WorldWideScience

Sample records for bow shock structure

  1. Time-dependent bow shocks and the condensation structure of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Raga, A.C.; Bohm, K.H.

    1987-01-01

    Some Herbig-Haro objects show a structure which appears to look like a bow shock, but also show a number of condensations superposed on this bow-shaped structure. In the case of HH 1 and HH 2 considerably different proper motions have been measured for the individual condensations. It is, however, very hard to explain why the condensations remain so close to each other if they are indeed separate entities. In this paper it is shown that an interpretation of the whole Herbig-Haro object as a single, time-dependent bow shock provides a natural explanation for the occurrence of condensations (which in numerical calculations appear to be associated with thermal instabilities in the postshock flow) with different proper motions. To this effect, time-dependent, axisymmetric, nonadiabatic bow shock models have been developed from which predictions were obtained for spatially resolved H-alpha intensity maps, and then these predictions are compared qualitatively with observations of a few Herbig-Haro objects. 57 references

  2. THE ROLE OF PICKUP IONS ON THE STRUCTURE OF THE VENUSIAN BOW SHOCK AND ITS IMPLICATIONS FOR THE TERMINATION SHOCK

    International Nuclear Information System (INIS)

    Lu Quanming; Shan Lican; Zhang Tielong; Wu Mingyu; Wang Shui; Zank, Gary P.; Yang Zhongwei; Du Aimin

    2013-01-01

    The recent crossing of the termination shock by Voyager 2 has demonstrated the important role of pickup ions (PUIs) in the physics of collisionless shocks. The Venus Express (VEX) spacecraft orbits Venus in a 24 hr elliptical orbit that crosses the bow shock twice a day. VEX provides a unique opportunity to investigate the role of PUIs on the structure of collisionless shocks more generally. Using VEX observations, we find that the strength of the Venusian bow shock is weaker when solar activity is strong. We demonstrate that this surprising anti-correlation is due to PUIs mediating the Venusian bow shock

  3. Structure of oblique subcritical bow shocks: ISEE 1 and 2 observations

    International Nuclear Information System (INIS)

    Mellott, M.M.; Greenstadt, E.W.

    1984-01-01

    We have studied the structural elements, including shock ramps and precursor wave trains, of a series of oblique low-Mach number terrestrial bow shocks. We used magnetic field data from the dual ISEE 1 and 2 spacecraft to determine the scale lengths of various elements of shock structure as well as wavelengths and wave polarizations. Bow shocks structure under these conditions is esstentially that of a large-amplitude damped whistler mode wave which extends upstream in the form of a precursor wave train. Shock thicknesses, which are determined by the dispersive properties of the ambient plasma, are too broad to support current-driven electrostatic waves, ruling out such turbulence as the source of dissipation in these shocks. Dissipative processes are reflected in the damping of the precursors, and dissipative scale lengths are approx.200--800 km (several times greater than shock thicknesses). Precursor damping is not related to shock normal angle or Mach number, but is correlated with T/sub e//T/sub t/. The source of the dissipation in the shocks does not appear to be wave-wave decay of the whistlers, for which no evidence is found. We cannot rule out the possibility of contribution to the dissipation from ion acoustic and, or lower hybrid mode turbulence, but interaction of the whistler itself with upstream electrons offers a simpler and more self-consistent explanation for the observed wave train damping

  4. Energetics of the terrestrial bow shock

    Science.gov (United States)

    Hamrin, Maria; Gunell, Herbert; Norqvist, Patrik

    2017-04-01

    The solar wind is the primary energy source for the magnetospheric energy budget. Energy can enter through the magnetopause both as kinetic energy (plasma entering via e.g. magnetic reconnection and impulsive penetration) and as electromagnetic energy (e.g. by the conversion of solar wind kinetic energy into electromagnetic energy in magnetopause generators). However, energy is extracted from the solar wind already at the bow shock, before it encounters the terrestrial magnetopause. At the bow shock the supersonic solar wind is slowed down and heated, and the region near the bow shock is known to host many complex processes, including the accelerating of particles and the generation of waves. The processes at and near the bow shock can be discussed in terms of energetics: In a generator (load) process kinetic energy is converted to (from) electromagnetic energy. Bow shock regions where the solar wind is decelerated correspond to generators, while regions where particles are energized (accelerated and heated) correspond to loads. Recently, it has been suggested that currents from the bow shock generator should flow across the magnetosheath and connect to the magnetospause current systems [Siebert and Siscoe, 2002; Lopez et al., 2011]. In this study we use data from the Magnetospheric MultiScale (MMS) mission to investigate the energetics of the bow shock and the current closure, and we compare with the MHD simulations of Lopez et al., 2011.

  5. Entropy Generation Across Earth's Bow Shock

    Science.gov (United States)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  6. An IRAS/ISSA Survey of Bow Shocks Around Runaway Stars

    Science.gov (United States)

    Buren, David Van

    1995-01-01

    We searched for bow shock-like objects like those known around Oph and a Cam near the positions of 183 runaway stars. Based primarily on the presence and morphology of excess 60 micron emission we identify 56 new candidate bow shocks, for which we determine photometric and morphological parameters. Previously only a dozen or so were known. Well resolved structures are present around 25 stars. A comparison of the distribution of symmetry axes of the infrared nebulae with that of their proper motion vectors indicates that these two directions are very significantly aligned. The observed alignment strongly suggests that the structures we see arise from the interaction of stellar winds with the interstellar medium, justifying the identification of these far-infrared objects as stellar wind bow shocks.

  7. H2 emission from non-stationary magnetized bow shocks

    Science.gov (United States)

    Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T.

    2018-01-01

    When a fast moving star or a protostellar jet hits an interstellar cloud, the surrounding gas gets heated and illuminated: a bow shock is born that delineates the wake of the impact. In such a process, the new molecules that are formed and excited in the gas phase become accessible to observations. In this paper, we revisit models of H2 emission in these bow shocks. We approximate the bow shock by a statistical distribution of planar shocks computed with a magnetized shock model. We improve on previous works by considering arbitrary bow shapes, a finite irradiation field and by including the age effect of non-stationary C-type shocks on the excitation diagram and line profiles of H2. We also examine the dependence of the line profiles on the shock velocity and on the viewing angle: we suggest that spectrally resolved observations may greatly help to probe the dynamics inside the bow shock. For reasonable bow shapes, our analysis shows that low-velocity shocks largely contribute to H2 excitation diagram. This can result in an observational bias towards low velocities when planar shocks are used to interpret H2 emission from an unresolved bow. We also report a large magnetization bias when the velocity of the planar model is set independently. Our 3D models reproduce excitation diagrams in BHR 71 and Orion bow shocks better than previous 1D models. Our 3D model is also able to reproduce the shape and width of the broad H2 1-0S(1) line profile in an Orion bow shock (Brand et al. 1989).

  8. Comparative review of bow shocks and magnetopauses

    International Nuclear Information System (INIS)

    Lepping, R.P.

    1984-04-01

    Bow shock and magnetopauses formation is discussed. Plasma and magnetic field environments of all the planets from Mercury to Saturn were measured. It was found that all the planets have bow shocks and almost all have a magnetopause. Venus is the only planet with no measurable intrinsic magnetic field and the solar wind interacts directly with Venus ionosphere. The bow shock characteristics depend on the changing solar wind conditions. The shape of a magnetopause or any obstacle to flow depends on the three dimensional pressure profile that it presents to the solar wind. Jupiter is unusual because of the considerable amount of plasma which is contained in its magnetosphere. Magentopause boundaries in ecliptic plane projection are modelled by segments of ellipses, matched to straight lines for the magnetotool boundaries or parabolas. Specific properties of known planetary bow shocks and magnetopauses are reviewed

  9. True versus apparent shapes of bow shocks

    Science.gov (United States)

    Tarango-Yong, Jorge A.; Henney, William J.

    2018-06-01

    Astrophysical bow shocks are a common result of the interaction between two supersonic plasma flows, such as winds or jets from stars or active galaxies, or streams due to the relative motion between a star and the interstellar medium. For cylindrically symmetric bow shocks, we develop a general theory for the effects of inclination angle on the apparent shape. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow's apex, which we term planitude, and the openness of its wings, which we term alatude. We calculate the expected distribution in the planitude-alatude plane for a variety of simple geometrical and physical models: quadrics of revolution, wilkinoids, cantoids, and ancantoids. We further test our methods against numerical magnetohydrodynamical simulations of stellar bow shocks and find that the apparent planitude and alatude measured from infrared dust continuum maps serve as accurate diagnostics of the shape of the contact discontinuity, which can be used to discriminate between different physical models. We present an algorithm that can determine the planitude and alatude from observed bow shock emission maps with a precision of 10 to 20 per cent.

  10. A numerical study on bow shocks around the lightning return stroke channel

    International Nuclear Information System (INIS)

    Chen, Qiang; Chen, Bin; Yi, Yun; Chen, P. F.; Mao, Yunfei; Xiong, Run

    2015-01-01

    Bow shock structures are important to various hydrodynamics and magnetohydrodynamics (MHD) phenomena in geophysics and astrophysics. The formation and propagation of bow shocks around the lightning return stroke channel are investigated based on the self-similar motion theory and simulated with a two-dimensional Eulerian finite volume resistive radiation MHD code. In this framework, as verification of theoretical models, the evolving structures of many quantities, such as the plasma density, temperature, pressure, shock velocity, and magnetic field, can be obtained, which present all the characteristics of bow shocks in the lightning return stroke processes. The evolution characteristics and the configuration of the curved return stroke channels, e.g., the non-ideal effects and the scaling laws, are discussed in detail. The results may have applications for some observed features of the return stroke channels and other phenomena in the lightning discharge plasmas

  11. Active current sheets near the earth's bow shock

    International Nuclear Information System (INIS)

    Schwartz, S.J.; Kessel, R.L.; Brown, C.C.; Woolliscroft, L.J.C.; Dunlop, M.W.; Farrugia, C.J.; Hall, D.S.

    1988-01-01

    The authors present here an investigation of active current sheets observed by the AMPTE UK spacecraft near the Earth's bow shock, concentrating on their macroscopic features and geometry. Events selected primarily by flow directions which deviate substantially from the Sun-Earth line show similar characteristics, including their association with an underlying macroscopic current sheet and a hot central region whose flow direction is organized, at least in part, by location relative to the inferred initial intersection point between the current sheet and the bow shock. This region is flanked by edges which, according to a Rankine-Hugoniot analysis, are often fast shocks whose orientation is consistent with that expected if a bulge on the bow shock convected past the spacecraft. They have found the magnetosheath manifestations of these events which they study in detail. They suggest that these events are the direct result of the disruption and reformation of the bow shock by the passage of an interplanetary current sheet, most probably a tangential discontinuity

  12. X-ray study of bow shocks in runaway stars

    Science.gov (United States)

    De Becker, M.; del Valle, M. V.; Romero, G. E.; Peri, C. S.; Benaglia, P.

    2017-11-01

    Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of five bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories.

  13. Quasi-perpendicular/quasi-parallel divisions of Earth's bow shock

    International Nuclear Information System (INIS)

    Greenstadt, E.W.

    1991-01-01

    Computer-drawn diagrams of the boundaries between quasi-perpendicular and quasi-parallel areas of Earth's bow shock are displayed for a few selected cone angles of static interplanetary magnetic field (IMF). The effect on the boundary of variable IMF in the foreshock is also discussed and shown for one nominal case. The boundaries demand caution in applying them to the realistic, dynamic conditions of the solar wind and in interpreting the effects of small cone angles on the distributions of structures at the shock. However, the calculated, first-order boundaries are helpful in defining areas of the shock where contributions from active structures inherent in quasi-parallel geometry may be distinguishable from those derived secondarily from upstream reflected ion dynamics. The boundaries are also compatible with known behavior of daytime ULF geomagnetic waves and pulsations according to models postulating that cone angle-controlled, time-dependent ULF activity around the subsolar point of the bow shock provides the source of geomagnetic excitation

  14. Polarized bow shocks reveal features of the winds and environments of massive stars

    Science.gov (United States)

    Shrestha, Manisha

    2018-01-01

    Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the

  15. IRC -10414: a bow-shock-producing red supergiant star

    Science.gov (United States)

    Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M.-A.; Kamiński, T.

    2014-01-01

    Most runaway OB stars, like the majority of massive stars residing in their parent clusters, go through the red supergiant (RSG) phase during their lifetimes. Nonetheless, although many dozens of massive runaways were found to be associated with bow shocks, only two RSG bow-shock-producing stars, Betelgeuse and μ Cep, are known to date. In this paper, we report the discovery of an arc-like nebula around the late M-type star IRC -10414 using the SuperCOSMOS H-alpha Survey. Our spectroscopic follow-up of IRC -10414 with the Southern African Large Telescope (SALT) showed that it is a M7 supergiant, which supports previous claims on the RSG nature of this star based on observations of its maser emission. This was reinforced by our new radio- and (sub)millimetre-wavelength molecular line observations made with the Atacama Pathfinder Experiment 12-m telescope and the Effelsberg 100-m radio telescope, respectively. The SALT spectrum of the nebula indicates that its emission is the result of shock excitation. This finding along with the arc-like shape of the nebula and an estimate of the space velocity of IRC -10414 (≈70 ± 20 km s-1) imply the bow shock interpretation for the nebula. Thus, IRC -10414 represents the third case of a bow-shock-producing RSG and the first one with a bow shock visible at optical wavelengths. We discuss the smooth appearance of the bow shocks around IRC -10414 and Betelgeuse and propose that one of the necessary conditions for stability of bow shocks generated by RSGs is the ionization of the stellar wind. Possible ionization sources of the wind of IRC -10414 are proposed and discussed.

  16. Magnetic field fluctuations across the Earth’s bow shock

    Directory of Open Access Journals (Sweden)

    A. Czaykowska

    Full Text Available We present a statistical analysis of 132 dayside (LT 0700-1700 bow shock crossings of the AMPTE/IRM spacecraft. We perform a superposed epoch analysis of low frequency, magnetic power spectra some minutes up-stream and downstream of the bow shock. The events are devided into categories depending on the angle θBn between bow shock normal and interplanetary magnetic field, and on plasma-β. In the foreshock upstream of the quasi-parallel bow shock, the power of the magnetic fluctuations is roughly 1 order of magnitude larger (δB ~ 4 nT for frequencies 0.01–0.04 Hz than upstream of the quasi-perpendicular shock. There is no significant difference in the magnetic power spectra upstream and downstream of the quasi-parallel bow shock; only at the shock itself, is the magnetic power enhanced by a factor of 4. This enhancement may be due to either an amplification of convecting upstream waves or to wave generation at the shock interface. On the contrary, downstream of the quasi-perpendicular shock, the magnetic wave activity is considerably higher than upstream. Down-stream of the quasi-perpendicular low-β bow shock, we find a dominance of the left-hand polarized component at frequencies just below the ion-cyclotron frequency, with amplitudes of about 3 nT. These waves are identified as ion-cyclotron waves, which grow in a low-β regime due to the proton temperature anisotropy. We find a strong correlation of this anisotropy with the intensity of the left-hand polarized component. Downstream of some nearly perpendicular (θBn ≈ 90° high-β crossings, mirror waves are identified. However, there are also cases where the conditions for mirror modes are met downstream of the nearly perpendicular shock, but no mirror waves are observed.

    Key words. Interplanetary physics (plasma waves and turbulence – Magnetospheric physics (magnetosheath; plasma waves and

  17. Magnetic field fluctuations across the Earth’s bow shock

    Directory of Open Access Journals (Sweden)

    A. Czaykowska

    2001-03-01

    Full Text Available We present a statistical analysis of 132 dayside (LT 0700-1700 bow shock crossings of the AMPTE/IRM spacecraft. We perform a superposed epoch analysis of low frequency, magnetic power spectra some minutes up-stream and downstream of the bow shock. The events are devided into categories depending on the angle θBn between bow shock normal and interplanetary magnetic field, and on plasma-β. In the foreshock upstream of the quasi-parallel bow shock, the power of the magnetic fluctuations is roughly 1 order of magnitude larger (δB ~ 4 nT for frequencies 0.01–0.04 Hz than upstream of the quasi-perpendicular shock. There is no significant difference in the magnetic power spectra upstream and downstream of the quasi-parallel bow shock; only at the shock itself, is the magnetic power enhanced by a factor of 4. This enhancement may be due to either an amplification of convecting upstream waves or to wave generation at the shock interface. On the contrary, downstream of the quasi-perpendicular shock, the magnetic wave activity is considerably higher than upstream. Down-stream of the quasi-perpendicular low-β bow shock, we find a dominance of the left-hand polarized component at frequencies just below the ion-cyclotron frequency, with amplitudes of about 3 nT. These waves are identified as ion-cyclotron waves, which grow in a low-β regime due to the proton temperature anisotropy. We find a strong correlation of this anisotropy with the intensity of the left-hand polarized component. Downstream of some nearly perpendicular (θBn ≈ 90° high-β crossings, mirror waves are identified. However, there are also cases where the conditions for mirror modes are met downstream of the nearly perpendicular shock, but no mirror waves are observed.Key words. Interplanetary physics (plasma waves and turbulence – Magnetospheric physics (magnetosheath; plasma waves and instabilities

  18. Magnetic field fluctuations across the Earth's bow shock

    Energy Technology Data Exchange (ETDEWEB)

    Czaykowska, A.; Bauer, T.M. [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany); Treumann, R.A. [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany); Centre for Interdisciplinary Plasma Science, Garching (Germany); International Space Science Inst. (ISSI), Bern (Switzerland); Baumjohann, W. [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany); Inst. fuer Weltraumforschung der Oesterreichischen Akademie der Wissenschaften, Graz (Austria)

    2001-03-01

    We present a statistical analysis of 132 dayside (LT 0700-1700) bow shock crossings of the AMPTE/IRM spacecraft. We perform a superposed epoch analysis of low frequency, magnetic power spectra some minutes upstream and downstream of the bow shock. The events are devided into categories depending on the angle {theta}{sub Bn} between bow shock normal and interplanetary magnetic field, and on plasma-{beta}. In the foreshock upstream of the quasi-parallel bow shock, the power of the magnetic fluctuations is roughly 1 order of magnitude larger ({delta}B {proportional_to} 4 nT for frequencies 0.01-0.04 Hz) than upstream of the quasi-perpendicular shock. There is no significant difference in the magnetic power spectra upstream and downstream of the quasi-parallel bow shock; only at the shock itself, is the magnetic power enhanced by a factor of 4. This enhancement may be due to either an amplification of convecting upstream waves or to wave generation at the shock interface. On the contrary, downstream of the quasi-perpendicular shock, the magnetic wave activity is considerably higher than upstream. Downstream of the quasi-perpendicular low-{beta} bow shock, we find a dominance of the left-hand polarized component at frequencies just below the ion-cyclotron frequency, with amplitudes of about 3 nT. These waves are identified as ion-cyclotron waves, which grow in a low-{beta} regime due to the proton temperature anisotropy. We find a strong correlation of this anisotropy with the intensity of the left-hand polarized component. Downstream of some nearly perpendicular ({theta}{sub Bn} {approx} 90 ) high-{beta} crossings, mirror waves are identified. However, there are also cases where the conditions for mirror modes are met downstream of the nearly perpendicular shock, but no mirror waves are observed. (orig.)

  19. New test of bow-shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Raga, A.C.; Bohm, K.H.; Solf, J.; Max-Planck-Institut fuer Astronomie, Heidelberg, West Germany)

    1986-01-01

    Long-slit, high-resolution spectroscopy of the Herbig-Haro oject HH 32 has shown that the emission-line profiles in all four condensations A, B, C, and D show high- and low-velocity components. The spatial maxima of these two components are always arranged in a double-layer pattern, with the maximum of the high-velocity component 0.6-1.0 arcsecs closer to the central star (AS 353A) than the low-velocity maximum. A study of the emission-line profiles predicted from a model of a radiating bow shock shows that such a double-layer structure appears naturally for this type of flow. In this case both the high-velocity and the low-velocity components come from the post-shock gas, in agreement with the theoretical prediction that it should be very difficult to detect the pre-shock gas observationally. The present results agree qualitatively well with observations of HH 32, strengthening the case for a bow-shock interpretation of this Herbig-Haro object. It is shown that the double-layer effect will be more easily observable for bow shocks which move at a relatively large angle with respect to the plane of the sky (i.e., for Herbig-Haro objects which have large radial velocities). 31 references

  20. H2 profiles of C-type bow shocks

    International Nuclear Information System (INIS)

    Smith, M.D.; Brand, P.W.J.L.

    1990-01-01

    We present emission-line profiles of molecular hydrogen from curved C-shocks within molecular clouds. Shock configurations arising from the supersonic motion of jets and bullets within a dense cloud are chosen. Bow shock speeds in the range υ w = 40-200 km s -1 are investigated. Breakdown through dissociation and self-ionization restricts the C-shock section to the bow tail. We find that profiles are essentially single-peaked and narrow with full widths (at 10 per cent maximum intensity, deconvolved) of up to about 50, 40 and 30 km s -1 for cones, hemispherical caps and paraboloids, respectively. Exceptional field alignments can produce lines as wide as 75 km s -1 in the conical shock model. (author)

  1. Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars

    Directory of Open Access Journals (Sweden)

    M. Yamauchi

    2011-03-01

    Full Text Available Foreshock ions are compared between Venus and Mars at energies of 0.6~20 keV using the same ion instrument, the Ion Mass Analyser, on board both Venus Express and Mars Express. Venus Express often observes accelerated protons (2~6 times the solar wind energy that travel away from the Venus bow shock when the spacecraft location is magnetically connected to the bow shock. The observed ions have a large field-aligned velocity compared to the perpendicular velocity in the solar wind frame, and are similar to the field-aligned beams and intermediate gyrating component of the foreshock ions in the terrestrial upstream region. Mars Express does not observe similar foreshock ions as does Venus Express, indicating that the Martian foreshock does not possess the intermediate gyrating component in the upstream region on the dayside of the planet. Instead, two types of gyrating protons in the solar wind frame are observed very close to the Martian quasi-perpendicular bow shock within a proton gyroradius distance. The first type is observed only within the region which is about 400 km from the bow shock and flows tailward nearly along the bow shock with a similar velocity as the solar wind. The second type is observed up to about 700 km from the bow shock and has a bundled structure in the energy domain. A traversal on 12 July 2005, in which the energy-bunching came from bundling in the magnetic field direction, is further examined. The observed velocities of the latter population are consistent with multiple specular reflections of the solar wind at the bow shock, and the ions after the second reflection have a field-aligned velocity larger than that of the de Hoffman-Teller velocity frame, i.e., their guiding center has moved toward interplanetary space out from the bow shock. To account for the observed peculiarity of the Martian upstream region, finite gyroradius effects of the solar wind protons compared to the radius of the bow shock curvature and

  2. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.; Swadling, G. F.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Burdiak, G.; De Grouchy, P.; Music, J.; Suttle, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Ciardi, A. [Sorbonne Universités, UPMC Univ. Paris 6, UMR 8112, LERMA, F-75005, Paris (France); Rodriguez, R.; Gil, J. M.; Espinosa, G. [Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria (Spain); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Hansen, E.; Frank, A., E-mail: f.suzuki@imperial.ac.uk [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

    2015-12-20

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.

  3. Numerical Simulation of the SVS 13 Microjet and Bow Shock Bubble

    Science.gov (United States)

    Gardner, Carl L.; Jones, Jeremiah R.; Hodapp, Klaus W.

    2016-10-01

    Numerical simulations of the SVS 13 microjet and bow shock bubble are performed using the WENO method that reproduces the main features and dynamics of data from the Keck Telescope/OSIRIS velocity-resolved integral field spectrograph: an expanding, cooler bow shock bubble, with the bubble center moving at approximately 50 km s-1 with a radial expansion velocity of 11 km s-1, surrounding the fast, hotter jet, which is propagating at 156 km s-1. Contact and bow shock waves are visible in the simulations both from the initial short jet pulse that creates the nearly spherical bow shock bubble and from the fast microjet, while a terminal Mach disk shock is visible near the tip of the continuous microjet, which reduces the velocity of the jet gas down to the flow velocity of the contact discontinuity at the leading edge of the jet. At 21.1 years after the launch of the initial bubble pulse, the jet has caught up with and penetrated almost all the way across the bow shock bubble of the slower initial pulse. At times later than about 22 years, the jet has penetrated through the bubble and thereafter begins to subsume its spherical form. Emission maps from the simulations of the jet—traced by the emission of the shock-excited 1.644 μm [Fe II] line—and the bow shock bubble—traced in the lower excitation 2.122 μm H2 1-0 S(1) line—projected onto the plane of the sky are presented, and are in good agreement with the Keck observations.

  4. Runaways and weathervanes: The shape of stellar bow shocks

    Science.gov (United States)

    Henney, W. J.; Tarango-Yong, J. A.

    2017-11-01

    Stellar bow shocks are the result of the supersonic interaction between a stellar wind and its environment. Some of these are "runaways": high-velocity stars that have been ejected from a star cluster. Others are "weather vanes", where it is the local interstellar medium itself that is moving, perhaps as the result of a champagne flow of ionized gas from a nearby HII region. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow’s apex, which we term "planitude" and the openness of its wings, which we term "alatude". We calculate the inclination-dependent tracks on the planitude-alatude plane that are predicted by simple models for the bow shock shape. We also measure the shapes of bow shocks from three different observational datasets: mid-infrared arcs around hot main-sequence stars, far-infrared arcs around luminous cool stars, and emission-line arcs around proplyds and other young stars in the Orion Nebula. Clear differences are found between the different datasets in their distributions on the planitude-alatude plane, which can be used to constrain the physics of the bow shock interaction and emission mechanisms in the different classes of object.

  5. Remote sensing of local structure of the quasi-perpendicular Earth's bow shock by using field-aligned beams

    Directory of Open Access Journals (Sweden)

    B. Miao

    2009-03-01

    Full Text Available Field-aligned ion beams (FABs originate at the quasi-perpendicular Earth's bow shock and constitute an important ion population in the foreshock region. The bulk velocity of these FABs depends significantly on the shock normal angle, which is the angle between shock normal and upstream interplanetary magnetic field (IMF. This dependency may therefore be taken as an indicator of the local structure of the shock. Applying the direct reflection model to Cluster measurements, we have developed a method that uses proton FABs in the foreshock region for remote sensing of the local shock structure. The comparison of the model results with the multi-spacecraft observations of FAB events shows very good agreement in terms of wave amplitude and frequency of surface waves at the shock front.

  6. Observational test of shock drift and Fermi acceleration on a seed particle population upstream of earth's bow shock

    Science.gov (United States)

    Anagnostopoulos, G. C.; Sarris, E. T.; Krimigis, S. M.

    1988-01-01

    The efficiency of proposed shock acceleration mechanisms as they operate at the bow shock in the presence of a seed energetic particle population was examined using data from simultaneous observations of energetic solar-origin protons, carried out by the IMP 7 and 8 spacecraft in the vicinity of the quasi-parallel (dawn) and quasi-perpendicular (dusk) regions of the earth's bow shock, respectively. The results of observations (which include acceleration effects in the intensities of the energetic protons with energies as high as 4 MeV observed at the vicinity of the dusk bow shock, but no evidence for any particle acceleration at the energy equal to or above 50 keV at the dawn side of the bow shock) indicate that the acceleration of a seed particle population occurs only at the quasi-perpendicular bow shock through shock drift acceleration and that the major source of observed upstream ion populations is the leakage of magnetospheric ions of energies not less than 50 keV, rather than in situ acceleration.

  7. NUMERICAL SIMULATION OF THE SVS 13 MICROJET AND BOW SHOCK BUBBLE

    International Nuclear Information System (INIS)

    Gardner, Carl L.; Jones, Jeremiah R.; Hodapp, Klaus W.

    2016-01-01

    Numerical simulations of the SVS 13 microjet and bow shock bubble are performed using the WENO method that reproduces the main features and dynamics of data from the Keck Telescope/OSIRIS velocity-resolved integral field spectrograph: an expanding, cooler bow shock bubble, with the bubble center moving at approximately 50 km s −1 with a radial expansion velocity of 11 km s −1 , surrounding the fast, hotter jet, which is propagating at 156 km s −1 . Contact and bow shock waves are visible in the simulations both from the initial short jet pulse that creates the nearly spherical bow shock bubble and from the fast microjet, while a terminal Mach disk shock is visible near the tip of the continuous microjet, which reduces the velocity of the jet gas down to the flow velocity of the contact discontinuity at the leading edge of the jet. At 21.1 years after the launch of the initial bubble pulse, the jet has caught up with and penetrated almost all the way across the bow shock bubble of the slower initial pulse. At times later than about 22 years, the jet has penetrated through the bubble and thereafter begins to subsume its spherical form. Emission maps from the simulations of the jet—traced by the emission of the shock-excited 1.644 μ m [Fe ii] line—and the bow shock bubble—traced in the lower excitation 2.122 μ m H 2 1–0 S(1) line—projected onto the plane of the sky are presented, and are in good agreement with the Keck observations.

  8. On the stability of bow shocks generated by red supergiants: the case of IRC -10414

    Science.gov (United States)

    Meyer, D. M.-A.; Gvaramadze, V. V.; Langer, N.; Mackey, J.; Boumis, P.; Mohamed, S.

    2014-03-01

    In this Letter, we explore the hypothesis that the smooth appearance of bow shocks around some red supergiants (RSGs) might be caused by the ionization of their winds by external sources of radiation. Our numerical simulations of the bow shock generated by IRC -10414 (the first-ever RSG with an optically detected bow shock) show that the ionization of the wind results in its acceleration by a factor of 2, which reduces the difference between the wind and space velocities of the star and makes the contact discontinuity of the bow shock stable for a range of stellar space velocities and mass-loss rates. Our best-fitting model reproduces the overall shape and surface brightness of the observed bow shock and suggests that the space velocity and mass-loss rate of IRC -10414 are ≈50 km s-1 and ≈10-6 M⊙ yr-1, respectively, and that the number density of the local interstellar medium is ≈3 cm-3. It also shows that the bow shock emission comes mainly from the shocked stellar wind. This naturally explains the enhanced nitrogen abundance in the line-emitting material, derived from the spectroscopy of the bow shock. We found that photoionized bow shocks are ≈15-50 times brighter in optical line emission than their neutral counterparts, from which we conclude that the bow shock of IRC -10414 must be photoionized.

  9. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  10. Giotto observations of the bow shock at Comet Halley

    International Nuclear Information System (INIS)

    Formisano, V.; Amata, E.; Wilken, B.

    1986-01-01

    Preliminary results from the JPA instrument on Giotto indicate that Comet Halley, even on the flanks, has a bow shock which moves backwards and forwards over the spacecraft. To understand the structure properly will require more detailed investigation of the relationships between three particle populations, cometary ions, solar wind ions and electrons

  11. Multispacecraft observations of energetic ions upstream and downstream of the bow shock

    International Nuclear Information System (INIS)

    Scholer, M.; Mobius, E.; Kistler, L.M.; Klecker, B.; Ipavich, F.M.; Department of Physics and Astronomy, University of Maryland, College Park)

    1989-01-01

    We present simultaneous measurements of energetic protons and alpha particles inside and outside of the magnetopause, immediately upstream, and downstream as well as further upstream of the bow shock. A comparison between the intensity at the bow shock and further upstream results in an e-folding distance at 30 keV of similar to 6.2 R/sub E/. After transformation of the angular distribution into the solar wind frame a diffusion coefficeint of κ/sub parallel/similar to 3 R/sub E/ is obtained from the anisotropy and the intensity gradient. Immediately downstream of the bow shock the anisotropy in the shock frame is directed toward the magnetopause. After transformation into the plasma rest frame the distribution is isotropic. The intensity in the magnetosheath just outside the magnetopause is smaller than the intensity behind the bow shock. Thus, in the magnetosheath there is no gradient or streaming in the upstream direction. The spectra, intensities, and relative abundances in the magnetosheath and inside the magnetosphere are totally different. These observations are consistent with first order Fermi acceleration at the bow shock and subsequent downstream convection, and exclude a magnetospheric source for these particles. Copyright American Geophysical Union 1989

  12. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    International Nuclear Information System (INIS)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Khotyaintsev, Yuri V.; Dandouras, Iannis

    2013-01-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  13. The earth's foreshock, bow shock, and magnetosheath

    Science.gov (United States)

    Onsager, T. G.; Thomsen, M. F.

    1991-01-01

    Studies directly pertaining to the earth's foreshock, bow shock, and magnetosheath are reviewed, and some comparisons are made with data on other planets. Topics considered in detail include the electron foreshock, the ion foreshock, the quasi-parallel shock, the quasi-perpendicular shock, and the magnetosheath. Information discussed spans a broad range of disciplines, from large-scale macroscopic plasma phenomena to small-scale microphysical interactions.

  14. The earth's foreshock, bow shock, and magnetosheath

    International Nuclear Information System (INIS)

    Onsager, T.G.; Thomsen, M.F.

    1991-01-01

    Studies directly pertaining to the earth's foreshock, bow shock, and magnetosheath are reviewed, and some comparisons are made with data on other planets. Topics considered in detail include the electron foreshock, the ion foreshock, the quasi-parallel shock, the quasi-perpendicular shock, and the magnetosheath. Information discussed spans a broad range of disciplines, from large-scale macroscopic plasma phenomena to small-scale microphysical interactions. 184 refs

  15. Survey of coherent ion reflection at the quasi-parallel bow shock

    International Nuclear Information System (INIS)

    Onsager, T.G.; Thomsen, M.F.; Gosling, J.T.; Bame, S.J.; Russell, C.T.

    1990-01-01

    Ions coherently reflected off the Earth's bow shock have previously been observed both when the upstream geometry is quasi-perpendicular and when it is quasi-parallel. In the case of quasiperpendicular geometry, the ions are reflected in a nearly specular manner and are quickly carried back into the shock by the convecting magnetic field. In the quasi-parallel geometry, however, near-specularly reflected ions' guiding center velocities would on the average be directed away from the shock, allowing the ions to escape into the upstream region. The conditions under which coherent reflection occurs and the subsequent coupling of the reflected ions to the incoming solar wind plasma are important factors when assessing the contribution of the reflected ions to the downstream temperature increase and the shock structure. The survey presented in this paper, along with previously reported observations, suggests that near-specularly reflected ions are indeed an important aspect of energy dissipation at the Earth's quasi-parallel bow shock. The authors find that (1) cool, coherent, near-specularly reflected ion beams are detected over nearly the full range of upstream plasma paraameters commonly found at the Earth's bow shock; (2) the beams are typically observed only near the shock ramp or some shock-like feature; and (3) the observed beam velocities are almost always consistent with what one would expect for near-specularly reflected ions after only a small fraction of a gyroperiod following reflection. The second and third points indicate that the beams spread very quickly in velocity space. This spread in velocities could be due either to interactions between the beam and incoming solar wind ions or to some initially small velocity spread in the beam

  16. Hybrid simulation techniques applied to the earth's bow shock

    Science.gov (United States)

    Winske, D.; Leroy, M. M.

    1985-01-01

    The application of a hybrid simulation model, in which the ions are treated as discrete particles and the electrons as a massless charge-neutralizing fluid, to the study of the earth's bow shock is discussed. The essentials of the numerical methods are described in detail; movement of the ions, solution of the electromagnetic fields and electron fluid equations, and imposition of appropriate boundary and initial conditions. Examples of results of calculations for perpendicular shocks are presented which demonstrate the need for a kinetic treatment of the ions to reproduce the correct ion dynamics and the corresponding shock structure. Results for oblique shocks are also presented to show how the magnetic field and ion motion differ from the perpendicular case.

  17. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbances

    DEFF Research Database (Denmark)

    Tatrallyay, M.; Erdos, G.; Nemeth, Z.

    2012-01-01

    by the Cluster spacecraft were best predicted by the 3-D model of Lin et al. (2010). The applied empirical bow shock models and the 3-D semi-empiric bow shock model combined with magnetohydrodynamic (MHD) solution proved to be insufficient for predicting the observed unusual bow shock locations during large...... interplanetary disturbances. The results of a global 3-D MHD model were in good agreement with the Cluster observations on 17 January 2005, but they did not predict the bow shock crossings on 31 October 2003....... of three magnetopause and four bow shock models which describe them in considerably different ways using statistical methods based on observations. A new 2-D magnetopause model is introduced (based on Verigin et al., 2009) which takes into account the pressure of the compressed magnetosheath field raised...

  18. Scattering of field-aligned beam ions upstream of Earth's bow shock

    Directory of Open Access Journals (Sweden)

    A. Kis

    2007-03-01

    Full Text Available Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.

  19. Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays

    Science.gov (United States)

    Ampleford, David

    2009-11-01

    We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman

  20. The jumps of physical quantities at fast shocks under pressure anisotropy: theory versus observations at the bow shock

    International Nuclear Information System (INIS)

    Vogl, D.F.

    2000-10-01

    The interaction of the solar wind with magnetized planets leads to the formation of the so-called magnetosphere, a cavity generated by the geomagnetic field. The supersonic, superalfvenic, and magnetized solar wind flow interacting with blunt bodies produces a detached bow shock, separating the solar wind from the magnetosheath, the region between the shock wave and the magnetopause. On approach to a planetary obstacle, the solar wind becomes subsonic at the bow shock and then flows past the planet in the magnetosheath. At the bow shock, the plasma parameters and the magnetic field strength change from upstream to downstream, i.e., an increase of plasma density, temperature, pressure, and magnetic field strength, and a decrease of the velocity across the shock. In this PhD thesis we mainly concentrate on the variations of all physical quantities across the bow shock taking into account pressure anisotropy, which is an important feature in space plasma physics and observed by various spacecraft missions in the solar wind as well as in the magnetosheath. Dealing with anisotropic plasma conditions, one has to introduce the so-called pressure tensor, characterized by two scalar pressures, the pressure perpendicular (P p erp) and the pressure parallel (P p arallel) with respect to the magnetic field and in general one speaks of anisotropic conditions for P p erp is not P p arallel. Many spacecraft observations of the solar wind show P p arallel > P p erp, whereas observations of the magnetosheath show the opposite case, P p arallel p erp. Therefore, dissipation of kinetic energy into thermal energy plays an important role in studying the variations of the relevant physical quantities across the shock. It has to be mentioned that planetary bow shocks are good examples for fast MHD shock waves. Therefore, the basic equations for describing the changes across the shock can be obtained by integrating the MHD equations in conservative form. We note that these equations, the

  1. Remote sensing of local structure of the quasi-perpendicular Earth's bow shock by using field-aligned beams

    Directory of Open Access Journals (Sweden)

    B. Miao

    2009-03-01

    Full Text Available Field-aligned ion beams (FABs originate at the quasi-perpendicular Earth's bow shock and constitute an important ion population in the foreshock region. The bulk velocity of these FABs depends significantly on the shock normal angle, which is the angle between shock normal and upstream interplanetary magnetic field (IMF. This dependency may therefore be taken as an indicator of the local structure of the shock. Applying the direct reflection model to Cluster measurements, we have developed a method that uses proton FABs in the foreshock region for remote sensing of the local shock structure. The comparison of the model results with the multi-spacecraft observations of FAB events shows very good agreement in terms of wave amplitude and frequency of surface waves at the shock front.

  2. Dominant acceleration processes of ambient energetic protons (E>= 50 keV) at the bow shock: conditions and limitations

    International Nuclear Information System (INIS)

    Anagnostopoulos, G.C.; Sarris, E.T.

    1983-01-01

    Energetic proton (Esub(p)>= 50 keV) and magnetic field observations during crossings of the Earth's Bow Shock by the IMP-7 and 8 spacecraft are incorporated in this work in order to examine the effect of the Bow Shock on a pre-existing proton population under different ''interplanetary magnetic field-Bow Shock'' configurations, as well as the conditions for the presence of the Bow Shock associated energetic proton intensity enhancements. The presented observations indicate that the dominant process for the efficient acceleration of ambient energetic particles to energies exceeding approximately 50 keV is by ''gradient-B'' drifting parallel to the induced electric field at quasi-perpendicular Bow Shocks under certain well defined limitations deriving from the finite and curved Bow Shock surface. It is shown that the proton acceleration at the Bow Shock is most efficient for high values of the upstream magnetic field (in general B 1 > 8#betta#), high upstream plasma speed and expanded Bow Shock fronts, as well as for direction of the induced electric field oriented almost parallel to the flanks of the Bow Shock, i.e. when the drift distance of protons parallel to the electric field at the shock front is considerably smaller than the local radius of curvature of the Bow Shock. The implications of the presented observations of Bow Shock crossings as to the source of the energetic proton intensity enhancements are discussed. (author)

  3. Electrostatic and electromagnetic turbulence associated with the Earth's bow shock

    International Nuclear Information System (INIS)

    Rodriguez, P.

    1974-01-01

    The electric and magnetic field spectral densities of plasma waves in the earth's bow shock have been measured in the frequency range 20 Hz to 200 kHz using two 16-channel spectrum analyzers on the IMP-6 spacecraft. Electrostatic noise with a spectrum similar to the turbulence in the shock, but with lower intensities, is observed throughout the magnetosheath region, downstream of the shock. The intensity of the electrostatic component of turbulence in the bow shock increases as the upstream electron to ion temperature ratio increases, and decreases as the upstream sound velocity increases; both of these variations for the electrostatic component are consistent with ion sound wave turbulence. (U.S.)

  4. Recent H-alpha Results on Pulsar B2224+65’s Bow-Shock Nebula, the “Guitar”

    Directory of Open Access Journals (Sweden)

    Timothy Dolch

    2016-09-01

    Full Text Available We used the 4 m Discovery Channel Telescope (DCT at Lowell observatory in 2014 to observe the Guitar Nebula, an Hα bow-shock nebula around the high-velocity radio pulsar B2224+65. Since the nebula's discovery in 1992, the structure of the bow-shock has undergone significant dynamical changes. We have observed the limb structure, targeting the “body” and “neck” of the guitar. Comparing the DCT observations to 1995 observations with the Palomar 200-inch Hale telescope, we found changes in both spatial structure and surface brightness in the tip, head, and body of the nebula.

  5. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor [Research Centre for Astronomy and Earth Sciences, Geodetic and Geophysical Institute, Sopron (Hungary); Agapitov, Oleksiy; Krasnoselskikh, Vladimir [LPC2E/CNRS, F-45071 Orleans (France); Khotyaintsev, Yuri V. [Swedish Institute of Space Physics, SE- 751 21 Uppsala (Sweden); Dandouras, Iannis, E-mail: akis@ggki.hu, E-mail: Kis.Arpad@csfk.mta.hu [CESR, F-31028 Toulouse (France)

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  6. The Milky Way Project: A Citizen Science Catalog of Infrared Bow Shock Nebulae

    Science.gov (United States)

    Dixon, Don; Jayasinghe, Tharindu; Povich, Matthew S.

    2017-01-01

    We present preliminary results from the first citizen-science search for infrared stellar-wind bow shock candidates. This search uses the Milky Way project, hosted by the Zooniverse, an online platform with over 1 million volunteer citizen scientists. Milky Way Project volunteers examine 77,000 randomly-distributed Spitzer image cutouts at varying zoom levels. Volunteers mark the infrared arc of potential bow shock candidates as well as the star likely driving the nebula. We produce lists of candidates from bow shocks flagged by multiple volunteers, which after merging and final visual review form the basis for our catalog. Comparing our new catalog to a recently-published catalog of 709 infrared bow shock candidates identified by a small team of (primarily undergraduate) researchers will allow us to assess the effectiveness of citizen science for this type of search and should yield a more complete catalog. Planned studies using these large catalogs will improve constraints on the mass-loss rates for the massive stars that create these bow shock nebulae. Mass-loss rates are highly uncertain but are a critical component of evolutionary models for massive stars. This work is supported by the National Science Foundation under grants CAREER-1454334, AST-1411851 (RUI) and AST-1412845.

  7. Bow shock data analysis

    Science.gov (United States)

    Zipf, Edward C.; Erdman, Peeter W.

    1994-08-01

    The University of Pittsburgh Space Physics Group in collaboration with the Army Research Office (ARO) modeling team has completed a systematic organization of the shock and plume spectral data and the electron temperature and density measurements obtained during the BowShock I and II rocket flights which have been submitted to the AEDC Data Center, has verified the presence of CO Cameron band emission during the Antares engine burn and for an extended period of time in the post-burn plume, and have adapted 3-D radiation entrapment codes developed by the University of Pittsburgh to study aurora and other atmospheric phenomena that involve significant spatial effects to investigate the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) envelope surrounding the re-entry that create an extensive plasma cloud by photoionization.

  8. PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Christopher R.; Boley, Aaron C. [Department of Physics and Astronomy University of British Columbia Vancouver, BC V6T 1Z1 (Canada); Morris, Melissa A. [Physics Department State University of New York at Cortland Cortland, NY 13045 (United States)

    2016-02-20

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  9. Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars

    Science.gov (United States)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E ≥ 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue. Aim. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars. Methods: Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S. Results: None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained. Conclusions: Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV.The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy.

  10. THEMIS satellite observations of hot flow anomalies at Earth's bow shock

    Directory of Open Access Journals (Sweden)

    C. Chu

    2017-03-01

    Full Text Available Hot flow anomalies (HFAs at Earth's bow shock were identified in Time History of Events and Macroscale Interactions During Substorms (THEMIS satellite data from 2007 to 2009. The events were classified as young or mature and also as regular or spontaneous hot flow anomalies (SHFAs. The dataset has 17 young SHFAs, 49 mature SHFAs, 15 young HFAs, and 55 mature HFAs. They span a wide range of magnetic local times (MLTs from approximately 7 to 16.5 MLT. The largest ratio of solar wind to HFA core density occurred near dusk and at larger distances from the bow shock. In this study, HFAs and SHFAs were observed up to 6.3 RE and 6.1 RE (Earth radii, respectively, upstream from the model bow shock. HFA–SHFA occurrence decreases with distance upstream from the bow shock. HFAs of the highest event core ion temperatures were not seen at the flanks. The ratio of HFA ion temperature increase to HFA electron temperature increase is highest around 12 MLT and slightly duskward. For SHFAs, (Tihfa∕Tisw/(Tehfa∕Tesw generally increased with distance from the bow shock. Both mature and young HFAs are more prevalent when there is an approximately radial interplanetary magnetic field. HFAs occur most preferentially for solar wind speeds from 550 to 600 km s−1. The correlation coefficient between the HFA increase in thermal energy density from solar wind values and the decrease in kinetic energy density from solar wind values is 0.62. SHFAs and HFAs do not show major differences in this study.

  11. MMS Observation of Shock-Reflected He++ at Earth's Quasi-Perpendicular Bow Shock

    Science.gov (United States)

    Broll, Jeffrey Michael; Fuselier, S. A.; Trattner, K. J.; Schwartz, S. J.; Burch, J. L.; Giles, B. L.; Anderson, B. J.

    2018-01-01

    Specular reflection of protons at Earth's supercritical quasi-perpendicular bow shock has long been known to lead to the thermalization of solar wind particles by velocity-space dispersion. The same process has been proposed for He++ but could not be confirmed previously due to insufficient time resolution for velocity distribution measurements. We present observations and simulations of a bow shock crossing by the Magnetospheric Multiscale (MMS) mission on 20 November 2015 indicating that a very similar reflection process for He++ is possible, and further that the part of the incoming distribution with the highest probability of reflecting is the same for H+ and He++. However, the reflection process for He++ is accomplished by deeper penetration into the downstream magnetic fields.

  12. Ion distributions in the Earth's foreshock upstream from the bow shock

    Science.gov (United States)

    Fuselier, S. A.

    1995-01-01

    A variety of suprathermal and energetic ion distributions are found upstream from shocks. Some distributions, such as field-aligned beams, are generated directly at the shock either through reflection processes or through leakage from the hotter downstream region. Other distributions, such as intermediate distributions, evolve from these parent distributions through wave-particle interactions. This paper reviews our current understanding of the creation and evolution of suprathermal distributions at shocks. Examples of suprathermal ion distributions are taken from observations at the Earth's bow shock. Particular emphasis is placed on the creation of field-aligned beams and specularly reflected ion distributions and on the evolution of these distributions in the Earth's ion foreshock. However, the results from this heavily studied region are applicable to interplanetary shocks, bow shocks at other planets, and comets.

  13. Electron velocity distributions near the earth's bow shock

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, R.C.; Bame, S.J.; Gary, S.P.; Gosling, J.T.; McComas, D.J.; Thomsen, M.F.; Paschmann, G.; Hoppe, M.M.

    1983-01-01

    A survey of two-dimensional electron velocity distributions, f(V), measured near the earth's bow shock using Los Alamos/Garching plasma instrumentation aboard ISEE 2 is presented. This survey provides clues to the mechanisms of electron thermalization within the shock and the relaxation of both the upsteam and downstream velocity distributions. First, near the foreshock boundary, fluxes of electrons having a power law shape at high energies backstream from the shock. Second, within the shock, cuts through f(V) along B. f(V), often show single maxima offset toward the magnetosheath by speeds comparable to, but larger than, the upstream thermal speed.Third, magnetosheath distributions generally have flat tops out to an energy, E 0 , with maxima substantially lower than that in the solar wind. Occasionally, cuts through f(V) along B show one and sometimes two small peaks at the edge of the flat tops making them appear concave upward. The electron distributions characteristic of these three regions are interpreted as arising from the effects of macroscopic (scale size comparable to or larger than the shock width) electric and magnetic fields and the subsequent effects of microscopic (scale size small in comparison with the shock width) fields. In particular, our results suggest that field-aligned instabilities are likely to be present in the earth's bow shock

  14. An empirical model of the Earth's bow shock based on an artificial neural network

    Science.gov (United States)

    Pallocchia, Giuseppe; Ambrosino, Danila; Trenchi, Lorenzo

    2014-05-01

    All of the past empirical models of the Earth's bow shock shape were obtained by best-fitting some given surfaces to sets of observed crossings. However, the issue of bow shock modeling can be addressed by means of artificial neural networks (ANN) as well. In this regard, here it is presented a perceptron, a simple feedforward network, which computes the bow shock distance along a given direction using the two angular coordinates of that direction, the bow shock predicted distance RF79 (provided by Formisano's model (F79)) and the upstream alfvénic Mach number Ma. After a brief description of the ANN architecture and training method, we discuss the results of the statistical comparison, performed over a test set of 1140 IMP8 crossings, between the prediction accuracies of ANN and F79 models.

  15. Improved bow shock models for Herbig-Haro objects - application to HH 2A-prime

    International Nuclear Information System (INIS)

    Raymond, J.C.; Hartmann, L.; Hartigan, P.

    1988-01-01

    An improved version of the bow shock theory previously applied to Herbig-Haro objects is presented. The modifications provide a more accurate calculation of the ionization state of material entering the bow shock. The revised preionization does not drastically affect the emission-line predictions for a 200 km/s bow shock model, though the effects will be more severe for slower shock velocities. The line profiles of the new models resemble the observed profiles somewhat more closely, and the relative emission-line intensities typically differ by 30 percent from those predicted by the older models. The models agree well with new IUE spectra and existing optical data for HH 2A-prime. 32 references

  16. Scattering of field-aligned beam ions upstream of Earth's bow shock

    Directory of Open Access Journals (Sweden)

    A. Kis

    2007-03-01

    Full Text Available Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.

  17. SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

    International Nuclear Information System (INIS)

    Masters, A.; Dougherty, M. K.; Sulaiman, A. H.; Sergis, N.; Stawarz, L.; Fujimoto, M.; Coates, A. J.

