find that the motion is unstable in this limit. Moreover, the ratio of the wind velocity v(sub w) to the star velocity v(sub *) characterizes the stability properties. Bow shocks with fast winds for which v(sub *)/v(sub w)>1.

  16. Some aspects of vocal fold bowing.

    Science.gov (United States)

    Tanaka, S; Hirano, M; Chijiwa, K

    1994-05-01

    Bowing of the vocal fold frequently occurs in patients with vocal fold paralysis (VFP), those with sulcus vocalis, and those who have had laser surgery. Additionally, there are vocal folds that present bowing with no noticeable organic lesion. For the purpose of investigating the causes and mechanisms of vocal fold bowing, consecutive fiberscopic videorecordings of 127 patients with VFP, 33 with sulcus vocalis, 33 with laser surgery, and 33 with dysphonia having no clinically noticeable organic lesion were reviewed. Sixty-nine percent of the paralyzed vocal folds had bowing, and the occurrence of bowing was significantly related to the activity of the thyroarytenoid muscle as measured by electromyography. The cricothyroid activity had no significant relationship to vocal fold bowing. All vocal folds with sulcus presented with bowing. Thirty-five percent of the vocal folds that had had laser surgery had bowing. The extent of tissue removal was closely related to the occurrence of bowing. Twelve cases with no organic lesion had vocal fold bowing. Of these 12 patients, 8 were male and 9 were older than 60 years. Some aging process in the mucosa was presumed to be the cause of the bowing in this age group of patients without clinically noticeable organic lesions. Causes of vocal fold bowing in the younger group of patients without organic lesions were not determined in this study.

  17. Shared Magnetics Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed Phase I program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...

  18. Shared Magnetics Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed Phase II program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...

  19. Oxygen-Methane Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Two main innovations will be developed in the Phase II effort that are fundamentally associated with our gaseous oxygen/gaseous methane RCS thruster. The first...

  20. Dielectric Bow-tie Nanocavity

    CERN Document Server

    Lu, Qijing; Zou, Chang-Ling

    2013-01-01

    We propose a novel dielectric bow-tie nanocavity consisting of two tip-to-tip opposite triangle semiconductor nanowires, whose end faces are coated by silver nanofilms. Based on the advantages of the dielectric slot and tip structures, and the high reflectivity from the silver mirror, light can be confined in this nanocavity with low loss. We demonstrate that the mode excited in this nanocavity has a deep subwavelength mode volume of 2.8*10^-4 um3 and a high quality factor of 4.9*10^4 (401.3), consequently an ultrahigh Purcell factor of 1.6*10^7 (1.36*10^5), at 4.5 K (300 K) around the resonance wavelength of 1550 nm. This dielectric bow-tie nanocavity may find applications for integrated nanophotonic circuits, such as high-efficiency single photon source, thresholdless nanolaser, and cavity QED strong coupling experiments.

  1. Astrospheres and Stellar Bow shocks

    Science.gov (United States)

    Van Marle, Allard Jan

    2016-07-01

    As stars evolve, they deliver feedback to the surrounding medium in the form of stellar wind and radiation. These shape the surrounding matter, forming what is called an astrosphere, a sphere of influence in which the star dominates the morphology and composition of the surrounding medium. Astrospheres are fascinating objects. Because they are formed through the interaction between the stellar feedback and the interstellar gas, they can tell us a great deal about both. Furthermore, because they are shaped over time they provide us with a window into the past. This is of particular interest for the study of stellar evolution, because the astrosphere reflects changes in the properties of the stellar wind, which relate directly to the properties of the star. A special sub-class of astrospheres, the stellar bow shocks, occur when the progenitor star moves through the surrounding medium at supersonic speed. Because the properties of the bow shock relate directly to both the stellar wind and the interstellar medium, the shape and size of the bow shock can be used to determine these properties. Using state-of-the-art numerical codes, it is possible to simulate the interaction between the stellar wind and radiation and the interstellar medium. These results can then be compared to observations. They can also be used to predict the type of observations that are best suited to study these objects. In this fashion computational and observational astronomy can support each other in their efforts to gain a better understanding of stars and their environment.

  2. Iodine Hall Thruster for Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I program, Busek Co. Inc. tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high flow iodine feed system,...

  3. Fast Camera Imaging of Hall Thruster Ignition

    International Nuclear Information System (INIS)

    Hall thrusters provide efficient space propulsion by electrostatic acceleration of ions. Rotating electron clouds in the thruster overcome the space charge limitations of other methods. Images of the thruster startup, taken with a fast camera, reveal a bright ionization period which settles into steady state operation over 50 (micro)s. The cathode introduces azimuthal asymmetry, which persists for about 30 (micro)s into the ignition. Plasma thrusters are used on satellites for repositioning, orbit correction and drag compensation. The advantage of plasma thrusters over conventional chemical thrusters is that the exhaust energies are not limited by chemical energy to about an electron volt. For xenon Hall thrusters, the ion exhaust velocity can be 15-20 km/s, compared to 5 km/s for a typical chemical thruster.

  4. Holographic Solar Photon Thrusters

    Science.gov (United States)

    Johnson, Les; Matloff, Greg

    2006-01-01

    A document discusses a proposal to incorporate holographic optical elements into solar photon thrusters (SPTs). First suggested in 1990, SPTs would be systems of multiple reflective, emissive, and absorptive surfaces (solar sails) that would be attached to spacecraft orbiting the Earth to derive small propulsive forces from radiation pressures. An SPT according to the proposal would include, among other things, a main sail. One side of the sail would be highly emissive and would normally face away from the Earth. The other side would be reflective and would be covered by white-light holographic images that would alternately become reflective, transmissive, and absorptive with small changes in the viewing angle. When the spacecraft was at a favorable orbital position, the main sail would be oriented to reflect sunlight in a direction to maximize the solar thrust; when not in a favorable position, the main sail would be oriented to present a substantially absorptive/emissive aspect to minimize the solar drag. By turning the main sail slightly to alternate between the reflective and absorptive/ emissive extremes, one could achieve nearly a doubling or halving of the radiational momentum transfer and, hence, of the solar thrust.

  5. Electron dynamics in Hall thruster

    Science.gov (United States)

    Marini, Samuel; Pakter, Renato

    2015-11-01

    Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.

  6. Dielectric Bow-tie Nanocavity

    OpenAIRE

    Lu, Qijing; Shu, Fang-Jie; Zou, Chang-Ling

    2013-01-01

    We propose a novel dielectric bow-tie nanocavity consisting of two tip-to-tip opposite triangle semiconductor nanowires, whose end faces are coated by silver nanofilms. Based on the advantages of the dielectric slot and tip structures, and the high reflectivity from the silver mirror, light can be confined in this nanocavity with low loss. We demonstrate that the mode excited in this nanocavity has a deep subwavelength mode volume of 2.8*10^-4 um3 and a high quality factor of 4.9*10^4 (401.3)...

  7. Thruster allocation for dynamical positioning

    NARCIS (Netherlands)

    K. Poppe; J.B. van den Berg; E. Blank; C. Archer; M. Redeker; M. Kutter; P. Hemker

    2010-01-01

    Positioning a vessel at a fixed position in deep water is of great importance when working offshore. In recent years a Dynamical Positioning (DP) system was developed at Marin [2]. After the measurement of the current position and external forces (like waves, wind etc.), each thruster of the vessel

  8. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new pulsed electric thruster, named "pulsed electrogasdynamic thruster," for attitude control and orbit maneuver is proposed. In this thruster, propellant gas is...

  9. A Microwave Thruster for Spacecraft Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Chiravalle, Vincent P [Los Alamos National Laboratory

    2012-07-23

    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  10. Low Mass Electromagnetic Plasmoid Thruster with Integrated PPU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Electromagnetic Plasmoid Thruster (EMPT) is a revolutionary electric propulsion thruster and power processing (PPU) system that will allow a dramatic decrease...

  11. 75 FR 40820 - City of Broken Bow, Oklahoma; Project No. 12470-001-Oklahoma Broken Bow Re-Regulation Dam...

    Science.gov (United States)

    2010-07-14

    ... Energy Regulatory Commission City of Broken Bow, Oklahoma; Project No. 12470-001--Oklahoma Broken Bow Re... included in, or eligible for inclusion in, the National Register of Historic Places at the Broken Bow Re..., 2010, for the Broken Bow Re-Regulation Dam Hydroelectric Project No. 12470 is revised to add...

  12. 75 FR 33802 - City of Broken Bow, OK; Broken Bow Re-Regulation Dam; Hydropower Project; Notice of Proposed...

    Science.gov (United States)

    2010-06-15

    ... Energy Regulatory Commission City of Broken Bow, OK; Broken Bow Re-Regulation Dam; Hydropower Project... eligible for inclusion in, the National Register of Historic Places at the Broken Bow Re-Regulation Dam... the Broken Bow Re-Regulation Dam Hydropower Project would be fulfilled through the...

  13. Optimized Magnetic Nozzles for MPD Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Magnetoplasmadynamic (MPD) thrusters can provide the high-specific impulse, high-power propulsion required to enable ambitious human and robotic exploration...

  14. Advanced Microwave Electrothermal Thruster (AMET) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) and the University of Alabama at Huntsville (UAH) propose to develop the Advanced Microwave Electrothermal Thruster...

  15. Cylindrical Hall Thrusters with Permanent Magnets

    International Nuclear Information System (INIS)

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT.

  16. Dielectric bow-tie nanocavity.

    Science.gov (United States)

    Lu, Qijing; Shu, Fang-Jie; Zou, Chang-Ling

    2013-12-15

    We propose a novel dielectric bow-tie (DBT) nanocavity consisting of two opposing tip-to-tip triangle semiconductor nanowires, whose end faces are coated by silver nanofilms. Based on the advantages of the dielectric slot and tip structures, and the high reflectivity of the silver mirror, light can be confined in this nanocavity with low loss. We demonstrate that at 4.5 K (300 K) around the resonance wavelength of 1550 nm, the mode excited in this nanocavity has a deep subwavelength mode volume of 2.8×10(-4) μm³ and a high quality factor of 4.9×10(4) (401.3), corresponding to an ultrahigh Purcell factor of 1.6×10(7) (1.36×10(5)). This DBT nanocavity may find applications for integrated nanophotonic circuits, such as high-efficiency single photon sources, thresholdless nanolasers, and strong coupling in cavity quantum electrodynamics experiments. PMID:24322245

  17. Coil system for plasmoid thruster

    Science.gov (United States)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  18. Modelling the bending/bowing of composite beams such as nuclear fuel: The BOW code

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, M. (Atomic Energy of Canada Ltd., Sheridan Park, Ontario. CANDU Operations)

    1989-09-01

    Arrays of tubes are used in many engineered structures, such as in nuclear fuel bundles and in steam generators. The tubes are bend (bow) due to in-service temperatures and loads. Assessments of bowing of nuclear fuel elements can help demonstrate the integrity of fuel and of surrounding components, as a function of operating conditions such as channel power. The BOW code calculates the bending of composite beams such as fuel elements, due to gradients of temperature and due to hydraulic forces. The deflections and rotations are calculated in both lateral directions, for given conditions of temperatures. Wet and dry operation of the sheath can be simulated. BOW accounts for the following physical phenomena: circumferential and axial variations in the temperatures of the sheath and of the pellet; cracking of pellets; grip and slip between the pellets and the sheath; hydraulic drag; restraints from endplates, from neighbouring elements, and from the pressure-tube; gravity; concentric or eccentric welds between endcaps and endplate; neutron flux gradients; and variations of material properties with temperature. The code is based on fundamental principles of mechanics. The governing equations are solved numerically using the finite element method. Several comparisons with closed-form equations show that the solutions of BOW are accurate. BOW's predictions for initial in-reactor bow are also consistent with two post-irradiation measurements. (orig.).

  19. Mechanical design of SERT 2 thruster system

    Science.gov (United States)

    Zavesky, R. J.; Hurst, E. B.

    1972-01-01

    The mechanical design of the mercury bombardment thruster that was tested on SERT is described. The report shows how the structural, thermal, electrical, material compatibility, and neutral mercury coating considerations affected the design and integration of the subsystems and components. The SERT 2 spacecraft with two thrusters was launched on February 3, 1970. One thruster operated for 3782 hours and the other for 2011 hours. A high voltage short resulting from buildup of loose eroded material was believed to be the cause of failure.

  20. High Thrust Efficiency MPD Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Magnetoplasmadynamic (MPD) thrusters can provide the high-specific impulse, high-power propulsion required to support human and robotic exploration missions to the...

  1. T6 Ion Thruster Technology Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Provide discharge chamber and grid modeling for the new T6 based on JPL expertise on ion thruster performance and life; Enable/guide the T6 upgrade development to...

  2. Q-thruster Breadboard Campaign Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Q-thruster technology is a mission enabling form of electric propulsion and is already being traded by NASA's Concept Architecture Team (CAT) & Human Space...

  3. Multiscale Modeling of Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New multiscale modeling capability for analyzing advanced Hall thrusters is proposed. This technology offers NASA the ability to reduce development effort of new...

  4. Acoustic Resonance Reaction Control Thruster (ARCTIC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate the innovative Acoustic Resonance Reaction Control Thruster (ARCTIC) to provide rapid and reliable in-space impulse...

  5. Additive Manufacturing of Ion Thruster Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Plasma Controls will manufacture and test a set of ion optics for electric propulsion ion thrusters using additive manufacturing technology, also known as 3D...

  6. Light Metal Propellant Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop light metal Hall Effect thrusters that will help reduce the travel time, mass, and cost of SMD spacecraft. Busek has identified three...

  7. Dual Mode Low Power Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample and return missions desire and missions like Saturn Observer require a low power Hall thruster that can operate at high thrust to power as well as high...

  8. Precision Electrospray Thruster Assembly (PETA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New low cost, low volume, low power, rugged electrospray thrusters will be ideal as actuators for precision thrusting, if provided with precision high voltage power...

  9. Iodine Hall Thruster for Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high power (high thrust) electric propulsion system featuring an iodine fueled Hall Effect Thruster (HET). The system to be...

  10. MPD thruster research issues, activities, strategies

    Science.gov (United States)

    1991-01-01

    The following activities and plans in the MPD thruster development are summarized: (1) experimental and theoretical research (magnetic nozzles at present and high power levels, MPD thrusters with applied fields extending into the thrust chamber, and improved electrode performance); and (2) tools (MACH2 code for MPD and nozzle flow calculation, laser diagnostics and spectroscopy for non-intrusive measurements of flow conditions, and extension to higher power). National strategies are also outlined.

  11. Low power arcjet thruster pulse ignition

    Science.gov (United States)

    Sarmiento, Charles J.; Gruber, Robert P.

    1987-01-01

    An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.

  12. The Statics of the Traditional Hungarian Composite Reflex Bow

    Directory of Open Access Journals (Sweden)

    Sándor Horváth

    2006-04-01

    Full Text Available The operation of the Hungarian bow raises several fascinating mechanicalquestions. To answer these questions a good number of experiments and calculations needto be made, moreover the mechanical model of the bow is needed to be prepared whichappropriately confirm the results of experiments. Teachers in the Bánki Donát MechanicalEngineering College of Budapest Polytechnic set up a small laboratory in 1997 in order tostudy and measure the physical characteristics of traditional bows. The mechanicalanalysis of bows is based on the experiments gained in the laboratory and the results ofmeasurements. The knowledge acquired about the mechanical model of bows facilitates notonly the analysis of the traditional Hungarian bow, but also provides a good foundation forthe comparison from the technical point of view of various composite reflex bows belongingto different historic ethnic groups.

  13. Control capability analysis for complex spacecraft thruster configurations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The set of forces and moments that can be generated by thrusters of a spacecraft is called the"control capability"with respect to the thruster configuration.If the control capability of a thruster configuration is adequate to fulfill a given space mission,we say this configuration is a feasible one with respect to the task.This study proposed a new way to analyze the control capability of the complex thruster configuration.Precise mathematical definitions of feasibility were proposed,based on which a criterion to judge the feasibility of the thruster configuration was presented through calculating the shortest distance to the boundary of the controllable region as a function of the thruster configuration.Finally,control capability analysis for the complex thruster configuration based on its feasibility with respect to the space mission was given followed by a 2-D thruster configuration example to demonstrate its validity.

  14. Suprathermal electrons at Saturn's bow shock

    CERN Document Server

    Masters, A; Sergis, N; Stawarz, L; Fujimoto, M; Coates, A J; Dougherty, M K

    2016-01-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, 18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically onl...

  15. Bow shock formation in a complex plasma.

    Science.gov (United States)

    Saitou, Y; Nakamura, Y; Kamimura, T; Ishihara, O

    2012-02-10

    A bow shock is observed in a two-dimensional supersonic flow of charged microparticles in a complex plasma. A thin conducting needle is used to make a potential barrier as an obstacle for the particle flow in the complex plasma. The flow is generated and the flow velocity is controlled by changing a tilt angle of the device under the gravitational force. A void, microparticle-free region, is formed around the potential barrier surrounding the obstacle. The flow is bent around the leading edge of the void and forms an arcuate structure when the flow is supersonic. The structure is characterized by the bow shock as confirmed by a polytropic hydrodynamic theory as well as numerical simulation. PMID:22401079

  16. A survey for Hα pulsar bow shocks

    International Nuclear Information System (INIS)

    We report on a survey for Hα bow shock emission around nearby γ-detected energetic pulsars. This survey adds three Balmer-dominated neutron star bow shocks to the six previously confirmed examples. In addition to the shock around Fermi pulsar PSR J1741–2054, we now report Hα structures around two additional γ-ray pulsars, PSR J2030+4415 and PSR J1509–5850. These are the first known examples of Hα nebulae with pre-ionization halos. With new measurements, we show that a simple analytic model can account for the angular size and flux of the bow shocks' apices. The latter, in particular, provides a new pulsar probe and indicates large moments of inertia and smaller distances than previously assumed in several cases. In particular, we show that the re-measured PSR J0437–4715 shock flux implies I = (1.7 ± 0.2) × 1045/(f HIsin i) g cm2. We also derive a distance d ≈ 0.72 kpc for the γ-ray only pulsar PSR J2030+4415 and revised distances for PSRs J1959+2048 (1.4 kpc) and J2555+6535 (∼1 kpc), smaller than the conventional DM-estimated values. Finally, we report upper limits for 94 additional LAT pulsars. An estimate of the survey sensitivity indicates that for a warm neutral medium filling factor φWNM ∼ 0.3 there should be a total of approximately nine Hα bow shocks in our LAT-targeted survey; given that seven such objects are now known, a much larger φWNM seems problematic.

  17. Design and operations of Hall thruster with segmented electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N.J.; Raitses, Y.; Dorf, L.A.; Litvak, A.A.

    1999-12-10

    Principles of the Hall thruster with segmented electrodes are explored. A suitable vacuum facility was put into service. For purposes of comparison between segmented and conventional thruster approaches, a modular laboratory prototype thruster was designed and built. Under conventional operation, the thruster achieves state-of-the-art efficiencies (56% at 300 V and 890 W). Very preliminary results under operation with segmented electrodes are also described.

  18. Design and Operation of Hall Thruster with Segmented Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    A.A. Litvak; L.A. Dorf; N.J. Fisch; Y. Raitses

    1999-07-01

    Principles of the Hall thruster with segmented electrodes are explored. A suitable vacuum facility was put into service. For purposes of comparison between segmented and conventional thruster approaches, a modular laboratory prototype thruster was designed and built. Under conventional operation, the thruster achieves state-of-the-art efficiencies (56% at 300 V and 890 W). Very preliminary results under operation with segmented electrodes are also described.

  19. Coaxial plasma thrusters for high specific impulse propulsion

    Science.gov (United States)

    Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen

    1991-01-01

    A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.

  20. Electrostatic ion thrusters - towards predictive modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kalentev, O.; Matyash, K.; Duras, J.; Lueskow, K.F.; Schneider, R. [Ernst-Moritz-Arndt Universitaet Greifswald, D-17489 (Germany); Koch, N. [Technische Hochschule Nuernberg Georg Simon Ohm, Kesslerplatz 12, D-90489 Nuernberg (Germany); Schirra, M. [Thales Electronic Systems GmbH, Soeflinger Strasse 100, D-89077 Ulm (Germany)

    2014-02-15

    The development of electrostatic ion thrusters so far has mainly been based on empirical and qualitative know-how, and on evolutionary iteration steps. This resulted in considerable effort regarding prototype design, construction and testing and therefore in significant development and qualification costs and high time demands. For future developments it is anticipated to implement simulation tools which allow for quantitative prediction of ion thruster performance, long-term behavior and space craft interaction prior to hardware design and construction. Based on integrated numerical models combining self-consistent kinetic plasma models with plasma-wall interaction modules a new quality in the description of electrostatic thrusters can be reached. These open the perspective for predictive modeling in this field. This paper reviews the application of a set of predictive numerical modeling tools on an ion thruster model of the HEMP-T (High Efficiency Multi-stage Plasma Thruster) type patented by Thales Electron Devices GmbH. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. High vacuum facility for hydrazine thruster testing

    Science.gov (United States)

    Neary, Patrick F.

    1990-01-01

    An ongoing modification is described of a large vacuum chamber to accommodate the ignition of an arcjet hydrazine thruster while maintaining a vacuum level of 1 x 10(exp -5) torr or less. The vacuum facility consists of a 20 ft stainless steel vacuum tank with an internal LN2 shroud, four 35 in. cryopumps and an 8 in. turbopump. To maintain a vacuum level of 1 x 10(exp -5) torr or less, 900 sq ft of liquid helium (LHe) shroud surface was installed to maintain the vacuum level and pumping requirements. A vacuum level of 1 x 10(exp -5) torr or less will allow the hydrazine thrust to exit the thruster nozzle and radiate into a space type environment so that the plume flow field can be analyzed and compared to the analytical model density distribution profile. Some other arcjet thruster characteristics measured are the electromagnetic interference (EMI) and exhaust contamination. This data is used to evaluate if the arcjet thruster with its high specific impulse in comparison to current chemical propulsion thruster can be used for the next generation of communication satellites.

  2. Nonequilibrium diagnostics of plasma thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Grandy, J.D.

    1990-01-01

    This paper describes possible techniques by which the state of plasma thruster operation for space propulsion can be determined from a minimum set of experimental data in the laboratory. The kinetic properties of the nonequilibrium plasma plume usually can not be directly related to the observed radiation; hence, appropriate nonequilibrium diagnostic techniques must be employed. A newly developed multithermal, multichemical equilibrium method is discussed that uses measured line emission intensities and N equations to solve for N unknowns. The effect of arbitrarily changing the number of selected N unknowns and how one determines the optimum (minimum) number to be used for a given composition is also presented. The chemical nonequilibrium aspects and the application to molecular species have not yet been published. The important conclusions are that (1) complete thermodynamic systems in nonequilibrium can be described by relatively few variables if appropriate choices and filtering methods are used, (2) a few radiation measurements can yield valid kinetic properties, and (3) the major question in the relations to be used is in the form of the law of mass action. The results are substantiated in the laboratory by additional alternative methods of measurement of some of the kinetic properties. 13 refs., 1 fig.

  3. Rotationnal and translational waves in a bowed string

    CERN Document Server

    Bavu, E; Placais, P Y; Smith, J; Wolfe, J; Bavu, Eric; Yew, Manfred; Placais, Pierre-Yves; Smith, John; Wolfe, Joe

    2005-01-01

    We measure and compare the rotational and transverse velocity of a bowed string. When bowed by an experienced player, the torsional motion is phase-locked to the transverse waves, producing highly periodic motion. The spectrum of the torsional motion includes the fundamental and harmonics of the transverse wave, with strong formants at the natural frequencies of the torsional standing waves in the whole string. Volunteers with no experience on bowed string instruments, however, often produced non-periodic motion. We present sound files of both the transverse and torsional velocity signals of well-bowed strings. The torsional signal has not only the pitch of the transverse signal, but it sounds recognisably like a bowed string, probably because of its rich harmonic structure and the transients and amplitude envelope produced by bowing.

  4. Mode Transitions in Hall Effect Thrusters

    Science.gov (United States)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Mode transitions have been commonly observed in Hall Effect Thruster (HET) operation where a small change in a thruster operating parameter such as discharge voltage, magnetic field or mass flow rate causes the thruster discharge current mean value and oscillation amplitude to increase significantly. Mode transitions in a 6-kW-class HET called the H6 are induced by varying the magnetic field intensity while holding all other operating parameters constant and measurements are acquired with ion saturation probes and ultra-fast imaging. Global and local oscillation modes are identified. In the global mode, the entire discharge channel oscillates in unison and azimuthal perturbations (spokes) are either absent or negligible. Downstream azimuthally spaced probes show no signal delay between each other and are very well correlated to the discharge current signal. In the local mode, signals from the azimuthally spaced probes exhibit a clear delay indicating the passage of "spokes" and are not well correlated to the discharge current. These spokes are localized oscillations propagating in the ExB direction that are typically 10-20% of the mean value. In contrast, the oscillations in the global mode can be 100% of the mean value. The transition between global and local modes occurs at higher relative magnetic field strengths for higher mass flow rates or higher discharge voltages. The thrust is constant through mode transition but the thrust-to-power decreased by 25% due to increasing discharge current. The plume shows significant differences between modes with the global mode significantly brighter in the channel and the near-field plasma plume as well as exhibiting a luminous spike on thruster centerline. Mode transitions provide valuable insight to thruster operation and suggest improved methods for thruster performance characterization.

  5. The sacred weapon: bow and arrow combat in Iran

    Directory of Open Access Journals (Sweden)

    Manouchehr Moshtagh Khorasani

    2012-07-01

    Full Text Available The following article presents the development of the bow and arrow, and its important role in the history of Iran. The bow always played an important role not only on the battlefield, but also in hunting. It was also considered as a sacred weapon and additionally a royal symbol. Bow and arrow were considered as a superior weapon in comparison with other types of weapons because one could fight with them at a safer distance as one offered by swords, maces and axes. The first part of the article presents a short history of the bow in Iran. Based on historical Persian manuscripts, the next part explains the structure of the composite bow and the materials used for making it. The third part describes some types of bows based on the material, place of production, the usage, and bow type based on the length of the bow and the arrows. The following part talks about different types of arrows based on morphology of arrowheads, the type of plume/feather, the material of the shaft, the material of the arrowhead, the length of arrows, the target of arrows, the place of production of arrowheads and terms for describing its different features of an arrowhead. Then, the article talks about different types of thumb rings, bowstrings, quivers and bow cases and arrow guides for shooting short arrows. The next part discusses different principles of archery as explained in Persian manuscripts. Finally the article describes different archery targets.

  6. Discovery of a bow shock around Vela X-1

    CERN Document Server

    Kaper, L; Augusteijn, T; Goudfrooij, P; Patat, N; Zijlstra, A A; Waters, R; Kaper, Lex; Loon, Jacco van; Augusteijn, Thomas; Goudfrooij, Paul; Patat, Nando; Zijlstra, Albert; Waters, Rens

    1996-01-01

    We report the discovery of a symmetric bow shock around the well-known high-mass X-ray binary (HMXB) Vela X-1. Wind bow shocks are a ubiquitous phenomenon around OB-runaway stars, but now such a structure is found around a HMXB. The presence of a bow shock indicates that the system has a high (supersonic) velocity with respect to the interstellar medium. From the symmetry of the bow shock, the direction of motion and, moreover, the origin and age of the system can be derived. Our observation supports Blaauw's scenario for the formation of an OB-runaway star by the supernova explosion of the binary companion.

  7. Coordination in fast repetitive violin-bowing patterns.

    Directory of Open Access Journals (Sweden)

    Erwin Schoonderwaldt

    Full Text Available We present a study of coordination behavior in complex violin-bowing patterns involving simultaneous bow changes (reversal of bowing direction and string crossings (changing from one string to another. Twenty-two violinists (8 advanced amateurs, 8 students with violin as major subject, and 6 elite professionals participated in the experiment. We investigated the influence of a variety of performance conditions (specific bowing patterns, dynamic level, tempo, and transposition and level of expertise on coordination behavior (a.o., relative phase and amplitude and stability. It was found that the general coordination behavior was highly consistent, characterized by a systematic phase lead of bow inclination over bow velocity of about 15° (i.e., string crossings were consistently timed earlier than bow changes. Within similar conditions, a high individual consistency was found, whereas the inter-individual agreement was considerably less. Furthermore, systematic influences of performance conditions on coordination behavior and stability were found, which could be partly explained in terms of particular performance constraints. Concerning level of expertise, only subtle differences were found, the student and professional groups (higher level of expertise showing a slightly higher stability than the amateur group (lower level of expertise. The general coordination behavior as observed in the current study showed a high agreement with perceptual preferences reported in an earlier study to similar bowing patterns, implying that complex bowing trajectories for an important part emerge from auditory-motor interaction.

  8. Diagnostics Systems for Permanent Hall Thrusters Development

    Science.gov (United States)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  9. Electron-wall interaction in Hall thrusters

    International Nuclear Information System (INIS)

    Electron-wall interaction effects in Hall thrusters are studied through measurements of the plasma response to variations of the thruster channel width and the discharge voltage. The discharge voltage threshold is shown to separate two thruster regimes. Below this threshold, the electron energy gain is constant in the acceleration region and therefore, secondary electron emission (SEE) from the channel walls is insufficient to enhance electron energy losses at the channel walls. Above this voltage threshold, the maximum electron temperature saturates. This result seemingly agrees with predictions of the temperature saturation, which recent Hall thruster models explain as a transition to space-charge saturated regime of the near-wall sheath. However, in the experiment, the maximum saturation temperature exceeds by almost three times the critical value estimated under the assumption of a Maxwellian electron energy distribution function. The channel narrowing, which should also enhance electron-wall collisions, causes unexpectedly larger changes of the plasma potential distribution than does the increase of the electron temperature with the discharge voltage. An enhanced anomalous crossed-field mobility (near wall or Bohm-type) is suggested by a hydrodynamic model as an explanation to the reduced electric field measured inside a narrow channel. We found, however, no experimental evidence of a coupling between the maximum electron temperature and the location of the accelerating voltage drop, which might have been expected due to the SEE-induced near-wall conductivity

  10. Size effects in band gap bowing in nitride semiconducting alloys

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede;

    2011-01-01

    Chemical and size contributions to the band gap bowing of nitride semiconducting alloys (InxGa1-xN, InxAl1-xN, and AlxGa1-xN) are analyzed. It is shown that the band gap deformation potentials of the binary constituents determine the gap bowing in the ternary alloys. The particularly large gap...

  11. Evolution of bow-tie architectures in biology.

    Directory of Open Access Journals (Sweden)

    Tamar Friedlander

    2015-03-01

    Full Text Available Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal determines the size of the narrowest part of the network-that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved.

  12. Evolution of bow-tie architectures in biology.

    Science.gov (United States)

    Friedlander, Tamar; Mayo, Avraham E; Tlusty, Tsvi; Alon, Uri

    2015-03-01

    Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network-that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved. PMID:25798588

  13. Suprathermal Electrons at Saturn's Bow Shock

    Science.gov (United States)

    Masters, A.; Sulaiman, A. H.; Sergis, N.; Stawarz, L.; Fujimoto, M.; Coates, A. J.; Dougherty, M. K.

    2016-07-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, 18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ˜1 MeV).

  14. NASA's Evolutionary Xenon Thruster (NEXT) Project Qualification Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction After 450 kg

    Science.gov (United States)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 28,500 hr of operation and processed 466 kg of xenon throughput--more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  15. High-Pressure Lightweight Thrusters

    Science.gov (United States)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    interface realizes pseudo-plastic behavior with significant increase in the tensile strength. The investigation of high-temperature strength of C/Cs under high-rate heating (critical for thrust chambers) shows that tensile and compression strength increases from 70 MPa at room temperature to 110 MPa at 1,773 K, and up to 125 MPa at 2,473 K. Despite these unique properties, the use of C/Cs is limited by its high oxidation rate at elevated temperatures. Lining carbon/carbon chambers with a thin layer of iridium or iridium and rhenium is an innovative way to use proven refractory metals and provide the oxidation barrier necessary to enable the use of carbon/ carbon composites. Due to the lower density of C/Cs as compared to SiC/SiC composites, an iridium liner can be added to the C/C structure and still be below the overall thruster weight. Weight calculations show that C/C, C/C with 50 microns of Ir, and C/C with 100 microns of Ir are of less weight than alternative materials for the same construction.

  16. Los Alamos NEP research in advanced plasma thrusters

    Science.gov (United States)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  17. Plasma Diagnostic and Performance of a Permanent Magnet Hall Thruster

    CERN Document Server

    Ferreira, J L; Rego, I D S; Ferreira, I S; Ferreira, Jose Leonardo; Souza, Joao Henrique Campos De; Rego, Israel Da Silveira; Ferreira, Ivan Soares

    2004-01-01

    Electric propulsion is now a sucessfull method for primary propulsion of deep space long duration missions and for geosyncronous satellite attitude control. Closed Drift Plasma Thruster, so called Hall Thruster or SPT (stationary plasma thruster) were primarily conceived in USSR (the ancient Soviet Union) and now it is been developed by space agencies, space research institutes and industries in several countries such as France, USA, Israel, Russian Federation and Brazil. In this work, we show plasma characteristics and performance of a Hall Thruster designed with an innovative concept which uses an array of permanent magnets, instead of an eletromagnet, to produce a radial magnetic field inside its cylindrical plasma drift channel. Within this new concept, we expect to develop a Hall Thruster within power consuption that will scale up to small and medium size satellites. A plasma density and temperature space profiles inside and outside the thruster channel will be shown. Space plasma potential, ion temperat...

  18. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    Science.gov (United States)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  19. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is to develop field emission electric propulsion (FEEP) thruster using carbon nanotubes (CNT) integrated anode. FEEP thrusters have gained...

  20. Thermal Management of Superconducting Electromagnets in VASIMR Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned space exploration missions will require high power electric propulsion. VASIMR thrusters are the most attractive option because they offer short...

  1. Control Valve for Miniature Xenon Ion Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is continuing its development of electric propulsion engines for various applications. Efforts have been directed toward both large and small thrusters,...

  2. High Efficiency Hall Thruster Discharge Power Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek leveraged previous, internally sponsored, high power, Hall thruster discharge converter development which allowed it to design, build, and test new printed...

  3. Investigation of mercury thruster isolators. [service life

    Science.gov (United States)

    Mantenieks, M. A.

    1973-01-01

    Mercury ion thruster isolator lifetime tests were performed using different isolator materials and geometries. Tests were performed with and without the flow of mercury through the isolators in an oil diffusion pumped vacuum facility and cryogenically pumped bell jar. The onset of leakage current in isolators tested occurred in time intervals ranging from a few hours to many hundreds of hours. In all cases, surface contamination was responsible for the onset of leakage current and subsequent isolator failure. Rate of increase of leakage current and the leakage current level increased approximately exponentially with isolator temperature. Careful attention to shielding techniques and the elimination of sources of metal oxides appear to have eliminated isolator failures as a thruster life limiting mechanism.

  4. Determination of the Hall Thruster Operating Regimes

    Energy Technology Data Exchange (ETDEWEB)

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-04-09

    A quasi one-dimensional (1-D) steady-state model of the Hall thruster is presented. For the same discharge voltage two operating regimes are possible -- with and without the anode sheath. For given mass flow rate, magnetic field profile and discharge voltage a unique solution can be constructed, assuming that the thruster operates in one of the regimes. However, we show that for a given temperature profile the applied discharge voltage uniquely determines the operating regime: for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. It is also shown that a good correlation between the quasi 1-D model and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile.

  5. Effect of Buffer Bow Structure in Ship-Ship Collision

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Endo, Hisayoshi; Pedersen, Preben Terndrup

    2008-01-01

    A disastrous oil spill from a struck oil tanker has become one of the major problems in view of conservation of maritime environment. So far double hulls (D/H) have been introduced to reduce the consequences of collision and grounding events In order to further reduce the oil spill from struck oi......) and the forward velocity of the struck ship on the collapse mode of the bow of the striking vessel are investigated. Collapse modes, contact forces and energy absorption capabilities of the buffer bows are compared with those of conventional bows....

  6. The sacred weapon: bow and arrow combat in Iran

    OpenAIRE

    Manouchehr Moshtagh Khorasani

    2012-01-01

    The following article presents the development of the bow and arrow, and its important role in the history of Iran. The bow always played an important role not only on the battlefield, but also in hunting. It was also considered as a sacred weapon and additionally a royal symbol. Bow and arrow were considered as a superior weapon in comparison with other types of weapons because one could fight with them at a safer distance as one offered by swords, maces and axes. The first part of the artic...

  7. Modelling tunnel thrusters for autonomous underwater vehicles

    OpenAIRE

    Palmer, A.; Hearn, G.E.; Stevenson, P

    2008-01-01

    With 900 Autonomous Underwater Vehicles (AUVs) required over the next decade (Newman et al., 2007) existing survey-style AUVs need improved utilization factors. Additional control devices to extend operational capability need consideration together with the interchange between AUV control approaches. This paper considers supplementary through-body tunnel thruster control during the transition from survey operation to low-speed manoeuvring. Modified manoeuvring equations permit investigation o...

  8. An approach to predicting bowing control parameter contours in violin performance

    OpenAIRE

    Maestre E.; Ramirez R.

    2010-01-01

    We present a machine learning approach to modeling bowing control parameter contours in violin performance. Using accurate sensing techniques we obtain relevant timbre-related bowing control parameters such as bow transversal velocity, bow pressing force, and bow-bridge distance of each performed note. Each performed note is represented by a curve parameter vector and a number of note classes are defined. The principal components of the data represented by the set of curve p...

  9. Anatomy of wood for bows of string instruments

    OpenAIRE

    Čufar, Katarina; Demšar, Blaž; Zupančič, Martin; Koch, Gerald; Oven, Primož

    2007-01-01

    Four specimens of wood originating from string instrument bows or from the material intended to be used for the repair of bows were obtained from the string instrument workshop "Atelje Demšar". Foreign wood traders supplied the specimens under their commercial names: (1) pernambouc, (2) horse flesh, (3) brasil, and (4) snakewood. Macroscopic and microscopic wood anatomical investigations were carried out in order to verify the nomenclature of the traded specimens. The microscopic identificati...

  10. Dual-Frequency Operation of Bow-Tie Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    钟顺时; 张需溥

    2005-01-01

    Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.

  11. Evolution of bow-tie architectures in biology.

    OpenAIRE

    Tamar Friedlander; Mayo, Avraham E.; Tsvi Tlusty; Uri Alon

    2015-01-01

    Bow-tie or hourglass structure is a common architectural feature found in biological and technological networks. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signalin...

  12. Bow-shock Pulsar Wind Nebulae Passing Through Density Discontinuities

    CERN Document Server

    Yoon, Doosoo

    2016-01-01

    Bow-shock pulsar wind nebulae are a subset of pulsar wind nebulae that form when the pulsar has high velocity due to the natal kick during the supernova explosion. The interaction between the relativistic wind from the fast-moving pulsar and the interstellar medium produces a bow-shock and a trail, which are detectable in H$_{\\alpha}$ emission. Among such bow-shock pulsar wind nebulae, the Guitar Nebula stands out for its peculiar morphology, which consists of a prominent bow-shock head and a series of bubbles further behind. We present a scenario in which multiple bubbles can be produced when the pulsar encounters a series of density discontinuities in the ISM. We tested the scenario using 2-D and 3-D hydrodynamic simulations. The shape of the guitar nebula can be reproduced if the pulsar traversed a region of declining low density. We also show that if a pulsar encounters an inclined density discontinuity, it produces an asymmetric bow-shock head, consistent with observations of the bow-shock of the millise...

  13. A high power ion thruster for deep space missions

    Science.gov (United States)

    Polk, James E.; Goebel, Dan M.; Snyder, John S.; Schneider, Analyn C.; Johnson, Lee K.; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  14. Monopropellant Thruster Firing Test using KC12GA Catalyst

    Science.gov (United States)

    Goto, D.; Kagawa, H.; Hattori, A.; Kajiwara, K.

    2004-10-01

    Many monopropellant thrusters use a catalyst for decomposing the propellant, hydrazine. The catalyst directly affects the thruster performance and lifetime. Therefore, it is important to confirm that the catalyst is suitable for our thrusters. Until 2002, we used Shell405 catalyst for satellite and H-IIA launch vehicle upperstage RCS thrusters. In 2002, however, Shell Chemical Inc. ceased manufacturing Shell405 catalyst and transferred the product to AEROJET, where it was renamed S405. We found KC12GA (Hydrazine decomposition catalyst, manufactured by Solvay, Belgium) as well as S405 and checked physical properties of KC12GA and S405. We then conducted a series of spontaneous tests, including life firing tests on various monopropellant thrusters (20N, 4N and 1N) loaded with KC12GA. The result showed that KC12GA was compatible with Shell 405, and that thrusters with KC12GA might have longer life than thrusters with Shell 405. This paper reports our comparison of Shell 405 and KC12GA applied to JAXA/lA monopropellant thrusters.

  15. Hall-Effect Thruster Utilizing Bismuth as Propellant

    Science.gov (United States)

    Szabo, James; Gasdaska, Charles; Hruby, Vlad; Robin, Mike

    2008-01-01

    A laboratory-model Hall-effect spacecraft thruster was developed that utilizes bismuth as the propellant. Xenon was used in most prior Hall-effect thrusters. Bismuth is an attractive alternative because it has a larger atomic mass, a larger electron-impact-ionization cross-section, and is cheaper and more plentiful.

  16. Effects of Enhanced Eathode Electron Emission on Hall Thruster Operation

    Energy Technology Data Exchange (ETDEWEB)

    Y. Raitses, A. Smirnov and N. J. Fisch

    2009-04-24

    Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steadystate parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction of the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction of the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes of the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations.

  17. Azimuthal Spoke Propagation in Hall Effect Thrusters

    Science.gov (United States)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Spokes are azimuthally propagating perturbations in the plasma discharge of Hall Effect Thrusters (HETs) that travel in the E x B direction and have been observed in many different systems. The propagation of azimuthal spokes are investigated in a 6 kW HET known as the H6 using ultra-fast imaging and azimuthally spaced probes. A spoke surface is a 2-D plot of azimuthal light intensity evolution over time calculated from 87,500 frames/s videos. The spoke velocity has been determined using three methods with similar results: manual fitting of diagonal lines on the spoke surface, linear cross-correlation between azimuthal locations and an approximated dispersion relation. The spoke velocity for three discharge voltages (300, 400 and 450 V) and three anode mass flow rates (14.7, 19.5 and 25.2 mg/s) yielded spoke velocities between 1500 and 2200 m/s across a range of normalized magnetic field settings. The spoke velocity was inversely dependent on magnetic field strength for low B-field settings and asymptoted at B-field higher values. The velocities and frequencies are compared to standard drifts and plasma waves such as E x B drift, electrostatic ion cyclotron, magnetosonic and various drift waves. The empirically approximated dispersion relation yielded a characteristic velocity that matched the ion acoustic speed for 5 eV electrons that exist in the near-anode and near-field plume regions of the discharge channel based on internal measurements. Thruster performance has been linked to operating mode where thrust-to-power is maximized when azimuthal spokes are present so investigating the underlying mechanism of spokes will benefit thruster operation.

  18. Simplified power supplies for ion thrusters

    Science.gov (United States)

    Gruber, R. P.

    1981-01-01

    A program addressing less complex and potentially lower cost ion thruster systems has been started at the NASA Lewis Research Center. This paper discusses the initial development and demonstration of power supplies with an order of magnitude reduction in parts count, leading to increased reliability at lower weight, while still maintaining thrust system performance. Two new self-regulating keeper power supply circuits were developed and tested. One supply comprises 14 parts and uses an input voltage range of 18 to 36 volts, the other operates from 200 to 400 volts and requires 22 components. A new technique for controlling heater power is also demonstrated.

  19. Small satellites are beautiful. [Ion thruster propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Furniss, Tim

    AEA Technology, the commercial arm of the UK Atomic Energy Authority, is conducting an internally funded, detailed definition study of a spacecraft 'bus' and propulsion system for small, economical, off-the-shelf satellites, launched quickly by low cost boosters. These 'lightsats', as they are called, could use an ion thruster to increase payload capability or launcher enhancement. This article discusses the concept and its novel propulsion system, which may fly a demonstration mission later this decade. (Author).

  20. Global model of an iodine gridded plasma thruster

    Science.gov (United States)

    Grondein, P.; Lafleur, T.; Chabert, P.; Aanesland, A.

    2016-03-01

    Most state-of-the-art electric space propulsion systems such as gridded and Hall effect thrusters use xenon as the propellant gas. However, xenon is very rare, expensive to produce, and used in a number of competing industrial applications. Alternatives to xenon are currently being investigated, and iodine has emerged as a potential candidate. Its lower cost and larger availability, its solid state at standard temperature and pressure, its low vapour pressure and its low ionization potential make it an attractive option. In this work, we compare the performances of a gridded ion thruster operating separately with iodine and xenon, under otherwise identical conditions using a global model. The thruster discharge properties such as neutral, ion, and electron densities and electron temperature are calculated, as well as the thruster performance parameters such as thrust, specific impulse, and system efficiencies. For similar operating conditions, representative of realistic thrusters, the model predicts similar thrust levels and performances for both iodine and xenon. The thruster efficiency is however slightly higher for iodine compared with xenon, due to its lower ionization potential. This demonstrates that iodine could be a viable alternative propellant for gridded plasma thrusters.

  1. Cassini Thruster Calibration Algorithm Using Reaction Wheel Biasing Data

    Science.gov (United States)

    Rizvi, Farheen

    2012-01-01

    Thrust force estimates for the reaction control thrusters on-board Cassini spacecraft are presented in this paper. Cassini consists of two thruster branches (A and B) each with eight thrusters. The four Z-thrusters control the X and Y-axes, while the four Y-thrusters control the Z-axis. It is important to track the thrust force estimates in order to detect any thruster degradation and for supporting various activities in spacecraft operations (Titan flyby, spacecraft maneuvers). The Euler equation, which describes the rotational motion of the spacecraft during a reaction wheel bias event, is used to develop the algorithm. The thrust estimates are obtained from the pseudo inverse solution using flight telemetry during the bias. Results show that the A-branch Z3A and Z4A thrusters exhibited degraded thrust in November 2008. Due to the degraded thrust performance of Z3A and Z4A, A-branch usage was discontinued and prime branch was swapped to B-branch in March 2009. The thrust estimates from the B-branch do not show any degradation to date. The algorithm is used to trend the B-branch thrust force estimates as the mission continues.

  2. BowTieBuilder: modeling signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Schröder Adrian

    2009-06-01

    Full Text Available Abstract Background Sensory proteins react to changing environmental conditions by transducing signals into the cell. These signals are integrated into core proteins that activate downstream target proteins such as transcription factors (TFs. This structure is referred to as a bow tie, and allows cells to respond appropriately to complex environmental conditions. Understanding this cellular processing of information, from sensory proteins (e.g., cell-surface proteins to target proteins (e.g., TFs is important, yet for many processes the signaling pathways remain unknown. Results Here, we present BowTieBuilder for inferring signal transduction pathways from multiple source and target proteins. Given protein-protein interaction (PPI data signaling pathways are assembled without knowledge of the intermediate signaling proteins while maximizing the overall probability of the pathway. To assess the inference quality, BowTieBuilder and three alternative heuristics are applied to several pathways, and the resulting pathways are compared to reference pathways taken from KEGG. In addition, BowTieBuilder is used to infer a signaling pathway of the innate immune response in humans and a signaling pathway that potentially regulates an underlying gene regulatory network. Conclusion We show that BowTieBuilder, given multiple source and/or target proteins, infers pathways with satisfactory recall and precision rates and detects the core proteins of each pathway.

  3. Numerical simulations of Mach stem formation via intersecting bow shocks

    Science.gov (United States)

    Hansen, E. C.; Frank, A.; Hartigan, P.; Yirak, K.

    2015-12-01

    Hubble Space Telescope observations show bright knots of Hα emission within outflowing young stellar jets. Velocity variations in the flow create secondary bow shocks that may intersect and lead to enhanced emission. When the bow shocks intersect at or above a certain critical angle, a planar shock called a Mach stem is formed. These shocks could produce brighter Hα emission since the incoming flow to the Mach stem is parallel to the shock normal. In this paper we report first results of a study using 2-D numerical simulations designed to explore Mach stem formation at the intersection of bow shocks formed by hypersonic "bullets" or "clumps". Our 2-D simulations show how the bow shock shapes and intersection angles change as the adiabatic index γ changes. We show that the formation or lack of a Mach stem in our simulations is consistent with the steady-state Mach stem formation theory. Our ultimate goal, which is part of an ongoing research effort, is to characterize the physical and observational consequences of bow shock intersections including the formation of Mach stems.

  4. Optimisation of a quantum pair space thruster

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2012-06-01

    Full Text Available The paper addresses the problem of propulsion for long term space missions. Traditionally a space propulsion unit has a propellant mass which is ejected trough a nozzle to generate thrust; this is also the case with inert gases energized by an on-board power unit. Unconventional methods for propulsion include high energy LASERs that rely on the momentum of photons to generate thrust. Anti-matter has also been proposed for energy storage. Although the momentum of ejected gas is significantly higher, the LASER propulsion offers the perspective of unlimited operational time – provided there is a power source. The paper will propose the use of the quantum pair formation for generating a working mass, this is different than conventional anti-matter thrusters since the material particles generated are used as propellant not as energy storage.Two methods will be compared: LASER and positron-electron, quantum pair formation. The latter will be shown to offer better momentum above certain energy levels.For the demonstrations an analytical solution is obtained and provided in the form of various coefficients. The implications are, for now, theoretical however the practicality of an optimized thruster using such particles is not to be neglected for long term space missions.

  5. Transient tests on an MHD thruster

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, E.S. (Purdue Univ., Hammond, IN (United States). Dept. of Engineering); Libera, J.; Petrick, M. (Argonne National Lab., IL (United States). Energy Systems Div.)

    1993-01-01

    Three different types of transient tests were made -- coast downs to zero voltage and current under open circuit and short circuit conditions, reverses where the applied voltage was reversed to the same or a different value, and jumps where the voltage applied to the thruster was increased without a change in polarity. Most except the coast downs were dons both quickly (voltage changes as fast as possible) and slowly (6 s to complete the voltage change). A few slower (12 s) transients were done. Transient runs were made for water conductivities of 16.2 and 5.09 S/m. In all cases steady-state conditions were established and several seconds of data taken before initiating the transients. Data were measured every 0.75 to 1 .5 second over the time interval of interest. Particular attention was paid to looking for evidence of gas bubbles, and to the chance of the voltage profiles between the electrodes. The data are interpreted based on the behavior of the power supply and the thruster.

  6. High temperature thruster technology for spacecraft propulsion

    Science.gov (United States)

    Schneider, Steven J.

    A technology program has been underway since 1985 to develop high temperature oxidation-resistant thrusters for spacecraft applications. The successful development of this technology will provide the basis for the design of higher performance satellite engines with reduced plume contamination. Alternatively, this technology program will provide a material with high thermal margin to operate at conventional temperatures and provide increased life for refuelable or reusable spacecraft. The new chamber material consists of a rhenium substrate coated with iridium for oxidation protection. This material increases the operating temperature of thrusters to 2200°C, a significant increase over the 1400°C of the silicide-coated niobium chambers currently used. Stationkeeping class 22 N engines fabricated from iridium-coated rhenium have demonstrated steady state specific impulses 20 to 25 seconds higher than niobium chambers. Ir-Re apogee class 440 N engines are expected to deliver an additional 10 to 15 seconds. These improved performances are obtained by reducing or eliminating the fuel film cooling requirements in the combustion chamber while operating at the same overall mixture ratio as conventional engines. The program is attempting to envelope flight qualification requirements to reduce the potential risks and costs of flight qualification programs.

  7. Sputtering erosion in ion and plasma thrusters

    Science.gov (United States)

    Ray, Pradosh K.

    1995-08-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  8. Performance and flow characteristics of MHD seawater thruster

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  9. Bow and Oblique Shock Formation in Soap Film

    Science.gov (United States)

    Kim, Ildoo; Mandre, Shreyas; Sane, Aakash

    2015-11-01

    In recent years, soap films have been exploited primarily to approximate two-dimensional flows while their three-dimensional character is relatively unattended. An example of the three-dimensional character of the flow in a soap film is the observed Marangoni shock wave when the flow speed exceeds the wave speed. In this study, we investigated the formation of bow and oblique shocks in soap films generated by wedges with different deflection angles. When the wedge deflection angle is small and the film flows fast, oblique shocks are observed. When the oblique shock cannot exists, bow shock is formed upstream the wedge. We characterized the oblique shock angle as a function of the wedge deflection angle and the flow speed, and we also present the criteria for transition between bow and oblique Marangoni shocks in soap films.

  10. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    CERN Document Server

    Mann, Christopher R; Morris, Melissa M

    2016-01-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo's eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adia...

  11. Foreshock ions observed behind the Martian bow shock

    Science.gov (United States)

    Frahm, R. A.; Yamauchi, M.; Winningham, J. D.; Lundin, R.; Sharber, J. R.; Nilsson, H.; Coates, A. J.

    2016-08-01

    The Mars Express Analyzer of Space Plasmas and Energetic Atoms experiment contains ion and electron instruments for conducting plasma measurements. On January 23, 2012, during in-bound travel of Mars Express in the southern hemisphere of Mars from its dawn side toward periapsis at dusk, the plasma instruments measured foreshock-like ion beams extending from outside the bow shock and into the magnetosphere, continuing to a distance of about a proton gyroradius from the bow shock. These ion beams were mostly protons, were observed to have energies greater than solar wind protons, and were not gyrating, in agreement with reflections of the solar wind proton beam. Furthermore, in the foreshock region the ion energy gradually decreased toward the magnetosheath, in agreement with an acceleration by outward-directed electric field in the bowshock. The observations also suggest that this electric field exists even inside the magnetosheath within the distance of a proton gyroradius from the bow shock.

  12. [Forensic medical characteristics of the injuries inflicted by modern sport bow].

    Science.gov (United States)

    Babakhanian, R V; Isakov, V D; Gusev, N Iu; Lebedev, V N

    2006-01-01

    Modern bows are classified as representatives of darts. Construction characteristics of bows and arrows, damage to experimental cotton targets from shooting distance of 1-15 m are described. PMID:16826840

  13. Smashing the Guitar: An Evolving Neutron Star Bow Shock

    OpenAIRE

    S Chatterjee; Cordes, J. M.

    2003-01-01

    The Guitar nebula is a spectacular example of an H-alpha bow shock nebula produced by the interaction of a neutron star with its environment. The radio pulsar B2224+65 is traveling at ~800--1600 km/s (for a distance of 1--2 kpc), placing it on the high-velocity tail of the pulsar velocity distribution. Here we report time evolution in the shape of the Guitar nebula, the first such observations for a bow shock nebula, as seen in H-alpha imaging with the Hubble Space Telescope. The morphology o...

  14. Understanding CANDU fuel bowing in dryout: an industry approach

    International Nuclear Information System (INIS)

    Fuel element bow induced by dryout could potentially perturb the coolant flow distribution and heat transfer from the fuel element to the coolant. Some accident scenarios leading to dryout of the fuel element are: loss of power regulation pump trip, pump seizure, small and large break loss of coolant accidents. In these accidents, it is desirable to show with confidence that the fuel remains sufficiently cooled to maintain its geometry, even if it is in dryout. This can be demonstrated if fuel elements are separated from each other and from the pressure tube, with a sufficient (and stable) gap. Therefore, the prediction of the amount of bow, and its effect on heat transfer conditions is required for the assessments. The utilities have joined force in launching an experimental investigation at Stern Laboratories to characterize the bowing phenomena. This program will investigate the amount of deflection, transient and permanent, that results from accident conditions which cause a dry patch on one side of the sheath. This is expected to bound the consequences of fuel bowing due to dryout. Since the accident transients begin at full power and high coolant pressure (about 10 MPa) they generate sharp thermal gradients (dry patch) and it is necessary to develop a simulation with representative dry fuel sheath conditions initiated from a normal full power and coolant state. The amount of bow is driven by thermal gradients in both the fuel pellets and the sheath, therefore, the thermal gradients should be representative. This program is structured in a series of tests progressing from simple representation to complex simulation. It is divided into 3 experimental phases: Phase 1 - Thermalhydraulic simulation of fuel element bow by a heated tube; Phase 2 - Thermal and mechanical bow with a simulator which accounts for pellet / fuel sheath interaction with internal pellet temperature distributions; and Phase 3 - Fuel element bow with a simulator using Zircaloy-4 fuel sheath

  15. A Multichannel THz Detector Using Integrated Bow-Tie Antennas

    OpenAIRE

    Hairui Liu; Junsheng Yu; Peter Huggard; Byron Alderman

    2013-01-01

    This paper presents a kind of a multichannel THz detector using lens-based bow-tie array. A hyperhemispherical silicon lens is employed to provide a focal plane; 8 bow-tie elements are arranged on the focal plane with careful design to show a performance of broadband, high gain, well compact, and easy assembling. These characteristics of the detector are preferred for detecting weak THz signal. Measured far field shows that the radiation pattern of each element is shifted angularly, by ≈9°, w...

  16. Crushing of ship bows in head-on collision

    DEFF Research Database (Denmark)

    Ocakli, H.; Zhang, S.; Pedersen, Preben Terndrup

    2004-01-01

    Semi-analytical methods for analysis of plate crushing and ship bow damage in head-on collisions are developed in this paper. Existing experimental and theoretical studies for crushing analysis of plated structures are summarized and compared. Simple formulae for determining the crushing force...... approach developed can be used easily to determine the crushing resistance and damage extent of the ship bow when ship length and collision speed are known. The method can be used in probabilistic analysis of damage extents in ship collisions where a large number of calculations are generally required....

  17. Self consistent kinetic simulations of SPT and HEMP thrusters including the near-field plume region

    CERN Document Server

    Matyash, K; Mutzke, A; Kalentev, O; Taccogna, F; Koch, N; Schirra, M

    2009-01-01

    The Particle-in-Cell (PIC) method was used to study two different ion thruster concepts - Stationary Plasma Thrusters (SPT) and High Efficiency Multistage Plasma Thrusters (HEMP-T), in particular the plasma properties in the discharge chamber due to the different magnetic field configurations. Special attention was paid to the simulation of plasma particle fluxes on the thrusters channel surfaces. In both cases, PIC proved itself as a powerful tool, delivering important insight into the basic physics of the different thruster concepts. The simulations demonstrated that the new HEMP thruster concept allows for a high thermal efficiency due to both minimal energy dissipation and high acceleration efficiency. In the HEMP thruster the plasma contact to the wall is limited only to very small areas of the magnetic field cusps, which results in much smaller ion energy flux to the thruster channel surface as compared to SPT. The erosion yields for dielectric discharge channel walls of SPT and HEMP thrusters were calc...

  18. Magnesium Hall Thruster for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to prove the feasibility of a Mg Hall effect thruster system that would open the door for In-Situ Resource Utilization (ISRU) based solar system...

  19. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek is developing a high throughput nominal 100-W Hall Effect Thruster. This device is well sized for spacecraft ranging in size from several tens of kilograms to...

  20. Magnesium Hall Thruster for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation being developed in this program is a Mg Hall Effect Thruster system that would open the door for In-Situ Resource Utilization based solar system...

  1. 20mN, Variable Specific Impulse Colloid Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During Phase I, Busek designed and manufactured an electrospray emitter capable of generating 20 mN in a 7" x 7" x 1.7" package. The thruster consists of nine...

  2. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high throughput, nominal 100 W Hall Effect Thruster (HET). This HET will be sized for small spacecraft (< 180 kg), including...

  3. High Performance Power Module for Hall Effect Thrusters

    Science.gov (United States)

    Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.

    2002-01-01

    Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.

  4. High Input Voltage Hall Thruster Discharge Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall scope of this Phase I/II effort is the development of a high efficiency 15kW (nominal) Hall thruster discharge converter. In Phase I, Busek Co. Inc....

  5. Radio Frequency Micro Ion Thruster for Precision Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop radio frequency discharge, gridded micro-ion thruster that produces sub-mN thrust precisely adjustable over a wide dynamic thrust range....

  6. Radio Frequency Micro Ion Thruster for Precision Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to continue development of an engineering model radio frequency discharge, gridded micro ion thruster that produces sub-mN to mN thrust precisely...

  7. Long Life Cold Cathodes for Hall effect Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...

  8. Four Thruster Microfluidic Electrospray Propulsion (MEP) Cubesat Board Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cubesat Microfluidic Electrospray Propulsion (MEP) system module prototype will be designed, built and tested to demonstrate that a four MEP thruster system can...

  9. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I program we successfully demonstrated the feasibility of the Pulsed ElectroGasdynamic (PEG) thruster for attitude control and orbital maneuvering. In...

  10. A High Performance Cathode Heater for Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High current hollow cathodes are the baseline electron source for next generation high power Hall thrusters. Currently for electron sources providing current levels...

  11. Three Phase Resonant DC Power Converter for Ion Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The new generation of, high performance electric propulsion missions will require high mass throughput and most likely the use of grided ion thruster equipped with...

  12. 20mN, Variable Specific Impulse Colloid Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Colloid thrusters have long been known for their exceptional thrust efficiency and ability to operate over a range of specific impulse due to easily variable...

  13. Thrust loss on azimuthing thrusters due to Coanda effect

    OpenAIRE

    Fjørtoft, Henrik

    2010-01-01

    The main objectives in this master's thesis is to investigate how the Coanda effect influences a thruster jet which further causes a thrust loss.The tendency of a thruster slipstream to be deflected towards a nearby surface, for most practical situations the hull of a vessel, is called the Coanda effect and is likely to produce a significant thrust loss under certain geometric conditions.The approach in this master's thesis is to perform an experiment measuring the direct thrust loss related ...

  14. Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters

    Science.gov (United States)

    Pfaff, Michael

    Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.

  15. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbances

    DEFF Research Database (Denmark)

    Tatrallyay, M.; Erdos, G.; Nemeth, Z.;

    2012-01-01

    by the Cluster spacecraft were best predicted by the 3-D model of Lin et al. (2010). The applied empirical bow shock models and the 3-D semi-empiric bow shock model combined with magnetohydrodynamic (MHD) solution proved to be insufficient for predicting the observed unusual bow shock locations during large...

  16. 77 FR 19661 - City of Broken Bow, OK; Notice of Technical Conference

    Science.gov (United States)

    2012-04-02

    ... Energy Regulatory Commission City of Broken Bow, OK; Notice of Technical Conference March 21, 2012. Take.... Forest Service on November 16, 2007 for the Broken Bow Re-Regulation Dam Hydroelectric Project No. 12470.... Forest Service's Hochatown Office, Route 4, Broken Bow, OK 74728. All local, state, and federal...

  17. Laser-Driven Mini-Thrusters

    International Nuclear Information System (INIS)

    Laser-driven mini-thrusters were studied using Delrin registered and PVC (Delrin registered is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse

  18. NASA Brief: Q-Thruster Physics

    Science.gov (United States)

    White, Harold

    2013-01-01

    Q-thrusters are a low-TRL form of electric propulsion that operates on the principle of pushing off of the quantum vacuum. A terrestrial analog to this is to consider how a submarine uses its propeller to push a column of water in one direction, while the sub recoils in the other to conserve momentum -the submarine does not carry a "tank" of sea water to be used as propellant. In our case, we use the tools of Magnetohydrodynamics (MHD) to show how the thruster pushes off of the quantum vacuum which can be thought of as a sea of virtual particles -principally electrons and positrons that pop into and out of existence, and where fields are stronger, there are more virtual particles. The idea of pushing off the quantum vacuum has been in the technical literature for a few decades, but to date, the obstacle has been the magnitude of the predicted thrust which has been derived analytically to be very small, and therefore not likely to be useful for human spaceflight. Our recent theoretical model development and test data suggests that we can greatly increase the magnitude of the negative pressure of the quantum vacuum and generate a specific force such that technology based on this approach can be competitive for in-space propulsion approx. 0.1N/kW), and possibly for terrestrial applications (approx. 10N/kW). As an additional validation of the approach, the theory allows calculation of physics constants from first principles: Gravitational constant, Planck constant, Bohr radius, dark energy fraction, electron mass.

  19. Performance Evaluation of the Prototype Model NEXT Ion Thruster

    Science.gov (United States)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The performance testing results of the first prototype model NEXT ion engine, PM1, are presented. The NEXT program has developed the next generation ion propulsion system to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. The PM1 thruster exhibits operational behavior consistent with its predecessors, the engineering model thrusters, with substantial mass savings, enhanced thermal margins, and design improvements for environmental testing compliance. The dry mass of PM1 is 12.7 kg. Modifications made in the thruster design have resulted in improved performance and operating margins, as anticipated. PM1 beginning-of-life performance satisfies all of the electric propulsion thruster mission-derived technical requirements. It demonstrates a wide range of throttleability by processing input power levels from 0.5 to 6.9 kW. At 6.9 kW, the PM1 thruster demonstrates specific impulse of 4190 s, 237 mN of thrust, and a thrust efficiency of 0.71. The flat beam profile, flatness parameters vary from 0.66 at low-power to 0.88 at full-power, and advanced ion optics reduce localized accelerator grid erosion and increases margins for electron backstreaming, impingement-limited voltage, and screen grid ion transparency. The thruster throughput capability is predicted to exceed 750 kg of xenon, an equivalent of 36,500 hr of continuous operation at the full-power operating condition.

  20. Design and model experiments on thruster assisted mooring system; Futaishiki kaiyo kozobutsu no thruster ni yoru choshuki doyo seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Koterayama, W. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Kajiwara, H. [Kyushu Institute of Technology, Kitakyushu (Japan). Faculty of Computer Science and System Engineering; Hyakudome, T. [Kyushu University, Fukuoka (Japan)

    1996-12-31

    Described herein are dynamics and model experiments of the system in which positioning of a floating marine structure by mooring is combined with thruster-controlled positioning. Coefficients of dynamic forces acting on a floating structure model are determined experimentally and by the three-dimensional singularity distribution method, and the controller is designed by the PID, LQI and H{infinity} control theories. A model having a scale ratio of 1/100 was used for the experiments, where 2 thrusters were arranged in a diagonal line, one on the X-axis. It is found that the LQI and H{infinity} controllers of the thruster can control long-cycle rolling of the floating structure. They allow thruster control which is insensitive to wave cycle motion, and efficiently reduce positioning energy. The H{infinity} control regulates frequency characteristics of a closed loop more finely than the LQI control, and exhibits better controllability. 25 refs., 25 figs.

  1. Ion acoustic stability analysis of the earth's bow shock

    Science.gov (United States)

    Greenstadt, E. W.; Scarf, F. L.; Formisano, V.; Russell, C. T.; Neugebauer, M.

    1978-01-01

    A marginal stability criterion for ion acoustic waves is applied to the analysis of five thin bow shock crossings observed by OGO-5; the observations began with the satellite in the magnetosheath. The assumption of marginally stable ion acoustic wave generation in the shock ramp provides the basis for determining the thickness of the magnetic gradients for subcritical, quasi-perpendicular shock features.

  2. Application of Bow-tie methodology to improve patient safety.

    Science.gov (United States)

    Abdi, Zhaleh; Ravaghi, Hamid; Abbasi, Mohsen; Delgoshaei, Bahram; Esfandiari, Somayeh

    2016-05-01

    Purpose - The purpose of this paper is to apply Bow-tie methodology, a proactive risk assessment technique based on systemic approach, for prospective analysis of the risks threatening patient safety in intensive care unit (ICU). Design/methodology/approach - Bow-tie methodology was used to manage clinical risks threatening patient safety by a multidisciplinary team in the ICU. The Bow-tie analysis was conducted on incidents related to high-alert medications, ventilator associated pneumonia, catheter-related blood stream infection, urinary tract infection, and unwanted extubation. Findings - In total, 48 potential adverse events were analysed. The causal factors were identified and classified into relevant categories. The number and effectiveness of existing preventive and protective barriers were examined for each potential adverse event. The adverse events were evaluated according to the risk criteria and a set of interventions were proposed with the aim of improving the existing barriers or implementing new barriers. A number of recommendations were implemented in the ICU, while considering their feasibility. Originality/value - The application of Bow-tie methodology led to practical recommendations to eliminate or control the hazards identified. It also contributed to better understanding of hazard prevention and protection required for safe operations in clinical settings. PMID:27142951

  3. Hierarchical modularity of nested bow-ties in metabolic networks

    Directory of Open Access Journals (Sweden)

    Luo Jian-Hua

    2006-08-01

    Full Text Available Abstract Background The exploration of the structural topology and the organizing principles of genome-based large-scale metabolic networks is essential for studying possible relations between structure and functionality of metabolic networks. Topological analysis of graph models has often been applied to study the structural characteristics of complex metabolic networks. Results In this work, metabolic networks of 75 organisms were investigated from a topological point of view. Network decomposition of three microbes (Escherichia coli, Aeropyrum pernix and Saccharomyces cerevisiae shows that almost all of the sub-networks exhibit a highly modularized bow-tie topological pattern similar to that of the global metabolic networks. Moreover, these small bow-ties are hierarchically nested into larger ones and collectively integrated into a large metabolic network, and important features of this modularity are not observed in the random shuffled network. In addition, such a bow-tie pattern appears to be present in certain chemically isolated functional modules and spatially separated modules including carbohydrate metabolism, cytosol and mitochondrion respectively. Conclusion The highly modularized bow-tie pattern is present at different levels and scales, and in different chemical and spatial modules of metabolic networks, which is likely the result of the evolutionary process rather than a random accident. Identification and analysis of such a pattern is helpful for understanding the design principles and facilitate the modelling of metabolic networks.

  4. Numerical Simulations of Mach Stem Formation via Intersecting Bow Shocks

    CERN Document Server

    Hansen, Edward C; Hartigan, Patrick

    2014-01-01

    Hubble Space Telescope observations show bright knots of H$\\alpha$ emission within outflowing young stellar jets. Velocity variations in the flow create secondary bow shocks that may intersect and lead to enhanced emission. When the bow shocks intersect at or above a certain critical angle, a planar shock called a Mach stem is formed. These shocks could produce brighter H$\\alpha$ emission since the incoming flow to the Mach stem is parallel to the shock normal. In this paper we report first results of a study using 2-D numerical simulations designed to explore Mach stem formation at the intersection of bow shocks formed by hypersonic "bullets" or "clumps". Our 2-D simulations show how the bow shock shapes and intersection angles change as the adiabatic index $\\gamma$ changes. We show that the formation or lack of a Mach stem in our simulations is consistent with the steady-state Mach stem formation theory. Our ultimate goal, which is part of an ongoing research effort, is to characterize the physical and obse...

  5. THE JET-DRIVEN BOW SHOCK IN OUTFLOWS

    Institute of Scientific and Technical Information of China (English)

    ZhangQing; ZhengXingwu

    1999-01-01

    Recent high resolution observations show the high collimated bipolar molecular outflows from young stellar objects, such as NGC 2 264G and NGC 2 024. Existing models can not yet give complete interpretations of the structure and properties of the observed flow. Here, we propose a jet-driven bow

  6. Modeling non-thermal emission from stellar bow shocks

    CERN Document Server

    Pereira, V; Miceli, M; Bonito, R; de Castro, E

    2016-01-01

    Runaway O- and early B-type stars passing throughout the interstellar medium at supersonic velocities and characterized by strong stellar winds may produce bow shocks that can serve as particle acceleration sites. Previous theoretical models predict the production of high energy photons by non-thermal radiative processes, but their efficiency is still debated. We aim to test and explain the possibility of emission from the bow shocks formed by runaway stars traveling through the interstellar medium by using previous theoretical models. We apply our model to AE Aurigae, the first reported star with an X-ray detected bow shock, to BD+43 3654, in which the observations failed in detecting high energy emission, and to the transition phase of a supergiant star in the late stages of its life.From our analysis, we confirm that the X-ray emission from the bow shock produced by AE Aurigae can be explained by inverse Compton processes involving the infrared photons of the heated dust. We also predict low high energy fl...

  7. Fatigue analysis of the bow structure of FPSO

    Institute of Scientific and Technical Information of China (English)

    HU Zhi-qiang; GAO Zhen; GU Yong-ning

    2003-01-01

    The bow structure of FPSO moored by the single mooring system is rather complicated. There are many potential hot spots in connection parts of structures between the mooring support frame and the forecastle. Mooring forces, which are induced by wave excitation and transferred by the YOKE and the mooring support frame, may cause fatigue damage to the bow structure. Different from direct wave-induced-forces, the mooring force consists of wave frequency force (WF) and 2nd draft low frequency force (LF)[3], which are represented by two sets of short-term distribution respectively. Based on two sets of short-term distribution of mooring forces obtained by the model test, the fatigue damage of the bow structure of FPSO is analyzed, with emphasis on two points. One is the procedure and position selection for fatigue check, and the other is the application of new formulae for the calculation of accumulative fatigue damage caused by two sets of short-term distribution of hot spot stress range. From the results distinguished features of fatigue damage to the FPSO's bow structure can be observed.

  8. Double tibial osteotomy for bow leg patients: A case series

    Directory of Open Access Journals (Sweden)

    Khalilollah Nazem

    2013-01-01

    Full Text Available Background: High tibia osteotomy (HTO is a common surgical operation for correction of genu varum deformity. In some patients, there are concurrent tibia vara and genu varum (bow leg. This study aimed to consider the possibility of better correction of bow leg deformity after double level tibial osteotomy (DLTO. Materials and Methods: A case series of 10 patients of genu varum in addition to tibia vara (bow leg deformity who were referred to orthopedic ward of an academic hospital of Isfahan- Iran during 2009-2011 were included in the study. The mean age was 17.3 ± 3.1 years and all of them underwent DLTO. The results of treatment have been assessed based on clinical and radiological parameters before and after surgery. Results: The mean pre- and post operative values for Tibia-Femoral Angle, Medial Proximal of Tibia Angle (MPTA, and Lateral Distal of Tibia Angle (LDTA were 18.13 ± 3.05° vs. 3.93 ± 0.66°, 79.13 ± 3.4° vs. 89.7 ± 1.8° and 96.40 ± 1.8° vs. 88.73 ± 3.0° respectively (P < 0.05. Improvement of all radiological parameters was meaningful. Seventy three percent of patients had normal mechanical axis of limb after surgery. The remaining cases had varus deformity in distal femur that was corrected by valgus supracondylar osteotomy in an additional operation. Limited range of motion (ROM near knee and ankle was not observed. Conclusion : DLTO correct bow leg deformity in the point of alignment of limb and paralleling of knee and ankle joint more effectively. This method can be used in metabolic and congenital bow leg which deformities are present in throughout of the lower limb. We described this technique for the first time.

  9. New Performance and Reliability Results of the Thales HEMP Thruster

    Science.gov (United States)

    Kornfeld, G.; Koch, N.; Harmann, H.

    2004-10-01

    Electric Propulsion (EP), attracts in the last years an increasing interest for all types of space applications as for instance the north/south station-keeping and orbit transfer of commercial GEO-stationary satellites, the drag compensation for LEO- and MEO- satellites and constellations and navigation for scientific interplanetary missions. Reasons for that, as summarised in [1], are: - The propellant mass savings compared with chemical thrusters in the order of more than 90%. - The increasing availability of sufficient electric power on board of satellites (today >10 kW). - The demonstrated in orbit performance and life over more than 10 years of various thruster types (Hall effect thrusters, ion thrusters, arc jets). A new concept of a High Efficiency Multi-stage Plasma (HEMP) thruster to be used for satellite and space probe orbit control and navigation has recently been developed by THALES Electron Devices GmbH in Ulm. In the framework of a 3 year feasibility study sponsored by the German Space Agency DLR the HEMP thruster concept has been successfully realised. Not only its feasibility but very promising unique features have been verified by direct thrust measurements performed at ONERA, Palaiseau, in March 2003 and at University of Gießen in July 2003. Aside the clear advantage of a plasma confinement, which eliminates discharge chamber wall erosion, the HEMP thruster has shown performance characteristics already comparable to those of state-of-the-art grid and Hall-effect thrusters which are being developed for more than 40 years. At the test in the large vacuum chamber at the University of Gießen, the HEMP thruster model DM6 demonstrated for instance a maximum thrust of 139 mN, corresponding to an electric propulsion world record thrust density of 36mN/cm2 at a specific impulse of 3230 s and a total efficiency of 40% at the same operating point. Furthermore, the thermal efficiency (conversion from electric power into kinetic beam power) reached a unique

  10. Micro Pulsed Inductive Thruster with Solid Fuel Option (uPIT_SF) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Micro Pulsed Inductive Thruster with Solid Fuel Option (5PIT_SF) is a high-precision impulse bit electromagnetic plasma micro-thruster. The 5PIT prototype is a...

  11. Lifetime Improvement of Large Scale Green Monopropellant Thrusters via Novel, Long-Life Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop and life-test a flight-weight, 5N class green monopropellant thruster in Phase II. The most important feature that sets this thruster...

  12. High Performance Plasma Channel Insulators for High Power Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA missions for planetary exploration require high power, long-life Hall thrusters. However, thruster power and lifetime are limited by the erosion of plasma...

  13. Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop a flight version of a high power Hall Effect thruster. While numerous high power Hall Effect thrusters have been demonstrated in the...

  14. Injector design and test for a high power electrodeless plasma thruster

    OpenAIRE

    Delanoë, Romain

    2011-01-01

    The HPEP (High Performance Electric Propulsion) thruster is expected to be the outcomecof an innovative project initiated by the Swedish Space Corporation. It combines the concept of a 10 kW electrodeless plasma thruster designed by the Elwing Company and the ADN based monopropellant LMP-103S developed by ECAPS and used in the HPGP thrusters of the Prisma Satellites. Using a chemically energetic propellant in an EP thruster will allow mass and cost reduction by providing two propulsion system...

  15. Modeling Neutral Densities Downstream of a Gridded Ion Thruster

    Science.gov (United States)

    Soulas, George C.

    2010-01-01

    The details of a model for determining the neutral density downstream of a gridded ion thruster are presented. An investigation of the possible sources of neutrals emanating from and surrounding a NEXT ion thruster determined that the most significant contributors to the downstream neutral density include discharge chamber neutrals escaping through the perforated grids, neutrals escaping from the neutralizer, and vacuum facility background neutrals. For the neutral flux through the grids, near- and far-field equations are presented for rigorously determining the neutral density downstream of a cylindrical aperture. These equations are integrated into a spherically-domed convex grid geometry with a hexagonal array of apertures for determining neutral densities downstream of the ion thruster grids. The neutrals escaping from an off-center neutralizer are also modeled assuming diffuse neutral emission from the neutralizer keeper orifice. Finally, the effect of the surrounding vacuum facility neutrals is included and assumed to be constant. The model is used to predict the neutral density downstream of a NEXT ion thruster with and without neutralizer flow and a vacuum facility background pressure. The impacts of past simplifying assumptions for predicting downstream neutral densities are also examined for a NEXT ion thruster.

  16. 4.5-kW Hall Effect Thruster Evaluated

    Science.gov (United States)

    Mason, Lee S.

    2000-01-01

    As part of an Interagency Agreement with the Air Force Research Lab (AFRL), a space simulation test of a Russian SPT 140 Hall Effect Thruster was completed in September 1999 at Vacuum Facility 6 at the NASA Glenn Research Center at Lewis Field. The thruster was subjected to a three-part test sequence that included thrust and performance characterization, electromagnetic interference, and plume contamination. SPT 140 is a 4.5-kW thruster developed under a joint agreement between AFRL, Atlantic Research Corp, and Space Systems/Loral, and was manufactured by the Fakal Experimental Design Bureau of Russia. All objectives were satisfied, and the thruster performed exceptionally well during the 120-hr test program, which comprised 33 engine firings. The Glenn testing provided a critical contribution to the thruster development effort, and the large volume and high pumping speed of this vacuum facility was key to the test s success. The low background pressure (1 10 6 torr) provided a more accurate representation of space vacuum than is possible in most vacuum chambers. The facility had been upgraded recently with new cryogenic pumps and sputter shielding to support the active electric propulsion program at Glenn. The Glenn test team was responsible for all test support equipment, including the thrust stand, power supplies, data acquisition, electromagnetic interference measurement equipment, and the contamination measurement system.

  17. Particle-in-cell simulations of Hall plasma thrusters

    Science.gov (United States)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  18. Thrust Stand Measurements of a Conical Pulsed Inductive Plasma Thruster

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters can su er from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA)[4], shown in Fig. 1 is a pulsed inductive plasma thruster that is able to operate at lower pulse energies by partially ionizing propellant with an electron cyclotron resonance (ECR) discharge inside a conical inductive coil whose geometry serves to potentially increase propellant and plasma plume containment relative to at coil geometries. The ECR plasma is created with the use of permanent mag- nets arranged to produce a thin resonance region along the inner surface of the coil, restricting plasma formation and, in turn, current sheet formation to areas of high magnetic coupling to the driving coil.

  19. A Multichannel THz Detector Using Integrated Bow-Tie Antennas

    Directory of Open Access Journals (Sweden)

    Hairui Liu

    2013-01-01

    Full Text Available This paper presents a kind of a multichannel THz detector using lens-based bow-tie array. A hyperhemispherical silicon lens is employed to provide a focal plane; 8 bow-tie elements are arranged on the focal plane with careful design to show a performance of broadband, high gain, well compact, and easy assembling. These characteristics of the detector are preferred for detecting weak THz signal. Measured far field shows that the radiation pattern of each element is shifted angularly, by ≈9°, which can be used for THz imaging. Tested responsivity of the detector shows a good spectral performance from 260 to 400 GHz: respective values were ≥220 V/W, and the best NEP is achieved at about 60 pW/. Besides that, the proposed antenna has advantages of simple structure, easy fabrication, and low cost.

  20. Breaking the BOWS Watermarking System: Key Guessing and Sensitivity Attacks

    Directory of Open Access Journals (Sweden)

    Comesaña Pedro

    2007-01-01

    Full Text Available From December 15, 2005 to June 15, 2006, the watermarking community was challenged to remove the watermark from 3 different 512×512 watermarked images while maximizing the peak signal-to-noise ratio (PSNR measured by comparing the watermarked signals with their attacked counterparts. This challenge, which bore the inviting name of Break Our Watermarking System (BOWS, had as its main objective to enlarge the current knowledge on attacks to watermarking systems. In this paper, the main results obtained by the authors when attacking the BOWS system are presented and compared with strategies followed by other groups. Essentially, two different approaches have been followed: exhaustive search of the secret key and blind sensitivity attacks.

  1. Cluster Close Separation at the Bow Shock Campaign: Initial Results.

    Science.gov (United States)

    Balikhin, M. A.; Sagdeev, R.; Walker, S. N.; Malkov, M.; Krasnoselskikh, V.; Khotyaintsev, Y. V.; Fazakerley, A. N.; Doss, N.

    2015-12-01

    The Cluster close separation at the terrestrial bow shock campaign was aimed at probing the terrestrial bow shock front using multi-scale spacecraft separations. The closest separation (structure of the magnetic ramp. It is shown that the magnetic field perturbations observed within the ramp along the shock normal possess spatial scales a few times shorter than the ramp region itself, and are accompanied by variations in the electric field with magnitudes of a few tens mV/m. Using dual spacecraft measurements enables us to show that in the plane of the shock front the characteristic width of these structures corresponds to electron scales. Comparison of the magnetic field profile obtained from Cluster 3 and 4 indicates possibility that the initial stage of the front reformation is observed. However alternative explanations ( kinetic instabilities, corrugation instability) are also discussed.

  2. Mass-loading of bow shock pulsar wind nebulae

    CERN Document Server

    Morlino, G; Vorster, M J

    2015-01-01

    We investigate the dynamics of bow shock nebulae created by pulsars moving supersonically through a partially ionized interstellar. A fraction of interstellar neutrals penetrating into the tail region of a pulsar wind will undergo photo-ionization due to the UV light emitted by the nebula, with the resulting mass loading dramatically changing the flow dynamics of the light leptonic pulsar wind. Using a quasi 1-D hydrodynamic model of both non-relativistic and relativistic flow, and focusing on scales much larger than the stand-off distance, we find that a relatively small density of neutrals, as low as $n_{\\rm ISM}=10^{-4}\\,\\text{cm}^{-3}$, is sufficient to strongly affect the tail flow. Mass loading leads to the fast expansion of the pulsar wind tail, making the tail flow intrinsically non-stationary. The shapes predicted for the bow shock nebulae compare well with observations, both in H$\\alpha$ and X-rays.

  3. Face bow and articulator for planning orthognathic surgery: 2 articulator.

    Science.gov (United States)

    Walker, Fraser; Ayoub, Ashraf F; Moos, Khursheed F; Barbenel, Joseph

    2008-10-01

    Patients who require orthognathic surgery may have asymmetry of the position of the temporomandibular joints relative to the maxilla, which is impossible to reproduce on the current semiadjustable articulators used for surgical planning. We describe a highly-adjustable spirit level orthognathic face bow that allows records to be made of patients with asymmetrical maxillae. The orthognathic articulator also allows the position of the condylar components of the articulator to be adjusted in three dimensions. The use of the new face bow and articulator made it possible to mount the dental casts of asymmetrical faces to reproduce their clinical appearance. The devices were evaluated by comparing the measurements of anatomical variables obtained from cephalometric radiographs with equivalent values obtained from the orthognathic articulator and casts mounted on the articulator. Although the measurements showed significant intersubject variability, the angle between the horizontal and maxillary occlusal plane, occlusal cant angle, and intercondylar widths, were not significantly different.

  4. Mass-loading of bow shock pulsar wind nebulae

    CERN Document Server

    Morlino, G; Vorster, M

    2016-01-01

    We investigate the dynamics of bow shock nebulae created by pulsars moving supersonically through a partially ionized interstellar medium. A fraction of interstellar neutral hydrogen atoms penetrating into the tail region of a pulsar wind will undergo photo-ionization due to the UV light emitted by the nebula, with the resulting mass loading dramatically changing the flow dynamics of the light leptonic pulsar wind. Using a quasi 1-D hydrodynamic model of relativistic flow we find that if a relatively small density of neutral hydrogen, as low as $10^{-4}$ cm$^{-3}$, penetrate inside the pulsar wind, this is sufficient to strongly affect the tail flow. Mass loading leads to the fast expansion of the pulsar wind tail, making the tail flow intrinsically non-stationary. The shapes predicted for the bow shock nebulae compare well with observations, both in H$\\alpha$ and X-rays.

  5. Arctic Bowyery – the Use of Compression Wood in Bows in the Subarctic and Arctic Regions of Eurasia and America

    Directory of Open Access Journals (Sweden)

    Marcus Lepola

    2015-06-01

    Full Text Available This paper is a study of the traditional use of a special kind of wood in bow construction in Eurasia and North America. This special kind of wood, called compression wood and coming from coniferous trees, has unique qualities that makes it suitable for bow construction. Bows made using this special wood have been referred to as Finno-Ugric bows, Sámi bows, Two-Wood bows and Eurasia laminated bows. These bows appear to have developed from archaic forms of compression wood self bows that were made from a single piece of wood. Recently features similar to the Eurasian compression wood bows have been discovered in bows originating from Alaska, and the use of compression wood for bow manufacture has been known to some Canadian Inuit groups. This paper addresses the origin and possible diffusion pattern of this innovation in bow technology in Eurasia and suggests a timeframe and a possible source for the transfer of this knowledge to North America. This paper also discusses the role of the Asiatic composite bow in the development of bows in Eurasia.

  6. Organizing learning processes on risks by using the bow-tie representation.

    Science.gov (United States)

    Chevreau, F R; Wybo, J L; Cauchois, D

    2006-03-31

    The Aramis method proposes a complete and efficient way to manage risk analysis by using the bow-tie representation. This paper shows how the bow-tie representation can also be appropriate for experience learning. It describes how a pharmaceutical production plant uses bow-ties for incident and accident analysis. Two levels of bow-ties are constructed: standard bow-ties concern generic risks of the plant whereas local bow-ties represent accident scenarios specific to each workplace. When incidents or accidents are analyzed, knowledge that is gained is added to existing local bow-ties. Regularly, local bow-ties that have been updated are compared to standard bow-ties in order to revise them. Knowledge on safety at the global and at local levels is hence as accurate as possible and memorized in a real time framework. As it relies on the communication between safety experts and local operators, this use of the bow-ties contributes therefore to organizational learning for safety. PMID:16125315

  7. Statistical modeling of bowing control applied to violin sound synthesis

    OpenAIRE

    Maestre E.; Blaauw M.; Bonada J.; Guaus E.; Perez A.

    2010-01-01

    Excitation-continuous music instrument control patterns are often not explicitly represented in current sound synthesis techniques when applied to automatic performance. Both physical model-based and sample-based synthesis paradigms would benefit from a flexible and accurate instrument control model, enabling the improvement of naturalness and realism. We present a framework for modeling bowing control parameters in violin performance. Nearly non-intrusive sensing techniques allow fo...

  8. BowTieBuilder: modeling signal transduction pathways

    OpenAIRE

    Schröder Adrian; Dräger Andreas; Planatscher Hannes; Spangenberg Lucía; Supper Jochen; Zell Andreas

    2009-01-01

    Abstract Background Sensory proteins react to changing environmental conditions by transducing signals into the cell. These signals are integrated into core proteins that activate downstream target proteins such as transcription factors (TFs). This structure is referred to as a bow tie, and allows cells to respond appropriately to complex environmental conditions. Understanding this cellular processing of information, from sensory proteins (e.g., cell-surface proteins) to target proteins (e.g...

  9. Performance Characterization of Radial Stub Microstrip Bow-Tie Antenna

    OpenAIRE

    B.T.P.Madhav; S.S. Mohan Reddy; Neha Sharma; J. Ravindranath Chowdary; Bala Rama Pavithra; K.N.V.S. Kishore; G Sriram; B. Sachin Kumar

    2013-01-01

    In this paper a novel radial stub feeding microstrip bow-tie antenna is designed to operate between C and X band and its performance characterization is presented. This antenna is having simple structure and topology over other stub loaded antennas. In addition the proposed antenna adjusts to the desired frequency easily. Antenna output parameters like radiation pattern, axial ratio, directive gain andquality factor are simulated and presented in this current work.

  10. Performance Characterization of Radial Stub Microstrip Bow-Tie Antenna

    Directory of Open Access Journals (Sweden)

    B.T.P.Madhav

    2013-04-01

    Full Text Available In this paper a novel radial stub feeding microstrip bow-tie antenna is designed to operate between C and X band and its performance characterization is presented. This antenna is having simple structure and topology over other stub loaded antennas. In addition the proposed antenna adjusts to the desired frequency easily. Antenna output parameters like radiation pattern, axial ratio, directive gain andquality factor are simulated and presented in this current work.