    2016-01-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).

  18. SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Masters, A.; Dougherty, M. K. [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, A. H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Sergis, N. [Office of Space Research and Technology, Academy of Athens, Soranou Efesiou 4, 11527 Athens (Greece); Stawarz, L. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Fujimoto, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Coates, A. J., E-mail: a.masters@imperial.ac.uk [Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom)

    2016-07-20

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).

  19. Plasma waves in the Earth's foreshock, bow shock, and magnetosheath

    International Nuclear Information System (INIS)

    Onsager, T.G.

    1988-01-01

    The research presented in this dissertation is a detailed analysis of electrostatic waves in the Earth's foreshock, bow shock, and magnetosheath. The wave modes measured in these regions, the possible generation mechanisms, and the process which drive the plasma to its unstable state are investigated. The measurements used in this study were obtained from the plasma wave receiver, the particle instrument, and the magnetometer on board the Active Magnetospheric Particle Tracer Explorer (AMPTE) Ion Release Module (IRM). Electron beam mode waves have been identified in the Earth's foreshock. A technique is developed which allows the rest frame frequency and wave number of the electron beam mode waves to be determined from the measurements. The experimentally determined values are compared with theoretical predictions, and approximate limits are put on the beam temperatures. It is demonstrated that electrostatic waves are present in the bow shock and magnetosheath with frequencies above the maximum frequency for Doppler shifted ion acoustic waves, yet below the Langmuir frequency. Waves in this frequency range are tentatively identified as electron beam mode waves. This identification is based on the measured frequencies and electric field polarization directions. Data from 45 bow shock crossings are then used to investigate possible correlations between the electron beam mode waves and the near shock plasma parameters. The best correlations are found with Alfven Mach number and electron beta. Possible mechanism which might produce electron beams in the shock and magnetosheath are discussed in terms of the correlation study results

  20. ASYMPTOTIC STEADY-STATE SOLUTION TO A BOW SHOCK WITH AN INFINITE MACH NUMBER

    Energy Technology Data Exchange (ETDEWEB)

    Yalinewich, Almog; Sari, Re’em [Racah Institute of Physics, the Hebrew University, 91904, Jerusalem (Israel)

    2016-08-01

    The problem of a cold gas flowing past a stationary obstacle is considered. We study the bow shock that forms around the obstacle and show that at large distances from the obstacle the shock front forms a parabolic solid of revolution. The profiles of the hydrodynamic variables in the interior of the shock are obtained by solution of the hydrodynamic equations in parabolic coordinates. The results are verified with a hydrodynamic simulation. The drag force on the obstacle is also calculated. Finally, we use these results to model the bow shock around an isolated neutron star.

  1. TRANSPORT OF SOLAR WIND H{sup +} AND He{sup ++} IONS ACROSS EARTH’S BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Parks, G. K.; Lin, N. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Lee, E. [School of Space Research and Institute of Natural Sciences, Kyung Hee University, Yongin (Korea, Republic of); Fu, S. Y.; Ma, Y. Q. [Institute of Space Science, Peking University, Beijing (China); Kim, H. E.; Hong, J. [School of Space Research, Kyung Hee University, Yongin (Korea, Republic of); Yang, Z. W.; Liu, Y. [Key Laboratory for Space Weather, Chinese Academy of Sciences, Beijing (China); Canu, P. [Plasma Physics Laboratory, Ecole Polytechnique, Paris (France); Dandouras, I.; Rème, H. [IRAP, Paul Sabatier University and CNRS, Toulouse (France); Goldstein, M. L., E-mail: parks@ssl.berkeley.edu [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-07-10

    We have investigated the dependence of mass, energy, and charge of solar wind (SW) transport across Earth’s bow shock. An examination of 111 crossings during quiet SW in both quasi-perpendicular and quasi-parallel shock regions shows that 64 crossings had various degrees of heating and thermalization of SW. We found 22 crossings where the SW speed was <400 km s{sup −1}. The shock potential of a typical supercritical quasi-perpendicular shock estimated from deceleration of the SW and cutoff energy of electron flat top distribution is ∼50 Volts. We find that the temperatures of H{sup +} and He{sup ++} beams that penetrate the shock can sometimes be nearly the same in the upstream and downstream regions, indicating little or no heating had occurred crossing the bow shock. None of the models predict that the SW can cross the bow shock without heating. Our observations are important constraints for new models of collisionless shocks.

  2. Martian Bow Shock and Magnetic Pile-Up Barrier Formation Due to the Exosphere Ion Mass-Loading

    Directory of Open Access Journals (Sweden)

    Eojin Kim

    2011-03-01

    Full Text Available Bow shock, formed by the interaction between the solar wind and a planet, is generated in different patterns depending on the conditions of the planet. In the case of the earth, its own strong magnetic field plays a critical role in determining the position of the bow shock. However, in the case of Mars of which has very a small intrinsic magnetic field, the bow shock is formed by the direct interaction between the solar wind and the Martian ionosphere. It is known that the position of the Martian bow shock is affected by the mass loading-effect by which the supersonic solar wind velocity becomes subsonic as the heavy ions originating from the planet are loaded on the solar wind. We simulated the Martian magnetosphere depending on the changes of the density and velocity of the solar wind by using the three-dimensional magnetohydrodynamic model built by modifying the comet code that includes the mass loading effect. The Martian exosphere model of was employed as the Martian atmosphere model, and only the photoionization by the solar radiation was considered in the ionization process of the neutral atmosphere. In the simulation result under the normal solar wind conditions, the Martian bow shock position in the subsolar point direction was consistent with the result of the previous studies. The three-dimensional simulation results produced by varying the solar wind density and velocity were all included in the range of the Martian bow shock position observed by Mariner 4, Mars 2, 3, 5, and Phobos 2. Additionally, the simulation result also showed that the change of the solar wind density had a greater effect on the Martian bow shock position than the change of the solar wind velocity. Our result may be useful in analyzing the future observation data by Martian probes.

  3. Upstream region, foreshock and bow shock wave at Halley's Comet from plasma electron measurements

    International Nuclear Information System (INIS)

    Anderson, K.A.; Carlson, C.W.; Curtis, D.W.

    1986-01-01

    Halley plasma electron parameters from 2.7 million km from the comet nucleus to the bow shock wave at 1.1 million km and beyond are surveyed. The features of the electron foreshock lying outside the shock to a distance of 230,000 km are described. It is a region of intense solar wind-comet plasma interaction in which energetic electrons are prominent. Several spikes of electrons whose energies extend to 2.5 keV appear in front of the shock. These energetic electrons may be accelerated in the same way electrons are accelerated at the Earth's bow shock to energies of 1 to 10 keV. The direction of the electron bulk flow direction changes abruptly between 1920 and 1922 UT, and the flow speed begins a sharp decline at the same time. It is suggested that the spacecraft entered the bow shock wave between 1920 and 1922 UT. Electron density variations at Halley are very much smaller than those at Giacobini-Zinner

  4. Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin

    2009-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.

  5. Relative locations of the bow shocks of the terrestrial planets

    International Nuclear Information System (INIS)

    Russell, C.T.

    1977-01-01

    The observed bow shock encounters at Mercury, Venus and Mars are least square fit using the same technique so that their sizes and shapes can be intercompared. The shock front of Mercury most resembles the terrestrial shock in shape, and the shock stand off distance is consistent with the observed moment. The shapes of the Venus and Mars shock fronts more resemble each other than the earth's and the stand off distances are consistent with direct interaction of the solar wind with the ionosphere on the dayside. The Venus shock is closer to the planet than the Mars shock suggesting more absorption of the solar wind at Venus

  6. Reflection of the solar wind ions at the earth's bow shock: energization

    International Nuclear Information System (INIS)

    Bonifazi, C.; Moreno, G.; Russell, C.T.

    1983-01-01

    The energies of the field-aligned proton beams observed upstream of the earth's bow shock are tested, on a statistical basis, against a simple reflection model. The comparison is carried out using both plasma and magnetic field data collected by the ISEE 2 spacecraft. The observations refer to the period from November 5 to December 20, 1977. According to this model, some of the solar wind protons incident upon the earth's shock front when reflected upstream gain energy by displacement parallel to the interplanetary electric field. The energy gained in the reflection can be described as a function of the angles between the interplanetary magnetic field, the solar wind bulk velocity, and the local shock normal. The task of finding these angles, i.e., the expected source point of the reflected ions at the earth's shock front, has been resolved using both the measured magnetic field direction and actual beam trajectory. The latter method, which takes into account the ion drift velocity, leads to a better agreement between theory and observations when far from the shock. In particular, it allows us to check the energies of the field-aligned beams even when they are observed far from the earth's bow shock (at distances up to 10-15 R/sub E/). We confirm, on a statistical basis, the test of the model recently carried out using the Los Alamos National Laboratory/Max-Planck-extraterrestrische observations on ISEE 1 and 2. We infer that reflected beams can sometimes propagate far upstream of the earth's bow shock without changing their energy properties

  7. Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock

    Science.gov (United States)

    Desai, M. I.; Burch, J. L.; Broll, J. M.; Genestreti, K.; Torbert, R. B.; Ergun, R.; Wei, H.; Giles, B. L.; Russell, C. T.; Phan, T.; Chen, L. J.; Lai, H.; Wang, S.; Schwartz, S. J.; Allen, R. C.; Mauk, B.; Gingell, I.

    2017-12-01

    NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. During Phase 1a, MMS also encountered and crossed the Earth's bow shock more than 300 times. We use burst data during 2 bow shock crossings to shed new light on key open questions regarding the formation, evolution, and dissipation mechanisms at collisionless shocks. Specifically, we focus on two events that exhibit clear differences in the ion and electron properties, the associated wave activity, and, therefore in the nature of the dissipation. In the case of a quasi-perpendicular, low beta shock crossing, we find that the dissipation processes are most likely associated with field-aligned electron beams that are coincident with high frequency electrostatic waves. On the other hand, the dissipation processes at an oblique, high beta shock crossing are largely governed by the quasi-static electric field and generation of magnetosonic whistler waves that result in perpendicular temperature anisotropy for the electrons. We also discuss the implications of these results for ion heating, reflection, and particle acceleration.

  8. [Development Of 25-Year Imp 8 Bow Shock Crossing "List, Ingestion Of This List To Cdaweb, & Enhancement"

    Science.gov (United States)

    Merka, J.; Szabo, A.; Narock, T. W.; King, J. H.; Paularena, K. I.; Richardson, J. D.

    2003-01-01

    The MIT portion of this project was to use the plasma data from IMP 8 to identify bow shock crossings for construction of a bow shock data base. In collaboration with Goddard, we determined which shock parameters would be included in the catalog and developed a set of flags for characterizing the data. IMP 8 data from 1973-2001 were surveyed for bow shock crossings; the crossings apparent in the plasma data were compared to a list of crossing chosen in the magnetometer data by Goddard. Differences were reconciled to produce a single list. The data were then provided to the NSSDC for archiving. All the work ascribed to MIT in the proposal was completed.

  9. Interaction of single-pulse laser energy with bow shock in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Hong Yanji

    2014-04-01

    Full Text Available Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier–Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction. The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagnation point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the investigation of the mechanism of the interaction.

  10. Laboratory studies of stagnating plasma flows with applications to inner solar system and stellar bow shocks

    Science.gov (United States)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2016-10-01

    Supercritical magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe by converting flow kinetic energy to other forms such as thermal and supra-thermal populations, magnetic field enhancement, turbulence, and energetic particles. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those of inner solar system and stellar bow shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to 100s of km/s; resulting in β 1, collisionless plasma flows with Msonic and MAlfvén 10. The drifting FRC can be made to impinge upon a variety of static obstacles including: a strong mirror or cusp magnetic field (mimicking magnetically excited shocks such as the Earth's bow shock), plasma pileup from a solid obstacle (similar to the bow shocks of Mercury and the Moon), and a neural gas puff (bow shocks of Venus or the comets). Characteristic shock length and time scales that are both large enough to observe yet small enough to fit within the experiment, enabling study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental program will be presented, including recent results. This work is supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences under Contract No. DE-AC52-06NA25369.

  11. Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Lee, M.A.

    1982-01-01

    A self-consistent theory is presented for the excitation of hydromagnetic waves and the acceleration of diffuse ions upstream of the earth's bow shock in the quasi-equilibrium that results when the solar wind velocity and the interplanetary magnetic field are nearly parallel. For the waves the quasi-equilibrium results from a balance between excitation by the ions, which stream relative to the solar wind plasma, and convective loss to the magnetosheath. For the diffuse ions the quasi-equilibrium results from a balance between injection at the shock front, confinement to the foreshock by pitch angle scattering on the waves, acceleration by compression at the shock front, loss to the magnetosheath, loss due to escape upstream of the foreshock, and loss via diffusion perpendicular to the average magnetic field onto field lines that do not connect to the shock front. Diffusion equations describing the ion transport and wave kinetic equations describing the hydromagnetic wave transport are solved self-consistently to yield analytical expressions for the differential wave intensity spectrum as a function of frequency and distance from the bow shock z and for the ion omnidirectional distribution functions and anisotropies as functions of energy and z, In quantitative agreement with observations, the theory predicts (1) exponential spectra at the bow shock in energy per charge, (2) a decrease in intensity and hardening of the ion spectra with increasing z, (3) a 30-keV proton anisotropy parallel to z increasing from -0.28 at the bow shock to +0.51 as z→infinity (4) a linearly polarized wave intensity spectrum with a minimum at approx.6 x 10 -3 Hz and a maximum at approx.2--3 x 10 -2 Hz, (5) a decrease in the wave intensity spectrum with increasing z, (6) a total energy density in protons with energies >15 keV about eight times that in the hydromagnetic waves

  12. PSR J2124-3358: A Bow Shock Nebula with an X-ray Tail

    Science.gov (United States)

    Chatterjee, S.; Gaensler, B. M.; Vigelius, M.; Cordes, J. M.; Arzoumanian, Z.; Stappers, B.; Ghavamian, P.; Melatos, A.

    2005-12-01

    As neutron stars move supersonically through the interstellar medium, their relativistic winds are confined by the ram pressure of the interstellar medium. The outer shocked layers may emit in Hα , producing a visible bow shock nebula, while the confined relativistic wind may produce radio or X-ray emission. The Hα bow shock nebula powered by the recycled pulsar J2124-3358 is asymmetric about the velocity vector and shows a marked kink. In recent observations with the Chandra X-ray Observatory, we have detected a long, curved X-ray tail associated with the pulsar. The tail is not aligned with the pulsar velocity, but is confined within the optical bow shock. The X-ray spectrum of the tail is well-fit by a power law, consistent with synchrotron emission from the wind termination shock and the post-shock flow. The presence of Hα and X-ray emission allows us to trace both the external ambient medium and the confined wind. In magnetohydrodynamic simulations, we verify that a bulk flow and non-uniformities in the ambient medium can produce the observed shape of the nebula, possibly in combination with an anisotropic pulsar wind. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number GO5-6075X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060.

  13. COMPUTING THE DUST DISTRIBUTION IN THE BOW SHOCK OF A FAST-MOVING, EVOLVED STAR

    International Nuclear Information System (INIS)

    Van Marle, A. J.; Meliani, Z.; Keppens, R.; Decin, L.

    2011-01-01

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind-interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock morphology form, with localized instability development. Our model includes a detailed treatment of dust grains in the stellar wind and takes into account the drag forces between dust and gas. The dust is treated as pressureless gas components binned per grain size, for which we use 10 representative grain size bins. Our simulations allow us to deduce how dust grains of varying sizes become distributed throughout the circumstellar medium. We show that smaller dust grains (radius <0.045 μm) tend to be strongly bound to the gas and therefore follow the gas density distribution closely, with intricate fine structure due to essentially hydrodynamical instabilities at the wind-related contact discontinuity. Larger grains which are more resistant to drag forces are shown to have their own unique dust distribution, with progressive deviations from the gas morphology. Specifically, small dust grains stay entirely within the zone bound by shocked wind material. The large grains are capable of leaving the shocked wind layer and can penetrate into the shocked or even unshocked interstellar medium. Depending on how the number of dust grains varies with grain size, this should leave a clear imprint in infrared observations of bow shocks of red supergiants and other evolved stars.

  14. Observations of the spatial and temporal structure of field-aligned beam and gyrating ring distributions at the quasi-perpendicular bow shock with Cluster CIS

    Directory of Open Access Journals (Sweden)

    E. Möbius

    2001-09-01

    Full Text Available During the early orbit phase, the Cluster spacecraft have repeatedly crossed the perpendicular Earth’s bow shock and provided the first multi-spacecraft measurements. We have analyzed data from the Cluster Ion Spectrometry experiment (CIS, which observes the 3D-ion distribution function of the major species in the energy range of 5 eV to 40 keV with a 4 s resolution. Beams of reflected ions were observed simultaneously at all spacecraft locations and could be tracked from upstream to the shock itself. They were found to originate from the same distribution of ions that constitutes the reflected gyrating ions, which form a ring distribution in the velocity space immediately upstream and downstream of the shock. This observation suggests a common origin of ring and beam populations at quasi-perpendicular shocks in the form of specular reflection and immediate pitch angle scattering. Generally, the spatial evolution across the shock is very similar on all spacecraft, but phased in time according to their relative location. However, a distinct temporal structure of the ion fluxes in the field-aligned beam is observed that varies simultaneously on all spacecraft. This is likely to reflect the variations in the reflection and scattering efficiencies.Key words. Interplanetary physics (planetary bow shocks; energetic particles; instruments and techniques

  15. Bow Shock Generator Current Systems: MMS Observations of Possible Current Closure

    Science.gov (United States)

    Hamrin, M.; Gunell, H.; Lindkvist, J.; Lindqvist, P.-A.; Ergun, R. E.; Giles, B. L.

    2018-01-01

    We use data from the first two dayside seasons of the Magnetospheric Multiscale (MMS) mission to study current systems associated with quasi-perpendicular bow shocks of generator type. We have analyzed 154 MMS bow shock crossings near the equatorial plane. We compute the current density during the crossings and conclude that the component perpendicular to the shock normal (J⊥) is consistent with a pileup of the interplanetary magnetic field (IMF) inside the magnetosheath. For predominantly southward IMF, we observe a component Jn parallel (antiparallel) to the normal for GSM Y > 0 (MMS probing region. For IMF clock angles near 90∘, we find indications of the current system being tilted toward the north-south direction, obtaining a significant Jz component, and we suggest that the current closes off the equatorial plane at higher latitudes where the spacecraft are not probing. The observations are complicated for several reasons. For example, variations in the solar wind and the magnetospheric currents and loads affect the closure, and Jn is distributed over large regions, making it difficult to resolve inside the magnetosheath proper.

  16. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave

  17. Computing the Dust Distribution in the Bow Shock of a Fast-moving, Evolved Star

    NARCIS (Netherlands)

    van Marle, A. -J; Meliani, Z.; Keppens, R.; Decin, L.

    2011-01-01

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind–interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock

  18. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.

    2016-01-01

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  19. Injection and acceleration of H+ and He2+ at Earth's bow shock

    Directory of Open Access Journals (Sweden)

    M. Scholer

    1999-05-01

    Full Text Available We have performed a number of one-dimensional hybrid simulations (particle ions, massless electron fluid of quasi-parallel collisionless shocks in order to investigate the injection and subsequent acceleration of part of the solar wind ions at the Earth's bow shock. The shocks propagate into a medium containing magnetic fluctuations, which are initially superimposed on the background field, as well as generated or enhanced by the electromagnetic ion/ion beam instability between the solar wind and backstreaming ions. In order to study the mass (M and charge (Q dependence of the acceleration process He2+ is included self-consistently. The upstream differential intensity spectra of H+ and He2+ can be well represented by exponentials in energy. The e-folding energy Ec is a function of time: Ec increases with time. Furthermore the e-folding energy (normalized to the shock ramming energy Ep increases with increasing Alfvén Mach number of the shock and with increasing fluctuation level of the initially superimposed turbulence. When backstreaming ions leave the shock after their first encounter they exhibit already a spectrum which extends to more than ten times the shock ramming energy and which is ordered in energy per charge. From the injection spectrum it is concluded that leakage of heated downstream particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter like the non-thermal population do not describe the correct physics.Key words. Interplanetary physics (planetary bow shocks · Space plasma physics (charged particle motion and acceleration; numerical simulation studies

  20. Injection and acceleration of H+ and He2+ at Earth's bow shock

    Directory of Open Access Journals (Sweden)

    K.-H. Trattner

    Full Text Available We have performed a number of one-dimensional hybrid simulations (particle ions, massless electron fluid of quasi-parallel collisionless shocks in order to investigate the injection and subsequent acceleration of part of the solar wind ions at the Earth's bow shock. The shocks propagate into a medium containing magnetic fluctuations, which are initially superimposed on the background field, as well as generated or enhanced by the electromagnetic ion/ion beam instability between the solar wind and backstreaming ions. In order to study the mass (M and charge (Q dependence of the acceleration process He2+ is included self-consistently. The upstream differential intensity spectra of H+ and He2+ can be well represented by exponentials in energy. The e-folding energy Ec is a function of time: Ec increases with time. Furthermore the e-folding energy (normalized to the shock ramming energy Ep increases with increasing Alfvén Mach number of the shock and with increasing fluctuation level of the initially superimposed turbulence. When backstreaming ions leave the shock after their first encounter they exhibit already a spectrum which extends to more than ten times the shock ramming energy and which is ordered in energy per charge. From the injection spectrum it is concluded that leakage of heated downstream particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter like the non-thermal population do not describe the correct physics.Key words. Interplanetary physics (planetary bow shocks · Space plasma physics (charged particle motion and acceleration; numerical simulation studies

  1. ION ACCELERATION AT THE QUASI-PARALLEL BOW SHOCK: DECODING THE SIGNATURE OF INJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Torbjörn; Haynes, Christopher T.; Burgess, D. [School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS (United Kingdom); Mazelle, Christian X. [IRAP, Université Paul Sabatier Toulouse III-CNRS, 31028 Toulouse Cedex 4 (France)

    2016-03-20

    Collisionless shocks are efficient particle accelerators. At Earth, ions with energies exceeding 100 keV are seen upstream of the bow shock when the magnetic geometry is quasi-parallel, and large-scale supernova remnant shocks can accelerate ions into cosmic-ray energies. This energization is attributed to diffusive shock acceleration; however, for this process to become active, the ions must first be sufficiently energized. How and where this initial acceleration takes place has been one of the key unresolved issues in shock acceleration theory. Using Cluster spacecraft observations, we study the signatures of ion reflection events in the turbulent transition layer upstream of the terrestrial bow shock, and with the support of a hybrid simulation of the shock, we show that these reflection signatures are characteristic of the first step in the ion injection process. These reflection events develop in particular in the region where the trailing edge of large-amplitude upstream waves intercept the local shock ramp and the upstream magnetic field changes from quasi-perpendicular to quasi-parallel. The dispersed ion velocity signature observed can be attributed to a rapid succession of ion reflections at this wave boundary. After the ions’ initial interaction with the shock, they flow upstream along the quasi-parallel magnetic field. Each subsequent wavefront in the upstream region will sweep the ions back toward the shock, where they gain energy with each transition between the upstream and the shock wave frames. Within three to five gyroperiods, some ions have gained enough parallel velocity to escape upstream, thus completing the injection process.

  2. MMS observations of the Earth bow shock during magnetosphere compression and expansion: comparison of whistler wave properties around the shock ramp

    Science.gov (United States)

    Russell, C. T.; Strangeway, R. J.; Schwartz, S. J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) spacecraft, with their state-of-the-art plasma and field instruments onboard, allow us to investigate electromagnetic waves at the bow shock and their association with small-scale disturbances in the shocked plasmas. Understanding these waves could improve our knowledge on the heating of electrons and ions across the shock ramp and the energy dissipation of supercritical shocks. We have found broad-band and narrow band waves across the shock ramp and slightly downstream. The broad-band waves propagate obliquely to the magnetic field direction and have frequencies up to the electron cyclotron frequency, while the narrow-band waves have frequencies of a few hundred Hertz, durations under a second, and are right-handed circularly polarized and propagate along the magnetic field lines. Both wave types are likely to be whistler mode with different generation mechanisms. When the solar wind pressure changes, MMS occasionally observed a pair of bow shocks when the magnetosphere was compressed and then expanded. We compare the wave observations under these two situations to understand their roles in the shock ramp as well as the upstream and downstream plasmas.

  3. Observations of two distinct populations of bow shock ions in the upstream solar wind

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.; Bame, S.J.; Paschmann, G.; Sckopke, N.

    1978-01-01

    Observations upstream of the earth's bow shock with the LASL/MPI fast plasma experiments on ISEE 1 and 2 reveal the presence of two distinct and mutually exclusive populations of low energy (< or approx. =40keV) ions apparently accelerated at the bow shock. The first of these, the ''reflected'' population, is characterized by 1) sharply peaked spectra seldom extending much above approx. 10 keV/ion and 2) relatively collimated flow coming from the direction of the shock. On the other hand, the ''diffuse'' ions are distinguished by relatively flat energy spectra above approx. 10 keV and broad angular distributions. They are by far the most commonly observed upstream ion event. A close causal association is suggested between the diffuse ion population in the upstream solar wind and energetic plasma ions observed within the magnetosheath

  4. Analytic MHD Theory for Earth's Bow Shock at Low Mach Numbers

    Science.gov (United States)

    Grabbe, Crockett L.; Cairns, Iver H.

    1995-01-01

    A previous MHD theory for the density jump at the Earth's bow shock, which assumed the Alfven M(A) and sonic M(s) Mach numbers are both much greater than 1, is reanalyzed and generalized. It is shown that the MHD jump equation can be analytically solved much more directly using perturbation theory, with the ordering determined by M(A) and M(s), and that the first-order perturbation solution is identical to the solution found in the earlier theory. The second-order perturbation solution is calculated, whereas the earlier approach cannot be used to obtain it. The second-order terms generally are important over most of the range of M(A) and M(s) in the solar wind when the angle theta between the normal to the bow shock and magnetic field is not close to 0 deg or 180 deg (the solutions are symmetric about 90 deg). This new perturbation solution is generally accurate under most solar wind conditions at 1 AU, with the exception of low Mach numbers when theta is close to 90 deg. In this exceptional case the new solution does not improve on the first-order solutions obtained earlier, and the predicted density ratio can vary by 10-20% from the exact numerical MHD solutions. For theta approx. = 90 deg another perturbation solution is derived that predicts the density ratio much more accurately. This second solution is typically accurate for quasi-perpendicular conditions. Taken together, these two analytical solutions are generally accurate for the Earth's bow shock, except in the rare circumstance that M(A) is less than or = 2. MHD and gasdynamic simulations have produced empirical models in which the shock's standoff distance a(s) is linearly related to the density jump ratio X at the subsolar point. Using an empirical relationship between a(s) and X obtained from MHD simulations, a(s) values predicted using the MHD solutions for X are compared with the predictions of phenomenological models commonly used for modeling observational data, and with the predictions of a

  5. Comparison of theory with atomic oxygen 130.4 nm radiation data from the Bow Shock ultraviolet 2 rocket flight

    Science.gov (United States)

    Levin, Deborah A.; Candler, Graham V.; Collins, Robert J.; Howlett, Carl L.; Espy, Patrick; Whiting, Ellis; Park, Chul

    1993-01-01

    Comparison is made between the results obtained from a state-of-the-art flow and radiative model and bow shock vacuum ultraviolet (VUV) data obtained the recent Bow Shock 2 Flight Experiment. An extensive data set was obtained from onboard rocket measurements at a reentry speed of 5 km/sec between the altitudes of approximately 65-85 km. A description of the NO photoionization cell used, the data, and the interpretation of the data will be presented. The primary purpose of the analyses is to assess the utility of the data and to propose a radiation model appropriate to the flight conditions of Bow Shock 2. Theoretical predictions based on flow modeling discussed in earlier work and a new radiation model are compared with data.

  6. A Multi-wavelength Study of an Isolated MSP Bow Shock

    Science.gov (United States)

    Romani, Roger W.; Slane, Patrick; Green, Andrew

    2017-08-01

    PSR J2124-3358 is the only single MSP known to sport an Halpha bow shock. This shock, now also seen in the UV, encloses an unusual X-ray pulsar wind nebula (PWN) with a long off-axis trail. Combining the X-ray and UV images with AAT/KOALA integral field spectroscopy of the Halpha emission, we have an unusually complete picture of the pulsar's (101 km/s transverse) motion and the latitudinal distribution of its wind flux. These images reveal the 3-D orientation of a hard-spectrum PWN jet and a softer equatorial outflow. Within the context of a thin shock model, we can constrain the total energy output of the pulsar and the neutron star moment of inertia. The IFU spectra show extreme Balmer dominance, which also constrains the nature of the UV shock emission.

  7. Nonthermal ions and associated magnetic field behavior at a quasi-parallel earth's bow shock

    Science.gov (United States)

    Wilkinson, W. P.; Pardaens, A. K.; Schwartz, S. J.; Burgess, D.; Luehr, H.; Kessel, R. L.; Dunlop, M.; Farrugia, C. J.

    1993-01-01

    Attention is given to ion and magnetic field measurements at the earth's bow shock from the AMPTE-UKS and -IRM spacecraft, which were examined in high time resolution during a 45-min interval when the field remained closely aligned with the model bow shock normal. Dense ion beams were detected almost exclusively in the midst of short-duration periods of turbulent magnetic field wave activity. Many examples of propagation at large elevation angles relative to the ecliptic plane, which is inconsistent with reflection in the standard model shock configuration, were discovered. The associated waves are elliptically polarized and are preferentially left-handed in the observer's frame of reference, but are less confined to the maximum variance plane than other previously studied foreshock waves. The association of the wave activity with the ion beams suggests that the former may be triggered by an ion-driven instability, and possible candidates are discussed.

  8. Serendipitous discovery of an infrared bow shock near PSR J1549–4848 with Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongxiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Morrell, Nidia [Las Campanas Observatory, Observatories of the Carnegie Institution of Washington, La Serena (Chile); Kaspi, Victoria M. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada)

    2013-06-01

    We report on the discovery of an infrared cometary nebula around PSR J1549–4848 in our Spitzer survey of a few middle-aged radio pulsars. Following the discovery, multi-wavelength imaging and spectroscopic observations of the nebula were carried out. We detected the nebula in Spitzer Infrared Array Camera 8.0, Multiband Imaging Photometer for Spitzer 24 and 70 μm imaging, and in Spitzer IRS 7.5-14.4 μm spectroscopic observations, and also in the Wide-field Infrared Survey Explorer all-sky survey at 12 and 22 μm. These data were analyzed in detail, and we find that the nebula can be described with a standard bow shock shape, and that its spectrum contains polycyclic aromatic hydrocarbon and H{sub 2} emission features. However, it is not certain which object drives the nebula. We analyze the field stars and conclude that none of them can be the associated object because stars with a strong wind or mass ejection that usually produce bow shocks are much brighter than the field stars. The pulsar is approximately 15'' away from the region in which the associated object is expected to be located. In order to resolve the discrepancy, we suggest that a highly collimated wind could be emitted from the pulsar and produce the bow shock. X-ray imaging to detect the interaction of the wind with the ambient medium- and high-spatial resolution radio imaging to determine the proper motion of the pulsar should be carried out, which will help verify the association of the pulsar with the bow shock nebula.

  9. Bow shock specularly reflected ions in the presence of low-frequency electromagnetic waves: a case study

    Directory of Open Access Journals (Sweden)

    K. Meziane

    2004-07-01

    Full Text Available An energetic ion (E≤40 event observed by the CLUSTER/CIS experiment upstream of the Earth's bow shock is studied in detail. The ion event is observed in association with quasi-monochromatic ULF MHD-like waves, which we show modulate the ion fluxes. According to three statistical bow shock position models, the Cluster spacecrafts are located at ~0.5 Re from the shock and the averaged bow shock θBn0 is about ~30°. The analysis of the three-dimensional angular distribution indicates that ions propagating roughly along the magnetic field direction are observed at the onset of the event. Later on, the angular distribution is gyrophase-bunched and the pitch-angle distribution is peaked at α0~θBn0, consistent with the specular reflection production mechanism. The analysis of the waves shows that they are left-handed in the spacecraft frame of reference (right-handed in the solar wind frame and propagate roughly along the ambient magnetic field; we have found that they are in cyclotron-resonance with the field-aligned beam observed just upstream. Using properties of the waves and particles, we explain the observed particle flux-modulation in the context of θBn changes at the shock caused by the convected ULF waves. We have found that the high count rates coincide with particles leaving the shock when θBn angles are less than ~40°, consistent with the specular reflection hypothesis as the production mechanism of ions.

  10. A Laminar Model for the Magnetic Field Structure in Bow-Shock Pulsar Wind Nebulae

    Science.gov (United States)

    Bucciantini, N.

    2018-05-01

    Bow Shock Pulsar Wind Nebulae are a class of non-thermal sources, that form when the wind of a pulsar moving at supersonic speed interacts with the ambient medium, either the ISM or in a few cases the cold ejecta of the parent supernova. These systems have attracted attention in recent years, because they allow us to investigate the properties of the pulsar wind in a different environment from that of canonical Pulsar Wind Nebulae in Supernova Remnants. However, due to the complexity of the interaction, a full-fledged multidimensional analysis is still laking. We present here a simplified approach, based on Lagrangian tracers, to model the magnetic field structure in these systems, and use it to compute the magnetic field geometry, for various configurations in terms of relative orientation of the magnetic axis, pulsar speed and observer direction. Based on our solutions we have computed a set of radio emission maps, including polarization, to investigate the variety of possible appearances, and how the observed emission pattern can be used to constrain the orientation of the system, and the possible presence of turbulence.

  11. Features in the Behavior of the Solar Wind behind the Bow Shock Front near the Boundary of the Earth's Magnetosphere

    Science.gov (United States)

    Grib, S. A.; Leora, S. N.

    2017-12-01

    Macroscopic discontinuous structures observed in the solar wind are considered in the framework of magnetic hydrodynamics. The interaction of strong discontinuities is studied based on the solution of the generalized Riemann-Kochin problem. The appearance of discontinuities inside the magnetosheath after the collision of the solar wind shock wave with the bow shock front is taken into account. The propagation of secondary waves appearing in the magnetosheath is considered in the approximation of one-dimensional ideal magnetohydrodynamics. The appearance of a compression wave reflected from the magnetopause is indicated. The wave can nonlinearly break with the formation of a backward shock wave and cause the motion of the bow shock towards the Sun. The interaction between shock waves is considered with the well-known trial calculation method. It is assumed that the velocity of discontinuities in the magnetosheath in the first approximation is constant on the average. All reasonings and calculations correspond to consideration of a flow region with a velocity less than the magnetosonic speed near the Earth-Sun line. It is indicated that the results agree with the data from observations carried out on the WIND and Cluster spacecrafts.

  12. The upstream escape of energized solar wind protons from the bow shock

    International Nuclear Information System (INIS)

    Greenstadt, E.W.

    1975-01-01

    Recently, there have been some systematic observations of backstreaming protons at the Earth's bow shock with parallel velocity components and total energies much too high to be associated with the usual long-period upstream waves or to be produced by Sonnerup's simple reflection process (Lin et al., 1974), and these protons (30-100keV) were attributed to some unknown acceleration mechanism in the upstream region. The observations of Lof et al. involved protons in high pitch angle, and, although their reasons for favoring an upstream acceleration were quite different, it may seem intuitive that high pitch angle particles would have difficulty escaping the shock, especially at large field-normal angles. Such an inference would superficially support the notion of energization outside the bow shock. It seems worthwhile therefore to examine the extent to which the geometry of individual particle motion alone might select among reflected particles those that can escape upstream and those that cannot. In this paper the geometry of escape is described and some simple numerical examples are worked out for a few special cases. It is found that protons with rather high energies and pitch angles can escape the shock at only marginally quasi-parallel field orientations (i.e., thetasub(nB) approximately 50 0 ), even if they have quite moderate speeds parallel to B. (Auth.)

  13. Upstream pressure variations associated with the bow shock and their effects on the magnetosphere

    International Nuclear Information System (INIS)

    Fairfield, D.H.; Baumjohann, W.; Paschmann, G.; Luehr, H.; Sibeck, D.G.

    1990-01-01

    Magnetic field enhancements and depressions on the time scales of minutes were frequently observed simultaneously by the AMPTE CCE, GOES 5, and GOES 6 spacecraft in the subsolar magnetosphere. The source of these perturbations has been detected in the high time resolution AMPTE IRM measurements of the kinetic pressure of the solar wind upstream of the bow shock. It is argued that these upstream pressure variations are not inherent in the solar wind but rather are associated with the bow shock. This conclusion follows from the facts that (1) the upstream field strength and the density associated with the perturbations are highly correlated with each other whereas these quantities tend to be anticorrelated in the undisturbed solar wind, and (2) the upstream perturbations occur within the foreshock or at its boundary. The results imply a mode of interaction between the solar wind and the magnetosphere whereby density changes produced in the foreshock subsequently convect through the bow shock and impinge on the magnetosphere. Also velocity decreases deep within the foreshock sometimes reach many tens of kilometers per second and may be associated with further pressure variations as a changing interplanetary field direction changes the foreshock geometry. Upstream pressure perturbations should create significant effects on the magnetopause and at the foot of nearby field lines that lead to the polar cusp ionosphere

  14. First simultaneous measurements of waves generated at the bow shock in the solar wind, the magnetosphere and on the ground

    Science.gov (United States)

    Clausen, L. B. N.; Yeoman, T. K.; Fear, R. C.; Behlke, R.; Lucek, E. A.; Engebretson, M. J.

    2009-01-01

    On 5 September 2002 the Geotail satellite observed the cone angle of the Interplanetary Magnetic Field (IMF) change to values below 30° during a 56 min interval between 18:14 and 19:10 UT. This triggered the generation of upstream waves at the bow shock, 13 RE downstream of the position of Geotail. Upstream generated waves were subsequently observed by Geotail between 18:30 and 18:48 UT, during times the IMF cone angle dropped below values of 10°. At 18:24 UT all four Cluster satellites simultaneously observed a sudden increase in wave power in all three magnetic field components, independent of their position in the dayside magnetosphere. We show that the 10 min delay between the change in IMF direction as observed by Geotail and the increase in wave power observed by Cluster is consistent with the propagation of the IMF change from the Geotail position to the bow shock and the propagation of the generated waves through the bow shock, magnetosheath and magnetosphere towards the position of the Cluster satellites. We go on to show that the wave power recorded by the Cluster satellites in the component containing the poloidal and compressional pulsations was broadband and unstructured; the power in the component containing toroidal oscillations was structured and shows the existence of multi-harmonic Alfvénic continuum waves on field lines. Model predictions of these frequencies fit well with the observations. An increase in wave power associated with the change in IMF direction was also registered by ground based magnetometers which were magnetically conjunct with the Cluster satellites during the event. To the best of our knowledge we present the first simultaneous observations of waves created by backstreaming ions at the bow shock in the solar wind, the dayside magnetosphere and on the ground.

  15. Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock

    Science.gov (United States)

    Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.

    2018-05-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  16. Plasma electron signature of magnetic connection to the earth's bow shock: ISEE 3

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, R.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.; Zwickl, R.D.

    1982-01-01

    Enhanced fluxes of low-energy electrons backstreaming from the earth's bow shock have been identified at ISEE 3. When present, these fluxes modify ambient solar wind electron velocity distributions f(v) in characteristic ways that depends on whether ISEE 3 is near the edge, or within the interior of the earth's electron foreshock. Near the edge, energy peaks in f(v) are observed. Such distributions should be locally unstable to electron plasma oscillations. Well within the interior of the foreshock, enhanced fluxes of electrons with energies up to the maximum detected by the Los Alamos electron analyzer (approx.1 keV) are observed over the full backward hemisphere. These electrons can be modelled with an asymptotic power law distribution having index in the range 4< or approx. =p/sub b/s< or approx. =6. At intermediate energies (approx.20--50 eV), twin angular peaks are observed centered on the magnetic field direction B. Also observed at these times are depressions in f(v) at energies less than approx.20 eV that are centered on B. Such distributions having a perpendicular temperature greater than their parallel temperature may be locally unstable to the generation of whistler waves. Analysis of a particularly clean example of connection to the bow shock is consistent with the possiblility that the observed electron fluxes emerge from the forward foot of the electron heating region within bow shock where the electron density and temperature are larger than that of the uperturbed upstream solar wind by a factor of approx.1.2. This analysis also indicates that the electrostatic potential within the forward foot of the shock is between approx.5 and 50 V more positive than that within plasma far upstream at ISEE 3. However, these interpretations depend on the assumption of nearly scatter-free propagation, which may not hold

  17. SPITZER OBSERVATIONS OF BOW SHOCKS AND OUTFLOWS IN RCW 38

    Energy Technology Data Exchange (ETDEWEB)

    Winston, E. [ESA-ESTEC (SRE-SA), Keplerlaan 1, 2201 AZ Noordwijk ZH (Netherlands); Wolk, S. J.; Bourke, T. L.; Spitzbart, B. [Harvard Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Megeath, S. T. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Ave., Toledo, OH 43606 (United States); Gutermuth, R., E-mail: ewinston@rssd.esa.int [Five Colleges Astronomy Department, Smith College, Northampton, MA 01027 (United States)

    2012-01-10

    We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at Infrared Array Camera (IRAC) wavelengths, the fifth is only visible at 24 {mu}m. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS 2, have caused an outflow to the northeast and southwest of the central subcluster. The southern lobe of hot ionized gas is detected in X-rays; shocked gas and heated dust from the shock front are detected with Spitzer at 4.5 and 24 {mu}m. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 and 5.8 {mu}m observations of the cluster DBS2003-124, northeast of RCW 38, where 33 candidate young stellar objects (YSOs) are identified. One star associated with the cluster drives a parsec-scale jet. Two Herbig-Haro objects associated with the jet are visible at IRAC and Multiband Imaging Photometer for Spitzer (MIPS) wavelengths. The jet extends over a distance of {approx}3 pc. Assuming a velocity of 100 km s{sup -1} for the jet material gives an age of 3 Multiplication-Sign 10{sup 4} yr, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.

  18. SPITZER OBSERVATIONS OF BOW SHOCKS AND OUTFLOWS IN RCW 38

    International Nuclear Information System (INIS)

    Winston, E.; Wolk, S. J.; Bourke, T. L.; Spitzbart, B.; Megeath, S. T.; Gutermuth, R.

    2012-01-01

    We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at Infrared Array Camera (IRAC) wavelengths, the fifth is only visible at 24 μm. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS 2, have caused an outflow to the northeast and southwest of the central subcluster. The southern lobe of hot ionized gas is detected in X-rays; shocked gas and heated dust from the shock front are detected with Spitzer at 4.5 and 24 μm. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 and 5.8 μm observations of the cluster DBS2003-124, northeast of RCW 38, where 33 candidate young stellar objects (YSOs) are identified. One star associated with the cluster drives a parsec-scale jet. Two Herbig-Haro objects associated with the jet are visible at IRAC and Multiband Imaging Photometer for Spitzer (MIPS) wavelengths. The jet extends over a distance of ∼3 pc. Assuming a velocity of 100 km s –1 for the jet material gives an age of 3 × 10 4 yr, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.

  19. 3-D Hybrid Simulation of Quasi-Parallel Bow Shock and Its Effects on the Magnetosphere

    International Nuclear Information System (INIS)

    Lin, Y.; Wang, X.Y.

    2005-01-01

    A three-dimensional (3-D) global-scale hybrid simulation is carried out for the structure of the quasi-parallel bow shock, in particular the foreshock waves and pressure pulses. The wave evolution and interaction with the dayside magnetosphere are discussed. It is shown that diamagnetic cavities are generated in the turbulent foreshock due to the ion beam plasma interaction, and these compressional pulses lead to strong surface perturbations at the magnetopause and Alfven waves/field line resonance in the magnetosphere

  20. The electron density and temperature distributions predicted by bow shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.

    1990-01-01

    The observable spatial electron density and temperature distributions for series of simple bow shock models, which are of special interest in the study of Herbig-Haro (H-H) objects are computed. The spatial electron density and temperature distributions are derived from forbidden line ratios. It should be possible to use these results to recognize whether an observed electron density or temperature distribution can be attributed to a bow shock, as is the case in some Herbig-Haro objects. As an example, the empirical and predicted distributions for H-H 1 are compared. The predicted electron temperature distributions give the correct temperature range and they show very good diagnostic possibilities if the forbidden O III (4959 + 5007)/4363 wavelength ratio is used. 44 refs

  1. Which Bow Shock Theory, Gasdynamic or Magnetohydrodynamic, Better Explains CME Stand-off Distance Ratios from LASCO-C2 Observations ?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Ok; Moon, Y.-J. [School of Space Research Kyung Hee University Yongin 17104 (Korea, Republic of); Lee, Jin-Yi [Department of Astronomy and Space Science Kyung Hee University Yongin 17104 (Korea, Republic of); Kim, R.-S.; Cho, K.-S. [Korea Astronomy and Space Science Institute Daejeon 34055 (Korea, Republic of)

    2017-03-20

    It is generally believed that fast coronal mass ejections (CMEs) can generate their associated shocks, which are characterized by faint structures ahead of CMEs in white-light coronagraph images. In this study, we examine whether the observational stand-off distance ratio, defined as the CME stand-off distance divided by its radius, can be explained by bow shock theories. Of 535 SOHO /LASCO CMEs (from 1996 to 2015) with speeds greater than 1000 km s{sup −1} and angular widths wider than 60°, we select 18 limb CMEs with the following conditions: (1) their Alfvénic Mach numbers are greater than one under Mann’s magnetic field and Saito’s density distributions; and (2) the shock structures ahead of the CMEs are well identified. We determine observational CME stand-off distance ratios by using brightness profiles from LASCO-C2 observations. We compare our estimates with theoretical stand-off distance ratios from gasdynamic (GD) and magnetohydrodynamic (MHD) theories. The main results are as follows. Under the GD theory, 39% (7/18) of the CMEs are explained in the acceptable ranges of adiabatic gamma ( γ ) and CME geometry. Under the MHD theory, all the events are well explained when we consider quasi-parallel MHD shocks with γ = 5/3. When we use polarized brightness (pB) measurements for coronal density distributions, we also find similar results: 8% (1/12) under GD theory and 100% (12/12) under MHD theory. Our results demonstrate that the bow shock relationships based on MHD theory are more suitable than those based on GD theory for analyzing CME-driven shock signatures.

  2. Predictions of lithium interactions with earth's bow shock in the presence of wave activity

    Science.gov (United States)

    Decker, R. B.; Lui, A. T. Y.; Vlahos, L.

    1984-01-01

    The results of a test-particle simulation studying the movement of a lithium tracer ion injected upstream of the bow shock are reported. Wave activity consists of parallel and antiparallel propagating Alfven waves characterized by a frequency power spectrum within a frequency or range of amplitudes defined separately in the upstream and downstream regions. The results show that even a moderate level of wave activity can substantially change the results obtained in the absence of waves. Among the effects observed are: (1) increased ion transmission; (2) both the average energy gain and spread about the average are increased for transmitted and reflected particles; (3) the average final pitch angle for transmitted particles tends to 90 deg, and the spread of reflected particles is reduced; and (4) the spatial dispersion of the ions on the bow shock after a single encounter is increased.

  3. Ion distributions upstream and downstream of the Earth's bow shock: first results from Vlasiator

    Directory of Open Access Journals (Sweden)

    D. Pokhotelov

    2013-12-01

    Full Text Available A novel hybrid-Vlasov code, Vlasiator, is developed for global simulations of magnetospheric plasma kinetics. The code is applied to model the collisionless bow shock on scales of the Earth's magnetosphere in two spatial dimensions and three dimensions in velocity space retrieving ion distribution functions over the entire foreshock and magnetosheath regions with unprecedented detail. The hybrid-Vlasov approach produces noise-free uniformly discretized ion distribution functions comparable to those measured in situ by spacecraft. Vlasiator can reproduce features of the ion foreshock and magnetosheath well known from spacecraft observations, such as compressional magnetosonic waves generated by backstreaming ion populations in the foreshock and mirror modes in the magnetosheath. An overview of ion distributions from various regions of the bow shock is presented, demonstrating the great opportunities for comparison with multi-spacecraft observations.

  4. The cometary H II regions of DR 21: Bow shocks or champagne flows or both?

    Science.gov (United States)

    Immer, K.; Cyganowski, C.; Reid, M. J.; Menten, K. M.

    2014-03-01

    We present deep Very Large Array H66α radio recombination line (RRL) observations of the two cometary H II regions in DR 21. With these sensitive data, we test the "hybrid" bow shock/champagne flow model previously proposed for the DR 21 H II regions. The ionized gas down the tail of the southern H II region is redshifted by up to ~30 km s-1 with respect to the ambient molecular gas, as expected in the hybrid scenario. The RRL velocity structure, however, reveals the presence of two velocity components in both the northern and southern H II regions. This suggests that the ionized gas is flowing along cone-like shells, swept-up by stellar winds. The observed velocity structure of the well-resolved southern H II region is most consistent with a picture that combines a stellar wind with stellar motion (as in bow shock models) along a density gradient (as in champagne flow models). The direction of the implied density gradient is consistent with that suggested by maps of dust continuum and molecular line emission in the DR 21 region. The image cubes are only available as a FITS file at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A39Table 2, Fig. 4, and Appendices A and B are available in electronic form at http://www.aanda.org

  5. Enhanced Scattering of Diffuse Ions on Front of the Earth's Quasi-Parallel Bow Shock: a Case Study

    Science.gov (United States)

    Kis, A.; Matsukiyo, S.; Otsuka, F.; Hada, T.; Lemperger, I.; Dandouras, I. S.; Barta, V.; Facsko, G. I.

    2017-12-01

    In the analysis we present a case study of three energetic upstream ion events at the Earth's quasi-parallel bow shock based on multi-spacecraft data recorded by Cluster. The CIS-HIA instrument onboard Cluster provides partial energetic ion densities in 4 energy channels between 10 and 32 keV.The difference of the partial ion densities recorded by the individual spacecraft at various distances from the bow shock surface makes possible the determination of the spatial gradient of energetic ions.Using the gradient values we determined the spatial profile of the energetic ion partial densities as a function of distance from the bow shock and we calculated the e-folding distance and the diffusion coefficient for each event and each ion energy range. Results show that in two cases the scattering of diffuse ions takes place in a normal way, as "by the book", and the e-folding distance and diffusion coefficient values are comparable with previous results. On the other hand, in the third case the e-folding distance and the diffusion coefficient values are significantly lower, which suggests that in this case the scattering process -and therefore the diffusive shock acceleration (DSA) mechanism also- is much more efficient. Our analysis provides an explanation for this "enhanced" scattering process recorded in the third case.