  11. Broadband bow-tie antenna with tapered balun

    OpenAIRE

    Jaafar, Hussein Mohammed

    2014-01-01

    ABSTRACT: In microwave applications spectrum Industrial, Scientific and Medical (ISM) band, especially in wireless communication systems applications such as GSM, 3G, Wi-Fi and Wi-MAX applications, high antenna characteristics such as high gain and wide bandwidth are required. In this thesis, a broadband Bow Tie Antenna (BTA) with high performance characteristics has been designed, to cover the wireless application requirements. One of the fundamental problems of the transmission line in the ...

  12. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    OpenAIRE

    Mann, Christopher R.; Boley, Aaron C.; Morris, Melissa M.

    2016-01-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo's eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting t...

  13. Characteristics of the XHT-100 Low Power Hall Thruster Prototype

    Science.gov (United States)

    Andrenucci, M.; Berti, M.; Biagioni, L.; Cesari, U.; Saverdi, M.

    2004-10-01

    Several space applications indicate the possibility to adopt Mini Hall Thrusters, with discharge power in the range 50 to 200 W, among existing electric thruster propulsion technologies, to match mission propulsion requirements. A nominally 100W Hall Effect Thruster prototype (with an alumina acceleration chamber diameter slightly larger than 29 mm) has been recently designed and manufactured by Alta and Centrospazio, with the purpose of performing a wide range parametric exploration of the main engineering and physical aspects relevant to these devices at low power. During 2004 a preliminary experimental characterization has been performed in Alta's IV-4 test facility (in Pisa, Italy), a 2 m dia. 4 m length AISI 316 L vacuum chamber, equipped with a set of 6 tailored cryopumping surfaces with a total pumping speed on Xe in the order of 70000 l/s. Additional tests will be performed at ESA- ESTEC Electric Propulsion Laboratory (in the Netherlands).

  14. Continuous Wheel Momentum Dumping Using Magnetic Torquers and Thrusters

    Science.gov (United States)

    Oh, Hwa-Suk; Choi, Wan-Sik; Eun, Jong-Won

    1996-12-01

    Two momentum management schemes using magnetic torquers and thrusters are sug-gested. The stability of the momentum dumping logic is proved at a general attitude equilibrium. Both momentum dumping control laws are implemented with Pulse-Width- Pulse-Frequency Modulated on-off control, and shown working equally well with the original continuous and variable strength control law. Thrusters are assummed to be asymmetrically configured as a contingency case. Each thruster is fired following separated control laws rather than paired thrusting. Null torque thrusting control is added on the thrust control calculated from the momentum control law for the gener-ation of positive thrusting force. Both magnetic and thrusting control laws guarantee the momentum dumping, however, the wheel inner loop control is needed for the "wheel speed" dumping, The control laws are simulated on the KOrea Multi-Purpose SATellite (KOMPSAT) model.

  15. Polarization of circumstellar bow shocks due to electron scattering

    Science.gov (United States)

    Shrestha, Manisha; Hoffman, J. L.; Neilson, H.; Ignace, R.

    2014-01-01

    Circumstellar material (CSM) provides a link between interacting supernovae and their massive progenitor stars. This CSM arises from stellar winds, outflows, or eruptions from a massive star before it explodes and can be detected around stars or supernovae with polarimetric observations. We use a Monte Carlo based radiative transfer code (SLIP) to investigate the polarization created by different models for the CSM surrounding a central source such as supernovae or massive stars. We vary parameters such as the shape, optical depth, temperature, and brightness of the CSM and compare the simulated flux and polarization behavior with observational data. We present results from new simulations that assume a bow shock shape for the CSM. Bow shocks are commonly observed around massive stars; this shape forms when a star moving more quickly than the speed of sound in the local interstellar medium emits a stellar wind that drives a shock wave into the ISM. Since a bow shock projects an aspherical shape onto the sky, light from the central source that scatters in the shock region becomes polarized. We present electron-scattering polarization maps for this geometry and discuss the behavior of observed polarization with viewing angle in the unresolved case.

  16. A Survey for H$\\alpha$ Pulsar Bow Shocks

    CERN Document Server

    Brownsberger, Sasha

    2014-01-01

    We report on a survey for H$\\alpha$ bow shock emission around nearby $\\gamma$-detected energetic pulsars. This survey adds three Balmer-dominated neutron star bow shocks to the six previously confirmed examples. In addition to the shock around {\\it Fermi} pulsar PSR J1741$-$2054, we now report H$\\alpha$ structures around two additional $\\gamma$-ray pulsars, PSR J2030+4415 and PSR J1509$-$5850. These are the first known examples of H$\\alpha$ nebulae with pre-ionization halos. With new measurements, we show that a simple analytic model can account for the angular size and flux of the bow shocks' apices. The latter, in particular, provides a new pulsar probe and indicates large moments of inertia and smaller distances than previously assumed, in several cases. In particular we show that the re-measured PSR J0437$-$4715 shock flux implies $I = (1.7\\pm 0.2) \\times 10^{45}/(f_{HI} {\\rm sin}i) {\\rm g\\,cm^2}$. We also derive a distance $d\\approx 0.72$kpc for the $\\gamma$-ray only pulsar PSR J2030+4415 and revised dis...

  17. PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Christopher R.; Boley, Aaron C. [Department of Physics and Astronomy University of British Columbia Vancouver, BC V6T 1Z1 (Canada); Morris, Melissa A. [Physics Department State University of New York at Cortland Cortland, NY 13045 (United States)

    2016-02-20

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  18. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    Science.gov (United States)

    Mann, Christopher R.; Boley, Aaron C.; Morris, Melissa A.

    2016-02-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s-1 are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  19. Computational fluid dynamics simulation of a rim driven thruster

    OpenAIRE

    Dubas, Aleksander J.; Bressloff, N. W.; Fangohr, H.; Sharkh, S.M.

    2011-01-01

    An electric rim driven thruster is a relatively new marine propulsion device that uses a motor in its casing to drive a propeller by its rim and the fluid dynamics associated with their operation have not been fully investigated. There are many interacting flow features that make up the flow field of a rim driven thruster that pose a number of challenges when it comes to simulating the device using computational fluid dynamics. The purpose of this work is to develop a computational fluid dyna...

  20. Recycle Requirements for NASA's 30 cm Xenon Ion Thruster

    Science.gov (United States)

    Pinero, Luis R.; Rawlin, Vincent K.

    1994-01-01

    Electrical breakdowns have been observed during ion thruster operation. These breakdowns, or arcs, can be caused by several conditions. In flight systems, the power processing unit must be designed to handle these faults autonomously. This has a strong impact on power processor requirements and must be understood fully for the power processing unit being designed for the NASA Solar Electric Propulsion Technology Application Readiness program. In this study, fault conditions were investigated using a NASA 30 cm ion thruster and a power console. Power processing unit output specifications were defined based on the breakdown phenomena identified and characterized.

  1. A model for nitrogen chemisorption in ion thrusters

    Science.gov (United States)

    Wilbur, P. J.

    1979-01-01

    A theoretical model describing the formation of nitrogen species subject to chemisorption on ion thruster discharge chamber surfaces is presented. Molecules, atoms, atomic ions and molecular ions are identified as the important species in the analysis. Current densities of the atomic and molecular ions predicted by the model are compared to current densities measured in the beam of a SERT II thruster. The predicted and measured values of these two current densities are shown to agree within about + or - 100%. The mechanisms involved in the erosion of a surface subjected to simultaneous nitrogen chemisorption and sputter erosion by high energy ions are also discussed.

  2. The baffle aperture region of an ion thruster

    International Nuclear Information System (INIS)

    During the period of this research project, electron bombardment ion thrusters have passed from an advanced state of development to highly successful flight demonstrations (e.g. Deep Space 1). Such advances made by NASA have been quickly followed in the commercial sector (e.g. NSSK of communications satellites). In the next few years, these early successes will be followed by many new electric propulsion missions, planned by the world's space agencies and commercial space organisations. These early successes will spawn more ambitious and demanding missions, necessitating thrusters of different power demands, thrusts and sizes. Scaling of the UK series of electron bombardment ion thrusters has previously been carried out by semi- empirical scaling laws. These scaling laws have worked well within a certain range of thruster sizes with some iterative redesign necessary to produce acceptable efficiencies. However, when scaling beyond the ranges of the T5, T6 and UK25, the current scaling laws cannot be used due to the conflicting requirements of magnetic field strength in the discharge chamber and baffle aperture region. The baffle aperture region contains a plasma double layer that accelerates primary electrons into the discharge chamber and thus controls ionisation in the ion thruster. Previously, the baffle aperture region was poorly understood. An extensive and unique experimental investigation of the plasma properties around this critical baffle aperture region has been carried out using Langmuir probes. The externally applied magnetic field has been mapped and the Langmuir probe results have been validated using emissive probes. Results are presented on both argon and xenon propellant and high- resolution maps of an extensive range of plasma properties are plotted over a continuous area from the coupling plasma, through the baffle aperture and into the discharge plasma. Maps were taken over a unique and wide range of thruster operating conditions in which all

  3. Sinogram bow-tie filtering in FBP PET reconstruction.

    Science.gov (United States)

    Abella, M; Vaquero, J J; Soto-Montenegro, M L; Lage, E; Desco, M

    2009-05-01

    Low-pass filtering of sinograms in the radial direction is the most common practice to limit noise amplification in filtered back projection (FBP) reconstruction of positron emission tomography studies. Other filtering strategies have been proposed to prevent the loss in resolution due to low-pass radial filters, although results have been diverse. Using the well-known properties of the Fourier transform of a sinogram, the authors defined a binary mask that matches the expected shape of the support region in the Fourier domain of the sinogram ("bow tie"). This mask was smoothed by a convolution with a ten-point Gaussian kernel which not only avoids ringing but also introduces a pre-emphasis at low frequencies. A new filtering scheme for FBP is proposed, comprising this smoothed bow-tie filter combined with a standard radial filter and an axial filter. The authors compared the performance of the bow-tie filtering scheme with that of other previously reported methods: Standard radial filtering, angular filtering, and stackgram-domain filtering. All the quantitative data in the comparisons refer to a baseline reconstruction using a ramp filter only. When using the smallest size of the Gaussian kernel in the stackgram domain, the authors achieved a noise reduction of 33% at the cost of degrading radial and tangential resolutions (14.5% and 16%, respectively, for cubic interpolation). To reduce the noise by 30%, the angular filter produced a larger degradation of contrast (3%) and tangential resolution (46% at 10 mm from the center of the field of view) and showed noticeable artifacts in the form of circular blurring dependent on the distance to the center of the field of view. For a similar noise reduction (33%), the proposed bow-tie filtering scheme yielded optimum results in resolution (gain in radial resolution of 10%) and contrast (1% increase) when compared with any of the other filters alone. Experiments with rodent images showed noticeable image quality

  4. Dependence of sound characteristics on the bowing position in a violin

    Science.gov (United States)

    Roh, YuJi; Kim, Young H.

    2014-12-01

    A quantitative analysis of violin sounds produced for different bowing positions over the full length of a violin string has been carried out. An automated bowing machine was employed in order to keep the bowing parameters constant. A 3-dimensional profile of the frequency spectrum was introduced in order to characterize the violin's sound. We found that the fundamental frequency did not change for different bowing positions, whereas the frequencies of the higher harmonics were different. Bowing the string at 30 mm from the bridge produced musical sounds. The middle of the string was confirmed to be a dead zone, as reported in previous works. In addition, the quarter position was also found to be a dead zone. Bowing the string 90 mm from the bridge dominantly produces a fundamental frequency of 864 Hz and its harmonics.

  5. Trade Study of Multiple Thruster Options for the Mars Airplane Concept

    Science.gov (United States)

    Kuhl, Christopher A.; Gayle, Steven W.; Hunter, Craig A.; Kenney, Patrick S.; Scola, Salvatore; Paddock, David A.; Wright, Henry S.; Gasbarre, Joseph F.

    2009-01-01

    A trade study was performed at NASA Langley Research Center under the Planetary Airplane Risk Reduction (PARR) project (2004-2005) to examine the option of using multiple, smaller thrusters in place of a single large thruster on the Mars airplane concept with the goal to reduce overall cost, schedule, and technical risk. The 5-lbf (22N) thruster is a common reaction control thruster on many satellites. Thousands of these types of thrusters have been built and flown on numerous programs, including MILSTAR and Intelsat VI. This study has examined the use of three 22N thrusters for the Mars airplane propulsion system and compared the results to those of the baseline single thruster system.

  6. Fault-Tolerant Region-Based Control of an Underwater Vehicle with Kinematically Redundant Thrusters

    Directory of Open Access Journals (Sweden)

    Zool H. Ismail

    2014-01-01

    Full Text Available This paper presents a new control approach for an underwater vehicle with a kinematically redundant thruster system. This control scheme is derived based on a fault-tolerant decomposition for thruster force allocation and a region control scheme for the tracking objective. Given a redundant thruster system, that is, six or more pairs of thrusters are used, the proposed redundancy resolution and region control scheme determine the number of thruster faults, as well as providing the reference thruster forces in order to keep the underwater vehicle within the desired region. The stability of the presented control law is proven in the sense of a Lyapunov function. Numerical simulations are performed with an omnidirectional underwater vehicle and the results of the proposed scheme illustrate the effectiveness in terms of optimizing the thruster forces.

  7. Asymmetries in the location of the Venus and Mars bow shock

    International Nuclear Information System (INIS)

    An examination of observations of the position of the terminator bow shock at Venus and Mars shows that the terminator bow shock varies with the angle between the local bow shock normal and the upstream magnetic field, θBN. The part of the shock on the quasi-parallel side is closer to the planet than the part on the quasi-perpendicular side, a result which had been sggested by an earlier computer simulation by Thomas and Winske [1990]. This bow shock asymmetry is observed to be larger at Mars than at Venus

  8. Interaction between an interplanetary magnetic cloud and the Earth's magnetosphere: Motions of the bow shock

    Science.gov (United States)

    Wu, D. J.; Chao, J. K.; Lepping, R. P.

    2000-06-01

    An interplanetary magnetic cloud (IMC) is an important solar-terrestrial connection event. It is an ideal object for the study of solar-terrestrial relations and space weather because the Earth's space environment can be affected considerably during an IMC passage. An IMC was observed to pass the Earth during October 18-20, 1995. Wind recorded its interplanetary characteristics at ~175RE upstream of the Earth's bow shock, and ~45 min later, Geotail, being near the nominal location of the dawn bow shock, detected IMC-related multiple bow shock crossings. Using simultaneous measurements from Wind and Geotail, we analyzed, with a semiempirical bow shock model with two parameters, the bow shock motion caused by the interaction of the IMC with the magnetosphere during the passage. We also compared the bow shock motion predicted by the model, and hence the predicted Geotail bow shock crossings, with Geotail observations of the actual crossings. The results showed that the observed multiple bow shock crossings, which were obviously due to temporal variations of the upstream solar wind, can be well explained by the model-predicted bow shock motion.

  9. NASA's Evolutionary Xenon Thruster (NEXT) Ion Propulsion System Information Summary

    Science.gov (United States)

    Pencil, Eirc S.; Benson, Scott W.

    2008-01-01

    This document is a guide to New Frontiers mission proposal teams. The document describes the development and status of the NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system (IPS) technology, its application to planetary missions, and the process anticipated to transition NEXT to the first flight mission.

  10. Theory Of Controlling Spacecraft Motion With Pulsed Thrusters

    Science.gov (United States)

    Thurman, Sam W.; Flashner, Henryk

    1996-01-01

    Report presents new class of flight-control laws for making spacecraft follow desired trajectory by use of pulsed thrusters during such maneuvers as automated rendezvous on orbit and soft landing on planet. Although emphasis in report on guidance, ultimately shown same techniques also useful for attitude control and station keeping.

  11. Mode Transitions in Magnetically Shielded Hall Effect Thrusters

    Science.gov (United States)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Huang, Wensheng; Kamhawi, Hani; Hofer, Richard R.; Jorns, Benjamin A.; Polk, James E.

    2014-01-01

    A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development.

  12. iSat Surface Charging and Thruster Plume Interactions Analysis

    Science.gov (United States)

    Parker, L. Neergaard; Willis, E. M.; Minow, J. I.

    2016-01-01

    Characterizing the electromagnetic interaction of a satellite in low Earth, high inclination orbit with the space plasma environment and identifying viable charging mitigation strategies is a critical mission design task. High inclination orbits expose the vehicle to auroral charging environments that can potentially charge surfaces to kilovolt potentials and electric thruster propulsion systems will interact with the ambient plasma environment throughout the orbit. NASA is designing the Iodine Satellite (iSAT) cubesat mission to demonstrate operations of an iodine electric thruster system. The spacecraft will be deployed as a secondary payload from a launch vehicle which has not yet been identified so the program must plan for the worst case environments over a range of orbital inclinations. We will first present results from a NASA and Air Force Charging Analyzer Program (Nascap) -2k surface charging calculation used to evaluate the effects of auroral charging on the spacecraft and to provide the charging levels at other locations in orbit for a thruster plume interaction analysis for the iSAT mission. We will then discuss results from the thruster interactions analysis using the Electric Propulsion Interactions Code (EPIC) with inputs from Nascap-2k. The results of these analyses are being used by the iSAT program to better understand how their spacecraft will interact with the space plasma environment in the range of environments that could be encountered when the final mission orbit is selected.

  13. Tibial bowing in children - what is normal? A radiographic study

    International Nuclear Information System (INIS)

    To define osseous landmarks on tibia radiographs in order to establish age-related normal values characterizing physiological tibial bowing in children. Five hundred and twenty-six patients aged 0-17 years with normal radiographs of the lower legs were identified and retrospectively reviewed by two blinded radiologists. In anteroposterior (ap)/lateral (lat)-views, 3 lines defined tibial length and angulation. Line-A connecting proximal to distal corner of tibial metaphysic, lines B and C corresponding to corners of tibial metaphysis. Angle A/B defines proximal, A/C distal tibial-angulation. Tibial curvature is defined by distance of line-D parallel to A and tangential to tibial cortex. Normal values were calculated with linear-regression. Intra-/Interreader agreement were tested with a Bland-Altman-plot. Intrareader-agreement: Reader 1 showed a bias of -0.1, standard-deviation of bias was 1.9 and 95 %-limits-of-agreement -3.9- 3.7. Reader 2: -0.01, 2.4 and -4.7- 4.7. Interreader: 0.2, 1.6 and -2.9- 3.3. Angle-A/B ap was 80-100 , increasing with age (86.5-88); angle-AC ap was 82-107 (96.8-90.5), angle-AB lat was 81-107 (93.0-98.0); angle-AC lat was 76-102 (89.5-86.5); depth of curve ap was 0-11 % (8-3.5) and lat 2-13 %, (8.5-3.5). Age dependent tibial bowing can be assessed with this new measurement system and age-related normal-values characterizing physiological tibial bowing in children is established. (orig.)

  14. Tibial bowing in children - what is normal? A radiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Zbinden, Isabella [University of Basel, Department of Radiology, Basel (Switzerland); Rutz, Erich [University Children' s Hospital, Department of Orthopedic Surgery, Basel (Switzerland); Jacobson, Jon A. [University of Michigan, Department of Radiology, Ann Arbor, MI (United States); Magerkurth, Olaf [University Children' s Hospital, Department of Radiology, Basel (Switzerland); Kantonsspital Baden, Department of Radiology, Baden (Switzerland)

    2015-12-15

    To define osseous landmarks on tibia radiographs in order to establish age-related normal values characterizing physiological tibial bowing in children. Five hundred and twenty-six patients aged 0-17 years with normal radiographs of the lower legs were identified and retrospectively reviewed by two blinded radiologists. In anteroposterior (ap)/lateral (lat)-views, 3 lines defined tibial length and angulation. Line-A connecting proximal to distal corner of tibial metaphysic, lines B and C corresponding to corners of tibial metaphysis. Angle A/B defines proximal, A/C distal tibial-angulation. Tibial curvature is defined by distance of line-D parallel to A and tangential to tibial cortex. Normal values were calculated with linear-regression. Intra-/Interreader agreement were tested with a Bland-Altman-plot. Intrareader-agreement: Reader 1 showed a bias of -0.1, standard-deviation of bias was 1.9 and 95 %-limits-of-agreement -3.9- 3.7. Reader 2: -0.01, 2.4 and -4.7- 4.7. Interreader: 0.2, 1.6 and -2.9- 3.3. Angle-A/B ap was 80-100 , increasing with age (86.5-88); angle-AC ap was 82-107 (96.8-90.5), angle-AB lat was 81-107 (93.0-98.0); angle-AC lat was 76-102 (89.5-86.5); depth of curve ap was 0-11 % (8-3.5) and lat 2-13 %, (8.5-3.5). Age dependent tibial bowing can be assessed with this new measurement system and age-related normal-values characterizing physiological tibial bowing in children is established. (orig.)

  15. Trends and correlation analysis in diagnosing turbine rotor bow

    Directory of Open Access Journals (Sweden)

    Tomasz GAŁKA

    2009-01-01

    Full Text Available Permanent rotor bow in a steam turbine is a serious failure which usually demands a time-consuming and costly repair. Its vibration-related symptoms are not specific and qualitative diagnosis typically has to employ results obtained during transients.In a 230 MW power steam turbine, gradual dynamic behavior deterioration was observed, immediately after commissioning. Increase of the fundamental component of rear intermediate-pressure turbine bearing vertical vibration was detected, with the time constant of the order of months. Permanent rotor bow, exceeding 200 m, turned out to be the cause. Rotor repair resulted in a dramatic improvement of dynamic behavior, which, however, soon began to deteriorate again. Vibration spectra had been detected in the off-line mode since commissioning, which allowed to determine vibration time histories.Vibration trends analysis does not provide sufficient information to determine root cause, but allows for eliminating a number of possible malfunctions that give similar symptoms. In particular, the possibility of a sudden random-type damage due to human error is eliminated, which in fact is the most common cause of a permanent bow.Analysis of vibration amplitude correlation between vertical and axial directions reveals very strong correlation between fundamental components in the turbine under consideration, as well in the other one, in which similar failure has been observed. Third unit of the same type, apart from qualitatively different vibration trends, is characterized by correlation factors lower by a few times.This particular case is indicative of the importance of evolutionary symptoms (vibration amplitude time dependence and increase rate, as well as correlation factors in qualitative diagnosis. Such symptoms can be very useful in distinguishing between possible failures which result in similar changes of machine vibration behavior.

  16. Magnetoplasmadynamic electric propulsion thruster behavior at the hundred megawatt level

    Science.gov (United States)

    Marriott, Darin William

    Characteristic measurements were made of a hundred megawatt modified helium inverse pinch switch and compared against numerical modeling and theoretically expected behavior. Thruster voltage was measured for currents between three and three hundred kilo amps and for mass flow rates between 0.96 and 40 grams per second. From that, characteristic voltage, power, and resistance curves were generated. Electron temperature measurements made inside the plasma flow using triple Langmuir probes were found to be between three and thirty electron volts. General expected MPD thruster behavior, such as decreasing resistance with increasing mass flow rate, were confirmed. The quasi steady assumption was studied between 1.5 and 1.7 milliseconds and found to be appropriate. A theoretical model, based on integrating the magnetic field to determine thrust, as for an MPD thruster, was used to estimate fall voltages, pumping coefficients, and specific impulse. An empirical model for thruster voltage was then created to estimate the behavior of voltage as a function of the similarity parameter. The two models were then put together and found to be self consistent with the experimental data. Three sources of power loss were estimated given the experimental and theoretical model. The power lost due to fall voltage mechanisms was calculated from the theoretical model and the input current as a function of time. The ionization losses were estimated using a worst case scenario of complete double ionization of the input helium mass flow rate as a function of time. Thermal losses were calculated from the electron temperature and the input mass flow rate. Total temperature, specific impulse, and efficiency measurements were all presented as a function of a similarity parameter in line with MPD theory. Basic MPD thruster behavior was confirmed. Suggestions were made for future continuation of the project.

  17. Relative locations of the bow shocks of the terrestrial planets

    International Nuclear Information System (INIS)

    The observed bow shock encounters at Mercury, Venus and Mars are least square fit using the same technique so that their sizes and shapes can be intercompared. The shock front of Mercury most resembles the terrestrial shock in shape, and the shock stand off distance is consistent with the observed moment. The shapes of the Venus and Mars shock fronts more resemble each other than the earth's and the stand off distances are consistent with direct interaction of the solar wind with the ionosphere on the dayside. The Venus shock is closer to the planet than the Mars shock suggesting more absorption of the solar wind at Venus

  18. Design of Compact Trapezoidal Bow-Tie Chipless RFID Tag

    OpenAIRE

    Lei Xu; Kama Huang

    2015-01-01

    This paper presents a novel compact design of a low cost fully printable slot-loaded bowtie chipless RFID tag. The tag consists of two trapezoidal metallic patches loaded with multiple slot resonators. Slots with similar size or adjacent frequencies are loaded alternately on two bow-tie patches to double the number of data bits within the UWB frequency band without increasing the mutual coupling between slots. A coding capacity of 12 bits is obtained with 12 slots within a reasonable size of ...

  19. Power aspects of processes in the bow shock region

    Science.gov (United States)

    Sedykh, Pavel

    Bow shock is a powerful transformer of the solar wind kinetic energy into the gas dynamic and electromagnetic energy. The solar wind energy also feeds the ion acceleration process, the generation of waves in the region of bow shock, and the energy necessary to build up the foreshock. A jump of the magnetic field tangential component at front crossing means that the front carries an electric current. The solar wind kinetic energy partly transforms to gas kinetic and electromagnetic energy during its passage through the bow shock front. The transition layer (magnetosheath) can use part of this energy for accelerating of plasma, but can conversely spend part its kinetic energy on the electric power generation, which afterwards may be used by the magnetosphere. Thereby, transition layer can be both consumer (sink) and generator (source) of electric power depending upon special conditions. The direction of the current behind the bow shock front depends on the sign of the IMF B _{z}-component. It is this electric current which sets convection of plasma in motion. The process of current penetration into the magnetosphere is two-step. First, a polarization field is formed that penetrates layer-by-layer into the magnetosphere. More exactly, a pulse corresponding to this field penetrates into the plasma. Then, if the system is inhomogeneous, the flow may redistribute the pressure so that gradients appearing in the plasma induce an electric current. In power terms, this electric current is required to maintain convection in the inhomogeneous system. Any change in the external current through the magnetosphere causes a convection restructuring within a time on the order of travel time of the magnetosonic wave from the magnetopause to the center of the system, because the restructuring wave comes from both flanks. Using the expressions obtained in this paper for normal components of the electric current, the flow of matter brought into the magnetosphere can be estimated. A

  20. Properties of bow-shock sources at the Galactic center

    Science.gov (United States)

    Sanchez-Bermudez, J.; Schödel, R.; Alberdi, A.; Muzić, K.; Hummel, C. A.; Pott, J.-U.

    2014-07-01

    Context. There exists an enigmatic population of massive stars around the Galactic center (GC) that were formed some Myr ago. A fraction of these stars has been found to orbit the supermassive black hole, Sgr A*, in a projected clockwise disk-like structure, which suggests that they were formed in a formerly existing dense disk around Sgr A*. Aims: We focus on a subgroup of objects, the extended, near-infrared (NIR) bright sources IRS 1W, IRS 5, IRS 10W, and IRS 21, that have been suggested to be young, massive stars that form bow shocks through their interaction with the interstellar medium (ISM). Their nature has impeded accurate determinations of their orbital parameters. We aim at establishing their nature and kinematics to test whether they form part of the clockwise disk. Methods: We performed NIR multiwavelength imaging with NACO/VLT using direct adaptive optics (AO) and AO-assisted sparse aperture masking (SAM). We introduce a new method for self-calibration of the SAM point spread function in dense stellar fields. The emission mechanism, morphology, and kinematics of the targets were examined via 3D models, combined with existing models of the gas flow in the central parsec. Results: We confirm previous findings that IRS 21, IRS 1W, and IRS 5 are bow-shocks created by the interaction between mass-losing stars and the interstellar gas. The nature of IRS 10W remains unclear. Our modeling shows that the bow-shock emission is caused by thermal emission, while the scattering of stellar light does not play a significant role. IRS 1W shows a morphology that is consistent with a bow shock produced by an anisotropic stellar wind or by locally inhomogeneous ISM density. Our best-fit models provide estimates of the local proper motion of the ISM in the Northern Arm that agree with previously published models that were based on radio interferometry and NIR spectroscopy. Assuming that all of the sources are gravitationally tied to Sagittarius A*, their orbital planes

  1. Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters

    Science.gov (United States)

    Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.

    2010-01-01

    Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.

  2. 75 FR 59706 - Medicine Bow Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2010-09-28

    ... Bow Pumped Storage Project (Medicine Bow Project) to be located in Carbon County, Idaho. The sole...-foot-high earth and rockfill or concrete-face rockfill dam; creating an 121-acre lower reservoir with a...-long concrete-lined low pressure tunnel; (4) a 19-foot-diameter, 5,060-foot-long high pressure...

  3. 76 FR 65717 - City of Broken Bow, OK; Notice of Availability of Final Environmental Assessment

    Science.gov (United States)

    2011-10-24

    ... Commission's (Commission or FERC) regulations, 18 CFR part 380 (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed the application for an Original Major License for the Broken Bow Re... Energy Regulatory Commission City of Broken Bow, OK; Notice of Availability of Final...

  4. 75 FR 33290 - City of Broken Bow, OK; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2010-06-11

    ... Regulatory Commission's (Commission) regulations, 18 CFR part 380 (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed the application for an Original Major License for the Broken Bow Re... Energy Regulatory Commission City of Broken Bow, OK; Notice of Availability of Environmental...

  5. Far-UV bow shock nebula around PSR J0437-4715

    CERN Document Server

    Rangelov, Blagoy; Kargaltsev, Oleg; Durant, Martin; Bykov, Andrei M; Krassilchtchikov, Alexandre

    2016-01-01

    Pulsars traveling at supersonic speeds are often accompanied by cometary bow shocks seen in Halpha. We report on the first detection of a pulsar bow shock in the far-ultraviolet (FUV). We detected it in FUV images of the nearest millisecond pulsar J0437-4715 obtained with the Hubble Space Telescope. The images reveal a bow-like structure positionally coincident with part of the previously detected Halpha bow shock, with an apex at 10'' ahead of the moving pulsar. Its FUV luminosity, L(1250-2000 A) ~ 5x10^28 erg/s, exceeds the Halpha luminosity from the same area by a factor of 10. The FUV emission could be produced by the shocked ISM matter or, less likely, by relativistic pulsar wind electrons confined by strong magnetic field fluctuations in the bow shock. In addition, in the FUV images we found a puzzling extended (~3'' in size) structure overlapping with the limb of the bow shock. If related to the bow shock, it could be produced by an inhomogeneity in the ambient medium or an instability in the bow shock...

  6. Smashing the Guitar: An Evolving Neutron Star Bow Shock

    CERN Document Server

    Chatterjee, S

    2003-01-01

    The Guitar nebula is a spectacular example of an H-alpha bow shock nebula produced by the interaction of a neutron star with its environment. The radio pulsar B2224+65 is traveling at ~800--1600 km/s (for a distance of 1--2 kpc), placing it on the high-velocity tail of the pulsar velocity distribution. Here we report time evolution in the shape of the Guitar nebula, the first such observations for a bow shock nebula, as seen in H-alpha imaging with the Hubble Space Telescope. The morphology of the nebula provides no evidence for anisotropy in the pulsar wind, nor for fluctuations in the pulsar wind luminosity. The nebula shows morphological changes over two epochs spaced by seven years that imply the existence of significant gradients and inhomogeneities in the ambient interstellar medium. These observations offer astrophysically unique, in situ probes of length scales between 5E-4 pc and 0.012 pc. Model fitting suggests that the nebula axis -- and thus the three-dimensional velocity vector -- lies within 20 ...

  7. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  8. Design and Analysis of the First BOWS Contest

    Directory of Open Access Journals (Sweden)

    Barni M

    2007-01-01

    Full Text Available The break our watermarking system (BOWS contest was launched in the framework of the activities carried out by the European Network of Excellence for Cryptology ECRYPT. The aim of the contest was to investigate how and when an image watermarking system can be broken while preserving the highest possible quality of the content, in the case the watermarking system is subject to a massive worldwide attack. The great number of participants and the echo that the contest has had in the watermarking community contributed to make BOWS a great success. From a scientific point of view, many insights into the problems attackers have to face with when operating in a practical scenario have been obtained, confirming the threat posed by the sensitivity attack, which turned out to be the most successful attack. At the same time, several interesting modifications of such an attack have been proposed to make it work in a real scenario under limited communication and time resources. This paper describes how the contest has been designed and analyzes the general progress of the attacks during the contest.

  9. Bow Shock Leads the Way for a Speeding Hot Jupiter

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    As hot Jupiters whip around their host stars, their speeds can exceed the speed of sound in the surrounding material, theoretically causing a shock to form ahead of them. Now, a study has reported the detection of such a shock ahead of transiting exoplanet HD 189733b, providing a potential indicator of the remarkably strong magnetic field of the planet.Rushing PlanetsDue to their proximity to their hosts, hot Jupiters move very quickly through the stellar wind and corona surrounding the star. When this motion is supersonic, the material ahead of the planet can be compressed by a bow shock and for a transiting hot Jupiter, this shock will cross the face of the host star in advance of the planets transit.In a recent study, a team of researchers by Wilson Cauley of Wesleyan University report evidence of just such a pre-transit. The teams target is exoplanet HD 189733b, one of the closest hot Jupiters to our solar system. When the authors examined high-resolution transmission spectra of this system, they found that prior to the optical transit of the planet, there was a large dip in the transmission of the first three hydrogen Balmer lines. This could well be the absorption of an optically-thick bow shock as it moves past the face of the star.Tremendous MagnetismOperating under this assumption, the authors create a model of the absorption expected from a hot Jupiter transiting with a bow shock ahead of it. Using this model, they show that a shock leading the planet at a distance of 12.75 times the planets radius reproduces the key features of the transmission spectrum.This stand-off distance is surprisingly large. Assuming that the location of the bow shock is set by the point where the planets magnetospheric pressure balances the pressure of the stellar wind or corona that it passes through, the planetary magnetic field would have to be at least 28 Gauss. This is seven times the strength of Jupiters magnetic field!Understanding the magnetic fields of exoplanets is

  10. Simulation of the oscillation regimes of bowed bars: a non-linear modal approach

    Science.gov (United States)

    Inácio, Octávio; Henrique, Luís.; Antunes, José

    2003-06-01

    It is still a challenge to properly simulate the complex stick-slip behavior of multi-degree-of-freedom systems. In the present paper we investigate the self-excited non-linear responses of bowed bars, using a time-domain modal approach, coupled with an explicit model for the frictional forces, which is able to emulate stick-slip behavior. This computational approach can provide very detailed simulations and is well suited to deal with systems presenting a dispersive behavior. The effects of the bar supporting fixture are included in the model, as well as a velocity-dependent friction coefficient. We present the results of numerical simulations, for representative ranges of the bowing velocity and normal force. Computations have been performed for constant-section aluminum bars, as well as for real vibraphone bars, which display a central undercutting, intended to help tuning the first modes. Our results show limiting values for the normal force FN and bowing velocity ẏbow for which the "musical" self-sustained solutions exist. Beyond this "playability space", double period and even chaotic regimes were found for specific ranges of the input parameters FN and ẏbow. As also displayed by bowed strings, the vibration amplitudes of bowed bars also increase with the bow velocity. However, in contrast to string instruments, bowed bars "slip" during most of the motion cycle. Another important difference is that, in bowed bars, the self-excited motions are dominated by the system's first mode. Our numerical results are qualitatively supported by preliminary experimental results.

  11. Modelling and verification of monopropellant thruster performance degradation due to silica contamination

    Science.gov (United States)

    Hinds, J. W.; Demaire, A.; Brandt, R.; Schmitz, H. D.

    1992-07-01

    Monopropellant hydrazine thrusters have been found to be degraded by such nonvolatile residues as silica, when the hydrazine has been exposed to propellant tank diaphragm materials. Attention is given to the experimental investigation of 5-20 N output thruster systems' silica-contamination problem, with a view to modeling the mechanism of such degradation. The mechanism is found to be complex and dependent on overall fuel consumption, burn history, and tank/thruster combination. Prospective solutions are discussed.

  12. Research on Hydrodynamic Noise Induced by Side Thruster of Observation Boat and Improvable Method%侧推器对测量船水动力噪声的影响和改善方法研究

    Institute of Scientific and Technical Information of China (English)

    范井峰

    2015-01-01

    This article analyzed the characteristics of hydrodynamic noise of an observation boat ,and summarized relevant experience abroad. Installing movable sealing cover on bow thruster was taken as an effective measure on a domestic ship which solved the problem of harmful effect on underwater sound equipment.%对某测量船水动力噪声进行了特性分析,并总结了国外船舶相关经验. 介绍了国内船舶为首侧推加装活动封闭盖板装置的有效措施,解决了首侧推的管口对水声设备的不良影响.

  13. Low-Cost High-Performance Hall Thruster Support System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Colorado Power Electronics (CPE) has built an innovative modular power processing unit (PPU) for Hall Thrusters, including discharge, magnet, heater and keeper...

  14. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Field emission electric propulsion (FEEP) thrusters have gained considerable attention for spacecrafts disturbance compensation because of excellent...

  15. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase I: Numerical Simulations

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.

    2011-01-01

    In a proof-of-principle effort to demonstrate the feasibility of magnetically shielded (MS) Hall thrusters, an existing laboratory thruster has been modified with the guidance of physics-based numerical simulation. When operated at a discharge power of 6-kilowatts the modified thruster has been designed to reduce the total energy and flux of ions to the channel insulators by greater than 1 and greater than 3 orders of magnitude, respectively. The erosion rates in this MS thruster configuration are predicted to be at least 2-4 orders of magnitude lower than those in the baseline (BL) configuration. At such rates no detectable erosion is expected to occur.

  16. Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofery, Richard R.

    2013-01-01

    The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.

  17. Near-field angular distributions of high velocity ions for low-power hall thrusters

    OpenAIRE

    Sullivan, Regina M.; Yost, Allison; Johnson, Lee K.

    2009-01-01

    Experimental angular distributions of high-energy primary ions in the near-field region of a small Hall thruster between 50-200 mm downstream of the thruster exit plane at a range of centerline angles have been determined using a highly-collimated, energy-selective diagnostic probe. The measurements reveal a wide angular distribution of ions exiting the thruster channel and the formation of a strong, axially-directed jet of ions along the thruster centerline. Comparisons are made to other exp...

  18. Colloid Thruster for Attitude Control Systems (ACS) and Tip-off Control Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop and deliver a complete engineering model colloid thruster system, capable of thrust levels and lifetimes required for spacecraft...

  19. Preliminary scoping studies for nozzle-based coaxial plasma thrusters

    International Nuclear Information System (INIS)

    The ideal steady-state properties of nozzle-based coaxial plasma guns are modelled by means of a magnetic Bernoulli equation. Formulas for thrust, power usage, mass flow rate, and specific impulse using hydrogen are thereby obtained, and are used to approximately assess the mission performance capabilities of such thrusters. Parameters in the range of experience of the Los Alamos spheromak group are addressed within the context of orbit raising, slow (cargo) missions to mars, and fast missions to mars. The various internal atomic and plasma effects on hydrogen plasma thruster performance are approximately estimated or bounded. It is concluded that such devices may be relevant to mission performance at reasonable power levels

  20. Controllability of an underactuated spacecraft with one thruster under disturbance

    Institute of Scientific and Technical Information of China (English)

    Dong-Xia Wang; Ying-Hong Jia; Lei Jin; Hai-Chao Gui; Shi-Jie Xu

    2012-01-01

    For an underactuated spacecraft using only one thruster,the attitude controllability with respect to the orbit frame is studied in the presence of periodical oscillation disturbance,which provides a preconditional guide on designing control law for underactuated attitude control system.Firstly,attitude dynamic model was established for an underactuated spacecraft,and attitude motion was described using the special orthogonal group (SO (3)).Secondly,Liouville theorem was used to confirm that the flow generated by the drift vector of the underactuated attitude control system is volume-preserving.Furthermore,according to Poincaré's recurrence theorem,we draw conclusions that this drift field is weakly positively poisson stable (WPPS).Thirdly,the sufficient and necessary condition of controllability was obtained on the basis of lie algebra rank condition (LARC).Finally,the controllable conditions were analyzed and simulated in different cases of inertia matrix with the installed position of thruster.

  1. Study of breakdown in an ablative pulsed plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tiankun; Wu, Zhiwen; Liu, Xiangyang; Xie, Kan; Wang, Ningfei; Cheng, Yue [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2015-10-15

    Breakdown in ablative pulsed plasma thrusters (APPTs) must be studied in order to design new types of APPTs and measure particular parameters. In this paper, we studied a parallel-plate ablative pulsed plasma thruster that used a coaxial semiconductor spark plug. By operating the APPT about 500 times with various capacitor voltages and electrode gaps, we measured and analyzed the voltage of the spark plug, the voltage between the electrodes, and the discharge current. These experiments revealed a time delay (∼1–10 μs) between spark plug ignition and capacitor discharge, which may affect the performance of high-pulsing-rate (>10 kHz) and double-discharge APPTs, and the measurements of some of the APPT parameters. The delay time decreased as the capacitor voltage increased, and it increased with an increasing electrode gap and increasing number of ignitions. We explain our results through a simple theoretical analysis.

  2. Numerical simulation of MPD thruster flows with anomalous transport

    Science.gov (United States)

    Caldo, Giuliano; Choueiri, Edgar Y.; Kelly, Arnold J.; Jahn, Robert G.

    1992-01-01

    Anomalous transport effects in an Ar self-field coaxial MPD thruster are presently studied by means of a fully 2D two-fluid numerical code; its calculations are extended to a range of typical operating conditions. An effort is made to compare the spatial distribution of the steady state flow and field properties and thruster power-dissipation values for simulation runs with and without anomalous transport. A conductivity law based on the nonlinear saturation of lower hybrid current-driven instability is used for the calculations. Anomalous-transport simulation runs have indicated that the resistivity in specific areas of the discharge is significantly higher than that calculated in classical runs.

  3. Numerical Study of Hall Thruster Plume and Sputtering Erosion

    Directory of Open Access Journals (Sweden)

    Li Yan

    2012-01-01

    Full Text Available Potential sputtering erosion caused by the interactions between spacecraft and plasma plume of Hall thrusters is a concern for electric propulsion. In this study, calculation model of Hall thruster’s plume and sputtering erosion is presented. The model is based on three dimensional hybrid particle-in-cell and direct simulation Monte Carlo method (PIC/DSMC method which is integrated with plume-wall sputtering yield model. For low-energy heavy-ion sputtering in Hall thruster plume, the Matsunami formula for the normal incidence sputtering yield and the Yamamura angular dependence of sputtering yield are used. The validation of the simulation model is realized through comparing plume results with the measured data. Then, SPT-70’s sputtering erosion on satellite surfaces is assessed and effect of mass flow rate on sputtering erosion is analyzed.

  4. Hall Thruster Modeling with a Given Temperature Profile

    Energy Technology Data Exchange (ETDEWEB)

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-06-12

    A quasi one-dimensional steady-state model of the Hall thruster is presented. For given mass flow rate, magnetic field profile, and discharge voltage the unique solution can be constructed, assuming that the thruster operates in one of the two regimes: with or without the anode sheath. It is shown that for a given temperature profile, the applied discharge voltage uniquely determines the operating regime; for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. A good correlation between the quasi one-dimensional model and experimental results can be achieved by selecting an appropriate temperature profile. We also show how the presented model can be used to obtain a two-dimensional potential distribution.

  5. Thermal Storage Advanced Thruster System (TSATS) Experimental Program

    Science.gov (United States)

    Rose, M. Frank; Lisano, Michael E., II

    1991-01-01

    The Thermal Storage Advanced Thruster System (TSATS) rocket test stand is completely assembled and operational. The first trial experimental runs of a low-energy TSATS prototype rocket was made using the test stand. The features of the rocket test stand and the calibration of the associated diagnostics are described and discussed. Design and construction of the TSATS prototype are discussed, and experimental objectives, procedures, and results are detailed.

  6. Hall Effect Thruster Plume Contamination and Erosion Study

    Science.gov (United States)

    Jaworske, Donald A.

    2000-01-01

    The objective of the Hall effect thruster plume contamination and erosion study was to evaluate the impact of a xenon ion plume on various samples placed in the vicinity of a Hall effect thruster for a continuous 100 hour exposure. NASA Glenn Research Center was responsible for the pre- and post-test evaluation of three sample types placed around the thruster: solar cell cover glass, RTV silicone, and Kapton(R). Mass and profilometer), were used to identify the degree of deposition and/or erosion on the solar cell cover glass, RTV silicone, and Kapton@ samples. Transmittance, reflectance, solar absorptance, and room temperature emittance were used to identify the degree of performance degradation of the solar cell cover glass samples alone. Auger spectroscopy was used to identify the chemical constituents found on the surface of the exposed solar cell cover glass samples. Chemical analysis indicated some boron nitride contamination on the samples, from boron nitride insulators used in the body of the thruster. However, erosion outweighted contamination. All samples exhibited some degree of erosion. with the most erosion occurring near the centerline of the plume and the least occurring at the +/- 90 deg positions. For the solar cell cover glass samples, erosion progressed through the antireflective coating and into the microsheet glass itself. Erosion occurred in the solar cell cover glass, RTV silicone and Kapton(R) at different rates. All optical properties changed with the degree of erosion, with solar absorptance and room temperature emittance increasing with erosion. The transmittance of some samples decreased while the reflectance of some samples increased and others decreased. All results are consistent with an energetic plume of xenon ions serving as a source for erosion.