  6. Ion distribution dynamics near the Earth's bow shock: first measurements with the 2D ion energy spectrometer CORALL on the INTERBALL/Tail-probe satellite

    Directory of Open Access Journals (Sweden)

    Yu. I. Yermolaev

    1997-05-01

    Full Text Available The dynamics of the ion distribution function near the Earth's bow shock is studied on the basis of quasi-3D measurements of ion energy spectra in the range of 30–24200 eV/q with the Russian-Cuban CORALL instrument on the INTERBALL/Tail-probe satellite. The instrument was designed for observations of magnetospheric plasma and measures ions, in an angular range of 36°–144° from the Earth-Sun direction. Ion populations generated by the Earth bow shock are often observed upstream from the bow shock. In the solar-wind stream compressed and heated by the passing of very dense magnetic cloud (CME, two types of these ion populations were measured upstream and before the bow shock crossing on 25 August 1995 at 07:37 UT. Both populations were observed in the energy range above 2 keV. At ~06:20 UT, when the angle between the direction of the interplanetary magnetic field and normal to the bow shock VBn was ≃ 43° the instrument observed a narrow, fast (~800 km/s field-aligned beam moving from the Earth. At ~07:30, when Bn ≃ 28°, the wide ion pitch-angle distribution was observed. A similar suprathermal ion population is observed in the magnetosheath simultaneously with the solar-wind ion population being heated and deflected from the Sun-Earth direction. The similarity of observations during the mentioned time-interval and under usual solar-wind conditions allows us to conclude that types of suprathermal ion populations upstream and downstream from the bow shock do not depend on the solar-wind disturbance generated by magnetic cloud.

  7. Bow shock studies at Mercury, Venus, Earth, and Mars with applications to the solar-planetary interaction problem

    International Nuclear Information System (INIS)

    Slavin, J.A.

    1982-01-01

    A series of bow shock studies conducted for the purpose of investigating the interaction between the solar wind and the terrestrial planets is presented. Toward this end appropriate modeling techniques have been developed and applied to the bow wave observations at Venus, Earth, and Mars. For Mercury the measurements are so few in number that no accurate determination of shock shape was deemed possible. Flow solutions generated using the observed bow wave surface as a boundary condition in a single fluid variable obstacle shape gasdynamic model produced excellent fits to the measured width and shape of the earth's magnetosheath. This result and the observed ordering of shock shape and position by upstream sonic Mach number provide strong support for the validity of the gasdynamic approximation. At Mercury the application of earth type models to the individual Mariner 10 boundry crossings has led to the determination of an effective planetary magnetic moment of 6+-2 x 10 22 G-cm 3 . Consistent with the presence of a small terrestrial style magnetosphere, southward interplanetary magnetic fields were found to significantly reduce the solar wind stand-off distance most probably through the effects of dayside magnetic reconnection. For Venus the low altitude solar wind flow field derived from gasdynamic modeling of bow shock location and shape indicates that a fraction of the incident streamlines are absorbed by the neutral atmosphere near the ionopause; approximately 1% and 8%, respectively, in the solar maximum Pioneer Venus and solar minimum Venera measurements. Accordingly, it appears that cometary processes must be included in model calculations of the solar wind flow about Venus. At Mars the moderate height of the gasdynamic solar wind-obstacle interface and the weakness of the Martian ionosphere/atmosphere are found to be incompatible with a Venus type interaction

  8. Kaguya observations of the lunar wake in the terrestrial foreshock: Surface potential change by bow-shock reflected ions

    Science.gov (United States)

    Nishino, Masaki N.; Harada, Yuki; Saito, Yoshifumi; Tsunakawa, Hideo; Takahashi, Futoshi; Yokota, Shoichiro; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2017-09-01

    There forms a tenuous region called the wake behind the Moon in the solar wind, and plasma entry/refilling into the wake is a fundamental problem of the lunar plasma science. High-energy ions and electrons in the foreshock of the Earth's magnetosphere were detected at the lunar surface in the Apollo era, but their effects on the lunar night-side environment have never been studied. Here we show the first observation of bow-shock reflected protons by Kaguya (SELENE) spacecraft in orbit around the Moon, confirming that solar wind plasma reflected at the terrestrial bow shock can easily access the deepest lunar wake when the Moon stays in the foreshock (We name this mechanism 'type-3 entry'). In a continuous type-3 event, low-energy electron beams from the lunar night-side surface are not obvious even though the spacecraft location is magnetically connected to the lunar surface. On the other hand, in an intermittent type-3 entry event, the kinetic energy of upward-going field-aligned electron beams decreases from ∼ 80 eV to ∼ 20 eV or electron beams disappear as the bow-shock reflected ions come accompanied by enhanced downward electrons. According to theoretical treatment based on electric current balance at the lunar surface including secondary electron emission by incident electron and ion impact, we deduce that incident ions would be accompanied by a few to several times higher flux of an incident electron flux, which well fits observed downward fluxes. We conclude that impact by the bow-shock reflected ions and electrons raises the electrostatic potential of the lunar night-side surface.

  9. On nonstationarity and rippling of the quasiperpendicular zone of the Earth bow shock: Cluster observations

    Directory of Open Access Journals (Sweden)

    V. V. Lobzin

    2008-09-01

    Full Text Available A new method for remote sensing of the quasiperpendicular part of the bow shock surface is presented. The method is based on analysis of high frequency electric field fluctuations corresponding to Langmuir, upshifted, and downshifted oscillations in the electron foreshock. Langmuir waves usually have maximum intensity at the upstream boundary of this region. All these waves are generated by energetic electrons accelerated by quasiperpendicular zone of the shock front. Nonstationary behavior of the shock, in particular due to rippling, should result in modulation of energetic electron fluxes, thereby giving rise to variations of Langmuir waves intensity. For upshifted and downshifted oscillations, the variations of both intensity and central frequency can be observed. For the present study, WHISPER measurements of electric field spectra obtained aboard Cluster spacecraft are used to choose 48 crossings of the electron foreshock boundary with dominating Langmuir waves and to perform for the first time a statistical analysis of nonstationary behavior of quasiperpendicular zone of the Earth's bow shock. Analysis of hidden periodicities in plasma wave energy reveals shock front nonstationarity in the frequency range 0.33 fBishock, and shows that the probability to observe such a nonstationarity increases with Mach number. The profiles observed aboard different spacecraft and the dominating frequencies of the periodicities are usually different. Hence nonstationarity and/or rippling seem to be rather irregular both in space and time rather than resembling a quasiregular wave propagating on the shock surface.

  10. ULF/ELF electromagnetic waves associated with the quasi-perpendicular earth's bow shock crossings

    International Nuclear Information System (INIS)

    Nozdrachev, M.N.; Petrukovich, A.A.

    1992-01-01

    The present paper is dedicated to the analysis of electromagnetic turbulence in the frequency range 0.1-75 Hz, associated with crossing of Earth's Bow Shock recorded by the Prognoz-8 and -10 satellites. The quasimonochromatic waves are identified in the shock transition region. Their frequencies, laying in the range from 2 Hz to 6 Hz upstream the shock ramp shift to the values less than 1 Hz in the downstream region. The amplitudes of these narrow emissions are high enough to provide the dissipation in the flow of the solar wind plasma. It is argued that spectra shapes in this frequency range 0.1-75 Hz are strongly affected by the Doppler shift

  11. The CHESS survey of the L1157-B1 bow-shock: Dissecting the water content

    Science.gov (United States)

    Busquet, Gemma; Lefloch, Bertrand; Benedettini, Milena; Ceccarelli, Cecilia; Codella, Claudio; Cabrit, Sylvie; Nisini, Brunella; Viti, Serena; Gómez-Ruiz, Arturo; Gusdorf, Antoine; Di Giorgio, Anna Maria; Wiesenfeld, Laurent

    2013-07-01

    Molecular outflows powered by young protostars strongly affect the kinematics and chemistry of the natal molecular cloud through strong shocks, resulting in an increase of the abundance of several species. In particular, water is a powerful tracer of shocked material due to its sensitivity to both physical conditions and chemical processes. The observations of the "Chemical Herschel Survey of Star forming regions" (CHESS) key program towards the shock region L1157-B1 offered a unique and comprehensive view of the water emission in a typical protostellar bow shock across the submillimeter and far-infrared window. A grand total of 13 water lines have been detected with the PACS and HIFI instruments, probing a wide range of excitation conditions and providing us with a detailed picture on both the kinematics and the spatial distribution of water emission. Several gas components have been identified coexisting in the L1157-B1 shock region. Large Velocity Gradient (LVG) analysis reveals that these components have different excitation conditions: i) a warm (T~250 K) and dense (n(H2)~10^6 cm-3) gas component seen also with the CO lines and associated with the partly dissociative shock produced by the impact of the protostellar jet against the bow shock; ii) a compact (size~5''), hot (T~700 K), and less dense (n(H2)~10^4 cm-3) gas component, and iii) an extended component associated with the B1 outflow cavity. These three components present clear differences in terms of water enrichment. Finally, we confront the physical and chemical properties of the H2O emission to the predictions of current shock models.

  12. Electric field measurements at subcritical, oblique bow shock crossings

    International Nuclear Information System (INIS)

    Wygant, J.R.; Bensadoun, M.; Mozer, F.S.

    1987-01-01

    Electric field measurements at oblique, subcritical bow shock crossings are presented from the ISEE 1 University of California, Berkeley, double-probe electric field experiment. The measurements averaged over the 3-s spin period of the spacecraft provide the first observations of the large-scale (100 km) laminar oscillations in the longitudinal component of the electric field associated with the whistler precursor which is characteristic of these dispersive shocks. The amplitude of the oscillations increases from ∼0.5 mV/m to a maximum of 6 mV/m across the magnetic ramp of the shock (directed along the shock normal). The calculated electric potential drops across the shocks varied from 340 to 550 volts, which is 40-60% of the observed loss of kinetic energy associated with the bulk flow of the ions. These measurements suggest that at these shocks the additional deceleration of incident ions is due to the Lorentz force. The contributions to the normal component of the large-scale electric field at the shock due to the parallel and perpendicular components (relative to the magnetic field) of the electric field are evaluated. It is shown that the perpendicular component of the electric field dominates, accounting for most of the cross-shock potential, but that there is a nonnegligible parallel component. This large-scale parallel component has a magnitude of 1-2 mV/m which sometimes results in a potential well for electrons with a depth of ∼150 eV. It is experimentally demonstrated that the dominance of the perpendicular over the parallel component of the electric field resulted in a correlation between the longitudinal component of the large-scale electric field and the fluctuations in the magnetic field component perpendicular to the coplanarity plane

  13. First-order Fermi acceleration of the diffuse ion population near the earth's bow shock

    Science.gov (United States)

    Forman, M. A.

    1981-01-01

    The flux of 30-65 keV particles observed by the ISEE-3 200 earth radii upstream is shown to be an upstream escape of the energetic ions in the earth's bow shock. A formal solution to the transport equation for the distribution function of energetic particles upstream from an isotropic monoenergetic source of particles/sq cm at a plane shock where the plasma changes speed is found, and escape conditions are defined. The efficiency of the acceleration is calculated to depend on the charge/particle, and fluxes near and far upstream of the shock are described analytically. Any model which takes into account shock acceleration by diffusive scattering with significant escape losses produces the observed spectrum close to the shock. The escape loss upstream is demonstrated to control the spectrum and the variation of flux and anisotropy with distance from the shock.

  14. On nonstationarity and rippling of the quasiperpendicular zone of the Earth bow shock: Cluster observations

    Directory of Open Access Journals (Sweden)

    V. V. Lobzin

    2008-09-01

    Full Text Available A new method for remote sensing of the quasiperpendicular part of the bow shock surface is presented. The method is based on analysis of high frequency electric field fluctuations corresponding to Langmuir, upshifted, and downshifted oscillations in the electron foreshock. Langmuir waves usually have maximum intensity at the upstream boundary of this region. All these waves are generated by energetic electrons accelerated by quasiperpendicular zone of the shock front. Nonstationary behavior of the shock, in particular due to rippling, should result in modulation of energetic electron fluxes, thereby giving rise to variations of Langmuir waves intensity. For upshifted and downshifted oscillations, the variations of both intensity and central frequency can be observed. For the present study, WHISPER measurements of electric field spectra obtained aboard Cluster spacecraft are used to choose 48 crossings of the electron foreshock boundary with dominating Langmuir waves and to perform for the first time a statistical analysis of nonstationary behavior of quasiperpendicular zone of the Earth's bow shock. Analysis of hidden periodicities in plasma wave energy reveals shock front nonstationarity in the frequency range 0.33 fBiBi, where fBi is the proton gyrofrequency upstream of the shock, and shows that the probability to observe such a nonstationarity increases with Mach number. The profiles observed aboard different spacecraft and the dominating frequencies of the periodicities are usually different. Hence nonstationarity and/or rippling seem to be rather irregular both in space and time rather than resembling a quasiregular wave propagating on the shock surface.

  15. Do we really observe a bow shock in N157B...?

    OpenAIRE

    van der Swaluw, Eric

    2003-01-01

    I present a model of a pulsar wind interacting with its associated supernova remnant. I will use the model to argue that one can explain the morphology of the pulsar wind nebula inside N157B, a supernova remnant in the Large Magellanic Cloud, without the need for a bow shock interpretation. The model uses a hydrodynamics code which simulates the evolution of a pulsar wind nebula, when the pulsar is moving at a high velocity (1000 km/sec) through the expanding supernova remnant. The simulation...

  16. Discovery of an optical bow-shock around pulsar B0740-28

    OpenAIRE

    Jones, D.H.; Stappers, B.W.; Gaensler, B.M.

    2002-01-01

    We report the discovery of a faint H-alpha pulsar wind nebula (PWN) powered by the radio pulsar B0740-28. The characteristic bow-shock morphology of the PWN implies a direction of motion consistent with the previously measured velocity vector for the pulsar. The PWN has a flux density more than an order of magnitude lower than for the PWNe seen around other pulsars, but, for a distance 2 kpc, it is consistent with propagation through a medium of atomic density n_H ~ 0.25 cm^{-3}, and neutral ...

  17. Energy time dispersion of a new class of magnetospheric ion events observed near the Earth's bow shock

    Directory of Open Access Journals (Sweden)

    G. C. Anagnostopoulos

    2000-01-01

    Full Text Available We have analyzed high time resolution (\\geq6 s data during the onset and the decay phase of several energetic (\\geq35 keV ion events observed near the Earth's bow shock by the CCE/AMPTE and IMP-7/8 spacecraft, during times of intense substorm/geomagnetic activity. We found that forward energy dispersion at the onset of events (earlier increase of middle energy ions and/or a delayed fall of the middle energy ion fluxes at the end of events are often evident in high time resolution data. The energy spectra at the onset and the decay of this kind of events show a characteristic hump at middle (50-120 keV energies and the angular distributions display either anisotropic or broad forms. The time scale of energy dispersion in the ion events examined was found to range from several seconds to \\sim1 h depending on the ion energies compared and on the rate of variation of the Interplanetary Magnetic Field (IMF direction. Several canditate processes are discussed to explain the observations and it is suggested that a rigidity dependent transport process of magnetospheric particles within the magnetosheath is most probably responsible for the detection of this new type of near bow shock magnetospheric ion events. The new class of ion events was observed within both the magnetosheath and the upstream region.Key words. Interplanetary physics (energetic particles; planetary bow shocks

  18. Fatigue analysis of the bow structure of FPSO

    Science.gov (United States)

    Hu, Zhi-Qiang; Gao, Zhen; Gu, Yong-Ning

    2003-06-01

    The bow structure of FPSO moored by the single mooring system is rather complicated. There are many potential hot spots in connection parts of structures between the mooring support frame and the forecastle. Mooring forces, which are induced by wave excitation and transferred by the YOKE and the mooring support frame, may cause fatigue damage to the bow structure. Different from direct wave-induced-forces, the mooring force consists of wave frequency force (WF) and 2nd draft low frequency force (LF)[3], which are represented by two sets of short-term distribution respectively. Based on two sets of short-term distribution of mooring forces obtained by the model test, the fatigue damage of the bow structure of FPSO is analyzed, with emphasis on two points. One is the procedure and position selection for fatigue check, and the other is the application of new formulae for the calculation of accumulative fatigue damage caused by two sets of short-term distribution of hot spot stress range. From the results distinguished features of fatigue damage to the FPSO’s bow structure can be observed.

  19. Electromagnetic ion beam instability upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Gary, S.P.; Gosling, J.T.; Forslund, D.W.

    1981-01-01

    The linear theory of the electromagnetic ion beam instability for arbitrary angles of propagation has been studied. The parameters considered in the theory are typical of the solar wind upstream of the earth's bow shock when a 'reflected' proton beam is present. Maximum growth occurs for propagation parallel to the ambient field B, but this instability also displays significant growth at wave-vectors oblique to B, Oblique, unstable modes seem to be the likely source of the compressive magnetic fluctuations recently observed in conjunction with 'diffuse' ion population. An energetic ion beam does not directly give rise to linear growth of either ion acoustic or whistler mode instabilities

  20. Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations

    International Nuclear Information System (INIS)

    Peng, Ivy Bo; Markidis, Stefano; Laure, Erwin; Johlander, Andreas; Vaivads, Andris; Khotyaintsev, Yuri; Henri, Pierre; Lapenta, Giovanni

    2015-01-01

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has been identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration

  1. Non-stationarity of the quasi-perpendicular bow shock: comparison between Cluster observations and simulations

    Directory of Open Access Journals (Sweden)

    H. Comişel

    2011-02-01

    Full Text Available We have performed full particle electromagnetic simulations of a quasi-perpendicular shock. The shock parameters have been chosen to be appropriate for the quasi-perpendicular Earth's bow shock observed by Cluster on 24 January 2001 (Lobzin et al., 2007. We have performed two simulations with different ion to electron mass ratio: run 1 with mi/me=1840 and run 2 with mi/me=100. In run 1 the growth rate of the modified two-stream instability (MTSI is large enough to get excited during the reflection and upstream gyration of part of the incident solar wind ions. The waves due to the MTSI are on the whistler mode branch and have downstream directed phase velocities in the shock frame. The Poynting flux (and wave group velocity far upstream in the foot is also directed in the downstream direction. However, in the density and magnetic field compression region of the overshoot the waves are refracted and the Poynting flux in the shock frame is directed upstream. The MTSI is suppressed in the low mass ratio run 2. The low mass ratio run shows more clearly the non-stationarity of the shock with a larger time scale of the order of an inverse ion gyrofrequency (Ωci: the magnetic field profile flattens and steepens with a period of ~1.5Ωci−1. This non-stationarity is different from reformation seen in previous simulations of perpendicular or quasi-perpendicular shocks. Beginning with a sharp shock ramp the large electric field in the normal direction leads to high reflection rate of solar wind protons. As they propagate upstream, the ion bulk velocity decreases and the magnetic field increases in the foot, which results in a flattening of the magnetic field profile and in a decrease of the normal electric field. Subsequently the reflection rate decreases and the whole shock profile steepens again. Superimposed on this 'breathing' behavior are in the realistic mass ratio case the waves due to the MTSI. The simulations lead us to a re-interpretation of

  2. Detailed study of electron plasma waves upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Etcheto, J.; Faucheux, M.

    1984-01-01

    A detailed study of electron plasma waves observed upstream of the earth's bow shock and of their relationships to the position of the satellite in the foreshock and to the electron measurements has been carried out. The wave characteristics depend on the position in the electron foreshock: a narrow-bnd (a few percent) and intense (a few millivolts per meter) noise is observed at the plasma frequency at the edge of the foreshock while the spectrum widens (Δf/fapprox. =0.3) at the same time as the power decreases (hundreds of microvolts per meter) deeper (a few earth radii) inside the foreshock. Signals below the plasma frequency are also observed. These waves are polarized along the magnetic field, with long wavelengths below and at the plasma frequency and short wavelengths above it. They appear as short bursts, the duration of which depends on the frequency: longer close to the plasma frequency (50 ms), they shorten with increasing separation from the plasma frequency, the usual duration being 15 ms. While the correlation of the wave characteristics with the reflected electrons is good as the satellite moves inside the foreshock, no evolution is found with the distance to the bow shock, neither for the noise nor for the particles. These results are discussed in the frame of various mechanisms which have been proposed to explain these upstream waves but no satisfactory agreement is found with any of them

  3. Ion acceleration at the earth's bow shock: A review of observations in the upstream region

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1979-01-01

    Positive ions are accelerated at or near the earth's bow shock and propagate into the upstream region. Two distinctly different population of these ions, distinguished by their greatly different spectral and angular widths, can be identified there. The type of ion population observed in the upstream region is strongly correlated with the presence or absence of long-period compresive waves in the solar wind. Very few ions are accelerated in the vicinity of the shock to energies much above about 100 keV. It is not yet clear whether the most energetic ions (i.e. those near 100 keV) are accelerated at the shock or in the broad disturbed region upstream from the shock. In either case stochastic acceleration by turbulent electrostatic fields seems to be the most viable candidate for the acceleration of the most energetic particles

  4. Ion acceleration at the earth's bow shock: a review of observations in the upstream region

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1979-01-01

    Positive ions are accelerated at or near the earth's bow shock and propagate into the upstream region. Two distinctly different populations of these ions, distinguished by their greatly different spectral and angular widths, can be identified there. The type of ion population observed in the upstream region is strongly correlated with the presence or absence of long-period compressive waves in the solar wind. Very few ions are accelerated in the vicinity of the shock to energies much above about 100 keV. It is not yet clear whether the most energetic ions (i.e., those near 100 keV) are accelerated at the shock or in broad disturbed region upstream from the shock. In either case stochastic acceleration by turbulent electrostatic fields seems to be the most viable candidate for the acceleration of the most energetic particles

  5. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  6. ULF Waves Upstream from Planetary Bow Shocks: Application to the Interball-Tail Observations at the Earth

    International Nuclear Information System (INIS)

    Trotignon, J.G.; Rauch, J.L.; Klimov, S.; Nozdrachev, M.; Romanov, S.; Savin, S.; Skalsky, A.; Blecki, J.; Juchniewicz, J.; Amata, E.

    1999-01-01

    One of the outstanding problems in solar system plasma physics is the morphology of planetary and cometary foreshocks. A large variety of electron and ion velocity distribution functions, as well as electrostatic and electromagnetic waves phenomena, are indeed currently observed in these regions located upstream from, and magnetically connected to, bow shocks. Foreshocks being complex and highly dynamic, it is not easy to get a comprehensive description of them. Nevertheless, simple geometrical considerations can be of help to order foreshock structures. In light of the great number of results obtained in planetary foreshocks, which are briefly reviewed, we present an ongoing study of the upstream waves observed by the INTERBALL-TAIL magnetometers in the Ultra Low Frequency range. (author)

  7. Origin of 30 approximately 100 keV protons observed in the upstream region of the earth's bow shock

    International Nuclear Information System (INIS)

    Terasawa, T.

    1979-01-01

    A Fermi-type acceleration model is constructed to explain the origin of energetic protons (30 approximately 100 keV) which have been observed upstream of the bow shock. It is shown that the suprathermal protons (with energy of several keV) can be accelerated up to several tens of keV through the Fermi-type process in which the reflection at the shock front and the scattering in the upstream region are coupled. The efficiency of the scattering process is estimated by using the results of Barnes' quasilinear treatment of the wave excitation. The resultant energy spectrum and flux intensity (10 3 approximately 10 4 protons/(cm 2 s ster keV) in 32 approximately 45.3 keV) are consistent with the observation, and the softening of the energy spectrum observed in the dawn region can be explained by the decrease in the efficiency of the acceleration process in the dawn region due to the curvature of the bow shock and the reduction of shock strength. The spatial distribution of the flux predicted by the model is also consistent with the observation. In view of these consistencies of the Fermi-type acceleration process is suggested as a possible candidate mechanism to explain the upstream protons although it is not intended to exclude other possibilities. (author)

  8. Correlated wave and particle observations upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Harvey, C.C.; Bavassano-Cattaneo, M.B.; Dobrowolny, M.; Orsini, S.; Mangeney, A.; Russell, C.T.

    1981-01-01

    Data from three ISEE experiments has been analyzed during several periods of turbulence observed in the solar wind upstream of the earth's quasi-parallel bow shock. Radio observations are used to validate a shock model, which is subsequently used to compute various geometrical parameters during all the periods studied. One typical 9-hour period on November 4, 1977, is discussed in some detail to illustrate the parameters studied and the correlations found. It is shown that during this period, the radio noise spectrum has two components, one centered around the local electron plasma frequency and the other at somewhat lower frequencies; the latter component has a shorter wavelength and correlates with the level of MHD turbulence. A multivariate canonical statistical analysis of particle and MHD data during a 2-week period shows that the proton anisotropy and turbulence level correlate well with the minimum backstreaming proton parallel velocity p/sub min/ which, as defined here, is a purely geometrical parameter. Trivariate analysis shows that the correlation of particles and turbulence with the angle between the magnetic field and the shock normal have their sense reversed when allowance is made for the strong correlations with p/sub min/. A very good correlation has been found between power and compressibility in magnetic fluctuations

  9. Effect of an isotropic outflow from the Galactic Centre on the bow-shock evolution along the orbit

    Czech Academy of Sciences Publication Activity Database

    Zajaček, Michal; Eckart, A.; Karas, Vladimír; Kunneriath, Devaky; Shahzamanian, B.; Sabha, N.; Muzic, K.; Valencia-S, M.

    2016-01-01

    Roč. 455, č. 2 (2016), s. 1257-1274 ISSN 0035-8711 R&D Projects: GA ČR(CZ) GC13-00070J Institutional research plan: CEZ:AV0Z1003909 Institutional support: RVO:67985815 Keywords : galactic centre * black hole * bow-shock Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  10. Observations of large-amplitude MHD waves in Jupiter's foreshock in connection with a quasi-perpendicular shock structure

    Science.gov (United States)

    Bavassano-Cattaneo, M. B.; Moreno, G.; Scotto, M. T.; Acuna, M.

    1987-01-01

    Plasma and magnetic field observations performed onboard the Voyager 2 spacecraft have been used to investigate Jupiter's foreshock. Large-amplitude waves have been detected in association with the quasi-perpendicular structure of the Jovian bow shock, thus proving that the upstream turbulence is not a characteristic signature of the quasi-parallel shock.

  11. Radiative bow shock wave (?) driven by nuclear ejecta in a Seyfert galaxy

    International Nuclear Information System (INIS)

    Wilson, A.S.; Ulvestad, J.S.; California Institute of Technology, Pasadena)

    1987-01-01

    New VLA maps at 2 cm of the 13-arcsec-scale linear radio source in the center of NGC 1068 are described. The northeast lobe shows a limb-brightened conical morphology, very sharp leading edges, and a magnetic field running parallel to these edges. The spectral index between 2 and 6 cm in these line-brightened regions is near 1.0. The northeast subpeak has a very steep radio spectrum between 18 and 2 cm which is attributed to inverse Compton losses of the relativistic electrons on the infrared photons. The spectral indices in the southwest lobe lie in the range 0.9-1.5 except in its northern parts, where a much larger index is found. The northeast lobe radio emission could arise in either the cocoon of old jet material which has passed through the internal shock in the ejecta and blown out to either side, or in interstellar material compressed by a bow shock wave driven into the galactic ISM. 45 references

  12. On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster

    Directory of Open Access Journals (Sweden)

    H. Kucharek

    2004-07-01

    Full Text Available Two distinct populations of reflected and accelerated ions are known to originate from quasi-perpendicular shocks, gyrating ions and reflected ion beams. Recent observations under such bow shock conditions with Cluster have shown strong evidence that both particle distributions appear to emerge from the same reflection process. In this paper the basic production mechanism of field-aligned beams has been investigated by using CLUSTER multi-spacecraft measurements. We have analyzed several quasi-perpendicular shocks with the Cluster Ion Spectrometry experiment (CIS and followed the spatial and temporal evolution of the reflected and transmitted ion populations across the shock. These observations show that the field-aligned beams most likely result from effective scattering in pitch angle during reflection in the shock ramp. Investigating a low Mach number shock, leakage of a fraction of the thermalized ion distribution in the downstream region does not appear to be the source as the volume in phase space occupied by beam ions is empty downstream of the shock ramp.

  13. X-RAY OBSERVATIONS OF BOW SHOCKS AROUND RUNAWAY O STARS. THE CASE OF ζ OPH AND BD+43°3654

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A.; Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Oskinova, L. M.; González-Galán, A. [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States); Pohl, M., E-mail: toala@iaa.es [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617,Taiwan (China)

    2016-04-20

    Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations toward the runaway stars ζ Oph by Chandra and Suzaku and of BD+43°3654 by XMM-Newton to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks; nonetheless, diffuse emission was detected in the vicinity of ζ Oph. After a careful analysis of its spectral characteristics, we conclude that this emission has a thermal nature with a plasma temperature of T ≈ 2 × 10{sup 6} K. The cometary shape of this emission seems to be in line with recent predictions of radiation-hydrodynamic models of runaway stars. The case of BD+43°3654 is puzzling, as non-thermal emission has been reported in a previous work for this source.

  14. THE CHESS SURVEY OF THE L1157-B1 SHOCK REGION: CO SPECTRAL SIGNATURES OF JET-DRIVEN BOW SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Lefloch, B.; Codella, C.; Ceccarelli, C. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et dAstrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Cabrit, S. [Observatoire de Paris, LERMA, UMR 8112 du CNRS, ENS, UPMC, UCP, 61 Av. de l' Observatoire, F-75014 Paris (France); Busquet, G.; Benedettini, M. [INAF, Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Cernicharo, J.; Pardo, J. R. [Centro de Astrobiologia, INTA, Ctra de Torrejon a Ajalvir, km 4, E-28850 Torrejon de Ardoz, E-28850 Madrid (Spain); Lis, D. C. [California Institute of Technology, Cahill Center for Astronomy and Astrophysics 301-17, Pasadena, CA 91125 (United States); Nisini, B., E-mail: lefloch@obs.ujf-grenoble.fr [INAF, Osservatorio Astronomico di Roma, Via di Frascati 33, I-00040 Monte, Porzio Catone (Italy)

    2012-10-01

    The unprecedented sensitivity of Herschel coupled with the high resolution of the HIFI spectrometer permits studies of the intensity-velocity relationship I(v) in molecular outflows, over a higher excitation range than possible up to now. Over the course of the CHESS Key Program, we have observed toward the bright bow shock region L1157-B1, the CO rotational transitions between J = 5-4 and J = 16-15 with HIFI, and the J = 1-0, 2-1, and 3-2 with the IRAM 30 m and the Caltech Submillimeter Observatory telescopes. We find that all the line profiles I{sub CO}(v) are well fit by a linear combination of three exponential laws {proportional_to}exp (- |v/v{sub 0}|) with v{sub 0} = 12.5, 4.4, and 2.5 km s{sup -1}. The first component dominates the CO emission at J {>=} 13, as well as the high-excitation lines of SiO and H{sub 2}O. The second component dominates for 3 {<=} J{sub up} {<=} 10 and the third one for J{sub up} {<=} 2. We show that these exponentials are the signature of quasi-isothermal shocked gas components: the impact of the jet against the L1157-B1 bow shock (T{sub k} {approx_equal} 210 K), the walls of the outflow cavity associated with B1 (T{sub k} {approx_equal} 64 K), and the older cavity L1157-B2 (T{sub k} {approx_equal} 23 K), respectively. Analysis of the CO line flux in the large-velocity gradient approximation further shows that the emission arises from dense gas (n(H{sub 2}) {>=} 10{sup 5}-10{sup 6} cm{sup -3}) close to LTE up to J = 20. We find that the CO J = 2-1 intensity-velocity relation observed in various other molecular outflows is satisfactorily fit by similar exponential laws, which may hold an important clue to their entrainment process.

  15. THE CHESS SURVEY OF THE L1157-B1 SHOCK REGION: CO SPECTRAL SIGNATURES OF JET-DRIVEN BOW SHOCKS

    International Nuclear Information System (INIS)

    Lefloch, B.; Codella, C.; Ceccarelli, C.; Cabrit, S.; Busquet, G.; Benedettini, M.; Cernicharo, J.; Pardo, J. R.; Lis, D. C.; Nisini, B.

    2012-01-01

    The unprecedented sensitivity of Herschel coupled with the high resolution of the HIFI spectrometer permits studies of the intensity-velocity relationship I(v) in molecular outflows, over a higher excitation range than possible up to now. Over the course of the CHESS Key Program, we have observed toward the bright bow shock region L1157-B1, the CO rotational transitions between J = 5-4 and J = 16-15 with HIFI, and the J = 1-0, 2-1, and 3-2 with the IRAM 30 m and the Caltech Submillimeter Observatory telescopes. We find that all the line profiles I CO (v) are well fit by a linear combination of three exponential laws ∝exp (– |v/v 0 |) with v 0 = 12.5, 4.4, and 2.5 km s –1 . The first component dominates the CO emission at J ≥ 13, as well as the high-excitation lines of SiO and H 2 O. The second component dominates for 3 ≤ J up ≤ 10 and the third one for J up ≤ 2. We show that these exponentials are the signature of quasi-isothermal shocked gas components: the impact of the jet against the L1157-B1 bow shock (T k ≅ 210 K), the walls of the outflow cavity associated with B1 (T k ≅ 64 K), and the older cavity L1157-B2 (T k ≅ 23 K), respectively. Analysis of the CO line flux in the large-velocity gradient approximation further shows that the emission arises from dense gas (n(H 2 ) ≥ 10 5 -10 6 cm –3 ) close to LTE up to J = 20. We find that the CO J = 2-1 intensity-velocity relation observed in various other molecular outflows is satisfactorily fit by similar exponential laws, which may hold an important clue to their entrainment process.

  16. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    Science.gov (United States)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  17. Ions upstream of the earth's bow shock: a theoretical comparison of alternative source populations

    International Nuclear Information System (INIS)

    Schwartz, S.J.; Thomsen, M.F.; Gosling, J.T.

    1983-01-01

    A theoretical framework is developed for studying trajectories of ions reflected or leaked upstream from the earth's bow shock and subject solely to the Lorentz force in a steady interplanetary magnetic field B and the V x B electric field. We include the effects of a sharp shock potential rise. Expressions are derived for the guiding center motion and gyromotion in a frame (the Hoffman-Teller frame) moving parallel to the shock surface with sufficient speed to transform the incident solar wind velocity into motion entirely along the interplanetary magnetic field: the appropriate equations are also provided to transform these motions back to the observer's frame. The utility of these expressions is illustrated by comparing the predicted upstream motions for four different source models for upstream ions: magnetic moment-conserving reflection of the solar wind ions, specular reflection of solar wind ions, magnetic moment-conserving leakage of magnetosheath ions, and leakage of magnetosheath ions parallel to the shock normal. This comparison reveals that, for identical geometries, the reflection models produce higher energies and/or gyromotion than do the leakage models. We further argue that in a single simple encounter with the shock, an ion should behave in an unmagnetized manner and hence should not conserve its magnetic moment. Conservation of magnetic moment, if it is to occur, would seem to require multiple encounters with the shock. We investigate the conditions under which such multiple encounters can occur and find that under most quasi-parallel geometries neither leaked nor reflected ions should probably conserve their magnetic moments

  18. Plasma and wave properties downstream of Martian bow shock: Hybrid simulations and MAVEN observations

    Science.gov (United States)

    Dong, Chuanfei; Winske, Dan; Cowee, Misa; Bougher, Stephen W.; Andersson, Laila; Connerney, Jack; Epley, Jared; Ergun, Robert; McFadden, James P.; Ma, Yingjuan; Toth, Gabor; Curry, Shannon; Nagy, Andrew; Jakosky, Bruce

    2015-04-01

    Two-dimensional hybrid simulation codes are employed to investigate the kinetic properties of plasmas and waves downstream of the Martian bow shock. The simulations are two-dimensional in space but three dimensional in field and velocity components. Simulations show that ion cyclotron waves are generated by temperature anisotropy resulting from the reflected protons around the Martian bow shock. These proton cyclotron waves could propagate downward into the Martian ionosphere and are expected to heat the O+ layer peaked from 250 to 300 km due to the wave-particle interaction. The proton cyclotron wave heating is anticipated to be a significant source of energy into the thermosphere, which impacts atmospheric escape rates. The simulation results show that the specific dayside heating altitude depends on the Martian crustal field orientations, solar cycles and seasonal variations since both the cyclotron resonance condition and the non/sub-resonant stochastic heating threshold depend on the ambient magnetic field strength. The dayside magnetic field profiles for different crustal field orientation, solar cycle and seasonal variations are adopted from the BATS-R-US Mars multi-fluid MHD model. The simulation results, however, show that the heating of O+ via proton cyclotron wave resonant interaction is not likely in the relatively weak crustal field region, based on our simplified model. This indicates that either the drift motion resulted from the transport of ionospheric O+, or the non/sub-resonant stochastic heating mechanism are important to explain the heating of Martian O+ layer. We will investigate this further by comparing the simulation results with the available MAVEN data. These simulated ion cyclotron waves are important to explain the heating of Martian O+ layer and have significant implications for future observations.

  19. Magnetic Field Orientation Effects on the Standoff Distance of Earth's Bow Shock

    Science.gov (United States)

    Cairns, Iver H.; Lyon, J. G.

    1996-01-01

    Three-dimensional, global MHD simulations of solar wind flow onto a prescribed magnetopause obstacle are used to show that a bow shock's nose location a(sub s), and the relative subsolar magnetosheath thickness Delta(sub ms)/a(sub mp) are strong functions of the IMF cone angle theta (between v(sub sw) and B(sub sw)) and the Alfven Mach number M(sub A). For a given M(sub A) the shock is more distant for higher theta (restricted to the interval 0-90deg by symmetries), while a(sub s)/a(sub mp) and Delta(sub ms/a(sub mp) increase with decreasing M(sub A) for theta greater than or approximately 20deg but decrease with decreasing M(sub A) for theta approximately Odeg. Large differences in Delta(sub ms/a(sub mp) are predicted between theta = Odeg and 90deg at low M(sub A), with smaller differences remaining even at M(sub A) approximately 10. The theta = Odeg results confirm and extend the previous work of Spreiter and Rizzi [1974]. The simulations show that successful models for the subsolar shock location cannot subsume the dependences on M(sub A) and theta into a sole dependence on M(ms). Instead, they confirm a recent prediction [Cairns and Grabbe, 1994] that a(sub s)/a(sub mp) and Delta(sub ms)/a(sub mp) should depend strongly on theta and M(sub A) for M(sub A) less than or approximately 10 (as well as on other MHD variables). Detailed comparisons between theory and data remain to be done. However, preliminary comparisons show good agreement, with distant shock locations found for low M(sub A) and large theta greater than or approximately 45deg and closer locations found for theta less than or approximately 20deg even at M/A approximately 8.

  20. Plasma wave profiles of Earth's bow shock at low Mach number: ISEE 3 observations on the far flank

    International Nuclear Information System (INIS)

    Greenstadt, E.W.; Coroniti, F.V.; Moses, S.L.; Smith, E.J.

    1992-01-01

    The Earth's bow shock is weak along its distant flanks where the projected component of solar wind velocity normal to the hyperboloidal surface is only a fraction of the total free stream velocity, severely reducing the local Mach number. The authors present a survey of selected crossings far downstream from the subsolar shock, delineating the overall plasma wave (pw) behavior of a selected set of nearly perpendicular crossings and another set of limited Mach number but broad geometry; they include their immediate upstream regions. The result is a generalizable pw signature, or signatures, of low Mach number shocks and some likely implications of those signatures for the weak shock's plasma physical processes on the flank. They find the data consistent with the presence of ion beam interactions producing noise ahead of the shock in the ion acoustic frequency range. One subcritical case was found whose pw noise was presumably related to a reflected ion population just as in stronger events. The presence or absence, and the amplitudes, of pw activity are explainable by the presence or absence of a population of upstream ions controlled by the component of interplanetary magnetic field normal to the solar wind flow

  1. Interaction of a finite-length ion beam with a background plasma: Reflected ions at the quasi-parallel bow shock

    International Nuclear Information System (INIS)

    Onsager, T.G.; Winske, D.; Thomsen, M.F.

    1991-01-01

    The coupling of a finite-length, field-aligned, ion beam with a uniform background plasma is investigated using one-dimensional hybrid computer simulations. The finite-length beam is used to study the interaction between the incident solar wind and ions reflected from the Earth's quasi-parallel bow shock, where the reflection process may vary with time. The coupling between the reflected ions and the solar wind is relevant to ion heating at the bow shock and possibly to the formation of hot, flow anomalies and re-formation of the shock itself. The authors find that although there are many similarities between the instabilities driven by the finite-length beam and those predicted by linear theory for an infinite, homogeneous beam, there are also some important differences. Consistent with linear theory, the waves which dominate the interaction are the electromagnetic right-hand polarized resonant and nonresonant modes. However, in addition to the instability growth rates, the length of time that the waves are in contact with the beam is also an important factor in determining which wave mode will dominate the interaction. Whereas linear theory predicts the nonresonant mode to have the larger growth rate for the parameters they investigate, with finite-length beam they find that both the nonresonant and resonant modes contribute to the interaction. They find that the interaction will result in strong coupling, where a significant fraction of the available free energy is converted into thermal energy in a short time, provided the beam is sufficiently dense or sufficiently long

  2. Effect of Buffer Bow Structure in Ship-Ship Collision

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Endo, Hisayoshi; Pedersen, Preben Terndrup

    2008-01-01

    tankers, the introduction of buffer bulbous bows has been proposed. Relatively soft buffer bows absorb part of the kinetic energy of the striking ship before penetrating the inner hull of the struck vessel. The purpose of the present paper is to verify the effectiveness of a prototype buffer bulbous bow......) and the forward velocity of the struck ship on the collapse mode of the bow of the striking vessel are investigated. Collapse modes, contact forces and energy absorption capabilities of the buffer bows are compared with those of conventional bows....

  3. Collisionless shocks in space plasmas structure and accelerated particles

    CERN Document Server

    Burgess, David

    2015-01-01

    Shock waves are an important feature of solar system plasmas, from the solar corona out to the edge of the heliosphere. This engaging introduction to collisionless shocks in space plasmas presents a comprehensive review of the physics governing different types of shocks and processes of particle acceleration, from fundamental principles to current research. Motivated by observations of planetary bow shocks, interplanetary shocks and the solar wind termination shock, it emphasises the physical theory underlying these shock waves. Readers will develop an understanding of the complex interplay between particle dynamics and the electric and magnetic fields that explains the observations of in situ spacecraft. Written by renowned experts in the field, this up-to-date text is the ideal companion for both graduate students new to heliospheric physics and researchers in astrophysics who wish to apply the lessons of solar system shocks to different astrophysical environments.

  4. Occurrence of high-beta superthermal plasma events in the close environment of Jupiter's bow shock as observed by Ulysses

    International Nuclear Information System (INIS)

    Marhavilas, P. K.; Sarris, E. T.; Anagnostopoulos, G. C.

    2011-01-01

    The ratio of the plasma pressure to the magnetic field pressure (or of their energy densities) which is known as the plasma parameter 'beta'(β) has important implications to the propagation of energetic particles and the interaction of the solar wind with planetary magnetospheres. Although in the scientific literature the contribution of the superthermal particles to the plasma pressure is generally assumed negligible, we deduced, by analyzing energetic particles and magnetic field measurements recorded by the Ulysses spacecraft, that in a series of events, the energy density contained in the superthermal tail of the particle distribution is comparable to or even higher than the energy density of the magnetic field, creating conditions of high-beta plasma. More explicitly, in this paper we analyze Ulysses/HI-SCALE measurements of the energy density ratio (parameter β ep ) of the energetic ions'(20 keV to ∼5 MeV) to the magnetic field's in order to find occurrences of high-beta (β ep >1) superthermal plasma conditions in the environment of the Jovian magnetosphere, which is an interesting plasma laboratory and an important source of emissions in our solar system. In particular, we examine high-beta ion events close to Jupiter's bow shock, which are produced by two processes: (a) bow shock ion acceleration and (b) ion leakage from the magnetosphere.

  5. Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary

    Directory of Open Access Journals (Sweden)

    R. Modolo

    2006-12-01

    Full Text Available The solar wind plasma interaction with the Martian exosphere is investigated by means of 3-D multi-species hybrid simulations. The influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary is examined by comparing two simulations describing the two extreme states of the solar cycle. The hybrid formalism allows a kinetic description of each ions species and a fluid description of electrons. The ionization processes (photoionization, electron impact and charge exchange are included self-consistently in the model where the production rate is computed locally, separately for each ionization act and for each neutral species. The results of simulations are in a reasonable agreement with the observations made by Phobos 2 and Mars Global Surveyor spacecraft. The position of the bow shock and the magnetic pile-up boundary is weakly dependent of the solar EUV flux. The motional electric field creates strong asymmetries for the two plasma boundaries.

  6. High time resolution characteristics of intermediate ion distributions upstream of the earth's bow shock

    Science.gov (United States)

    Potter, D. W.

    1985-01-01

    High time resolution particle data upstream of the bow shock during time intervals that have been identified as having intermediate ion distributions often show high amplitude oscillations in the ion fluxes of energy 2 and 6 keV. These ion oscillations, observed with the particle instruments of the University of California, Berkeley, on the ISEE 1 and 2 spacecraft, are at the same frequency (about 0.04 Hz) as the magnetic field oscillations. Typically, the 6-keV ion flux increases then the 2-keV flux increases followed by a decrease in the 2-keV flux and then the 6-keV flux decreases. This process repeats many times. Although there is no entirely satisfactory explanation, the presence of these ion flux oscillations suggests that distributions often are misidentified as intermediate ion distributions.

  7. The Shock Dynamics of Heterogeneous YSO Jets: 3D Simulations Meet Multi-epoch Observations

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E. C.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Lebedev, S. V. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)

    2017-03-10

    High-resolution observations of young stellar object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper, we report results of 3D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions, which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of these bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a “frothy” emission structure that arises from the presence of the Nonlinear Thin Shell Instability along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non-equilibrium cooling method to produce synthetic emission maps in H α and [S ii]. These are directly compared to multi-epoch Hubble Space Telescope observations of Herbig–Haro jets. We find excellent agreement between features seen in the simulations and the observations in terms of both proper motion and morphologies. Thus we conclude that YSO jets may be dominated by heterogeneous structures and that interactions between these structures and the shocks they produce can account for many details of YSO jet evolution.

  8. A Cometary Bow Shock and Mid-Infrared Emission Variations Revealed in Spitzer Observations of HD 34078 and IC 405

    OpenAIRE

    France, Kevin; McCandliss, Stephan R.; Lupu, Roxana E.

    2006-01-01

    We present new infrared observations of the emission/reflection nebula IC 405 obtained with the Spitzer Space Telescope. Infrared images in the four IRAC bands (3.6, 4.5, 5.8, and 8.0 um) and two MIPS bands (24 and 70 um) are complemented by IRS spectroscopy (5-30 um) of two nebular filaments. The IRAC (8.0 um) and MIPS imaging shows evidence of a bow shock associated with the runaway O9.5V star, HD 34078, created by the interaction between the star and nebular material. The ratio of emission...

  9. Magnetic field overshoots in the Venus blow shock

    International Nuclear Information System (INIS)

    Tatrallyay, M.; Luhmann, J.G.; Russell, C.T.

    1984-01-01

    An examination of Pioneer Venus Orbiter fluxgate magnetometer data has shown that magnetic field overshoots occur not only behind quasi-perpendicular bow shocks but also behind quasi-parallel shocks. Overshoots are assocciated only with supercritical shocks. Their amplitudes increase with increasing fast Mach number. Solar wind beta has a lesser effect. The thickness of the overshoot increases with decreasing Theta-BN. The thickness of apparent overshoots detected behind 4 strong fast interplanetary shocks (M greater than M/crit) is about 3 orders of magnitude larger. Multiple crossings of the Venus bow shock were observed mainly at turbulent shocks. Their occurence is not influenced by Theta-BN. 15 references

  10. The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Torbjörn; Burgess, David [School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS (United Kingdom); Scholer, Manfred [Max-Planck-Institut für extraterrestrische Physik, Garching (Germany); Masters, Adam [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, Ali H., E-mail: torbjorn.sundberg@gmail.com [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2017-02-10

    Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained on extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.

  11. Magnetosheath plasma stability and ULF wave occurrence as a function of location in the magnetosheath and upstream bow shock parameters

    Science.gov (United States)

    Soucek, Jan; Escoubet, C. Philippe; Grison, Benjamin

    2015-04-01

    We present the results of a statistical study of the distribution of mirror and Alfvén-ion cyclotron (AIC) waves in the magnetosheath together with plasma parameters important for the stability of ULF waves, specifically ion temperature anisotropy and ion beta. Magnetosheath crossings registered by Cluster spacecraft over the course of 2 years served as a basis for the statistics. For each observation we used bow shock, magnetopause, and magnetosheath flow models to identify the relative position of the spacecraft with respect to magnetosheath boundaries and local properties of the upstream shock crossing. A strong dependence of both plasma parameters and mirror/AIC wave occurrence on upstream ΘBn and MA is identified. We analyzed a joint dependence of the same parameters on ΘBn and fractional distance between shock and magnetopause, zenith angle, and length of the flow line. Finally, the occurrence of mirror and AIC modes was compared against the respective instability thresholds. We noted that AIC waves occurred nearly exclusively under mirror stable conditions. This is interpreted in terms of different characters of nonlinear saturation of the two modes.

  12. Magnetic Fields Recorded by Chondrules Formed in Nebular Shocks

    Science.gov (United States)

    Mai, Chuhong; Desch, Steven J.; Boley, Aaron C.; Weiss, Benjamin P.

    2018-04-01

    Recent laboratory efforts have constrained the remanent magnetizations of chondrules and the magnetic field strengths to which the chondrules were exposed as they cooled below their Curie points. An outstanding question is whether the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors of ∼10–30, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.

  13. A Possible Buried Impact Structure Near Bow City, Alberta

    Science.gov (United States)

    Xie, W.; Glombick, P.; Schmitt, D. R.; Bown, T. D.

    2012-12-01

    In recent years, improved exploration techniques have resulted in the serendipitous discoveries of increasing numbers of extraterrestrial impact structures in sedimentary basins around the world. Following in this tradition, a new potential impact structure centered near 50.4°N, 112.35°N in SE Alberta has been identified. The first indications of this structure appeared in careful systematic mapping of Cretaceous age sediments using public domain well log information that showed overturned and missing components in what regionally is a simple layered stratigraphy. This motivated the examination of legacy 2D seismic profiles over the area that confirmed the stratigraphic anomalies and provided new details that further supported interpretation of a potential impact structure. Further, the existence of unexpected faults through the Cretaceous Bearpaw formation had been noted as early as the 1940's in the limited outcrop available in coulees, and these as well as other complex fault structures along the Bow River outcrops were confirmed in recent field visits to the site. The 2D seismic data displays a number of listric and rose-petal faulting consistent with late stage collapse of the impact crater. Further, a seismically transparent central uplift peak is visible. Based on the results, the structure is recognized as a complex crater with a diameter of approximately 8 kilometers and, today, bottoming at a depth of 900 meters from the current surface. Currently, the age of the feature is grossly estimated to be less than 70 my on the basis of underlying undisturbed seismic reflectors. The structure may be somewhat unique in that weak coals surrounding the feature are clearly thickened indicating outward lateral sliding along shear planes through weaker layers. Work in progress includes acquisition of a high resolution seismic profile and detailed mapping of the magnetic and gravity potential fields. More detailed mapping will include searches for shock metamorphism

  14. Structural changes in cuticles on violin bow hair caused by wear.

    Science.gov (United States)

    Yamamoto, Tomoko; Sugiyama, Shigeru

    2010-01-01

    A bow with horse tail hair is used to play the violin. New and worn-out bow hairs were observed by atomic force microscopy. The cuticles of the new bow hair were already damaged by bleach and delipidation, however the worn-out bow hairs were much more damaged and broken off by force, which relates to wearing out.

  15. Nonlinear wave-particle interaction upstream from the Earth's bow shock

    Directory of Open Access Journals (Sweden)

    C. Mazelle

    2000-01-01

    Full Text Available Well-defined ring-like backstreaming ion distributions have been recently reported from observations made by the 3DP/PESA-High analyzer onboard the WIND spacecraft in the Earth's foreshock at large distances from the bow shock, which suggests a local production mechanism. The maximum phase space density for these distributions remains localized at a nearly constant pitch-angle value for a large number of gyroperiods while the shape of the distribution remains very steady. These distributions are also observed in association with quasi-monochromatic low frequency (~ 50 mHz waves with substantial amplitude (δB/B>0.2. The analysis of the magnetic field data has shown that the waves are propagating parallel to the background field in the right-hand mode. Parallel ion beams are also often observed in the same region before the observation of both the ring-like distributions and the waves. The waves appear in cyclotron resonance with the ion parallel beams. We investigate first the possibility that the ion beams could provide the free energy source for driving an ion/ion instability responsible for the ULF wave occurrence. For that, we solve the wave dispersion relation with the observed parameters. Second, we show that the ring-like distributions could then be produced by a coherent nonlinear wave-particle interaction. It tends to trap the ions into narrow cells in velocity space centered on a well-defined pitch-angle, directly related to the saturation wave amplitude in the analytical theory. The theoretical predictions are in good quantitative agreement with the observations

  16. Evolution of bow-tie architectures in biology.

    Directory of Open Access Journals (Sweden)

    Tamar Friedlander

    2015-03-01

    Full Text Available Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal determines the size of the narrowest part of the network-that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved.

  17. The existence and nature of the interstellar bow shock

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Jaffel, Lotfi [UPMC Univ Paris 06, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Strumik, M.; Ratkiewicz, R.; Grygorczuk, J., E-mail: bjaffel@iap.fr [Space Research Centre, Polish Academy of Sciences, Bartycka 18A, 00-716 Warsaw (Poland)

    2013-12-20

    We report a new diagnosis of two different states of the local interstellar medium (LISM) near our solar system by using a sensitivity study constrained by several distinct and complementary observations of the LISM, solar wind, and inner heliosphere. Assuming the Interstellar Boundary Explorer (IBEX) He flow parameters for the LISM, we obtain a strength of ∼2.7 ± 0.2 μG and a direction pointing away from galactic coordinates (28, 52) ± 3° for the interstellar magnetic field as a result of fitting Voyager 1 and Voyager 2 in situ plasma measurements and IBEX energetic neutral atoms ribbon. When using Ulysses parameters for the LISM He flow, we recently reported the same direction but with a strength of 2.2 ± 0.1 μG. First, we notice that with Ulysses He flow, our solution is in the expected hydrogen deflection plane (HDP). In contrast, for the IBEX He flow, the solution is ∼20° away from the corresponding HDP plane. Second, the long-term monitoring of the interplanetary H I flow speed shows a value of ∼26 km s{sup –1} measured upwind from the Doppler shift in the strong Lyα sky background emission line. All elements of the diagnosis seem therefore to support Ulysses He flow parameters for the interstellar state. In that frame, we argue that reliable discrimination between superfast, subfast, or superslow states of the interstellar flow should be based on most existing in situ and remote observations used together with global modeling of the heliosphere. For commonly accepted LISM ionization rates, we show that a fast interstellar bow shock should be standing off upstream of the heliopause.

  18. Computer simulations of collisionless shock waves

    International Nuclear Information System (INIS)

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  19. Large amplitude solitary waves in and near the Earth’s magnetosphere, magnetopause and bow shock: Polar and Cluster observations

    Directory of Open Access Journals (Sweden)

    C. Cattell

    2003-01-01

    Full Text Available Solitary waves with large electric fields (up to 100's of mV/m have been observed throughout the magnetosphere and in the bow shock. We discuss observations by Polar at high altitudes ( ~ 4-8 RE , during crossings of the plasma sheet boundary and cusp, and new measurements by Polar at the equatorial magnetopause and by Cluster near the bow shock, in the cusp and at the plasma sheet boundary. We describe the results of a statistical study of electron solitary waves observed by Polar at high altitudes. The mean solitary wave duration was ~ 2 ms. The waves have velocities from ~ 1000 km/s to  > 2500 km/s. Observed scale sizes (parallel to the magnetic field are on the order of 1-10lD, with eF/kTe from ~ 0.01 to O(1. The average speed of solitary waves at the plasma sheet boundary is faster than the average speed observed in the cusp and at cusp injections. The amplitude increases with both velocity and scale size. These observations are all consistent with the identification of the solitary waves as electron hole modes. We also report the discovery of solitary waves at the magnetopause, observed in Polar data obtained at the subsolar equatorial magnetopause. Both positive and negative potential structures have been observed with amplitudes up to ~ 25 mV/m. The velocities range from 150 km/s to >2500 km/s, with scale sizes the order of a kilometer (comparable to the Debye length. Initial observations of solitary waves by the four Cluster satellites are utilized to discuss the scale sizes and time variability of the regions where the solitary waves occur. Preliminary results from the four Cluster satellites have given a glimpse of the spatial and temporal variability of the occurrence of solitary waves and their association with other wave modes. In all the events studied, significant differences were observed in the waveforms observed simultaneously at the four locations separated by ~ 1000 km. When solitary waves were seen at one satellite, they

  20. Ionospheric Bow Wave Induced by the Moon Shadow Ship Over the Continent of United States on 21 August 2017

    Science.gov (United States)

    Sun, Yang-Yi; Liu, Jann-Yenq; Lin, Charles Chien-Hung; Lin, Chi-Yen; Shen, Ming-Hsueh; Chen, Chieh-Hung; Chen, Chia-Hung; Chou, Min-Yang

    2018-01-01

    A moon shadow of the total solar eclipse swept through the continent of United States (CONUS) from west to east on 21 August 2017. Massive total electron content (integration of electron density from 0 km to 20,200 km altitude) observations from 2,255 ground-based Global Navigation Satellite System receivers show that the moon shadow ship generates a great ionospheric bow wave front which extends 1,500 km away from the totality path covering the entire CONUS. The bow wave front consists of the acoustic shock wave due to the supersonic/near-supersonic moon shadow ship and the significant plasma recombination due to the reduction in solar irradiation within the shadow area. The deep bow wave trough (-0.02 total electron content unit (1 TECU = 1016 el m-2) area) nearly coincides with the 100% obscuration moving along the totality path over the CONUS through the entire eclipse period. The supersonic moon shadow ship induces a bow wave crest in front of the ship ( 80% obscuration). It is the first time to find the acoustic shock wave-formed bow wave trough and crest near the totality.

  1. Particle Acceleration in Two Converging Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Wang, Na; Shan, Hao [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011 (China); Giacalone, Joe [Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Yan, Yihua [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Ding, Mingde, E-mail: wangxin@xao.ac.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) Ministry of Education, Nanjing 210093 (China)

    2017-06-20

    Observations by spacecraft such as ACE , STEREO , and others show that there are proton spectral “breaks” with energy E {sub br} at 1–10 MeV in some large CME-driven shocks. Generally, a single shock with the diffusive acceleration mechanism would not predict the “broken” energy spectrum. The present paper focuses on two converging shocks to identify this energy spectral feature. In this case, the converging shocks comprise one forward CME-driven shock on 2006 December 13 and another backward Earth bow shock. We simulate the detailed particle acceleration processes in the region of the converging shocks using the Monte Carlo method. As a result, we not only obtain an extended energy spectrum with an energy “tail” up to a few 10 MeV higher than that in previous single shock model, but also we find an energy spectral “break” occurring on ∼5.5 MeV. The predicted energy spectral shape is consistent with observations from multiple spacecraft. The spectral “break,” then, in this case is caused by the interaction between the CME shock and Earth’s bow shock, and otherwise would not be present if Earth were not in the path of the CME.

  2. Bow-shaped toroidal field coils

    International Nuclear Information System (INIS)

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  3. Electrostatic quasi-monochromatic waves in the downstream region of the Earth's bow shock based on Geotail observations

    Science.gov (United States)

    Shin, K.; Kojima, H.; Matsumoto, H.; Mukai, T.

    2007-02-01

    Geotail plasma wave observations show the existence of intense electrostatic quasi-monochromatic (EQM) waves in the downstream region of the Earth's bow shock. They oscillate parallel to the ambient magnetic field and appear at frequencies between the electron plasma and ion plasma frequencies. Although these waves have been believed to be Doppler-shifted ion acoustic waves, the typical plasma parameters observed in the downstream region do not support the generation conditions for ion acoustic waves. In this paper, the existence of cold electron beam-like components accompanying EQM waves is considered based on waveform and statistical analyses. Linear dispersion analyses using realistic plasma parameters revealed that the cold electron beams cause destabilization of electron acoustic waves at frequencies consistent with those of observed EQM waves. The results of observations and linear analyses suggest that EQM waves are generated by the destabilization of the electron acoustic mode.

  4. The CHESS Survey of the L1157-B1 Shock Region: CO Spectral Signatures of Jet-driven Bow Shocks

    Science.gov (United States)

    Lefloch, B.; Cabrit, S.; Busquet, G.; Codella, C.; Ceccarelli, C.; Cernicharo, J.; Pardo, J. R.; Benedettini, M.; Lis, D. C.; Nisini, B.

    2012-10-01

    The unprecedented sensitivity of Herschel coupled with the high resolution of the HIFI spectrometer permits studies of the intensity-velocity relationship I(v) in molecular outflows, over a higher excitation range than possible up to now. Over the course of the CHESS Key Program, we have observed toward the bright bow shock region L1157-B1, the CO rotational transitions between J = 5-4 and J = 16-15 with HIFI, and the J = 1-0, 2-1, and 3-2 with the IRAM 30 m and the Caltech Submillimeter Observatory telescopes. We find that all the line profiles I CO(v) are well fit by a linear combination of three exponential laws vpropexp (- |v/v 0|) with v 0 = 12.5, 4.4, and 2.5 km s-1. The first component dominates the CO emission at J >= 13, as well as the high-excitation lines of SiO and H2O. The second component dominates for 3 = 105-106 cm-3) close to LTE up to J = 20. We find that the CO J = 2-1 intensity-velocity relation observed in various other molecular outflows is satisfactorily fit by similar exponential laws, which may hold an important clue to their entrainment process.

  5. On the failure behaviour to striking bow penetration of impacted marine-steel structures

    Science.gov (United States)

    Prabowo, Aditya Rio; Muttaqie, Teguh; Sohn, Jung Min; Bae, Dong Myung; Setiyawan, Agus

    2018-04-01

    Demands for water transportation modes are continuously increasing as rapid economic and industrial growths in the recent decade. Ship as representative of the water transportation is generally needed to carry various products from one location to another. Besides as product carrier, ship also acts as public facility to transport human across islands for number of reasons, such as tourism and vehicle. Considering its importance, structural damage due to accidental loads or so-called impact can cause unacceptable casualties which threat ship passenger, shipping industry and maritime environment in same time. The most frequent impact phenomena occur in forms of collision and grounding, which are targeting side structure and double bottom consecutively. However, since responses of the impacts on structure are highly nonlinear and vary due to development of ship structures, sustainable analysis as an update of pioneer calculation can be beneficial as rational reference for improving safety and navigational instruments. This work aims to assess failures of the side structures subjected to penetration of striking bow in ship-ship collision scenario. Locations of impact are idealized to happen on after-end, midsection and fore-end to provide complete assessment. Striking bow is to be deployed by varying input velocity to observe significance of the fractures on the side structure. This configuration is implemented on the designed collision scenario, and later calculated using nonlinear finite element method (NLFEM). Summary of the solution indicated that the midsection produced the highest resistance against side collision. Breaching of the inner shell was successfully avoided on the fore-end, but the critical damage to the cargo was observed during bow penetration to the after-end region. This location was recommended to be added by longitudinal framing to increase its resistance against ship collision.

  6. On the failure behaviour to striking bow penetration of impacted marine-steel structures

    Directory of Open Access Journals (Sweden)

    Prabowo Aditya Rio

    2018-04-01

    Full Text Available Demands for water transportation modes are continuously increasing as rapid economic and industrial growths in the recent decade. Ship as representative of the water transportation is generally needed to carry various products from one location to another. Besides as product carrier, ship also acts as public facility to transport human across islands for number of reasons, such as tourism and vehicle. Considering its importance, structural damage due to accidental loads or so-called impact can cause unacceptable casualties which threat ship passenger, shipping industry and maritime environment in same time. The most frequent impact phenomena occur in forms of collision and grounding, which are targeting side structure and double bottom consecutively. However, since responses of the impacts on structure are highly nonlinear and vary due to development of ship structures, sustainable analysis as an update of pioneer calculation can be beneficial as rational reference for improving safety and navigational instruments. This work aims to assess failures of the side structures subjected to penetration of striking bow in ship-ship collision scenario. Locations of impact are idealized to happen on after-end, midsection and fore-end to provide complete assessment. Striking bow is to be deployed by varying input velocity to observe significance of the fractures on the side structure. This configuration is implemented on the designed collision scenario, and later calculated using nonlinear finite element method (NLFEM. Summary of the solution indicated that the midsection produced the highest resistance against side collision. Breaching of the inner shell was successfully avoided on the fore-end, but the critical damage to the cargo was observed during bow penetration to the after-end region. This location was recommended to be added by longitudinal framing to increase its resistance against ship collision.

  7. Numerical Study on the Effect of Buffer Bow Structure in Ship-to-ship Collisions

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Endo, Hisayoshi; Pedersen, Preben Terndrup

    2005-01-01

    tankers, the introduction of buffer bulbous bows has been proposed. Relatively soft buffer bows absorb part of the kinetic energy of the striking ship before penetrating the inner hull of the struck vessel. The purpose of the present paper is to verify the effectiveness of a prototype buffer bulbous bow......) and the forward velocity of the struck ship on the collapse mode of the bow of the striking vessel are investigated. Collapse modes, contact forces and energy absorption capabilities of the buffer bows are compared with those of conventional bows....

  8. Two dimensional hybrid simulation of a curved bow shock

    International Nuclear Information System (INIS)

    Thomas, V.A.; Winske, D.

    1990-01-01

    Results are presented from two dimensional hybrid simulations of curved collisionless supercritical shocks, retaining both quasi-perpendicular and quasi-parallel sections of the shock in order to study the character and origin of the foreshock ion population. The simulations demonstrate that the foreshock ion population is dominated by ions impinging upon the quasi-parallel side of the shock, while nonlocal transport from the quasi-perpendicular side of the shock into the foreshock region is minimal. Further, it is shown that the ions gain energy by drifting significantly in the direction of the convection electric field through multiple shock encounters

  9. Magnetic field amplification in interstellar collisionless shock waves

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1977-01-01

    It is stated that it is commonly assumed that a simple compression of the magnetic field occurs in interstellar shock waves. Recent space observations of the Earth's bow shock have shown that turbulent amplification of the magnetic field can occur in a collisionless shock. It is shown here that radio observations of Tycho's supernova remnant indicate the presence of a shock wave with such magnetic field amplification. There is at present no theory for the microinstabilities that give rise to turbulent amplification of the magnetic field. Despite the lack of theoretical understanding the possibility of field amplification in interstellar shock waves is here considered. In Tycho's supernova remnant there is evidence for the presence of a collisionless shock, and this is discussed. On the basis of observations of the Earth's bow shock, it is expected that turbulent magnetic field amplification occurs in the shock wave of this remnant, and this is supported by radio observations of the remnant. Consideration is given as to what extent the magnetic field is amplified in the shock wave on the basis of the non-thermal radio flux. (U.K.)

  10. Interplanetary shock transmitted into the Earth's magnetosheath: Cluster and Double Star observations

    Directory of Open Access Journals (Sweden)

    G. Pallocchia

    2010-05-01

    Full Text Available On day 7 May 2005, the plasma instruments on board Double Star TC1 and Cluster SC3 spacecraft register inside the magnetosheath, at 19:15:12 and 19:16:20 UT, respectively, a strong pressure pulse due to the impact of an interplanetary shock wave (IS on the terrestrial bow shock. The analysis of this event provides clear and quantitative evidences confirming and strengthening some results given by past simulations and observational studies. In fact, here we show that the transmitted shock is slowed down with respect to the incident IS (in the Earth's reference frame and that, besides the transmitted shock, the IS – bow shock interaction generates a second discontinuity. Moreover, supported also by a special set three-dimensional magnetohydrodynamic simulation, we discuss, as further effects of the interaction of the IS with the magnetosphere, other two interesting aspects of the present event, that is: the TC1 double crossing of the bow shock (observed few minutes after the impact of the IS and the presence, only in the SC3 data, of a third discontinuity produced inside the magnetosheath.

  11. Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock

    Science.gov (United States)

    Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.

    2017-12-01

    We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.

  12. Very high Mach number shocks - Theory. [in space plasmas

    Science.gov (United States)

    Quest, Kevin B.

    1986-01-01

    The theory and simulation of collisionless perpendicular supercritical shock structure is reviewed, with major emphasis on recent research results. The primary tool of investigation is the hybrid simulation method, in which the Newtonian orbits of a large number of ion macroparticles are followed numerically, and in which the electrons are treated as a charge neutralizing fluid. The principal results include the following: (1) electron resistivity is not required to explain the observed quasi-stationarity of the earth's bow shock, (2) the structure of the perpendicular shock at very high Mach numbers depends sensitively on the upstream value of beta (the ratio of the thermal to magnetic pressure) and electron resistivity, (3) two-dimensional turbulence will become increasingly important as the Mach number is increased, and (4) nonadiabatic bulk electron heating will result when a thermal electron cannot complete a gyrorbit while transiting the shock.

  13. Subcritical-to-supercritical transition in quasi-perpendicular fast shocks

    International Nuclear Information System (INIS)

    Livesey, W.A.

    1985-01-01

    The magnetic structure of collisionless quasi-perpendicular bow shock waves was observed and studied using fluxgate magnetometer data from the ISEE-1 and 2 spacecraft. The angle theta/sub Bn/ between upstream magnetic field and the shock normal was determined for each case. The fast Mach number M, β/sub i/, and β/sub e/ of the shock waves were estimated using solar wind plasma parameters. The critical fast Mach number M/sub c/, the Mach number for which the downstream flow speed just equals the downstream sound speed, was calculated for each shock using the Rankine-Hugoniot shock jump conditions. A survey of the dependence of various magnetic substructures upon these parameters was performed. A precursor foot to the shock was noted for shock waves characterized by M/M/sub c/ > 1. The thickness of this foot region was in good quantitative agreement with predicted trajectories of solar wind ions undergoing specular reflection from the shock ramp

  14. Slow-mode shocks in the earth's magnetosphere

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1987-01-01

    The locations and structure of slow-mode shocks in the earth's magnetosphere are reviewed. To date, such shocks have only been identified along the high latitude portions of the lobe-plasma sheet boundary of the geomagnetic tail. Although their intrinsic thickness is of the order of the upstream ion inertial length, they affect the internal state of a relatively much larger volume of surrounding plasma. In particular, they support a well-developed foreshock very similar to that observed upstream of the earth's bow shock, and a turbulent, strongly convecting downstream flow. They also figure importantly in the energy budget of geomagnetic substorms and produce effects which are closely analogous to much of the phenomenology known from solar observations to be associated with two-ribbon flares. 74 refs., 14 figs

  15. Beacon: A three-dimensional structural analysis code for bowing history of fast breeder reactor cores

    International Nuclear Information System (INIS)

    Miki, K.

    1979-01-01

    The core elements of an LMFBR are bowed due to radial gradients of both temperature and neutron flux in the core. Since all hexagonal elements are multiply supported by adjacent elements or the restraint system, restraint forces and bending stresses are induced. In turn, these forces and stresses are relaxed by irradiation enhanced creep of the material. The analysis of the core bowing behavior requires a three-dimensional consideration of the mechanical interactions among the core elements, because the core consists of different kinds of elements and of fuel assemblies with various burnup histories. A new computational code BEACON has been developed for analyzing the bowing behavior of an LMFBR's core in three dimensions. To evaluate mechanical interactions among core elements, the code uses the analytical method of the earlier SHADOW code. BEACON analyzes the mechanical interactions in three directions, which form angles of 60 0 with one another. BEACON is applied to the 60 0 sector of a typical LMFBR's core for analyzing the bowing history during one equilibrium cycle. 120 core elements are treated, assuming the boundary condition of rotational symmetry. The application confirms that the code can be an effective tool for parametric studies as well as for detailed structural analysis of LMFBR's core. (orig.)

  16. Modelling interstellar structures around Vela X-1

    Science.gov (United States)

    Gvaramadze, V. V.; Alexashov, D. B.; Katushkina, O. A.; Kniazev, A. Y.

    2018-03-01

    We report the discovery of filamentary structures stretched behind the bow-shock-producing high-mass X-ray binary Vela X-1 using the SuperCOSMOS H-alpha Survey and present the results of optical spectroscopy of the bow shock carried out with the Southern African Large Telescope. The geometry of the detected structures suggests that Vela X-1 has encountered a wedge-like layer of enhanced density on its way and that the shocked material of the layer partially outlines a wake downstream of Vela X-1. To substantiate this suggestion, we carried out 3D magnetohydrodynamic simulations of interaction between Vela X-1 and the layer for three limiting cases. Namely, we run simulations in which (i) the stellar wind and the interstellar medium (ISM) were treated as pure hydrodynamic flows, (ii) a homogeneous magnetic field was added to the ISM, while the stellar wind was assumed to be unmagnetized, and (iii) the stellar wind was assumed to possess a helical magnetic field, while there was no magnetic field in the ISM. We found that although the first two simulations can provide a rough agreement with the observations, only the third one allowed us to reproduce not only the wake behind Vela X-1, but also the general geometry of the bow shock ahead of it.

  17. Selfsimilar time dependent shock structures

    International Nuclear Information System (INIS)

    Beck, R.; Drury, L.O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions

  18. Selfsimilar time dependent shock structures

    Science.gov (United States)

    Beck, R.; Drury, L. O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  19. The player and the bowed string: coordination of bowing parameters in violin and viola performance.

    Science.gov (United States)

    Schoonderwaldt, E

    2009-11-01

    An experiment was conducted with four violin and viola players, measuring their bowing performance using an optical motion capture system and sensors on the bow. The measurements allowed for a detailed analysis of the use and coordination of the main bowing parameters bow velocity, bow force, and bow-bridge distance. An analysis of bowing strategies in detache playing of notes of three durations (0.2, 2, and 4 s) at three dynamic levels (pp, mf, and f) on all four strings is presented, focusing on the "steady" part of the notes. The results revealed clear trends in the coordinated variations of the bowing parameters depending on the constraints of the task, reflecting a common behavior as well as individual strategies. Furthermore, there were clear indications that the players adapted the bowing parameters to the physical properties of the string and the instrument, respecting the limits of the playable control parameter space.

  20. Reflected and diffuse ions backstreaming from the earth's bow shock 1. Basic properties

    International Nuclear Information System (INIS)

    Bonifazi, C.; Moreno, G.

    1981-01-01

    Plasma data supplied by the ISEE 2 solar wind experiment are used to perform the first extended statistical analysis of the basic moments of the ions backstream from the earth's bow shock. The analysis is based on 3253 ion spectra, corresponding to a total observation time of approx. =87 hours. It turns out that the density and total energy density of the backstream ions are, on the average, equal to approx. =1% and approx. =10% of those of the solar wind, respectively. The distinction between the 'reflected' and 'diffuse' populations has been confirmed and put on a quantitive basis using the ratio A = V /sub B/P/w/sub B/P between the bulk velocity and the rms thermal speed of the ions. The reflected ions are characterized by a bulk velocity V/sub B/P of the order of 2 times the solar wind velocity and by a temperature of approx.7 x 10 6 K. In contrast, the diffuse ions have, on the average, a bulk velocity 1.2 times the solar wind velocity and a temperature of 40 x 10 6 K. Therefore the total energy density of the diffuse ions is approx. =30% larger than that of the reflected ions. Finally, the kinetic and thermal energy densities are distributed quite differently in the two ion populations: in fact, approx. =70% of the total energy density is kinetic for the reflected ions, while this percentage decreases to approx. =20% for the diffuse ions

  1. Initial ISEE magnetometer results: shock observation

    International Nuclear Information System (INIS)

    Russell, C.T.

    1979-01-01

    ISEE-1 and -2 magnetic field profiles across 6 terrestrial bow shock and one interplanetary shock are examined. The inteplanetary shock illustrates the behavior of a low Mach number shock. Three examples of low or moderate β, high Mach number, quasi-perpendicular shocks are examined. These did not have upstream waves, but rather had waves growing in the field gradient. Two examples of high β shocks showed little coherence in field variation even though the two vehicles were only a few hundred kilometers apart. The authors present the joint behavior of wave, particle and field data across some of these shocks to show some of the myriad of shock features whose behavior they are now beginning to investigate. (Auth.)

  2. Electric field scales at quasi-perpendicular shocks

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2004-07-01

    Full Text Available This paper investigates the short scale structures that are observed in the electric field during crossings of the quasi-perpendicular bow shock using data from the Cluster satellites. These structures exhibit large amplitudes, as high as 70 m Vm-1 and so make a significant contribution to the overall change in potential at the shock front. It is shown that the scale size of these short-lived electric field structures is of the order of a few cpe. The relationships between the scale size and the upstream Mach number and θBn are studied. It is found that the scale size of these structures decreases with increasing plasma β and as θBn→90°. The amplitude of the spikes remains fairly constant with increasing Ma and appears to increase as θBn→90°.

  3. STRUCTURE, PROPAGATION, AND EXPANSION OF A CME-DRIVEN SHOCK IN THE HELIOSPHERE: A REVISIT OF THE 2012 JULY 23 EXTREME STORM

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying D.; Hu, Huidong; Zhu, Bei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Luhmann, Janet G. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Vourlidas, Angelos, E-mail: liuxying@spaceweather.ac.cn [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20732 (United States)

    2017-01-10

    We examine the structure, propagation, and expansion of the shock associated with the 2012 July 23 extreme coronal mass ejection. Characteristics of the shock determined from multi-point imaging observations are compared to in situ measurements at different locations and a complex radio type II burst, which according to our definition has multiple branches that may not all be fundamental-harmonic related. The white-light shock signature can be modeled reasonably well by a spherical structure and was expanding backward even on the opposite side of the Sun. The expansion of the shock, which was roughly self-similar after the first ∼1.5 hr from launch, largely dominated over the translation of the shock center for the time period of interest. Our study also suggests a bow-shock morphology around the nose at later times due to the outward motion in combination with the expansion of the ejecta. The shock decayed and failed to reach Mercury in the backward direction and the Solar Terrestrial Relations Observatory B ( STEREO B ) and Venus in the lateral directions, as indicated by the imaging and in situ observations. The shock in the nose direction, however, may have persisted to the far outer heliosphere, with predicted impact on Dawn around 06:00 UT on July 25 and on Jupiter around 23:30 UT on July 27 by a magnetohydrodynamic model. The type II burst shows properties generally consistent with the spatial/temporal variations of the shock deduced from imaging and in situ observations. In particular, the low-frequency bands agree well with the in situ measurements of a very low density ahead of the shock at STEREO A .

  4. Laser Scattering Diagnostic for Shock Front Arrival and Electron Number Density, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Three diagnostic methods are proposed for measuring properties of interest in the post-shock regions of a hypersonic bow shock wave that is used for studying...

  5. The sacred weapon: bow and arrow combat in Iran

    Directory of Open Access Journals (Sweden)

    Manouchehr Moshtagh Khorasani

    2012-07-01

    Full Text Available The following article presents the development of the bow and arrow, and its important role in the history of Iran. The bow always played an important role not only on the battlefield, but also in hunting. It was also considered as a sacred weapon and additionally a royal symbol. Bow and arrow were considered as a superior weapon in comparison with other types of weapons because one could fight with them at a safer distance as one offered by swords, maces and axes. The first part of the article presents a short history of the bow in Iran. Based on historical Persian manuscripts, the next part explains the structure of the composite bow and the materials used for making it. The third part describes some types of bows based on the material, place of production, the usage, and bow type based on the length of the bow and the arrows. The following part talks about different types of arrows based on morphology of arrowheads, the type of plume/feather, the material of the shaft, the material of the arrowhead, the length of arrows, the target of arrows, the place of production of arrowheads and terms for describing its different features of an arrowhead. Then, the article talks about different types of thumb rings, bowstrings, quivers and bow cases and arrow guides for shooting short arrows. The next part discusses different principles of archery as explained in Persian manuscripts. Finally the article describes different archery targets.

  6. Channel Bow in Boiling Water Reactors - Hot Cell Examination Results and Correlation to Measured Bow

    International Nuclear Information System (INIS)

    Mahmood, S.T.; Lin, Y.P.; Dubecky, M.A.; Edsinger, K.; Mader, E.V.

    2007-01-01

    An increase in frequency of fuel channel-control blade interference has been observed in Boiling Water Reactors (BWR) in recent years. Many of the channels leading to interference were found to bow towards the control blade in a manner that was inconsistent with the expected bow due to other effects. The pattern of bow appeared to indicate a new channel bow mechanism that differed from the predominant bow mechanism caused by differential growth due to fast-fluence gradients. In order to investigate this new type of channel bow, coupons from several channels with varying degrees of bow were returned to the GE Vallecitos Nuclear Center (VNC) for Post-Irradiation Examination (PIE). This paper describes the characteristics of channel corrosion and hydrogen pickup observed, and relates the observations to the channel exposure level, control history, and measured channel bow. The channels selected for PIE had exposures in the range of 36-48 GWd/MTU and covered a wide range of measured bow. The coupons were obtained at 4 elevations from opposing channel sides adjacent and away from the control blade. The PIE performed on these coupons included visual examination, metallography, and hydrogen concentration measurements. A new mechanism of control-blade shadow corrosion-induced channel bow was found to correlate with differences in the extent of corrosion and corresponding differences in the hydrogen concentration between opposite sides of the channels. The increased corrosion on the control blade sides was found to be dependent on the level of control early in the life of the channel. The contributions of other potential factors leading to increased channel bow and channel-control blade interference are also discussed in this paper. (authors)

  7. The CHESS survey of the L1157-B1 bow-shock: high and low excitation water vapor

    Science.gov (United States)

    Busquet, G.; Lefloch, B.; Benedettini, M.; Ceccarelli, C.; Codella, C.; Cabrit, S.; Nisini, B.; Viti, S.; Gómez-Ruiz, A. I.; Gusdorf, A.; di Giorgio, A. M.; Wiesenfeld, L.

    2014-01-01

    Context. Molecular outflows powered by young protostars strongly affect the kinematics and chemistry of the natal molecular cloud through strong shocks. This results in substantial modifications of the abundance of several species. In particular, water is a powerful tracer of shocked material because of its sensitivity to both physical conditions and chemical processes. Aims: As part of the Chemical HErschel Surveys of Star-forming regions (CHESS) guaranteed time key program, we aim at investigating the physical and chemical conditions of H2O in the brightest shock region B1 of the L1157 molecular outflow. Methods: We observed several ortho- and para-H2O transitions using the HIFI and PACS instruments on board Herschel toward L1157-B1, providing a detailed picture of the kinematics and spatial distribution of the gas. We performed a large velocity gradient (LVG) analysis to derive the physical conditions of H2O shocked material, and ultimately obtain its abundance. Results: We detected 13 H2O lines with both instruments probing a wide range of excitation conditions. This is the largest data set of water lines observed in a protostellar shock and it provides both the kinematics and the spatial information of the emitting gas. The PACS maps reveal that H2O traces weak and extended emission associated with the outflow identified also with HIFI in the o-H2O line at 556.9 GHz, and a compact (~10'') bright, higher excitation region. The LVG analysis of H2O lines in the bow-shock show the presence of two gas components with different excitation conditions: a warm (Tkin ≃ 200-300 K) and dense (n(H2) ≃ (1-3) × 106 cm-3) component with an assumed extent of 10'', and a compact (~2''-5'') and hot, tenuous (Tkin ≃ 900-1400 K, n(H2) ≃ 103-4 cm-3) gas component that is needed to account for the line fluxes of high Eu transitions. The fractional abundance of the warm and hot H2O gas components is estimated to be (0.7-2) × 10-6 and (1-3) × 10-4, respectively. Finally, we

  8. On numerical simulation of fuel assembly bow in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Horváth, Ákos, E-mail: akoshorvath@t-online.hu [AREVA, AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany); Budapest University of Technology and Economics, Department of Aircraft and Ships, Stoczek Street 6, Building J, H-1111 Budapest (Hungary); Dressel, Bernd [AREVA, AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany)

    2013-12-15

    Highlights: • Simulation of fuel assembly bow by coupled CFD and finite element method. • Comparison of calculated and experimentally measured bow shapes. • Investigation of boundary condition effect on bow pattern of a fuel assembly row. • Highlighting importance of consideration of fluid–structure interaction. • Assessment of flow redistribution within the fuel assembly row model. - Abstract: Fuel assembly bow in pressurized water reactor cores is largely triggered by lateral hydraulic forces together with creep processes generated by neutron flux. A detailed understanding of the flow induced bow behaviour is, therefore, an important issue. The experimental feedbacks and laboratory tests on fuel assembly bow show that it is characterized to a high degree by fluid–structure interaction (FSI) effects, therefore, consideration of FSI is essential and indispensable in full comprehension of the bow mechanism. In the present study, coupled computational fluid dynamics (CFD) and finite element simulations are introduced, calculating fuel assembly deformation under different conditions as a quasi-stationary phenomenon. The aim has been, on the one hand, to develop such a simplified fuel assembly CFD model, which allows set up of fuel assembly rows without loosing its main hydraulic characteristic; on the other hand, to investigate the bow pattern of a given fuel assembly row under different boundary conditions. The former one has been achieved by comparing bow shapes obtained with different fuel assembly (spacer grid) modelling approaches and mesh resolutions with experimental data. In the second part of the paper a row model containing 7.5 fuel assemblies is introduced, investigating the effect of flow distribution at inlet and outlet boundary regions on fuel assembly bow behaviour. The post processing has been focused on the bow pattern, lateral hydraulic forces, and horizontal flow distribution. The results have revealed importance of consideration of

  9. Oblique shock waves in granular flows over bluff bodies

    Directory of Open Access Journals (Sweden)

    Gopan Nandu

    2017-01-01

    Full Text Available Granular flows around an object have been the focus of numerous analytical, experimental and simulation studies. The structure and nature of the oblique shock wave developed when a quasi-two dimensional flow of spherical granular particles streams past an immersed, fixed cylindrical obstacle forms the focus of this study. The binary granular mixture, consisting of particles of the same diameter but different material properties, is investigated by using a modified LIGGGHTS package as the simulation engine. Variations in the solid fraction and granular temperature within the resulting flow are studied. The Mach number is calculated and is used to distinguish between the subsonic and the supersonic regions of the bow shock.

  10. A semiquantitative theory for the 2fp radiation observed upstream from the earth's bow shock

    International Nuclear Information System (INIS)

    Cairns, I.H.

    1988-01-01

    A semiquantitative theory for the 2f p radiation observed upstream from the Earth's bow shock is presented: the radiation is produced by the process L + L → T + S, proceeding as two sequential three-wave steps L → L' + S and L + L' → T, in the foreshock where nonthermal L and S waves are observed. (Here L, S, and T denote Langmuir, ion acoustic, and transverse electromagnetic waves, respectively.) This theory is consistent with all the available wave data, including the characteristics and levels of a class of low-frequency waves identified as S wave products of the process L → L' + S, and the brightness temperature and bandwidth of the 2f p radiation. Indeed the theory could account for higher 2f p brightness temperatures if required. Predictions of the theory suitable for observational testing include (1) the existence of two 2f p sources, one to each wing of the foreshock, (2) the spatial location of the source regions, and (3) the characteristics and levels of the product L' and S waves in the source regions. The radiation should (4) have intrinsic bandwidths of the order of 1 kHz or less, (5) be less than 0.1% circularly polarized, and (6) have a limiting brightness temperature equal to the effective temperature T L of the L waves producing the radiation

  11. Slow shocks and their transition to fast shocks in the inner solar wind

    International Nuclear Information System (INIS)

    Wang, Y.C.

    1987-01-01

    The jump conditions of MHD shocks may be directly calculated as functions of three upstream conditions: the shock Alfven number based on the normal component of the relative shock speed, the shock angle, and the plasma β value. The shock Alfven number is less than 1 for a slow shock and greater than 1 for a fast shock. A traveling, forward shock can be a slow shock in coronal space, where the Alfven speed is of the order of 1000 km/s. The surface of a forward slow shock has a bow-shaped geometry with its nose facing toward the sun. The decrease in the Alfven speed at increasing heliocentric distance causes the shock Alfven number of a forward slow shock to become greater than 1, and the shock eventually evolves from a slow shock into a fast shock. During the transition the shock system consists of a slow shock, a fast shock, and a rotational discontinuity. They intersect along a closed transition line. As the system moves outward from the sun, the area enclosed by the transition line expands, the fast shock grows stronger, and the slow shock becomes weaker. Eventually, the slow shock diminishes, and the entire shock system evolves into a forward fast shock. copyrightAmerican Geophysical Union 1987

  12. Bowed Strings

    Science.gov (United States)

    Rossing, Thomas D.; Hanson, Roger J.

    In the next eight chapters, we consider some aspects of the science of bowed string instruments, old and new. In this chapter, we present a brief discussion of bowed strings, a subject that will be developed much more thoroughly in Chap. 16. Chapters 13-15 discuss the violin, the cello, and the double bass. Chapter 17 discusses viols and other historic string instruments, and Chap. 18 discusses the Hutchins-Schelleng violin octet.

  13. Flow performance of highly loaded axial fan with bowed rotor blades

    Science.gov (United States)

    Chen, L.; Liu, X. J.; Yang, A. L.; Dai, R.

    2013-12-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved.

  14. Subcritical collisionless shock waves. [in earth space plasma

    Science.gov (United States)

    Mellott, M. M.

    1985-01-01

    The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.

  15. Comparison of three methods for the estimation of cross-shock electric potential using Cluster data

    Directory of Open Access Journals (Sweden)

    A. P. Dimmock

    2011-05-01

    Full Text Available Cluster four point measurements provide a comprehensive dataset for the separation of temporal and spatial variations, which is crucial for the calculation of the cross shock electrostatic potential using electric field measurements. While Cluster is probably the most suited among present and past spacecraft missions to provide such a separation at the terrestrial bow shock, it is far from ideal for a study of the cross shock potential, since only 2 components of the electric field are measured in the spacecraft spin plane. The present paper is devoted to the comparison of 3 different techniques that can be used to estimate the potential with this limitation. The first technique is the estimate taking only into account the projection of the measured components onto the shock normal. The second uses the ideal MHD condition E·B = 0 to estimate the third electric field component. The last method is based on the structure of the electric field in the Normal Incidence Frame (NIF for which only the potential component along the shock normal and the motional electric field exist. All 3 approaches are used to estimate the potential for a single crossing of the terrestrial bow shock that took place on the 31 March 2001. Surprisingly all three methods lead to the same order of magnitude for the cross shock potential. It is argued that the third method must lead to more reliable results. The effect of the shock normal inaccuracy is investigated for this particular shock crossing. The resulting electrostatic potential appears too high in comparison with the theoretical results for low Mach number shocks. This shows the variability of the potential, interpreted in the frame of the non-stationary shock model.

  16. Analysis of PWR assembly bow

    International Nuclear Information System (INIS)

    Fetterman, Robert J.; Franceschini, Fausto

    2008-01-01

    Excessive out of core assembly bow has been observed during refueling outages of certain PWRs. Assembly bow can take on a rather complex S-shape, and in other cases C-shape bow is prevalent. Concerns have been raised regarding the impact of the observed assembly bow on the in-core power distribution and the safety analyses supporting the plant operations. In response to these concerns, Westinghouse has developed a comprehensive analysis process for determining the effects of assembly bow on core power distributions and plant operating margins. This methodology has been applied to a particular reactor as part of an overall safety reanalysis completed in support of plant modifications. This paper provides a brief description of the methods used and a summary of the pertinent results. (authors)

  17. Analysis of PWR assembly bow

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J.; Franceschini, Fausto [Westinghouse Electric Company LLC, Pittsburgh, PA (United States)

    2008-07-01

    Excessive out of core assembly bow has been observed during refueling outages of certain PWRs. Assembly bow can take on a rather complex S-shape, and in other cases C-shape bow is prevalent. Concerns have been raised regarding the impact of the observed assembly bow on the in-core power distribution and the safety analyses supporting the plant operations. In response to these concerns, Westinghouse has developed a comprehensive analysis process for determining the effects of assembly bow on core power distributions and plant operating margins. This methodology has been applied to a particular reactor as part of an overall safety reanalysis completed in support of plant modifications. This paper provides a brief description of the methods used and a summary of the pertinent results. (authors)

  18. Analytical solutions of hypersonic type IV shock - shock interactions

    Science.gov (United States)

    Frame, Michael John

    An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for

  19. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Science.gov (United States)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  20. On the Unsteadiness of a Transitional Shock Wave-Boundary Layer Interaction Using Fast-Response Pressure-Sensitive Paint

    Science.gov (United States)

    Lash, E. Lara; Schmisseur, John

    2017-11-01

    Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.

  1. Bulbous Bow Shape Optimization

    OpenAIRE

    Blanchard , Louis; Berrini , Elisa; Duvigneau , Régis; Roux , Yann; Mourrain , Bernard; Jean , Eric

    2013-01-01

    International audience; The aim of this study is to prove the usefulness of a bulbous bow for a fishing vessel, in terms of drag reduction, using an automated shape optimization procedure including hydrodynamic simulations. A bulbous bow is an appendage that is known to reduce the drag, thanks to its influence on the bow wave system. However, the definition of the geometrical parameters of the bulb, such as its length and thickness, is not intuitive, as both parameters are coupled with regard...

  2. Ion Dynamics at Shocks: Ion Reflection and Beam Formation at Quasi-perpendicular Shocks

    International Nuclear Information System (INIS)

    Kucharek, Harald; Moebius, Eberhard

    2005-01-01

    The physics of collisionless shocks is controlled by the ion dynamics. The generation of gyrating ions by reflection as well as the formation of field-aligned ion beams are essential parts of this dynamic. On the one hand reflection is most likely the first interaction of ions with the shock before they undergo the downstream thermalization process. On the other hand field-aligned ion beams, predominately found at the quasi-perpendicular bow shock, propagate into the distant foreshock region and may create wave activity. We revisit ion reflection, the source and basic production mechanism of field-aligned ion beams, by using multi-spacecraft measurements and contrast these observations with existing theories. Finally, we propose an alternative production mechanism

  3. Magnetic clouds' structure in the magnetosheath as observed by Cluster and Geotail: four case studies

    Directory of Open Access Journals (Sweden)

    L. Turc

    2014-10-01

    Full Text Available Magnetic clouds (MCs are large-scale magnetic flux ropes ejected from the Sun into the interplanetary space. They play a central role in solar–terrestrial relations as they can efficiently drive magnetic activity in the near-Earth environment. Their impact on the Earth's magnetosphere is often attributed to the presence of southward magnetic fields inside the MC, as observed in the upstream solar wind. However, when they arrive in the vicinity of the Earth, MCs first encounter the bow shock, which is expected to modify their properties, including their magnetic field strength and direction. If these changes are significant, they can in turn affect the interaction of the MC with the magnetosphere. In this paper, we use data from the Cluster and Geotail spacecraft inside the magnetosheath and from the Advanced Composition Explorer (ACE upstream of the Earth's environment to investigate the impact of the bow shock's crossing on the magnetic structure of MCs. Through four example MCs, we show that the evolution of the MC's structure from the solar wind to the magnetosheath differs largely from one event to another. The smooth rotation of the MC can either be preserved inside the magnetosheath, be modified, i.e. the magnetic field still rotates slowly but at different angles, or even disappear. The alteration of the magnetic field orientation across the bow shock can vary with time during the MC's passage and with the location inside the magnetosheath. We examine the conditions encountered at the bow shock from direct observations, when Cluster or Geotail cross it, or indirectly by applying a magnetosheath model. We obtain a good agreement between the observed and modelled magnetic field direction and shock configuration, which varies from quasi-perpendicular to quasi-parallel in our study. We find that the variations in the angle between the magnetic fields in the solar wind and in the magnetosheath are anti-correlated with the variations in the

  4. Flow performance of highly loaded axial fan with bowed rotor blades

    International Nuclear Information System (INIS)

    Chen, L; Liu, X J; Yang, A L; Dai, R

    2013-01-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved

  5. Fuel pin bowing in CAGR

    International Nuclear Information System (INIS)

    Crossland, I.G.

    1982-01-01

    Some of the more important mechanisms by which pin bowing can occur in Advanced Gas Cooled Reactors are examined. These include creep relaxation of the stresses which occur when thermal bowing is restrained and asymmetric axial clad creep. The clad temperature changes which accompany such bowing are also investigated and the theoretical results briefly compared with the empirical behaviour. (author)

  6. Shock wave focusing in water inside convergent structures

    Directory of Open Access Journals (Sweden)

    C Wang

    2016-09-01

    Full Text Available Experiments on shock focusing in water-filled convergent structures have been performed. A shock wave in water is generated by means of a projectile, launched from a gas gun, which impacts a water-filled convergent structure. Two types of structures have been tested; a bulk material and a thin shell structure. The geometric shape of the convergent structures is given by a logarithmic spiral, and this particular shape is chosen because it maximizes the amount of energy reaching the focal region. High-speed schlieren photography is used to visualize the shock dynamics during the focusing event. Results show that the fluid-structure interaction between the thin shell structure and the shock wave in the water is different from that of a bulk structure; multiple reflections of the shock wave inside the thin shell are reflected back into the water, thus creating a wave train, which is not observed for shock focusing in a bulk material.

  7. On possible structures of normal ionizing shock waves in electromagnetic shock tubes

    International Nuclear Information System (INIS)

    Liberman, M.A.; Synakh, V.S.; Zakajdakhov, V.V.; Velikovich, A.L.

    1982-01-01

    The problem of possible structures of normal ionizing shock waves is studied. On the basis of the general theory of ionizing shock waves in magnetic fields, a similarity solution of the piston problem for an impenetrable piston and a magnetic piston is described and a numerical solution of the non-stationary piston problem is obtained. It is shown that precursor photo-ionization of the neutral gas by the radiation of the shock-heated gas is the dominant factor in shaping normal ionizing shock structures. In particular, it is shown that the strong overheating of atoms and ions in shock fronts is due to the tensor form of Ohm's law in the precursor region. (author)

  8. On possible structures of transverse ionizing shock waves

    International Nuclear Information System (INIS)

    Liberman, M.A.; Velikovich, A.L.

    1978-01-01

    The possible structures of ionizing shock waves propagating in gases across the magnetic field are investigated taking account of both ionization kinetics and the non-isothermality of the plasma which is formed within the shock front. It is shown that a definite factor in shaping the structure of the transverse ionizing shock wave is photo-ionization of the neutral gas across the front. The paper includes a study of the evolution of the transverse ionizing shock front with regard to photo-ionization, disclosing that a stable stationary shock structure emerges only in boundary conditions which are close to magnetohydrodynamic ones, i.e. upsilon 1 H 1 = upsilon 2 H 2 . In the case of strong transverse ionizing shock waves, when the flux of ionizing radiation across the front is great, the shock structure is obviously magnetohydrodynamic. (author)

  9. Collisionless Weibel shocks: Full formation mechanism and timing

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Stockem, A. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Narayan, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, Massachusetts 02138 (United States); Silva, L. O. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal)

    2014-07-15

    Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2D and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.

  10. Simple analytical relations for ship bow waves

    Science.gov (United States)

    Noblesse, Francis; Delhommeau, G.?Rard; Guilbaud, Michel; Hendrix, Dane; Yang, Chi

    Simple analytical relations for the bow wave generated by a ship in steady motion are given. Specifically, simple expressions that define the height of a ship bow wave, the distance between the ship stem and the crest of the bow wave, the rise of water at the stem, and the bow wave profile, explicitly and without calculations, in terms of the ship speed, draught, and waterline entrance angle, are given. Another result is a simple criterion that predicts, also directly and without calculations, when a ship in steady motion cannot generate a steady bow wave. This unsteady-flow criterion predicts that a ship with a sufficiently fine waterline, specifically with waterline entrance angle 2, may generate a steady bow wave at any speed. However, a ship with a fuller waterline (25E) can only generate a steady bow wave if the ship speed is higher than a critical speed, defined in terms of αE by a simple relation. No alternative criterion for predicting when a ship in steady motion does not generate a steady bow wave appears to exist. A simple expression for the height of an unsteady ship bow wave is also given. In spite of their remarkable simplicity, the relations for ship bow waves obtained in the study (using only rudimentary physical and mathematical considerations) are consistent with experimental measurements for a number of hull forms having non-bulbous wedge-shaped bows with small flare angle, and with the authors' measurements and observations for a rectangular flat plate towed at a yaw angle.

  11. Crushing of ship bows in head-on collision

    DEFF Research Database (Denmark)

    Ocakli, H.; Zhang, S.; Pedersen, Preben Terndrup

    2004-01-01

    Semi-analytical methods for analysis of plate crushing and ship bow damage in head-on collisions are developed in this paper. Existing experimental and theoretical studies for crushing analysis of plated structures are summarized and compared. Simple formulae for determining the crushing force....... The approach developed can be used easily to determine the crushing resistance and damage extent of the ship bow when ship length and collision speed are known. The method can be used in probabilistic analysis of damage extents in ship collisions where a large number of calculations are generally required....

  12. Medicine Bow wind project

    Science.gov (United States)

    Nelson, L. L.

    1982-05-01

    The Bureau of Reclamation (Bureau) conducted studies for a wind turbine field of 100 MW at a site near Medicine Bow, WY, one of the windiest areas in the United States. The wind turbine system would be electrically interconnected to the existing Federal power grid through the substation at Medicine Bow. Power output from the wind turbines would thus be integrated with the existing hydroelectric system, which serves as the energy storage system. An analysis based on 'willingness to pay' was developed. Based on information from the Department of Energy's Western Area Power Administration (Western), it was assumed that 90 mills per kWh would represent the 'willingness to pay' for onpeak power, and 45 mills per kWh for offpeak power. The report concludes that a 100-MW wind field at Medicine Bow has economic and financial feasibility. The Bureau's construction of the Medicine Bow wind field could demonstrate to the industry the feasibility of wind energy.

  13. Atelier Bow-Wow DELIGHTS

    DEFF Research Database (Denmark)

    Kajita, Masashi

    2011-01-01

    Atelier Bow-Wow bruger det engelske ord 'delights' til at beskrive en arkitektonisk kvalitet, der dækker over fornøjelse, nydelse og glæde. Interviewet med Yoshiharu Tskukamoto, der sammen med Momoyo Kaijima leder Atelier Bow-Wow, udforsker baggrunden for begrebet 'delights', hvordan det spiller...

  14. Modelling the bending/bowing of composite beams such as nuclear fuel

    International Nuclear Information System (INIS)

    Tayal, M.