  7. Vacuum arc plasma thrusters with inductive energy storage driver

    Science.gov (United States)

    Krishnan, Mahadevan (Inventor)

    2009-01-01

    A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.

  8. Expanding the ADN-Based Monopropellant Thruster Family

    OpenAIRE

    Anflo, K.; S. Moore; Moog Inc., P.King

    2009-01-01

    The development of High Performance Green Propulsion (HPGP) was initiated with the goal of meeting the requirements for future satellite missions. The HPGP technology includes a storable monopropellant blend based on Ammonium DiNitramide (ADN) and a thruster with a high-temperature resistant thrust chamber and catalyst. After more than 10 years of R&D, the HPGP technology is emerging as an enabling technology for improved performance, enhanced volumetric efficiency, reduction of propellant ha...

  9. Estimating Thruster Impulses From IMU and Doppler Data

    Science.gov (United States)

    Lisano, Michael E.; Kruizinga, Gerhard L.

    2009-01-01

    A computer program implements a thrust impulse measurement (TIM) filter, which processes data on changes in velocity and attitude of a spacecraft to estimate the small impulsive forces and torques exerted by the thrusters of the spacecraft reaction control system (RCS). The velocity-change data are obtained from line-of-sight-velocity data from Doppler measurements made from the Earth. The attitude-change data are the telemetered from an inertial measurement unit (IMU) aboard the spacecraft. The TIM filter estimates the threeaxis thrust vector for each RCS thruster, thereby enabling reduction of cumulative navigation error attributable to inaccurate prediction of thrust vectors. The filter has been augmented with a simple mathematical model to compensate for large temperature fluctuations in the spacecraft thruster catalyst bed in order to estimate thrust more accurately at deadbanding cold-firing levels. Also, rigorous consider-covariance estimation is applied in the TIM to account for the expected uncertainty in the moment of inertia and the location of the center of gravity of the spacecraft. The TIM filter was built with, and depends upon, a sigma-point consider-filter algorithm implemented in a Python-language computer program.

  10. Experimental Null test of a Mach Effect Thruster

    CERN Document Server

    Fearn, Heidi

    2013-01-01

    The Mach Effect Thruster (MET) is a device which utilizes fluctuations in the rest masses of accelerating objects (capacitor stacks, in which internal energy changes take place) to produce a steady linear thrust. The theory has been given in detail elsewhere [1, 2] and references therein, so here we discuss only an experiment. We show how to obtain thrust using a heavy reaction mass at one end of our capacitor stack and a lighter end cap on the other. Then we show how this thrust can be eliminated by having two heavy masses at either end of the stack with a central mounting bracket. We show the same capacitor stack being used as a thruster and then eliminate the thrust by arranging equal brass masses on either end, so that essentially the capacitor stack is trying to push in both directions at once. This arrangement in theory would only allow for a small oscillation but no net thrust. We find the thrust does indeed disappear in the experiment, as predicted. The device (in thruster mode) could in principle be ...

  11. A novel single thruster control strategy for spacecraft attitude stabilization

    Science.gov (United States)

    Godard; Kumar, Krishna Dev; Zou, An-Min

    2013-05-01

    Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.

  12. Chemical kinetic performance losses for a hydrogen laser thermal thruster

    Science.gov (United States)

    Mccay, T. D.; Dexter, C. E.

    1985-01-01

    Projected requirements for efficient, economical, orbit-raising propulsion systems have generated investigations into several potentially high specific impulse, moderate thrust, advanced systems. One of these systems, laser thermal propulsion, utilizes a high temperature plasma as the enthalpy source. The plasma is sustained by a focused laser beam which maintains the plasma temperature at levels near 20,000 K. Since such temperature levels lead to total dissociation and high ionization, the plasma thruster system potentially has a high specific impulse decrement due to recombination losses. The nozzle flow is expected to be sufficiently nonequilibrium to warrant concern over the achievable specific impluse. This investigation was an attempt at evaluation of those losses. The One-Dimensional Kinetics (ODK) option of the Two-Dimensional Kinetics (TDK) Computer Program was used with a chemical kinetics rate set obtained from available literature to determine the chemical kinetic energy losses for typical plasma thruster conditions. The rates were varied about the nominal accepted values to band the possible losses. Kinetic losses were shown to be highly significant for a laser thermal thruster using hydrogen. A 30 percent reduction in specific impulse is possible simply due to the inability to completely extract the molecular recombination energy.

  13. The bowed catheter sign: a risk for pericardial tamponade

    Energy Technology Data Exchange (ETDEWEB)

    Towbin, Richard [Phoenix Children' s Hospital, Department of Radiology, Phoenix, AZ (United States)

    2008-03-15

    The use of a central venous catheter (CVC) has become commonplace in the care of children with a wide variety of medical and surgical problems. Complications resulting from the insertion of these catheters are well recognized and can be life-threatening. When a temporary CVC or other catheter is inserted into the central venous system it is secured to the skin with a combination of sutures and sterile dressing. This fixes the catheter in place and does not allow it to retract, thereby putting pressure on the right atrial wall via the catheter tip if it is too long. The probability of wall penetration is increased if a catheter or device is tapered at the point of contact. The purpose of this case report is to present the bowed catheter sign and to review the anatomy of the cavotricuspid isthmus, a possible predisposing factor to cardiac perforation and tamponade. (orig.)

  14. On the peculiar shapes of some pulsar bow-shock nebulae

    Science.gov (United States)

    Bandiera, Rino

    Pulsar bow-shock nebulae are pulsar-wind nebulae formed by the direct interaction of pulsar relativistic winds with the interstellar medium. The bow-shock morphology, well outlined in Hα for some objects, is an effect of the supersonic pulsar motion with respect to the ambient medium. However, in a considerable fraction of cases (e.g. the nebulae associated to PSR B2224+65, PSR B0740-28, PSR J2124-3358) clear deviations from the classical bow shock shape are observed. Such deviations are usually interpreted as due to ambient density gradients and/or to pulsar-wind anisotropies. Here I present a different interpretation, aiming at explaining deviations from the standard morphology as signs of the peculiar physical conditions present in these objects. Using dimensional arguments, I show that, unlike normal pulsar-wind nebulae, in pulsar bow-shock nebulae the mean free path of the highest-energy particles may be comparable with the bow-shock head. I then investigate whether this may affect the shape of the bow-shock; for instance, whether a conical bow shock (like that observed in the "Guitar", the nebula associated to PSR B2224+65) does really imply an ambient density gradient. Finally, I discuss some other possible signatures of these high-energy, long mean-free-path particles.

  15. On the shape and motion of the Earth's bow shock

    Science.gov (United States)

    Meziane, K.; Alrefay, T. Y.; Hamza, A. M.

    2014-04-01

    Multipoint-measurements by the magnetic field Cluster-FGM (Flux Gate Magnetometer) are used to determine the local shock normal, and in turn allow the study of shock location shape and the velocity of the Earth's bow shock. The shock crossings cover orbits in which the spacecraft separation is of the order of ~600 km or less. A data selection of 133 bow shock crossings, ranging from quasi-steady perpendicular to moderately noisy oblique geometries, have been analyzed using a standard timing analysis. Prior to applying the timing technique, the magnetic field fluctuations, when present, are suppressed using low band-pass filtering. The present study contributes to similar studies conducted in the past and available in the literature through the inclusion of a larger data set. The shock standoff distance is determined conjointly with a paraboloid model and the results from a timing analysis. A statistical study reveals a standoff distance well in agreement with the standard gas dynamics model prediction for high Mach number MA. We have also found that for about half the crossings, the timing shock normals agree, within 11°, with a conic-based shock model. Our results strongly indicate that the motion of the shock is predominantly along the Sun-Earth direction; a departure from this direction is not related to the shock-crossing location. Shock velocities below ~80 km/s satisfactorily follow a nearly Gaussian distribution with zero mean and a standard deviation of ~42 km/s. Finally, we show that high speed motions are correlated with sharp increases in the solar wind upstream ram pressure, and are consistent with gas dynamics model predictions.

  16. Bow shock fragmentation driven by a thermal instability in laboratory-astrophysics experiments

    OpenAIRE

    Suzuki-Vidal, F.; Lebedev, S. V.; Ciardi, A.; Pickworth, L. A.; Rodriguez, R.; Gil, J. M.; Espinosa, G. (Gaudencio); Hartigan, P.; Swadling, G. F.; Skidmore, J.; Hall, G. N.; Bennett, M; Bland, S. N.; Burdiak, G.; de Grouchy, P.

    2015-01-01

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counter-streaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame and the exper...

  17. DESIGN AND DEVELOPMENT OF AUTO DEPTH CONTROL OF REMOTELY OPERATED VEHICLE USING THRUSTER SYSTEM

    Directory of Open Access Journals (Sweden)

    F.A. Ali

    2014-12-01

    Full Text Available Remotely Operated Vehicles are underwater robots designed specifically for surveillance, monitoring and collecting data for underwater activities. In the underwater vehicle industries, the thruster is an important part in controlling the direction, depth and speed of the ROV. However, there are some ROVs that cannot be maintained at the specified depth for a long time because of disturbance. This paper proposes an auto depth control using a thruster system. A prototype of a thruster with an auto depth control is developed and attached to the previously fabricated UTeM ROV. This paper presents the operation of auto depth control as well as thrusters for submerging and emerging purposes and maintaining the specified depth. The thruster system utilizes a microcontroller as its brain, a piezoresistive strain gauge pressure sensor and a DC brushless motor to run the propeller. Performance analysis of the auto depth control system is conducted to identify the sensitivity of the pressure sensor, and the accuracy and stability of the system. The results show that the thruster system performs well in maintaining a specified depth as well as stabilizing itself when a disturbanceoccurs even with a simple proportional controller used to control the thruster, where the thruster is an important component of the ROV.

  18. Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.

  19. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper focuses on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of high-speed Langmuir probes. The results show a rise in the oscillation frequency of the "breathing" mode with rising background pressure, which is hypothesized to be due to a shortening acceleration/ionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  20. Operation of a Segmented Hall Thruster with Low-sputtering Carbon-velvet Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Raitses, Y.; Staack, D.; Dunaevsky, A.; Fisch, N.J.

    2005-12-01

    Carbon fiber velvet material provides exceptional sputtering resistance properties exceeding those for graphite and carbon composite materials. A 2 kW Hall thruster with segmented electrodes made of this material was operated in the discharge voltage range of 200–700 V. The arcing between the floating velvet electrodes and the plasma was visually observed, especially, during the initial conditioning time, which lasted for about 1 h. The comparison of voltage versus current and plume characteristics of the Hall thruster with and without segmented electrodes indicates that the magnetic insulation of the segmented thruster improves with the discharge voltage at a fixed magnetic field. The observations reported here also extend the regimes wherein the segmented Hall thruster can have a narrower plume than that of the conventional nonsegmented thruster.

  1. Electron Cross-field Transport in a Low Power Cylindrical Hall Thruster

    Energy Technology Data Exchange (ETDEWEB)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant.

  2. Performance Evaluation of an Expanded Range XIPS Ion Thruster System for NASA Science Missions

    Science.gov (United States)

    Oh, David Y.; Goebel, Dan M.

    2006-01-01

    This paper examines the benefit that a solar electric propulsion (SEP) system based on the 5 kW Xenon Ion Propulsion System (XIPS) could have for NASA's Discovery class deep space missions. The relative cost and performance of the commercial heritage XIPS system is compared to NSTAR ion thruster based systems on three Discovery class reference missions: 1) a Near Earth Asteroid Sample Return, 2) a Comet Rendezvous and 3) a Main Belt Asteroid Rendezvous. It is found that systems utilizing a single operating XIPS thruster provides significant performance advantages over a single operating NSTAR thruster. In fact, XIPS performs as well as systems utilizing two operating NSTAR thrusters, and still costs less than the NSTAR system with a single operating thruster. This makes XIPS based SEP a competitive and attractive candidate for Discovery class science missions.

  3. Study of monopropellants for electrothermal thrusters: Design and fabrication task summary report

    Science.gov (United States)

    Kuenzly, J. D.

    1974-01-01

    The feasibility of operating small thrust level electrothermal thrusters with monopropellants other than MIL-grade hydrazine was studied. Analytical study, design, and fabrication of demonstration thrusters was performed, and an evaluation test program was initiated to evaluate monopropellants with freezing points lower than MIL-grade hydrazine, and to determine their applicability to electrothermal thrusters for spacecraft attitude control. Five demonstration thrusters were fabricated to determine the feasibility of operation with monomethylhydrazine, Aerozine-50, 77 percent hydrazine-23 percent hydrazine azide, and a mixture of hydrazine monopropellants consisting of 35 percent hydrazine-50 percent monomethylhydrazine-15 percent ammonia. The present thruster is designed to produce a steady-state thrust level of 0.344 N at 1.724 x 1 million N/M sq feed pressure. Vacuum specific impulse goals were set at 1961 N-s/kg steady-state and 1716 N-s/kg pulsed-mode.

  4. Laboratory Reproduction and Failure Analysis of Cracked Orbiter Reaction Control System Niobium Thruster Injectors

    Science.gov (United States)

    Jacobs, Jeremy B.; Castner, Willard L.

    2007-01-01

    A viewgraph presentation describing cracks and failure analysis of an orbiter reaction control system is shown. The topics include: 1) Endeavour STS-113 Landing; 2) RCS Thruster; 3) Thruster Cross-Section; 4) RCS Injector; 5) RCS Thruster, S/N 120l 6) Counterbore Cracks; 7) Relief Radius Cracks; 8) RCS Thruster Cracking History; 9) Thruster Manufacturing Timelines; 10) Laboratory Reproduction of Injector Cracking; 11) The Brownfield Specimen; 12) HF EtchantTests/Specimen Loading; 13) Specimen #3 HF + 600F; 14) Specimen #3 IG Fracture; 15) Specimen #5 HF + 600F; 16) Specimen #5 Popcorn ; 17) Specimen #5 Cleaned and Bent; 18) HF Exposure Test Matrix; 19) Krytox143AC Tests; 20) KrytoxTests/Specimen Loading; 21) Specimen #13 Krytox + 600F; and 22) KrytoxExposure Test Matrix.

  5. Electron Cross-field Transport in a Miniaturized Cylindrical Hall Thruster

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov Artem, Raitses Yevgeny, Fisch Nathaniel J

    2005-10-14

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. The present paper gives a review of the experimental and numerical investigations of electron crossfield transport in the 2.6 cm miniaturized cylindrical Hall thruster (100 W power level). We show that, in order to explain the discharge current observed for the typical operating conditions, the electron anomalous collision frequency {nu}{sub b} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The optimal regimes of thruster operation at low background pressure (below 10{sup -5} Torr) in the vacuum tank appear to be different from those at higher pressure ({approx} 10{sup -4} Torr).

  6. Bow-tie topological features of metabolic networks and the functional significance

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jing; TAO Lin; YU Hong; LUO JianHua; GAO ZhiWei; LI YiXue

    2007-01-01

    Exploring the structural topology of genome-based large-scale metabolic network is essential for in vestigating possible relations between structure and functionality. Visualization would be helpful for obtaining immediate information about structural organization. In this work, metabolic networks of 75 organisms were investigated from a topological point of view. A spread bow-tie model was proposed to give a clear visualization of the bow-tie structure for metabolic networks. The revealed topological pattern helps to design more efficient algorithm specifically for metabolic networks. This coarsegrained graph also visualizes the vulnerable connections in the network, and thus could have important implication for disease studies and drug target identifications. In addition, analysis on the reciprocal links and main cores in the GSC part of bow-tie also reveals that the bow-tie structure of metabolic networks has its own intrinsic and significant features which are significantly different from those of random networks.

  7. The Effect of Buffer Bow Structures on Collision Damages of Oil Tankers

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Pedersen, Preben Terndrup; Friis-Hansen, Peter

    2007-01-01

    In order to investigate the effectiveness of buffer bow structures on prevention of oil spills in tanker collisions, probabilistic collision damage analyses were performed using a newly developed Simplified Ship Collision Analysis Tool (SSCAT). Monte Carlo Simulation (MCS) was carried out using...... the striking ships use conventional bulbous bows. The probability of oil spill from the VLCC, given a collision, is estimated and the risk reducing effect of introducing buffer bow structures is discussed....... SSCAT for collision scenarios where striking ships at various speeds, sizes and bulb shapes collide perpendicularly with a VLCC in fully loaded condition. The probability of oil spill from the struck VLCC in cases where all the striking ships use buffer bulbous bows was compared with the case where all...

  8. Effect of Ship Bow Overhang on Water Shipping for Ship Advancing in Regular Head Waves

    Institute of Scientific and Technical Information of China (English)

    Abdeljalil Benmansour; Benameur Hamoudi; Lahouari Adjlout

    2016-01-01

    This paper presents the results of an experimental investigation dealing with the effect of bow overhang extensions on the quantity of shipping water over the foredeck in case of ships advancing in regular head waves. To perform this investigation, a series of free-running tests was conducted in regular waves using an experimental model of a multipurpose cargo ship to quantify the amount of shipping water. The tests were performed on five bow overhang variants with several combinations of wavelength and ship speed conditions. It was observed that the quantity of shipping water was affected by some parameters such as wavelength, ship speed, and bow shape in terms of an overhang extension. The results show the significant influence of an overhang extension, which is associated with the bow flare shape, on the occurrence of water shipping. These results involve the combined incoming regular waves and model speed.

  9. Highly modular bow-tie gene circuits with programmable dynamic behavior

    OpenAIRE

    Prochazka, Laura; Angelici, Bartolomeo; Haefliger, Benjamin; Benenson, Yaakov

    2014-01-01

    Synthetic gene circuits often require extensive mutual optimization of their components for successful operation, while modular and programmable design platforms are rare. A possible solution lies in the “bow-tie” architecture, which stipulates a focal component - a “knot” - uncoupling circuits’ inputs and outputs, simplifying component swapping, and introducing additional layer of control. Here we construct, in cultured human cells, synthetic bow-tie circuits that transduce microRNA inputs i...

  10. Bow-tie topological features of metabolic networks and the functional significance

    OpenAIRE

    Jing, Zhao; Lin, Tao; Hong, Yu; Jian-Hua, Luo; Cao, Z W; Yixue, Li

    2006-01-01

    Exploring the structural topology of genome-based large-scale metabolic network is essential for investigating possible relations between structure and functionality. Visualization would be helpful for obtaining immediate information about structural organization. In this work, metabolic networks of 75 organisms were investigated from a topological point of view. A spread bow-tie model was proposed to give a clear visualization of the bow-tie structure for metabolic networks. The revealed top...

  11. Numerical and experimantal analysis of a shaft bow influence on a rotor to stator contact dynamics:

    OpenAIRE

    Braut, Sanjin; Butković, Mirko; Žigulić, Roberto

    2008-01-01

    The shaft bow problem presents a real situation especially in case of slender rotors. This paper investigates the shaft bow influence on the rotor-stator contact dynamics. For this purpose the rotor is described as a simple Jeffcott model and the stator as an elastically suspended rigid ring. To test the numerical model, except a usual run down analysis, an emergency shut down after the sudden rotor unbalance increase is also analyzed. Numerical integration is carried out by the fourth-order ...

  12. Development of the Joyo MK-II core bowing reactivity calculation code

    Energy Technology Data Exchange (ETDEWEB)

    Tabuchi, Shiro; Torimaru, Tadahiko; Yoshida, Akihiro; Aoyama, Takafumi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-09-01

    The study on the passive safety test by using the Experimental Fast Reactor Joyo has been performed to demonstrate the inherent safety of fast breeder reactors. In this study, emphasis was placed on the improvement on the accuracy of the feedback reactivity analysis. As a bowing reactivity might play a significant roll in ATWS analysis because of its effectively short time constant and relatively large magnitude, an emphasis was placed upon the evaluation of the analysis precision of bowing reactivity. Taking into account of the refueling and irradiation history of the individual core component, the core bowing behavior in Joyo has been analyzed by using the MK-II core management code system MAGI, the interface code TETRAS which interpolate neutron flux and coolant temperature at the position of wrapper tube, and the core bowing calculation code BEACON. Calculation accuracy of above mentioned system was evaluated through the comparison of calculated and measured permanent distortion of subassemblies. In 1996, core bowing reactivity was calculated by AURORA code using the above calculated bowing behavior of individual core component as input. But because an approximate two dimensional material reactivity worth map was utilized in AURORA, it was made clear that some amount of error caused by extrapolation could not be neglected. Therefore calculation code ARCHCOM (Analysis of Reactivity Change due to Core Mechanics) which utilize three dimensional material reactivity worth map as input was developed for the Joyo MK-II core bowing reactivity calculation. This code reduces above mentioned extrapolation error that used to be occurred at isolated core component, such as control rod or irradiation rig and at the interface region between fuel and reflector which had sharp bowing reactivity worth gradient. (author)

  13. On the observability of bow shocks of Galactic runaway OB stars

    CERN Document Server

    Meyer, D M -A; Kuiper, R; Kley, W

    2016-01-01

    Massive stars that have been ejected from their parent cluster and supersonically sailing away through the interstellar medium (ISM) are classified as exiled. They generate circumstellar bow shock nebulae that can be observed. We present two-dimensional, axisymmetric hydrodynamical simulations of a representative sample of stellar wind bow shocks from Galactic OB stars in an ambient medium of densities ranging from n_ISM=0.01 up to 10.0/cm3. Independently of their location in the Galaxy, we confirm that the infrared is the most appropriated waveband to search for bow shocks from massive stars. Their spectral energy distribution is the convenient tool to analyze them since their emission does not depend on the temporary effects which could affect unstable, thin-shelled bow shocks. Our numerical models of Galactic bow shocks generated by high-mass (~40 Mo) runaway stars yield H$\\alpha$ fluxes which could be observed by facilities such as the SuperCOSMOS H-Alpha Survey. The brightest bow shock nebulae are produc...

  14. Design of automatic thruster assisted mooring systems for ships

    Directory of Open Access Journals (Sweden)

    Jan P. Strand

    1998-04-01

    Full Text Available This paper addresses the mathematical modelling and controller design of an automatic thruster assisted position mooring system. Such control systems are applied to anchored floating production offloading and storage vessels and semi-subs. The controller is designed using model based control with a LQG feedback controller in conjunction with a Kalman filter. The controller design is in addition to the environmental loads accounting for the mooring forces acting on the vessel. This is reflected in the model structure and in the inclusion of new functionality.

  15. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    Science.gov (United States)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated

  16. Improvement of the low frequency oscillation model for Hall thrusters

    Science.gov (United States)

    Wang, Chunsheng; Wang, Huashan

    2016-08-01

    The low frequency oscillation of the discharge current in Hall thrusters is a major aspect of these devices that requires further study. While the existing model captures the ionization mechanism of the low frequency oscillation, it unfortunately fails to express the dynamic characteristics of the ion acceleration. The analysis in this paper shows this is because of the simplification of the electron equation, which affects both the electric field distribution and the ion acceleration process. Additionally, the electron density equation is revised and a new model that is based on the physical properties of ion movement is proposed.

  17. Anode current density distribution in a cusped field thruster

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan, E-mail: wuhuan58@qq.com; Liu, Hui, E-mail: hlying@gmail.com; Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren [Mail Box 458, Harbin Institute of Technology (HIT), Harbin 150001 (China)

    2015-12-15

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  18. Whistler wave bursts upstream of the Uranian bow shock

    Science.gov (United States)

    Smith, Charles W.; Goldstein, Melvyn L.; Wong, Hung K.

    1989-01-01

    Observations of magnetic field wave bursts upstream of the Uranian bow shock are reported which were recorded prior to the inbound shock crossing. Three wave types are identified. One exhibits a broad spectral enhancement from a few millihertz to about 50 mHz and is seen from 17 to 10 hr prior to the inbound shock crossing. It is argued that these waves are whistler waves that have propagated upstream from the shock. A second wave type has a spacecraft frame frequency between 20 and 40 mHz, is seen only within or immediately upstream of the shock pedestal, is right-hand polarized in the spacecraft frame, and has a typical burst duration of 90 s. The third wave type has a spacecraft frame frequency of about 0.15 Hz, is seen exclusively within the shock pedestal, is left-hand polarized in the spacecraft frame, and has a burst duration lasting up to 4 min. It is argued that the low-frequency bursts are whistler waves with phase speed comparable to, but in excess of, the solar wind speed.

  19. Whistler waves associated with the Uranian bow shock - Outbound observations

    Science.gov (United States)

    Smith, Charles W.; Wong, Hung K.; Goldstein, Melvyn L.

    1991-01-01

    High-resolution magnetic field measurements from the first outbound crossing of the Uranian bowshock by the Voyager 2 spacecraft between January 27 and 30, 1986, are examined. Evidence is found of enhanced whistler wave activity in the vicinity of three shock crossings but little or no evidence of such activity elsewhere. Two wave events display two separate and simultaneous wave enhancements each. From an investigation of these events using high-resolution field data, it is concluded that they are analogous to those whistler waves upstream of the earth's bow shock that are driven by beams of electrons. An instability analysis is presented to show that a single electron beam with reasonable parameters can penetrate both of the upstream and downstream of a shock crossing. This event displays only one relatively broad spectral enhancement in the same frequency regime and is left-hand polarized in the spacecraft frame. It is argued that this event is the result of a gyrating proton distribution associated with the oblique shock.

  20. Motion Prediction of Catamaran with a Semisubmersible Bow in Wave

    Directory of Open Access Journals (Sweden)

    Sun Hanbing

    2016-01-01

    Full Text Available Compared with standard vessels, a slender catamaran with a semi-submerged bow (SSB demonstrates superior seakeeping performance. To predict the motion of an SSB catamaran, computational fluid dynamics methods are adopted in this study and results are validated through small-scale model tests. The pitch, heave, and vertical acceleration are calculated at various wavelengths and speeds. Based on the overset grid and motion region methods, this study obtains the motion responses of an SSB catamaran in regular head waves. The results of the numerical studies are validated with the experimental data and show that the overset grid method is more accurate in predicting the motion of an SSB catamaran; the errors can be controlled within 20%. The movement data in regular waves shows that at a constant speed, the motion response initially increases and then decreases with increasing wavelength. This motion response peak is due to the encountering frequency being close to the natural frequency. Under identical sea conditions, the motion response increases with the increasing Froude number. The motion prediction results, that derive from a short-term irregular sea state, show that there is an optimal speed range that can effectively reduce the amplitude of motion.

  1. Multi-Spacecraft Investigation of Terrestrial Bow Shock: Cluster Observations

    Science.gov (United States)

    Kruparova, O.; Krupar, V.; Santolik, O.; Soucek, J.; Safrankova, J.; Nemecek, Z.; Nemec, F.; Maksimovic, M.

    2015-12-01

    Due to the interaction of the solar wind with the Earth's magnetosphere, a permanent collisionless bow shock (BS) is formed in front of the nose of the magnetopause. We investigate a large number of BS crossings observed by the Cluster spacecraft between years 2001 and 2015. The FGM instruments provide us with magnetic field measurements sampled at 22 Hz, which is sufficient for a precise identification of BS crossings. We compare observed BS locations with distances predicted by gas dynamical models based on upstream plasma parameters in the solar wind. We achieve a very good agreement in a case of a paraboloid with the Earth fixed in a focus point. We use a simple timing method for the estimation of a BS normal and velocity along this normal. We found that the deviations of calculated BS normals from the paraboloid shape are within 20 degrees. We compare calculated BS velocities with several upstream parameters. We also investigate BS ramp thickness which is comparable to the Larmor radius in the case of quasi-perpendicular BS crossings.

  2. Design of Compact Trapezoidal Bow-Tie Chipless RFID Tag

    Directory of Open Access Journals (Sweden)

    Lei Xu

    2015-01-01

    Full Text Available This paper presents a novel compact design of a low cost fully printable slot-loaded bowtie chipless RFID tag. The tag consists of two trapezoidal metallic patches loaded with multiple slot resonators. Slots with similar size or adjacent frequencies are loaded alternately on two bow-tie patches to double the number of data bits within the UWB frequency band without increasing the mutual coupling between slots. A coding capacity of 12 bits is obtained with 12 slots within a reasonable size of 35 mm × 33 mm. RCS of the tag has been given by simulation. Measurements have been done using a bistatic radar configuration in the frequency domain and transmission coefficient is measured. The agreement between the simulation and measurement validates this new concept of design. This tag has high data capacity and low cost and can be directly printed on product such as personal ID, credit cards, paper, and textile because it needs only one conductive layer.

  3. Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars

    Directory of Open Access Journals (Sweden)

    M. Yamauchi

    2011-03-01

    Full Text Available Foreshock ions are compared between Venus and Mars at energies of 0.6~20 keV using the same ion instrument, the Ion Mass Analyser, on board both Venus Express and Mars Express. Venus Express often observes accelerated protons (2~6 times the solar wind energy that travel away from the Venus bow shock when the spacecraft location is magnetically connected to the bow shock. The observed ions have a large field-aligned velocity compared to the perpendicular velocity in the solar wind frame, and are similar to the field-aligned beams and intermediate gyrating component of the foreshock ions in the terrestrial upstream region. Mars Express does not observe similar foreshock ions as does Venus Express, indicating that the Martian foreshock does not possess the intermediate gyrating component in the upstream region on the dayside of the planet. Instead, two types of gyrating protons in the solar wind frame are observed very close to the Martian quasi-perpendicular bow shock within a proton gyroradius distance. The first type is observed only within the region which is about 400 km from the bow shock and flows tailward nearly along the bow shock with a similar velocity as the solar wind. The second type is observed up to about 700 km from the bow shock and has a bundled structure in the energy domain. A traversal on 12 July 2005, in which the energy-bunching came from bundling in the magnetic field direction, is further examined. The observed velocities of the latter population are consistent with multiple specular reflections of the solar wind at the bow shock, and the ions after the second reflection have a field-aligned velocity larger than that of the de Hoffman-Teller velocity frame, i.e., their guiding center has moved toward interplanetary space out from the bow shock. To account for the observed peculiarity of the Martian upstream region, finite gyroradius effects of the solar wind protons compared to the radius of the bow shock curvature and

  4. Design of a cusped field thruster for drag-free flight

    Science.gov (United States)

    Liu, H.; Chen, P. B.; Sun, Q. Q.; Hu, P.; Meng, Y. C.; Mao, W.; Yu, D. R.

    2016-09-01

    Drag-free flight has played a more and more important role in many space missions. The thrust control system is the key unit to achieve drag-free flight by providing a precise compensation for the disturbing force except gravity. The cusped field thruster has shown a significant potential to be capable of the function due to its long life, high efficiency, and simplicity. This paper demonstrates a cusped field thruster's feasibility in drag-free flight based on its instinctive characteristics and describes a detailed design of a cusped field thruster made by Harbin Institute of Technology (HIT). Furthermore, the performance test is conducted, which shows that the cusped field thruster can achieve a continuously variable thrust from 1 to 20 mN with a low noise and high resolution below 650 W, and the specific impulse can achieve 1800 s under a thrust of 18 mN and discharge voltage of 1000 V. The thruster's overall performance indicates that the cusped field thruster is quite capable of achieving drag-free flight. With the further optimization, the cusped field thruster will exhibit a more extensive application value.

  5. Effect of Inductive Coil Geometry on the Operating Characteristics of an Inductive Pulsed Plasma Thruster

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.; Perdue, Kevin A.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with conical theta pinch coils of different cone angles are explored through thrust stand measurements and time- integrated, unfiltered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass flow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass flow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  6. Electron Transport and Ion Acceleration in a Low-power Cylindrical Hall Thruster

    Energy Technology Data Exchange (ETDEWEB)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The plasma density peak observed at the axis of the 2.6 cm cylindrical Hall thruster is likely to be due to the convergent flux of ions, which are born in the annular part of the channel and accelerated towards the thruster axis.

  7. Grid Gap Measurement for an NSTAR Ion Thruster

    Science.gov (United States)

    Diaz, Esther M.; Soulas, George C.

    2006-01-01

    The change in gap between the screen and accelerator grids of an engineering model NSTAR ion optics assembly was measured during thruster operation with beam extraction. The molybdenum ion optics assembly was mounted onto an engineering model NSTAR ion thruster. The measurement technique consisted of measuring the difference in height of an alumina pin relative to the downstream accelerator grid surface. The alumina pin was mechanically attached to the center aperture of the screen grid and protruded through the center aperture of the accelerator grid. The change in pin height was monitored using a long distance microscope coupled to a digital imaging system. Transient and steady-state hot grid gaps were measured at three power levels: 0.5, 1.5 and 2.3 kW. Also, the change in grid gap was measured during the transition between power levels, and during the startup with high voltage applied just prior to discharge ignition. Performance measurements, such as perveance, electron backstreaming limit and screen grid ion transparency, were also made to confirm that this ion optics assembly performed similarly to past testing. Results are compared to a prior test of 30 cm titanium ion optics.

  8. Simplified power processing for inert gas ion thrusters

    Science.gov (United States)

    Rawlin, V. K.; Pinero, L. R.; Hamley, J. A.

    1993-01-01

    Significant simplifications to power processors for inert gas ion thrusters in the 1 to 5 kW range have been identified. They include elimination of all but three power supplies - one each for the neutralizer, main discharge, and beam. The neutralizer and discharge power supplies would provide both cathode heating and plasma generating functions. This dual-use power supply concept was validated via integration tests with a 30 cm diameter xenon ion thruster. The beam/accelerator power supply would have positive and negative outputs to allow a single power supply to provide both functions. The discharge and beam power supplies would incorporate full-bridge inverters similar to those proven for flight-ready arcjet propulsion systems. Operation of this simplified power processing scheme at an inverter frequency of 50 kHz results in a projected power processor design with low mass and high efficiency. A 2 kW reference point design has estimated values of specific mass of 5.4 kg/kW and an efficiency of 93 percent.

  9. Assessment of Pole Erosion in a Magnetically Shielded Hall Thruster

    Science.gov (United States)

    Mikellides, Ioannis G.; Ortega, Alejandro L.

    2014-01-01

    Numerical simulations of a 6-kW laboratory Hall thruster called H6 have been performed to quantify the erosion rate at the inner pole. The assessments have been made in two versions of the thruster, namely the unshielded (H6US) and magnetically shielded (H6MS) configurations. The simulations have been performed with the 2-D axisymmetric code Hall2De which employs a new multi-fluid ion algorithm to capture the presence of low-energy ions in the vicinity of the poles. It is found that the maximum computed erosion rate at the inner pole of the H6MS exceeds the measured rate of back-sputtered deposits by 4.5 times. This explains only part of the surface roughening that was observed after a 150-h wear test, which covered most of the pole area exposed to the plasma. For the majority of the pole surface the computed erosion rates are found to be below the back-sputter rate and comparable to those in the H6US which exhibited little to no sputtering in previous tests. Possible explanations for the discrepancy are discussed.

  10. Experimental Investigations of a Krypton Stationary Plasma Thruster

    Directory of Open Access Journals (Sweden)

    A. I. Bugrova

    2013-01-01

    Full Text Available Stationary plasma thrusters are attractive electric propulsion systems for spacecrafts. The usual propellant is xenon. Among the other suggested propellants, krypton could be one of the best candidates. Most studies have been carried out with a Hall effect thruster previously designed for xenon. The ATON A-3 developed by MSTU MIREA (Moscow initially defined for xenon has been optimized for krypton. The stable high-performance ATON A-3 operation in Kr has been achieved after optimization of its magnetic field configuration and its optimization in different parameters: length and width of the channel, buffer volume dimensions, mode of the cathode operation, and input parameters. For a voltage of 400 V and the anode mass flow rate of 2.5 mg/s the anode efficiency reaches 60% and the specific impulse reaches 2900 s under A-3 operating with Kr. The achieved performances under operation A-3 with Kr are presented and compared with performances obtained with Xe.

  11. Engineering Risk Assessment of Space Thruster Challenge Problem

    Science.gov (United States)

    Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie

    2014-01-01

    The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.

  12. Exploiting biomechanical degrees of freedom for fast and accurate changes in movement direction: coordination underlying quick bow reversals during continuous cello bowing

    Directory of Open Access Journals (Sweden)

    Julius eVerrel

    2013-04-01

    Full Text Available Theoretical and empirical evidence suggests that accurate and efficient motor performance may be achieved by task-specific exploitation of biomechanical degrees of freedom. We investigate coordination of the right arm in a task requiring a sudden yet precisely controlled reversal of movement direction: bow reversals during continuous (legato tone production on a stringed instrument. Ten advanced or professional cello players (at least ten years of practice and ten age-matched novice players took part in the study. Kinematic data from the bow and the right arm were analyzed in terms of velocity and acceleration profiles, as well as temporal coordination along the arm. As expected, experts’ bow velocity and acceleration profiles differed markedly from those of novice participants, with higher peak accelerations and quicker direction changes. Importantly, experts achieved the change in movement direction with a single acceleration peak while novices tended to use multiple smaller acceleration peaks. Experts moreover showed a proximal-distal gradient in timing and amplitudes of acceleration peaks, with earlier and lower-amplitude reversals at more proximal joints. We suggest that this coordination pattern allows generating high accelerations at the end effector while reducing the required joint torques at the proximal joints. This may underlie experts’ ability to produce fast bow reversals efficiently and with high spatiotemporal accuracy. The findings are discussed in terms of motor control theory as well as potential implications for musicians’ performance and health.

  13. Ship Bow Force-Deformation Curves for Ship-Impact Demand of Bridges considering Effect of Pile-Cap Depth

    OpenAIRE

    Wei Fan; Wancheng Yuan

    2014-01-01

    Since static analysis procedures in the vessel impact-resistant design codes neglect dynamic amplification effects related to bridge mass, ship-impact responses of bridges may be potentially underestimated. For this reason, several dynamic vessel-impact analysis techniques had been recently proposed, where a force-deformation curve was employed to model the vessel bow stiffness. Most of the recent works mainly focused on the force-deformation curves of the barge bows rather than the ship bows...

  14. A bow-shaped thermal structure traveling upstream of the zonal wind flow of Venus atmosphere

    Science.gov (United States)

    Taguchi, Makoto; Fukuhara, Tetsuya; Imamura, Takeshi; Kouyama, Toru; Nakamura, Masato; Sato, Takao M.; Ueno, Munetaka; Suzuki, Makoto; Iwagami, Naomoto; Sato, Mitsuteru; Hashimoto, George L.; Takagi, Seiko; Akatsuki Science Team

    2016-10-01

    The Longwave Infrared Camera (LIR) onboard the Japanese Venus orbiter Akatsuki acquires a snap shot of Venus in the middle infrared region, and provides a brightness temperature distribution at the cloud-top altitudes of about 65 km. Hundreds of images taken by LIR have been transferred to the ground since the successful Venus orbit insertion of Akatsuki on Dec. 7, 2015. Here we report that a bow shaped thermal structure extending from the northern high latitudes to the southern high latitudes was found in the brightness temperature map on Dec. 7, 2015, and that it lasted for four days at least surprisingly at almost same geographical position. The bow shape structure looks symmetrical with the equator, and consists of a high temperature region in east or upstream of the background strong westward wind or the super rotation of the Venus atmosphere followed by a low temperature region in west with an amplitude of 5 K. It appeared close to the evening terminator in the dayside, and seems not to have stayed in the same local time rather to have co-rotated with the slowly rotating ground where the western part of Aphrodite Continent was below the center of the bow shape. Meridionally aligned dark filaments similar to the bow shape structure in shape but in much smaller scale were also identified in the brightness temperature map on Dec. 7, and they propagated upstream of the zonal wind as well. The bow shape structure disappeared when LIR observed the same local time and longitude in the earliest opportunity on Jan. 16, 2016. Similar events, though their amplitudes were less than 1 K, were found on Apr. 15 and 26, 2016, but they appeared in different local times and longitudes. A simulation of a gravity wave generated in the lower atmosphere and propagating upward reproduces the observed bow shape structure. The bow shape structure could be a signature of transferring momentum from the ground to the upper atmosphere.

  15. Possible generation mechanisms of low-frequency waves /less than about 50 Hz/ with application to the bow shock plasma

    Science.gov (United States)

    Dangelo, N.

    1979-01-01

    Generation mechanisms of waves observed at the earth's bow shock or in its vicinity within the frequency range extending up to about 50 Hz are reviewed. Observations and theories regarding waves in the solar wind upstream of the bow shock (both low-frequency 0.01-0.05 Hz and high-frequency 0.5-4 Hz waves), waves in the bow shock itself and magnetosheath waves arising from processes of generation or amplification in the bow shock are considered. Hydromagnetic, ion-acoustic and whistler type waves are discussed.

  16. Oxygen foreshock of Mars and its implication on ion acceleration in the bow shock

    Science.gov (United States)

    Yamauchi, Masatoshi; Lundin, Rickard; Frahm, Rudy; Sauvaud, Jean-Andre; Holmstrom, Mats; Barabash, Stas

    2016-04-01

    Ion acceleration inside the bow shock is one of the poorly understood phenomena that has been observed for more than 30 years as the foreshock phenomena. While the Fermi-acceleration mechanism explains the diffuse component of foreshock ions, we still do not know the detailed mechanism that produces the discrete intense ions flowing along the local magnetic field direction (with and without gyration). One of the reasons for such difficulty is that majority of the bow shock study was performed for the Earth's case where Oxygen ions cannot be used to understand the acceleration mechanisms. The planetary oxygen ions that reach the Earth's bow shock have already been significantly accelerated, and are not adequate for such a study. In this sense the Martian bow shock is an ideal place to study the acceleration mechanisms leading to foreshock ions, although the nature of the bow shock is slightly different between the Earth and Mars (Yamauchi et al., 2011). On 21 September 2008, the Mars Express (MEX) Ion Mass Analyser (IMA) detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock. This was the first time that a substantial amount of planetary oxygen was observed upstream of the bow shock. The oxygen energy increased from low energy (location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. The observation is consistent with an electric potential barrier at the bow shock that simultaneously accelerates the planetary oxygen ions outward (to form the foreshock oxygen ions) and reflects a portion of the solar wind (to form the foreshock protons). Yamauchi, M., et al. (2011): Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars, Ann. Geophys., 29(3), 511-528, doi:10

  17. Scattering of field-aligned beam ions upstream of Earth's bow shock

    Directory of Open Access Journals (Sweden)

    A. Kis

    2007-03-01

    Full Text Available Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.

  18. Application of high-turning bowed compressor stator to redesign of highly loaded fan stage

    Institute of Scientific and Technical Information of China (English)

    Shaobin LI; Jiexian SU; Zhongqi WANG

    2008-01-01

    A redesign of a highly loaded fan stage by using high-turning bowed compressor stator was conducted. The original tandem stator was replaced by the highly loaded bowed stator which was applicable to highly sub-sonic flow conditions. 3D contouring technique and local modification of blade were applied to the design of the bowed blade in order to improve the aerodynamic per-formance and the matching of the rotor and stator blade rows. Performance curves at different rotating speeds and performances at different operating points for both the original fan stage and redesigned fan stage were obtained by numerical simulations. The results show that the highly loaded bowed stator can be used not only to improve the structure and the aerodynamic performances at various operating points of the compressor stage but also to pro-vide high performances at off-design conditions. It is believed that the highly loaded bowed stator can advance the design of high-performance compressor.

  19. Bow shock fragmentation driven by a thermal instability in laboratory-astrophysics experiments

    CERN Document Server

    Suzuki-Vidal, F; Ciardi, A; Pickworth, L A; Rodriguez, R; Gil, J M; Espinosa, G; Hartigan, P; Swadling, G F; Skidmore, J; Hall, G N; Bennett, M; Bland, S N; Burdiak, G; de Grouchy, P; Music, J; Suttle, L; Hansen, E; Frank, A

    2015-01-01

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counter-streaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame and the experiments are driven over many times the characteristic cooling time-scale. The initially smooth bow shock rapidly develops small-scale non-uniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with...

  20. Global explicit particle-in-cell simulations of the nonstationary bow shock and magnetosphere

    CERN Document Server

    Yang, Zhongwei; Liu, Ying D; Parks, George K; Wang, Rui; Lu, Quanming; Hu, Huidong

    2016-01-01

    We carry out two-dimensional global particle-in-cell simulations of the interaction between the solar wind and a dipole field to study the formation of the bow shock and magnetosphere. A self-reforming bow shock ahead of a dipole field is presented by using relatively high temporal-spatial resolutions. We find that (1) the bow shock and the magnetosphere are formed and reach a quasi-stable state after several ion cyclotron periods, and (2) under the Bz southward solar wind condition the bow shock undergoes a self-reformation for low \\b{eta}i and high MA. Simultaneously, a magnetic reconnection in the magnetotail is found. For high \\b{eta}i and low MA, the shock becomes quasi-stationary, and the magnetotail reconnection disappears. In addition, (3) the magnetopause deflects the magnetosheath plasmas. The sheath particles injected at the quasi-perpendicular region of the bow shock can be convected to downstream of an oblique shock region. A fraction of these sheath particles can leak out from the magnetosheath ...

  1. Unilateral Outer Bow Expanded Cervical Headgear Force System: 3D Analysis Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Allahyar Geramy

    2015-10-01

    Full Text Available Objectives: Headgears are among the effective orthodontic appliances to achieve treatment goals. Unilateral molar distal movement is sometimes needed during an orthodontic treat- ment, which can be achieved by an asymmetric headgear. Different unilateral headgears have been introduced. The main goal of this study was to analyze the force system of uni- lateral expanded outer bow asymmetric headgears by the finite element method (FEM.Materials and Methods: Six 3D finite element models of a mesiodistal slice of the maxilla containing upper first molars, their periodontal ligaments (PDLs, cancellous bone, cortical bone, and a cervical headgear with expanded outer bow attached to maxillary first molars were designed in SolidWorks 2010 and meshed in ANSYS Workbench ver. 12.1. The mod- els were the same except for the degree of outer bow expansion. The outer bow ends were loaded with 2-Newton force. The distal driving force and the net moment were evaluated.Results: A decrease in the distalizing force in the normal side molar from 1.69 N to 1.37 N was shown by increasing the degree of unilateral expansion. At the same time, the force increased from 2.19 N to 2.49 N in the expanded side molar. A net moment increasing from 2.26 N.mm to 4.64 N.mm was also shown.Conclusion: Unilateral outer bow expansion can produce different distalizing forces in mo- lars, which increase by increasing the expansion.