    1989-01-01

    Arrays of tubes are used in many engineered structures, such as in nuclear fuel bundles and in steam generators. The tubes can bend (bow) due to in-service temperatures and loads. Assessments of bowing of nuclear fuel elements can help demonstrate the integrity of fuel and of surrounding components, as a function of operating conditions such as channel power. The BOW code calculates the bending of composite beams such as fuel elements, due to gradients of temperature and due to hydraulic forces. The deflections and rotations are calculated in both lateral directions, for given conditions of temperatures. Wet and dry operation of the sheath can be simulated. BOW accounts for the following physical phenomena: circumferential and axial variations in the temperatures of the sheath and of the pellet; cracking of pellets; grip and slip between the pellets and the sheath; hydraulic drag; restraint from endplates, from neighbouring elements, and from the pressure-tube; gravity; concentric or eccentric welds between endcaps and endplate; neutron flux gradients; and variations of material properties with temperature. The code is based on fundamental principles of mechanics. The governing equations are solved numerically using the finite element method. Several comparisons with closed-form equations shoe that the solutions of BOW are accurate. BOW's predictions for initial in-reactor bow are also consistent with two post-irradiation measurements

  15. Density Effects on Post-shock Turbulence Structure

    Science.gov (United States)

    Tian, Yifeng; Jaberi, Farhad; Livescu, Daniel; Li, Zhaorui; Michigan State University Collaboration; Los Alamos National Laboratory Collaboration; Texas A&M University-Corpus Christi Collaboration

    2017-11-01

    The effects of density variations due to mixture composition on post-shock turbulence structure are studied using turbulence-resolving shock-capturing simulations. This work extends the canonical Shock-Turbulence Interaction (STI) problem to involve significant variable density effects. The numerical method has been verified using a series of grid and LIA convergence tests, and is used to generate accurate post-shock turbulence data for a detailed flow study. Density effects on post-shock turbulent statistics are shown to be significant, leading to an increased amplification of turbulent kinetic energy (TKE). Eulerian and Lagrangian analyses show that the increase in the post-shock correlation between rotation and strain is weakened in the case with significant density variations (referred to as the ``multi-fluid'' case). Similar to previous single-fluid results and LIA predictions, the shock wave significantly changes the topology of the turbulent structures, exhibiting a symmetrization of the joint PDF of second and third invariant of the deviatoric part of velocity gradient tensor. In the multi-fluid case, this trend is more significant and mainly manifested in the heavy fluid regions. Lagrangian data are also used to study the evolution of turbulence structure away from the shock wave and assess the accuracy of Lagrangian dynamical models.

  16. Coordination in fast repetitive violin-bowing patterns.

    Science.gov (United States)

    Schoonderwaldt, Erwin; Altenmüller, Eckart

    2014-01-01

    We present a study of coordination behavior in complex violin-bowing patterns involving simultaneous bow changes (reversal of bowing direction) and string crossings (changing from one string to another). Twenty-two violinists (8 advanced amateurs, 8 students with violin as major subject, and 6 elite professionals) participated in the experiment. We investigated the influence of a variety of performance conditions (specific bowing patterns, dynamic level, tempo, and transposition) and level of expertise on coordination behavior (a.o., relative phase and amplitude) and stability. It was found that the general coordination behavior was highly consistent, characterized by a systematic phase lead of bow inclination over bow velocity of about 15° (i.e., string crossings were consistently timed earlier than bow changes). Within similar conditions, a high individual consistency was found, whereas the inter-individual agreement was considerably less. Furthermore, systematic influences of performance conditions on coordination behavior and stability were found, which could be partly explained in terms of particular performance constraints. Concerning level of expertise, only subtle differences were found, the student and professional groups (higher level of expertise) showing a slightly higher stability than the amateur group (lower level of expertise). The general coordination behavior as observed in the current study showed a high agreement with perceptual preferences reported in an earlier study to similar bowing patterns, implying that complex bowing trajectories for an important part emerge from auditory-motor interaction.

  17. Coordination in fast repetitive violin-bowing patterns.

    Directory of Open Access Journals (Sweden)

    Erwin Schoonderwaldt

    Full Text Available We present a study of coordination behavior in complex violin-bowing patterns involving simultaneous bow changes (reversal of bowing direction and string crossings (changing from one string to another. Twenty-two violinists (8 advanced amateurs, 8 students with violin as major subject, and 6 elite professionals participated in the experiment. We investigated the influence of a variety of performance conditions (specific bowing patterns, dynamic level, tempo, and transposition and level of expertise on coordination behavior (a.o., relative phase and amplitude and stability. It was found that the general coordination behavior was highly consistent, characterized by a systematic phase lead of bow inclination over bow velocity of about 15° (i.e., string crossings were consistently timed earlier than bow changes. Within similar conditions, a high individual consistency was found, whereas the inter-individual agreement was considerably less. Furthermore, systematic influences of performance conditions on coordination behavior and stability were found, which could be partly explained in terms of particular performance constraints. Concerning level of expertise, only subtle differences were found, the student and professional groups (higher level of expertise showing a slightly higher stability than the amateur group (lower level of expertise. The general coordination behavior as observed in the current study showed a high agreement with perceptual preferences reported in an earlier study to similar bowing patterns, implying that complex bowing trajectories for an important part emerge from auditory-motor interaction.

  18. STEREO interplanetary shocks and foreshocks

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  19. STEREO interplanetary shocks and foreshocks

    International Nuclear Information System (INIS)

    Blanco-Cano, X.; Kajdič, P.; Aguilar-Rodríguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2013-01-01

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and θ Bn ∼20-86°. We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr ≤0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at ∼1 AU and have been producing suprathermal particles for a shorter time.

  20. Strong plasma shock structures based on the Navier--Stokes equations

    International Nuclear Information System (INIS)

    Abe, K.

    1975-01-01

    The structure of a plasma collisional shock wave is examined on the basis of the Navier--Stokes equations and simultaneously on the basis of the Fokker--Planck equation. The resultant structures are compared to check the validity of the Navier--Stokes equations applied to the structures of strong shock waves. The Navier--Stokes equations give quite correct structures for weak shock waves. For the strong shock waves, the detailed structures obtained from the Navier--Stokes equations differ from the results of the Fokker--Planck equation, but the shock thicknesses of the two shock waves are in relatively close agreement

  1. Particle acceleration and shock wave structure

    International Nuclear Information System (INIS)

    DRURY, L.O'C.

    1989-01-01

    A significant determinant in the large-scale structure and evolution of strong collisionless shocks under astrophysical conditions is probably the acceleration of charged particles. The reaction of these particles on the dynamical structure of the shock wave is discussed both theoretically and in the light of recent numerical calculations. Astrophysical implications for the evolution of supernova remnants, are considered. (author). 15 refs

  2. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  3. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  4. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  5. Constraining Relativistic Bow Shock Properties in Rotation-powered Millisecond Pulsar Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Wadiasingh, Zorawar; Venter, Christo; Böttcher, Markus [Centre for Space Research, North–West University, Potchefstroom (South Africa); Harding, Alice K. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Baring, Matthew G., E-mail: zwadiasingh@gmail.com [Department of Physics and Astronomy, Rice University, Houston, TX 77251 (United States)

    2017-04-20

    Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase centering of the double-peaked X-ray orbital modulation originating from mildly relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock standoff R {sub 0}. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the standoff is R {sub 0} ∼ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R {sub 0} ≲ 0.4, while X-ray light curves suggest 0.1 ≲ R {sub 0} ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy dependence in the shape of light curves, motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.

  6. Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries

    Science.gov (United States)

    Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Bottcher, Markus; Baring, Matthew G.

    2017-01-01

    Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R(sub 0). We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R(sub 0) approximately 0:15 - 0:3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R(sub 0) is approximately less than 0:4 while X-ray light curves suggest 0:1 is approximately less than R(sub 0) is approximately less than 0:3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.

  7. CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES

    Science.gov (United States)

    Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Böttcher, Markus; Baring, Matthew G.

    2018-01-01

    Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0 ~ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein. PMID:29651167

  8. Theory for the radiation at the third to fifth harmonics of the plasma frequency upstream from the Earth's bow shock

    International Nuclear Information System (INIS)

    Cairns, I.H.

    1988-01-01

    A theory is presented for the radiation at the third to fifth harmonics of the plasma frequency observed upstream from the Earth's bow shock: the radiation is produced by the process L+T'→T in the foreshock, with the initial T' radiation being the frequently observed second harmonic radiation (generated by another process) and the L waves being products of the decay L'→L+S of L' waves generated by a streaming instability. (Here L, S, and T denote Langmuir, ion acoustic, and 'transverse electromagnetic waves, respectively.) The theory can account for the observed radiation when unusually large levels (electric fields in excess of 10 mV/m) of suitable L waves are present. Such levels of L waves are possible, in principle, but have not been reported before; the radiation is observed quite infrequently, thereby implying a requirement for unusual foreshock conditions. Predictions for the characteristics of the source regions (one to each wing of the foreshock) and the bandwidth of the radiation are given. Potential problems for the theory, relating to the large levels of L waves required to account for the radiation, are discussed. copyright American Geophysical Union 1988

  9. ION INJECTION AT QUASI-PARALLEL SHOCKS SEEN BY THE CLUSTER SPACECRAFT

    International Nuclear Information System (INIS)

    Johlander, A.; Vaivads, A.; Khotyaintsev, Yu. V.; Retinò, A.; Dandouras, I.

    2016-01-01

    Collisionless shocks in space plasma are known to be capable of accelerating ions to very high energies through diffusive shock acceleration (DSA). This process requires an injection of suprathermal ions, but the mechanisms producing such a suprathermal ion seed population are still not fully understood. We study acceleration of solar wind ions resulting from reflection off short large-amplitude magnetic structures (SLAMSs) in the quasi-parallel bow shock of Earth using in situ data from the four Cluster spacecraft. Nearly specularly reflected solar wind ions are observed just upstream of a SLAMS. The reflected ions are undergoing shock drift acceleration (SDA) and obtain energies higher than the solar wind energy upstream of the SLAMS. Our test particle simulations show that solar wind ions with lower energy are more likely to be reflected off the SLAMS, while high-energy ions pass through the SLAMS, which is consistent with the observations. The process of SDA at SLAMSs can provide an effective way of accelerating solar wind ions to suprathermal energies. Therefore, this could be a mechanism of ion injection into DSA in astrophysical plasmas

  10. Radiological assessment of the femoral bowing in Japanese population

    Directory of Open Access Journals (Sweden)

    Abdelaal Ahmed Hamed Kassem

    2016-01-01

    Full Text Available Introduction: Differences in the magnitude of bowing between races are well-known characteristics of the femur. Asian races have an increased magnitude of femoral bowing but most of the orthopedic implants designed for the femur do not match this exaggerated bowing. We calculated the sagittal and coronal femoral bowing in the Japanese population at different levels of the femur and addressed its surgical significance. Material and methods: We calculated the sagittal and coronal bowing of 132 Japanese femora using CT scan of the femur. A mathematical calculation of the radius of curvature at proximal, middle, and distal regions of the femur was used to determine the degree of femoral bowing. Results: Mean sagittal bowing of the femur was 581, 188, and 161 mm for the proximal, middle, and distal thirds of the femur and mean lateral bowing was 528, 5092, and 876 mm, respectively. Mean sagittal and coronal bowing for the whole femur was 175 and 2640 mm, respectively. No correlation was found between age, gender, length of femur, and the degree of bowing. Conclusion: Our study reveals that femoral bowing in the Japanese population is 175 mm in the sagittal plane and 2640 mm in the coronal plane; these values are greater than the femoral bowing in other ethnic groups studied in the literature. This may result in varying degrees of mismatch between the western-manufactured femoral intramedullary implants and the Japanese femur. We recommend that orthopedic surgeons to accurately perform preoperative evaluation of the femoral bowing to avoid potential malalignment, rotation, and abnormal stresses between the femur and implant.

  11. Extraction of bowing parameters from violin performance combining motion capture and sensors.

    Science.gov (United States)

    Schoonderwaldt, E; Demoucron, M

    2009-11-01

    A method is described for measurement of a complete set of bowing parameters in violin performance. Optical motion capture was combined with sensors for accurate measurement of the main bowing parameters (bow position, bow velocity, bow acceleration, bow-bridge distance, and bow force) as well as secondary control parameters (skewness, inclination, and tilt of the bow). In addition, other performance features (moments of on/off in bow-string contact, string played, and bowing direction) were extracted. Detailed descriptions of the calculations of the bowing parameters, features, and calibrations are given. The described system is capable of measuring all bowing parameters without disturbing the player, allowing for detailed studies of musically relevant aspects of bow control and coordination of bowing parameters in bowed-string instrument performance.

  12. On the effect of a tangential discontinuity on ions specularly reflected at an oblique shock

    International Nuclear Information System (INIS)

    Burgess, D.

    1989-01-01

    In seeking to explain the events observed close to the Earth's bow shock known as hot, diamagnetic cavities (HDC), or active current sheets (ACS), attention has focused on the microphysics of the interaction of a magnetic field directional discontinuity and a collisionless, supercritical shock. Here the author investigates the case of a tangential discontinuity (TD) convecting into a shock at some arbitrary angle. As a first stage he adopted an approach in which test particles represent ions specularly reflected at the shock front. Widely different behavior is possible depending on the sense of ion gyration relative to the TD. Particles can be injected into the plane of the TD so that they travel upstream trapped close to the TD. This implies that ACS events, presumed to be the result of the interaction of the solar wind with a large density reflected component, are detached from the bow shock. For other geometries, ions interact with the TD but stay close to the shock, implying that ACS events are modifications of the shock. The TD can deprive a limited spatial region of a downstream reflected gyrating ion population (necessary for the quasi-perpendicular supercritical shock to be steady), and so he could anticipate where the shock will not be in equilibrium, and consequently where strong reflection may occur. The detailed behavior of the shock in such a situation must be investigated with self-consistent simulations

  13. Do structural oil-market shocks affect stock prices?

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Miller, Stephen M.

    2009-01-01

    This paper investigates how explicit structural shocks that characterize the endogenous character of oil price changes affect stock-market returns in a sample of eight countries - Australia, Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States. For each country, the analysis proceeds in two steps. First, modifying the procedure of Kilian [Not All Oil Price Shocks are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market. American Economic Review.], we employ a vector error-correction or vector autoregressive model to decompose oil-price changes into three components: oil-supply shocks, global aggregate-demand shocks, and global oil-demand shocks. The last component relates to specific idiosyncratic features of the oil market, such as changes in the precautionary demand concerning the uncertainty about the availability of future oil supplies. Second, recovering the oil-supply shocks, global aggregate-demand shocks, and global oil-demand shocks from the first analysis, we then employ a vector autoregressive model to determine the effects of these structural shocks on the stock market returns in our sample of eight countries. We find that international stock market returns do not respond in a large way to oil market shocks. That is, the significant effects that exist prove small in magnitude. (author)

  14. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture

    Science.gov (United States)

    Ishihara, Kunihiko; Ohashi, Keishi; Ikari, Tomofumi; Minamide, Hiroaki; Yokoyama, Hiroyuki; Shikata, Jun-ichi; Ito, Hiromasa

    2006-11-01

    We demonstrate the terahertz-wave near-field imaging with subwavelength resolution using a bow-tie shaped aperture surrounded by concentric periodic structures in a metal film. A subwavelength aperture with concentric periodic grooves, which are known as a bull's eye structure, shows extremely large enhanced transmission beyond the diffraction limit caused by the resonant excitation of surface waves. Additionally, a bow-tie aperture exhibits extraordinary field enhancement at the sharp tips of the metal, which enhances the transmission and the subwavelength spatial resolution. We introduced a bow-tie aperture to the bull's eye structure and achieved high spatial resolution (˜λ/17) in the near-field region. The terahertz-wave near-field image of the subwavelength metal pattern (pattern width=20μm) was obtained for the wavelength of 207μm.

  15. Formation, structure, and stability of MHD intermediate shocks

    International Nuclear Information System (INIS)

    Wu, C.C.

    1990-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the author has recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear wave steepening from continuous waves. In this paper, the formation, structure and stability of intermediate shocks in dissipative MHD are considered in detail. The differences between the conventional theory and his are pointed out and clarified. He shows that all four types of intermediate shocks can be formed from smooth waves. He also shows that there are free parameters in the structure of the intermediate shocks, and that these parameters are related to the shock stability. In addition, he shows that a rotational discontinuity can not exist with finite width, indicate how this is related to the existence of time-dependent intermediate shocks, and show why the conventional theory is not a good approximation to dissipative MHD solutions whenever there is rotation in magnetic field

  16. Fundamental structure of steady plastic shock waves in metals

    Science.gov (United States)

    Molinari, A.; Ravichandran, G.

    2004-02-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of

  17. Fundamental structure of steady plastic shock waves in metals

    International Nuclear Information System (INIS)

    Molinari, A.; Ravichandran, G.

    2004-01-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of

  18. Laboratory astrophysics with high energy and high power lasers: from radiative shocks to young star jets

    International Nuclear Information System (INIS)

    Diziere, A.

    2012-01-01

    Laboratory astrophysics are a rapidly developing domain of the High Energy Density Physics. It aims to recreate at smaller scales physical processes that astronomical telescopes have difficulties observing. We shall approach, in this thesis, three major subjects: 1) Jets ejected from young stars, characterized by an important collimation degree and ending with a bow shock; 2) Radiative shocks in which radiation emitted by the shock front itself plays a dominant role in its structure and 3) Accretion shocks in magnetic cataclysmic variables whose important cooling factor allows them to reach stationarity. From the conception to experimental realization, we shall attempt to reproduce in laboratory each of these processes by respecting the scaling laws linking both situations (experimental and astrophysical) established beforehand. The implementation of a large array of visible and X-ray diagnostics will finally allow to completely characterize them and calculate the dimensionless numbers that validate the astrophysical relevance. (author) [fr

  19. A model of the magnetosheath magnetic field during magnetic clouds

    Directory of Open Access Journals (Sweden)

    L. Turc

    2014-02-01

    Full Text Available Magnetic clouds (MCs are huge interplanetary structures which originate from the Sun and have a paramount importance in driving magnetospheric storms. Before reaching the magnetosphere, MCs interact with the Earth's bow shock. This may alter their structure and therefore modify their expected geoeffectivity. We develop a simple 3-D model of the magnetosheath adapted to MCs conditions. This model is the first to describe the interaction of MCs with the bow shock and their propagation inside the magnetosheath. We find that when the MC encounters the Earth centrally and with its axis perpendicular to the Sun–Earth line, the MC's magnetic structure remains mostly unchanged from the solar wind to the magnetosheath. In this case, the entire dayside magnetosheath is located downstream of a quasi-perpendicular bow shock. When the MC is encountered far from its centre, or when its axis has a large tilt towards the ecliptic plane, the MC's structure downstream of the bow shock differs significantly from that upstream. Moreover, the MC's structure also differs from one region of the magnetosheath to another and these differences vary with time and space as the MC passes by. In these cases, the bow shock configuration is mainly quasi-parallel. Strong magnetic field asymmetries arise in the magnetosheath; the sign of the magnetic field north–south component may change from the solar wind to some parts of the magnetosheath. We stress the importance of the Bx component. We estimate the regions where the magnetosheath and magnetospheric magnetic fields are anti-parallel at the magnetopause (i.e. favourable to reconnection. We find that the location of anti-parallel fields varies with time as the MCs move past Earth's environment, and that they may be situated near the subsolar region even for an initially northward magnetic field upstream of the bow shock. Our results point out the major role played by the bow shock configuration in modifying or keeping the

  20. Organizing learning processes on risks by using the bow-tie representation

    Energy Technology Data Exchange (ETDEWEB)

    Chevreau, F.R. [Ecole des Mines de Paris, 06904 Sophia-Antipolis (France)]. E-mail: chevreau@cindy.ensmp.fr; Wybo, J.L. [Ecole des Mines de Paris, 06904 Sophia-Antipolis (France)]. E-mail: wybo@cindy.ensmp.fr; Cauchois, D. [Process Safety Department, Sanofi-Aventis, Site de Production de Vitry sur Seine, 9 Quai Jules Guesdes, 94400 Vitry sur Seine (France)]. E-mail: didier.cauchois@sanofi-aventis.com

    2006-03-31

    The Aramis method proposes a complete and efficient way to manage risk analysis by using the bow-tie representation. This paper shows how the bow-tie representation can also be appropriate for experience learning. It describes how a pharmaceutical production plant uses bow-ties for incident and accident analysis. Two levels of bow-ties are constructed: standard bow-ties concern generic risks of the plant whereas local bow-ties represent accident scenarios specific to each workplace. When incidents or accidents are analyzed, knowledge that is gained is added to existing local bow-ties. Regularly, local bow-ties that have been updated are compared to standard bow-ties in order to revise them. Knowledge on safety at the global and at local levels is hence as accurate as possible and memorized in a real time framework. As it relies on the communication between safety experts and local operators, this use of the bow-ties contributes therefore to organizational learning for safety.

  1. Organizing learning processes on risks by using the bow-tie representation

    International Nuclear Information System (INIS)

    Chevreau, F.R.; Wybo, J.L.; Cauchois, D.

    2006-01-01

    The Aramis method proposes a complete and efficient way to manage risk analysis by using the bow-tie representation. This paper shows how the bow-tie representation can also be appropriate for experience learning. It describes how a pharmaceutical production plant uses bow-ties for incident and accident analysis. Two levels of bow-ties are constructed: standard bow-ties concern generic risks of the plant whereas local bow-ties represent accident scenarios specific to each workplace. When incidents or accidents are analyzed, knowledge that is gained is added to existing local bow-ties. Regularly, local bow-ties that have been updated are compared to standard bow-ties in order to revise them. Knowledge on safety at the global and at local levels is hence as accurate as possible and memorized in a real time framework. As it relies on the communication between safety experts and local operators, this use of the bow-ties contributes therefore to organizational learning for safety

  2. Wave and particle evolution downstream of quasi-perpendicular shocks

    Science.gov (United States)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.

  3. Hydromagnetic shock structure in the presence of cosmic rays

    International Nuclear Information System (INIS)

    Drury, L.O.; Voelk, H.J.

    1981-01-01

    The time asymptotic structure of a shock significantly modified by the back-reaction from the diffusive acceleration of cosmic rays is investigated. Making a physically plausible assumption about the diffusion, it is shown that for given upstream conditions and shock speed only a finite odd number of shock structures are possible; an explicit method of determining these is given (in many cases the solution is unique). The results of this nonlinear study are contrasted with those of the linear test-particle theory and shown to confirm the possibility of efficient particle acceleration in shocks

  4. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  5. A shock absorber model for structure-borne noise analyses

    Science.gov (United States)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  6. QUANTITATIVE MEASUREMENTS OF CORONAL MASS EJECTION-DRIVEN SHOCKS FROM LASCO OBSERVATIONS

    International Nuclear Information System (INIS)

    Ontiveros, Veronica; Vourlidas, Angelos

    2009-01-01

    In this paper, we demonstrate that coronal mass ejection (CME)-driven shocks can be detected in white light coronagraph images and in which properties such as the density compression ratio and shock direction can be measured. Also, their propagation direction can be deduced via simple modeling. We focused on CMEs during the ascending phase of solar cycle 23 when the large-scale morphology of the corona was simple. We selected events which were good candidates to drive a shock due to their high speeds (V > 1500 km s -1 ). The final list includes 15 CMEs. For each event, we calibrated the LASCO data, constructed excess mass images, and searched for indications of faint and relatively sharp fronts ahead of the bright CME front. We found such signatures in 86% (13/15) of the events and measured the upstream/downstream densities to estimate the shock strength. Our values are in agreement with theoretical expectations and show good correlations with the CME kinetic energy and momentum. Finally, we used a simple forward modeling technique to estimate the three-dimensional shape and orientation of the white light shock features. We found excellent agreement with the observed density profiles and the locations of the CME source regions. Our results strongly suggest that the observed brightness enhancements result from density enhancements due to a bow-shock structure driven by the CME.

  7. Solution structure of the cold-shock-like protein from Rickettsia rickettsii

    International Nuclear Information System (INIS)

    Gerarden, Kyle P.; Fuchs, Andrew M.; Koch, Jonathan M.; Mueller, Melissa M.; Graupner, David R.; O’Rorke, Justin T.; Frost, Caleb D.; Heinen, Heather A.; Lackner, Emily R.; Schoeller, Scott J.; House, Paul G.; Peterson, Francis C.; Veldkamp, Christopher T.

    2012-01-01

    The solution structure of the cold-shock-like protein from R. rickettsii, the causative agent of Rocky Mountain spotted fever, is reported. Rocky Mountain spotted fever is caused by Rickettsia rickettsii infection. R. rickettsii can be transmitted to mammals, including humans, through the bite of an infected hard-bodied tick of the family Ixodidae. Since the R. rickettsii genome contains only one cold-shock-like protein and given the essential nature of cold-shock proteins in other bacteria, the structure of the cold-shock-like protein from R. rickettsii was investigated. With the exception of a short α-helix found between β-strands 3 and 4, the solution structure of the R. rickettsii cold-shock-like protein has the typical Greek-key five-stranded β-barrel structure found in most cold-shock domains. Additionally, the R. rickettsii cold-shock-like protein, with a ΔG of unfolding of 18.4 kJ mol −1 , has a similar stability when compared with other bacterial cold-shock proteins

  8. Viols and Other Historic Bowed String Instruments

    Science.gov (United States)

    Campbell, Murray; Campbell, Patsy

    While plucked strings have been used for musical purposes since at least the third millennium BCE, the idea of sounding a string by bowing it is a much more recent development. Bowed string instruments seem to have originated in Asia toward the end of the first millennium CE, and were in widespread use in Western Europe by the end of the eleventh century. For the next three centuries many different types of bowed instrument, with a bewildering variety of names, were in common use throughout Europe.

  9. THE EFFECT OF LARGE-SCALE MAGNETIC TURBULENCE ON THE ACCELERATION OF ELECTRONS BY PERPENDICULAR COLLISIONLESS SHOCKS

    International Nuclear Information System (INIS)

    Guo Fan; Giacalone, Joe

    2010-01-01

    We study the physics of electron acceleration at collisionless shocks that move through a plasma containing large-scale magnetic fluctuations. We numerically integrate the trajectories of a large number of electrons, which are treated as test particles moving in the time-dependent electric and magnetic fields determined from two-dimensional hybrid simulations (kinetic ions and fluid electron). The large-scale magnetic fluctuations effect the electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to cross the shock front several times, leading to efficient acceleration. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The current study is also helpful in understanding the injection problem for electron acceleration by collisionless shocks. It is also shown that the spatial distribution of energetic electrons is similar to in situ observations. The process may be important to our understanding of energetic electrons in planetary bow shocks and interplanetary shocks, and explaining herringbone structures seen in some type II solar radio bursts.

  10. Development of solar wind shock models with tensor plasma pressure for data analysis. Final technical report, 1 Aug 1970--31 Dec 1975

    International Nuclear Information System (INIS)

    Abraham-shrauner, B.

    1975-01-01

    The development of solar wind shock models with tensor plasma pressure and the comparison of some of the shock models with the satellite data from Pioneer 6 through Pioneer 9 are reported. Theoretically, difficulties were found in non-turbulent fluid shock models for tensor pressure plasmas. For microscopic shock theories nonlinear growth caused by plasma instabilities was frequently not clearly demonstrated to lead to the formation of a shock. As a result no clear choice for a shock model for the bow shock or interplanetary tensor pressure shocks emerged

  11. Shock Structure Analysis and Aerodynamics in a Weakly Ionized Gas Flow

    Science.gov (United States)

    Saeks, R.; Popovic, S.; Chow, A. S.

    2006-01-01

    The structure of a shock wave propagating through a weakly ionized gas is analyzed using an electrofluid dynamics model composed of classical conservation laws and Gauss Law. A viscosity model is included to correctly model the spatial scale of the shock structure, and quasi-neutrality is not assumed. A detailed analysis of the structure of a shock wave propagating in a weakly ionized gas is presented, together with a discussion of the physics underlying the key features of the shock structure. A model for the flow behind a shock wave propagating through a weakly ionized gas is developed and used to analyze the effect of the ionization on the aerodynamics and performance of a two-dimensional hypersonic lifting body.

  12. Laser vibrometry measurements of vibration and sound fields of a bowed violin

    Science.gov (United States)

    Gren, Per; Tatar, Kourosh; Granström, Jan; Molin, N.-E.; Jansson, Erik V.

    2006-04-01

    Laser vibrometry measurements on a bowed violin are performed. A rotating disc apparatus, acting as a violin bow, is developed. It produces a continuous, long, repeatable, multi-frequency sound from the instrument that imitates the real bow-string interaction for a 'very long bow'. What mainly differs is that the back and forward motion of the real bow is replaced by the rotating motion with constant velocity of the disc and constant bowing force (bowing pressure). This procedure is repeatable. It is long lasting and allows laser vibrometry techniques to be used, which measure forced vibrations by bowing at all excited frequencies simultaneously. A chain of interacting parts of the played violin is studied: the string, the bridge and the plates as well as the emitted sound field. A description of the mechanics and the sound production of the bowed violin is given, i.e. the production chain from the bowed string to the produced tone.

  13. Reflected and diffuse ions backstreaming from the earth's bow shock 2. Origin

    International Nuclear Information System (INIS)

    Bonifazi, C.; Moreno, G.

    1981-01-01

    The morphology of the foreshock region and the origin of the 'reflected' and 'diffuse' ion populations are investigated for the first time through an extended statistical analysis. Data are supplied by the solar wind experiment on the satellite ISEE 2 in the period November 5 to December 20, 1977. It is confirmed, on a statistical basis, that quasi-perpendicular shock structures generate beams of reflected ions which propagate along the interplanetary magnetic field lines against the incoming solar wind. Diffuse ions are at least in part originated by the disruption of the reflected beams due to some plasma instability, having a growth time of the order of a few tens of seconds. A preliminary energy balance appears to be consistent with the proposed picture of the phenomena occurring in the foreshock region

  14. Composition of the earth's atmosphere by shock-layer radiometry during the PAET entry probe experiment.

    Science.gov (United States)

    Whiting, E. E.; Arnold, J. O.; Page, W. A.; Reynolds, R. M.

    1973-01-01

    A determination of the composition of the earth's atmosphere obtained from onboard radiometer measurements of the spectra emitted from the bow shock layer of a high-speed entry probe is reported. The N2, O2, CO2, and noble gas concentrations in the earth's atmosphere were determined to good accuracy by this technique. The results demonstrate unequivocally the feasibility of determining the composition of an unknown planetary atmosphere by means of a multichannel radiometer viewing optical emission from the heated atmospheric gases in the region between the bow shock wave and the vehicle surface. The spectral locations in this experiment were preselected to enable the observation of CN violet, N2(+) first negative and atomic oxygen emission at 3870, 3910, and 7775 A, respectively. The atmospheric gases were heated and compressed by the shock wave to a peak temperature of about 6100 K and a corresponding pressure of 0.4 atm. Complete descriptions of the data analysis technique and the onboard radiometer and its calibration are given.

  15. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Wu, B.H.; Lee, L.C.

    2005-01-01

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (B y =0). For the B y =0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with B y ≠0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with B y ≠0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing B y , the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing B y . The results can be applied to the shock heating in the solar corona and

  16. Traumatic bowing of forearm and lower leg in children

    International Nuclear Information System (INIS)

    Stenstroem, R.; Gripenberg, L.; Bergius, A.-R.

    1978-01-01

    Traumatic bowing of the forearm or lower leg is reported in 31 children. It is a relatively rare condition. Bowing occurs most frequently in combination with fracture of the other bone in the same extremity. In a minority of cases a bowing deformity is a single lesion. Age distribution, degree of deformity, mechanism of origin and therapy are presented and discussed. (Auth.)

  17. Anomalous band-gap bowing of AlN1−xPx alloy

    International Nuclear Information System (INIS)

    Winiarski, M.J.; Polak, M.; Scharoch, P.

    2013-01-01

    Highlights: •Structural and electronic properties of AlN 1−x P x from first principles. •The supercell and the virtual crystall approximation methods applied and compared. •Anomalously high band-gap bowing found. •Similarities of band-gap behavior to that in BN 1−x P x noticed. •Performance of MBJLDA with the pseudopotential approach discussed. -- Abstract: Electronic structure of zinc blende AlN 1−x P x alloy has been calculated from first principles. Structural optimization has been performed within the framework of LDA and the band-gaps calculated with the modified Becke–Jonson (MBJLDA) method. Two approaches have been examined: the virtual crystal approximation (VCA) and the supercell-based calculations (SC). The composition dependence of the lattice parameter obtained from the SC obeys Vegard’s law whereas the volume optimization in the VCA leads to an anomalous bowing of the lattice constant. A strong correlation between the band-gaps and the structural parameter in the VCA method has been observed. On the other hand, in the SC method the supercell size and atoms arrangement (clustered vs. uniform) appear to have a great influence on the computed band-gaps. In particular, an anomalously big band-gap bowing has been found in the case of a clustered configuration with relaxed geometry. Based on the performed tests and obtained results some general features of MBJLDA are discussed and its performance for similar systems predicted

  18. Chondrule destruction in nebular shocks

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, Emmanuel; Thompson, Christopher, E-mail: ejacquet@mnhn.fr [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, ON M5S 3H8 (Canada)

    2014-12-10

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios ε ≳ 0.1, and possibly even for solar abundances because of 'sandblasting' by finer dust. A flow with ε ≳ 10 requires much smaller shock velocities (∼2 versus 8 km s{sup –1}) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  19. Supersonic flows past an obstacle in Yukawa liquids

    Science.gov (United States)

    Charan, Harish; Ganesh, Rajaraman

    2018-04-01

    Shock formation, when a supersonic flow passes a stationary obstacle, is ubiquitous in nature. Considering particles mediating via a Yukawa-type interaction as a prototype for a strongly coupled complex plasma, characterized by coupling strength (Γ, ratio of the average potential to kinetic energy per particle) and screening parameter (κ, ratio of the mean inter-particle distance to the shielding length), we address the fundamental problem of supersonic fluid flow U0, past a stationary obstacle immersed in this strongly coupled system. We here report the results on the bow shocks formed in Yukawa liquids when the liquid flows at speeds larger than the speed of sound in the system. Depending on the values of Mach number MC L=U/0 CL , where CL is the longitudinal speed of sound in the system, the bow shocks are found to be either traveling or localized. We find that for the transonic flows (0.8 ≲ MC L≲ 1.2), the bow shocks travel in the upstream direction opposite to the incoming fluid. The phase velocity of the traveling bow shocks is found to be a non-monotonous function of κ, varying as ∝1 /k1.11 at a fixed value of Γ, and is found to be independent of Γ at a fixed value of κ. It is observed that for the flow values with MC L>1.5 , the shock waves do not travel in the upstream direction but instead form a stationary arc like structure around the obstacle. For the fluid flows with 1 ≲ MC L≲ 2.6 , secondary bow shocks are seen to emerge behind the stationary obstacle which travel in the downstream direction, and the phase velocity of these secondary bow shocks is found to be equal to that of the primary bow shocks.

  20. Bowing behavior of subassemblies in experimental fast reactor ''JOYO''

    International Nuclear Information System (INIS)

    Ikegami, T.; Mizoo, N.; Matsuno, Y.; Watari, Y.

    1984-01-01

    In JOYO, the measured power coefficients in the beginning of the operation cycle of MK-I and MK-II cores showed power dependence, while the calculation without taking account of bowing predicted little power dependence. The bowing analysis was performed in order to investigate the power dependence observed in the measured power coefficients and the following conclusions were obtained. (1) The evaluated power coefficients taking account of bowing effect agree better with measured ones than the calculated ones without taking account of bowing effect in MK-I core. (2) In MK-II core, although the analytical results show not so good agreement quantitatively with the measured power coefficients, it is suggested that they agree better depending on the uncertain parameters such as the heat generation in the reflector region, the threshold moment for leaning and the stiffness of the inner reflector. (3) It becomes clear from these results that the power dependence observed in the measured power coefficients in JOYO is due to the bowing effect. (author)

  1. Structure of fast shocks in the presence of heat conduction

    International Nuclear Information System (INIS)

    Tsai, C. L.; Chen, H. H.; Wu, B. H.; Lee, L. C.

    2007-01-01

    There are three types of magnetohydrodynamic (MHD) shocks: the fast shock, intermediate shock, and slow shock. The structure of slow shocks and intermediate shocks in the presence of heat conduction has been studied earlier [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002); C. L. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 12, 82501 (2005)]. Based on one-dimensional MHD numerical simulations with a heat conduction term, the evolution and structure of fast shocks are studied. The fast shock will form a foreshock in the presence of heat conduction. The foreshock is formed due to the heat flow from downstream to upstream and located in the immediate upstream of the main shock. In the steady state, the value of diffusion velocity V d in the foreshock is found to nearly equal the upstream convection velocity in the fast shock frame. It is found that the density jump across the main shock in high Mach number case can be much larger than 4 in the early simulation time. However the density jump will gradually evolve to a value smaller than 4 at steady state. By using the modified Rankine-Hugoniot relations with heat flux, the density jump across the fast shock is examined for various upstream parameters. The results show that the calculated density jump with heat flux is very close to the simulation value and the density jump can far exceed the maximum value of 4 without heat conduction. The structure of foreshock and main shock is also studied under different plasma parameters, such as the heat conductivity K 0 , the ratio of upstream plasma pressure to magnetic pressure β 1 , Alfven Mach number M A1 , and the angle θ 1 between shock normal and magnetic field. It is found that as the upstream shock parameters K 0 , β 1 , and M A1 increase or θ 1 decreases, the width of foreshock L d increases. The present results can be applied to fast shocks in the solar corona, solar wind, and magnetosphere, in which the heat conduction effects are

  2. The structure of steady shock waves in porous metals

    Science.gov (United States)

    Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien

    2017-10-01

    The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.

  3. Numerical simulation of the structure of collisionless supercritical shocks

    International Nuclear Information System (INIS)

    Lipatov, A.S.

    1990-01-01

    Research on the structure of a collisionless shock wave and on acceleration of charged particles is important for analyzing the processes accompanying solar flares, and also for studying the shock waves which are excited in the interaction of the solar wind with planets, comets and interstellar gas, the mechanisms for the acceleration of cosmic rays, the processes accompanying magnetic field reconnection, explosion of Supernova. The study of the shock is also important for studying the processes in the active experiments in space. In the present report only supercritical shocks are considered, when partial ion reflection plays a controlling roll in shock formation. One- and two-dimensional simulations of the perpendicular shocks are presented. (R.P.) 33 refs.; 4 figs

  4. 3D Printed Shock Mitigating Structures

    Science.gov (United States)

    Schrand, Amanda; Elston, Edwin; Dennis, Mitzi; Metroke, Tammy; Chen, Chenggang; Patton, Steven; Ganguli, Sabyasachi; Roy, Ajit

    Here we explore the durability, and shock mitigating potential, of solid and cellular 3D printed polymers and conductive inks under high strain rate, compressive shock wave and high g acceleration conditions. Our initial designs include a simple circuit with 4 resistors embedded into circular discs and a complex cylindrical gyroid shape. A novel ink consisting of silver-coated carbon black nanoparticles in a thermoplastic polyurethane was used as the trace material. One version of the disc structural design has the advantage of allowing disassembly after testing for direct failure analysis. After increasing impacts, printed and traditionally potted circuits were examined for functionality. Additionally, in the open disc design, trace cracking and delamination of resistors were able to be observed. In a parallel study, we examined the shock mitigating behavior of 3D printed cellular gyroid structures on a Split Hopkinson Pressure Bar (SHPB). We explored alterations to the classic SHPB setup for testing the low impedance, cellular samples to most accurately reflect the stress state inside the sample (strain rates from 700 to 1750 s-1). We discovered that the gyroid can effectively absorb the impact of the test resulting in crushing the structure. Future studies aim to tailor the unit cell dimensions for certain frequencies, increase print accuracy and optimize material compositions for conductivity and adhesion to manufacture more durable devices.

  5. Microstructure in two- and three-dimensional hybrid simulations of perpendicular collisionless shocks

    Czech Academy of Sciences Publication Activity Database

    Burgess, D.; Hellinger, Petr; Gingell, I.; Trávníček, Pavel M.

    2016-01-01

    Roč. 82, č. 4 (2016), 905820401/1-905820401/23 ISSN 0022-3778 Institutional support: RVO:68378289 Keywords : ion-acceleration * numerical simulations * bow shock * electron acceleration * cluster observations * self-reformation * magnetic-field * whistler waves * injection * nonstationarity Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.160, year: 2016 https://www.cambridge.org/core/ journals /journal-of-plasma-physics/article/microstructure-in-two-and-three-dimensional-hybrid-simulations-of-perpendicular-collisionless-shocks/F964EF89FB14A6504A49CFAD54970E2B

  6. Dependence of sound characteristics on the bowing position in a violin

    Science.gov (United States)

    Roh, YuJi; Kim, Young H.

    2014-12-01

    A quantitative analysis of violin sounds produced for different bowing positions over the full length of a violin string has been carried out. An automated bowing machine was employed in order to keep the bowing parameters constant. A 3-dimensional profile of the frequency spectrum was introduced in order to characterize the violin's sound. We found that the fundamental frequency did not change for different bowing positions, whereas the frequencies of the higher harmonics were different. Bowing the string at 30 mm from the bridge produced musical sounds. The middle of the string was confirmed to be a dead zone, as reported in previous works. In addition, the quarter position was also found to be a dead zone. Bowing the string 90 mm from the bridge dominantly produces a fundamental frequency of 864 Hz and its harmonics.

  7. LMC X-1: A New Spectral Analysis of the O-star in the Binary and Surrounding Nebula

    Science.gov (United States)

    Hyde, E. A.; Russell, D. M.; Ritter, A.; Filipović, M. D.; Kaper, L.; Grieve, K.; O'Brien, A. N.

    2017-09-01

    We provide new observations of the LMC X-1 O star and its extended nebula structure using spectroscopic data from VLT/UVES as well as Hα imaging from the Wide Field Imager on the Max Planck Gesellschaft/European Southern Observatory 2.2 m telescope and ATCA imaging of the 2.1 GHz radio continuum. This nebula is one of the few known to be energized by an X-ray binary. We use a new spectrum extraction technique that is superior to other methods used to obtain both radial velocities and fluxes. This provides an updated spatial velocity of ≃ 21.0 +/- 4.8 km s-1 for the O star. The slit encompasses both the photo-ionized and shock-ionized regions of the nebula. The imaging shows a clear arc-like structure reminiscent of a wind bow shock in between the ionization cone and shock-ionized nebula. The observed structure can be fit well by the parabolic shape of a wind bow shock. If an interpretation of a wind bow shock system is valid, we investigate the N159-O1 star cluster as a potential parent of the system, suggesting a progenitor mass of ˜60 M ⊙ for the black hole. We further note that the radio emission could be non-thermal emission from the wind bow shock, or synchrotron emission associated with the jet-inflated nebula. For both wind- and jet-powered origins, this would represent one of the first radio detections of such a structure.

  8. Nowcasting and forecasting of the magnetopause and bow shock—A status update

    Science.gov (United States)

    Petrinec, S. M.; Redmon, R. J.; Rastaetter, L.

    2017-01-01

    There has long been interest in knowing the shape and location of the Earth's magnetopause and of the standing fast-mode bow shock upstream of the Earth's magnetosphere. This quest for knowledge spans both the research and operations arenas. Pertinent to the latter, nowcasting and near-term forecasting are important for determining the extent to which the magnetosphere is compressed or expanded due to the influence of the solar wind bulk plasma and fields and the coupling to other magnetosphere-ionosphere processes with possible effects on assets. This article provides an update to a previous article on the same topic published 15 years earlier, with focus on studies that have been conducted, the current status of nowcasting and forecasting of geophysical boundaries, and future endeavors.

  9. Ionospheric shock waves triggered by rockets

    Directory of Open Access Journals (Sweden)

    C. H. Lin

    2014-09-01

    Full Text Available This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK Taepodong-2 and 2013 South Korea (SK Korea Space Launch Vehicle-II (KSLV-II rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100–600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800–1200 m s−1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800–1200 m s−1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

  10. Delineating functional principles of the bow tie structure of a kinase-phosphatase network in the budding yeast.

    Science.gov (United States)

    Abd-Rabbo, Diala; Michnick, Stephen W

    2017-03-16

    Kinases and phosphatases (KP) form complex self-regulating networks essential for cellular signal processing. In spite of having a wealth of data about interactions among KPs and their substrates, we have very limited models of the structures of the directed networks they form and consequently our ability to formulate hypotheses about how their structure determines the flow of information in these networks is restricted. We assembled and studied the largest bona fide kinase-phosphatase network (KP-Net) known to date for the yeast Saccharomyces cerevisiae. Application of the vertex sort (VS) algorithm on the KP-Net allowed us to elucidate its hierarchical structure in which nodes are sorted into top, core and bottom layers, forming a bow tie structure with a strongly connected core layer. Surprisingly, phosphatases tend to sort into the top layer, implying they are less regulated by phosphorylation than kinases. Superposition of the widest range of KP biological properties over the KP-Net hierarchy shows that core layer KPs: (i), receive the largest number of inputs; (ii), form bottlenecks implicated in multiple pathways and in decision-making; (iii), and are among the most regulated KPs both temporally and spatially. Moreover, top layer KPs are more abundant and less noisy than those in the bottom layer. Finally, we showed that the VS algorithm depends on node degrees without biasing the biological results of the sorted network. The VS algorithm is available as an R package ( https://cran.r-project.org/web/packages/VertexSort/index.html ). The KP-Net model we propose possesses a bow tie hierarchical structure in which the top layer appears to ensure highest fidelity and the core layer appears to mediate signal integration and cell state-dependent signal interpretation. Our model of the yeast KP-Net provides both functional insight into its organization as we understand today and a framework for future investigation of information processing in yeast and eukaryotes

  11. Factors influencing flow steadiness in laminar boundary layer shock interactions

    Science.gov (United States)

    Tumuklu, Ozgur; Levin, Deborah A.; Gimelshein, Sergey F.; Austin, Joanna M.

    2016-11-01

    The Direct Simulation Monte Carlo method has been used to model laminar shock wave boundary interactions of hypersonic flow over a 30/55-deg double-wedge and "tick-shaped" model configurations studied in the Hypervelocity Expansion Tube facility and T-ADFA free-piston shock tunnel, respectively. The impact of thermochemical effects on these interactions by changing the chemical composition from nitrogen to air as well as argon for a stagnation enthalpy of 8.0 MJ/kg flow are investigated using the 2-D wedge model. The simulations are found to reproduce many of the classic features related to Edney Type V strong shock interactions that include the attached, oblique shock formed over the first wedge, the detached bow shock from the second wedge, the separation zone, and the separation and reattachment shocks that cause complex features such as the triple point for both cases. However, results of a reacting air flow case indicate that the size of the separation length, and the movement of the triple point toward to the leading edge is much less than the nitrogen case.

  12. Geometrical structure of shock waves in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Modugno, M [Istituto di Matematica, Universita di Lecce (Italia); Stefani, Gianna [Florence Univ. (Italy)

    1979-01-01

    A systematic and geometrical analysis of shock structures in a Riemannian manifold is developed. The jump, the infinitesimal jump and the covariant derivative jump of a tensor are defined globally. By means of derivation laws induced on the shock hypersurface, physically significant operators are defined. As physical applications, the charged fluid electromagnetic and gravitational interacting fields are considered.

  13. HIGHLY EXCITED H2 IN HERBIG–HARO 7: FORMATION PUMPING IN SHOCKED MOLECULAR GAS?

    International Nuclear Information System (INIS)

    Pike, R. E.; Geballe, T. R.; Burton, M. G.; Chrysostomou, A.

    2016-01-01

    We have obtained K -band spectra at R ∼ 5000 and an angular resolution of 0.″3 of a section of the Herbig–Haro 7 (HH7) bow shock, using the Near-Infrared Integral Field Spectrograph at Gemini North. Present in the portion of the data cube corresponding to the brightest part of the bow shock are emission lines of H 2 with upper state energies ranging from ∼6000 K to the dissociation energy of H 2 , ∼50,000 K. Because of low signal-to-noise ratios, the highest excitation lines cannot be easily seen elsewhere in the observed region. However, excitation temperatures, measured throughout much of the observed region using lines from levels as high as 25,000 K, are a strong function of upper level energy, indicating that the very highest levels are populated throughout. The level populations in the brightest region are well fit by a two-temperature model, with 98.5% of the emitting gas at T = 1800 K and 1.5% at T = 5200 K. The bulk of the H 2 line emission in HH7, from the 1800 K gas, has previously been well-modeled by a continuous shock, but the 5200 K cozmponent is inconsistent with standalone standard continuous shock models. We discuss various possible origins for the hot component and suggest that this component is H 2 newly reformed on dust grains and then ejected from them, presumably following dissociation of some of the H 2 by the shock.

  14. On the shock cell structure and noise of supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.

    1983-01-01

    A linear solution modeling the shock cell structure of an axisymmetric supersonic jet operated at off-design conditions is developed by the method of multiple-scales. The model solution takes into account the gradual spatial change of the mean flow in the downstream direction. Turbulence in the mixing layer of the jet has the tendency of smoothing out the sharp velocity and density gradients induced by the shocks. To simulate this effect, eddy viscosity terms are incorporated in the model. It is known that the interaction between the quasi-periodic shock cells and the downstream propagating large turbulence structures in the mixing layer of the jet is responsible for the generation of broadband shock associated noise. Experimentally, the dominant part of this noise has been found to originate from the part of the jet near the end of the potential core. Calculated shock cell spacing at the end of the jet core according to the present model is used to estimate the peak frequencies of the shock associated noise for a range of observation angles. Very favorable agreement with experimental measurements is found.

  15. Various continuum approaches for studying shock wave structure in carbon dioxide

    Science.gov (United States)

    Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A.

    2018-05-01

    Shock wave structure in carbon dioxide is studied using different continuum models within the framework of one-temperature thermal equilibrium flow description. Navier-Stokes and Euler equations as well as commonly used Rankine-Hugoniot equations with different specific heat ratios are used to find the gas-dynamic parameters behind the shock wave. The accuracy of the Rankine-Hugoniot relations in polyatomic gases is assessed, and it is shown that they give a considerable error in the predicted values of fluid-dynamic variables. The effect of bulk viscosity on the shock wave structure in CO2 is evaluated. Taking into account bulk viscosity yields a significant increase in the shock wave width; for the complete model, the shock wave thickness varies non-monotonically with the Mach number.

  16. Stress relaxation of thermally bowed fuel pins

    International Nuclear Information System (INIS)

    Crossland, I.G.; Speight, M.V.

    1983-01-01

    The presence of cross-pin temperature gradients in nuclear reactor fuel pins produces differential thermal expansion which, in turn, causes the fuel pin to bow elastically. If the pin is restrained in any way, such thermal bowing causes the pin to be stressed. At high temperatures these stresses can relax by creep and it is shown here that this causes the pin to suffer an additional permanent deflection, so that when the cross-pin temperature difference is removed the pin remains bowed. By representing the cylindrical pin by an equivalent I-beam, the present work examines this effect when it takes place by secondary creep. Two restraint systems are considered, and it is demonstrated that the rate of relaxation depends mainly upon the creep equation, and hence the temperature, and also the magnitude of the initial stresses. (author)

  17. Prediction of shock-layer ultraviolet radiation for hypersonic vehicles in near space

    Directory of Open Access Journals (Sweden)

    Niu Qinglin

    2016-10-01

    Full Text Available A systemic and validated model was developed to predict ultraviolet spectra features from the shock layer of near-space hypersonic vehicles in the “solar blind” band region. Computational procedures were performed with 7-species thermal non-equilibrium fluid mechanics, finite rate chemistry, and radiation calculations. The thermal non-equilibrium flow field was calculated with a two-temperature model by the finite volume technique and verified against the bow-shock ultra-violet (BSUV flight experiments. The absorption coefficient of the mixture gases was evaluated with a line-by-line method and validated through laboratory shock tube measurements. Using the line of sight (LOS method, radiation was calculated from three BSUV flights at altitudes of 38, 53.5 and 71 km. The investigation focused on the level and structure of ultraviolet spectra radiated from a NO band system in wavelengths of 200–400 nm. Results predicted by the current model show qualitative spatial agreement with the measured data. At a velocity of 3.5 km/s (about Mach 11, the peak absolute intensity at an altitude of 38 km is two orders of magnitude higher than that at 53.5 km. Under the same flight conditions, the spectra structures have quite a similar distribution at different viewing angles. The present computational model performs well in the prediction of the ultraviolet spectra emitted from the shock layer and will contribute to the investigation and analysis of radiative features of hypersonic vehicles in near space.

  18. Screech Tones from Rectangular Jets with Spanwise Oblique Shock-Cell Structures

    Science.gov (United States)

    Raman, Ganesh

    1996-01-01

    Understanding screech is especially important for the design of advanced aircraft because screech can cause sonic fatigue failure of aircraft structures. Although the connection between shock-cell spacing and screech frequency is well understood, the relation between non-uniformities in the shock-cell structures and the resulting amplitude, mode, and steadiness of screech have remained unexplored. This paper addresses the above issues by intentionally producing spanwise (larger nozzle dimension) variations in the shock-cell structures and studying the resulting spanwise screech mode. The spanwise oblique shock-cell structures were produced using imperfectly expanded convergent-divergent rectangular nozzles (aspect ratio = 5) with nonuniform exit geometries. Three geometries were studied: (a) a nozzle with a spanwise uniform edge, (b) a nozzle with a spanwise oblique (single bevelled) edge, and (c) a nozzle that had two spanwise oblique (double bevelled) cuts to form an arrowhead-shaped nozzle. For all nozzles considered, the screech mode was antisymmetric in the transverse (smaller nozzle dimension) direction allowing focus on changes in the spanwise direction. Three types of spanwise modes were observed: symmetric (1), antisymmetric (2), and oblique (3). The following significant results emerged: (1) for all cases the screech mode corresponds with the spanwise shock-cell structure, (2) when multiple screech modes are present, the technique presented here makes it possible to distinguish between coexisting and mutually exclusive modes, (3) the strength of shocks 3 and 4 influences the screech source amplitude and determines whether screech is unsteady. The results presented here offer hope for a better understanding of screech and for tailoring shock-containing jets to minimize fatigue failure of aircraft components.

  19. HIGHLY EXCITED H{sub 2} IN HERBIG–HARO 7: FORMATION PUMPING IN SHOCKED MOLECULAR GAS?

    Energy Technology Data Exchange (ETDEWEB)

    Pike, R. E. [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Geballe, T. R. [Gemini Observatory, Hilo, HI (United States); Burton, M. G. [School of Physics, University of New South Wales, Sydney (Australia); Chrysostomou, A. [Centre for Astrophysics Research, University of Hertfordshire (United Kingdom)

    2016-05-10

    We have obtained K -band spectra at R ∼ 5000 and an angular resolution of 0.″3 of a section of the Herbig–Haro 7 (HH7) bow shock, using the Near-Infrared Integral Field Spectrograph at Gemini North. Present in the portion of the data cube corresponding to the brightest part of the bow shock are emission lines of H{sub 2} with upper state energies ranging from ∼6000 K to the dissociation energy of H{sub 2}, ∼50,000 K. Because of low signal-to-noise ratios, the highest excitation lines cannot be easily seen elsewhere in the observed region. However, excitation temperatures, measured throughout much of the observed region using lines from levels as high as 25,000 K, are a strong function of upper level energy, indicating that the very highest levels are populated throughout. The level populations in the brightest region are well fit by a two-temperature model, with 98.5% of the emitting gas at T = 1800 K and 1.5% at T = 5200 K. The bulk of the H{sub 2} line emission in HH7, from the 1800 K gas, has previously been well-modeled by a continuous shock, but the 5200 K cozmponent is inconsistent with standalone standard continuous shock models. We discuss various possible origins for the hot component and suggest that this component is H{sub 2} newly reformed on dust grains and then ejected from them, presumably following dissociation of some of the H{sub 2} by the shock.

  20. Line profile studies of hydrodynamical models of cometary compact H II regions

    International Nuclear Information System (INIS)

    Zhu, Feng-Yao; Zhu, Qing-Feng

    2015-01-01

    We simulate the evolution of cometary H II regions based on several champagne flow models and bow shock models, and calculate the profiles of the [Ne II] fine-structure line at 12.81 μm, the H30α recombination line and the [Ne III] fine-structure line at 15.55 μm for these models at different inclinations of 0°, 30° and 60°. We find that the profiles in the bow shock models are generally different from those in the champagne flow models, but the profiles in the bow shock models with lower stellar velocity (≤ 5 km s −1 ) are similar to those in the champagne flow models. In champagne flow models, both the velocity of peak flux and the flux weighted central velocities of all three lines point outward from molecular clouds. In bow shock models, the directions of these velocities depend on the speed of stars. The central velocities of these lines are consistent with the stellar motion in the high stellar speed cases, but they are opposite directions from the stellar motion in the low speed cases. We notice that the line profiles from the slit along the symmetrical axis of the projected 2D image of these models are useful for distinguishing bow shock models from champagne flow models. It is also confirmed by the calculation that the flux weighted central velocity and the line luminosity of the [Ne III] line can be estimated from the [Ne II] line and the H30α line. (paper)

  1. Shock-like structures in the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  2. Shock-wave structure formation in a dusty plasma

    International Nuclear Information System (INIS)

    Popel', S.I.; Golub', A.P.; Loseva, T.V.; Bingkhem, R.; Benkadda, S.

    2001-01-01

    Nonstationary problem on evolution perturbation and its transformation into nonlinear wave structure is considered. The method developed permits finding solution to the system of nonlinear evolution equations describing dust particles with variable charge, Boltzmann electron and inertia ions. An accurate stationary solution as ion-sonic wave structures explained by anomalous dissipation due to electric discharge of dust particles was found. Evolution of two types of initial perturbations was studied, i.e.: soliton and immobile region with increased density of ions - a step. Soliton evolution in plasma with variable charge of dust particles results in the appearance on nonstationary shock-wave structure, whereas the step evolution gives rise to appearance of a shock wave similar to the stationary one along with rarefaction wave [ru

  3. BOW. A computer code to predict lateral deflections of composite beams. A computer code to predict lateral deflections of composite beams

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, M.

    1987-08-15

    Arrays of tubes are used in many engineered structures, such as in nuclear fuel bundles and in steam generators. The tubes can bend (bow) due to in-service temperatures and loads. Assessments of bowing of nuclear fuel elements can help demonstrate the integrity of fuel and of surrounding components, as a function of operating conditions such as channel power. The BOW code calculates the bending of composite beams such as fuel elements, due to gradients of temperature and due to hydraulic forces. The deflections and rotations are calculated in both lateral directions, for given conditions of temperatures. Wet and dry operation of the sheath can be simulated. Bow accounts for the following physical phenomena: circumferential and axial variations in the temperatures of the sheath and of the pellet; cracking of pellets; grip and slip between the pellets and the sheath; hydraulic drag; restraints from endplates, from neighbouring elements, and from the pressure-tube; gravity; concentric or eccentric welds between endcap and endplate; neutron flux gradients; and variations of material properties with temperature. The code is based on fundamental principles of mechanics. The governing equations are solved numerically using the finite element method. Several comparisons with closed-form equations show that the solutions of BOW are accurate. BOW`s predictions for initial in-reactor bow are also consistent with two post-irradiation measurements.

  4. Effect of loading pattern on longitudinal bowing in flexible roll forming

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyun; Woo, Young Yun; Hwang, Tae Woo; Han, Sang Wook; Moon, Young Hoon [School of Mechanical Engineering, Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University,Busan (Korea, Republic of)

    2016-12-15

    The flexible roll forming process can be used to fabricate products with a variable cross-section profile in the longitudinal direction. Transversal nonuniformity of the longitudinal strain is one of the fundamental characteristics of blank deformation in flexible roll forming. Longitudinal bowing is a shape defect caused by transversal nonuniformity of the longitudinal strain. In this study, loading patterns in flexible roll forming are investigated in order to reduce the longitudinal bowing in a roll-formed blank. To analyze the effects of loading patterns on longitudinal bowing, two different forming schedules are implemented. In schedule 1, loading patterns with different bending angle increments are designed under fixed initial and final bending angles. In schedule 2, loading patterns with different initial bending angles under the fixed final bending angle are designed. Our results show that the bowing heights are significantly affected by the loading patterns. The bowing susceptibilities vary with blank shape such as trapezoid, convex, and concave shapes. In addition to the peak longitudinal strain at the respective roll stands, the cumulative longitudinal strain from the initial to final stands is shown to be a reliable index in predicting the tendency of longitudinal bowing.

  5. Square and bow-tie configurations in the cyclic evasion problem

    Science.gov (United States)

    Arnold, M. D.; Golich, M.; Grim, A.; Vargas, L.; Zharnitsky, V.

    2017-05-01

    Cyclic evasion of four agents on the plane is considered. There are two stationary shapes of configurations: square and degenerate bow-tie. The bow-tie is asymptotically attracting while the square is of focus-center type. Normal form analysis shows that square is nonlinearly unstable. The stable manifold consists of parallelograms that all converge to the square configuration. Based on these observations and numerical simulations, it is conjectured that any non-parallelogram non-degenerate configuration converges to the bow-tie.

  6. Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakanotani, Masaru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Matsukiyo, Shuichi; Hada, Tohru [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Mazelle, Christian X., E-mail: nakanot@esst.kyushu-u.ac.jp [IRAP, Université Paul Sabatier Toulouse III-CNRS, F-31028 Toulouse Cedex 4 (France)

    2017-09-10

    A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.

  7. Generation of Pc 1 waves by the ion temperature anisotropy associated with fast shocks caused by sudden impulses

    International Nuclear Information System (INIS)

    Mandt, M.E.; Lee, L.C.

    1991-01-01

    Observations have reported on the high correlation of Pc 1 events with magnetospheric compressions. A number of mechanisms have been suggested for the generation of the Pc 1 waves. In this paper, the authors propose a new mechanism which leads to the generation of Pc 1 waves. The interaction of a dynamic pressure pulse (Δρυ 2 ) with the Earth's bow shock leads to the formation of a weak fast mode shock propagating into the magnetosheath. The shock wave can pass right through a tangential discontinuity (magnetopause) and into the magnetosphere, without disturbing either of the structures. In a quasi-perpendicular geometry, the shock wave exhibits anisotropic heating with T perpendicular > T parallel . This anisotropy drives unstable ion cyclotron waves which they believe can contribute to the generation of the Pc 1 waves which are detected. The viability of the mechanism is demonstrated with simulations. This mechanism could explain peak in the occurrence of observed Pc 1 waves in the postnoon sector where a field-aligned discontinuity in the solar wind would most often be parallel to the magnetopause surface due to the average Parker spiral magnetic field configuration

  8. Computational Study of Shock/Plume Interactions Between Multiple Jets in Supersonic Crossflow

    Science.gov (United States)

    Tylczak, Erik B.

    The interaction of multiple jets in supersonic crossflow is simulated using hybrid Reynolds- Averaged Navier Stokes and Large Eddy Simulation turbulence models. The blockage of a jet generates a curved bow shock, and in multi-jet flows, each shock impinges on the other fuel plumes. The curved nature of each shock generates vorticity directly, and the impingement of each shock on the vortical structures within the adjacent fuel plumes strengthens vortical structures already present. These stirring motions are the major driver of fuel-air mixing, and so mixing enhancement is predicted to occur in multi-port configurations. The primary geometry considered is that of the combustion duct at the Calspan- University of Buffalo Research Center 48" Large Energy National Shock (LENS) tunnel. This geometry was developed to be representative of the geometry and flow physics of the Flight 2 test vehicle of the Hypersonic International Flight Research Experimenta- tion Program (HiFIRE-2). This geometry takes the form of a symmetric pair of external compression ramps that feed an isolator of approximately 4" x 1" cross-section. Nine interdigitated flush-wall injectors, four on one wall and five on the other, inject hydrogen at an angle of 30 degrees to the freestream. Two freestream flow conditions are consid- ered: approximately Mach 7.2 at a static temperature of 214K and a density of 0.039 kg/m3 for the five-injector case, and approximately Mach 8.9 at a static temperature of 167K and density of 0.014 kg/m 3 for the nine-injector case. Validation computations are performed on a single-port experiment with an imposed shock wave. Unsteady calculations are performed on five-port and nine-port configura- tions, and the five-port configuration is compared to calculations performed with only a single active port on the same geometry. Analysis of statistical data demonstrates enhanced mixing in the multi-port configurations in regions where shock impingement occurs.

  9. Shock modon: a new type of coherent structure in rotating shallow water.

    Science.gov (United States)

    Lahaye, Noé; Zeitlin, Vladimir

    2012-01-27

    We show that a new type of coherent structure, a shock modon, exists in a rotating shallow water model at large Rossby numbers. It is a combination of an asymmetric vortex dipole with a stationary hydraulic jump. The structure is long living, despite the energy dissipation by the hydraulic jump, and moving along a circular path. Collisions of shock modons can be elastic, or lead to formation of shock tripoles.

  10. Plasma and energetic particle structure of a collisionless quasi-parallel shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.

    1983-01-01

    The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.

  11. Bowing-reactivity trends in EBR-II assuming zero-swelling ducts

    International Nuclear Information System (INIS)

    Meneghetti, D.

    1994-01-01

    Predicted trends of duct-bowing reactivities for the Experimental Breeder Reactor II (EBR-II) are correlated with predicted row-wise duct deflections assuming use of idealized zero-void-swelling subassembly ducts. These assume no irradiation induced swellings of ducts but include estimates of the effects of irradiation-creep relaxation of thermally induced bowing stresses. The results illustrate the manners in which at-power creeps may affect subsequent duct deflections at zero power and thereby the trends of the bowing component of a subsequent power reactivity decrement

  12. Lower hybrid waves at the shock front: a reassessment

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik⊥ and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  13. PRECURSORS TO INTERSTELLAR SHOCKS OF SOLAR ORIGIN

    Energy Technology Data Exchange (ETDEWEB)

    Gurnett, D. A.; Kurth, W. S. [University of Iowa, Department of Physics and Astronomy, Iowa City, IA 52242 (United States); Stone, E. C.; Cummings, A. C. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Krimigis, S. M.; Decker, R. B. [Applied Physics Laboratory/JHU, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Ness, N. F. [Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Burlaga, L. F., E-mail: donald-gurnett@uiowa.edu [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2015-08-20

    On or about 2012 August 25, the Voyager 1 spacecraft crossed the heliopause into the nearby interstellar plasma. In the nearly three years that the spacecraft has been in interstellar space, three notable particle and field disturbances have been observed, each apparently associated with a shock wave propagating outward from the Sun. Here, we present a detailed analysis of the third and most impressive of these disturbances, with brief comparisons to the two previous events, both of which have been previously reported. The shock responsible for the third event was first detected on 2014 February 17 by the onset of narrowband radio emissions from the approaching shock, followed on 2014 May 13 by the abrupt appearance of intense electron plasma oscillations generated by electrons streaming outward ahead of the shock. Finally, the shock arrived on 2014 August 25, as indicated by a jump in the magnetic field strength and the plasma density. Various disturbances in the intensity and anisotropy of galactic cosmic rays were also observed ahead of the shock, some of which are believed to be caused by the reflection and acceleration of cosmic rays by the magnetic field jump at the shock, and/or by interactions with upstream plasma waves. Comparisons to the two previous weaker events show somewhat similar precursor effects, although differing in certain details. Many of these effects are very similar to those observed in the region called the “foreshock” that occurs upstream of planetary bow shocks, only on a vastly larger spatial scale.

  14. Jets from young stars - CCD imaging, long-slit spectroscopy, and interpretation of existing data

    International Nuclear Information System (INIS)

    Mundt, R.; Brugel, E.W.; Buehrke, T.

    1987-01-01

    High-velocity jets and collimated outflows are now recognized as phenomena commonly associated with young stars. New CCD imaging of five objects, and in particular spatially resolved spectroscopy of eight highly-collimated flows, are discussed. Through the CCD imaging, three new jets have been discovered. It is shown that several previously known Herbig-Haro objects have extended bow-shock-like structures. In most of the latter cases, a jet is pointing from the star toward the bow-shock apex. The concave side of the bow-shock structure is in all cases oriented toward the outflow source. Using a data base of about 20 known jets, a detailed list of observational criteria describing these phenomena is compiled. A physical description and interpretation is presented which discusses the origin of knots in these jets and other structures, the relationship between jets and Herbig-Haro objects, the dissipation of energy along the jet due to internal shocks, the physical parameters, the relationship of optical jets to molecular outflows, and time scales for outflow activity. A short discussion of the driving sources for these jets is also included. 116 references

  15. The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain

    Science.gov (United States)

    Siegesmund, S.; Mosch, S.; Scheffzük, Ch.; Nikolayev, D. I.

    2008-10-01

    The bowing of natural stone panels is especially known for marble slabs. The bowing of granite is mainly known from tombstones in subtropical humid climate. Field inspections in combination with laboratory investigations with respect to the thermal expansion and the bowing potential was performed on two different granitoids (Cezlak granodiorite and Flossenbürg granite) which differ in the composition and rock fabrics. In addition, to describe and explain the effect of bowing of granitoid facade panels, neutron time-of-flight diffraction was applied to determine residual macro- and microstrain. The measurements were combined with investigations of the crystallographic preferred orientation of quartz and biotite. Both samples show a significant bowing as a function of panel thickness and destination temperature. In comparison to marbles the effect of bowing is more pronounced in granitoids at temperatures of 120°C. The bowing as well as the thermal expansion of the Cezlak sample is also anisotropic with respect to the rock fabrics. A quantitative estimate was performed based on the observed textures. The effect of the locked-in stresses may also have a control on the bowing together with the thermal stresses related to the different volume expansion of the rock-forming minerals.

  16. Significance of shock structure on supersonic jet mixing noise of axisymmetric nozzles

    Science.gov (United States)

    Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas

    1994-09-01

    One of the key technical elements in NASA's high speed research program is reducing the noise level to meet the federal noise regulation. The dominant noise source is associated with the supersonic jet discharged from the engine exhaust system. Whereas the turbulence mixing is largely responsible for the generation of the jet noise, a broadband shock-associated noise is also generated when the nozzle operates at conditions other than its design. For both mixing and shock noise components, because the source of the noise is embedded in the jet plume, one can expect that jet noise can be predicted from the jet flowfield computation. Mani et al. developed a unified aerodynamic/acoustic prediction scheme by applying an extension of Reichardt's aerodynamic model to compute turbulent shear stresses which are utilized in estimating the strength of the noise source. Although this method produces a fast and practical estimate of the jet noise, a modification by Khavaran et al. has led to an improvement in aerodynamic solution. The most notable feature in this work is that Reichardt's model is replaced with the computational fluid dynamics (CFD) solution of Reynolds-averaged Navier-Stokes equations. The major advantage of this work is that the essential, noise-related flow quantities such as turbulence intensity and shock strength can be better predicted. The predictions were limited to a shock-free design condition and the effect of shock structure on the jet mixing noise was not addressed. The present work is aimed at investigating this issue. Under imperfectly expanded conditions the existence of the shock cell structure and its interaction with the convecting turbulence structure may not only generate a broadband shock-associated noise but also change the turbulence structure, and thus the strength of the mixing noise source. Failure in capturing shock structures properly could lead to incorrect aeroacoustic predictions.

  17. Small Arms of the Scythians. On the Time of Sigmoid Bow Appearance in Eastern Europe

    Directory of Open Access Journals (Sweden)

    Lukyashko Sergey Ivanovich

    2015-12-01

    Full Text Available Horse archers well-known in the ancient world used composite sigmoid bows for shooting (archery, the specific constructive features of which have been studied by the researchers. This type of a bow was convergently formed in Eastern China in the middle of the 2nd millennium B.C. and in the North Caucasus in the middle of the 4th millennium B.C. It gets transferred to the Northern Black Sea Region by the Scythians in the late 7th - early 6th centuries B.C. that resulted in the dramatic transformation of arrowheads’ types. The Greeks became aware of this weapon in the last third of the 6th century B.C. Bows can be divided into simple and complex ones. The simple bows are made from one solid bar, while the complex bows are made of several layers of different wood species. Composite bows are constructed from a few consequently connected bars. These types also include a reinforced bow – the bow springing qualities of which are reinforced by bone or tendon plates. Since the ancient masters combined different production methods, the definition of a composite reinforced bow can be found in the literature. European small arms development was focused on improving a simple bow. The strength of such bow was achieved by its size. However, massive bows are unsuitable for firing from a horse. Therefore, in cultures associated with the development of riding the search of methods of bow strength increase at the condition of reducing its size, was going on. In Asia, the focus was made on the material rather than shoulders design. As a result, complex composite bows appear in the East, which were made from several pieces of wood, connected with the central part of the handle at an angle. After the appearance of the Scythians in the middle East the angular design of bows was replaced by a sigmoid shape (scythicus acrus.

  18. Improvements, verifications and validations of the BOW code

    International Nuclear Information System (INIS)

    Yu, S.D.; Tayal, M.; Singh, P.N.

    1995-01-01

    The BOW code calculates the lateral deflections of a fuel element consisting of sheath and pellets, due to temperature gradients, hydraulic drag and gravity. the fuel element is subjected to restraint from endplates, neighboring fuel elements and the pressure tube. Many new features have been added to the BOW code since its original release in 1985. This paper outlines the major improvements made to the code and verification/validation results. (author)

  19. A STUDY OF THE HELIOCENTRIC DEPENDENCE OF SHOCK STANDOFF DISTANCE AND GEOMETRY USING 2.5D MAGNETOHYDRODYNAMIC SIMULATIONS OF CORONAL MASS EJECTION DRIVEN SHOCKS

    International Nuclear Information System (INIS)

    Savani, N. P.; Shiota, D.; Kusano, K.; Vourlidas, A.; Lugaz, N.

    2012-01-01

    We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast coronal mass ejections (CMEs) and their associated shock fronts between 10 Rs and 300 Rs. We investigate the relative change in the shock standoff distance, Δ, as a fraction of the CME radial half-width, D OB (i.e., Δ/D OB ). Previous hydrodynamic studies have related the shock standoff distance for Earth's magnetosphere to the density compression ratio (DR; ρ u /ρ d ) measured across the bow shock. The DR coefficient, k dr , which is the proportionality constant between the relative standoff distance (Δ/D OB ) and the compression ratio, was semi-empirically estimated as 1.1. For CMEs, we show that this value varies linearly as a function of heliocentric distance and changes significantly for different radii of curvature of the CME's leading edge. We find that a value of 0.8 ± 0.1 is more appropriate for small heliocentric distances ( dr value increases linearly with heliocentric distance, such that k dr = 1.1 is most appropriate at a heliocentric distance of about 80 Rs. For terrestrial distances (215 Rs) we estimate k dr = 1.8 ± 0.3, which also indicates that the CME cross-sectional structure is generally more oblate than that of Earth's magnetosphere. These alterations to the proportionality coefficients may serve to improve investigations into the estimates of the magnetic field in the corona upstream of a CME as well as the aspect ratio of CMEs as measured in situ.

  20. Massive runaway stars in the Large Magellanic Cloud

    Science.gov (United States)

    Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    2010-09-01

    The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (˜ 100 km s-1) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birthplaces at the very beginning of their parent cluster's dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach is, however, complicated by the long distance to the LMC, which makes accurate proper motion measurements difficult. We used an alternative approach for solving the problem (first applied for Galactic field stars), based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion, thereby determining their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars that have been proposed as candidate runaway stars. Using archival Spitzer Space Telescope data, we found a bow shock associated with one of our programme stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ≃ 120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star-forming complex. We discuss implications of our findings for the

  1. Materials and structures under shock and impact

    CERN Document Server

    Bailly, Patrice

    2013-01-01

    In risk studies, engineers often have to consider the consequences of an accident leading to a shock on a construction. This can concern the impact of a ground vehicle or aircraft, or the effects of an explosion on an industrial site.This book presents a didactic approach starting with the theoretical elements of the mechanics of materials and structures, in order to develop their applications in the cases of shocks and impacts. The latter are studied on a local scale at first. They lead to stresses and strains in the form of waves propagating through the material, this movement then extending

  2. The Procedure for Determination of Special Margin Factors to Account for a Bow of the VVER-1000 Fuel Assemblies

    International Nuclear Information System (INIS)

    Tsyganov, Sergey V.; Marin, Stanislav V.; Shishkov, Lev K.

    2008-01-01

    Starting from 1980's, the problem of bow of the VVER-1000 reactor FAs and the effect of that on the operational safety is being discussed. At the initial period of time, the extension of time for dropping control rods of the control and protection system associated with this bow posed the highest threat. Later on, new more rigid structures were developed for FAs that eliminated the problems of control rods. However, bow of the VVER-1000 reactor FAs is observed up to now. The scale of this bow reduced significantly but it still effects safety. Even a minor bow available may lead to the noticeable increase of power of individual fuel pins associated with the local variation of the coolant amount. This effect must be taken into account on designing fuel loadings to eliminate the exceeding of set limitations. The introduction of additional special margins is the standard method for taking this effect into account. The present paper describes the conservative technique for the assessment of additional margins for bow of FAs of state-of-the-art designs. This technique is employed in the VVER-1000 reactor designing. The chosen conservatism degree is discussed as well as the method for its assurance and acceptable ways for its slackening. The example of the margin evaluation for the up-to-date fuel loading is given. (authors)

  3. The procedure for determination of special margin factors to account for a bow of the WWER-1000 fuel assemblies

    International Nuclear Information System (INIS)

    Tsyganov, S. V.; Marin, S. V.; Shishkov, L. K.

    2008-01-01

    Starting from 1980s, the problem of bow of the WWER-1000 reactor fuel assemblies and the effect of that on the operational safety is being discussed. At the initial period of time, the extension of time for dropping control rods of the control and protection system associated with this bow posed the highest threat. Later on, new more rigid structures were developed for fuel assemblies that eliminated the problems of control rods. However, bow of the WWER-1000 reactor fuel assemblies is observed up to now. The scale of this bow reduced significantly but it still effects safety. Even a minor bow available may lead to the noticeable increase of power of individual fuel pins associated with the local variation of the coolant amount. This effect must be taken into account on designing fuel loadings to eliminate the exceeding of set limitations. The introduction of additional special margins is the standard method for taking this effect into account. The present paper describes the conservative technique for the assessment of additional margins for bow of fuel assemblies of state-of-the-art designs. This technique is employed in the WWER-1000 reactor designing. The chosen conservatism degree is discussed as well as the method for its assurance and acceptable ways for its slackening. The example of the margin evaluation for the up-to-date fuel loading is given. (authors)

  4. The Procedure for Determination of Special Margin Factors to Account for a Bow of the VVER-1000 Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganov, Sergey V.; Marin, Stanislav V.; Shishkov, Lev K. [Russian Research Center ' Kurchatov Institute' , 1., Kurchatov sq., 123182 Moscow (Russian Federation)

    2008-07-01

    Starting from 1980's, the problem of bow of the VVER-1000 reactor FAs and the effect of that on the operational safety is being discussed. At the initial period of time, the extension of time for dropping control rods of the control and protection system associated with this bow posed the highest threat. Later on, new more rigid structures were developed for FAs that eliminated the problems of control rods. However, bow of the VVER-1000 reactor FAs is observed up to now. The scale of this bow reduced significantly but it still effects safety. Even a minor bow available may lead to the noticeable increase of power of individual fuel pins associated with the local variation of the coolant amount. This effect must be taken into account on designing fuel loadings to eliminate the exceeding of set limitations. The introduction of additional special margins is the standard method for taking this effect into account. The present paper describes the conservative technique for the assessment of additional margins for bow of FAs of state-of-the-art designs. This technique is employed in the VVER-1000 reactor designing. The chosen conservatism degree is discussed as well as the method for its assurance and acceptable ways for its slackening. The example of the margin evaluation for the up-to-date fuel loading is given. (authors)

  5. Magnetosheath High-Speed Jets: Coupling Bow Shock Processes to the Magnetosphere

    Science.gov (United States)

    Hietala, H.

    2016-12-01

    Magnetosheath high-speed jets (HSJs) - dynamic pressure enhancements typically of 1 Earth radius in size - are the most common dayside transient. They impact the magnetopause many times per hour, especially during intervals of low interplanetary magnetic field cone-angle. Upon impact they cause large amplitude yet localized magnetopause indentations, and can couple to global dynamics by driving magnetospheric waves that alter radiation belt electron populations, and by affecting subsolar magnetopause reconnection. Previous observational studies have provided considerable insight into properties of the HSJs. Similarly, recent hybrid simulations have demonstrated the formation of jets downstream of the quasi-parallel shock with properties resembling the observed ones. Yet these studies were based on differing definitions of transients, have used varying terminology, methodology, data sets/simulations, and yielded, not unexpectedly, differing results on origin and characteristics of jets. In this talk we will present the first results towards a more unified understanding of these jets from a dedicated International Space Science Institute (ISSI) team. In particular, we compare the three selection criteria used in the recent observational statistical studies: (i) high dynamic pressure in the Sun-Earth direction with respect to the solar wind; (ii) enhancement of the total dynamic pressure with respect to the ambient magnetosheath plasma; (iii) enhancement of density with respect to the ambient plasma. We apply these criteria to global kinetic simulations and compare what structures they pick out. Consequently, we can effectively demonstrate where the different criteria agree and where they disagree.

  6. Application of Bow-tie methodology to improve patient safety.

    Science.gov (United States)

    Abdi, Zhaleh; Ravaghi, Hamid; Abbasi, Mohsen; Delgoshaei, Bahram; Esfandiari, Somayeh

    2016-05-09

    Purpose - The purpose of this paper is to apply Bow-tie methodology, a proactive risk assessment technique based on systemic approach, for prospective analysis of the risks threatening patient safety in intensive care unit (ICU). Design/methodology/approach - Bow-tie methodology was used to manage clinical risks threatening patient safety by a multidisciplinary team in the ICU. The Bow-tie analysis was conducted on incidents related to high-alert medications, ventilator associated pneumonia, catheter-related blood stream infection, urinary tract infection, and unwanted extubation. Findings - In total, 48 potential adverse events were analysed. The causal factors were identified and classified into relevant categories. The number and effectiveness of existing preventive and protective barriers were examined for each potential adverse event. The adverse events were evaluated according to the risk criteria and a set of interventions were proposed with the aim of improving the existing barriers or implementing new barriers. A number of recommendations were implemented in the ICU, while considering their feasibility. Originality/value - The application of Bow-tie methodology led to practical recommendations to eliminate or control the hazards identified. It also contributed to better understanding of hazard prevention and protection required for safe operations in clinical settings.

  7. A benchmark study of procedures for analysis of axial crushing of bulbous bows

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Pedersen, Preben Terndrup

    2008-01-01

    Simplified methods to estimate mean axial crushing forces of plated structures are reviewed and applied to a series of experimental results for axial crushing of large-scale bulbous bow models. Methods based on intersection unit elements such as L-, T- and X-type elements as well as methods based...

  8. Switch-shock wave structure in a magnetized partly-ionized gas

    International Nuclear Information System (INIS)

    Cramer, N.F.

    1975-01-01

    The effect of the interaction of plasma and neutral gas on the structure of switch-type shock waves propagating in a partly-ionized gas is studied. These shocks, in which the magnetic field is perpendicular to the shock front either upstream or downstream, exhibit a spiralling behaviour of the magnetic field in the shock transition region, if the Hall term is important in the Ohm's law. Observations of this behaviour for shocks propagating into a plasma with a residual neutral content of about 15% has implied an anomalously high resistivity of the plasma. We show that this can be partly explained by considering the collisions of ions with the neutral atoms in a magnetic field. We show that the extra dissipation due to the increase in resistivity goes primarily to the ions and neutrals. Thus even in the absence of viscous dissipation within each species, the heavy particles can be appreciably heated in a shock propagating into a partly-ionized gas in a magnetic field. (author)

  9. JET TRAILS AND MACH CONES: THE INTERACTION OF MICROQUASARS WITH THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Yoon, D.; Morsony, B.; Heinz, S.; Wiersema, K.; Fender, R. P.; Russell, D. M.; Sunyaev, R.

    2011-01-01

    A subset of microquasars exhibits high peculiar velocity with respect to the local standard of rest due to the kicks they receive when being born in supernovae. The interaction between the radio plasma released by microquasar jets from such high-velocity binaries with the interstellar medium must lead to the production of trails and bow shocks similar to what is observed in narrow-angle tailed radio galaxies and pulsar wind nebulae. We present a set of numerical simulations of this interaction that illuminate the long-term dynamical evolution and the observational properties of these microquasar bow-shock nebulae and trails. We find that this interaction always produces a structure that consists of a bow shock, a trailing neck, and an expanding bubble. Using our simulations to model emission, we predict that the shock surrounding the bubble and the neck should be visible in H α emission, the interior of the bubble should be visible in synchrotron radio emission, and only the bow shock is likely to be detectable in X-ray emission. We construct an analytic model for the evolution of the neck and bubble shape and compare this model with observations of the X-ray binary SAX J1712.6-3739.

  10. Lower hybrid waves at the shock front: a reassessment

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  11. Glacial Meltwater Contirbutions to the Bow River, Alberta, Canada

    Science.gov (United States)

    Bash, E. A.; Marshall, S. J.; White, E. C.

    2009-12-01

    Assessment of glacial melt is critical for water resource management in areas which rely on glacier-fed rivers for agricultural and municipal uses. Changes in precipitation patterns coupled with current glacial retreat are altering the glacial contribution to river flow in areas such as the Andes of South America and the high ranges of Asia, as well as the Rockies of Western Canada. Alberta’s Bow River has its headwaters in the eastern slopes of the Canadian Rockies and contributes to the Nelson drainage system feeding into Hudson Bay. The Bow River basin contains several population centers, including the City of Calgary, and is heavily taxed for agricultural use. The combined effects of rapid glacial retreat in the Canadian Rockies, higher drought frequency, and increased demand are likely to heighten water stress in Southern Alberta. However, there has been little focus to date on the extent and importance of glacial meltwater in the Bow River. The Bow River contains 74.5 km2 of glacier ice, which amounts to only 0.29% of the basin. While this number is not high compared to some glacierized areas, Hopkinson and Young (1998) report that in dry years, glacier melt can provide up to 50% of late summer flows at a station in the upper reaches of the river system. We extend this work with an assessment of monthly and annual glacial contributions to the Bow River farther downstream in Calgary. Our analysis is based on mass balance, meteorological, and hydrological data that has been collected at the Haig Glacier since 2001. This data is used in conjunction with glacier coverage and hypsometric data for the remainder of the basin to estimate seasonal snow and glacial meltwater contributions to the Bow River from the glacierized fraction of the catchment. The results of this study show the percentage of total flow attributed to glacial melt to be highly variable. Glacier runoff contributes up to an order of magnitude more water to the Bow River per unit area of

  12. An in situ Comparison of Electron Acceleration at Collisionless Shocks under Differing Upstream Magnetic Field Orientations

    Energy Technology Data Exchange (ETDEWEB)

    Masters, A.; Dougherty, M. K. [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, A. H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Stawarz, Ł. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Reville, B. [School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Sergis, N. [Office of Space Research and Technology, Academy of Athens, Soranou Efesiou 4, 11527 Athens (Greece); Fujimoto, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Burgess, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom); Coates, A. J., E-mail: a.masters@imperial.ac.uk [Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom)

    2017-07-10

    A leading explanation for the origin of Galactic cosmic rays is acceleration at high-Mach number shock waves in the collisionless plasma surrounding young supernova remnants. Evidence for this is provided by multi-wavelength non-thermal emission thought to be associated with ultrarelativistic electrons at these shocks. However, the dependence of the electron acceleration process on the orientation of the upstream magnetic field with respect to the local normal to the shock front (quasi-parallel/quasi-perpendicular) is debated. Cassini spacecraft observations at Saturn’s bow shock have revealed examples of electron acceleration under quasi-perpendicular conditions, and the first in situ evidence of electron acceleration at a quasi-parallel shock. Here we use Cassini data to make the first comparison between energy spectra of locally accelerated electrons under these differing upstream magnetic field regimes. We present data taken during a quasi-perpendicular shock crossing on 2008 March 8 and during a quasi-parallel shock crossing on 2007 February 3, highlighting that both were associated with electron acceleration to at least MeV energies. The magnetic signature of the quasi-perpendicular crossing has a relatively sharp upstream–downstream transition, and energetic electrons were detected close to the transition and immediately downstream. The magnetic transition at the quasi-parallel crossing is less clear, energetic electrons were encountered upstream and downstream, and the electron energy spectrum is harder above ∼100 keV. We discuss whether the acceleration is consistent with diffusive shock acceleration theory in each case, and suggest that the quasi-parallel spectral break is due to an energy-dependent interaction between the electrons and short, large-amplitude magnetic structures.

  13. Hypersonic shock structure with Burnett terms in the viscous stress and heat flux

    Science.gov (United States)

    Chapman, Dean R.; Fiscko, Kurt A.

    1988-01-01

    The continuum Navier-Stokes and Burnett equations are solved for one-dimensional shock structure in various monatomic gases. A new numerical method is employed which utilizes the complete time-dependent continuum equations and obtains the steady-state shock structure by allowing the system to relax from arbitrary initial conditions. Included is discussion of numerical difficulties encountered when solving the Burnett equations. Continuum solutions are compared to those obtained utilizing the Direct Simulation Monte Carlo method. Shock solutions are obtained for a hard sphere gas and for argon from Mach 1.3 to Mach 50. Solutions for a Maxwellian gas are obtained from Mach 1.3 to Mach 3.8. It is shown that the Burnett equations yield shock structure solutions in much closer agreement to both Monte Carlo and experimental results than do the Navier-Stokes equations. Shock density thickness, density asymmetry, and density-temperature separation are all more accurately predicted by the Burnett equations than by the Navier-Stokes equations.

  14. Adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves

    International Nuclear Information System (INIS)

    Goodrich, C.C.; Scudder, J.D.

    1984-01-01

    In collisionless magnetosonic shock waves, ions are commonly thought to be decelerated by dc electrostatic cross-shock electric field along the shock normal n. In a frame where ions are normally incident to the shock the change in the potential energy [qphi/sup N/] in the quasi-perpendicular geommetry is of the order of the change of the energy of normal ion flow: [qphi/sup N/]roughly-equal[1/2m/sub i/(V/sub i//sup N/xn) 2 ], which is approximately 200-500 eV at the earth's bow shock. We show that the electron energy gain, typically 1/10 this number, is consistent with such a large potential jump in this geometry. Key facts are the different paths taken by electrons an ions through the shock wave and the frame dependence of the potential jump in the geometry. In the normal incidence frame, electrons lose energy by doing work against the solar wind motional electric field E/sub M//sup N/, which partially offsets the energy gain from the cross-shock electrostatic potential energy [ephi/sub asterisk//sup N/]. In the de Hoffman-Teller frame the motional electric field vanishes; the elctrons gain the full electrostatic potential energy jump e[phi/sub asterisk//sup H//sup T/] of that frame, which is not, however, equal to the electrostatic potential energy jump e[phi/sub asterisk//sup N/] of that frame, which is not, however, equal to the electrostatic potential energy jump e[phi/sub asterisk//sup N/] in the normal incidence frame

  15. Analysis of Structural Differences and Asymmetry of Shocks Between the Czech Economy and the Euro Area

    Directory of Open Access Journals (Sweden)

    Martin Slanicay

    2016-03-01

    Full Text Available The goal of this paper is to examine asymmetry of shocks and structural differences between the Czech economy and the euro area. For this purpose I use a New Keynesian DSGE model of two economies. Structural differences are examined using the posterior distributions of structural parameters. Results suggest that prices are more sticky in the Czech economy, especially in the non-tradable sector, while wages are more sticky in the euro area. It seems that the ECB smooths less the interest rate and reacts more to the development in output and inflation than the Czech National Bank. It also seems that labor supply in the Czech economy is more elastic than labor supply in the euro area. Asymmetry of shocks is examined using correlations between smoothed shocks obtained from the estimation. The most asymmetric shocks are shocks in government expenditures, labor supply shocks, and productivity shocks in the tradable sector, while the most symmetric shocks are consumption preference shocks, monetary policy shocks, and investment efficiency shocks.

  16. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Wenzel, K.-P.; Sanderson, T. R.; Van Nes, P.; Smith, E. J.; Tsurutani, B. T.; Scudder, J. D.

    1984-01-01

    ISEE 1, 2 and 3 data from 1978 on interplanetary magnetic fields, shock waves and particle energetics are examined to characterize a quasi-parallel shock. The intense shock studied exhibited a 640 km/sec velocity. The data covered 1-147 keV protons and electrons and ions with energies exceeding 30 keV in regions both upstream and downstream of the shock, and also the magnitudes of ion-acoustic and MHD waves. The energetic particles and MHD waves began being detected 5 hr before the shock. Intense halo electron fluxes appeared ahead of the shock. A closed magnetic field structure was produced with a front end 700 earth radii from the shock. The energetic protons were cut off from the interior of the magnetic bubble, which contained a markedly increased density of 2-6 keV protons as well as the shock itself.

  17. Three-dimensional Shock Structure of the Orion KL Outflow with IGRINS

    Science.gov (United States)

    Oh, Heeyoung; Pyo, Tae-Soo; Kaplan, Kyle; Yuk, In-Soo; Park, Byeong-Gon; Mace, Gregory; Park, Chan; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Sok Oh, Jae; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Lee, Hye-In; Nguyen Le, Huynh Anh; Lee, Sungho; Jaffe, Daniel T.

    2016-12-01

    We report a study of the three-dimensional (3D) outflow structure of a 15″ × 13″ area around the H2 peak 1 in Orion KL with slit-scan observations (13 slits) using the Immersion Grating Infrared Spectrograph. The datacubes have a high-velocity resolution (˜7.5 km s-1), provide high-contrast imaging within ultra-narrow bands, and enable the detection of the main stream of the previously reported H2 outflow fingers. We identified 31 distinct fingers in the H2 1-0 S(1) λ2.122 μm emission. The line profile at each finger shows multiple-velocity peaks with a strong low-velocity component around the systemic velocity at {V}{LSR} = +8 km s-1 and high-velocity emission (| {V}{LSR}| = 45-135 km s-1), indicating a typical bow-shock. The observed radial velocity gradients of ˜4 km s-1 arcsec-1 agree well with the velocities inferred from large-scale proper motions, where the projected motion is proportional to the distance from a common origin. We construct a conceptual 3D map of the fingers with estimated inclination angles of 57°-74°. The extinction difference (ΔA v > 10 mag) between blueshifted and redshifted fingers indicates high internal extinction. The extinction, the overall angular spread, and the scale of the flow argue for an ambient medium with a very high density (105-106 cm-3), consistent with molecular line observations of the Orion Molecular Cloud core. The radial velocity gradients and the 3D distributions of the fingers together support the hypothesis of a simultaneous radial explosion of the Orion KL outflow. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  18. Arctic Bowyery – The Use of Compression Wood in Bows in the Subarctic and Arctic Regions of Eurasia and America

    Directory of Open Access Journals (Sweden)

    Marcus Lepola

    2015-06-01

    Full Text Available This paper is a study of the traditional use of a special kind of wood in bow construction in Eurasia and North America. This special kind of wood, called compression wood and coming from coniferous trees, has unique qualities that makes it suitable for bow construction. Bows made using this special wood have been referred to as Finno-Ugric bows, Sámi bows, Two-Wood bows and Eurasia laminated bows. These bows appear to have developed from archaic forms of compression wood self bows that were made from a single piece of wood. Recently features similar to the Eurasian compression wood bows have been discovered in bows originating from Alaska, and the use of compression wood for bow manufacture has been known to some Canadian Inuit groups. This paper addresses the origin and possible diffusion pattern of this innovation in bow technology in Eurasia and suggests a timeframe and a possible source for the transfer of this knowledge to North America. This paper also discusses the role of the Asiatic composite bow in the development of bows in Eurasia.

  19. An investigation of the structure of plasma produced by reflected shock waves

    International Nuclear Information System (INIS)

    Phillips, M.G.R.; Pugatschew, A.A.

    1979-05-01

    Space and time resolved measurements of electron density and temperature have been made in the reflected-shock plasma produced by a Mach 20 incident shock wave propagating in argon at an initial pressure of 1.5 Torr. The peak electron density was found to decrease away from the reflecting wall in such a way that the plasma was fairly uniform at all times. Close to the reflecting wall (0.2 cm away) the measured peak electron density was close to (i.e. about 20% lower than) the predicted equilibrium value but further away (1.0 cm) it was lower by a factor 4. Possible reasons for this discrepancy are discussed. Calculations of reflected-shock plasma structure based on incident shock structure are only partially supported by available experimental evidence

  20. DYNAMICS OF HIGH ENERGY IONS AT A STRUCTURED COLLISIONLESS SHOCK FRONT

    Energy Technology Data Exchange (ETDEWEB)

    Gedalin, M. [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Dröge, W.; Kartavykh, Y. Y., E-mail: gedalin@bgu.ac.il [Institute for Theoretical Physics and Astrophysics, University of Würzburg, Würzburg (Germany)

    2016-07-10

    Ions undergoing first-order Fermi acceleration at a shock are scattered in the upstream and downstream regions by magnetic inhomogeneities. For high energy ions this scattering is efficient at spatial scales substantially larger than the gyroradius of the ions. The transition from one diffusive region to the other occurs via crossing the shock, and the ion dynamics during this crossing is mainly affected by the global magnetic field change between the upstream and downstream region. We study the effects of the fine structure of the shock front, such as the foot-ramp-overshoot profile and the phase-standing upstream and downstream magnetic oscillations. We also consider time dependent features, including reformation and large amplitude coherent waves. We show that the influence of the spatial and temporal structure of the shock front on the dependence of the transition and reflection on the pitch angle of the ions is already weak at ion speeds five times the speed of the upstream flow.

  1. Crystal structure of a small heat-shock protein from Xylella fastidiosa reveals a distinct high-order structure.

    Science.gov (United States)

    Fonseca, Emanuella Maria Barreto; Scorsato, Valéria; Dos Santos, Marcelo Leite; Júnior, Atilio Tomazini; Tada, Susely Ferraz Siqueira; Dos Santos, Clelton Aparecido; de Toledo, Marcelo Augusto Szymanski; de Souza, Anete Pereira; Polikarpov, Igor; Aparicio, Ricardo

    2017-04-01

    Citrus variegated chlorosis is a disease that attacks economically important citrus plantations and is caused by the plant-pathogenic bacterium Xylella fastidiosa. In this work, the structure of a small heat-shock protein from X. fastidiosa (XfsHSP17.9) is reported. The high-order structures of small heat-shock proteins from other organisms are arranged in the forms of double-disc, hollow-sphere or spherical assemblies. Unexpectedly, the structure reported here reveals a high-order architecture forming a nearly square cavity.

  2. Dynamic risk analysis using bow-tie approach

    International Nuclear Information System (INIS)

    Khakzad, Nima; Khan, Faisal; Amyotte, Paul

    2012-01-01

    Accident probability estimation is a common and central step to all quantitative risk assessment methods. Among many techniques available, bow-tie model (BT) is very popular because it represent the accident scenario altogether including causes and consequences. However, it suffers a static structure limiting its application in real-time monitoring and probability updating which are key factors in dynamic risk analysis. The present work is focused on using BT approach in a dynamic environment in which the occurrence probability of accident consequences changes. In this method, on one hand, failure probability of primary events of BT, leading to the top event, are developed using physical reliability models, and constantly revised as physical parameters (e.g., pressure, velocity, dimension, etc) change. And, on the other hand, the failure probability of safety barriers of the BT are periodically updated using Bayes’ theorem as new information becomes available over time. Finally, the resulting, updated BT is used to estimate the posterior probability of the consequences which in turn results in an updated risk profile. - Highlights: ► A methodology is proposed to make bow-tie method adapted for dynamic risk analysis. ► Physical reliability models are used to revise the top event. ► Bayes’ theorem is used to update the probability of safety barriers. ► The number of accidents in sequential time intervals is used to form likelihood function. ► The risk profile is updated for varying physical parameters and for different times.

  3. Application of the Bow Tie method for evaluation of safety in the procedure of logging wells; Aplicacion del metodo de Bow Tie para la evaluacion de seguridad en la practica de perfilaje de pozos

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso Pallares, C; Perez Reyes, Y.; Sarabia Molina, I.I. [Centro Nacional de Seguridad Nuclear (CNSN), La Habana (Cuba)

    2013-07-01

    This work consists of an assessment of security in the practice of logging of oil wells, using the method of Bow Tie for being a simple method of evaluation of the risk, which makes it possible in a structured way to set priorities to manage risk.

  4. Propagating Structure Of A Microwave Driven Shock wave Inside A Tube

    International Nuclear Information System (INIS)

    Shimada, Yutaka; Shibata, Teppei; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Arakawa, Yoshihiro

    2010-01-01

    The thrust generation process of a microwave rocket is similar to a pulse detonation engine, and understanding the interactions between microwave plasma and shock waves is important. Shadowgraph images of the microwave plasma generated in a tube under atmospheric air were taken. The observed plasma and shock wave were propagating one-dimensionally at constant velocity inside the tube. In order to understand the flow field inside the rocket, one-dimensional CFD analysis was conducted. With the change of microwave power density, the structure of the flow field was classified into two regimes: Microwave Supported Combustion (MSC), and Microwave Supported Detonation (MSD). The structure of the MSD was different from the structure of a chemical detonation, which implied the existence of a preheating in front of the shock wave. Furthermore, the flight performance was estimated by calculating the momentum coupling coefficient. It was confirmed that the efficiency was nearly constant in the MSD regime, with the increase of microwave power density.

  5. Structure of slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Tsai, R.H.; Wu, B.H.; Lee, L.C.

    2002-01-01

    The structure of slow shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. In this study, a pair of slow shocks is formed through the evolution of a current sheet initiated by the presence of a normal magnetic field. It is found that the slow shock consists of two parts: The isothermal main shock and foreshock. Significant jumps in plasma density, velocity and magnetic field occur across the main shock, but the temperature is found to be continuous across the main shock. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. It is shown that the jumps in plasma density, pressure, velocity, and magnetic field across the main shock are determined by the set of modified isothermal Rankine-Hugoniot conditions. It is also found that a jump in the temperature gradient is present across the main shock in order to satisfy the energy conservation. The present results can be applied to the heating in the solar corona and solar wind

  6. On the Structural Interpretation of the Smets-Wouters “Risk Premium” Shock

    OpenAIRE

    Fisher, Jonas D. M.

    2014-01-01

    This article shows that the "risk premium" shock in Smets and Wouters (2007) can be interpreted as a structural shock to the demand for safe and liquid assets such as short-term US Treasury securities. Several implications of this interpretation are discussed.

  7. Shock aurora: Field-aligned discrete structures moving along the dawnside oval

    Science.gov (United States)

    Zhou, Xiaoyan; Haerendel, Gerhard; Moen, Jøran I.; Trondsen, Espen; Clausen, Lasse; Strangeway, Robert J.; Lybekk, Bjørn; Lorentzen, Dag A.