  2. Bow Shocks from Neutron Stars Scaling Laws and HST Observations of the Guitar Nebula

    CERN Document Server

    Chatterjee, S

    2002-01-01

    The interaction of high-velocity neutron stars with the interstellar medium produces bow shock nebulae, where the relativistic neutron star wind is confined by ram pressure. We present multi-wavelength observations of the Guitar Nebula, including narrow-band H-alpha imaging with HST/WFPC2, which resolves the head of the bow shock. The HST observations are used to fit for the inclination of the pulsar velocity vector to the line of sight, and to determine the combination of spindown energy loss, velocity, and ambient density that sets the scale of the bow shock. We find that the velocity vector is most likely in the plane of the sky. We use the Guitar Nebula and other observed neutron star bow shocks to test scaling laws for their size and H-alpha emission, discuss their prevalence, and present criteria for their detectability in targeted searches. The set of H-alpha bow shocks shows remarkable consistency, in spite of the expected variation in ambient densities and orientations. Together, they support the ass...

  3. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.; Swadling, G. F.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Burdiak, G.; De Grouchy, P.; Music, J.; Suttle, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Ciardi, A. [Sorbonne Universités, UPMC Univ. Paris 6, UMR 8112, LERMA, F-75005, Paris (France); Rodriguez, R.; Gil, J. M.; Espinosa, G. [Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria (Spain); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Hansen, E.; Frank, A., E-mail: f.suzuki@imperial.ac.uk [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

    2015-12-20

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.

  4. Bow-tie antennas on a dielectric half-space - Theory and experiment

    Science.gov (United States)

    Compton, Richard C.; Mcphedran, Ross C.; Popovic, Zorana; Rebeiz, Gabriel M.; Tong, Peter P.

    1987-01-01

    A new formulation is discussed for the rigous calculation of the radiation pattern of a bow-tie antenna of finite length and infinitesimal thickness, placed on a lossless dielectric substrate. The analysis is based on a representation of the current density on the metal surface of the antenna as a sum of an imposed (quasistatic) term and a set of current modes with unknown amplitudes. Free-space fields that are expressed in terms of continuous spectra of symmetrized plane waves are matched to the current modes using the method of moments. The resulting set of equations are solved for the unknown current amplitudes. The calculations show that for increasing bow length the antenna impedance spirals rapidly to a value predicted by transmission line theory. The theory also shows that the E-plane pattern of a two-wavelength, 60-deg bow-tie antenna is dominated by low-loss current modes propagating at the dielectric wavenumber. As the bow tie narrows, the loss of the modes increases, and the dominant wavenumber tends to the quasi-static value. Pattern measurements made at 94 GHz are shown to agree well with theoretical predictions. Measurements for a long-wire antenna, a linear array of bow-tie elements, and a log-periodic antenna are also presented.

  5. On the role of the bow shock in power of magnetospheric disturbances

    Science.gov (United States)

    Sedykh, P. A.

    2011-11-01

    Bow shock is a powerful transformer of the solar wind kinetic energy into the gas dynamic and electromagnetic energy. Indeed, the magnetic field tangential component and magnetic energy density increase by factors of almost 4 and approximately 15, respectively, at the bow point when the front is crossed. A jump of the magnetic field tangential component at front crossing means that the front carries an electric current. The solar wind kinetic energy partly transforms to gas kinetic and electromagnetic energy when passage through the bow shock front. The transition layer (magnetosheath) can use the part of this energy for accelerating of plasma, but can conversely spend the part its kinetic energy on the electric power generation, which afterwards may be used by the magnetosphere. Thereby, transition layer can be both consumer and generator of electric power depending upon special conditions. The direction of current behind the bow shock front depends on the sign of the IMF Bz-component. It is this current which sets plasma convection in motion. Energetically, this external current is necessary for maintaining convection of plasma in the inhomogeneous system (magnetosphere). The generator at the bow shock front can be a sufficient source of power for supplying energy to substorm processes in the geomagnetosphere.

  6. Flow separation control by using bowed blade in highly loaded turbine cascades

    Institute of Scientific and Technical Information of China (English)

    YAMAMOTO; Atsumasa

    2009-01-01

    Due to the serious flow separations and centralized vortices,there are high secondary losses in highly loaded turbines.It is imperative to find measures to control the flow separation and vortices hence improve the turbine performance.This paper reports our recent progress on flow separation and vor-tices control in highly loaded turbine cascades by using bowed blades.Two sets of highly loaded tur-bine cascades with the turning angles of 113° and 160°,and each with 7 bowed blade angles 0°(straight),±10°,±20° and ±30° were experimentally investigated.Both internal flow field measurement and flow visualization on the blade surfaces were conducted,and the effects of blade bowing on the flow topology,distribution of vorticity and the flow energy loss were discussed.The results show that,for the cascade with the turning angle of 113°,the appropriately positive bow angle could reduce the flow energy loss;whereas for the cascade with the turning angle of 160°,the well selected negative bow angle can give the better aerodynamic performance.

  7. Flow separation control by using bowed blade in highly loaded turbine cascades

    Institute of Scientific and Technical Information of China (English)

    TAN ChunQing; ZHANG HuaLiang; CHEN HaiSheng; DONG XueZhi; ZHAO HongLei; YAMAMOTO Atsumasa

    2009-01-01

    Due to the serious flow separations and centralized vortices, there are high secondary losses in highly loaded turbines. It is imperative to find measures to control the flow separation and vortices hence improve the turbine performance. This paper reports our recent progress on flow separation and vor-tices control in highly loaded turbine cascades by using bowed blades. Two sets of highly loaded tur-bine cascades with the turning angles of 113°and 160°, and each with 7 bowed blade angles 0°(straight),±10°, ±20° and ±30° were experimentally investigated. Both internal flow field measurement and flow visualization on the blade surfaces were conducted, and the effects of blade bowing on the flow topology, distribution of vorticity and the flow energy loss were discussed. The results show that, for the cascade with the turning angle of 113°, the appropriately positive bow angle could reduce the flow energy loss; whereas for the cascade with the turning angle of 160°, the well selected negative bow angle can give the better aerodynamic performance.

  8. Lifetime Improvement of Large Scale Green Monopropellant Thrusters via Novel, Long-Life Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop a high performance, non-toxic storable, "green" monopropellant thruster suitable for in-space reaction control propulsion. The engine will...

  9. Propellantless Spacecraft Formation-Flying and Maneuvering with Photonic Laser Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Until the former NIAC was closed, we had investigated a nano-meter accuracy formation flight method based on photon thrusters and tethers, Photon Tether Formation...

  10. On the microscopic mechanism of ion-extraction of a gridded ion propulsion thruster

    CERN Document Server

    Kirmse, Danny

    2013-01-01

    The following paper includes a physical microscopic particle-description of the phenomena and mechanisms that lead to the extraction of ions with the aim to generate thrust. This theoretical treatise arose from the intention to visualize the behavior of the involved particles under effect of the involved electrical fields. By this way, an underlying basis for experimental investigations of the work of an ion thruster should be formed. So a foundation was created, which explains the ion extracting and so thrust generating function of an ion thruster. The theoretical work was related to the Radio-frequency Ion Thruster (RIT). But the model worked out can be generalized for all thruster types that use electrostatic fields to extract positively charged ions.

  11. Pulsed inductive thruster performance data base for megawatt-class engine applications

    Science.gov (United States)

    Dailey, Charles L.; Lovberg, Ralph H.

    1993-01-01

    The pulsed inductive thruster (PIT) is an electrodeless plasma accelerator employing a large (1m diameter) spiral coil energized by a capacitor bank discharge. The bank can be repetitively recharged by a nuclear electric generator for continuous MW level operation. The coil can be designed as a transformer that permits thruster operation at the generator voltage, which results in a low thruster specific mass. Specific impulse (Isp) can be readily altered by changing the propellant valve plenum pressure. Performance curves generated from mesausred impulse, injected mass and capacitor bank energy are presented for argon, ammonia, hydrazine, carbon dioxide and helium. The highest performance measured to date is 48% efficiency at 4000 seconds Isp with ammonia. The development of a theoretical model of the thruster, which assumes a fully ionized plasma, is presented in an appendix.

  12. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The gasdynamic mirror (GDM) plasma thruster has the ability to confine high-density plasma for the length of time required to heat it to the temperatures...

  13. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gasdynamic Mirror (GDM) thruster is an electric propulsion device, without electrodes, that will magnetically confine a plasma with such density and temperature...

  14. HIGH ENERGY REPLACEMENT FOR TEFLON PROPELLANT IN PULSED PLASMA THRUSTERS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...

  15. Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I Busek matured the design of an existing 15-kW laboratory thruster. Magnetic modeling was performed to generate a circuit incorporating magnetic...

  16. Wide Throttling, High Throughput Hall Thruster for Science and Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to Topic S3.04 "Propulsion Systems," Busek Co. Inc. will develop a high throughput Hall effect thruster with a nominal peak power of 1-kW and wide...

  17. Colloid Thruster for Attitude Control Systems (ACS) and Tip-off Control Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test key technologies needed for an integrated, high thrust colloid thruster system with no moving parts, for spacecraft attitude control...

  18. Low Cost Refractory Matrix Composite Thruster for Mars Ascent Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The long-term goal for this effort is to develop a low-cost, high-temperature thruster. Within the attitude control propulsion community, many efforts have focused...

  19. Kinetic Molecular Dynamic Model of Hall Thruster Channel Wall Erosion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hall thrusters are being considered for many space missions because their high specific impulse delivers a larger payload mass fraction than chemical rockets. With...

  20. Feasibility of a 5mN Laser-Driven Mini-Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a next-generation thruster under a Phase II SBIR which we believe can meet NASA requirements after some modifications and improvements. It is the...

  1. Wide Throttling, High Throughput Hall Thruster for Science and Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to Topic S3-04 "Propulsion Systems," Busek proposes to develop a high throughput Hall effect thruster with a nominal peak power of 1-kW and wide...

  2. Characterisation of Electrical Propulsion Thrusters as a Load for Electronic Power Supplies

    Science.gov (United States)

    Gollor, Matthias; Herty, Frank

    2008-09-01

    For European space missions the importance of electrical propulsion is growing strongly. Many different types of electrical thrusters have been developed in the past years. Often the specification of electrical power supplies suffers from lack of dedicated electrical measurements or misinterpretation of the load behaviour especially under dynamic conditions. As a result, the Power Supply and Control Unit might not be optimally matched to the thrusters and in worst case may react with instabilities during operation.Analyzing the different types of electric thrusters a broad variety of different load characteristics have to be taken into account: non-linear I/V curves, constant voltage and constant current equivalent loads, but except for auxiliary magnet circuits, the loads typically do not show significant inductive or capacitive components. However, the majority of the thrusters show significant load oscillations due to plasma effects, typically in a frequency range of a few ten kHz. Most thrusters are affected by spurious flashovers (sparking, beam-outs, and plasma instabilities).In order to achieve a good definition of the interface between power supplies and the EP thrusters as a load, it is recommended to perform measurements of the current-voltage curve under static and dynamic conditions already in early development phases. For thrusters with complex power supplies the possible coupling between the power sources through the plasma might be considered, too. Examples for such measurements and the transfer of the results into simple electrical models are given for an anode supply of a Kaufmann type ion thruster and a Neutralizer/Keeper supply.

  3. Development of the Multiple Use Plug Hybrid for Nanosats (Muphyn) Miniature Thruster

    OpenAIRE

    Eilers, Shannon Dean

    2013-01-01

    The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorporates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft. The MUPHyN thruster offers several features that are uniquely suited for small satellite applications. These features include 1) a non-explosive ignition system, 2) non-mechanical thrust vectoring using secondary fluid injection on an aerospike nozzle cooled with the oxidizer ...

  4. Field test of ultra-low head hydropower package based on marine thrusters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    The project includes the design, fabrication, assembly, installation, and field test of the first full-scale operating hydropower package (turbine, transmission, and generator) based on a design which incorporates a marine-thruster as the hydraulic prime mover. Included here are: the project overview; engineering design; ultra-low head hydropower package fabrication; component procurement, cost control, and scheduling; thruster hydraulic section installation; site modeling and resulting recommended modifications; testing; and baseline environmental conditions at Stone Drop. (MHR)

  5. Plasma Sheet Velocity Measurement Techniques for the Pulsed Plasma Thruster SIMP-LEX

    Science.gov (United States)

    Nawaz, Anuscheh; Lau, Matthew

    2011-01-01

    The velocity of the first plasma sheet was determined between the electrodes of a pulsed plasma thruster using three measurement techniques: time of flight probe, high speed camera and magnetic field probe. Further, for time of flight probe and magnetic field probe, it was possible to determine the velocity distribution along the electrodes, as the plasma sheet is accelerated. The results from all three techniques are shown, and are compared for one thruster geometry.

  6. Performance of a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Science.gov (United States)

    Polzin, Kurt A.; Raitses, Yevgeny; Fisch, Nathaniel J.

    2008-01-01

    While Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope down to 100W while maintaining an efficiency of 45- 55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from the order of 50 Watts up to 1 kW. These thrusters exhibit performance characteristics which are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHT has a lower insulator surface area to discharge chamber volume ratio. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion. This makes the CHT geometry promising for low-power applications. Recently, a CHT that uses permanent magnets to produce the magnetic field topology was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed electromagnets. Data are presented for two purposes: to expose the effect different controllable parameters have on the discharge and to summarize performance measurements (thrust, Isp, efficiency) obtained using a thrust stand. These data are used to gain insight into the thruster's operation and to allow for quantitative comparisons between the permanent magnet CHT and the electromagnet CHT.

  7. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Y. Raitses; D. Staack; A. Smirnov; N.J. Fisch

    2005-03-16

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission.

  8. Performance and Thermal Characterization of the NASA-300MS 20 kW Hall Effect Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Soulas, George; Smith, Timothy; Mikellides, Ioannis; Hofer, Richard

    2013-01-01

    NASA's Space Technology Mission Directorate is sponsoring the development of a high fidelity 15 kW-class long-life high performance Hall thruster for candidate NASA technology demonstration missions. An essential element of the development process is demonstration that incorporation of magnetic shielding on a 20 kW-class Hall thruster will yield significant improvements in the throughput capability of the thruster without any significant reduction in thruster performance. As such, NASA Glenn Research Center and the Jet Propulsion Laboratory collaborated on modifying the NASA-300M 20 kW Hall thruster to improve its propellant throughput capability. JPL and NASA Glenn researchers performed plasma numerical simulations with JPL's Hall2De and a commercially available magnetic modeling code that indicated significant enhancement in the throughput capability of the NASA-300M can be attained by modifying the thruster's magnetic circuit. This led to modifying the NASA-300M magnetic topology to a magnetically shielded topology. This paper presents performance evaluation results of the two NASA-300M magnetically shielded thruster configurations, designated 300MS and 300MS-2. The 300MS and 300MS-2 were operated at power levels between 2.5 and 20 kW at discharge voltages between 200 and 700 V. Discharge channel deposition from back-sputtered facility wall flux, and plasma potential and electron temperature measurements made on the inner and outer discharge channel surfaces confirmed that magnetic shielding was achieved. Peak total thrust efficiency of 64% and total specific impulse of 3,050 sec were demonstrated with the 300MS-2 at 20 kW. Thermal characterization results indicate that the boron nitride discharge chamber walls temperatures are approximately 100 C lower for the 300MS when compared to the NASA- 300M at the same thruster operating discharge power.

  9. PIC simulation of electrodeless plasma thruster with rotating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki [Department of Aerospace Engineering, Tohoku University, Sendai 980-8579 (Japan); Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588 (Japan)

    2012-11-27

    For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.

  10. Power electronics for a 1-kilowatt arcjet thruster

    Science.gov (United States)

    Gruber, R. P.

    1986-01-01

    After more than two decades, new space mission requirements have revived interest in arcjet systems. The preliminary development and demonstration of new, high efficiency, power electronic concepts for start up and steady state control of dc arcjets is reported. The design comprises a pulse width modulated power converter which is closed loop configured to give fast current control. An inductor, in series with the arcjet, serves the dual role of providing instantaneous current control, as well as a high voltage arc ignition pulse. Benchmark efficiency, transient response, regulation, and ripple data are presented. Tests with arcjets demonstrate that the power electronics breadboard can start thrusters consistently with no apparent damage and transfer reliably to the nondestructive high voltage arc mode in less than a second.

  11. Overview of NASA Iodine Hall Thruster Propulsion System Development

    Science.gov (United States)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  12. Firing Control Optimization of Impulse Thrusters for Trajectory Correction Projectiles

    Directory of Open Access Journals (Sweden)

    Min Gao

    2015-01-01

    Full Text Available This paper presents an optimum control scheme of firing time and firing phase angle by taking impact point deviation as optimum objective function which takes account of the difference of longitudinal and horizontal correction efficiency, firing delay, roll rate, flight stability, and so forth. Simulations indicate that this control scheme can assure lateral impulse thrusters are activated at time and phase angle when the correction efficiency is higher. Further simulations show that the impact point dispersion is mainly influenced by the total impulse deployed, and the impulse, number, and firing interval need to be optimized to reduce the impact point dispersion of rockets. Live firing experiments with two trajectory correction rockets indicate that the firing control scheme works effectively.

  13. Study of Plume Characteristics of a Stationary Plasma Thruster

    Institute of Scientific and Technical Information of China (English)

    QIAN Zhong; WANG Pingyang; DU Zhaohui; KANG Xiaolu

    2008-01-01

    Electron density and temperature of the plume are measured by a double Langmuir probe in an experimental chamber.A numerical model based on both particle-in-cell scheme and direct simulation Monte Carlo hybrid method is developed to simulate the flow field of plume.The equation for plasma potential is solved by alternative direction implicit technique. The simulation is verified by comparing the computational results with the measured data.The study indicates that the electron temperature of flow field is about 2 eV and the electron density is about 2.5 × 1016 ~ 5 × 1015 m-3 at the central line with a distance of 0.3 ~ 1.0 m downstream of the thruster exit.The model can well predict the flow field parameters of the steady plume.The efforts of this paper are referable for further investigation.

  14. Transport of Solar Wind H+ and He++ Ions across Earth’s Bow Shock

    Science.gov (United States)

    Parks, G. K.; Lee, E.; Fu, S. Y.; Kim, H. E.; Ma, Y. Q.; Yang, Z. W.; Liu, Y.; Lin, N.; Hong, J.; Canu, P.; Dandouras, I.; Rème, H.; Goldstein, M. L.

    2016-07-01

    We have investigated the dependence of mass, energy, and charge of solar wind (SW) transport across Earth’s bow shock. An examination of 111 crossings during quiet SW in both quasi-perpendicular and quasi-parallel shock regions shows that 64 crossings had various degrees of heating and thermalization of SW. We found 22 crossings where the SW speed was flat top distribution is ∼50 Volts. We find that the temperatures of H+ and He++ beams that penetrate the shock can sometimes be nearly the same in the upstream and downstream regions, indicating little or no heating had occurred crossing the bow shock. None of the models predict that the SW can cross the bow shock without heating. Our observations are important constraints for new models of collisionless shocks.

  15. A matched Bow-tie antenna at 433MHz for use in underwater wireless sensor networks

    International Nuclear Information System (INIS)

    Electromagnetic (EM) wave propagation underwater is been disregarded because of attenuation at high frequencies, however the theory predicts that propagation is possible at some useful distance in the lower Industrial, Scientific and Medical (ISM) band. Common transceivers rely on narrowband antennas and matching circuit. The aim of this paper is to design a broadband 433MHz bow-tie antenna and experiment it in air and water without a matching circuit. This antenna could be attached to wireless transceivers and form a Wireless Sensor Network for deployment in various underwater applications. The bow-tie antennas were designed, simulated and constructed in laboratory. Experiments were setup carefully by using a completely isolated transmitter from electronics to avoid airborne transmission. The 433MHz. bow-tie proved its suitability for use in Underwater.

  16. An Analytical Method for Calculating the Satellite Bow Shock/Magnetopause Interception Positions and Times

    CERN Document Server

    Atanassov, Atanas Marinov

    2010-01-01

    This paper contains a presentation of analytical solution of the problem of calculating the places and moments of intersection of satellite trajectories with elements of the Earth's magnetosphere (bow shock and magnetopause). The satellite motion is presented in a Kepler's approximation. Magnetopause and bow shock are described by second-order surfaces- elliptic paraboloides. These surfaces are employed as situational conditions for determining the points of intersection they have (if any) with the satellite trajectory. The situational condition is herein transformed into the plane of Kepler's orbit, thereafter it is reduced to a second-order plane curve- quadric (ellipse or parabola). The solution of this system, containing the equation of this curve and Kepler's ellipse equation, allows determining the places where orbits intersect with the magnetopause or the bow shock. The solution of this system is suggested to be given by reducing the system to a fourth-order equation.

  17. Prenatal diagnosis of metatropic dysplasia: beware of the pseudo-bowing sign

    Energy Technology Data Exchange (ETDEWEB)

    Garel, Catherine [Trousseau Hospital, University Hospitals of the East of Paris, Department of Radiology, Paris (France); Hopital d' Enfants Armand-Trousseau, Department of Radiology, Paris (France); Dhouib, Amira; Sileo, Chiara; Ducou le Pointe, Hubert [Trousseau Hospital, University Hospitals of the East of Paris, Department of Radiology, Paris (France); Cormier-Daire, Valerie [Paris Descartes University, Sorbonne Paris Cite, Necker-Enfants-Malades Hospital, Department of Genetics, Paris (France)

    2014-03-15

    Metatropic dysplasia is a very rare form of osteochondrodysplasia with only one case of prenatal diagnosis described in the literature. It is characterized by marked shortening of the long bones with severe platyspondyly and dumbbell-shape metaphyses. We report a case of metatropic dysplasia that was diagnosed prenatally and describe the findings on US and CT. The pregnancy was terminated and the post-mortem radiographs are shown. The woman had been referred for short and bowed long bones. Severe metaphyseal enlargement was a misleading finding because it had been misinterpreted as limb bowing. Thus when abnormal curvature of the long bones is observed at prenatal US, attention should be drawn not only to the diaphyses but also to the metaphyses because severe metaphyseal enlargement might be responsible for pseudo-bowing. (orig.)

  18. Numerical Study on the Effect of Buffer Bow Structure in Ship-to-ship Collisions

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Endo, Hisayoshi; Pedersen, Preben Terndrup

    2005-01-01

    A disastrous oil spill from a struck oil tanker has become one of the major problems in view of conservation of maritime environment. So far double hulls (D/H) have been introduced to reduce the consequences of collision and grounding events In order to further reduce the oil spill from struck oil...... a very large crude oil carrier (VLCC) in ballast condition collides with the midship region of a D/H VLCC in a laden condition. Fracture of fillet welds, elastic-plastic material properties and strain rate effects, are taken into account in the simulations. The effect of the equivalent failure strain (FS...... tankers, the introduction of buffer bulbous bows has been proposed. Relatively soft buffer bows absorb part of the kinetic energy of the striking ship before penetrating the inner hull of the struck vessel. The purpose of the present paper is to verify the effectiveness of a prototype buffer bulbous bow...

  19. Transport of Solar Wind H+ and He++ Ions across Earth’s Bow Shock

    Science.gov (United States)

    Parks, G. K.; Lee, E.; Fu, S. Y.; Kim, H. E.; Ma, Y. Q.; Yang, Z. W.; Liu, Y.; Lin, N.; Hong, J.; Canu, P.; Dandouras, I.; Rème, H.; Goldstein, M. L.

    2016-07-01

    We have investigated the dependence of mass, energy, and charge of solar wind (SW) transport across Earth’s bow shock. An examination of 111 crossings during quiet SW in both quasi-perpendicular and quasi-parallel shock regions shows that 64 crossings had various degrees of heating and thermalization of SW. We found 22 crossings where the SW speed was flat top distribution is ˜50 Volts. We find that the temperatures of H+ and He++ beams that penetrate the shock can sometimes be nearly the same in the upstream and downstream regions, indicating little or no heating had occurred crossing the bow shock. None of the models predict that the SW can cross the bow shock without heating. Our observations are important constraints for new models of collisionless shocks.

  20. A numerical study on bow shocks around the lightning return stroke channel

    International Nuclear Information System (INIS)

    Bow shock structures are important to various hydrodynamics and magnetohydrodynamics (MHD) phenomena in geophysics and astrophysics. The formation and propagation of bow shocks around the lightning return stroke channel are investigated based on the self-similar motion theory and simulated with a two-dimensional Eulerian finite volume resistive radiation MHD code. In this framework, as verification of theoretical models, the evolving structures of many quantities, such as the plasma density, temperature, pressure, shock velocity, and magnetic field, can be obtained, which present all the characteristics of bow shocks in the lightning return stroke processes. The evolution characteristics and the configuration of the curved return stroke channels, e.g., the non-ideal effects and the scaling laws, are discussed in detail. The results may have applications for some observed features of the return stroke channels and other phenomena in the lightning discharge plasmas

  1. A numerical study on bow shocks around the lightning return stroke channel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Yi, Yun [National Key Laboratory of Electromagnetic Environment and Electro-Optical Engineering, PLA University of Science and Technology, Nanjing 210007 (China); Chen, P. F., E-mail: chenpf@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Mao, Yunfei [The China Satellite Maritime Tracking and Control Department, Yuan Wang III, Jiangyin 214400 (China); Xiong, Run [Engineer Academy of PLA, Xuzhou 221004 (China)

    2015-03-15

    Bow shock structures are important to various hydrodynamics and magnetohydrodynamics (MHD) phenomena in geophysics and astrophysics. The formation and propagation of bow shocks around the lightning return stroke channel are investigated based on the self-similar motion theory and simulated with a two-dimensional Eulerian finite volume resistive radiation MHD code. In this framework, as verification of theoretical models, the evolving structures of many quantities, such as the plasma density, temperature, pressure, shock velocity, and magnetic field, can be obtained, which present all the characteristics of bow shocks in the lightning return stroke processes. The evolution characteristics and the configuration of the curved return stroke channels, e.g., the non-ideal effects and the scaling laws, are discussed in detail. The results may have applications for some observed features of the return stroke channels and other phenomena in the lightning discharge plasmas.

  2. Bow shock nebulae of hot massive stars in a magnetized medium

    CERN Document Server

    Meyer, D M -A; Kuiper, R; Raga, A; Kley, W

    2016-01-01

    A significant fraction of OB-type, main-sequence massive stars are classified as runaway and move supersonically through the interstellar medium (ISM). Their strong stellar winds interact with their surroundings where the typical strength of the local ISM magnetic field is about 3.5-7 micro-G, which can result in the formation of bow shock nebulae. We investigate the effects of such magnetic fields, aligned with the motion of the flow, on the formation and emission properties of these circumstellar structures. Our axisymmetric, magneto-hydrodynamical simulations with optically-thin radiative cooling, heating and anisotropic thermal conduction show that the presence of the background ISM magnetic field affects the projected optical emission our bow shocks at Ha and [OIII] lambda 5007 which become fainter by about 1-2 orders of magnitude, respectively. Radiative transfer calculations against dust opacity indicate that the magnetic field slightly diminishes their projected infrared emission and that our bow shoc...

  3. CASTOR: Cathode/Anode Satellite Thruster for Orbital Repositioning

    Science.gov (United States)

    Mruphy, Gloria A.

    2010-01-01

    The purpose of CASTOR (Cathode/Anode Satellite Thruster for Orbital Repositioning) satellite is to demonstrate in Low Earth Orbit (LEO) a nanosatellite that uses a Divergent Cusped Field Thruster (DCFT) to perform orbital maneuvers representative of an orbital transfer vehicle. Powered by semi-deployable solar arrays generating 165W of power, CASTOR will achieve nearly 1 km/s of velocity increment over one year. As a technology demonstration mission, success of CASTOR in LEO will pave the way for a low cost, high delta-V orbital transfer capability for small military and civilian payloads in support of Air Force and NASA missions. The educational objective is to engage graduate and undergraduate students in critical roles in the design, development, test, carrier integration and on-orbit operations of CASTOR as a supplement to their curricular activities. This program is laying the foundation for a long-term satellite construction program at MIT. The satellite is being designed as a part of AFRL's University Nanosatellite Program, which provides the funding and a framework in which student satellite teams compete for a launch to orbit. To this end, the satellite must fit within an envelope of 50cmx50cmx60cm, have a mass of less than 50kg, and meet stringent structural and other requirements. In this framework, the CASTOR team successfully completed PDR in August 2009 and CDR in April 2010 and will compete at FCR (Flight Competition Review) in January 2011. The complexity of the project requires implementation of many systems engineering techniques which allow for development of CASTOR from conception through FCR and encompass the full design, fabrication, and testing process.

  4. Hybrid-PIC Modeling of a High-Voltage, High-Specific-Impulse Hall Thruster

    Science.gov (United States)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani; Huang, Wensheng

    2013-01-01

    The primary life-limiting mechanism of Hall thrusters is the sputter erosion of the discharge channel walls by high-energy propellant ions. Because of the difficulty involved in characterizing this erosion experimentally, many past efforts have focused on numerical modeling to predict erosion rates and thruster lifespan, but those analyses were limited to Hall thrusters operating in the 200-400V discharge voltage range. Thrusters operating at higher discharge voltages (V(sub d) >= 500 V) present an erosion environment that may differ greatly from that of the lower-voltage thrusters modeled in the past. In this work, HPHall, a well-established hybrid-PIC code, is used to simulate NASA's High-Voltage Hall Accelerator (HiVHAc) at discharge voltages of 300, 400, and 500V as a first step towards modeling the discharge channel erosion. It is found that the model accurately predicts the thruster performance at all operating conditions to within 6%. The model predicts a normalized plasma potential profile that is consistent between all three operating points, with the acceleration zone appearing in the same approximate location. The expected trend of increasing electron temperature with increasing discharge voltage is observed. An analysis of the discharge current oscillations shows that the model predicts oscillations that are much greater in amplitude than those measured experimentally at all operating points, suggesting that the differences in oscillation amplitude are not strongly associated with discharge voltage.

  5. Plasma oscillations in a 6-kW magnetically shielded Hall thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofer, Richard R.

    2014-05-01

    Plasma oscillations from 0-100 kHz in a 6-kW magnetically shielded Hall thruster are experimentally characterized with a high-speed, optical camera. Two modes are identified at 7-12 kHz and 70-90 kHz. The low frequency mode is found to be azimuthally uniform across the thruster face, while the high frequency oscillation is peaked close to the centerline-mounted cathode with an m = 1 azimuthal dependence. An analysis of these results in the context of wave-based theory suggests that the low frequency wave is the breathing mode oscillation, while the higher frequency mode is gradient-driven. The effect of these oscillations on thruster operation is examined through an analysis of thruster discharge current and a comparison with published observations from an unshielded variant of the thruster. Most notably, it is found that although the oscillation spectra of the two thrusters are different, they exhibit nearly identical steady-state behavior.

  6. Magnetic Field Effects on the Plume of a Diverging Cusped-Field Thruster

    KAUST Repository

    Matlock, Taylor

    2010-07-25

    The Diverging Cusped-Field Thruster (DCFT) uses three permanent ring magnets of alternating polarity to create a unique magnetic topology intended to reduce plasma losses to the discharge chamber surfaces. The magnetic field strength within the DCFT discharge chamber (up to 4 kG on axis) is much higher than in thrusters of similar geometry, which is believed to be a driving factor in the high measured anode efficiencies. The field strength in the near plume region is large as well, which may bear on the high beam divergences measured, with peaks in ion current found at angles of around 30-35 from the thruster axis. Characterization of the DCFT has heretofore involved only one magnetic topology. It is then the purpose of this study to investigate changes to the near-field plume caused by altering the shape and strength of the magnetic field. A thick magnetic collar, encircling the thruster body, is used to lower the field strength outside of the discharge chamber and thus lessen any effects caused by the external field. Changes in the thruster plume with field topology are monitored by the use of normal Langmuir and emissive probes interrogating the near-field plasma. Results are related to other observations that suggest a unified conceptual framework for the important near-exit region of the thruster.

  7. Intervention of laser periphery iridectomy to posterior iris bowing in high myopic eyes

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-tao; WANG Ning-li; LI Shu-ning

    2012-01-01

    Background For some high myopic patients with posterior iris bowing,laser periphery iridectomy should be performed pre-operation to prevent pupil block glaucoma if these patients would have phakic intraocular lens implantation to correct high myopia.So we had the opportunity to analysis the influence of laser iridectomy on posterior iris bowing.Methods Eighteen high myopic patients with posterior iris bowing (11 males and 7 females) were involved in the study in Beijing Tongren Eye Center from March 2008 to July 2008.Phakic intraocular lens were implanted to correct their ametropia.The mean age was (32±6) years (range,25-40 years).The center anterior chamber depth,the pupil diameter,the posterior iris bowing depth and the anterior chamber angle were measured with anterior segment coherence tomography (AS-OCT) under the normal condition,myosis condition induced by 2% pilocarpine,laser periphery iridectomy after myosis,and 2% pilocarpine eluting condition respectively.Results There was no significant difference of center anterior chamber depth under the four conditions (P=0.512).The pupil constricted after pilocarpine (P=0.001).After laser iridectomy performed and pilocarpine eluted,posterior iris bowing depth reduced more than that in normal condition (P=0.003).The anterior chamber angle reduced significantly after laser periphery iridectomy and pilocarpine eluted (P=0.012).Conclusion Laser periphery iridectomy can reduce the posterior iris bowing,which might be due to the change in aqueous circulate pathway.

  8. Asymmetric Outer Bow Length and Cervical Headgear Force System: 3D Analysis Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Allahyar Geramy

    2015-10-01

    Full Text Available Objectives: This study sought to assess distal and lateral forces and moments of asymmetric headgears by variable outer bow lengths.Materials and Methods: Four 3D finite element method (FEM models of a cer- vical headgear attached to the maxillary first molars were designed in SolidWorks2010 software and transferred to ANSYS Workbench ver. 11 software. Modelscontained the first molars, their periodontal ligament (PDL, cancellous and cor- tical bones, a mesiodistal slice of the maxillae and the headgear. Models were the same except for the outer bow length in headgears. The headgear was symmetric in model 1. In models 2 to 4, the headgears were asymmetric in length with dif- ferences of 5mm, 10mm and 15mm, respectively. A 2.5 N force in horizontal plane was applied and the loading manner of each side of the outer bow was cal- culated trigonometrically using data from a volunteer.Results: The 15mm difference in outer bow length caused the greatest difference in lateral (=0.21 N and distal (= 1.008 N forces and also generated moments (5.044 N.mm.Conclusion: As the difference in outer bow length became greater, asymmetric effects increased. Greater distal force in the longer arm side was associated with greater lateral force towards the shorter arm side and more net yawing moment. Clinical Relevance:A difference range of 1mm to 15 mm of length in cervical headgear can be consi-dered as a safe length of outer bow shortening in clinical use.

  9. Accuracy of two face-bow/semi-adjustable articulator systems in transferring the maxillary occlusal cant

    Directory of Open Access Journals (Sweden)

    Nazia Nazir

    2012-01-01

    Full Text Available Context: The precision of an arbitrary face-bow in accurately transferring the orientation of the maxillary cast to the articulator has been questioned because the maxillary cast is mounted in relation to arbitrary measurements and anatomic landmarks that vary among individuals. Aim: This study was intended to evaluate the sagittal inclination of mounted maxillary casts on two semi-adjustable articulator/face-bow systems in comparison to the occlusal cant on lateral cephalograms. Materials and Methods: Maxillary casts were mounted on the Hanau and Girrbach semi-adjustable articulators following face-bow transfer with their respective face-bows. The sagittal inclination of these casts was measured in relation to the fixed horizontal reference plane using physical measurements. Occlusal cant was measured on lateral cephalograms. SPSS software (version 11.0, Chicago, IL, USA was used for statistical analysis. Repeated measures analysis of variance and Tukey′s tests were used to evaluate the results (P < 0.05. Results: Comparison of the occlusal cant on the articulators and cephalogram revealed statistically significant differences. Occlusal plane was steeper on Girrbach Artex articulator in comparison to the Hanau articulator. Conclusion: Within the limitations of this study, it was found that the sagittal inclination of the mounted maxillary cast achieved with Hanau articulator was closer to the cephalometric occlusal cant as compared to that of the Girrbach articulator. Among the two articulators and face-bow systems, the steepness of sagittal inclination was greater on Girrbach semi-adjustable articulator. Different face-bow/articulator systems could result in different orientation of the maxillary cast, resulting in variation in stability, cuspal inclines and cuspal heights.

  10. 77 FR 16028 - Broken Bow Wind, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Science.gov (United States)

    2012-03-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Broken Bow Wind, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding of Broken Bow Wind, LLC's application for market-based rate authority, with...

  11. 75 FR 19936 - Medicine Bow-Routt National Forests, Brush Creek/Hayden Ranger District Saratoga, WY

    Science.gov (United States)

    2010-04-16

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service Medicine Bow-Routt National Forests, Brush Creek/Hayden Ranger... actions within the Savery Analysis Area of the Brush Creek/Hayden Ranger District of the Medicine Bow-Routt National Forests within Carbon County, Wyoming. Proposed actions include prescribed burning...

  12. Corporate-Feed Multilayer Bow-Tie Antenna Array Design Using a Simple Transmission Line Model

    OpenAIRE

    Didouh, S.; Abri, M.; F. T. Bendimerad

    2012-01-01

    A transmission line model is used to design corporate-fed multilayered bow-tie antennas arrays; the simulated antennas arrays are designed to resonate at the frequencies 2.4 GHz, 5 GHz, and 8 GHz corresponding to RFID, WIFI, and radars applications. The contribution of this paper consists of modeling multilayer bow-tie antenna array fed through an aperture using transmission line model. The transmission line model is simple and precise and allows taking into account the whole geometrical, ele...

  13. Method for evaluating bow tie filter angle-dependent attenuation in CT: Theory and simulation results

    OpenAIRE

    Boone, John M.

    2009-01-01

    Purpose: Dosimetry in computed tomography (CT) is increasingly based on Monte Carlo studies that define the dose in the patient (in mGy) as a function of air kerma (free in air) at isocenter (mGy). The accuracy of Monte Carlo studies depends in part on the accuracy of the characterization of the bow tie filter for a given CT scanner model. A simple method for characterizing the bow tie filter attenuation profile in CT scanners would therefore be very useful. The theory behind such a method is...

  14. Ground-state magnetic phase diagram of bow-tie graphene nanoflakes in external magnetic field

    OpenAIRE

    Szałowski, Karol

    2013-01-01

    The magnetic phase diagram of a ground state is studied theoretically for graphene nanoflakes of bow-tie shape and various size in external in-plane magnetic field. The tight-binding Hamiltonian supplemented with Hubbard term is used to model the electronic structure of the systems in question. The existence of the antiferromagnetic phase with magnetic moments localized at the sides of the bow-tie is found for low field and a field-induced spin-flip transition to ferromagnetic state is predic...

  15. Analysis of Silver Ink Bow-Tie RFID Tag Antennas Printed on Paper Substrates

    OpenAIRE

    Sari Merilampi; Leena Ukkonen; Lauri Sydänheimo; Pekka Ruuskanen; Markku Kivikoski

    2007-01-01

    In this study, polymeric silver inks, paper substrates, and screen printing were used to produce prototype Bow-Tie tags. Because of increasing interest in applying passive UHF-RFID systems in paper industry, the Bow-Tie antenna used in this study was designed to work through paper. The maximum reliable read ranges of the tags were measured thorough stacked paper and also in air. The analysis and functioning of the antenna design are also discussed. All inks and paper substrates were suitable ...

  16. A benchmark study of procedures for analysis of axial crushing of bulbous bows

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Pedersen, Preben Terndrup

    2008-01-01

    Simplified methods to estimate mean axial crushing forces of plated structures are reviewed and applied to a series of experimental results for axial crushing of large-scale bulbous bow models. Methods based on intersection unit elements such as L-, T- and X-type elements as well as methods based...... on plate unit elements are employed in the analyses. The crushing forces and the total absorbed energy obtained by the simplified analyses are compared with those obtained from large-scale bulbous bow experiments. The accuracy and the applicability of these methods are discussed in detail....

  17. Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars

    OpenAIRE

    Yamauchi, M.; Y. Futaana; Fedorov, A.; Frahm, R. A.; Winningham, J. D.; Dubinin, E.; R. Lundin; Barabash, S.; Holmström, M.; Mazelle, C.; Sauvaud, J.-A.; T. L. Zhang; W. Baumjohann; A. J. Coates; Fraenz, M.

    2011-01-01

    Foreshock ions are compared between Venus and Mars at energies of 0.6 similar to 20 keV using the same ion instrument, the Ion Mass Analyser, on board both Venus Express and Mars Express. Venus Express often observes accelerated protons (2 similar to 6 times the solar wind energy) that travel away from the Venus bow shock when the spacecraft location is magnetically connected to the bow shock. The observed ions have a large field-aligned velocity compared to the perpendicular velocity in the ...

  18. Towards a real-time system for teaching novices good violin bowing technique

    OpenAIRE

    van der Linden, Janet; Schoonderwaldt, Erwin; Bird, Jon

    2009-01-01

    We describe the ongoing development of a system to support the teaching of good posture and bowing technique to novice violin players. Using an inertial motion capture system we can track in real-time: i) a player’s bowing action (and measure how it deviates from a target trajectory); ii) whether the player is holding their violin correctly. We detail some initial experiments that show that vibrotactile feedback can guide arm movements in one and two dimensions. We then present some prelimina...

  19. In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe

    Science.gov (United States)

    Polzin, Kurt; Korman, Valentin

    2009-01-01

    One potential life-limiting mechanism in a Hall thruster is the erosion of the ceramic material comprising the discharge channel. This is especially true for missions that require long thrusting periods and can be problematic for lifetime qualification, especially when attempting to qualify a thruster by analysis rather than a test lasting the full duration of the mission. In addition to lifetime, several analytical and numerical models include electrode erosion as a mechanism contributing to enhanced transport properties. However, there is still a great deal of dispute over the importance of erosion to transport in Hall thrusters. The capability to perform an in-situ measurement of discharge channel erosion is useful in addressing both the lifetime and transport concerns. An in-situ measurement would allow for real-time data regarding the erosion rates at different operating points, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over a thruster s operating envelope would also be useful in the modeling of the detailed physics inside the discharge chamber. There are many different sensors and techniques that have been employed to quantify discharge channel erosion in Hall thrusters. Snapshots of the wear pattern can be obtained at regular shutdown intervals using laser profilometry. Many non-intrusive techniques of varying complexity and sensitivity have been employed to detect the time-varying presence of erosion products in the thruster plume. These include the use quartz crystal microbalances, emission spectroscopy, laser induced flourescence, and cavity ring-down spectroscopy. While these techniques can provide a very accurate picture of the level of eroded material in the thruster plume, it is more difficult to use them to determine the location from which the material was eroded. Furthermore, none of the methods cited provide a true in-situ measure of erosion at the channel surface while

  20. Astrium Approach For Plume Flow And Impingement Of 10 N Bipropellant Thruster

    Science.gov (United States)

    Theroude, Christophe; Scremin, G.; Wartelski, Matias

    2011-05-01

    Plume impingement on spacecraft surfaces due to chemical propulsion is a major concern during satellite operations. Indeed, thrusters plume induces disturbing forces and torques, contamination as well as thermal fluxes on sensitive surfaces. These effects, that have to be accurately predicted, influence the satellite design: thrusters orientation, MLI design, instruments protections, etc. In order to implement an efficient process of analysis, Astrium uses a two steps approach: first the thruster undisturbed flow field is computed, then the impingement on spacecraft surfaces is evaluated. In this paper, Plumflow, the Astrium Satellites software for undisturbed thrusters’ plume computation, is presented. This software is made of several modules in order to accurately compute the flow field in the different parts of the plume. A first module computes the chemistry in the chamber, then Navier-Stokes equations are solved inside the nozzle where the flow is continuous. After that a DSMC code is used for the transitional regime near the thruster lip and finally an hybrid TPMC/source-flow method computes the free molecular far flow field. The studied case is the Astrium GmbH 10 N bipropellant thruster. Some comparisons are presented between Plumflow and Professor G.A. Bird DSMC software DS2V and with DLR experimental data. These comparisons have shown very satisfactory results. Finally, aiming at computing plume impingement, the plume flow field generated with Plumflow has been interfaced with Professor G.A. Bird 3D DSMC software DS3V. The plume impingement simulation is performed by introducing the undisturbed flow field at a boundary of DS3V computational domain. It allows us to evaluate thermal flux distribution due to Astrium 10 N thruster on a plate adjacent to the thruster and to compare with the Astrium plume impingement software.

  1. Cherkis bow varieties and Coulomb branches of quiver gauge theories of affine type $A$

    CERN Document Server

    Nakajima, Hiraku

    2016-01-01

    We show that Coulomb branches of quiver gauge theories of affine type $A$ are Cherkis bow varieties, which have been introduced as ADHM type description of moduli space of instantons on the Taub-NUT space equivariant under a cyclic group action.