    2017-03-01

    Generated by interplanetary shocks or solar wind pressure pulses, shock aurora has transient, global, and dynamic significances and provides a direct manifestation of the solar wind-magnetosphere-ionosphere interaction. As a part of a series of studies of the shock aurora, this paper focuses on the interaction at the morning magnetopause and its auroral manifestation at 06 magnetic local time, where the velocity and magnetic field shears dominate the interaction. Flow shears can generate wave-like structures inside a viscous boundary layer or even larger-scale vortices. These structures couple to the ionosphere via quasi-static field-aligned currents or via kinetic Alfvén waves. Potential drops along field-aligned filaments may be generated accelerating electrons to form auroral manifestations of the structures. A shock aurora event at dawnside is used to test this scenario. The findings include moving auroral streaks/rays that have a vertical profile from red (at 250 km altitude) to purple (at 100 km). The streaks moved antisunward along the poleward boundary of the oval at an ionospheric speed of 3 km s-1. It was mapped to the magnetopause flank at 133 km s-1, which was consistent with the observed speed of the magnetopause surface waves generated by the Kelvin-Helmholtz instability. The calculated field-aligned potential drop using Haerendel's analytic model was 5 kV that reasonably explained the observations. The results support the above scenario and reveal that magnetic and velocity shears at the flanks of the magnetospause may be the main cause of the fast moving shock aurora streaks.

  8. Transient bowing of core assemblies in advanced liquid metal fast reactors

    International Nuclear Information System (INIS)

    Kamal, S.A.; Orechwa, Y.

    1986-01-01

    Two alternative core restraint concepts are considered for a conceptual design of a 900 MWth liquid metal fast reactor core with a heterogeneous layout. The two concepts, known as limited free bowing and free flowering, are evaluated based on core bowing criteria that emphasize the enhancement of inherent reactor safety. The core reactivity change during a postulated loss of flow transient is calculated in terms of the lateral displacements and displacement-reactivity-worths of the individual assemblies. The NUBOW-3D computer code is utilized to determine the assembly deformations and interassembly forces that arise when the assemblies are subjected to temperature gradients and irradiation induced creep and swelling during the reactor operation. The assembly ducts are made of the ferritic steel HT-9 and remain in the reactor core for four-years at full power condition. Whereas both restraint systems meet the bowing criteria, a properly designed limited free bowing system appears to be more advantageous than a free flowering system from the point of view of enhancing the reactor inherent safety

  9. Mesoscale Surface Pressure and Temperature Features Associated with Bow Echoes

    Science.gov (United States)

    2010-01-01

    contain several bowing segments. These multiple segments could occur at the same time and be located within the same bow, such as the serial derecho ...Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329–342. Fovell, R. G., 2002: Upstream influence of numerically...Se- vere Local Storms, Hyannis, MA, Amer. Meteor. Soc., 4.6. Johns, R. H., and W. D. Hirt, 1987: Derechos : Widespread con- vectively induced

  10. Investigation of supersonic jets shock-wave structure

    Science.gov (United States)

    Zapryagaev, V. I.; Gubanov, D. A.; Kavun, I. N.; Kiselev, N. P.; Kundasev, S. G.; Pivovarov, A. A.

    2017-10-01

    The paper presents an experimental studies overview of the free supersonic jet flow structure Ma = 1.0, Npr = 5, exhausting from a convergent profiled nozzle into a ambient space. Also was observed the jets in the presence of artificial streamwise vortices created by chevrons and microjets located on the nozzle exit. The technique of experimental investigation, schlieren-photographs and schemes of supersonic jets, and Pitot pressure distributions, are presented. A significant effect of vortex generators on the shock-wave structure of the flow is shown.

  11. Computations of the Shock Waves at Hypersonic Velocities Taken into Account the Chemical Reactions that Appear in the Air at High Temperatures

    Directory of Open Access Journals (Sweden)

    Mihai Leonida NICULESCU

    2015-09-01

    Full Text Available The temperature in the nose region of a hypersonic vehicle can be extremely high, for example, reaching approximately 11 000 K at a Mach number of 36 (Apollo reentry. The bow shock wave is normal, or nearly normal, in the nose region of a blunt body, and the gas temperature behind this shock wave can be enormous at hypersonic speeds. In this case, the assumption of a calorically perfect nonreacting gas with the ratio of specific heats  of 1.4 gives an unrealistically high value of temperature. Therefore, the proper inclusion of chemically reacting effects is vital to the calculation of an accurate normal shock wave temperature.

  12. Effect of the wave shocking treatment on the structure and strengthening of austenitic steels

    International Nuclear Information System (INIS)

    Blinov, V.M.; Chernogorova, O.P.; Drozdova, E.I.; Afanas'ev, I.A.

    2006-01-01

    The structure and hardening of austenitic manganese steels after shock wave treatment are studied. It is shown that the treatment results in the structure where an elementary cell size decreases with a pressure increase. The strain hardening resulted from shock wave loading can be estimated using a Hall-Petch equation. It is established that at similar degree of residual strains the shock wave loading compared to cold rolling gives rise to higher strengthening which value grows as austenite stacking fault energy decreases [ru

  13. 76 FR 78234 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland, Campbell County, WY...

    Science.gov (United States)

    2011-12-16

    ... DEPARTMENT OF AGRICULTURE Forest Service Medicine Bow-Routt National Forests and Thunder Basin... Supervisor, Medicine Bow-Routt National Forests and Thunder Basin National Grassland, 2250 East Richards.... Responsible Official Richard Cooksey, Deputy Forest Supervisor, Medicine Bow-Routt National Forests and...

  14. Modification of the ANC Nodal Code for analysis of PWR assembly bow

    International Nuclear Information System (INIS)

    Franceschini, Fausto; Fetterman, Robert J.; Little, David C.

    2008-01-01

    Refueling operations at certain PWR cores have revealed fuel assemblies with assembly bow that was higher than expected. As the fuel assemblies bow, the gaps between assemblies change from the uniform nominal configuration. This causes a change in the water volume which affects neutron moderation and thereby power distribution, fuel depletion history, rod internal pressure, etc., with non-trivial impacts on the safety analysis. Westinghouse has developed a new methodology for incorporation of assembly bow in its reload safety analysis package. As part of the new process, the standard Westinghouse reactor physics tool for core analysis, the Advanced Nodal Code ANC, has been modified. The modified ANC, ANCGAP, enables explicit treatment of three-dimensional gap distributions in its neutronic calculations; its accuracy is similar to that of the standard ANC, as demonstrated through an extensive benchmark campaign conducted over a variety of fuel compositions and challenging gap configurations. These features make ANCGAP a crucial tool in the Westinghouse assembly bow package. (authors)

  15. Modification of the ANC Nodal Code for analysis of PWR assembly bow

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Fausto; Fetterman, Robert J.; Little, David C. [Westinghouse Electric Company LLC, Pittsburgh PA (United States)

    2008-07-01

    Refueling operations at certain PWR cores have revealed fuel assemblies with assembly bow that was higher than expected. As the fuel assemblies bow, the gaps between assemblies change from the uniform nominal configuration. This causes a change in the water volume which affects neutron moderation and thereby power distribution, fuel depletion history, rod internal pressure, etc., with non-trivial impacts on the safety analysis. Westinghouse has developed a new methodology for incorporation of assembly bow in its reload safety analysis package. As part of the new process, the standard Westinghouse reactor physics tool for core analysis, the Advanced Nodal Code ANC, has been modified. The modified ANC, ANCGAP, enables explicit treatment of three-dimensional gap distributions in its neutronic calculations; its accuracy is similar to that of the standard ANC, as demonstrated through an extensive benchmark campaign conducted over a variety of fuel compositions and challenging gap configurations. These features make ANCGAP a crucial tool in the Westinghouse assembly bow package. (authors)

  16. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    Science.gov (United States)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  17. Thermally-induced bowing of CANDU fuel elements

    International Nuclear Information System (INIS)

    Suk, H.C.; Sim, K.S.; Park, J.H.; Park, G.S.

    1995-01-01

    Considering only the thermally-induced bending moments which are generated both within the sheath and between the fuel and sheath by an asymmetric temperature distribution with respect to the axis of an element, a generalized and explicit analytical formula for the thermally-induced bending is developed in this paper, based on the cases of 1) the bending of an empty tube treated by neglecting of the fuel/sheath mechanical interaction and 2) the fuel/sheath interaction due to the pellet and sheath temperature variations. In each of the cases, the temperature asymmetries in sheath are modelled to be caused by the combined effects of (i) non-uniform coolant temperature due to imperfect coolant mixing, (ii) variable sheath/coolant heat transfer coefficient, (iii) asymmetric heat generation due to neutron flux gradients across an element and so as to inclusively cover the uniform temperature distributions within the fuel and sheath with respect to the axial centerline. Investigating the relative importance of the various parameters affecting fuel element bowing, the element bowing is found to be greatly affected with the variations of element length, sheath diameter, pellet/sheath mechanical interaction and neutron flux depression factors, pellet thermal expansion coefficient, pellet/sheath heat transfer coefficient in comparison with those of other parameters such as sheath thickness, film heat transfer coefficient, sheath thermal expansion coefficient, and sheath and pellet thermal conductivities. Also, the element bowing of the standard 37-element bundle and CANFLEX 43-element bundle for the use in CANDU-6 reactors was analyzed with the formula, which could help to demonstrate the integrity of the fuel. All the required input data for the analyses were generated in terms of the reactor operation conditions on the reactor physics, thermal hydraulics and fuel performance by using various CANDU computer codes. The analysis results indicate that the CANFLEX 43-element

  18. Application of the Bow Tie method for evaluation of safety in the procedure of logging wells

    International Nuclear Information System (INIS)

    Alfonso Pallares, C; Perez Reyes, Y.; Sarabia Molina, I.I.

    2013-01-01

    This work consists of an assessment of security in the practice of logging of oil wells, using the method of Bow Tie for being a simple method of evaluation of the risk, which makes it possible in a structured way to set priorities to manage risk

  19. BOWS (bioinformatics open web services) to centralize bioinformatics tools in web services.

    Science.gov (United States)

    Velloso, Henrique; Vialle, Ricardo A; Ortega, J Miguel

    2015-06-02

    Bioinformaticians face a range of difficulties to get locally-installed tools running and producing results; they would greatly benefit from a system that could centralize most of the tools, using an easy interface for input and output. Web services, due to their universal nature and widely known interface, constitute a very good option to achieve this goal. Bioinformatics open web services (BOWS) is a system based on generic web services produced to allow programmatic access to applications running on high-performance computing (HPC) clusters. BOWS intermediates the access to registered tools by providing front-end and back-end web services. Programmers can install applications in HPC clusters in any programming language and use the back-end service to check for new jobs and their parameters, and then to send the results to BOWS. Programs running in simple computers consume the BOWS front-end service to submit new processes and read results. BOWS compiles Java clients, which encapsulate the front-end web service requisitions, and automatically creates a web page that disposes the registered applications and clients. Bioinformatics open web services registered applications can be accessed from virtually any programming language through web services, or using standard java clients. The back-end can run in HPC clusters, allowing bioinformaticians to remotely run high-processing demand applications directly from their machines.

  20. Effect of back-pressure forcing on shock train structures in rectangular channels

    Science.gov (United States)

    Gnani, F.; Zare-Behtash, H.; White, C.; Kontis, K.

    2018-04-01

    The deceleration of a supersonic flow to the subsonic regime inside a high-speed engine occurs through a series of shock waves, known as a shock train. The generation of such a flow structure is due to the interaction between the shock waves and the boundary layer inside a long and narrow duct. The understanding of the physics governing the shock train is vital for the improvement of the design of high-speed engines and the development of flow control strategies. The present paper analyses the sensitivity of the shock train configuration to a back-pressure variation. The complex characteristics of the shock train at an inflow Mach number M = 2 in a channel of constant height are investigated with two-dimensional RANS equations closed by the Wilcox k-ω turbulence model. Under a sinusoidal back-pressure variation, the simulated results indicate that the shock train executes a motion around its mean position that deviates from a perfect sinusoidal profile with variation in oscillation amplitude, frequency, and whether the pressure is first increased or decreased.

  1. Shock absorber in combination with a nuclear reactor core structure

    International Nuclear Information System (INIS)

    Housman, J.J.

    1976-01-01

    This invention relates to the provision of shock absorbers for use in blind control rod passages of a nuclear reactor core structure which are not subject to degradation. The shock absorber elements are made of a porous brittle carbonaceous material, a porous brittle ceramic material, or a porous brittle refractory oxide and have a void volume of between 30% and 70% of the total volume of the element for energy absorption by fracturing due to impact loading by a control rod. (UK)

  2. 4U 1907+09: an HMXB running away from the Galactic plane

    Science.gov (United States)

    Gvaramadze, V. V.; Röser, S.; Scholz, R.-D.; Schilbach, E.

    2011-05-01

    We report the discovery of a bow shock around the high-mass X-ray binary (HMXB) 4U 1907+09 using the Spitzer Space Telescope 24 μm data (after Vela X-1 the second example of bow shocks associated with HMXBs). The detection of the bow shock implies that 4U 1907+09 is moving through space with a high (supersonic) peculiar velocity. To confirm the runaway nature of 4U 1907+09, we measured its proper motion, which for an adopted distance to the system of 4 kpc corresponds to a peculiar transverse velocity of ≃ 160 ± 115 km s-1, meaning that 4U 1907+09 is indeed a runaway system. This also supports the general belief that most HMXBs possess high space velocities. The direction of motion of 4U 1907+09 inferred from the proper motion measurement is consistent with the orientation of the symmetry axis of the bow shock, and shows that the HMXB is running away from the Galactic plane. We also present the Spitzer images of the bow shock around Vela X-1 (a system similar to 4U 1907+09) and compare it with the bow shock generated by 4U 1907+09.

  3. Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Shigeru, E-mail: taniguchi@stat.nitech.ac.jp; Sugiyama, Masaru, E-mail: sugiyama@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Arima, Takashi, E-mail: tks@stat.nitech.ac.jp [Center for Social Contribution and Collaboration, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ruggeri, Tommaso, E-mail: tommaso.ruggeri@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna, Bologna (Italy)

    2014-01-15

    We study the shock wave structure in a rarefied polyatomic gas based on a simplified model of extended thermodynamics in which the dissipation is due only to the dynamic pressure. In this case the differential system is very simple because it is a variant of Euler system with a new scalar equation for the dynamic pressure [T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama, Phys. Lett. A 376, 2799–2803 (2012)]. It is shown that this theory is able to describe the three types of the shock wave structure observed in experiments: the nearly symmetric shock wave structure (Type A, small Mach number), the asymmetric structure (Type B, moderate Mach number), and the structure composed of thin and thick layers (Type C, large Mach number)

  4. Prenatal diagnosis of metatropic dysplasia: beware of the pseudo-bowing sign

    International Nuclear Information System (INIS)

    Garel, Catherine; Dhouib, Amira; Sileo, Chiara; Ducou le Pointe, Hubert; Cormier-Daire, Valerie

    2014-01-01

    Metatropic dysplasia is a very rare form of osteochondrodysplasia with only one case of prenatal diagnosis described in the literature. It is characterized by marked shortening of the long bones with severe platyspondyly and dumbbell-shape metaphyses. We report a case of metatropic dysplasia that was diagnosed prenatally and describe the findings on US and CT. The pregnancy was terminated and the post-mortem radiographs are shown. The woman had been referred for short and bowed long bones. Severe metaphyseal enlargement was a misleading finding because it had been misinterpreted as limb bowing. Thus when abnormal curvature of the long bones is observed at prenatal US, attention should be drawn not only to the diaphyses but also to the metaphyses because severe metaphyseal enlargement might be responsible for pseudo-bowing. (orig.)

  5. Prenatal diagnosis of metatropic dysplasia: beware of the pseudo-bowing sign

    Energy Technology Data Exchange (ETDEWEB)

    Garel, Catherine [Trousseau Hospital, University Hospitals of the East of Paris, Department of Radiology, Paris (France); Hopital d' Enfants Armand-Trousseau, Department of Radiology, Paris (France); Dhouib, Amira; Sileo, Chiara; Ducou le Pointe, Hubert [Trousseau Hospital, University Hospitals of the East of Paris, Department of Radiology, Paris (France); Cormier-Daire, Valerie [Paris Descartes University, Sorbonne Paris Cite, Necker-Enfants-Malades Hospital, Department of Genetics, Paris (France)

    2014-03-15

    Metatropic dysplasia is a very rare form of osteochondrodysplasia with only one case of prenatal diagnosis described in the literature. It is characterized by marked shortening of the long bones with severe platyspondyly and dumbbell-shape metaphyses. We report a case of metatropic dysplasia that was diagnosed prenatally and describe the findings on US and CT. The pregnancy was terminated and the post-mortem radiographs are shown. The woman had been referred for short and bowed long bones. Severe metaphyseal enlargement was a misleading finding because it had been misinterpreted as limb bowing. Thus when abnormal curvature of the long bones is observed at prenatal US, attention should be drawn not only to the diaphyses but also to the metaphyses because severe metaphyseal enlargement might be responsible for pseudo-bowing. (orig.)

  6. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins.

    Science.gov (United States)

    Chaikam, Vijay; Karlson, Dale T

    2010-01-01

    The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs. [BMB reports 2010; 43(1): 1-8].

  7. Sedentism, social change, warfare, and the bow in the ancient Pueblo Southwest.

    Science.gov (United States)

    Reed, Paul F; Geib, Phil R

    2013-01-01

    In the ancient American Southwest, use of the bow developed relatively rapidly among Pueblo people by the fifth century AD. This new technology replaced the millennia-old atlatl and dart weaponry system. Roughly 150 years later in the AD 600s, Pueblo socioeconomic organization began to evolve rapidly, as many groups adopted a much more sedentary life. Multiple factors converged to allow this sedentary pattern to emerge, but the role of the bow in this process has not been fully explored. In this paper, we trace the development of the bow and discuss its role as sedentism emerged and social changes occurred in ancient Puebloan society from the fifth through seventh centuries AD. Copyright © 2013 Wiley Periodicals, Inc.

  8. Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Han XU

    2017-10-01

    Full Text Available The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.

  9. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  10. Energetic particles at venus: galileo results.

    Science.gov (United States)

    Williams, D J; McEntire, R W; Krimigis, S M; Roelof, E C; Jaskulek, S; Tossman, B; Wilken, B; Stüdemann, W; Armstrong, T P; Fritz, T A; Lanzerotti, L J; Roederer, J G

    1991-09-27

    At Venus the Energetic Particles Detector (EPD) on the Galileo spacecraft measured the differential energy spectra and angular distributions of ions >22 kiloelectron volts (keV) and electrons > 15 keV in energy. The only time particles were observed by EPD was in a series of episodic events [0546 to 0638 universal time (UT)] near closest approach (0559:03 UT). Angular distributions were highly anisotropic, ordered by the magnetic field, and showed ions arriving from the hemisphere containing Venus and its bow shock. The spectra showed a power law form with intensities observed into the 120- to 280-keV range. Comparisons with model bow shock calculations show that these energetic ions are associated with the venusian foreshock-bow shock region. Shock-drift acceleration in the venusian bow shock seems the most likely process responsible for the observed ions.

  11. Interaction of a weak and a strong shock in reacting high enthalpy flow; Wechselwirkung einer starken und einer schwachen Stosswelle in reagierender Hochenthalpiestroemung

    Energy Technology Data Exchange (ETDEWEB)

    Schnieder, M.

    1998-11-01

    In the free piston driven shock tunnel HEG the interaction of shock waves in front of a blunt body is studied in reacting high enthalpy flow. The influence of high temperature effects is of interest. The so called type IV interaction produces a free jet that impinges onto the body and creates high pressure and heat loads on the body surface. A cylinder wedge model is used. At the cylinder surface pressure and heat flux are measured. Holographic interferometry and schlieren optic are applied to visualize the flow. The measured loads show unsteady behaviour. At higher Reynolds numbers the upper bow shock shows a strong disturbance. It is assumed that this disturbance is caused by an unstable shear layer if the convective Mach number (i.e. the Mach number of the flow relative to a frame of reference moving with the shear layer structures) is larger than one. A study of the influence of dissociation on the convective Mach number shows, that the convective Mach number increases. Numerical calculations and an analytical model, which is based on the ideal dissociating gas model and the Fay Riddell solution to stagnation point flows are discussed in comparison with the experiments. (orig.)

  12. The Presence of Turbulent and Ordered Local Structure within the ICME Shock-sheath and Its Contribution to Forbush Decrease

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Zubair; Bhaskar, Ankush [Indian Institute of Geomagnetism (IIG), New Panvel, Navi Mumbai-410218 (India); Raghav, Anil, E-mail: raghavanil1984@gmail.com [University Department of Physics, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai-400098 (India)

    2017-08-01

    The transient interplanetary disturbances evoke short-time cosmic-ray flux decrease, which is known as Forbush decrease. The traditional model and understanding of Forbush decrease suggest that the sub-structure of an interplanetary counterpart of coronal mass ejection (ICME) independently contributes to cosmic-ray flux decrease. These sub-structures, shock-sheath, and magnetic cloud (MC) manifest as classical two-step Forbush decrease. The recent work by Raghav et al. has shown multi-step decreases and recoveries within the shock-sheath. However, this cannot be explained by the ideal shock-sheath barrier model. Furthermore, they suggested that local structures within the ICME’s sub-structure (MC and shock-sheath) could explain this deviation of the FD profile from the classical FD. Therefore, the present study attempts to investigate the cause of multi-step cosmic-ray flux decrease and respective recovery within the shock-sheath in detail. A 3D-hodogram method is utilized to obtain more details regarding the local structures within the shock-sheath. This method unambiguously suggests the formation of small-scale local structures within the ICME (shock-sheath and even in MC). Moreover, the method could differentiate the turbulent and ordered interplanetary magnetic field (IMF) regions within the sub-structures of ICME. The study explicitly suggests that the turbulent and ordered IMF regions within the shock-sheath do influence cosmic-ray variations differently.

  13. Familial congenital bowing with short thick bones and metaphyseal changes, a distinct entity

    International Nuclear Information System (INIS)

    Rezza, E.; Lendvai, D.; Iannaccone, G.

    1984-01-01

    The authors describe two siblings, a male and a female, with disproportionate short stature, rhizomelic-mesomelic shortening of the limb bones, marked bowing of the femora, moderate bowing of the humeri, radii and ulnae, straight tibiae and fibulae, normal hands, flared cupped metaphyses of the tibiae, ulnae, raddi and ribs, and narrow chest. There was some improvement of the bone changes with advancing age. These two patients are similar to five other cases from the literature and strongly support Hall and Spranger's view that this pseudocampomelic condition most likely represents a distinct familial bowing syndrome. The differential diagnosis and the hereditary aspects in the two patients, are also briefly discussed. (orig.)

  14. Noncoplanar magnetic fields at collisionless shocks: A test of a new approach

    International Nuclear Information System (INIS)

    Gosling, J.T.; Winske, D.; Thomsen, M.F.

    1988-01-01

    Within the foot and ramp of a fast mode collisionless shock the magnetic field rotates out of the plane of coplanarity defined by the upstream magnetic field and the shock normal. As previously noted (Goodrich and Scudder, 1984), the sense of this rotation is such as to reduce the cross-shock potential drop when measured in the deHoffman-Teller frame relative to that measured in the normal incidence frame. From a consideration of the requirement that there be zero current in the coplanarity plane downstream of the shock, Jones and Ellison (1987) have argued that the field rotation and potential drop difference are a consequence of unequal ion and electron masses, and have derived an expression for the spatial integral of the noncoplanar field component in terms of the electron current within the shock layer. Moreover, by assuming that the ion current within the shock layer is negligible compared to the electron current, they derive equations which predict the magnitude of both the field rotation and the potential drop difference in terms of upstream quantities and the field jump at the shock. We have tested their equations with ISEE 1 and 2 plasma and field measurements at the Earth's bow shock and by means of numerical simulations. We find substantial support for their suggestion that the field rotation and thus also the frame dependence of the potential drop are fundamentally a consequence of unequal ion and electron masses. Further, for subcritical shocks (low Mach number) one can neglect the ion current to predict both the sign and the magnitude of the field rotation and potential drop difference. However, at supercritical shocks (high Mach numbers) the ion current associated with reflected, gyrating ions cannot be neglected, and the final equations of Jones and Ellison seriously underestimate the magnitude of the field rotation and the potential drop difference at these shocks

  15. Characteristics of reflected and diffuse ions upstream from the earth's bow shock

    International Nuclear Information System (INIS)

    Paschmann, G.; Sckopke, N.; Papamastorakis, I.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1981-01-01

    The distinction between two types of upstream ion populations has been made on the basis of pronounced differences in their distribution functions. The 'reflected' ions represent a fast beam with temperatures typically 1 to 5 times 10 6 K and speeds up to five times the solar wind speed. An important feature of the reflected ion distributions in their strong temperature anisotropy, with T/sub perpendicular/ exceeding T/sub parallel/ by a factor of two to three. In contrast, the 'diffuse' ions occupy a much larger region of phase space, both in energy and angle; their distribution function generally has the form roughly of a circular ridge in 2 dimensions and a spherical shell in 3 dimensions. Accordingly, their temperature is much larger (> or approx. =10 7 K), and their bulk speed typically is smaller than the solar wind speed. Both ion populations have densities of the order of 0.1 cm -3 . At times transitions between the two extremes, represented by the reflected and diffuse ion populations, are observed. These 'intermediate' distributions are cresent shaped, with the center of curvature near the solar wind velocity. This property suggests that the intermediate distributions result from pitch angle scattering of the reflected beams in the solar wind frame and supports the idea that the reflected ions are the origin of the diffuse ions. At times the diffuse ion distributions exhibit considerable structure and rapid temporal variations. Reflected and diffuse ions can also be distinguished by their occurrence as a function of the angle theta between the local shock normal and the interplanetary magnetic field. Whereas the diffuse ions occur predominantly for small theta, the reflected ions are observed most frequently for theta> or approx. =45 0

  16. Highly trabeculated structure of the human endocardium underlies asymmetrical response to low-energy monophasic shocks

    Science.gov (United States)

    Connolly, Adam; Robson, Matthew D.; Schneider, Jürgen; Burton, Rebecca; Plank, Gernot; Bishop, Martin J.

    2017-09-01

    Novel low-energy defibrillation therapies are thought to be driven by virtual-electrodes (VEs), due to the interaction of applied monophasic electric shocks with fine-scale anatomical structures within the heart. Significant inter-species differences in the cardiac (micro)-anatomy exist, however, particularly with respect to the degree of endocardial trabeculations, which may underlie important differences in response to low-energy defibrillation protocols. Understanding the interaction of monophasic electric fields with the specific human micro-anatomy is therefore imperative in facilitating the translation and optimisation of these promising experimental therapies to the clinic. In this study, we sought to investigate how electric fields from implanted devices interact with the highly trabeculated human endocardial surface to better understand shock success in order to help optimise future clinical protocols. A bi-ventricular human computational model was constructed from high resolution (350 μm) ex-vivo MR data, including anatomically accurate endocardial structures. Monophasic shocks were applied between a basal right ventricular catheter and an exterior ground. Shocks of varying strengths were applied with both anodal [positive right ventricle (RV) electrode] and cathodal (negative RV electrode) polarities at different states of tissue refractoriness and during induced arrhythmias. Anodal shocks induced isolated positive VEs at the distal side of "detached" trabeculations, which rapidly spread into hyperpolarised tissue on the surrounding endocardial surfaces following the shock. Anodal shocks thus depolarised more tissue 10 ms after the shock than cathodal shocks where the propagation of activation from VEs induced on the proximal side of "detached" trabeculations was prevented due to refractory endocardium. Anodal shocks increased arrhythmia complexity more than cathodal shocks during failed anti-arrhythmia shocks. In conclusion, multiple detached

  17. Shock Absorbers Save Structures and Lives during Earthquakes

    Science.gov (United States)

    2015-01-01

    With NASA funding, North Tonawanda, New York-based Taylor Devices Inc. developed fluidic shock absorbers to safely remove the fuel and electrical connectors from the space shuttles during launch. The company is now employing the technology as seismic dampers to protect structures from earthquakes. To date, 550 buildings and bridges have the dampers, and not a single one has suffered damage in the wake of an earthquake.

  18. Electron Scale Structures and Magnetic Reconnection Signatures in the Turbulent Magnetosheath

    Science.gov (United States)

    Yordanova, E.; Voros, Z.; Varsani, A.; Graham, D. B.; Norgren, C.; Khotyaintsev, Yu. V.; Vaivads, A.; Eriksson, E.; Nakamura, R.; Lindqvist, P.-A.; hide

    2016-01-01

    Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The Magnetospheric Multiscale (MMS) mission provides the first serious opportunity to verify whether small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures. Within these structures, we see signatures of ion demagnetization, electron jets, electron heating, and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales.

  19. Structure of the cold-shock domain protein from Neisseria meningitidis reveals a strand-exchanged dimer

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jingshan [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Nettleship, Joanne E.; Sainsbury, Sarah [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Saunders, Nigel J. [Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Owens, Raymond J., E-mail: ray@strubi.ox.ac.uk [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2008-04-01

    The X-ray crystal structure of the cold-shock domain protein from N. meningitidis reveals a strand-exchanged dimer. The structure of the cold-shock domain protein from Neisseria meningitidis has been solved to 2.6 Å resolution and shown to comprise a dimer formed by the exchange of two β-strands between protein monomers. The overall fold of the monomer closely resembles those of other bacterial cold-shock proteins. The neisserial protein behaved as a monomer in solution and was shown to bind to a hexathymidine oligonucleotide with a stoichiometry of 1:1 and a K{sub d} of 1.25 µM.

  20. Anterior Femoral Bow and Possible Effect on the Stifle Joint: A Comparison between Humans and Dogs.

    Science.gov (United States)

    Ocal, M K; Sabanci, S S; Cobanoglu, M; Enercan, M

    2017-08-01

    The aim of the study was to compare the anterior bow of the femur between dogs and humans in terms of the possible impact on the stifle joint. The femoral radiographs obtained retrospectively were used to determine the angles and positions of the anterior bow in both dogs (n = 135) and humans (n = 57). Descriptive statistics and Pearson's correlation analysis were used for the statistical analyses of the variables. The mean anterior bow angle (ABA) was 18.3 ± 2.02° and 4.88 ± 1.24° in dogs and humans, respectively. The bow position was at the distal shaft in dogs (64.9 ± 2.04%) and almost at the mid-shaft of the bone (46.5 ± 5.52%) in humans. The ABA was related to the bow position in both humans and dogs. Additionally, the angle correlated with age in humans, while it was correlated with weight and breed in dogs. In conclusion, it is suggested that the anterior bow should be used as a landmark on the femoral axis for the biomechanical research of stifle joint, and dog stifle could be used as a suitable model for human knee in experimental studies for clinicians, while making sure that ethical principles are fully respected. © 2017 Blackwell Verlag GmbH.

  1. Thermal/hydraulic bowing stability analysis of grid-supported multi-pin bundles with differential swelling and irradiation creep

    International Nuclear Information System (INIS)

    McAreavey, G.

    1977-01-01

    Azimuthal variations of clad temperature in fuel pin bundles leads to pin bowing by differential thermal expansion. During irradiation in a fast flux further possibly more severe bowing is caused by differential neutron induced voidage swelling, which, being temperature sensitive, will also vary azimuthally. The problem of pin bowing in a fuel element cluster involves consideration of the thermal/hydraulic behaviour, allowing for both inherent and induced clad temperature non-uniformities, coupled with the restrained bowing behaviour, including differential thermal expansion, differential swelling, and irradiation creep. All pins must be considered simultaneously. In the temperature and stress ranges of interest thermal creep may be neglected. An existing computer code, IAMBIC solves the zero time thermal bowing problem for a cluster of up to 61 pins on hexagonal pitch, with up to 21 supports at arbitrary axial spacing. The present paper describes the basis of TRIAMBIC, a time dependent code which analyses the irradiation induced effects in fuel pin bunbles due to fast neutrons. (Auth.)

  2. TH-CD-207B-05: Measurement of CT Bow-Tie Profiles Using a Linear Array Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K; Li, X; Liu, B [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To accurately measure CT bow-tie profiles from various manufacturers and to provide non-proprietary information for CT system modeling. Methods: A GOS-based linear detector (0.8 mm per pixel and 51.2 cm in length) with a fast data sampling speed (0.24 ms/sample) was used to measure the relative profiles of bow-tie filters from a collection of eight CT scanners by three different vendors, GE (LS Xtra, LS VCT, Discovery HD750), Siemens (Sensation 64, Edge, Flash, Force), and Philips (iBrilliance 256). The linear detector was first calibrated for its energy response within typical CT beam quality ranges and compared with an ion chamber and analytical modeling (SPECTRA and TASMIP). A geometrical calibration process was developed to determine key parameters including the distance from the focal spot to the linear detector, the angular increment of the gantry at each data sampling, the location of the central x-ray on the linear detector, and the angular response of the detector pixel. Measurements were performed under axial-scan modes for most representative bow-tie filters and kV selections from each scanner. Bow-tie profiles were determined by re-binning the measured rotational data with an angular accuracy of 0.1 degree using the calibrated geometrical parameters. Results: The linear detector demonstrated an energy response as a solid state detector, which is close to the CT imaging detector. The geometrical calibration was proven to be sufficiently accurate (< 1mm in error for distances >550 mm) and the bow-tie profiles measured from rotational mode matched closely to those from the gantry-stationary mode. Accurate profiles were determined for a total of 21 bow-tie filters and 83 filter/kV combinations from the abovementioned scanner models. Conclusion: A new improved approach of CT bow-tie measurement was proposed and accurate bow-tie profiles were provided for a broad list of CT scanner models.

  3. Accuracy of two face-bow/semi-adjustable articulator systems in transferring the maxillary occlusal cant.

    Science.gov (United States)

    Nazir, Nazia; Sujesh, M; Kumar, Ravi; Sreenivas, P

    2012-01-01

    The precision of an arbitrary face-bow in accurately transferring the orientation of the maxillary cast to the articulator has been questioned because the maxillary cast is mounted in relation to arbitrary measurements and anatomic landmarks that vary among individuals. This study was intended to evaluate the sagittal inclination of mounted maxillary casts on two semi-adjustable articulator/face-bow systems in comparison to the occlusal cant on lateral cephalograms. Maxillary casts were mounted on the Hanau and Girrbach semi-adjustable articulators following face-bow transfer with their respective face-bows. The sagittal inclination of these casts was measured in relation to the fixed horizontal reference plane using physical measurements. Occlusal cant was measured on lateral cephalograms. SPSS software (version 11.0, Chicago, IL, USA) was used for statistical analysis. Repeated measures analysis of variance and Tukey's tests were used to evaluate the results (P occlusal cant on the articulators and cephalogram revealed statistically significant differences. Occlusal plane was steeper on Girrbach Artex articulator in comparison to the Hanau articulator. Within the limitations of this study, it was found that the sagittal inclination of the mounted maxillary cast achieved with Hanau articulator was closer to the cephalometric occlusal cant as compared to that of the Girrbach articulator. Among the two articulators and face-bow systems, the steepness of sagittal inclination was greater on Girrbach semi-adjustable articulator. Different face-bow/articulator systems could result in different orientation of the maxillary cast, resulting in variation in stability, cuspal inclines and cuspal heights.

  4. Dynamic transition in the structure of an energetic crystal during chemical reactions at shock front prior to detonation.

    Science.gov (United States)

    Nomura, Ken-Ichi; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya; van Duin, Adri C T; Goddard, William A

    2007-10-05

    Mechanical stimuli in energetic materials initiate chemical reactions at shock fronts prior to detonation. Shock sensitivity measurements provide widely varying results, and quantum-mechanical calculations are unable to handle systems large enough to describe shock structure. Recent developments in reactive force-field molecular dynamics (ReaxFF-MD) combined with advances in parallel computing have paved the way to accurately simulate reaction pathways along with the structure of shock fronts. Our multimillion-atom ReaxFF-MD simulations of l,3,5-trinitro-l,3,5-triazine (RDX) reveal that detonation is preceded by a transition from a diffuse shock front with well-ordered molecular dipoles behind it to a disordered dipole distribution behind a sharp front.

  5. Análisis del entorno sinóptico asociado con eventos de Bow-Echo en la Provincia de Buenos Aires Synoptic Environment Analysis Associated With Bow - Echo Events In The Province Of Buenos Aires

    Directory of Open Access Journals (Sweden)

    Marcela Torres Brizuela

    2011-06-01

    Full Text Available Durante la madrugada del día 21 de Octubre de 2008 se desarrollaron tres líneas convectivas en la provincia de Buenos Aires, captadas por los radares meteorológicos de las localidades de Ezeiza y Pergamino. La estructura espacial y evolución temporal del campo de reflectividad de estos sistemas, configuración de línea en arco, responde al modo convectivo conocido con el nombre de “bow-echo”. La imagen doppler del radar de Ezeiza registró un fenómeno típico en la parte posterior de estas líneas en arco: los vientos intensos mayores a 20 m.s-1. El objetivo principal de este estudio es comprender las condiciones sinópticas que acompañaron la ocurrencia de estos sistemas para poder contribuir al pronóstico de su ocurrencia. En este evento las condiciones de humedad especifica en la zona del norte de la provincia de Buenos Aires (q≥ 12-14 g.kg-1, así como la de cortante vertical del viento por debajo del nivel de 700 hPa (Us>15 m.s-1 coinciden en indicar al entorno como favorable al desarrollo del mismo, aunque no así los valores disponibles de CAPE evaluados para parcelas que se elevan desde superficie.During the morning hours on October 21 2008, three convective lines developed over the Buenos Aires province, and were captured by the meteorological radars located at Ezeiza and Pergamino. The spatial structure and temporal evolution of the reflectivity field of these convective systems present the attributes of the particular convective system referred to as a “bow-echo”. Ezeiza doppler radar images, captured winds stronger than 20 m.s-1 behind these arc lines, a phenomenon that frequently characterizes the presence of a bow-echo. The main objective of this study is to understand the synoptic weather conditions accompanying the occurrence of these bow echo events to enhance the weather forecasting of these systems. On this particular case the specific humidity field over the northern part of the Buenos Aires province (q

  6. Reliability assessment of aging structures subjected to gradual and shock deteriorations

    International Nuclear Information System (INIS)

    Wang, Cao; Zhang, Hao; Li, Quanwang

    2017-01-01

    Civil structures and infrastructure facilities are susceptible to deterioration posed by the effects of natural hazards and aggressive environmental conditions. These factors may increase the risk of service interruption of infrastructures, and should be taken into account when assessing the structural reliability during an infrastructure's service life. Modeling the resistance deterioration process reasonably is the basis for structural reliability analysis. In this paper, a novel model is developed for describing the deterioration of aging structures. The deterioration is a combination of two stochastic processes: the gradual deterioration posed by environmental effects and the shock deterioration caused by severe load attacks. The dependency of the deterioration magnitude on the load intensity is considered. The Gaussian copula function is employed to help construct the joint distribution of correlated random variables. Semi-analytical methods are developed to assess the structural failure time and the number of significant load events (shocks) to failure. Illustrative examples are presented to demonstrate the applicability of the proposed model in structural reliability analysis. Parametric studies are performed to investigate the role of deterioration-load correlation in structural reliability. - Highlights: • A new resistance deterioration model for aging structures is proposed. • Time-dependent reliability analysis methods incorporating the proposed deterioration model are developed. • Parametric studies are performed to investigate the role of deterioration-load correlation in structural reliability.

  7. HIGH ANGULAR RESOLUTION MULTI-LINE STUDY OF HH 1 AND 2

    Energy Technology Data Exchange (ETDEWEB)

    Raga, A. C.; Castellanos-Ramírez, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ap. 70-543, 04510 D.F., México (Mexico); Reipurth, Bo; Chiang, Hsin-Fang [Institute for Astronomy, University of Hawaii at Manoa, Hilo, HI 96720 (United States); Bally, J., E-mail: raga@nucleares.unam.mx [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States)

    2015-10-15

    We present new Hubble Space Telescope (HST) narrow band images of the bright Herbig–Haro (HH) objects HH 1 and 2 in the light of the Hα, Hβ, [O i] 6300, [O ii] 3726+28, [O iii] 5007 and [S ii] 6716+30 emission lines. The resulting emission and line ratio maps give an improved picture of the physical structure of these HH objects, showing the presence of spatially limited, high excitation/ionization ridges. We find that HH 1 has a morphology that could be interpreted in terms of a single, asymmetric bow shock, and that many of the clumps of HH 2 fall in two bow-shaped structures of different excitations. We also construct two-line ratio plots showing clear trends, which are much simpler than the highly complex spatial distributions of the emission, and are therefore interesting for testing shock models of HH objects (we only present a comparison with previously published, steady plane-parallel shock models). We have also used the temperature-sensitive [O i]/[S ii] line ratio to evaluate the temperature range and to obtain temperature maps of HH 1 and 2. We find that this line ratio picks out emitting regions with temperatures ≈10{sup 4} K, except along the leading edges of the HH 1 and 2 bow shocks (in which temperatures of ∼3 → 5 × 10{sup 4} K are obtained)

  8. Optimization of C20 isomers structure

    International Nuclear Information System (INIS)

    Ndjaka, J.M.B.; Charlier, J.C.

    2001-07-01

    We have performed geometry optimization of various possible planar and three-dimensional C 20 geometries. The planar structures considered include a linear chain, a monoclinic ring, and a bicyclic bow tie; while the three-dimensional geometric; consisted of a bowl or corranulene structure and a fullerene cage. In agreement with Wang et al MP2's calculations, our results predict the corranulene bowl to be the lowest energy structure. From the ground state geometry to the highest energy, considered C 20 structures, listed in increasing energy, are bowl, cage, bow tie, ring and chain. For the ring and bow tie isomers, the shape of the optimized structure deviates from that of the initial configuration; while the shape of the optimised bowl, cage and chain remain unchanged. (author)

  9. Shock structure in continuum models of gas dynamics: stability and bifurcation analysis

    International Nuclear Information System (INIS)

    Simić, Srboljub S

    2009-01-01

    The problem of shock structure in gas dynamics is analysed through a comparative study of two continuum models: the parabolic Navier–Stokes–Fourier model and the hyperbolic system of 13 moments equations modeling viscous, heat-conducting monatomic gases within the context of extended thermodynamics. When dissipative phenomena are neglected these models both reduce to classical Euler's equations of gas dynamics. The shock profile solution, assumed in the form of a planar travelling wave, reduces the problem to a system of ordinary differential equations, and equilibrium states appear to be stationary points of the system. It is shown that in both models an upstream equilibrium state suffers an exchange of stability when the shock speed crosses the critical value which coincides with the highest characteristic speed of the Euler's system. At the same time a downstream equilibrium state could be seen as a steady bifurcating solution, while the shock profile represents a heteroclinic orbit connecting the two stationary points. Using centre manifold reduction it is demonstrated that both models, although mathematically different, obey the same transcritical bifurcation pattern in the neighbourhood of the bifurcation point corresponding to the critical value of shock speed, the speed of sound

  10. Interacting supernovae from photoionization-confined shells around red supergiant stars

    Science.gov (United States)

    Mackey, Jonathan; Mohamed, Shazrene; Gvaramadze, Vasilii V.; Kotak, Rubina; Langer, Norbert; Meyer, Dominique M.-A.; Moriya, Takashi J.; Neilson, Hilding R.

    2014-08-01

    Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

  11. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  12. Misfortunes never come singly: Structural change, multiple shocks and child malnutrition in rural Senegal.

    Science.gov (United States)

    Lazzaroni, Sara; Wagner, Natascha

    2016-12-01

    This study considers the two most pronounced shocks Senegalese subsistence farmers struggle with, namely increasing purchase prices and droughts. We assess the relationship of these self-reported shocks with child health in a multi-shock approach to account for concomitance of adverse events from the natural, biological, economic and health sphere. We employ a unique farming household panel dataset containing information on children living in poor, rural households in eight regions of Senegal in 2009 and 2011 and account for structural changes occurring between survey periods due to the large scale, national Nutrition Enhancement Program. By zooming in to the micro level we demonstrate that Senegal as a Sahelian country, mainly reliant on subsistence agriculture, is very vulnerable to climate variability and international price developments: According to our conservative estimates, the occurrence of a drought explains 25% of the pooled weight-for-age standard deviation, income losses 31%. Our multi-shock analysis reveals that the shocks are perceived as more severe in 2011 with droughts explaining up to 44% of the standard deviation of child health, increased prices up to 21%. Yet, the concomitance of droughts and increased prices after the structural change, i.e. the Nutrition Enhancement Program, indicates that the health of children experiencing both shocks in 2011 has improved. We argue that these results are driven by the increase in rural household income as theoretically outlined in the agricultural household model. Thus, adequate policy responses to shocks do not only depend on the nature but also on the concomitance of hazardous events. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Magnetospheric structure and atmospheric Joule heating of habitable planets orbiting M-dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, O.; Drake, J. J.; Garraffo, C.; Poppenhaeger, K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Glocer, A. [NASA/GSFC, Code 673, Greenbelt, MD 20771 (United States); Bell, J. M. [Center for Planetary Atmospheres and Flight Sciences, National Institute of Aerospace, Hampton, VA 23666 (United States); Ridley, A. J.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States)

    2014-07-20

    We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic models. The stellar wind solution is used to drive a model for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvénic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvénic sectors, while no bow shock forms in the sub-Alfvénic sectors. The planets reside most of the time in the sub-Alfvénic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the intense stellar wind. For the steady-state solution, the heating is about 0.1%-3% of the total incoming stellar irradiation, and it is enhanced by 50% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport. Here we assume constant ionospheric Pedersen conductance similar to that of the Earth. The conductance could be greater due to the intense EUV radiation leading to smaller heating rates. We plan to quantify the ionospheric conductance in future study.

  14. Accuracy of two face-bow/semi-adjustable articulator systems in transferring the maxillary occlusal cant

    Directory of Open Access Journals (Sweden)

    Nazia Nazir

    2012-01-01

    Full Text Available Context: The precision of an arbitrary face-bow in accurately transferring the orientation of the maxillary cast to the articulator has been questioned because the maxillary cast is mounted in relation to arbitrary measurements and anatomic landmarks that vary among individuals. Aim: This study was intended to evaluate the sagittal inclination of mounted maxillary casts on two semi-adjustable articulator/face-bow systems in comparison to the occlusal cant on lateral cephalograms. Materials and Methods: Maxillary casts were mounted on the Hanau and Girrbach semi-adjustable articulators following face-bow transfer with their respective face-bows. The sagittal inclination of these casts was measured in relation to the fixed horizontal reference plane using physical measurements. Occlusal cant was measured on lateral cephalograms. SPSS software (version 11.0, Chicago, IL, USA was used for statistical analysis. Repeated measures analysis of variance and Tukey′s tests were used to evaluate the results (P < 0.05. Results: Comparison of the occlusal cant on the articulators and cephalogram revealed statistically significant differences. Occlusal plane was steeper on Girrbach Artex articulator in comparison to the Hanau articulator. Conclusion: Within the limitations of this study, it was found that the sagittal inclination of the mounted maxillary cast achieved with Hanau articulator was closer to the cephalometric occlusal cant as compared to that of the Girrbach articulator. Among the two articulators and face-bow systems, the steepness of sagittal inclination was greater on Girrbach semi-adjustable articulator. Different face-bow/articulator systems could result in different orientation of the maxillary cast, resulting in variation in stability, cuspal inclines and cuspal heights.

  15. Highly Shocked Low Density Sedimentary Rocks from the Haughton Impact Structure, Devon Island, Nunavut, Canada

    Science.gov (United States)

    Osinski, G. R.; Spray, J. G.

    2001-01-01

    We present the preliminary results of a detailed investigation of the shock effects in highly shocked, low density sedimentary rocks from the Haughton impact structure. We suggest that some textural features can be explained by carbonate-silicate immiscibility. Additional information is contained in the original extended abstract.

  16. Internal energy relaxation in shock wave structure

    International Nuclear Information System (INIS)

    Josyula, Eswar; Suchyta, Casimir J.; Boyd, Iain D.; Vedula, Prakash

    2013-01-01

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream

  17. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.

    1985-01-01

    The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.

  18. 76 FR 2710 - Pitney Bowes, Inc., Mailing Solutions Management Division Including On-Site Leased Workers of...

    Science.gov (United States)

    2011-01-14

    ...., Mailing Solutions Management Division Including On-Site Leased Workers of Guidant Group, and Teleworkers... Bowes, Inc., Mailing Solutions Management Division, Engineering Quality Assurance, Shelton, Connecticut... identity of the subject worker group. The worker group consists of workers of Pitney Bowes, Inc., the...

  19. Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas.

    Science.gov (United States)

    MacRae, T H

    2000-06-01

    Small heat shock/alpha-crystallin proteins are defined by conserved sequence of approximately 90 amino acid residues, termed the alpha-crystallin domain, which is bounded by variable amino- and carboxy-terminal extensions. These proteins form oligomers, most of uncertain quaternary structure, and oligomerization is prerequisite to their function as molecular chaperones. Sequence modelling and physical analyses show that the secondary structure of small heat shock/alpha-crystallin proteins is predominately beta-pleated sheet. Crystallography, site-directed spin-labelling and yeast two-hybrid selection demonstrate regions of secondary structure within the alpha-crystallin domain that interact during oligomer assembly, a process also dependent on the amino terminus. Oligomers are dynamic, exhibiting subunit exchange and organizational plasticity, perhaps leading to functional diversity. Exposure of hydrophobic residues by structural modification facilitates chaperoning where denaturing proteins in the molten globule state associate with oligomers. The flexible carboxy-terminal extension contributes to chaperone activity by enhancing the solubility of small heat shock/alpha-crystallin proteins. Site-directed mutagenesis has yielded proteins where the effect of the change on structure and function depends upon the residue modified, the organism under study and the analytical techniques used. Most revealing, substitution of a conserved arginine residue within the alpha-crystallin domain has a major impact on quaternary structure and chaperone action probably through realignment of beta-sheets. These mutations are linked to inherited diseases. Oligomer size is regulated by a stress-responsive cascade including MAPKAP kinase 2/3 and p38. Phosphorylation of small heat shock/alpha-crystallin proteins has important consequences within stressed cells, especially for microfilaments.