  2. X-ray Emission Line Profiles from Wind Clump Bow Shocks in Massive Stars

    CERN Document Server

    Ignace, R; Cassinelli, J P

    2012-01-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two component flow structure of wind and clumps using two "beta" velocity laws. While individual bow shocks tend to generate double horned emission line profiles, a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the...

  3. Application of the Bow Tie method for evaluation of safety in the procedure of logging wells

    International Nuclear Information System (INIS)

    This work consists of an assessment of security in the practice of logging of oil wells, using the method of Bow Tie for being a simple method of evaluation of the risk, which makes it possible in a structured way to set priorities to manage risk

  4. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification

    Science.gov (United States)

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  5. Beacon: A three-dimensional structural analysis code for bowing history of fast breeder reactor cores

    International Nuclear Information System (INIS)

    The core elements of an LMFBR are bowed due to radial gradients of both temperature and neutron flux in the core. Since all hexagonal elements are multiply supported by adjacent elements or the restraint system, restraint forces and bending stresses are induced. In turn, these forces and stresses are relaxed by irradiation enhanced creep of the material. The analysis of the core bowing behavior requires a three-dimensional consideration of the mechanical interactions among the core elements, because the core consists of different kinds of elements and of fuel assemblies with various burnup histories. A new computational code BEACON has been developed for analyzing the bowing behavior of an LMFBR's core in three dimensions. To evaluate mechanical interactions among core elements, the code uses the analytical method of the earlier SHADOW code. BEACON analyzes the mechanical interactions in three directions, which form angles of 600 with one another. BEACON is applied to the 600 sector of a typical LMFBR's core for analyzing the bowing history during one equilibrium cycle. 120 core elements are treated, assuming the boundary condition of rotational symmetry. The application confirms that the code can be an effective tool for parametric studies as well as for detailed structural analysis of LMFBR's core. (orig.)

  6. 26 CFR 48.4161(b)-1 - Imposition and rates of tax; bows and arrows.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Imposition and rates of tax; bows and arrows. 48.4161(b)-1 Section 48.4161(b)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Sporting Goods §...

  7. Double-sided printed bow-tie antenna with notch filter for UWB applications

    OpenAIRE

    Hirata, Akimasa; ヒラタ, アキマサ; 平田, 晃正

    2009-01-01

    This letter proposes a double-sided printed bow-tie antenna with a notch band. The notch filter is based on a grounded patch inserted into the feeding microstrip line. The advantage of the structure is its tunability of the notch band.

  8. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.

    Directory of Open Access Journals (Sweden)

    Fang Yan

    Full Text Available Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie analysis was proposed by mapping bow-tie analysis into Bayesian network (BN. Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures.

  9. Double bow shocks around young, runaway red supergiants: application to Betelgeuse

    CERN Document Server

    Mackey, Jonathan; Neilson, Hilding R; Langer, Norbert; Meyer, Dominique M -A

    2012-01-01

    A significant fraction of massive stars are moving supersonically through the interstellar medium (ISM), either due to disruption of a binary system or ejection from their parent star cluster. The interaction of their wind with the ISM produces a bow shock. In late evolutionary stages these stars may undergo rapid transitions from red to blue and vice versa on the Hertzsprung-Russell diagram, with accompanying rapid changes to their stellar winds and bow shocks. Recent 3D simulations of the bow shock produced by the nearby runaway red supergiant (RSG) Betelgeuse, under the assumption of a constant wind, indicate that the bow shock is very young (<30000 years old), hence Betelgeuse may have only recently become a RSG. To test this possibility, we have calculated stellar evolution models for single stars which match the observed properties of Betelgeuse in the RSG phase. The resulting evolving stellar wind is incorporated into 2D hydrodynamic simulations in which we model a runaway blue supergiant (BSG) as i...

  10. Turbulence at quasi-parallel and quasi-perpendicular bow shocks

    Science.gov (United States)

    Pitna, Alexander; Zastenker, Georgy; Nemecek, Zdenek; Safrankova, Jana

    2016-07-01

    A solar wind is a highly turbulent medium carrying various modes of magnetohydrodynamic and kinetic instabilities. During its supersonic expansion, it meets obstacles like planetary magnetospheres and bow shocks are formed. Depending on the orientation of the ambient magnetic field with respect to the local shock normal, either quasi-parallel or quasi-perpendicular shocks can be formed. Particles reflected at the ramp of the quasi-parallel shock are streaming far upstream along the magnetic field lines, giving rise to all sorts of instabilities like SLAMS and ULF waves. In the case of the quasi-perpendicular bow shock, the reflected particles influence only a narrow upstream region of the order of the proton gyroradius but the downstream plasma becomes highly turbulent regardless of the shock type. We analyze the high cadence (31 ms) data from the BMSW instrument onboard the Spektr-R spacecraft and compare the frequency spectra of observed turbulence in MHD and kinetic ranges in upstream and downstream regions of the supercritical quasi-parallel and quasi-perpendicular bow shocks. We found that the change in the fluctuation level (from upstream to downstream) as well as the spectral indices differ substantially in the MHD and kinetic ranges for both types of bow shock.

  11. Further evidence for a dynamically generated secondary bow in $^{13}$C+$^{12}$C rainbow scattering

    CERN Document Server

    Ohkubo, S; Ogloblin, A A

    2015-01-01

    The existence of a secondary bow is confirmed for 13C+12C nuclear rainbow scattering in addition to the 16O+12C system. This is found by studying the experimental angular distribution of 13C+12C scattering at the incident 13C energy $E_L$=250 MeV with an extended double folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic wave functions for 12C using a density-dependent nucleon-nucleon force. The Airy minimum at \\theta$ $\\approx$70$^\\circ$, which is not reproduced by a conventional folding potential, is revealed to be a secondary bow generated dynamically by a coupling to the excited state 2+ (4.44 MeV) of 12C. The essential importance of the quadruple {\\it Y2} term (reorientation term) of potential of the excited state 2+ of 12C for the emergence of a secondary bow is found. The mechanism of the secondary bow is intuitively explained by showing how the trajectories are refracted dynamically into the classically forbidden angular region beyond t...

  12. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.

    Science.gov (United States)

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  13. Beam-Steerable Microstrip-Fed Bow-Tie Antenna Array for Fifth Generation Cellular Communications

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert Frølund

    2016-01-01

    of bow-tie antennas have been used at the top-edge region of mobile phone PCB. The antenna elements fed by microstrip lines are designed to operate at 17 GHz. The simulated results give good performances in terms of different antenna parameters. In addition, an investigation on the distance between...

  14. Observed Foreshock Ions which are Actually Behind the Martian Bow Shock

    Science.gov (United States)

    Frahm, Rudy A.; Yamauchi, Masatoshi; Winningham, J. David; Lundin, Rickard; Sharber, James R.; Nilsson, Hans; Coates, Andrew J.; Mukherjee, Joey

    2016-04-01

    The Mars Express (MEx) Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment contains ion and electron instruments for conducting plasma measurements. On January 23, 2012, during in-bound travel of MEx in the southern hemisphere of Mars traveling from its dawn side toward periapsis at dusk, the plasma instruments measured foreshock-like ion beams extending from outside the bow shock and into the magnetosphere, continuing to a distance of about a proton gyroradius from the bow shock. These ion beams were mostly protons, were observed to have energies greater than solar wind protons, and were not gyrating, in agreement with reflections of the solar wind proton beam. Furthermore, in the foreshock region, the ion energy gradually decreased toward the magnetosheath, in agreement with an acceleration by an outward-directed electric field in the bow shock. The observations also suggest that this electric field exists even inside the magnetosheath, within the distance of a proton gyroradius from the bow shock.

  15. Experimental Investigation of the Effect of Bow Profiles on Resistance of an Underwater Vehicle in Free Surface Motion

    Institute of Scientific and Technical Information of China (English)

    Mehran Javadi; Mojtaba Dehghan Manshadi; Saeid Kheradmand; Mohammad Moonesun

    2015-01-01

    In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total resistances for different Froude numbers are considered experimentally. The towing tank is equipped with a trolley that can operate in through 0.05–6 m/s speed with ±0.02 m/s accuracy. Furthermore, the study is done on hydrodynamic coefficients i.e. total, residual and friction resistance coefficients, and the results are compared. Finally, the study on flow of wave fields around bows is done and wave filed around two bows are compared. The Froude number interval is between 0.099 and 0.349. Blockage fraction for the model is fixed to 0.005 3. The results showed that the residual resistance of the standard bow in 0.19 to 0.3 Froude number is more than the tango bow in surface motion which causes more total resistance for the submarine. Finally, details of wave generated by the bow are depicted and the effects of flow pattern on resistance drag are discussed.

  16. Performance Test Results of the NASA-457M v2 Hall Thruster

    Science.gov (United States)

    Soulas, George C.; Haag, Thomas W.; Herman, Daniel A.; Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63.

  17. Performance of a Cylindrical Hall-Effect Thruster Using Permanent Magnets

    Science.gov (United States)

    Polzin, Kurt A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    While annular Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope from 1 kW down to 100 W while maintaining an efficiency of 45-55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. In addition, the central magnetic pole piece defining the interior wall of the annular channel can experience excessive heat loads in a miniaturized Hall thruster, with the temperature eventually exceeding the Curie temperature of the material and in extreme circumstances leading to accelerated erosion of the channel wall. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from 50 W up to 1 kW. These thrusters exhibit performance characteristics that are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHTs insulator surface area to discharge chamber volume ratio is lower. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion, making the CHT geometry promising for low-power applications. This potential for high performance in the low-power regime has served as the impetus for research and development efforts aimed at understanding and improving CHT performance. Recently, a 2.6 cm channel diameter permanent magnet CHT (shown in Fig. 1) was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed

  18. Measurements of neutral and ion velocity distribution functions in a Hall thruster

    Science.gov (United States)

    Svarnas, Panagiotis; Romadanov, Iavn; Diallo, Ahmed; Raitses, Yevgeny

    2015-11-01

    Hall thruster is a plasma device for space propulsion. It utilizes a cross-field discharge to generate a partially ionized weakly collisional plasma with magnetized electrons and non-magnetized ions. The ions are accelerated by the electric field to produce the thrust. There is a relatively large number of studies devoted to characterization of accelerated ions, including measurements of ion velocity distribution function using laser-induced fluorescence diagnostic. Interactions of these accelerated ions with neutral atoms in the thruster and the thruster plume is a subject of on-going studies, which require combined monitoring of ion and neutral velocity distributions. Herein, laser-induced fluorescence technique has been employed to study neutral and single-charged ion velocity distribution functions in a 200 W cylindrical Hall thruster operating with xenon propellant. An optical system is installed in the vacuum chamber enabling spatially resolved axial velocity measurements. The fluorescence signals are well separated from the plasma background emission by modulating the laser beam and using lock-in detectors. Measured velocity distribution functions of neutral atoms and ions at different operating parameters of the thruster are reported and analyzed. This work was supported by DOE contract DE-AC02-09CH11466.

  19. Spatiotemporal study of gas heating mechanisms in a radio-frequency electrothermal plasma micro-thruster

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-10-01

    Full Text Available A spatiotemporal study of neutral gas temperature during the first 100 s of operation for a radio-frequency electrothermal plasma micro-thruster operating on nitrogen at 60 W and 1.5 Torr is performed to identify the heating mechanisms involved. Neutral gas temperature is estimated from rovibrational band fitting of the nitrogen second positive system. A set of baffles are used to restrict the optical image and separate the heating mechanisms occurring in the central bulk discharge region and near the thruster walls.For each spatial region there are three distinct gas heating mechanisms being fast heating from ion-neutral collisions with timescales of tens of milliseconds, intermediate heating with timescales of 10 s from ion bombardment on the inner thruster tube surface creating wall heating, and slow heating with timescales of 100 s from gradual warming of the entire thruster housing. The results are discussed in relation to optimising the thermal properties of future thruster designs.

  20. Development of a Micro-Thruster Test Facility which fulfils the LISA requirements

    Science.gov (United States)

    Hey, Franz Georg; Keller, A.; Johann, U.; Braxmaier, C.; Tajmar, M.; Fitzsimons, E.; Weise, D.

    2015-05-01

    In the context of investigations for a sufficient attitude control thruster for LISA, we have developed a thruster test facility which consists of a highly precise thrust balance coupled with plasma diagnostics. In parallel to the test facility development, investigations to downscale a High Efficiency Multistage Plasma Thruster (HEMP-T) are also being carried out. The thruster has been used to demonstrate the measurement capabilities of the facility. The setup allows a parallel operation of all instruments and can also be used for other types of μN propulsion systems including cold gas thrusters. The thrust balance consists of two pendulums. As read out a heterodyne laser interferometer is used. Differential wave front sensing (DWS) enables the measurement of the pendulum tilt which, via suitable calibration using an electrostatic comb, can be converted to a thrust. The whole setup is a symmetric configuration enabling a common-mode rejection of the dominant noise sources (e.g. seismic noise etc.). The thrust balance has a demonstrated precision of 0.1 μN. Based on our unique design, this precision can be attained down to 10-3 Hz. Thus, the measurement setup is especially suitable for characterising the thrust noise of potential eLISA propulsion candidates. We give an overview of the design, the present performance and the future plans.

  1. Non-Contact Thermal Characterization of NASA's HERMeS Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Meyers, James L.; Yim, John T.; Neff, Gregory

    2015-01-01

    The Thermal Characterization Test of NASAs 12.5-kW Hall thruster is being completed. This thruster is being developed to support of a number of potential Solar Electric Propulsion Technology Demonstration Mission concepts, including the Asteroid Redirect Robotic Mission concept. As a part of this test, an infrared-based, non-contact thermal imaging system was developed to measure Hall thruster surfaces that are exposed to high voltage or harsh environment. To increase the accuracy of the measurement, a calibration array was implemented, and a pilot test was performed to determine key design parameters for the calibration array. The raw data is analyzed in conjunction with a simplified thermal model of the channel to account for reflection. The reduced data will be used to refine the thruster thermal model, which is critical to the verification of the thruster thermal specifications. The present paper will give an overview of the decision process that led to identification of the need for a non-contact temperature diagnostic, the development of said diagnostic, the measurement results, and the simplified thermal model of the channel.

  2. Characteristics of plasma properties in an ablative pulsed plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Schoenherr, Tony; Nees, Frank; Arakawa, Yoshihiro [Department of Aeronautics and Astronautics, University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Komurasaki, Kimiya [Department of Advanced Energy, University of Tokyo, Kashiwa, Chiba 277-8561 (Japan); Herdrich, Georg [Institute of Space Systems (IRS), University of Stuttgart, 70569 Stuttgart, Baden-Wuerttemberg (Germany)

    2013-03-15

    Pulsed plasma thrusters are electric space propulsion devices which create a highly transient plasma bulk in a short-time arc discharge that is expelled to create thrust. The transitional character and the dependency on the discharge properties are yet to be elucidated. In this study, optical emission spectroscopy and Mach-Zehnder interferometry are applied to investigate the plasma properties in variation of time, space, and discharge energy. Electron temperature, electron density, and Knudsen numbers are derived for the plasma bulk and discussed. Temperatures were found to be in the order of 1.7 to 3.1 eV, whereas electron densities showed maximum values of more than 10{sup 17} cm{sup -3}. Both values showed strong dependency on the discharge voltage and were typically higher closer to the electrodes. Capacitance and time showed less influence. Knudsen numbers were derived to be in the order of 10{sup -3}-10{sup -2}, thus, indicating a continuum flow behavior in the main plasma bulk.

  3. Compatibility experiments of facilities, materials, and propellants for electrothermal thrusters

    Science.gov (United States)

    Whalen, M. V.; Grisnik, S. P.; Sovey, J. S.

    1985-01-01

    Experiments were performed to determine the compatibility of materials and propellants for electro-thermal thrusters. Candidate propellants for resistojet propulsion include carbon dioxide, methane, hydrogen, ammonia, and hydrazine. The materials being examined are grain stabilized platinum for resistojets for space station and rhenium for high performance resistojets for satellites. Heater mass loss and deterioration of materials were evaluated. A coiled tube of platinum, with yttria dispersed throughout the base material to inhibit grain growth, was tested in carbon dioxide at 1300 C for 2000 hr. Post-test examination indicated the platinum-yttria heater would last over 100,000 hr with less than 10 percent mass loss. Short-term compatibility tests were conducted to test the integrity of the platinum-yttria in hydrogen, methane, carbon dioxide/methane mixtures and ammonia environments. In each of these 100 hr tests, the platinum-yttria mass change indicated a minimum coil life of 100,000 hr. Facility related effects were investigated in materials tests using rhenium heated to high temperatures. Vacuum facility water reduction was monitored using a mass spectrometer. In vacuum environments obtained using only diffusion pumping and those obtained with the assistance of cryogenic equipment there were mass gains in the rhenium heaters. These mass gains were the result of the high amount of oxygen and water contained in the gas. Propellant purity and preferred test facility environments are discussed.

  4. Reaction Control System Thruster Cracking Consultation: NASA Engineering and Safety Center (NESC) Materials Super Problem Resolution Team (SPRT) Findings

    Science.gov (United States)

    MacKay, Rebecca A.; Smith, Stephen W.; Shah, Sandeep R.; Piascik, Robert S.

    2005-01-01

    The shuttle orbiter s reaction control system (RCS) primary thruster serial number 120 was found to contain cracks in the counter bores and relief radius after a chamber repair and rejuvenation was performed in April 2004. Relief radius cracking had been observed in the 1970s and 1980s in seven thrusters prior to flight; however, counter bore cracking had never been seen previously in RCS thrusters. Members of the Materials Super Problem Resolution Team (SPRT) of the NASA Engineering and Safety Center (NESC) conducted a detailed review of the relevant literature and of the documentation from the previous RCS thruster failure analyses. It was concluded that the previous failure analyses lacked sufficient documentation to support the conclusions that stress corrosion cracking or hot-salt cracking was the root cause of the thruster cracking and lacked reliable inspection controls to prevent cracked thrusters from entering the fleet. The NESC team identified and performed new materials characterization and mechanical tests. It was determined that the thruster intergranular cracking was due to hydrogen embrittlement and that the cracking was produced during manufacturing as a result of processing the thrusters with fluoride-containing acids. Testing and characterization demonstrated that appreciable environmental crack propagation does not occur after manufacturing.

  5. A comparative analysis of 3D flow fields between straight and bowed blades in a steam turbine

    Institute of Scientific and Technical Information of China (English)

    M.HASSANVAND; WANG Zhong-qi 王仲奇; WANG Song-tao 王松涛

    2004-01-01

    A commercial Navier-Stokes flow solver has been employed tor simulating steady subsonic flow characteristics and analyzing the comparative features of flow fields between straight and bowed blades applied to the stator of a high pressure steam turbine. For comparison, we have studied the effects of bowed blades on the wakes of stator trailing edge and horse shoe vortex in the rotor. It was found that the position of wakes for bowed blades is shifted toward the blade suction side. Also, we have discussed and compared the entropy generation and energy loss caused by dissipation mechanism within the boundary layers on the hub and shroud; and temperature gradient in meridional plane.

  6. Bow shock specularly reflected ions in the presence of low-frequency electromagnetic waves: a case study

    OpenAIRE

    K. Meziane; Mazelle, C.; Wilber, M.; Lequéau, D.; J. P. Eastwood; H. Rème; Dandouras, I.; J. A. Sauvaud; Bosqued, J. M.; Parks, G. K.; Kistler, L. M.; McCarthy, M.; Klecker, B.; Korth, A.; M.-B. Bavassano-Cattaneo

    2004-01-01

    An energetic ion (E≤40) event observed by the CLUSTER/CIS experiment upstream of the Earth's bow shock is studied in detail. The ion event is observed in association with quasi-monochromatic ULF MHD-like waves, which we show modulate the ion fluxes. According to three statistical bow shock position models, the Cluster spacecrafts are located at ~0.5 Re from the shock and the averaged bow shock θ

  7. THE ROLE OF PICKUP IONS ON THE STRUCTURE OF THE VENUSIAN BOW SHOCK AND ITS IMPLICATIONS FOR THE TERMINATION SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Lu Quanming; Shan Lican; Zhang Tielong; Wu Mingyu; Wang Shui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China); Zank, Gary P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Yang Zhongwei [SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai (China); Du Aimin, E-mail: qmlu@ustc.edu.cn [Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2013-08-20

    The recent crossing of the termination shock by Voyager 2 has demonstrated the important role of pickup ions (PUIs) in the physics of collisionless shocks. The Venus Express (VEX) spacecraft orbits Venus in a 24 hr elliptical orbit that crosses the bow shock twice a day. VEX provides a unique opportunity to investigate the role of PUIs on the structure of collisionless shocks more generally. Using VEX observations, we find that the strength of the Venusian bow shock is weaker when solar activity is strong. We demonstrate that this surprising anti-correlation is due to PUIs mediating the Venusian bow shock.

  8. Effect of the variable cross-section channel on performance of a cusped field thruster at low power

    International Nuclear Information System (INIS)

    The cusped field thruster has drawn much attention from many institutions due to its wide thrust range, high impulse, and long lifetime. However, lots of experimental results reveal that the cusped field thruster at low power has a poor performance. A cusped field thruster with a variable cross-section channel by putting a ceramic spacer in the channel is introduced in this paper, aimed at improving the thruster performance at low power. The DSMC results validate that the upstream atom density can be increased by a spacer, especially near the wall. Based on simulated results, spacers are put into different positions of the channel. The experimental results show that a suitable spacer can enhance thruster performance at low power, which can be confirmed by the results that the anode efficiency can achieve 40% at 400 V anode voltage and 20 sccm gas flow rate by contrast to 35% without a spacer under the same condition. (paper)

  9. MHD seawater thruster performance: A comparison of predictions with experimental results from a two Tesla test facility

    Energy Technology Data Exchange (ETDEWEB)

    Picologlou, B.F.; Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (United States)); Sikes, W.C.; Ranellone, R.F. (Newport News Shipbuilding and Dry Dock Co., VA (United States))

    1992-01-01

    A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate a design oriented MHD thruster performance computer code. The thruster performance code consists of a one-dimensional MHD hydrodynamic model coupled to a two-dimensional electrical model. The code includes major loss mechanisms affecting the performance of the thruster. Among these losses are the joule dissipation losses, frictional losses, electrical end losses, and single electrode potential losses. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.

  10. Magnetically-conformed, Variable Area Discharge Chamber for Hall Thruster, and Method

    Science.gov (United States)

    Hofer, Richard R. (Inventor)

    2013-01-01

    The invention is a Hall thruster that incorporates a discharge chamber having a variable area channel including an ionization zone, a transition region, and an acceleration zone. The variable area channel is wider through the acceleration zone than through the ionization zone. An anode is located in a vicinity of the ionization zone and a cathode is located in a vicinity of the acceleration zone. The Hall thruster includes a magnetic circuit which is capable of forming a local magnetic field having a curvature within the transition region of the variable area channel whereby the transition region conforms to the curvature of the local magnetic field. The Hall thruster optimizes the ionization and acceleration efficiencies by the combined effects of the variable area channel and magnetic conformity.

  11. Development Efforts Expanded in Ion Propulsion: Ion Thrusters Developed With Higher Power Levels

    Science.gov (United States)

    Patterson, Michael J.; Rawlin, Vincent K.; Sovey, James S.

    2003-01-01

    The NASA Glenn Research Center was the major contributor of 2-kW-class ion thruster technology to the Deep Space 1 mission, which was successfully completed in early 2002. Recently, NASA s Office of Space Science awarded approximately $21 million to Glenn to develop higher power xenon ion propulsion systems for large flagship missions such as outer planet explorers and sample return missions. The project, referred to as NASA's Evolutionary Xenon Thruster (NEXT), is a logical follow-on to the ion propulsion system demonstrated on Deep Space 1. The propulsion system power level for NEXT is expected to be as high as 25 kW, incorporating multiple ion thrusters, each capable of being throttled over a 1- to 6-kW power range. To date, engineering model thrusters have been developed, and performance and plume diagnostics are now being documented. The project team-Glenn, the Jet Propulsion Laboratory, General Dynamics, Boeing Electron Dynamic Devices, the Applied Physics Laboratory, the University of Michigan, and Colorado State University-is in the process of developing hardware for a ground demonstration of the NEXT propulsion system, which comprises a xenon feed system, controllers, multiple thrusters, and power processors. The development program also will include life assessments by tests and analyses, single-string tests of ion thrusters and power systems, and finally, multistring thruster system tests in calendar year 2005. In addition, NASA's Office of Space Science selected Glenn to lead the development of a 25-kW xenon thruster to enable NASA to conduct future missions to the outer planets of Jupiter and beyond, under the High Power Electric Propulsion (HiPEP) program. The development of a 100-kW-class ion propulsion system and power conversion systems are critical components to enable future nuclear-electric propulsion systems. In fiscal year 2003, a team composed of Glenn, the Boeing Company, General Dynamics, the Applied Physics Laboratory, the Naval Research

  12. Effect of Background Pressure on the Performance and Plume of the HiVHAc Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas

    2013-01-01

    During the Single String Integration Test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics include thrust stand, Faraday probe, ExB probe, and retarding potential analyzer. The test results indicated a rise in thrust and discharge current with background pressure. There was also a decrease in ion energy per charge, an increase in multiply-charged species production, a decrease in plume divergence, and a decrease in ion beam current with increasing background pressure. A simplified ingestion model was applied to determine the maximum acceptable background pressure for thrust measurement. The maximum acceptable ingestion percentage was found to be around 1%. Examination of the diagnostics results suggest the ionization and acceleration zones of the thruster were shifting upstream with increasing background pressure.

  13. Measurements of Secondary Electron Emission Effects in the Hall Thruster Discharge

    Energy Technology Data Exchange (ETDEWEB)

    Raitses, Y.; Smirnov, A.; Staack, D.; Fisch, N.J.

    2005-12-01

    The dependence of the maximum electron temperature on the discharge voltage is studied for two Hall thruster configurations, in which a collisionless plasma is bounded by channel walls made of materials with different secondary electron emission (SEE) properties. The linear growth of the temperature with the discharge voltage, observed in the channel with a low SEE yield, suggests that SEE is responsible for the electron temperature saturation in the thruster configuration with the channel walls having a higher SEE yield. The fact that the values of the electron temperature at saturation are rather high may indirectly support the recently predicted kinetic regime of the space charge saturation of the near-wall sheath in the thruster discharge. A correlation between the effects of the channel wall material on the electron temperature and the electron cross-field current was also observed.

  14. Plasma-wall interaction in Hall thrusters with magnetic lens configuration

    International Nuclear Information System (INIS)

    Some recently developed Hall thrusters utilize a magnetic field configuration in which the field lines penetrate the thruster walls at a high incidence angle. This so-called magnetic lens leads to an electric field pointing away from the walls, which is expected to reduce ion losses and improve thruster efficiency. This configuration also introduces an interesting behavior in the sheath formation. At sufficiently large angles, ions are repelled from the wall, and sheath collapse is expected. We use a plasma simulation code to investigate this phenomenon in detail. We consider the role of the magnetic field incidence angle, secondary electron emission, and a magnetic mirror. Numerical study confirms the theoretical predictions, and at large angles, ions are seen to turn away from the wall. We also consider the role of the magnetic field geometry on ion wall flux and channel erosion, and observe reduction in both quantities as the magnetic field incidence angle is increased.

  15. Implementation and Initial Validation of a 100-Kilowatt Class Nested-Channel Hall Thruster

    Science.gov (United States)

    Hall, Scott J.; Florenz, Roland E.; Gallimore, Alec D.; Kamhawi, Hani; Brown, Daniel L.; Polk, James E.; Goebel, Dan; Hofer, Richard R.

    2014-01-01

    The X3 is a 100-kilowatt class nested-channel Hall thruster developed by the Plasmadynamics and Electric Propulsion Laboratory at the University of Michigan in collaboration with the Air Force Research Laboratory and NASA. The cathode, magnetic circuit, boron nitride channel rings, and anodes all required specific design considerations during thruster development, and thermal modeling was used to properly account for thermal growth in material selection and component design. A number of facility upgrades were required at the University of Michigan to facilitate operation of the X3. These upgrades included a re-worked propellant feed system, a completely redesigned power and telemetry break-out box, and numerous updates to thruster handling equipment. The X3 was tested on xenon propellant at two current densities, 37% and 73% of the nominal design value. It was operated to a maximum steady-state discharge power of 60.8 kilowatts. The tests presented here served as an initial validation of thruster operation. Thruster behavior was monitored with telemetry, photography and high-speed current probes. The photography showed a uniform plume throughout testing. At constant current density, reductions in mass flow rate of 18% and 26% were observed in the three-channel operating configuration as compared to the superposition of each channel running individually. The high-speed current probes showed that the thruster was stable at all operating points and that the channels influence each other when more than one is operating simultaneously. Additionally, the ratio of peak-to-peak AC-coupled discharge current oscillations to mean discharge current did not exceed 51% for any operating points reported here, and did not exceed 17% at the higher current density.

  16. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  17. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    Science.gov (United States)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e(sup 2), and 1/e(sup 3) times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  18. Mission Benefits of Gridded Ion and Hall Thruster Hybrid Propulsion Systems

    Science.gov (United States)

    Dankanich, John W.; Polsgrove, Tara

    2006-01-01

    The NASA In-Space Propulsion Technology (ISPT) Project Office has been developing the NEXT gridded ion thruster system and is planning to procure a low power Hall system. The new ion propulsion systems will join NSTAR as NASA's primary electric propulsion system options. Studies have been performed to show mission benefits of each of the stand alone systems. A hybrid ion propulsion system (IPS) can have the advantage of reduced cost, decreased flight time and greater science payload delivery over comparable homogeneous systems. This paper explores possible advantages of combining various thruster options for a single mission.

  19. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a high-speed camera and a set of high-speed Langmuir probes were implemented to study the effect of varying facility background pressure on thruster operation. The results show a rise in the oscillation frequency of the breathing mode with rising background pressure, which is hypothesized to be due to a shortening accelerationionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  20. Theory of the modified two-stream instability in a magnetoplasmadynamic thruster

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, D.E.; Niewood, E. (MIT, Cambridge, MA (USA))

    1991-04-01

    It is shown that for plasma parameters characteristic of those found in magnetoplasmadynamic (MPD) thrusters the modified two-stream instability may exist in the plasma. The critical parameter for triggering this instability is the ratio of the crossfield current to the ion saturation current. Once triggered, this instability greatly increases the plasma resistivity to the flow of the current and heats both ions and electrons. The anomalous momentum-exchange frequency and heating rates are calculated for characteristic MPD thruster parameters. 17 refs.

  1. A low power pulsed arcjet thruster for spacecraft propulsion

    Science.gov (United States)

    Willmes, Gary Francis

    1997-11-01

    An electrothermal thruster that operates in a pulsed mode at low power (converging-diverging nozzle, and all the energy addition occurs in the subsonic region. Peak currents in the arc are 110 to 270 amps. Pulsed arcjet performance at thermal steady state is measured for two 20 degree half angle conical nozzles with area ratios of 20 and 230. Thrust levels from 10 to 30 mN are measured on an inverted pendulum-type thrust stand, and input power levels from 24 to 119 watts are determined from measurements of pulse rate and breakdown voltage. A maximum specific impulse of 305 seconds is achieved with 38% efficiency. A time-dependent, quasi-1D numerical model is developed to evaluate energy losses in the pulsed arcjet. The numerical model uses a time-marching procedure and the MacCormack predictor-corrector algorithm. Viscous and heat transfer effects are incorporated though a friction factor and an average heat transfer coefficient. A numerical study of nozzle parameters, capillary geometry, wall temperature, and pulse energy shows that the performance is insensitive to capillary and nozzle geometry and that thermal characteristics are the dominant factor affecting performance. The specific impulse and efficiency of the pulsed arcjet are found to be sensitive to wall temperature due to heat transfer losses in the subsonic region. A pulse-forming electrical circuit is developed to reduce energy losses in the storage capacitor, and greater than 85% of the initial stored energy is transferred to the arc in a unipolar pulse. A high current diode installed across the capacitor terminals is used to eliminate voltage reversals in the current. The experimental breakdown voltage of the helium gas between the electrodes is found to follow a Paschen relationship where the minimum electrode separation distance is used in evaluating the data.

  2. Half-bow sliding knot: modified suture technique for scleral fixation using the corneoscleral pocket.

    Science.gov (United States)

    Chee, Soon-Phaik

    2011-09-01

    A modified suture technique for precise knot placement in the Hoffman corneoscleral pocket technique of scleral fixation is described. Both loops of the polypropylene suture passing from the intraocular device through the sclera and conjunctiva are retrieved from the pocket. A loop of suture is pulled through 3 suture throws made using the second suture loop, forming a half bow. Centration of the intraocular lens (IOL)-capsular bag is checked. If the suture tension is too tight, the surgeon can easily undo the knot of the half-bow knot by pulling it free and can then retie the sliding knot. When the IOL-capsular bag is centered, the suture loop is cut and the free end removed. The second suture end is retrieved from the pocket, and knot tying is completed without further adjustment to the tension. Posterior pressure on the intraocular device centers it and settles the knot within the sclera at the fixation point.

  3. A Study of Near-Field Radiation Pattern of Bow-Tie Dipole on Ground

    Institute of Scientific and Technical Information of China (English)

    ZHAN Yi; LIANG Changhong; FANG Guangyou; YUAN Hongwei

    2001-01-01

    The study of bow-tie antenna forpulse'radiation in a ground penetrating radar systemis complicated due to the existence of reflections fromthe feed,the far end of the antenna,the air-groundinterface and their interactions.The FDTD methodsare applied in this paper by incorporating a trans-parent source,a bow-tie antenna above the ground,and a lossy soil to investigate the issues.Numeri-cal verifications are conducted to check the accuracyof the method.The radiation properties are demon-strated by near-field radiation patterns and time do-main waveforms at different positions.The influencesdue to different antenna heights and soil parametersare also discussed in detail.

  4. Diagnosis of the Thermal Bow of a Shaft in a Three Stage Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In practice many turbo-machines driven by motors are started up to operational speed within a very short time, i.e. in less than 20 seconds. For this type of machines the compatibility of thermal deformation of the rotor structure must be taken into account in the machine design, or the thermal deformation will be constrained and a huge resultant force can cause the shaft bending and consequently resulting in violent vibrations. In this paper, detection of thermal bow of a shaft in a three stage centrifugal compressor in a petrochemical plant is presented. The diagnostic results show that the thermal bow was induced by the incompatibility of axial thermal deformation of the rotor structure. A remedial action allowing free axial thermal expansion of the outer parts of the rotor is suggested.

  5. Intensity and energy spectrum of electrons accelerated in the earth's bow shock

    Science.gov (United States)

    Anderson, K. A.

    1974-01-01

    Shock waves accelerate charged particles in the solar atmosphere, in interplanetary space and around the earth's magnetosphere. Acceleration of both electrons and protons occurs in the earth's bow-shock. The acceleration of protons up to 100 keV appears to be a steady state process and may even occur upstream from the bow shock due to waves generated by reflected solar wind protons. The electrons, on the other hand, are known to be accelerated in or near the shock. The intensity of these electrons ranges from about 100 to 2,000 per sr-sq cm-sec-keV at 14 keV. The energy spectrum is not a simple power low and is highly variable. If segments of the spectra are fitted to a power low, slopes ranging from -2 to -4.5 result over the energy range 0.5 to 100 keV.

  6. Analysis of Silver Ink Bow-Tie RFID Tag Antennas Printed on Paper Substrates

    Directory of Open Access Journals (Sweden)

    Sari Merilampi

    2007-01-01

    Full Text Available In this study, polymeric silver inks, paper substrates, and screen printing were used to produce prototype Bow-Tie tags. Because of increasing interest in applying passive UHF-RFID systems in paper industry, the Bow-Tie antenna used in this study was designed to work through paper. The maximum reliable read ranges of the tags were measured thorough stacked paper and also in air. The analysis and functioning of the antenna design are also discussed. All inks and paper substrates were suitable as antenna material and the prototype tag antennas had good reading performance. The maximum reliable read ranges were quite the same as for copper and aluminum tags studied elsewhere. This means that printed UHF tags are competitive solutions for the identification of simple mass products.

  7. Highly modular bow-tie gene circuits with programmable dynamic behaviour.

    Science.gov (United States)

    Prochazka, Laura; Angelici, Bartolomeo; Haefliger, Benjamin; Benenson, Yaakov

    2014-01-01

    Synthetic gene circuits often require extensive mutual optimization of their components for successful operation, while modular and programmable design platforms are rare. A possible solution lies in the 'bow-tie' architecture, which stipulates a focal component-a 'knot'-uncoupling circuits' inputs and outputs, simplifying component swapping, and introducing additional layer of control. Here we construct, in cultured human cells, synthetic bow-tie circuits that transduce microRNA inputs into protein outputs with independently programmable logical and dynamic behaviour. The latter is adjusted via two different knot configurations: a transcriptional activator causing the outputs to track input changes reversibly, and a recombinase-based cascade, converting transient inputs into permanent actuation. We characterize the circuits in HEK293 cells, confirming their modularity and scalability, and validate them using endogenous microRNA inputs in additional cell lines. This platform can be used for biotechnological and biomedical applications in vitro, in vivo and potentially in human therapy. PMID:25311543

  8. Comparison of plasma wave measurements in the bow shocks at Earth, Jupiter, Saturn, Uranus and Neptune

    International Nuclear Information System (INIS)

    The authors present plasma wave measurements from the Voyager 2 crossing of Neptune's bow shock and compare them with measurements from the bow shocks of Earth, Jupiter, Saturn and Uranus. The wave amplitudes above 0.01fp, when normalized to the solar wind ion thermal energy density at each planet, are significantly higher at the outer planets than at Earth. Despite the differences in amplitude the shock spectra of all the planets can be fitted to curves of similar form in this frequency range. The total normalized electric field energy densities exhibit an exponential dependence on ion thermal Mach number. Magnetosheath wave energies are comparable at all of the planets when normalized to the downstream plasma pressure

  9. Characterization of Saturn's bow shock: Magnetic field observations of quasi-perpendicular shocks

    CERN Document Server

    Sulaiman, A H; Dougherty, M K

    2016-01-01

    Collisionless shocks vary drastically from terrestrial to astrophysical regimes resulting in radically different characteristics. This poses two complexities. Firstly, separating the influences of these parameters on physical mechanisms such as energy dissipation. Secondly, correlating observations of shock waves over a wide range of each parameter, enough to span across different regimes. Investigating the latter has been restricted since the majority of studies on shocks at exotic regimes (such as supernova remnants) have been achieved either remotely or via simulations, but rarely by means of in-situ observations. Here we present the parameter space of MA bow shock crossings from 2004-2014 as observed by the Cassini spacecraft. We find that Saturn's bow shock exhibits characteristics akin to both terrestrial and astrophysical regimes (MA of order 100), which is principally controlled by the upstream magnetic field strength. Moreover, we determined the {\\theta}Bn of each crossing to show that Saturn's (days...

  10. Comparison of plasma wave measurements in the bow shocks at Earth, Jupiter, Saturn, Uranus and Neptune

    Science.gov (United States)

    Moses, S. L.; Coroniti, F. V.; Kennel, C. F.; Kurth, W. S.; Gurnett, D. A.

    1990-01-01

    Plasma wave measurements from the Voyager 2 crossing of Neptune's bow shock are presented and compared with measurements from the bow shocks of Earth, Jupiter, Saturn, and Uranus. The wave amplitudes above 0.01fp, when normalized to the solar wind ion thermal energy density at each planet, are significantly higher at the outer planets than at Earth. Despite the differences in amplitude, the shock spectra of all the planets can be fitted to curves of similar form in this frequency range. The total normalized electric field energy densities exhibit an exponential dependence on ion thermal Mach number, Magnetosheath wave energies are comparable at all of the planets when normalized to the downstream plasma pressure.

  11. Modelling multi-wavelength observational characteristics of bow shocks from runaway early type stars

    CERN Document Server

    Acreman, David M; Harries, Tim J

    2015-01-01

    We assess the multi-wavelength observable properties of the bow shock around a runaway early type star using a combination of hydrodynamical modelling, radiative transfer calculations and synthetic imaging. Instabilities associated with the forward shock produce dense knots of material which are warm, ionised and contain dust. These knots of material are responsible for the majority of emission at far infra-red, H alpha and radio wavelengths. The large scale bow shock morphology is very similar and differences are primarily due to variations in the assumed spatial resolution. However infra-red intensity slices (at 22 microns and 12 microns) show that the effects of a temperature gradient can be resolved at a realistic spatial resolution for an object at a distance of 1 kpc.

  12. UWB Bi-directional Bow-tie antenna loaded by rings

    Science.gov (United States)

    Peng, Lin; Sun, Kai; Xie, Ji-yang; Qiu, Yu-jie; Jiang, Xing

    2016-07-01

    Performances of bow-tie antennae can be improved by loading a ring. Specially, the distorted radiation patterns of the reference bow-tie antenna (RBA) at high frequencies become less distorted when a ring is added. That is due to the disciplined current flows trained by the ring. Furthermore, when more rings are loaded, which act as reflectors, higher directivities are obtained and, patterns become bi-directional. Antennae with no ring (RBA), one ring, two rings (three cases), three rings, and four rings are investigated. Research find that loading more rings means better directivity. The directivity of the RBA varies from 2.29 dB to 3.66 dB for the frequency band from 2.5 to 7.5 GHz while the directivity for the four-ring-loaded case varies from 4.27 dB to 7.61 dB in that frequency band.

  13. FAILURES AND DEFECTS IN THE BUILDING PROCESS – APPLYING THE BOW-TIE APPROACH

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2009-01-01

    Function failures, defects, mistakes and poor communication are major problems for the construction sector. A Danish research project focusing on failures and defects in building processes has been carried out over the last 2 years. As the empirical element in the research, a large construction...... site was observed from the very start to the very end and all failures and defects of a certain size were recorded and analysed. The methodological approach used in this analysis was the bow-tie model from the area of safety research. It combines critical-event analysis for both causes and effects...... with event-tree analysis. The paper describes this analytical approach as an introduction to a new concept for understanding failures and defects in construction. Analysing the many critical events in the building process with the bow-tie model visualises the complexity of causes. This visualisation offers...

  14. Mapping the Structure of Directed Networks: Beyond the "Bow-tie" Diagram

    OpenAIRE

    Timár, G.; Goltsev, A. V.; Dorogovtsev, S. N.; Mendes, J. F. F.

    2016-01-01

    We reveal a hierarchical organization of finite directed components---tendrils---around the giant components represented by the celebrated "bow-tie" diagram for directed networks. We develop an efficient algorithm to find tendril layers. It is used together with the message passing technique, generalized to directed graphs, to find the structure and attack tolerance of complex networks, such as the World Wide Web, the neural network of Caenorhabditis elegans, and others. We introduce a genera...

  15. [A drill-bow in Horace, Odes 3.6.7].

    Science.gov (United States)

    Moog, Ferdinand Peter

    2004-01-01

    With the short poem Odes 3.26 Horaces says--ostensibly--farewell to the subject of love. A symbol of his retreat is the order given to his followers: they ought to lay in the Temple of Venus the three objects which he has used in his night escapades struggling for the girls' love: lucida funalia (torches), vectis (jemmies), and arcus. The last words has been puzzling the scholars for centuries. Many took offence at the transmitted text and offered conjectures of their own. Some, however, defended arcus using different arguemtns, for instance that arcus refers to bows and arrows as weapons of the lascivious night-reveller. Also the author of this article retains arcus in the text. The context and grammatical construction let assume that also this noun denotes a tool of a burglar, preferably a drill driven by a fiddle-bow. Such instruments were use by carpenters, joiners, and surgeons. Apart from this, gigantic drill-bows were known among military machines. These were frequently applied in sieges. Horace might have seen descriptions and drawings of them in military handbooks which he presumably read in order to prepare himself for his short and rather inglorious career as an officer in the army of Caesar's murderers. For Romans without military experience who suddenly obtained a high rank at war this was a typical way of making good their shortcomings. The parallel between the siege of a town and the attack upon the beloved girl's house must be regarded as a poetic exaggeration; the reader should be amused by an impracticable idea. Furthermore, a possible connection between Horace's poem and the Heracles of Euripides is pointed out here for the first time. In Heracles 942-6 the hero, driven insane by Lyssa's work, asks for his bow, his arrows and siege instruments to take Mycenae, the fortress of his tormentor Eurystheus. In fact he brakes into his own bedroom and kills his spouse and his son.

  16. Deflection Reduction of GaN Wafer Bowing by Coating or Cutting Grooves in the Substrates

    Institute of Scientific and Technical Information of China (English)

    SUN Tao; WANG Ming-Qing; SUN Yong-Jian; WANG Bo-Ping; ZHANG Guo-Yi; TONG Yu-Zhen; DUAN Hui-Ling

    2011-01-01

    @@ GaN films on sapphire substrates are obtained using the metal-organic chemical vapor deposition growth technique.We present two methods to reduce the GaN wafer bowing caused by the mismatch of the thermal expansion coefficients(TECs)between the film and the substrate.The first method is to use coating materials on the back side of the substrate whose TECs are smaller than that of the GaN films.The second is to cut grooves on the back side of the sapphire substrate and filling the grooves with appropriate materials(e.g., tungsten, silicon nitride).For each method, we minimize wafer bowing and even reduce it to zero.Moreover, the two methods can reduce stress concentration and suppress the propagation of cracks in the GaN/sapphire structure.%GaN films on sapphire substrates are obtained using the metal-organic chemical vapor deposition growth technique. We present two methods to reduce the GaN wafer bowing caused by the mismatch of the thermal expansion coefficients (TECs) between the film and the substrate. The first method is to use coating materials on the back side of the substrate whose TECs are smaller than that of the GaN films. The second is to cut grooves on the back side of the sapphire substrate and filling the grooves with appropriate materials (e.g., tungsten, silicon nitride).For each method, we minimize wafer bowing and even reduce it to zero. Moreover, the two methods can reduce stress concentration and suppress the propagation of cracks in the GaN/sapphire structure.

  17. Potts critical frontiers of inhomogeneous and asymmetric bow-tie lattices

    OpenAIRE

    Scullard, Christian R.; Jacobsen, Jesper Lykke

    2012-01-01

    We study the critical frontiers of the Potts model on two-dimensional bow-tie lattices with fully inhomogeneous coupling constants. Generally, for the Potts critical frontier to be found exactly, the underlying lattice must be a 3-uniform hypergraph. A more general class of lattices are the 4-uniform ones, with unit cells contained within four boundary vertices. We demonstrate that in some cases, such lattices can be decomposed into triangular cells, and solved using a modification of standar...

  18. Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation

    OpenAIRE

    Pfullmann, N.; Waltermann, C.; Noack, M.; Rausch, S.; Nagy, T.; Reinhardt, C.; Kovacev, M.; Knittel, V.; Bratschitsch, R.; Akemeier, D.; Huetten, A.; Leitenstorfer, A.; Morgner, Uwe

    2013-01-01

    We report on the generation of extreme ultraviolet radiation utilizing the plasmonic field enhancement in arrays of bow-tie gold optical antennae. Furthermore, their suitability to support high-order harmonic generation is examined by means of finite-difference time-domain calculations and experiments. Particular emphasis is paid to the thermal properties, which become significant at the employed peak intensities. A damage threshold depending on the antenna length is predict...

  19. Self-assembled silver nanoparticles in a bow-tie antenna configuration.

    Science.gov (United States)

    Eskelinen, Antti-Pekka; Moerland, Robert J; Kostiainen, Mauri A; Törmä, Päivi

    2014-03-26

    The self-assembly of silver nanoparticles into a bow-tie antenna configuration is achieved with the DNA origami method. Instead of complicated particle geometries, spherical silver nanoparticles are used. Formation of the structures in high yields is verified with transmission electron microscopy and agarose gel electrophoresis. According to finite-difference time-domain simulations, the antenna configuration could be used as a DNA sensor. PMID:24659271

  20. Bow-tie wobble artifact: Effect of source assembly motion on cone-beam CT

    OpenAIRE

    Zheng, Dandan; John C. Ford; Lu, Jun; Lazos, Dimitrios; Hugo, Geoffrey D.; Pokhrel, Damodar; Zhang, Lisha; Williamson, Jeffrey F.

    2011-01-01

    Purpose: To investigate the cause of a bow-tie wobble artifact (BWA) discovered on Varian OBI CBCT images and to develop practical correction strategies.Method and Materials: The dependence of the BWA on phantom geometry, phantom position, specific system, and reconstruction algorithm was investigated. Simulations were conducted to study the dependence of the BWA on scatter and beam hardening corrections. Geometric calibration was performed to rule out other gantry-angle dependent mechanical ...

  1. Note: auto-relock system for a bow-tie cavity for second harmonic generation.

    Science.gov (United States)

    Haze, Shinsuke; Hata, Sousuke; Fujinaga, Munekazu; Mukaiyama, Takashi

    2013-02-01

    This Note reports on the implementation of an automatic relocking system for a bow-tie cavity for second harmonic generation to produce an ultra-violet laser source. The system is based on a sample-and-hold technique for controlling the cavity length using simple servo electronics. Long-term stabilization of the cavity output power is successfully achieved, which makes this system suitable for designing stable atomic physics experiments. PMID:23464273

  2. The critical manifolds of inhomogeneous bond percolation on bow-tie and checkerboard lattices

    OpenAIRE

    Ziff, Robert M.; Scullard, Christian R.; Wierman, John C.; Sedlock, Matthew R. A.

    2012-01-01

    We give a conditional derivation of the inhomogeneous critical percolation manifold of the bow-tie lattice with five different probabilities, a problem that does not appear at first to fall into any known solvable class. Although our argument is mathematically rigorous only on a region of the manifold, we conjecture that the formula is correct over its entire domain, and we provide a non-rigorous argument for this that employs the negative probability regime of the triangular lattice critical...

  3. Failures and Defects in the Building Process:Applying the Bow-Tie Approach

    OpenAIRE

    Jørgensen, Kirsten

    2009-01-01

    Function failures, defects, mistakes and poor communication are major problems for the construction sector. A Danish research project focusing on failures and defects in building processes has been carried out over the last 2 years. As the empirical element in the research, a large construction site was observed from the very start to the very end and all failures and defects of a certain size were recorded and analysed. The methodological approach used in this analysis was the bow-tie model ...

  4. Variation of the ratio of specific heats across a detached bow shock

    Science.gov (United States)

    Chao, J. K.; Wiskerchen, M. J.

    1974-01-01

    Equations are derived which allow the ratio of specific heats behind the earth's bow shock to be evaluated if several pre-shock parameters (the specific-heat ratio, the Alfvenic Mach number, the sonic Mach number, and the angle between the shock normal at the stagnation point and the magnetic field) and the density jump across the shock are known. Numerical examples show that the dependence of the post-shock ratio on the pre-shock ratio is weak.

  5. Ship Bow Force-Deformation Curves for Ship-Impact Demand of Bridges considering Effect of Pile-Cap Depth

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2014-01-01

    Full Text Available Since static analysis procedures in the vessel impact-resistant design codes neglect dynamic amplification effects related to bridge mass, ship-impact responses of bridges may be potentially underestimated. For this reason, several dynamic vessel-impact analysis techniques had been recently proposed, where a force-deformation curve was employed to model the vessel bow stiffness. Most of the recent works mainly focused on the force-deformation curves of the barge bows rather than the ship bows. In this paper, a high-resolution finite element model is developed to obtain the ship bow force-deformation curves. The global and local characteristics of the ship bow force-deformation curves are discussed based on the finite element crush analyses between the ship bows and the rigid walls. Effect of pile-cap depth on the force-deformation curves (rather than only impact forces is studied in detail, and the corresponding empirical equations are developed using an energy ratio method. Finally, a practical example of ship-bridge collision is investigated to validate the force-deformation curves considering the effect of pile-cap depth. It is found from the case study that the effect of pile-cap depth plays an important role in quantifying structural demand under impact loads. The case study also indicates that the developed equations are reasonable in practical applications.

  6. Bow-shock instability induced by Helmholtz resonator-like feedback in slipstream

    Science.gov (United States)

    Ohnishi, Naofumi; Sato, Yosuke; Kikuchi, Yuta; Ohtani, Kiyonobu; Yasue, Kanako

    2015-06-01

    Bow-shock instability has been experimentally observed in a low-γ flow. To clarify its mechanism, a parametric study was conducted with three-dimensional numerical simulations for specific heat ratio γ and Mach number M. A critical boundary of the instability was found in the γ-M parametric space. The bow shock tends to be unstable with low γ and high M, and the experimental demonstration was designed based on this result. The experiments were conducted with the ballistic range of the single-stage powder gun mode using HFC-134a of γ = 1.12 at Mach 9.6. Because the deformation of the shock front was observed in a shadowgraph image, the numerical prediction was validated to some extent. The theoretical estimation of vortex formation in a curved shock wave indicates that the generated vorticity is proportional to the density ratio across the shock front and that the critical density ratio can be predicted as ˜10. A strong slipstream from the surface edge generates noticeable acoustic waves because it can be deviated by the upstream flow. The acoustic waves emitted by synchronizing the vortex formation can propagate upstream and may trigger bow-shock instability. This effect should be emphasized in terms of unstable shock formation around an edged flat body.

  7. Numerical Simulation of Star Formation by the Bow Shock of the Centaurus A Jet

    CERN Document Server

    Gardner, Carl L; Scannapieco, Evan; Windhorst, Rogier A

    2016-01-01

    Recent Hubble Space Telescope (HST) observations of the extragalactic radio source Centaurus A (Cen A) display a young stellar population around the southwest tip of the inner filament 8.5 kpc from the Cen A galactic center, with ages in the range of 1-3 Myr. Crockett et al. (2012) argue that the transverse bow shock of the Cen A jet triggered this star formation as it impacted dense molecular cores of clouds in the filament. To test this hypothesis, we perform three-dimensional numerical simulations of induced star formation by the jet bow shock in the inner filament of Cen A, using a positivity preserving WENO method to solve the equations of gas dynamics with radiative cooling. We find that star clusters form inside a bow-shocked molecular cloud when the maximum initial density of the cloud is > 40 H2 molecules/cm^3. In a typical molecular cloud of mass 10^6 M_sun and diameter 200 pc, approximately 20 star clusters of mass 10^3 M_sun are formed, matching the HST images.

  8. AKARI/FIS Mapping of the ISM-Wind Bow Shock around Alpha Ori

    CERN Document Server

    Ueta, Toshiya; Yamamura, Issei; Nakada, Yoshikazu; Matsuura, Mikako; Ita, Yoshifusa; Tanabe, Toshihiko; Fukushi, Hinako; Matsunaga, Noriyuki; Mito, Hiroyuki

    2008-01-01

    We present 10' x 50' scan maps around an M supergiant Alpha Ori at 65, 90, 140 and 160 microns obtained with the AKARI Infrared Astronomy Satellite. Higher spatial resolution data with the exact analytic solution permit us to fit the de-projected shape of the stellar wind bow shock around Alpha Ori to have the stand-off distance of 4.8', position angle of 55 degrees and inclination angle of 56 degrees. The shape of the bow shock suggests that the peculiar velocity of Alpha Ori with respect to the local medium is v_* = 40 (n_H)^(-1/2), where n_H is the hydrogen nucleus density at Alpha Ori. We find that the local medium is of n_H = 1.5 to 1.9 cm^(-3) and the velocity of the local flow is at 11 km s^(-1) by using the most recent astrometric solutions for Alpha Ori under the assumption that the local medium is moving away from the Orion OB 1 association. AKARI images may also reveal a vortex ring due to instabilities on the surface of the bow shock as demonstrated by numerical models. This research exemplifies t...

  9. The propagation and growth of whistler mode waves generated by electron beams in earth's bow shock

    Science.gov (United States)

    Tokar, R. L.; Gurnett, D. A.

    1985-01-01

    In this study, the propagation and growth of whistler mode waves generated by electron beams within earth's bow shock is investigated using a planar model for the bow shock and a model electron distribution function. Within the shock, the model electron distribution function possesses a field-aligned T greater than T beam that is directed toward the magnetosheath. Waves with frequencies between about 1 and 100 Hz with a wide range of wave normal angles are generated by the beam via Landau and anomalous cyclotron resonances. However, because the growth rate is small and because the wave packets traverse the shock quickly, these waves do not attain large amplitudes. Waves with frequencies between about 30 and 150 Hz with a wide range of wave normal angles are generated by the beam via the normal cyclotron resonance. The ray paths for most of these waves are directed toward the solar wind although some wave packets, due to plasma convection travel transverse to the shock normal. These wave packets grow to large amplitudes because they spend a long time in the growth region. The results suggest that whistler mode noise within the shock should increase in amplitude with increasing upstream theta sub Bn. The study provides an explanation for the origin of much of the whistler mode turbulence observed at the bow shock.

  10. Anomalous flow deflection at planetary bow shocks in the low Alfven Mach number regime

    Science.gov (United States)

    Nishino, Masaki N.; Fujimoto, Masaki; Tai, Phan-Duc; Mukai, Toshifumi; Saito, Yoshifumi; Kuznetsova, Masha M.; Rastaetter, Lutz

    A planetary magnetosphere is an obstacle to the super-sonic solar wind and the bow shock is formed in the front-side of it. In ordinary hydro-dynamics, the flow decelerated at the shock is diverted around the obstacle symmetrically about the planet-Sun line, which is indeed observed in the magnetosheath most of the time. Here we show a case under a very low density solar wind in which duskward flow was observed in the dawnside magnetosheath of the Earth's magnetosphere. A Rankine-Hugoniot test across the bow shock shows that the magnetic effect is crucial for this "wrong flow" to appear. A full three-dimensional Magneto- Hydro-Dynamics (MHD) simulation of the situation in this previously unexplored parameter regime is also performed. It is illustrated that in addition to the "wrong flow" feature, various peculiar characteristics appear in the global picture of the MHD flow interaction with the obstacle. The magnetic effect at the bow shock should become more conspicuously around the Mercury's magnetosphere, because stronger interplanetary magnetic field and slower solar wind around the Mercury let the Alfven Mach number low. Resultant strong deformation of the magnetosphere induced by the "wrong flow" will cause more complex interaction between the solar wind and the Mercury.

  11. Origins of bandgap bowing in compound-semiconductor common-cation ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tit, Nacir; Obaidat, Ihab M [Department of Physics, UAE University, PO Box 17551, Al-Ain (United Arab Emirates); Alawadhi, Hussain [Department of Applied Physics, University of Sharjah, PO Box 27272, Sharjah (United Arab Emirates)], E-mail: ntit@uaeu.ac.ae

    2009-02-18

    We present an investigation into the existence and origins of bandgap bowing in compound-semiconductor common-cation ternary alloys. As examples, we consider CdSe{sub x}Te{sub 1-x} and ZnSe{sub 1-x}Te{sub x} alloys. A calculation, based on the sp{sup 3}s* tight-binding method including spin-orbit coupling within the framework of the virtual crystal approximation, is employed to determine the bandgap energy, local density of states and atomic charge states versus composition and valence-band offset. The results show that (i) in the valence band, the top states are mainly contributed by Te atoms. The degree of ionicity of all atoms is found to vary linearly with mole fraction x. (ii) There is a strong competition between the anions (Se and Te) in trapping/losing charges and this competition is the main reason for the bandgap bowing character. (iii) There is a reasonable agreement between the calculated results and the available photoluminescence data. (iv) The bowing parameter is found to increase with increasing valence-band offset and increasing lattice mismatch.

  12. Reconstructing the Guitar: Blowing Bubbles with a Pulsar Bow Shock Backflow

    Science.gov (United States)

    van Kerkwijk, Marten H.; Ingle, Ashleigh

    2008-08-01

    The Guitar Nebula is an Hα nebula produced by the interaction of the relativistic wind of a very fast pulsar, PSR B2224+65, with the interstellar medium. It consists of a ram-pressure confined bow shock near its head and a series of semicircular bubbles further behind, the two largest of which form the body of the Guitar. We present a scenario in which this peculiar morphology is due to instabilities in the backflow from the pulsar bow shock. From simulations, these backflows appear similar to jets and their kinetic energy is a large fraction of the total energy in the pulsar's relativistic wind. We suggest that, like jets, these flows become unstable some distance downstream, leading to rapid dissipation of the kinetic energy into heat, and the formation of an expanding bubble. We show that in this scenario the sizes, velocities, and surface brightnesses of the bubbles depend mostly on observables, and that they match roughly what is seen for the Guitar. Similar instabilities may account for features seen in other bow shocks.

  13. Corporate-Feed Multilayer Bow-Tie Antenna Array Design Using a Simple Transmission Line Model

    Directory of Open Access Journals (Sweden)

    S. Didouh

    2012-01-01

    Full Text Available A transmission line model is used to design corporate-fed multilayered bow-tie antennas arrays; the simulated antennas arrays are designed to resonate at the frequencies 2.4 GHz, 5 GHz, and 8 GHz corresponding to RFID, WIFI, and radars applications. The contribution of this paper consists of modeling multilayer bow-tie antenna array fed through an aperture using transmission line model. The transmission line model is simple and precise and allows taking into account the whole geometrical, electrical, and technological characteristics of the antennas arrays. The proposed transmission line model showed its interest in the design of different multilayered bow-tie antennas and predicted the correct resonance frequency for different applications in telecommunications. To validate the proposed transmission line model, the simulation results obtained are compared with those obtained by the method of moments. The results of simulations are presented and discussed. Using this transmission line approach, the resonant frequency, input impedance, and return loss can be determined simultaneously. The paper reports several simulation results that confirm the validity of the developed model. The obtained results are then presented and discussed.

  14. A search for systemic mass loss in Algols with bow shocks

    CERN Document Server

    Mayer, Andreas; Jorissen, Alain

    2016-01-01

    Aims. Various studies indicate that interacting binary stars of Algol type evolve non-conservatively. However, direct detection of systemic mass loss in Algols has been scarce so far. We aim at studying the systemic mass loss in Algols by looking for the presence of infrared excesses originating from the thermal emission of dust grains, which is linked to the presence of a stellar wind. Methods. In contrast to previous studies, we make use of the fact that stellar and interstellar material is piled up at the edge of the asterosphere where the stellar wind interacts with the interstellar medium. We analyse WISE W3 $12\\,\\mu$m and WISE W4 $22\\,\\mu$m data of Algol-type binary Be and B[e] stars and the properties of their bow shocks. From the stand-off distance of the bow shock we are able to determine the mass loss rate of the binary system. Results. Although the velocities of the stars with respect to the interstellar medium are quite low, we find bow shocks to be present in two systems, namely $\\pi$ Aqr, and $\\...

  15. Comparative Study of Electromagnetic Waves at the Bow Shocks of Venus and Earth

    Science.gov (United States)

    Wei, Hanying; Russell, Christopher T.; Strangeway, Robert J.; Schwartz, Steven J.; Zhang, Tielong

    2016-04-01

    Although the solar interactions with Venus and Earth are quite different in many ways, they both have bow shocks formed upstream of the planet where the solar wind decelerates from a super- to sub- magnetosonic flow. In the upstream foreshock region, there is abundant wave activity generated by the shock or by the back-streaming ions and electrons from the shock. In the downstream magnetosheath region, there is also abundant wave activity either locally generated by the heated electrons or ions from the shock or transported from the shock or foreshock regions by the solar wind. The magnetometers of Venus Express and Magnetospheric Multiscale missions both occasionally record 128 Hz data during their shock crossing, which allow us the search for and analyze waves at such high frequencies. We have found short-duration wave bursts around both Venus and Earth bow shocks, with certain similarities. These waves are mostly quasi-perpendicular propagating and have amplitude and occurrence rate decreasing with distance from the bow shock. In this paper we perform statistical and comparative studies on wave properties to understand their generation mechanisms and their effects to the shock or magnetosheath plasmas.

  16. Preliminary Results of Performance Measurements on a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Science.gov (United States)

    Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2008-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.

  17. Measurement of bow tie profiles in CT scanners using a real-time dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Bruce R., E-mail: whitingbrucer@gmail.com [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States); Evans, Joshua D.; Williamson, Jeffrey F. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Dohatcu, Andreea C. [University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213 (United States); Politte, David G. [Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110 (United States)

    2014-10-15

    Purpose: Several areas of computed tomography (CT) research require knowledge about the intensity profile of the x-ray fan beam that is introduced by a bow tie filter. This information is considered proprietary by CT manufacturers, so noninvasive measurement methods are required. One method using real-time dosimeters has been proposed in the literature. A commercially available dosimeter was used to apply that method, and analysis techniques were developed to extract fan beam profiles from measurements. Methods: A real-time ion chamber was placed near the periphery of an empty CT gantry and the dose rate versus time waveform was recorded as the x-ray source rotated about the isocenter. In contrast to previously proposed analysis methods that assumed a pointlike detector, the finite-size ion chamber received varying amounts of coverage by the collimated x-ray beam during rotation, precluding a simple relationship between the source intensity as a function of fan beam angle and measured intensity. A two-parameter model for measurement intensity was developed that included both effective collimation width and source-to-detector distance, which then was iteratively solved to minimize the error between duplicate measurements at corresponding fan beam angles, allowing determination of the fan beam profile from measured dose-rate waveforms. Measurements were performed on five different scanner systems while varying parameters such as collimation, kVp, and bow tie filters. On one system, direct measurements of the bow tie profile were collected for comparison with the real-time dosimeter technique. Results: The data analysis method for a finite-size detector was found to produce a fan beam profile estimate with a relative error between duplicate measurement intensities of <5%. It was robust over a wide range of collimation widths (e.g., 1–40 mm), producing fan beam profiles that agreed with a relative error of 1%–5%. Comparison with a direct measurement technique on

  18. A HG-IFE-PIC model for ion thruster plume interactions

    OpenAIRE

    Wang, J.; Kafafy, R.

    2005-01-01

    This paper presents a new algorithm, the hybrid-grid immersed-finite-element particle-in-cell, for modeling electric propulsion plume spacecraft interactions. This algorithm is designed to handle the complex boundary condition of a real spacecraft accurately while maintaining the computational speed of a standard PIC code. Simulations are performed to study multiple-ion thruster plume spacecraft interactions.

  19. Testing of an Arcjet Thruster with Capability of Direct-Drive Operation

    Science.gov (United States)

    Martin, Adam K.; Polzin, Kurt A.; Eskridge, Richard H.; Smith, James W.; Schoenfeld, Michael P.; Riley, Daniel P.

    2015-01-01

    Electric thrusters typically require a power processing unit (PPU) to convert the spacecraft provided power to the voltage-current that a thruster needs for operation. Testing has been initiated to study whether an arcjet thruster can be operated directly with the power produced by solar arrays without any additional conversion. Elimination of the PPU significantly reduces system-level complexity of the propulsion system, and lowers developmental cost and risk. The work aims to identify and address technical questions related to power conditioning and noise suppression in the system and heating of the thruster in long-duration operation. The apparatus under investigation has a target power level from 400-1,000 W. However, the proposed direct-drive arcjet is potentially a highly scalable concept, applicable to solar-electric spacecraft with up to 100's of kW and beyond. A direct-drive electric propulsion system would be comprised of a thruster that operates with the power supplied directly from the power source (typically solar arrays) with no further power conditioning needed between those two components. Arcjet thrusters are electric propulsion devices, with the power supplied as a high current at low voltage; of all the different types of electric thruster, they are best suited for direct drive from solar arrays. One advantage of an arcjet over Hall or gridded ion thrusters is that for comparable power the arcjet is a much smaller device and can provide more thrust and orders of magnitude higher thrust density (approximately 1-10 N/sq m), albeit at lower I(sub sp) (approximately 800-1000 s). In addition, arcjets are capable of operating on a wide range of propellant options, having been demonstrated on H2, ammonia, N2, Ar, Kr, Xe, while present SOA Hall and ion thrusters are primarily limited to Xe propellant. Direct-drive is often discussed in terms of Hall thrusters, but they require 250-300 V for operation, which is difficult even with high-voltage solar

  20. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  1. A modular assembly method of a feed and thruster system for Cubesats

    NARCIS (Netherlands)

    Louwerse, Marcus; Jansen, Henri; Elwenspoek, Miko

    2010-01-01

    A modular assembly method for devices based on micro system technology is presented. The assembly method forms the foundation for a miniaturized feed and thruster system as part of a micro propulsion unit working as a simple blow-down system of a rocket engine. The micro rocket is designed to be use

  2. Velocity-free fault-tolerant control allocation for flexible spacecraft with redundant thrusters

    Science.gov (United States)

    Hu, Qinglei; Li, Bo; Wang, Danwei; Poh, Eng Kee

    2015-04-01

    This paper proposes a novel velocity-free nonlinear proportional-integral (PI) control allocation scheme for fault-tolerant attitude control of flexible spacecraft under thruster redundancy. More specifically, the nonlinear PI controller for attitude stabilisation without using body angular velocity measurements is first designed as a virtual control of the control allocator to produce the three-axis moments, and can ultimately guarantee uniform boundedness of the closed-loop system in the presence of external disturbances and possible faults. The associated stability proof is constructive and accomplished by the development of passivity filter formulations together with the choice of a Lyapunov function containing mixed terms involving the various states. Then, a robust least-squares-based control allocation is employed to deal with the problem of distributing the three-axis moments over the available thrusters under redundancy, in which the focus of this control allocation is to find the optimal control vector of the actuator by minimising the worst-case residual, under the condition of thruster faults and control constraints like saturation. Simulation results using the orbiting flexible spacecraft model show good performance under external disturbances and even in different thruster fault scenarios, which validates the effectiveness and feasibility of the proposed scheme.

  3. Power Dependence of the Electron Mobility Profile in a Hall Thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofery, Richard H.; Mikellides, Ioannis G.

    2014-01-01

    The electron mobility profile is estimated in a 4.5 kW commercial Hall thruster as a function of discharge power. Internal measurements of plasma potential and electron temperature are made in the thruster channel with a high-speed translating probe. These measurements are presented for a range of throttling conditions from 150 - 400 V and 0.6 - 4.5 kW. The fluid-based solver, Hall2De, is used in conjunction with these internal plasma parameters to estimate the anomalous collision frequency profile at fixed voltage, 300 V, and three power levels. It is found that the anomalous collision frequency profile does not change significantly upstream of the location of the magnetic field peak but that the extent and magnitude of the anomalous collision frequency downstream of the magnetic peak does change with thruster power. These results are discussed in the context of developing phenomenological models for how the collision frequency profile depends on thruster operating conditions.

  4. Underwater retrofit of azimuthing thrusters%方位推进器的水下安装

    Institute of Scientific and Technical Information of China (English)

    王俊辉

    2004-01-01

    The semi-submersible crane vessel Thialf owned by Heerema Marine Contractors recently required more powerful azimuthing thrusters to keep on station in more adverse sea conditions. The retrofit set an interesting challenge as the work had to be completed underwater with the vessel afloat.

  5. MIMO adaptive control of thruster-firing-induced vibration of satellites using multifunctional platforms

    Science.gov (United States)

    Ma, Kougen; Ghasemi-Nejhad, Mehrdad N.

    2005-05-01

    This paper presents the concept, control strategy, and simulations of suppressing the thruster-firing-induced vibration of satellites. First, a satellite vibration reduction concept of utilizing the UHM multifunctional platform is discussed, and the structural configurations of the platform as well as the combination of the platform and a satellite are described. A satellite-like frame with the platform is analyzed, and the predominant modes of the frame are determined. A MIMO adaptive control scheme is then developed to suppress the frame vibration, and a convergence factor vector concept is introduced to ease the multi-channel convergence rate control. This controller is adjusted based on the vibration information of the frame and drives the platform to isolate the vibration transmission from the firing thruster to the satellite structure. The entire system has ten actuators: four piezoelectric stack actuators and six piezoelectric patch actuators. Eleven vibration components of the frame and platform are controlled. Nine components are in the frame for the satellite vibration suppression, and two are in the top-device plate of the platform for the thruster vibration suppression. Finally, simulations are performed to suppress the vibration of the frame for three platform positions to simulate the misalignment correction of the satellite thrust vector. The results demonstrate that the entire frame vibration at its dominant frequency decreases to 7-10% of its uncontrolled value in the three platform positions, and the thruster vibration decreases to 7.5% of its uncontrolled value.

  6. Optical Characterization of Component Wear and Near-Field Plasma of the Hermes Thruster

    Science.gov (United States)

    Williams, George J., Jr.; Kamhawi, Hani

    2015-01-01

    Optical emission spectral (OES) data are presented which correlate trends in sputtered species and the near-field plasma with the Hall-Effect Rocket with Magnetic Shielding (HERMeS) thruster operating condition. The relative density of singly-ionized xenon (Xe II) is estimated using a collisional-radiative model. OES data were collected at three radial and several axial locations downstream of the thruster's exit plane. These data were deconvolved to show the structure for the near-field plasma as a function of thruster operating condition. The magnetic field is shown to have a much greater affect on plasma structure than the discharge voltage with the primary ionization/acceleration zone boundary being similar for all nominal operating voltages at constant power. OES measurement of sputtered boron shows that the HERMeS thruster is magnetically shielded across its operating envelope. Preliminary assessment of carbon sputtered from the keeper face suggest it increases significantly with operating voltage, but the uncertainty associated with these measurements is very high.

  7. Propellant Grade Hydrazine in Mono/Bi-propellant Thrusters: Preparation and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    S. Krishnamachary

    2015-03-01

    Full Text Available Propellant grade hydrazine was prepared with 64 per cent yield and 95.5 per cent purity. Purity of the propellant grade hydrazine was determined using wet chemical, gas chromatographic (GC and eudiometric methods. It was observed that the compositions containing blends of hydrazine-methyl alcohol-ammonium nitrate and hydrazine-methyl alcohol-ammonium perchlorate were not found to be frozen even after cooling to -65 °C for 30 minutes. Mono and bi-propellant thrusters were designed and developed to demonstrate the performance of prepared propellant grade hydrazine as a promising rocket fuel. Five static tests with 22 N thruster and one static test with 1 N thruster were performed successfully in mono-propellant mode. The hurdles of chamber pressure oscillations were overcome by compact packing of the catalyst. The desired decomposition and chamber pressure were achieved. One static test was performed successfully with 60 N bi-propellant thruster. The desired chamber pressure and thrust were achieved. The combustion was smooth and C* achieved was higher than that of UH-25, N2O4 combination. The performance of prepared propellant grade hydrazine shows it as a promising rocket fuels.Defence Science Journal, Vol. 65, No. 1, January 2015, pp.31-38, DOI:http://dx.doi.org/10.14429/dsj.65.7986

  8. Production of a High-Mach-Number Plasma Flow for an Advanced Plasma Space Thruster

    Institute of Scientific and Technical Information of China (English)

    M.Inutake; K. Yoshino; S. Fujimura; H. Tobari; T. Yagai; Y. Hosokawa; R. Sato; K. Hattori; A. Ando

    2004-01-01

    A higher specific impulse and a larger thrust are required for a manned interplanetary space thruster. Prior to a realization of a fusion-plasma thruster, a magneto-plasma-dynamic arcjet (MPDA) powered by a fission reactor is one of the promising candidates for a manned Mars space thruster. The MPDA plasma is accelerated axially by a self-induced j × B force. Thrust performance of the MPDA is expected to increase by applying a magnetic nozzle instead of a solid nozzle. In order to get a much higher thruster performance, two methods have been investigated in the HITOP device, Tohoku University. One is to use a magnetic Laval nozzle in the vicinity of the MPDA muzzle for converting the high ion thermal energy to the axial flow energy. The other is to heat ions by use of an ICRF antenna in the divergent magnetic nozzle. It is found that by use of a small-sized Laval-type magnetic nozzle, the subsonic flow near the muzzle is converted to be supersonic through the magnetic Laval nozzle. A fast-flowing plasma is successfully heated by use of an ICRF antenna in the magnetic beach configuration.

  9. STG-CT: High-vacuum plume test facility for chemical thrusters

    OpenAIRE

    Grabe, Martin

    2016-01-01

    The STG-CT, operated by the DLR Institute for Aerodynamics and Flow Technology in Göttingen, is a vacuum facility specically designed to provide and maintain a space-like vacuum environment for researching plume flow and plume impingement from satellite reaction control thrusters. Its unique liquid-helium driven cryopump of 30m2 allows maintaining a background pressure

  10. Effect of multiply charged ions on the performance and beam characteristics in annular and cylindrical type Hall thruster plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Holak; Lim, Youbong; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Seon, Jongho [Department of Space Science and Astronomy, Kyung Hee University, 1732 Deokyoungdaero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2014-10-06

    Plasma plume and thruster performance characteristics associated with multiply charged ions in a cylindrical type Hall thruster (CHT) and an annular type Hall thruster are compared under identical conditions such as channel diameter, channel depth, propellant mass flow rate. A high propellant utilization in a CHT is caused by a high ionization rate, which brings about large multiply charged ions. Ion currents and utilizations are much different due to the presence of multiply charged ions. A high multiply charged ion fraction and a high ionization rate in the CHT result in a higher specific impulse, thrust, and discharge current.

  11. Effects of magnetic field strength in the discharge channel on the performance of a multi-cusped field thruster

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2016-09-01

    Full Text Available The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field strength in the discharge channel were investigated. Four thrusters with different outer diameters of the magnet rings were designed to change the magnetic field strength in the discharge channel. It is found that increasing the magnetic field strength could restrain the radial cross-field electron current and decrease the radial width of main ionization region, which gives rise to the reduction of propellant utilization and thruster performance. The test results in different anode voltage conditions indicate that both the thrust and anode efficiency are higher for the weaker magnetic field in the discharge channel.

  12. Enhancing Micro-Cathode Arc Thruster (muCAT) Plasma Generation to Analyze Magnetic Field Angle Effects on Sheath Formation in Hall Thrusters

    Science.gov (United States)

    Lukas, Joseph Nicholas

    Using a Delta IV or Atlas V launch vehicle to send a payload into Low Earth Orbit can cost between 13,000 and 14,000 per kilogram. With payloads that utilize a propulsion system, maximizing the efficiency of that propulsion system would not only be financially beneficial, but could also increase the range of possible missions and allow for a longer mission lifetime. This dissertation looks into efficiency increases in the Micro-Cathode Arc Thruster (muCAT) and Hall Thruster. The muCAT is an electric propulsion device that ablates solid cathode material, through an electrical arc discharge, to create plasma and ultimately produce thrust. About 90% of the arc discharge current is conducted by electrons, which go toward heating the anode and contribute very little to thrust, with only the remaining 10% going toward thrust in the form of ion current. I will discuss the results of an experiment in which electron heating on a low melting point anode was shown to increase ion current, which theoretically should increase thrust levels at low frequencies. Another feature of the muCAT is the use of an external magnetic solenoid which increases thrust, ion current, and causes uniform cathode erosion. An experiment has shown that efficiency can also be increased by removing the external magnetic field power supply and, instead, utilizing the residual arc current to power the magnetic solenoid. A Hall Thruster is a type of electric propulsion device that accelerates ions across an electric potential between an anode and magnetically trapped electrons. The limiting factor in Hall Thruster operation is the lifetime of the wall material. During operation, a positively charged layer forms over the surface of the walls, known as a plasma sheath, which contributes to wall erosion. Therefore, by reducing or eliminating the sheath layer, Hall Thruster operational lifetime can increase. Computational modeling has shown that large magnetic field angles and large perpendicular electric

  13. ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control

    Science.gov (United States)

    Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg

    2008-01-01

    In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.

  14. Expanding the Capabilities of the Pulsed Plasma Thruster for In-Space and Atmospheric Operation

    Science.gov (United States)

    Johnson, Ian Kronheim

    Of all in-space propulsion systems to date, the Pulsed Plasma Thruster (PPT) is unique in its simplicity and wide range of operational parameters. This study examined multiple uses of the thruster for in-space and atmospheric propulsion, as well as the creation of a CubeSat satellite and atmospheric airship as test beds for the thruster. The PPT was tested as a solid-propellant feed source for the High Power Helicon Thruster, a compact plasma source capable of generating order of magnitude higher plasma densities than comparable power level systems. Replacing the gaseous feed system reduced the thruster size and complexity, as well as allowing for extremely discrete discharges, minimizing the influence of wall effects. Teflon (C2F4) has been the traditional propellant for PPTs due to a high exhaust velocity and ability to ablate without surface modification over long durations. A number of alternative propellants, including minerals and metallics commonly found on asteroids, were tested for use with the PPT. Compounds with significant fractions of sulfur showed the highest performance increase, with specific thrusts double that of Teflon. A PPT with sulfur propellant designed for CubeSat operation, as well as the subsystems necessary for autonomous operation, was built and tested in the laboratory. The PPT was modified for use at atmospheric pressures where the impulse was well defined as a function of the discharge chamber volume, capacitor energy, and background pressure. To demonstrate that the air-breathing PPT was a viable concept the device was launched on two atmospheric balloon flights.

  15. Effect of bow-type initial imperfection on the buckling load and mass of graphite-epoxy blade-stiffened panels

    Science.gov (United States)

    Stroud, W. J.; Anderson, M. S.; Hennessy, K. W.

    1977-01-01

    A structural synthesis computer code which accounts for first order effects of an initial bow and which can be used for sizing stiffened composite panels having an arbitrary cross section is used to study graphite blade-stiffened panels. The effect of a small initial bow on both the load carrying ability of panels and on the mass of panels designed to carry a specified load is examined. Large reductions in the buckling load caused by a small initial bow emphasize the need for considering a bow when a panel is designed.

  16. Predicting Hall Thruster Operational Lifetime Using a Kinetic Plasma Model and a Molecular Dynamics Simulation Method Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hall thrusters are being considered for many space missions because their high specific impulse delivers a larger payload mass fraction than chemical rockets. With...

  17. The effect of easily ionized elements Na and K on the performance of pulsed plasma thruster using water propellant

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In view of the low thrust power ratio caused by the high resistance of pulsed plasma thruster using water propellant,the paper argues that the easily ionized elements Na and K with low ionic potentials are added in the water propellant to improve its performance. The measurement of the discharging current and plasma emission spectrographic analysis prove the improvement. The experiments show that the elements Na and K have certain effect on the improvement of the performance of pulsed plasma thruster: In comparison with water propellant,the NaCl and KCl water propellant has a lower total resistance and a higher ratio of thruster power and specific impulse,and the NaCl water propellant has a slightly stronger effect on pulsed plasma thruster than the KCl. The plasma emission spectrographic analysis is in consistent with the experiment of measuring the discharging current: The elements Na and K can intensify the plasma emission spectrographic signal.

  18. Macroscopic polarization and bowing constant of Al{sub x}Ga{sub 1−x}N

    Energy Technology Data Exchange (ETDEWEB)

    Pansari, A.; Gedam, V.; Sahoo, B.K., E-mail: bksahoo.phy@nitrr.ac.in

    2015-01-01

    In this work, we have theoretically investigated the effect of macroscopic polarization (sum of spontaneous and piezoelectric polarization) on various thermal parameters of Al{sub x}Ga{sub 1−x}N alloy. The macroscopic polarization contributes to the effective elastic constant of Al{sub x}Ga{sub 1−x}N alloy. This contribution modifies the phonon group velocity, Debye temperature and Debye frequency of the alloy. The revised values of these thermal parameters have been estimated as a function of Al composition. Our calculation shows that these thermal parameters are enhanced and vary non-linearly with Al composition i.e., they show bowing. The cause of this bowing is the non linear dependence of spontaneous and piezoelectric polarization on Al composition. The bowing constant of above thermal parameters (with and without polarization) has been theoretically predicted by method of best fit. The results show that polarization mechanism not only enhances the parameters but also contribute significantly to bowing constant. The macroscopic polarization contributes around 48% to bowing constant of above thermal parameters. The obtained result will be useful for simulation of nitride optoelectronics devices to predict the effect of polarization mechanism on thermoelectric properties of Al{sub x}Ga{sub 1−x}N alloy.

  19. Effect of an isotropic outflow from the Galactic centre on the bow-shock evolution along the orbit

    CERN Document Server

    Zajacek, Michal; Karas, Vladimir; Kunneriath, Devaky; Shahzamanian, Banafsheh; Sabha, Nadeen; Muzic, Koraljka; Valencia-Schneider, Monica

    2015-01-01

    Motivated by the observations of several infrared-excess bow-shock sources and proplyd-like objects near the Galactic centre, we analyse the effect of a potential outflow from the centre on bow shock properties. We show that due to the non-negligible isotropic central outflow the bow-shock evolution along the orbit becomes asymmetric between the pre-peribothron and post-peribothron phases. This is demonstrated by the calculation of the bow-shock size evolution, the velocity along the shocked layer, the surface density of the bow-shock, and by emission-measure maps close to the peribothron passage. Within the ambient velocity range of $\\lesssim 2000\\,{\\rm km\\, s^{-1}}$ the asymmetry is profound and the changes are considerable for different outflow velocities. As a case study we perform model calculations for the Dusty S-cluster Object (DSO/G2) as a potential young stellar object that is currently being monitored and has passed the pericentre at $\\sim 2000$ Schwarzschild radii from the supermassive black hole ...

  20. Statistical analysis of diffuse ion events upstream of the Earth's bow shock

    Science.gov (United States)

    Trattner, K. J.; Mobius, E.; Scholer, M.; Klecker, B.; Hilchenbach, M.; Luehr, H.

    1994-01-01

    A statistical study of diffuse energetic ion events and their related waves upstream of the Earth's bow shock was performed using data from the Active Magnetospheric Particle Tracer Explorers/Ion Release Module (AMPTE/IRM) satellite over two 5-month periods in 1984 and 1985. The data set was used to test the assumption in the self-consistent model of the upstream wave and particle populations by Lee (1982) that the particle acceleration through hydromagnetic waves and the wave generation are directly coupled. The comparison between the observed wave power and the wave power predicted on the observed energetic particle energy density and solar wind parameters results in a high correlation coefficient of about 0.89. The intensity of diffuse ions falls off approximately exponentially with the distance upstream from the bow shock parallel to the magnetic field with e-folding distances which vary from approximately 3.3 R(sub E) to approximately 11.7 R(sub E) over the energy range from 10 keV/e to 67.3 keV/e for both protons and alpha particles. After normalizing the upstream particle densities to zero bow shock distance by using these exponential variations, a good correlation (0.7) of the density of the diffuse ions with the solar wind density was found. This supports the suggestion that the solar wind is the source of the diffuse ions. Furthermore, the spectral slope of the diffuse ions correlates well with the solar wind velocity component in the direction of the interplanetary magnetic field (0.68 and 0.66 for protons and alpha particles) which concurs with the notion that the solar wind plays an important role in the acceleration of the upstream particles.

  1. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor [Research Centre for Astronomy and Earth Sciences, Geodetic and Geophysical Institute, Sopron (Hungary); Agapitov, Oleksiy; Krasnoselskikh, Vladimir [LPC2E/CNRS, F-45071 Orleans (France); Khotyaintsev, Yuri V. [Swedish Institute of Space Physics, SE- 751 21 Uppsala (Sweden); Dandouras, Iannis, E-mail: akis@ggki.hu, E-mail: Kis.Arpad@csfk.mta.hu [CESR, F-31028 Toulouse (France)

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  2. Study of the Combination of FTA, ETA and Bow-tie Evaluation Methods and Its Application%基于FTA、ETA、Bow-tie三种评价方法的结合及其应用研究

    Institute of Scientific and Technical Information of China (English)

    李婷婷; 赵姚峰

    2013-01-01

    在FTA与ETA分析方法结合的基础上引入蝴蝶结分析法(Bow-tie法)能很好的克服FTA和ETA的局限性。本文将ETA、FTA及Bow-tie法进行结合并将其应用到燃气管道泄漏的安全评价及分析中。%Introducing Bow-tie analytical method into the combination of FTA and ETA can well overcome the limitation of FTA and ETA. This article combines ETA, FTA and Bon-tie method and apply it into the safety evaluation and analysis of gas pipeline leakage.

  3. Determination of main rational biomechanical characteristics in shooting from a bow

    OpenAIRE

    Adashevskiy V.M.; Iermakov S.S.; Shabashov V.A.

    2012-01-01

    The aim is to build rational parameters of technical actions of sportsman in shooting from a bow. It is worked out and decided mathematical model and the task of dynamics. Influence on having a special purpose exactness of corners of flight of arrow with an account and without the account of force of resistance of air environment is certain. It is distinguished the basic technical run-time errors of sportsman exercises. It is set that for successful realization of descriptions of target exact...

  4. Bi-Band Bow-Tie Antennas Array Design Using a Simple Equivalent Transmission Line Model

    Directory of Open Access Journals (Sweden)

    M. Abri

    2012-08-01

    Full Text Available In this paper we propose a simple equivalent and accurate transmission line model for bi-band bow-tie antennas array design over a band of frequencies for satellite communications. This model uses the resistance of a square element that appears at the edges of the antenna (radiating slots. To test this model, two antennas array were simulated and results were compared with those obtained by a rigorous method (moment’s method of the simulator ADS/Momentum. Using this transmission line approach the resonant frequency, return loss, VSWR, reflected phase, input impedance can be determined simultaneously. The results confirm the validity of the proposed model.

  5. Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna.

    Science.gov (United States)

    Li, Ling; Fang Lim, Shuang; Puretzky, Alexander A; Riehn, Robert; Hallen, H D

    2012-09-10

    An aluminum bow-tie nano-antenna is combined with the resonance Raman effect in the deep ultraviolet to dramatically increase the sensitivity of Raman spectra to a small volume of material, such as benzene used here. We further demonstrate gradient-field Raman peaks for several strong infrared modes. We achieve a gain of [Formula: see text] in signal intensity from the near field enhancement due to the surface plasmon resonance in the aluminum nanostructure. The on-line resonance enhancement contributes another factor of several thousands, limited by the laser line width. Thus, an overall gain of hundreds of million is achieved. PMID:23066168

  6. Bi-Band Bow-Tie Antennas Array Design Using a Simple Equivalent Transmission Line Model

    OpenAIRE

    Abri, M.; H. Abri Badaoui; Dib, H; A.S.E. Gharnaout

    2012-01-01

    In this paper we propose a simple equivalent and accurate transmission line model for bi-band bow-tie antennas array design over a band of frequencies for satellite communications. This model uses the resistance of a square element that appears at the edges of the antenna (radiating slots). To test this model, two antennas array were simulated and results were compared with those obtained by a rigorous method (moment’s method) of the simulator ADS/Momentum. Using this transmission line appro...

  7. Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna

    OpenAIRE

    Li, Ling; Fang Lim, Shuang; Puretzky, Alexander A.; Riehn, Robert; Hallen, H. D.

    2012-01-01

    An aluminum bow-tie nano-antenna is combined with the resonance Raman effect in the deep ultraviolet to dramatically increase the sensitivity of Raman spectra to a small volume of material, such as benzene used here. We further demonstrate gradient-field Raman peaks for several strong infrared modes. We achieve a gain of ∼105 in signal intensity from the near field enhancement due to the surface plasmon resonance in the aluminum nanostructure. The on-line resonance enhancement contributes ano...

  8. Liquid Crystal Bow-Tie Microstrip antenna for Wireless Communication Applications

    Directory of Open Access Journals (Sweden)

    B.T.P.Madhav

    2014-06-01

    Full Text Available In this paper we presented the design and analysis of Bow-Tie antenna on liquid crystal substrate, which is suitable for the Bluetooth/WLAN-2.4/WiBree/ZigBee applications. The Omni-directional radiation patterns along with moderate gain make the proposed antenna suitable for above mentioned applications. Details of the antenna design and simulated results Return loss, Input impedance, Radiation Patterns, E-Field, H-Field and Current Distributions, VSWR are presented and discussed. The proposed antenna is simulated at 2.4 GHz using Ansoft HFSS-11.

  9. Liquid Crystal Bow-Tie Microstrip antenna for Wireless Communication Applications

    OpenAIRE

    B.T.P.Madhav; VGKM Pisipati; Habibulla Khan; V.G.N.S Prasad; K. Praveen Kumar; KVL Bhavani; M. Ravi Kumar

    2014-01-01

    In this paper we presented the design and analysis of Bow-Tie antenna on liquid crystal substrate, which is suitable for the Bluetooth/WLAN-2.4/WiBree/ZigBee applications. The Omni-directional radiation patterns along with moderate gain make the proposed antenna suitable for above mentioned applications. Details of the antenna design and simulated results Return loss, Input impedance, Radiation Patterns, E-Field, H-Field and Current Distributions, VSWR are presented and discussed. The propose...

  10. Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy

    OpenAIRE

    Farahani, Javad N.; Eisler, Hans-Jürgen; Pohl, Dieter W; Pavius, Michaël; Flückiger, Philippe; Gasser, Philippe; Hecht, Bert

    2007-01-01

    A method for the fabrication of bow-tie optical antennas at the apex of pyramidal Si3N4 atomic force microscopy tips is described. We demonstrate that these novel optical probes are capable of sub-wavelength imaging of single quantum dots at room temperature. The enhanced and confined optical near-field at the antenna feed gap leads to locally enhanced photoluminescence (PL) of single quantum dots. Photoluminescence quenching due to the proximity of metal is found to be insignificant. The met...

  11. Millimeter-wave near-field imaging with bow-tie antennas.

    Science.gov (United States)

    Omarouayache, Rachid; Payet, Pierre; Raoult, Jérémy; Chusseau, Laurent

    2015-05-01

    A near-field reflectometry experiment operating at 60 GHz is built in view of material and circuit inspection. Experiments are always obtained in constant height mode of operation. The bow-tie near-field probe acts mostly as a linearly-polarized electric dipole and allows strongly subwavelength resolution of ≈ λ/130. Its interaction with sample is shown polarization dependent and sensitive to both the local topography and the local dielectric constant or metal conductivity. Resonant and non-resonant probes are both evaluated. PMID:25969302

  12. Printed Modified Bow-Tie Dipole Antenna for DVB/WLAN Applications

    Directory of Open Access Journals (Sweden)

    Ching-Chih Hung

    2013-01-01

    Full Text Available A printed modified bow-tie dipole antenna which consists of asymmetric-feed and inserted slots is presented to apply to the DVB and WLAN systems. This antenna combines omnidirectional radiation pattern, broad bandwidth, and band rejection in an easy way to fabricate. Experimental results of the constructed prototype indicate that the VSWR 2.5 : 1 bandwidths achieve 166.7%, 28.57%, and 23.63% at 660 MHz, 2450 MHz, and 5500 MHz, respectively.

  13. Printed Modified Bow-Tie Dipole Antenna for DVB/WLAN Applications

    OpenAIRE

    Ching-Chih Hung; Chia-Mei Peng; I-Fong Chen

    2013-01-01

    A printed modified bow-tie dipole antenna which consists of asymmetric-feed and inserted slots is presented to apply to the DVB and WLAN systems. This antenna combines omnidirectional radiation pattern, broad bandwidth, and band rejection in an easy way to fabricate. Experimental results of the constructed prototype indicate that the VSWR 2.5 : 1 bandwidths achieve 166.7%, 28.57%, and 23.63% at 660 MHz, 2450 MHz, and 5500 MHz, respectively.

  14. Beam-Steerable Microstrip-Fed Bow-Tie Antenna Array for Fifth Generation Cellular Communications

    OpenAIRE

    Ojaroudiparchin, Naser; Shen, Ming; Gert F. Pedersen

    2016-01-01

    The design and performance of mm-wave phased array antenna for 5G mobile broadband communication systems has been provided in this manuscript. The antenna is designed on a N9000 PTFE substrate with 0.787 mm thickness and 2.2 dielectric constant and 65×130 mm2 overall dimension. Eight elements of bow-tie antennas have been used at the top-edge region of mobile phone PCB. The antenna elements fed by microstrip lines are designed to operate at 17 GHz. The simulated results give good performances...

  15. Analytic MHD Theory for Earth's Bow Shock at Low Mach Numbers

    Science.gov (United States)

    Grabbe, Crockett L.; Cairns, Iver H.

    1995-01-01

    A previous MHD theory for the density jump at the Earth's bow shock, which assumed the Alfven M(A) and sonic M(s) Mach numbers are both much greater than 1, is reanalyzed and generalized. It is shown that the MHD jump equation can be analytically solved much more directly using perturbation theory, with the ordering determined by M(A) and M(s), and that the first-order perturbation solution is identical to the solution found in the earlier theory. The second-order perturbation solution is calculated, whereas the earlier approach cannot be used to obtain it. The second-order terms generally are important over most of the range of M(A) and M(s) in the solar wind when the angle theta between the normal to the bow shock and magnetic field is not close to 0 deg or 180 deg (the solutions are symmetric about 90 deg). This new perturbation solution is generally accurate under most solar wind conditions at 1 AU, with the exception of low Mach numbers when theta is close to 90 deg. In this exceptional case the new solution does not improve on the first-order solutions obtained earlier, and the predicted density ratio can vary by 10-20% from the exact numerical MHD solutions. For theta approx. = 90 deg another perturbation solution is derived that predicts the density ratio much more accurately. This second solution is typically accurate for quasi-perpendicular conditions. Taken together, these two analytical solutions are generally accurate for the Earth's bow shock, except in the rare circumstance that M(A) is less than or = 2. MHD and gasdynamic simulations have produced empirical models in which the shock's standoff distance a(s) is linearly related to the density jump ratio X at the subsolar point. Using an empirical relationship between a(s) and X obtained from MHD simulations, a(s) values predicted using the MHD solutions for X are compared with the predictions of phenomenological models commonly used for modeling observational data, and with the predictions of a

  16. A benchmark study of procedures for analysis of axial crushing of bulbous bows

    OpenAIRE

    Yamada, Yasuhira; Pedersen, Preben Terndrup

    2008-01-01

    Simplified methods to estimate mean axial crushing forces of plated structures are reviewed and applied to a series of experimental results for axial crushing of large-scale bulbous bow models. Methods based on intersection unit elements such as L-, T- and X-type elements as well as methods based on plate unit elements are employed in the analyses. The crushing forces and the total absorbed energy obtained by the simplified analyses are compared with those obtained from large-scale bulbous bo...

  17. Bowing effect in elastic constants of dilute Ga(As,N) alloys

    Science.gov (United States)

    Berggren, Jonas; Hanke, Michael; Trampert, Achim

    2016-05-01

    We study the elastic properties of dilute Ga(As,N) thin films grown on GaAs(001) by means of nano-indentation and complementary dynamic finite element calculations. The experimental results of indentation modulus are compared with simulations in order to extract the cubic elastic constants cij as a function of nitrogen content of the Ga(As,N) alloys. Both, indentation modulus and elastic constants decrease with increasing nitrogen content, which proves a strong negative bowing effect in this system in contrast to Vegard's law.

  18. Free-hanging bow measurements of LWBR fuel rods (LWBR Development Program)

    International Nuclear Information System (INIS)

    Special inspection equipment was developed to ensure that the fuel rods for the Light Water Breeder Reactor met the required straightness criteria. The fuel rods were hung in a vertical position and the free-hanging shape was measured. These data were then used analytically to predict both the forces required to constrain the rods in a grid array and the resultant restrained shape. The development of a computerized system which was used for measuring the free-hanging bow of fuel rods used in the LWBR core is described in this paper

  19. Asymptotic Steady State Solution to a Bow Shock with an Infinite Mach Number

    CERN Document Server

    Yalinewich, Almog

    2015-01-01

    The problem of a cold gas flowing past a stationary object is considered. It is shown that at large distances from the obstacle the shock front forms a parabolic solid of revolution. The interior of the shock front is obtained by solution of the hydrodynamic equations in parabolic coordinates. The results are verified with a hydrodynamic simulation. The drag force and expected spectra are calculated for such shock, both in case of an optically thin and thick media. Finally, relations to astrophysical bow shocks and other analytic works on oblique shocks are discussed.

  20. Broadband millimeter-wave GaAs transmitters and receivers using planar bow-tie antennas

    Science.gov (United States)

    Konishi, Y.; Kamegawa, M.; Case, M.; Yu, R.; Rodwell, M. J. W.; York, R. A.; Rutledge, D. B.

    1992-01-01

    We report broadband monolithic transmitters and receivers IC's for mm-wave electromagnetic measurements. The IC's use nonlinear transmission lines (NLTL) and sampling circuits as picosecond pulse generators and detectors. The pulses are radiated and received by planar monolithic bow-tie antennas, collimated with silicon substrate lenses and off-axis parabolic reflectors. Through Fourier transformation of the received pulse, 30-250 GHz free space gain-frequency measurements are demonstrated with an accuracy approximately = 0.17 dB, RMS.

  1. Mapping the Structure of Directed Networks: Beyond the "Bow-tie" Diagram

    CERN Document Server

    Timár, G; Dorogovtsev, S N; Mendes, J F F

    2016-01-01

    We reveal a hierarchical organization of finite directed components---tendrils---around the giant components represented by the celebrated "bow-tie" diagram for directed networks. We develop an efficient algorithm to find tendril layers. It is used together with the message passing technique, generalized to directed graphs, to find the structure and attack tolerance of complex networks, such as the World Wide Web, the neural network of Caenorhabditis elegans, and others. We introduce a generalized susceptibility characterizing the response of directed networks to damage.

  2. Finite-element procedure for calculating the three-dimensional inelastic bowing of fuel rods (AWBA development program)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S E

    1982-05-01

    An incremental finite element procedure is developed for calculating the in-pile lateral bowing of nuclear fuel rods. The fuel rod is modeled as a viscoelastic beam whose material properties are derived as perturbations of the results of an axisymmetric stress analysis of the fuel rod. The effects which are taken into account in calculating the rod's lateral bowing include: (a) lateral, axial, and rotational motions and forces at the rod supports, (b) transverse gradients of temperature, fast-neutron flux, and fissioning rate, and (c) cladding circumferential wall thickness variation. The procedure developed in this report could be used to form the basis for a computer program to calculate the time-dependent bowing as a function of the fuel rod's operational and environmental history.

  3. High-Temperature Processing of Solids Through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles

    CERN Document Server

    Boley, A C; Desch, S J

    2013-01-01

    A fundamental, unsolved problem in Solar System formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks has been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through 3D radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H$_2$ is also used. Solids are followed directly in the simulati...

  4. A new technique to characterize CT scanner bow-tie filter attenuation and applications in human cadaver dosimetry simulations

    International Nuclear Information System (INIS)

    Purpose: To present a noninvasive technique for directly measuring the CT bow-tie filter attenuation with a linear array x-ray detector. Methods: A scintillator based x-ray detector of 384 pixels, 307 mm active length, and fast data acquisition (model X-Scan 0.8c4-307, Detection Technology, FI-91100 Ii, Finland) was used to simultaneously detect radiation levels across a scan field-of-view. The sampling time was as short as 0.24 ms. To measure the body bow-tie attenuation on a GE Lightspeed Pro 16 CT scanner, the x-ray tube was parked at the 12 o’clock position, and the detector was centered in the scan field at the isocenter height. Two radiation exposures were made with and without the bow-tie in the beam path. Each readout signal was corrected for the detector background offset and signal-level related nonlinear gain, and the ratio of the two exposures gave the bow-tie attenuation. The results were used in the GEANT4 based simulations of the point doses measured using six thimble chambers placed in a human cadaver with abdomen/pelvis CT scans at 100 or 120 kV, helical pitch at 1.375, constant or variable tube current, and distinct x-ray tube starting angles. Results: Absolute attenuation was measured with the body bow-tie scanned at 80–140 kV. For 24 doses measured in six organs of the cadaver, the median or maximum difference between the simulation results and the measurements on the CT scanner was 8.9% or 25.9%, respectively. Conclusions: The described method allows fast and accurate bow-tie filter characterization

  5. A new technique to characterize CT scanner bow-tie filter attenuation and applications in human cadaver dosimetry simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinhua; Shi, Jim Q.; Zhang, Da; Singh, Sarabjeet; Padole, Atul; Otrakji, Alexi; Kalra, Mannudeep K.; Liu, Bob, E-mail: bliu7@mgh.harvard.edu [Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Xu, X. George [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Purpose: To present a noninvasive technique for directly measuring the CT bow-tie filter attenuation with a linear array x-ray detector. Methods: A scintillator based x-ray detector of 384 pixels, 307 mm active length, and fast data acquisition (model X-Scan 0.8c4-307, Detection Technology, FI-91100 Ii, Finland) was used to simultaneously detect radiation levels across a scan field-of-view. The sampling time was as short as 0.24 ms. To measure the body bow-tie attenuation on a GE Lightspeed Pro 16 CT scanner, the x-ray tube was parked at the 12 o’clock position, and the detector was centered in the scan field at the isocenter height. Two radiation exposures were made with and without the bow-tie in the beam path. Each readout signal was corrected for the detector background offset and signal-level related nonlinear gain, and the ratio of the two exposures gave the bow-tie attenuation. The results were used in the GEANT4 based simulations of the point doses measured using six thimble chambers placed in a human cadaver with abdomen/pelvis CT scans at 100 or 120 kV, helical pitch at 1.375, constant or variable tube current, and distinct x-ray tube starting angles. Results: Absolute attenuation was measured with the body bow-tie scanned at 80–140 kV. For 24 doses measured in six organs of the cadaver, the median or maximum difference between the simulation results and the measurements on the CT scanner was 8.9% or 25.9%, respectively. Conclusions: The described method allows fast and accurate bow-tie filter characterization.

  6. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; Mikellides, Ioannis; Sekerak, Michael; Polk, James

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  7. The effect of magnetic field near the anode on cylindrical Hall thruster

    Science.gov (United States)

    Gao, Yuanyuan; Liu, Hui; Hu, Peng; Huang, Hongyan; Yu, Daren

    2016-06-01

    The performance characteristics of a cylindrical Hall thruster depending on the magnetic field near the anode were investigated. The magnetic shielding rings were designed to adjust the magnetic field near the anode in different levels. The experiment results show that decreasing the magnetic field near the anode contributes to the enhancement of propellant utilization and the narrowing of ion energy distribution. It is suggested that the ionization region extends towards the anode, meanwhile, the angular distribution of ion beam is narrower, which could be attributed to the growing azimuthal current. As a result, the thrust and efficiency are enhanced significantly. This work can provide some optimal design ideas of the magnetic field to improve the performance of the thruster.

  8. A modular assembly method of a feed and thruster system for Cubesats

    International Nuclear Information System (INIS)

    A modular assembly method for devices based on micro system technology is presented. The assembly method forms the foundation for a miniaturized feed and thruster system as part of a micro propulsion unit working as a simple blow-down system of a rocket engine. The micro rocket is designed to be used for constellation maintenance of Cubesats, which measure 10 × 10 × 10 cm and have a mass less than 1 kg. The feed and thruster system contains an active valve, control electronics, a particle filter and an axisymmetric converging–diverging nozzle, all fabricated as separate modules. A novel method is used to integrate these modules by placing them on or in a glass tube package. The assembly method is shown to be a valid method but the valve module needs to be improved considerably

  9. Cassini Spacecraft In-Flight Swap to Backup Attitude Control Thrusters

    Science.gov (United States)

    Bates, David M.

    2010-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In order to meet the challenging attitude control and navigation requirements of the orbit profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel Assembly (RWA). In 2008, after 11 years of reliable service, several RCS thrusters began to show signs of end of life degradation, which led the operations team to successfully perform the swap to the backup RCS system, the details and challenges of which are described in this paper. With some modifications, it is hoped that similar techniques and design strategies could be used to benefit other spacecraft.

  10. Magnetic Shielding of the Acceleration Channel Walls in a Long-Life Hall Thruster

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.; de Grys, Kristi; Mathers, Alex

    2010-01-01

    In a Qualification Life Test (QLT) of the BPT-4000 Hall thruster that recently accumulated greater than 10,000 h it was found that the erosion of the acceleration channel practically stopped after approximately 5,600 h. Numerical simulations of this thruster using a 2-D axisymmetric, magnetic field-aligned-mesh (MFAM) plasma solver reveal that the process that led to this significant reduction of the erosion was multifaceted. It is found that when the channel receded from its early-in-life geometry to its steady-state configuration several changes in the near-wall plasma and sheath were induced by the magnetic field that, collectively, constituted an effective shielding of the walls from any significant ion bombardment. Because all such changes in the behavior of the ionized gas near the eroding surfaces were caused by the topology of the magnetic field there, we term this process "magnetic shielding."

  11. Iodine Hall Thruster Propellant Feed System for a CubeSat

    Science.gov (United States)

    Polzin, Kurt A.; Peeples, Steven

    2014-01-01

    The components required for an in-space iodine vapor-fed Hall effect thruster propellant management system are described. A laboratory apparatus was assembled and used to produce iodine vapor and control the flow through the application of heating to the propellant reservoir and through the adjustment of the opening in a proportional flow control valve. Changing of the reservoir temperature altered the flowrate on the timescale of minutes while adjustment of the proportional flow control valve changed the flowrate immediately without an overshoot or undershoot in flowrate with the requisite recovery time associated with thermal control systems. The flowrates tested spanned a range from 0-1.5 mg/s of iodine, which is sufficient to feed a 200-W Hall effect thruster.

  12. Effect of the Hollow Cathode Heat Power on the Performance of an Hall-Effect Thruster

    Institute of Scientific and Technical Information of China (English)

    NING Zhongxi; YU Daren; LI Hong; YAN Guojun

    2009-01-01

    Effect of the hollow cathode heat power on the performance of a Hall-effect thruster is investigated. The variations in the Hall-effect thruster's performance (thrust, specific impulse and anode efficiency) with the hollow cathode heat power was obtained from the analysis of the experimental data. Through an analysis on the coupling relationship between the electrons emitted from the hollow cathode and the environmental plasma, it was found that the heat power would affect the electron emission of the emitter and the space potential of the coupling zone, which would lead to a change in the effective discharge voltage. The experimental data agree well with the results of calculation which can be used to explain the experimental phenomena.

  13. Diagnosis and Fault-Tolerant Control for Thruster-Assisted Position Mooring System

    DEFF Research Database (Denmark)

    Nguyen, Trong Dong; Blanke, Mogens; Sørensen, Asgeir

    2007-01-01

    Development of fault-tolerant control systems is crucial to maintain safe operation of o®shore installations. The objective of this paper is to develop a fault- tolerant control for thruster-assisted position mooring (PM) system with faults occurring in the mooring lines. Faults in line's pretens......Development of fault-tolerant control systems is crucial to maintain safe operation of o®shore installations. The objective of this paper is to develop a fault- tolerant control for thruster-assisted position mooring (PM) system with faults occurring in the mooring lines. Faults in line......'s pretension or line breaks will degrade the performance of the positioning of the vessel. Faults will be detected and isolated through a fault diagnosis procedure. When faults are detected, they can be accommodated through the control action in which only parameter of the controlled plant has to be updated to...

  14. Experimental identification of an azimuthal current in a magnetic nozzle of a radiofrequency plasma thruster

    Science.gov (United States)

    Takahashi, Kazunori; Chiba, Aiki; Komuro, Atsushi; Ando, Akira

    2016-10-01

    The azimuthal plasma current in a magnetic nozzle of a radiofrequency plasma thruster is experimentally identified by measuring the plasma-induced magnetic field. The axial plasma momentum increases over about 20 cm downstream of the thruster exit due to the Lorentz force arising from the azimuthal current. The measured current shows that the azimuthal current is given by the sum of the electron diamagnetic drift and \\mathbf{E}× \\mathbf{B} drift currents, where the latter component decreases with an increase in the magnetic field strength; hence the azimuthal current approaches the electron diamagnetic drift one for the strong magnetic field. The Lorentz force calculated from the measured azimuthal plasma current and the radial magnetic field is smaller than the directly measured force exerted to the magnetic field, which indicates the existence of a non-negligible Lorentz force in the source tube.

  15. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    Science.gov (United States)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  16. Active control of the attitude motion and structural vibration of a flexible satellite by jet thrusters

    Science.gov (United States)

    Lee, Mokin

    A Lagrangian formulation is used to obtain the equations of motion of a flexible satellite in a tree-type geometry. The flexible satellite model is the geosynchronous INSAT-II type satellite with a flexible balance beam and a flexible solar panel attached to the rigid main body. In deriving the equations of motion, the orbital motion, the librational motion, and the structural motion of flexible bodies are involved. The assumed-modes method is used to express the deflections of the flexible structures in the form of a finite series of space-dependent admissible functions multiplied by time-dependent amplitudes. The kinetic energy, potential energy, strain energy, and virtual work of the flexible satellite are evaluated as functions of time in terms of the generalized coordinates. Then, by substituting them into Lagrange's equations for discrete systems, the governing equations of motion of the flexible satellite are obtained as a set of second-order nonlinear ordinary differential equations. The attitude motion and the structural motion of the flexible satellite are coupled motions with one another. Uncontrolled dynamics show that the librational and structural motions are oscillatory and undamped motions. The stability and performance of the flexible satellite needs to be improved by designing control systems. A control objective is proposed to improve the stability and performance for pointing accuracy maneuver by controlling the librational motions and flexible modes simultaneously. For the control objective, a control system is synthesized, using feedback linearization control, thrust determination, thrust management, and pulse-width pulse-frequency modulation. Feedback linearization for second-order nonlinear systems is used to obtain a stable feedback control system for the pointing-accuracy control. A stable feedback control system is obtained by adjusting the diagonal matrices of the linear second-order system. Jet thrusters are used as the primary

  17. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters

    Science.gov (United States)

    Reese, Bradley

    2015-01-01

    Arkansas Power Electronics International (APEI), Inc., is developing a high-efficiency, radiation-hardened 3.8-kW SiC power supply for the PPU of Hall effect thrusters. This project specifically targets the design of a PPU for the high-voltage Hall accelerator (HiVHAC) thruster, with target specifications of 80- to 160-V input, 200- to 700-V/5A output, efficiency greater than 96 percent, and peak power density in excess of 2.5 kW/kg. The PPU under development uses SiC junction field-effect transistor power switches, components that APEI, Inc., has irradiated under total ionizing dose conditions to greater than 3 MRad with little to no change in device performance.

  18. The spin-1/2 Ising model on the bow-tie lattice as an exactly soluble free-fermion model

    OpenAIRE

    Strecka, Jozef; Canova, Lucia

    2007-01-01

    The spin-1/2 Ising model on the bow-tie lattice is exactly solved by establishing a precise mapping relationship with its corresponding free-fermion eight-vertex model. Ground-state and finite-temperature phase diagrams are obtained for the anisotropic bow-tie lattice with three different exchange interactions along three different spatial directions.

  19. Elastic analysis of thermal gradient bowing in rod-type fuel elements subjected to axial thrust (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Newman, J.B.

    1968-01-01

    Thermal radient bowing of rod type fuel elements can be analyzed in terms of the deflections of a precurved beam. The fundamental aspects of an analysis of axially compressed multispan beams are given. Elasticity of supports in both axial and transverse directions is considered; the technique is applicable to problems in which the axial thrust depends on the transverse deflection as well as problems with prescribed axial thrust. The formulas presented constitute the theory for a computer program of broad applicability, not only in the analysis of fuel rod bowing, but also to almost any multispan beam, particularly when the effects of axial loads cannot be neglected. 17 references. (NSA 22: 22866)

  20. Recent H-alpha Results on Pulsar B2224+65's Bow-Shock Nebula, the "Guitar"

    Science.gov (United States)

    Dolch, Timothy; Chatterjee, Shami; Clemens, Dan P.; Cordes, James M.; Cashmen, Lauren R.; Taylor, Brian W.

    2016-09-01

    We used the 4 m Discovery Channel Telescope (DCT) at Lowell observatory in 2014 to observe the Guitar Nebula, an Hα bow-shock nebula around the high-velocity radio pulsar B2224+65. Since the nebula's discovery in 1992, the structure of the bow-shock has undergone significant dynamical changes. We have observed the limb structure, targeting the “body” and “neck” of the guitar. Comparing the DCT observations to 1995 observations with the Palomar 200-inch Hale telescope, we found changes in both spatial structure and surface brightness in the tip, head, and body of the nebula.

  1. Offset semi-parabolic nanoantenna made of a photonic crystal parabolic mirror and a plasmonic bow-tie antenna.

    Science.gov (United States)

    Hattori, Haroldo T

    2014-10-10

    In a parabolic mirror, light coming parallel to the antenna passes through its focal point. In this work, a waveguide feeds a semi-parabolic photonic crystal mirror and the emerging beam feeds a bow-tie antenna placed at the mirror's focal point-it is shown that the antenna system can not only feed a bow-tie antenna (producing a localized moderately high electric field) but also produces a directional radiation beam. The semi-parabolic mirror is also modified to reduce reflection back to the feeding waveguide. PMID:25322381

  2. Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications

    OpenAIRE

    Seung-Hyun Eom; Yunsik Seo; Sungjoon Lim

    2015-01-01

    In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antenn...

  3. Experimental validation of a method characterizing bow tie filters in CT scanners using a real-time dose probe

    OpenAIRE

    McKenney, Sarah E.; Nosratieh, Anita; Gelskey, Dale; Yang, Kai; Huang, Shin-ying; Chen, Lin; Boone, John M.

    2011-01-01

    Purpose: Beam-shaping or “bow tie” (BT) filters are used to spatially modulate the x-ray beam in a CT scanner, but the conventional method of step-and-shoot measurement to characterize a beam’s profile is tedious and time-consuming. The theory for characterization of bow tie relative attenuation (COBRA) method, which relies on a real-time dosimeter to address the issues of conventional measurement techniques, was previously demonstrated using computer simulations. In this study, the feasibili...

  4. Offset semi-parabolic nanoantenna made of a photonic crystal parabolic mirror and a plasmonic bow-tie antenna.

    Science.gov (United States)

    Hattori, Haroldo T

    2014-10-10

    In a parabolic mirror, light coming parallel to the antenna passes through its focal point. In this work, a waveguide feeds a semi-parabolic photonic crystal mirror and the emerging beam feeds a bow-tie antenna placed at the mirror's focal point-it is shown that the antenna system can not only feed a bow-tie antenna (producing a localized moderately high electric field) but also produces a directional radiation beam. The semi-parabolic mirror is also modified to reduce reflection back to the feeding waveguide.

  5. Status of the NEXT Ion Thruster Long-Duration Test After 10,100 hr and 207 kg Demonstrated

    Science.gov (United States)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art in ion propulsion to provide future NASA science missions with enhanced mission capabilities at a low total development cost. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated to validate and qualify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the mission-derived throughput requirement of 300 kg. This wear test is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of June 21, 2007, the thruster has accumulated 10,100 hr of operation at the thruster full-input-power of 6.9 kW with 3.52 A beam current and 1800 V beam power supply voltage. The thruster has processed 207 kg of xenon and demonstrated a total impulse of 8.5 106 N-s; the highest total impulse ever demonstrated by an ion thruster in the history of space propulsion. Thruster performance tests are conducted periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Overall ion thruster performance parameters including thrust, input power, specific impulse, and thruster efficiency have been nominal with little variation to date. Lifetime-limiting component erosion rates have been consistent with the NEXT service life assessment, which predicts the earliest failure sometime after 750 kg of xenon propellant throughput; well beyond the mission-derived lifetime requirement. The NEXT wear test data confirm that the erosion of the discharge keeper orifice, enlarging of nominal-current-density accelerator grid aperture cusps, and the decrease in cold grid-gap observed during the NSTAR Extended Life Test have been mitigated. This paper presents the status of the NEXT LDT to date.

  6. Absence of the bowing character in the common-anion II-VI ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tit, Nacir [Department of Physics, UAE University, P.O. Box 17551, Al-Ain (United Arab Emirates)], E-mail: ntit@uaeu.ac.ae; Obaidat, Ihab M. [Department of Physics, UAE University, P.O. Box 17551, Al-Ain (United Arab Emirates); Alawadhi, Hussain [Department of Applied Physics, University of Sharjah, P.O. Box 27272, Sharjah (United Arab Emirates)

    2009-07-29

    The absence of bandgap bowing in the common-anion II-VI semiconductor ternary alloys is investigated. As examples, we consider the Cd{sub 1-x}Zn{sub x}Te and Cd{sub 1-x}Zn{sub x}Se alloys. The sp{sup 3}s* tight-binding method with the inclusion of spin-orbit interactions is employed to calculate the alloy's band structure and its corresponding constituents' charge states (ionicities) as a function of composition. The variation is found to be nearly linear. The vanishingly small valence-band offset (VBO{approx_equal}0) in common-anion compounds would yield a linear scaling of bandgap energy with composition, especially as the conduction-band edge state being a singlet state with spherical symmetry. Furthermore, the two cation atoms (Cd and Zn) are found not to compete in changing their charge states as the composition is varied. The absence of such competition is believed to be the main reason for the absence of bowing. The theoretical results are compared to the available experimental data and found to be in good agreement.

  7. Ground-state magnetic phase diagram of bow-tie graphene nanoflakes in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Szałowski, Karol, E-mail: kszalowski@uni.lodz.pl, E-mail: kszalowski@wp.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, ul. Pomorska 149/153, 90-236 Łódź (Poland)

    2013-12-28

    The magnetic phase diagram of a ground state is studied theoretically for graphene nanoflakes of bow-tie shape and various sizes in external in-plane magnetic field. The tight-binding Hamiltonian supplemented with Hubbard term is used to model the electronic structure of the systems in question. The existence of the antiferromagnetic phase with magnetic moments localized at the sides of the bow-tie is found for low field and a field-induced spin-flip transition to ferromagnetic state is predicted to occur in charge-undoped structures. For small nanoflake doped with a single charge carrier, the low-field phase is ferrimagnetic and a metamagnetic transition to ferromagnetic ordering can be forced by the field. The critical field is found to decrease with increasing size of the nanoflake. The influence of diagonal and off-diagonal disorder on the mentioned magnetic properties is studied. The effect of off-diagonal disorder is found to be more important than that of diagonal disorder, leading to significantly widened distribution of critical fields for disordered population of nanoflakes.

  8. The excitation conditions of magnetospheric convection by the electric current generated in the bow shock

    Science.gov (United States)

    Sedykh, P. A.; Ponomarev, E. A.

    The solar wind undergoes the greatest change of its parameters during the passage through the bow shock front Its density in this case increases by the factor of four and gas and magnetic pressure increase more than by an order of magnitude In this paper we re-examine the consequences of the fact of electric current generation at the bow shock front that we considered at an earlier date and the dependence of the direction of this current on the sign of IMF Bz-component The first consequence is the closure of the aforementioned current through the magnetosphere It was found that this process is a two-stage one Initially the electric field penetrates and establishes in the medium a new convective regime After that depending on the degree of flow inhomogeneity a plasma density distribution can be established which corresponds to the electric current equal to the external current The new steady state to which the new convection velocity field and the new plasma pressure field correspond is established within the time of the order of the transit time taken by the magnetosonic wave to propagate through the entire system Also a linkage between the power dissipated inside the magnetosphere and the parameters of plasma convection existing therein is shown

  9. Accelerated cometary ions observed downstream of the Comet Halley bow shock

    Science.gov (United States)

    Kecskemety, K.; Cravens, T. E.

    1992-01-01

    Results are presented of fluxes of energetic ions with energies exceeding 100 keV that were detected upstream of the bow shock of Comet Halley by the Tuende instrument on board the VEGA 1 spacecraft. Downstream of the shock, ion fluxes in the energy range 100 to 180 keV were observed. The measured ion fluxes were transformed into distribution functions in the solar wind frame using a variety of assumptions concerning the energy dependence of the distribution function and the identity of the ion species. The derived distribution function upstream of the shock falls off steeply with energy between 100 and 150 keV, with an effective temperature of about 7 keV or spectral index of about -15. The distribution function increases with decreasing cometocentric distance, on average, reaching a maximum at the bow shock. The measured distribution functions are compared with those obtained by similar instruments on Giotto and ICE as well as with the predictions of several theoretical models that employ different acceleration mechanisms.

  10. The properties of bow-shock sources at the Galactic Center

    CERN Document Server

    Sanchez-Bermudez, J; Alberdi, A; Muzic, K; Hummel, C A; Pott, J -U

    2014-01-01

    There are an enigmatic population of massive stars around the Galactic Center (GC) that were formed some Ma ago. A fraction of these stars has been found to orbit the supermassive black hole, SgrA*, in a projected clockwise disk, which suggests that they were formed in a formerly existing dense disk around SgrA*. We focus on the extended, near-infrared (NIR) sources IRS1W, IRS5, IRS10W, and IRS21 that have been suggested to be young, massive stars that form bow-shocks through their interaction with the ISM. Their nature has impeded accurate determination of their orbital parameters. We aim at establishing their nature and kinematics to test whether they form part of the clockwise disk. We performed NIR multi-wavelength imaging using adaptive optics (AO) and sparse aperture masking (SAM). We introduce a new method for self-calibration of the SAM PSF in dense stellar fields. The emission mechanism, morphology and kinematics of the targets were examined via 3D bow-shock models. We confirm previous findings that ...

  11. O+ ion beams reflected below the Martian bow shock: MAVEN observations

    Science.gov (United States)

    Masunaga, K.; Seki, K.; Brain, D. A.; Fang, X.; Dong, Y.; Jakosky, B. M.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E. P.

    2016-04-01

    We investigate a generation mechanism of O+ ion beams observed above the Martian bow shock by analyzing ion velocity distribution functions (VDFs) measured by the Suprathermal and Thermal Ion Composition instrument on the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. In the solar wind near Mars, MAVEN often observes energetic O+ ion beams (~10 keV or higher). Accompanied with the O+ ion beam events, we sometimes observe characteristic ion VDFs in the magnetosheath: a partial ring distribution. The partial ring distribution corresponds to pickup ions with a finite initial velocity (i.e., not newborn pickup ions), and its phase space density is much smaller than that of local pickup O+ ions of the magnetosheath. Thus, the partial ring distribution is most likely produced by the reflection of pickup O+ ions precipitating from the upstream solar wind below the bow shock. After being injected into the magnetosheath from the solar wind, the precipitating O+ ions are subject to the significantly enhanced magnetic field in this region and start to gyrate around the guiding center of the plasma frame in the magnetosheath. Consequently, a part of precipitating O+ ions are reflected back to the solar wind, generating O+ beams in the solar wind. The beams direct quasi-sunward near the subsolar region but have large angle with respect to the sunward direction at high solar zenith angles (>50°). The reflected O+ beams are accelerated by the convection electric field of the solar wind and may escape Mars.

  12. Optical hydrogen absorption consistent with a thin bow shock leading the hot Jupiter HD 189733b

    CERN Document Server

    Cauley, P Wilson; Jensen, Adam G; Barman, Travis; Endl, Michael; Cochran, William D

    2015-01-01

    Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit, absorption signature around the hot Jupiter exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the time series absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric H-alpha detection although the absorption depth measured here is ~50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the ...

  13. Reconstructing the Guitar: Blowing Bubbles with a Pulsar Bow Shock Back Flow

    CERN Document Server

    van Kerkwijk, Marten H

    2008-01-01

    The Guitar Nebula is an H-alpha nebula produced by the interaction of the relativistic wind of a very fast pulsar, PSR B2224+65, with the interstellar medium. It consists of a ram-pressure confined bow shock near its head and a series of semi-circular bubbles further behind, the two largest of which form the body of the Guitar. We present a scenario in which this peculiar morphology is due to instabilities in the back flow from the pulsar bow shock. From simulations, these back flows appear similar to jets and their kinetic energy is a large fraction of the total energy in the pulsar's relativistic wind. We suggest that, like jets, these flows become unstable some distance down-stream, leading to rapid dissipation of the kinetic energy into heat, and the formation of an expanding bubble. We show that in this scenario the sizes, velocities, and surface brightnesses of the bubbles depend mostly on observables, and that they match roughly what is seen for the Guitar. Similar instabilities may account for feature...

  14. PKS B1545-321: Bow shocks of a relativistic jet?

    CERN Document Server

    Safouris, V; Bicknell, G; Saripalli, L

    2008-01-01

    Sensitive, high resolution images of the double-double radio galaxy PKS B1545-321 reveal detailed structure, which we interpret in the light of previous work on the interaction of restarted jets with pre-existing relict cocoons. We have also examined the spectral and polarization properties of the source, the color distribution in the optical host and the environment of this galaxy in order to understand its physical evolution. We propose that the restarted jets generate narrow bow shocks and that the inner lobes are a mixture of cocoon plasma reaccelerated at the bow shock and new jet material reaccelerated at the termination shock. The dynamics of the restarted jets implies that their hot spots advance at mildly relativistic speeds with external Mach numbers of at least 5. The existence of supersonic hot spot Mach numbers and bright inner lobes is the result of entrainment causing a reduction in the sound speed of the pre-existing cocoon. The interruption to jet activity in PKS B1545-321 has been brief - la...

  15. Technical Note: Measurement of bow tie profiles in CT scanners using radiochromic film

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Bruce R., E-mail: whitingbrucer@gmail.com [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States); Dohatcu, Andreea C. [University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213 (United States); Evans, Joshua D.; Williamson, Jeffrey F. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Politte, David G. [Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110 (United States)

    2015-06-15

    Purpose: To provide a noninvasive technique to measure the intensity profile of the fan beam in a computed tomography (CT) scanner that is cost effective and easily implemented without the need to access proprietary scanner information or service modes. Methods: The fabrication of an inexpensive aperture is described, which is used to expose radiochromic film in a rotating CT gantry. A series of exposures is made, each of which is digitized on a personal computer document scanner, and the resulting data set is analyzed to produce a self-consistent calibration of relative radiation exposure. The bow tie profiles were analyzed to determine the precision of the process and were compared to two other measurement techniques, direct measurements from CT gantry detectors and a dynamic dosimeter. Results: The radiochromic film method presented here can measure radiation exposures with a precision of ∼6% root-mean-square relative error. The intensity profiles have a maximum 25% root-mean-square relative error compared with existing techniques. Conclusions: The proposed radiochromic film method for measuring bow tie profiles is an inexpensive (∼$100 USD + film costs), noninvasive method to measure the fan beam intensity profile in CT scanners.

  16. Investigation of radiative bow-shocks in magnetically accelerated plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Bott-Suzuki, S. C., E-mail: sbottsuzuki@ucsd.edu; Caballero Bendixsen, L. S.; Cordaro, S. W. [University of California San Diego, La Jolla, California 92093 (United States); Blesener, I. C.; Hoyt, C. L.; Cahill, A. D.; Kusse, B. R.; Hammer, D. A.; Gourdain, P. A.; Seyler, C. E.; Greenly, J. B. [Cornell University, Ithaca, New York 14850 (United States); Chittenden, J. P.; Niasse, N.; Lebedev, S. V. [Imperial College London, South Kensington, London SW7 2BW (United Kingdom); Ampleford, D. J. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-05-15

    We present a study of the formation of bow shocks in radiatively cooled plasma flows. This work uses an inverse wire array to provide a quasi-uniform, large scale hydrodynamic flow accelerated by Lorentz forces to supersonic velocities. This flow impacts a stationary object placed in its path, forming a well-defined Mach cone. Interferogram data are used to determine a Mach number of ∼6, which may increase with radial position suggesting a strongly cooling flow. Self-emission imaging shows the formation of a thin (<60 μm) strongly emitting shock region, where T{sub e} ∼ 40–50 eV, and rapid cooling behind the shock. Emission is observed upstream of the shock position which appears consistent with a radiation driven phenomenon. Data are compared to 2-dimensional simulations using the Gorgon MHD code, which show good agreement with the experiments. The simulations are also used to investigate the effect of magnetic field in the target, demonstrating that the bow-shocks have a high plasma β, and the influence of B-field at the shock is small. This consistent with experimental measurement with micro bdot probes.

  17. Compound semiconductor alloys: From atomic-scale structure to bandgap bowing

    Energy Technology Data Exchange (ETDEWEB)

    Schnohr, C. S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2015-09-15

    Compound semiconductor alloys such as In{sub x}Ga{sub 1−x}As, GaAs{sub x}P{sub 1−x}, or CuIn{sub x}Ga{sub 1−x}Se{sub 2} are increasingly employed in numerous electronic, optoelectronic, and photonic devices due to the possibility of tuning their properties over a wide parameter range simply by adjusting the alloy composition. Interestingly, the material properties are also determined by the atomic-scale structure of the alloys on the subnanometer scale. These local atomic arrangements exhibit a striking deviation from the average crystallographic structure featuring different element-specific bond lengths, pronounced bond angle relaxation and severe atomic displacements. The latter, in particular, have a strong influence on the bandgap energy and give rise to a significant contribution to the experimentally observed bandgap bowing. This article therefore reviews experimental and theoretical studies of the atomic-scale structure of III-V and II-VI zincblende alloys and I-III-VI{sub 2} chalcopyrite alloys and explains the characteristic findings in terms of bond length and bond angle relaxation. Different approaches to describe and predict the bandgap bowing are presented and the correlation with local structural parameters is discussed in detail. The article further highlights both similarities and differences between the cubic zincblende alloys and the more complex chalcopyrite alloys and demonstrates that similar effects can also be expected for other tetrahedrally coordinated semiconductors of the adamantine structural family.

  18. Hall-effect thruster--Cathode coupling: The effect of cathode position and magnetic field topology

    Science.gov (United States)

    Sommerville, Jason D.

    2009-12-01

    Hall-effect thruster (HET) cathodes are responsible for the generation of the free electrons necessary to initiate and sustain the main plasma discharge and to neutralize the ion beam. The position of the cathode relative to the thruster strongly affects the efficiency of thrust generation. However, the mechanisms by which the position affects the efficiency are not well understood. This dissertation explores the effect of cathode position on HET efficiency. Magnetic field topology is shown to play an important role in the coupling between the cathode plasma and the main discharge plasma. The position of the cathode within the magnetic field affects the ion beam and the plasma properties of the near-field plume, which explains the changes in efficiency of the thruster. Several experiments were conducted which explored the changes of efficiency arising from changes in cathode coupling. In each experiment, the thrust, discharge current, and cathode coupling voltage were monitored while changes in the independent variables of cathode position, cathode mass flow and magnetic field topology were made. From the telemetry data, the efficiency of the HET thrust generation was calculated. Furthermore, several ion beam and plasma properties were measured including ion energy distribution, beam current density profile, near-field plasma potential, electron temperature, and electron density. The ion beam data show how the independent variables affected the quality of ion beam and therefore the efficiency of thrust generation. The measurements of near-field plasma properties partially explain how the changes in ion beam quality arise. The results of the experiments show that cathode position, mass flow, and field topology affect several aspects of the HET operation, especially beam divergence and voltage utilization efficiencies. Furthermore, the experiments show that magnetic field topology is important in the cathode coupling process. In particular, the magnetic field

  19. The Effectiveness of Magnetic Shielding in High-Isp Hall Thrusters

    Science.gov (United States)

    Mikellides, Ioannis G.; Hofer, Richard R.; Katz, Ira; Goebel, Dan M.

    2013-01-01

    A series of numerical simulations and experiments have been performed to assess the effectiveness of magnetic shielding in a Hall thruster operating in the discharge voltage range of 300-700 V (Isp 2000-2700 s) at 6 kW, and 800 V (Isp 3000) at 9 kW. In this paper we report on the simulation results and their validation with experimental measurements. At 6 kW the magnetic field topology with which we recently demonstrated highly effective magnetic shielding at 300 V was retained for all other discharge voltages; only the magnitude of the field was changed to achieve optimum thruster performance. It is found that magnetic shielding remains highly effective for all discharge voltages studied. Maximum erosion rates that remain fairly constant across the range of 300-700 V are computed, with values not exceeding 10-2 mm/kh. Such rates are 3 orders of magnitude less than those observed in the unshielded version of the same thruster at 300 V. At 9 kW and 800 V, saturation of the magnetic circuit did not permit us to attain precisely the same magnetic shielding topology as that employed during the 6-kW operation since this thruster was not designed to operate at this condition. Consequently, the maximum erosion rate at the inner wall is found to be 1 order of magnitude higher (10-1 mm/kh) than that at the 6-kW level. At the outer wall the ion energy is below the sputtering yield threshold so no measurable erosion is expected. The reasons behind the effectiveness of magnetic shielding at higher discharge voltages are discussed.

  20. Numerical modeling of ion dynamics in a carbon nanotube field-ionized thruster

    OpenAIRE

    Michael, Sarah F.

    2011-01-01

    Approved for public release; distribution is unlimited Carbon nanotube field ionization technology has the potential to make ion propulsion feasible for use in micro and nano-satellites. To better understand the phenomenon and optimize the ion thruster design, it is useful to have an accurate model of the system. Numerical modeling of large-scale electron bombardment ion engines is a relatively mature field, but modeling of field-ionized ion engines is in its infancy. A simpler code may be...