  20. Application limits of finite element models for simulation of shock transfer processes in concrete structures

    International Nuclear Information System (INIS)

    Krutzik, Norbert J.; Eibl, Josef

    2005-01-01

    Shocks on building structures due to impact loads (drop of wreckage and heavy masses from accidents, transport operations, explosions, etc.), especially in case of a postulated aircraft crash, may lead to feasibility problems due to high-induced vibrations and large expenditures at safety-related systems accommodated inside the building structures. A rational and cost-effective qualification of the functionality of such systems requires the prediction of reliable information about the nature of structural responses induced by impact loading in the corresponding regions of the structure. The analytic derivation of realistic and reliable structural responses requires the application of adequate mathematical models and methods as well as a critical evaluation of all factors that influence the entire shock transmission path, from the area of impact to the site of installation of the affected component or system in the structure. Despite extensive studies and computational analyses of impact-induced shocks performed using finite element simulation method, limited and insufficient experimental results to date have precluded a complete investigation and clarification of several 'peculiarities' in the field of shock transmission in finite element models. This refers mainly to the divergence of results observed using FE models when not considering a the required FE element discretization ratio as well as to the attenuation and scatter behavior of the dynamic response results obtained for large building structures and given large distances between the load impact application areas and the component anchoring locations. The cause for such divergences are related to several up to now not clarified 'phenomena' of FE models especially the low-pass filtering effects and dispersion characteristics of FE models

  1. The value of the absent bow tie sign in MRI of bucket-handle tears

    International Nuclear Information System (INIS)

    Watt, Andrew J.B.; Halliday, Tonya; Raby, Nigel

    2000-01-01

    AIM: To assess the accuracy of the absent bow tie sign in diagnosing bucket handle meniscal tears (BHT) of the knee menisci. MATERIALS AND METHODS: During a 3-year period, we correlated the MRI and arthroscopic findings and the presence of the various signs. One hundred and seven knees were reviewed: 74 where either MRI or arthroscopy had identified a BHT and 33 which were either normal (31), or a simple tear was identified (2). All cases were reviewed by a single radiologist with a musculoskeletal interest blinded to the original results. Each was assessed for the presence of (1) a central meniscal fragment, (2) the double posterior cruciate ligament (PCL) sign, (3) the bow tie sign and (4) the contribution of a 3D-volume sequence. RESULTS: Optimal results were obtained using standard sequences and a 3D-volume sequence, giving a sensitivity of 74% and positive predictive value of 89%. The bow tie sign gave a sensitivity of 71% and positive predictive value of 76%, significantly less than previous reports. The 18 BHTs diagnosed by arthroscopy but missed by MRI showed other abnormal findings at MRI and were not reported as normal. CONCLUSION: We were not able to reproduce the previously reported high sensitivity and specificity of the absent bow tie sign. Despite optimization of all factors, the accurate diagnosis of a bucket handle tear remains difficult, and is most reliably made by identifying a central meniscal fragment, rather than relying on secondary signs such as the absent bow tie sign. Watt, A.J.B. (2000)

  2. Final Report for Project DE-SC0006958: "An Investigation of the Effects of magnetic Fields and Collisionality on Shock Formation in Radiatively Cooled Plasma Flows"

    Energy Technology Data Exchange (ETDEWEB)

    Bott-Suzuki, Simon

    2014-11-05

    We have developed a new experimental platform to study bow-shock formation in plasma flows generated using an inverse wire array z-pinch. We have made significant progress on the analysis of both hydrodynamic and magnetized shocks using this system. The hydrodynamic experiments show formation of a well-defined Mach cone, and highly localized shock strong associated with radiative losses and rapidly cooling over the shock. Magnetized shocks show that the balance of magnetic and ram pressures dominate the evolution of the shock region, generating a low plasma beta void around the target. Manuscripts are in preparation for publication on both these topics. We have also published the development of a novel diagnostic method which allow recovery of interferometry and self-emission data along the same line of sight. Finally, we have carried out work to integrate a kinetic routine with the 3D MHD code Gorgon, however it remains to complete this process. Both undergraduate and graduate students have been involved in both the experimental work and publications.

  3. Massive runaway stars in the Small Magellanic Cloud

    Science.gov (United States)

    Gvaramadze, V. V.; Pflamm-Altenburg, J.; Kroupa, P.

    2011-01-01

    Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ≃ 40 km s-1 from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be “alien” stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.

  4. Effects of stellar evolution and ionizing radiation on the environments of massive stars

    Science.gov (United States)

    Mackey, J.; Langer, N.; Mohamed, S.; Gvaramadze, V. V.; Neilson, H. R.; Meyer, D. M.-A.

    2014-09-01

    We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing photons with associated photoheating that has a significant dynamical effect on their surroundings. 3-D simulations show that H ii regions around runaway O stars drive expanding conical shells and leave underdense wakes in the medium they pass through. For late O stars this feedback to the interstellar medium is more important than that from stellar winds. Late in life, O stars evolve to cool red supergiants more rapidly than their environment can react, producing transient circumstellar structures such as double bow shocks. This provides an explanation for the bow shock and linear bar-shaped structure observed around Betelgeuse.

  5. The statistics of foreshock cavities: results of a Cluster survey

    OpenAIRE

    L. Billingham; S. J. Schwartz; D. G. Sibeck

    2008-01-01

    We use Cluster magnetic field, thermal ion, and energetic particle observations upstream of the Earth's bow shock to investigate the occurrence patterns of foreshock cavities. Such cavities are thought to form when bundles of magnetic field connect to the quasi-parallel bow shock. Shock-processed suprathermal ions can then stream along the field, back against the flow of the solar wind. These suprathermals enhance the pressure on shock-connected field lines causing them to expand into th...

  6. The Bowed Tube : a Virtual Violin

    OpenAIRE

    Carrillo, Alfonso P.; Bonada, Jordi

    2010-01-01

    This paper presents a virtual violin for real-time performances consisting of two modules: a violin spectral modeland a control interface. The interface is composed by asensing bow and a tube with drawn strings in substitutionof a real violin. The spectral model is driven by the bowingcontrols captured with the control interface and it is ableto predict spectral envelopes of the sound corresponding tothose controls. The envelopes are filled with harmonic andnoisy content and given to an addit...

  7. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  8. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  9. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  10. Solution structure of GSP13 from Bacillus subtilis exhibits an S1 domain related to cold shock proteins

    International Nuclear Information System (INIS)

    Yu Wenyu; Hu Jicheng; Yu Bingke; Xia Wei; Jin Changwen; Xia Bin

    2009-01-01

    GSP13 encoded by gene yugI is a σ B -dependent general stress protein in Bacillus subtilis, which can be induced by heat shock, salt stress, ethanol stress, glucose starvation, oxidative stress and cold shock. Here we report the solution structure of GSP13 and it is the first structure of S1 domain containing protein in Bacillus subtilis. The structure of GSP13 mainly consists of a typical S1 domain along with a C-terminal 50-residue flexible tail, different from the other known S1 domain containing proteins. Comparison with other S1 domain structures reveals that GSP13 has a conserved RNA binding surface, and it may function similarly to cold shock proteins in response to cold stress

  11. Dissipation of Alfven waves in compressible inhomogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Lepidi, S. [Istituto Nazionale di Geofisica, Rome (Italy); Villante, U. [L`Aquila Univ. (Italy). Dipt. di Fisica; Lazarus, A.J. [MIT Centre for Space Research, Cambridge, MA (United States)

    1997-11-01

    We examine 33 bow shock crossings by IMP8 and compare different methods to calculate the bow shock normal direction and speed using single spacecraft measurements. We find that the mixed equation by Abraham-Shrauner combined with the mass flux conservation equation and the minimum-variance technique applied to a limited set of the Rankine-Hugoniot conservation equations give very similar results that are in good agreement with theoretical predictions. The solutions obtained by the velocity co planarity theorem are reliable only for nearly perpendicular shocks, while poor results are obtained for such cases from the magnetic co planarity theorem. We also suggest that in some cases the time resolution of plasma measurements (about 60 s) may be too low to resolve the density behaviour close to the bow shock and to allow definite evaluation of the shock parameters.

  12. Recoil and Vibration in an Archery Bow Equipped with a Multi-Rod Stabilizer

    Directory of Open Access Journals (Sweden)

    Igor Zaniewski

    2012-01-01

    Full Text Available The aim of this research is to create a mechanical and mathematical model of a multi-rod stabilizer for the sport archery bow and to analyze its capability to damp disagreeable recoil and vibration of the bow during internal ballistic motion. The research methods are based on the Euler-Bernoulli theory of beam bending, Lagrange equations of the second kind, the Cauchy problem, and the Runge-Kutta method. A mathematical software package was used to analyze the problem. The approach to the problem of sport-bow stabilization in the vertical plane that is proposed in this paper addresses the practical needs both of applied engineering mechanics and of the sport of archery. Numerical results from computer simulation are presented in both tabular and graphical form. The common motion of the string and arrow (internal ballistic motion is accompanied by intense vibration which is caused by disruption of the static force balance at the moment of string release.

  13. TURBULENCE-GENERATED PROTON-SCALE STRUCTURES IN THE TERRESTRIAL MAGNETOSHEATH

    Energy Technology Data Exchange (ETDEWEB)

    Vörös, Zoltán; Narita, Yasuhito [Space Research Institute, Austrian Academy of Sciences, Graz (Austria); Yordanova, Emiliya [Swedish Institute of Space Physics, Uppsala (Sweden); Echim, Marius M. [Belgian Institute for Space Aeronomy, Bruxelles (Belgium); Consolini, Giuseppe, E-mail: zoltan.voeroes@oeaw.ac.at [INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma (Italy)

    2016-03-01

    Recent results of numerical magnetohydrodynamic simulations suggest that in collisionless space plasmas, turbulence can spontaneously generate thin current sheets. These coherent structures can partially explain the intermittency and the non-homogenous distribution of localized plasma heating in turbulence. In this Letter, Cluster multi-point observations are used to investigate the distribution of magnetic field discontinuities and the associated small-scale current sheets in the terrestrial magnetosheath downstream of a quasi-parallel bow shock. It is shown experimentally, for the first time, that the strongest turbulence-generated current sheets occupy the long tails of probability distribution functions associated with extremal values of magnetic field partial derivatives. During the analyzed one-hour time interval, about a hundred strong discontinuities, possibly proton-scale current sheets, were observed.

  14. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    Science.gov (United States)

    Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  15. Plastic bowing of the ribs in children

    Energy Technology Data Exchange (ETDEWEB)

    Caro, P.A.; Borden, S. IV

    1988-06-01

    Four cases of plastic bowing of the ribs are presented. In three patients with Werdnig-Hoffman disease, plastic curvatures were associated with chronic pneumonia and atelectasis. We postulate that intrapulmonary retractive forces can deform ribs thinned by muscular atrophy. In turn, thoracic collapse can perpetuate lobar and segmental atelectasis. In one case of osteogenesis imperfecta without pneumonia, we believe normal muscle forces bent ribs weakened by deficiency of normal cortical architecture.

  16. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  17. Messenger Observations of Mercury's Bow Shock and Magnetopause

    Science.gov (United States)

    Slavin J. A.; Acuna, M. H.; Anderson, B. J.; Benna, M.; Gloeckler, G.; Krimigis, S. M.; Raines, M.; Schriver, D.; Travnicek, P.; Zurbuchen, T. H.

    2008-01-01

    The MESSENGER spacecraft made the first of three flybys of Mercury on January 14.2008 (1). New observations of solar wind interaction with Mercury were made with MESSENGER'S Magnetometer (MAG) (2.3) and Energetic Particle and Plasma Spectrometer (EPPS) - composed of the Energetic Particle Spectrometer (EPS) and Fast Imaging Plasma Spectrometer (FIPS) (3,4). These MESSENGER observations show that Mercury's magnetosphere has a large-scale structure that is distinctly Earth-like, but it is immersed in a comet-like cloud of planetary ions [5]. Fig. 1 provides a schematic view of the coupled solar wind - magnetosphere - neutral atmosphere - solid planet system at Mercury.

  18. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    NARCIS (Netherlands)

    Meyer, D.M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V.V.; Mignone, A.; Izzard, R.G.; Kaper, L.

    2014-01-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional

  19. Do oil shocks predict economic policy uncertainty?

    Science.gov (United States)

    Rehman, Mobeen Ur

    2018-05-01

    Oil price fluctuations have influential role in global economic policies for developed as well as emerging countries. I investigate the role of international oil prices disintegrated into structural (i) oil supply shock, (ii) aggregate demand shock and (iii) oil market specific demand shocks, based on the work of Kilian (2009) using structural VAR framework on economic policies uncertainty of sampled markets. Economic policy uncertainty, due to its non-linear behavior is modeled in a regime switching framework with disintegrated structural oil shocks. Our results highlight that Indian, Spain and Japanese economic policy uncertainty responds to the global oil price shocks, however aggregate demand shocks fail to induce any change. Oil specific demand shocks are significant only for China and India in high volatility state.

  20. A matched Bow-tie antenna at 433MHz for use in underwater wireless sensor networks

    International Nuclear Information System (INIS)

    Abdou, A A; Shaw, A; Mason, A; Al-Shamma'a, A; Cullen, J; Wylie, S; Diallo, M

    2013-01-01

    Electromagnetic (EM) wave propagation underwater is been disregarded because of attenuation at high frequencies, however the theory predicts that propagation is possible at some useful distance in the lower Industrial, Scientific and Medical (ISM) band. Common transceivers rely on narrowband antennas and matching circuit. The aim of this paper is to design a broadband 433MHz bow-tie antenna and experiment it in air and water without a matching circuit. This antenna could be attached to wireless transceivers and form a Wireless Sensor Network for deployment in various underwater applications. The bow-tie antennas were designed, simulated and constructed in laboratory. Experiments were setup carefully by using a completely isolated transmitter from electronics to avoid airborne transmission. The 433MHz. bow-tie proved its suitability for use in Underwater.

  1. Strength properties and structure of a submicrocrystalline Al-Mg-Mn alloy under shock compression

    Science.gov (United States)

    Petrova, A. N.; Brodova, I. G.; Razorenov, S. V.

    2017-06-01

    The results of studying the strength of a submicrocrystalline aluminum A5083 alloy (chemical composition was 4.4Mg-0.6Mn-0.11Si-0.23Fe-0.03Cr-0.02Cu-0.06Ti wt % and Al base) under shockwave compression are presented. The submicrocrystalline structure of the alloy was produced in the process of dynamic channel-angular pressing at a strain rate of 104 s-1. The average size of crystallites in the alloy was 180-460 nm. Hugoniot elastic limit σHEL, dynamic yield stress σy, and the spall strength σSP of the submicrocrystalline alloy were determined based on the free-surface velocity profiles of samples during shock compression. It has been established that upon shock compression, the σHEL and σy of the submicrocrystalline alloy are higher than those of the coarse-grained alloy and σsp does not depend on the grain size. The maximum value of σHEL reached for the submicrocrystalline alloy is 0.66 GPa, which is greater than that in the coarse-crystalline alloy by 78%. The dynamic yield stress is σy = 0.31 GPa, which is higher than that of the coarse-crystalline alloy by 63%. The spall strength is σsp = 1.49 GPa. The evolution of the submicrocrystalline structure of the alloy during shock compression was studied. It has been established that a mixed nonequilibrium grain-subgrain structure with a fragment size of about 400 nm is retained after shock compression, and the dislocation density and the hardness of the alloy are increased.

  2. Plastic bowing of the ribs in children

    International Nuclear Information System (INIS)

    Caro, P.A.; Borden, S. IV

    1988-01-01

    Four cases of plastic bowing of the ribs are presented. In three patients with Werdnig-Hoffman disease, plastic curvatures were associated with chronic pneumonia and atelectasis. We postulate that intrapulmonary retractive forces can deform ribs thinned by muscular atrophy. In turn, thoracic collapse can perpetuate lobar and segmental atelectasis. In one case of osteogenesis imperfecta without pneumonia, we believe normal muscle forces bent ribs weakened by deficiency of normal cortical architecture. (orig.)

  3. Wafer bowing control of free-standing heteroepitaxial diamond (100) films grown on Ir(100) substrates via patterned nucleation growth

    International Nuclear Information System (INIS)

    Yoshikawa, Taro; Kodama, Hideyuki; Kono, Shozo; Suzuki, Kazuhiro; Sawabe, Atsuhito

    2015-01-01

    The potential of patterned nucleation growth (PNG) technique to control the wafer bowing of free-standing heteroepitaxial diamond films was investigated. The heteroepitaxial diamond (100) films were grown on an Ir(100) substrate via PNG technique with different patterns of nucleation regions (NRs), which were dot-arrays with 8 or 13 μm pitch aligned to < 100 > or < 110 > direction of the Ir(100) substrate. The wafer bows and the local stress distributions of the free-standing films were measured using a confocal micro-Raman spectrometer. For each NR pattern, the stress evolutions within the early stage of diamond growth were also studied together with a scanning electron microscopic observation of the coalescing diamond particles. These investigations revealed that the NR pattern, in terms of pitch and direction of dot-array, strongly affects the compressive stress on the nucleation side of the diamond film and dominantly contributes to the elastic deformation of the free-standing film. This indicates that the PNG technique with an appropriate NR pattern is a promising solution to fabricate free-standing heteroepitaxial diamond films with extremely small bows. - Highlights: • Wafer bowing control of free-standing heteroepitaxial diamond (100) films • Effect of patterned nucleation and growth (PNG) technique on wafer bowing reduction • Influence of nucleation region patterns of PNG on wafer bowing • Internal stress analysis of PNG films via confocal micro-Raman spectroscopy

  4. Evidence for transient, local ion foreshocks caused by dayside magnetopause reconnection

    Directory of Open Access Journals (Sweden)

    Y. Pfau-Kempf

    2016-11-01

    Full Text Available We present a scenario resulting in time-dependent behaviour of the bow shock and transient, local ion reflection under unchanging solar wind conditions. Dayside magnetopause reconnection produces flux transfer events driving fast-mode wave fronts in the magnetosheath. These fronts push out the bow shock surface due to their increased downstream pressure. The resulting bow shock deformations lead to a configuration favourable to localized ion reflection and thus the formation of transient, travelling foreshock-like field-aligned ion beams. This is identified in two-dimensional global magnetospheric hybrid-Vlasov simulations of the Earth's magnetosphere performed using the Vlasiator model (http://vlasiator.fmi.fi. We also present observational data showing the occurrence of dayside reconnection and flux transfer events at the same time as Geotail observations of transient foreshock-like field-aligned ion beams. The spacecraft is located well upstream of the foreshock edge and the bow shock, during a steady southward interplanetary magnetic field and in the absence of any solar wind or interplanetary magnetic field perturbations. This indicates the formation of such localized ion foreshocks.

  5. Another shock for the Bullet cluster, and the source of seed electrons for radio relics

    Science.gov (United States)

    Shimwell, Timothy W.; Markevitch, Maxim; Brown, Shea; Feretti, Luigina; Gaensler, B. M.; Johnston-Hollitt, M.; Lage, Craig; Srinivasan, Raghav

    2015-05-01

    With Australia Telescope Compact Array observations, we detect a highly elongated Mpc-scale diffuse radio source on the eastern periphery of the Bullet cluster 1E 0657-55.8, which we argue has the positional, spectral and polarimetric characteristics of a radio relic. This powerful relic (2.3 ± 0.1 × 1025 W Hz-1) consists of a bright northern bulb and a faint linear tail. The bulb emits 94 per cent of the observed radio flux and has the highest surface brightness of any known relic. Exactly coincident with the linear tail, we find a sharp X-ray surface brightness edge in the deep Chandra image of the cluster - a signature of a shock front in the hot intracluster medium (ICM), located on the opposite side of the cluster to the famous bow shock. This new example of an X-ray shock coincident with a relic further supports the hypothesis that shocks in the outer regions of clusters can form relics via diffusive shock (re-)acceleration. Intriguingly, our new relic suggests that seed electrons for reacceleration are coming from a local remnant of a radio galaxy, which we are lucky to catch before its complete disruption. If this scenario, in which a relic forms when a shock crosses a well-defined region of the ICM polluted with aged relativistic plasma - as opposed to the usual assumption that seeds are uniformly mixed in the ICM - is also the case for other relics, this may explain a number of peculiar properties of peripheral relics.

  6. Reliability of the input admittance of bowed-string instruments measured by the hammer method.

    Science.gov (United States)

    Zhang, Ailin; Woodhouse, Jim

    2014-12-01

    The input admittance at the bridge, measured by hammer testing, is often regarded as the most useful and convenient measurement of the vibrational behavior of a bowed string instrument. However, this method has been questioned, due especially to differences between human bowing and hammer impact. The goal of the research presented here is to investigate the reliability and accuracy of this classic hammer method. Experimental studies were carried out on cellos, with three different driving conditions and three different boundary conditions. Results suggest that there is nothing fundamentally different about the hammer method, compared to other kinds of excitation. The third series of experiments offers an opportunity to explore the difference between the input admittance measuring from one bridge corner to another and that of single strings. The classic measurement is found to give a reasonable approximation to that of all four strings. Some possible differences between the hammer method and normal bowing and implications of the acoustical results are also discussed.

  7. PARTICLE ACCELERATION AT THE HELIOSPHERIC TERMINATION SHOCK WITH A STOCHASTIC SHOCK OBLIQUITY APPROACH

    International Nuclear Information System (INIS)

    Arthur, Aaron D.; Le Roux, Jakobus A.

    2013-01-01

    Observations by the plasma and magnetic field instruments on board the Voyager 2 spacecraft suggest that the termination shock is weak with a compression ratio of ∼2. However, this is contrary to the observations of accelerated particle spectra at the termination shock, where standard diffusive shock acceleration theory predicts a compression ratio closer to ∼2.9. Using our focused transport model, we investigate pickup proton acceleration at a stationary spherical termination shock with a moderately strong compression ratio of 2.8 to include both the subshock and precursor. We show that for the particle energies observed by the Voyager 2 Low Energy Charged Particle (LECP) instrument, pickup protons will have effective length scales of diffusion that are larger than the combined subshock and precursor termination shock structure observed. As a result, the particles will experience a total effective termination shock compression ratio that is larger than values inferred by the plasma and magnetic field instruments for the subshock and similar to the value predicted by diffusive shock acceleration theory. Furthermore, using a stochastically varying magnetic field angle, we are able to qualitatively reproduce the multiple power-law structure observed for the LECP spectra downstream of the termination shock

  8. Wrist muscle activity of khatrah approach in Mameluke technique using traditional bow archery

    Science.gov (United States)

    Ariffin, Muhammad Shahimi; Rambely, Azmin Sham; Ariff, Noratiqah Mohd

    2018-04-01

    An investigation of khatrah technique in archery was carried out. An electromyography (EMG) experiment was conducted towards six wrist muscles which are flexor carpi radialis, extensor carpi ulnaris and extensor digitorum communis for both arms. The maximum voluntary contraction (MVC) and activity data were recorded. The bow arm produced a higher muscle force compared to draw arm muscles during release phase. However, the muscle forces produced by bow arm had a consistency in term of pattern throughout the phases. In conclusion, the forces generated by the professional archer produced a force benchmark at the wrist joint to alleviate the risk of injury.

  9. Principles underlying the Fourth Power Nature of Structured Shock Waves

    Science.gov (United States)

    Grady, Dennis

    2017-06-01

    Steady structured shock waves in materials including metals, glasses, compounds and solid mixtures, when represented through plots of Hugoniot stress against a measure of the strain rate through which the Hugoniot state is achieved, have consistently demonstrated a dependence to the fourth power. A perhaps deeper observation is that the product of the energy dissipated through the transition to the Hugoniot state and the time duration of the Hugoniot state event exhibits invariance independent of the Hugoniot amplitude. Invariance of the energy-time product and the fourth-power trend are to first order equivalent. Further, constancy of this energy-time product is observed in other dynamic critical state failure events including spall fracture, dynamic compaction and adiabatic shear failure. The presentation pursues the necessary background exposing the foregoing shock physics observations and explores possible statistical physics principals that may underlie the collective dynamic observations.

  10. Experimental and numerical investigation of the cap-shock structure in over expanded thrust-optimized nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Reijasse, P.; Bouvier, F.; Servel, P.

    2002-07-01

    This paper deals with the aerodynamics of an over-expanded nozzle, when the internal parabolic contour of the nozzle extension is highly thrust-optimized in terms of specific impulse-to-weight ratio. This optimization leads to an internal focusing shock issuing from a little downstream from the throat, even when the nozzle is running at nearly vacuum conditions. When such a nozzle is over-expanded, the focusing shock thus interferes with the over-expansion shock, and it forms from this shock interference a particular shock system, named 'cap-shock' because of the cap-like luminous shape seen in the over-expanded plumes of some real engines. Navier-Stokes calcinations performed in Europe had permitted to numerically analyze such a flow pattern, and they have revealed notably a recirculation bubble on the centerline downstream of the Mach disk, which had never been measured yet. A test campaign characterizing the flow separation in over-expanded sub-scale nozzles has been performed in the R2Ch blowdown wind tunnel of the Onera Chalais-Meudon center. Schlieren photographs of the exhaust jet have authorized a detailed description of the cap-shock pattern. Two-components Laser Doppler Velocimetry measurements have confirmed the existence of a recirculation bubble surrounded by an annular supersonic jet and has given its size. In addition to the calculations and the Schlieren interpretative sketches, these first quantitative experimental characterization of the cap-shock structure permit to state a physical description of the cap-shock induced flow field in the thrust-optimized nozzles. (authors)

  11. Spatial distribution of upstream magnetospheric ≥50 keV ions

    Directory of Open Access Journals (Sweden)

    G. C. Anagnostopoulos

    2000-01-01

    Full Text Available We present for the first time a statistical study of \\geq50 keV ion events of a magnetospheric origin upstream from Earth's bow shock. The statistical analysis of the 50-220 keV ion events observed by the IMP-8 spacecraft shows: (1 a dawn-dusk asymmetry in ion distributions, with most events and lower intensities upstream from the quasi-parallel pre-dawn side (4 LT-6 LT of the bow shock, (2 highest ion fluxes upstream from the nose/dusk side of the bow shock under an almost radial interplanetary magnetic field (IMF configuration, and (3 a positive correlation of the ion intensities with the solar wind speed and the index of geomagnetic index Kp, with an average solar wind speed as high as 620 km s-1 and values of the index Kp > 2. The statistical results are consistent with (1 preferential leakage of ~50 keV magnetospheric ions from the dusk magnetopause, (2 nearly scatter free motion of ~50 keV ions within the magnetosheath, and (3 final escape of magnetospheric ions from the quasi-parallel dawn side of the bow shock. An additional statistical analysis of higher energy (290-500 keV upstream ion events also shows a dawn-dusk asymmetry in the occurrence frequency of these events, with the occurrence frequency ranging between ~16%-~34% in the upstream region.Key words. Interplanetary physics (energetic particles; planetary bow shocks

  12. Spatial distribution of upstream magnetospheric ≥50 keV ions

    Directory of Open Access Journals (Sweden)

    G. Kaliabetsos

    Full Text Available We present for the first time a statistical study of geq50 keV ion events of a magnetospheric origin upstream from Earth's bow shock. The statistical analysis of the 50-220 keV ion events observed by the IMP-8 spacecraft shows: (1 a dawn-dusk asymmetry in ion distributions, with most events and lower intensities upstream from the quasi-parallel pre-dawn side (4 LT-6 LT of the bow shock, (2 highest ion fluxes upstream from the nose/dusk side of the bow shock under an almost radial interplanetary magnetic field (IMF configuration, and (3 a positive correlation of the ion intensities with the solar wind speed and the index of geomagnetic index Kp, with an average solar wind speed as high as 620 km s-1 and values of the index Kp > 2. The statistical results are consistent with (1 preferential leakage of ~50 keV magnetospheric ions from the dusk magnetopause, (2 nearly scatter free motion of ~50 keV ions within the magnetosheath, and (3 final escape of magnetospheric ions from the quasi-parallel dawn side of the bow shock. An additional statistical analysis of higher energy (290-500 keV upstream ion events also shows a dawn-dusk asymmetry in the occurrence frequency of these events, with the occurrence frequency ranging between ~16%-~34% in the upstream region.Key words. Interplanetary physics (energetic particles; planetary bow shocks

  13. Bubbles, Bow Shocks and B Fields: The Interplay Between Neutron Stars and Their Environments

    Science.gov (United States)

    Gaensler, Bryan M.

    2006-12-01

    Young neutron stars embody Nature's extremes: they spin incredibly rapidly, move through space at enormous velocities, and are imbued with unimaginably strong magnetic fields. Since their progenitor stars do not have any of these characteristics, these properties are presumably all imparted to a neutron star during or shortly after the supernova explosion in which it is formed. This raises two fundamental questions: how do neutron stars attain these extreme parameters, and how are their vast reservoirs of energy then dissipated? I will explain how multi-wavelength observations of the environments of neutron stars not only provide vital forensic evidence on the physics of supernova core collapse, but also spectacularly reveal the winds, jets, shocks and outflows through which these remarkable objects couple to their surroundings.

  14. Outer Magnetospheric Boundaries Cluster Results

    CERN Document Server

    Paschmann, Goetz; Schwartz, S J

    2006-01-01

    When the stream of plasma emitted from the Sun (the solar wind) encounters Earth's magnetic field, it slows down and flows around it, leaving behind a cavity, the magnetosphere. The magnetopause is the surface that separates the solar wind on the outside from the Earth's magnetic field on the inside. Because the solar wind moves at supersonic speed, a bow shock must form ahead of the magnetopause that acts to slow the solar wind to subsonic speeds. Magnetopause, bow shock and their environs are rich in exciting processes in collisionless plasmas, such as shock formation, magnetic reconnection, particle acceleration and wave-particle interactions. They are interesting in their own right, as part of Earth's environment, but also because they are prototypes of similar structures and phenomena that are ubiquitous in the universe, having the unique advantage that they are accessible to in situ measurements. The boundaries of the magnetosphere have been the target of direct in-situ measurements since the beginning ...

  15. Analysis of data from Viking RPA's

    Science.gov (United States)

    Hanson, W. B.

    1981-01-01

    Measurements of the martian ionosphere performed by Viking Retarding Potential Analyzer (RPA) are reported. Viking RPA measurements of low energy electron fluxes out to 16,000 km above the Mars surface are discussed including both energy spectra and periods of continuous monitoring of the total flux above 15 ev. The mean electron current at energies greater than ev increases montonically by nearly two orders of magnitude from about 9000 km down to 700 km, but no clear signature of the bow shock is seen. The total wave power in the 2 sec measurement intervals for this current does, however, show a broad peak near 1700 km altitude. These variations in the low energy electron fluxes are related to whistler mode oscillations in the solar wind plasma. It is concluded that there may be a highly turbulent shock structure that masks a clear signature of the bow shock in the time averaged data.

  16. Structural VAR analysis of monetary transmission mechanism and central bank’s response to equity volatility shock in Taiwan

    OpenAIRE

    Lo, Chi-Sheng

    2016-01-01

    This research applies recursive Structural Vector Auto Regression (SVAR) model with short-run restriction into two kinds of shocks: monetary and volatility. The first SVAR estimates the shock of contractionary monetary policy on Taiwan’s key monthly macroeconomic variables including exports, CPI, exchange rate, money supply, and Taiwan Weighted Stock Exchange (TWSE) Index. The second SVAR estimates the shock of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) volatility of TW...

  17. INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-03-01

    Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas

  18. Primary shield displacement and bowing

    International Nuclear Information System (INIS)

    Scott, K.V.

    1978-01-01

    The reactor primary shield is constructed of high density concrete and surrounds the reactor core. The inlet, outlet and side primary shields were constructed in-place using 2.54 cm (1 in) thick steel plates as the forms. The plates remained as an integral part of the shields. The elongation of the pressure tubes due to thermal expansion and pressurization is not moving through the inlet nozzle hardware as designed but is accommodated by outward displacement and bowing of the inlet and outlet shields. Excessive distortion of the shields may result in gas seal failures, intolerable helium gas leaks, increased argon-41 emissions, and shield cooling tube failures. The shield surveillance and testing results are presented

  19. Identification of the nonlinear excitation force acting on a bowed string using the dynamical responses at remote locations

    International Nuclear Information System (INIS)

    Debut, V.; Antunes, J.; Delaune, X.

    2010-01-01

    For achieving realistic numerical simulations of bowed string instruments, based on physical modeling, a good understanding of the actual friction interaction phenomena is of great importance. Most work published in the field including our own has assumed that bow/string frictional forces behave according to the classical Coulomb stick-slip model, with an empirical velocity-dependent sliding friction coefficient. Indeed, the basic self-excited string motions (such as the Helmholtz regime) are well captured using such friction model. However, recent work has shown that the tribological behavior of the bow/string rosin interface is rather complex, therefore the basic velocity-dependent Coulomb model may be an over-simplistic representation of the friction force. More specifically, it was suggested that a more accurate model of the interaction force can be achieved by coupling the system dynamical equations with a thermal model which encapsulates the complex interface phenomena. In spite of the interesting work performed by Askenfelt, a direct measurement of the actual dynamical friction forces without disturbing the string motion is quite difficult. Therefore, in this work we develop a modal-based identification technique making use of inverse methods and optimization techniques, which enables the identification of the interface force, as well as the string self-excited motion, from the dynamical reactions measured at the string end supports. The method gives convincing results using simulated data originated from nonlinear computations of a bowed string. Furthermore, in cases where the force identifications are very sensitive to errors in the transfer function modal parameters, we suggest a method to improve the modal frequencies used for the identifications. Preliminary experimental results obtained using a basic bowing device, by which the string is excited with the stick of the bow, are then presented. Our identifications, from the two dynamical string reactions

  20. Woods with physical, mechanical and acoustic properties similar to those of Caesalpinia echinata have high potential as alternative woods for bow makers

    Directory of Open Access Journals (Sweden)

    Eduardo Luiz Longui

    2014-09-01

    Full Text Available For nearly two hundred years, Caesalpinia echinata wood has been the standard for modern bows. However, the threat of extinction and the enforcement of trade bans have required bow makers to seek alternative woods. The hypothesis tested was that woods with physical, mechanical and acoustic properties similar to those of C. echinata would have high potential as alternative woods for bows. Accordingly, were investigated Handroanthus spp., Mezilaurus itauba, Hymenaea spp., Dipteryx spp., Diplotropis spp. and Astronium lecointei. Handroanthus and Diplotropis have the greatest number of similarities with C. echinata, but only Handroanthus spp. showed significant results in actual bow manufacture, suggesting the importance of such key properties as specific gravity, speed of sound propagation and modulus of elasticity. In practice, Handroanthus and Dipteryx produced bows of quality similar to that of C. echinata.

  1. VLF waves in the foreshock

    Science.gov (United States)

    Strangeway, R. J.; Crawford, G. K.

    1995-01-01

    Plasma waves observed in the VLF range upstream of planetary bow shocks not only modify the particle distributions, but also provide important information about the acceleration processes that occur at the bow shock. Electron plasma oscillations observed near the tangent field line in the electron foreshock are generated by electrons reflected at the bow shock through a process that has been referred to as Fast Fermi acceleration. Fast Fermi acceleration is the same as shock-drift acceleration, which is one of the mechanisms by which ions are energized at the shock. We have generated maps of the VLF emissions upstream of the Venus bow shock, using these maps to infer properties of the shock energization processes. We find that the plasma oscillations extend along the field line up to a distance that appears to be controlled by the shock scale size, implying that shock curvature restricsts the flux and energy of reflected electrons. We also find that the ion acoustic waves are observed in the ion foreshock, but at Venus these emissions are not detected near the ULF forshock boundary. Through analogy with terrestrial ion observations, this implies that the ion acoustic waves are not generated by ion beams, but are instead generated by diffuse ion distributions found deep within the ion foreshock. However, since the shock is much smaller at Venus, and there is no magnetosphere, we might expect ion distributions within the ion foreshock to be different than at the Earth. Mapping studies of the terrestrial foreshock similar to those carried out at Venus appear to be necessary to determine if the inferences drawn from Venus data are applicable to other foreshocks.

  2. Mining the inner structure of the Web graph

    International Nuclear Information System (INIS)

    Donato, Debora; Leonardi, Stefano; Millozzi, Stefano; Tsaparas, Panayiotis

    2008-01-01

    Despite being the sum of decentralized and uncoordinated efforts by heterogeneous groups and individuals, the World Wide Web exhibits a well-defined structure, characterized by several interesting properties. This structure was clearly revealed by Broder et al (2000 Graph structure in the web Comput. Netw. 33 309) who presented the evocative bow-tie picture of the Web. Although, the bow-tie structure is a relatively clear abstraction of the macroscopic picture of the Web, it is quite uninformative with respect to the finer details of the Web graph. In this paper, we mine the inner structure of the Web graph. We present a series of measurements on the Web, which offer a better understanding of the individual components of the bow-tie. In the process, we develop algorithmic techniques for performing these measurements. We discover that the scale-free properties permeate all the components of the bow-tie which exhibit the same macroscopic properties as the Web graph itself. However, close inspection reveals that their inner structure is quite distinct. We show that the Web graph does not exhibit self similarity within its components, and we propose a possible alternative picture for the Web graph, as it emerges from our experiments

  3. Complex network perspective on structure and function of ...

    Indian Academy of Sciences (India)

    of community social networks, which are dense node–node links within modules, but have sparser links between ... 3.2 Bow tie structure. The whole metabolic network of S. aureus is then decomposed into four parts based on the 'bow tie' structure (figure 2, table 2). It should be noted that most nodes in S, P and IS parts are ...

  4. Discrete Optimization of Internal Part Structure via SLM Unit Structure-Performance Database

    Directory of Open Access Journals (Sweden)

    Li Tang

    2018-01-01

    Full Text Available The structural optimization of the internal structure of parts based on three-dimensional (3D printing has been recognized as being important in the field of mechanical design. The purpose of this paper is to present a creation of a unit structure-performance database based on the selective laser melting (SLM, which contains various structural units with different functions and records their structure and performance characteristics so that we can optimize the internal structure of parts directly, according to the database. The method of creating the unit structure-performance database was introduced in this paper and several structural units of the unit structure-performance database were introduced. The bow structure unit was used to show how to create the structure-performance database of the unit as an example. Some samples of the bow structure unit were designed and manufactured by SLM. These samples were tested in the WDW-100 compression testing machine to obtain their performance characteristics. After this, the paper collected all data regarding unit structure parameters, weight, performance characteristics, and other data; and, established a complete set of data from the bow structure unit for the unit structure-performance database. Furthermore, an aircraft part was reconstructed conveniently to be more lightweight according to the unit structure-performance database. Its weight was reduced by 36.8% when compared with the original structure, while the strength far exceeded the requirements.

  5. A new technique to characterize CT scanner bow-tie filter attenuation and applications in human cadaver dosimetry simulations

    Science.gov (United States)

    Li, Xinhua; Shi, Jim Q.; Zhang, Da; Singh, Sarabjeet; Padole, Atul; Otrakji, Alexi; Kalra, Mannudeep K.; Xu, X. George; Liu, Bob

    2015-01-01

    Purpose: To present a noninvasive technique for directly measuring the CT bow-tie filter attenuation with a linear array x-ray detector. Methods: A scintillator based x-ray detector of 384 pixels, 307 mm active length, and fast data acquisition (model X-Scan 0.8c4-307, Detection Technology, FI-91100 Ii, Finland) was used to simultaneously detect radiation levels across a scan field-of-view. The sampling time was as short as 0.24 ms. To measure the body bow-tie attenuation on a GE Lightspeed Pro 16 CT scanner, the x-ray tube was parked at the 12 o’clock position, and the detector was centered in the scan field at the isocenter height. Two radiation exposures were made with and without the bow-tie in the beam path. Each readout signal was corrected for the detector background offset and signal-level related nonlinear gain, and the ratio of the two exposures gave the bow-tie attenuation. The results were used in the geant4 based simulations of the point doses measured using six thimble chambers placed in a human cadaver with abdomen/pelvis CT scans at 100 or 120 kV, helical pitch at 1.375, constant or variable tube current, and distinct x-ray tube starting angles. Results: Absolute attenuation was measured with the body bow-tie scanned at 80–140 kV. For 24 doses measured in six organs of the cadaver, the median or maximum difference between the simulation results and the measurements on the CT scanner was 8.9% or 25.9%, respectively. Conclusions: The described method allows fast and accurate bow-tie filter characterization. PMID:26520720

  6. Risk analysis of urban gas pipeline network based on improved bow-tie model

    Science.gov (United States)

    Hao, M. J.; You, Q. J.; Yue, Z.

    2017-11-01

    Gas pipeline network is a major hazard source in urban areas. In the event of an accident, there could be grave consequences. In order to understand more clearly the causes and consequences of gas pipeline network accidents, and to develop prevention and mitigation measures, the author puts forward the application of improved bow-tie model to analyze risks of urban gas pipeline network. The improved bow-tie model analyzes accident causes from four aspects: human, materials, environment and management; it also analyzes the consequences from four aspects: casualty, property loss, environment and society. Then it quantifies the causes and consequences. Risk identification, risk analysis, risk assessment, risk control, and risk management will be clearly shown in the model figures. Then it can suggest prevention and mitigation measures accordingly to help reduce accident rate of gas pipeline network. The results show that the whole process of an accident can be visually investigated using the bow-tie model. It can also provide reasons for and predict consequences of an unfortunate event. It is of great significance in order to analyze leakage failure of gas pipeline network.

  7. Exploratory laser-driven shock wave studies

    International Nuclear Information System (INIS)

    Solem, J.C.; Veeser, L.R.

    1977-11-01

    We show the results of a feasibility study for investigating shock structure and for measuring equation-of-state parameters using high-energy, short-pulse lasers. We discuss the temporal and spatial structure of the luminosity from laser-driven shock unloading in aluminum foils. We demonstrate that shock velocity can be measured by observing the time interval between shock emergence across two thicknesses and show data for shocks of 1.3 and 2.1 Mbar. The fact that we observe shock fronts cleanly breaking through steps as small as 3 μm indicates that the shock front thickness is very small in the few megabar region; this is the first experimental verification that these fronts are not more than a few micrometers thick. We present approximate measurements of free-surface velocity. Finally, we speculate on the use of these techniques to obtain detailed equation-of-state data

  8. Stellar Interlopers Caught Speeding Through Space

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 Figure 2 Figure 3 Figure 4 Click on individual image for larger view Resembling comets streaking across the sky, these four speedy stars are plowing through regions of dense interstellar gas and creating brilliant arrowhead structures and trailing tails of glowing gas. These bright arrowheads, or bow shocks, can be seen in these four images taken with NASA's Hubble Space Telescope. The bow shocks form when the stars' powerful stellar winds, streams of matter flowing from the stars, slam into surrounding dense gas. The phenomenon is similar to that seen when a speeding boat pushes through water on a lake. The stars in these images are among 13 runaway stars spotted by Hubble's Advanced Camera for Surveys. The stars appear to be young, just millions of years old. Their ages are based on their colors and the presence of strong stellar winds, a signature of youthful stars. Depending on their distance from Earth, the bullet-nosed bow shocks could be 100 billion to a trillion miles wide (the equivalent of 17 to 170 solar system diameters, measured out to Neptune's orbit). The bow shocks indicate that the stars are moving fast, more than 180,000 kilometers an hour (more than 112,000 miles an hour) with respect to the dense gas they are plowing through. They are traveling roughly five times faster than typical young stars, relative to their surroundings. The high-speed stars have traveled far from their birth places. Assuming their youthful phase lasts only a million years and they are moving at roughly 180,000 kilometers an hour, the stars have journeyed 160 light-years. The Hubble observations were taken between October 2005 and July 2006.

  9. Radiation- and pair-loaded shocks

    Science.gov (United States)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  10. Radial dependence of foreshock cavities: a case study

    Directory of Open Access Journals (Sweden)

    D. G. Sibeck

    2004-12-01

    Full Text Available We present a case study of Geotail, Interball-1, IMP-8, and Wind observations of density and magnetic field strength cavities excavated by the enhanced pressures associated with bursts of energetic ions in the foreshock. Consistent with theoretical predictions, the pressure of the energetic ions diminishes rapidly with upstream distance due to a decrease in the flux of energetic ions and a transition from near-isotropic to streaming pitch angle distributions. Consequently, the cavities can only be observed immediately upstream from the bow shock. A comparison of conditions upstream from the pre- and post-noon bow shock demonstrates that foreshock cavities introduce perturbations into the oncoming solar wind flow with dimensions smaller than those of the magnetosphere. Dayside geosynchronous magnetic field strength variations observed by GOES-8 do not track the density variations seen by any of the spacecraft upstream from the bow shock in a one-to-one manner, indicating that none of these spacecraft observed the precise sequence of density variations that actually struck the subsolar magnetopause. Key words. Interplanetary physics (energetic particles; planetary bow shocks – Magnetospheric physics (solar wind-magnetosphere interactions

  11. Radial dependence of foreshock cavities: a case study

    Directory of Open Access Journals (Sweden)

    D. G. Sibeck

    2004-12-01

    Full Text Available We present a case study of Geotail, Interball-1, IMP-8, and Wind observations of density and magnetic field strength cavities excavated by the enhanced pressures associated with bursts of energetic ions in the foreshock. Consistent with theoretical predictions, the pressure of the energetic ions diminishes rapidly with upstream distance due to a decrease in the flux of energetic ions and a transition from near-isotropic to streaming pitch angle distributions. Consequently, the cavities can only be observed immediately upstream from the bow shock. A comparison of conditions upstream from the pre- and post-noon bow shock demonstrates that foreshock cavities introduce perturbations into the oncoming solar wind flow with dimensions smaller than those of the magnetosphere. Dayside geosynchronous magnetic field strength variations observed by GOES-8 do not track the density variations seen by any of the spacecraft upstream from the bow shock in a one-to-one manner, indicating that none of these spacecraft observed the precise sequence of density variations that actually struck the subsolar magnetopause.

    Key words. Interplanetary physics (energetic particles; planetary bow shocks – Magnetospheric physics (solar wind-magnetosphere interactions

  12. Thermal shock investigation of silicon nitride

    International Nuclear Information System (INIS)

    Ziegler, G.; Leucht, R.

    1977-01-01

    In this work, the thermal shock properties of commercial reaction-bonded Si 3 N 4 quality material (RBSN), of commercial hot-pressed Si 3 N 4 (HPSN) and of different laboratory grades of hot-pressed Si 3 N 4 were examined. The thermal shock properties of RBSN quality material differ according to the structure considerably: The critical temperature difference for sample crossections of 5 x 5 or 6 x 6 mm after quenching in oil lies between 730 0 C and over 1400 0 C. The best thermal shock properties are shown by high density RBSN quality material having very fine pores and high initial strength. The results indicate that for RBSN large pores and density inhomogenities are responsible for bad thermal shock properties. Resistance to fast temperature change is higher for hot-pressed Si 3 N 4 than for RBSN quality material. In HPSN, the thermal shock results show dependence on structure. High MgO content and the associated coarse rod-shaped configuration of the β phase and structural inhomogenities affect the thermal shock properties in an adverse way. (orig.) [de

  13. Mineral shock signatures in rocks from Dhala (Mohar) impact structure, Shivpuri district, Madhya Pradesh, India

    Science.gov (United States)

    Roy, Madhuparna; Pandey, Pradeep; Kumar, Shailendra; Parihar, P. S.

    2017-12-01

    A concrete study combining optical microscopy, Raman spectroscopy and X-ray diffractometry, was carried out on subsurface samples of basement granite and melt breccia from Mohar (Dhala) impact structure, Shivpuri district, Madhya Pradesh, India. Optical microscopy reveals aberrations in the optical properties of quartz and feldspar in the form of planar deformation feature-like structures, lowered birefringence and mosaics in quartz, toasting, planar fractures and ladder texture in alkali feldspar and near-isotropism in bytownite. It also brings to light incidence of parisite, a radioactive rare mineral in shocked granite. Raman spectral pattern, peak positions, peak widths and multiplicity of peak groups of all minerals, suggest subtle structural/crystallographic deviations. XRD data further reveals minute deviations of unit cell parameters of quartz, alkali feldspar and plagioclase, with respect to standard α-quartz, high- and low albite and microcline. Reduced cell volumes in these minerals indicate compression due to pressure. The c0/a0 values indicate an inter-tetrahedral angle roughly between 120o and 144o, further pointing to a possible pressure maxima of around 12 GPa. The observed unit cell aberration of minerals may indicate an intermediate stage between crystalline and amorphous stages, thereby, signifying possible overprinting of decompression signatures over shock compression effects, from a shock recovery process.

  14. Journal of Astrophysics and Astronomy

    Indian Academy of Sciences (India)

    65

    Northern IMF as simulated by PIC code in parallel with MHD model-Journal of Astrophysics ... The global structure of the collisionless bow shock was inves- tigated by ..... international research community, access to modern space science simulations. ...... LaTeX Font Info: Redeclaring math alphabet \\mathbf on input line 29.

  15. Reaction effects in diffusive shock acceleration

    International Nuclear Information System (INIS)

    Drury, L.Oc.

    1984-01-01

    The effects of the reaction of accelerated particles back on the shock wave in the diffusive-shock-acceleration model of cosmic-ray generation are investigated theoretically. Effects examined include changes in the shock structure, modifications of the input and output spectra, scattering effects, and possible instabilities in the small-scale structure. It is pointed out that the latter two effects are applicable to any spatially localized acceleration mechanism. 14 references

  16. The Shock and Vibration Bulletin. Part 2. Invited Papers, Structural Dynamics

    Science.gov (United States)

    1974-08-01

    ANALYSIS 47 R.F. Davis and D.E. Hines, McDonnell Douglas Astronautics Company, Huntington Beach, California PREDICTION OF SHOCK ENVIRONMENTS BY...data was taken during systea-level tests to cor- roborate predicted loads and/or coaponent environments. During the analytical/empirical phase of...Test Model (TETM) - To prove the thermal control system and anal- yses; 2. The Lander Structural Test Model ( LSTM ) - To apply calculated flight

  17. Sub-µm structure and volatile distribution of shocked lunar apatite

    Science.gov (United States)

    Cernok, A.; White, L. F.; Darling, J.; Dunlop, J.; Fougerouse, D.; William, R. D. A.; Reddy, S.; Saxey, D. W.; Zhao, X.; Franchi, I.; Anand, M.

    2017-12-01

    Apatite is a key mineral broadly used for studying volatiles in planetary materials. Most studies in this recent frontier of planetary exploration focus on volatile content and respective isotopic composition in apatite. However, there is an imperative to contextualize geochemical data with impact-induced features, given that most planetary materials experienced at least some shock deformation. This study aims at understanding the effect of high-level shock deformation on volatile distribution in apatite from lunar highlands samples. Combining Electron Backscatter Diffraction (EBSD), NanoSIMS and Atom Probe Microscopy (APM) analyses we are gaining an insight into the µm- and nm-scale structural variation in apatite from a shocked, maskelynite- and impact-melt-bearing norite. EBSD revealed degraded crystallinity, high density of low angle grain boundaries and domains of sub-µm granular features that appear amorphous at this length scales ( 80 x 40 nm). Texture component maps show up to 25° misorientation within a single grain - evidence of severe crystal-plastic deformation, but with no obvious evidence of recrystallization. APM revealed complex microstructure of the apparently amorphous domains defined by well developed, straight to slightly curved grain boundaries meeting at 120° triple junctions. This equilibrium texture is probably accommodated by annealing and recrystallization of apatite due to the post-shock heating. Crystallites range in size from 50 to 100 nm. Grain boundaries are defined by segregation of Mg, Si and Fe impurities, which possibly originate from surrounding phases. Cl and F show homogenous distribution over the length scale of the APM analysis (1 to 500 nm). H2O content measurements of 250-600 ppm by NanoSIMS are consistent with the lower range of previously reported values for this rock, with no obvious correlation with the level of crystallinity. δD values are confirmed to be terrestrial-like and relatively constant. These preliminary

  18. Structure of intermediate shocks in collisionless anisotropic Hall-magnetohydrodynamics plasma models

    International Nuclear Information System (INIS)

    Sánchez-Arriaga, G.

    2013-01-01

    The existence of discontinuities within the double-adiabatic Hall-magnetohydrodynamics (MHD) model is discussed. These solutions are transitional layers where some of the plasma properties change from one equilibrium state to another. Under the assumption of traveling wave solutions with velocity C and propagation angle θ with respect to the ambient magnetic field, the Hall-MHD model reduces to a dynamical system and the waves are heteroclinic orbits joining two different fixed points. The analysis of the fixed points rules out the existence of rotational discontinuities. Simple considerations about the Hamiltonian nature of the system show that, unlike dissipative models, the intermediate shock waves are organized in branches in parameter space, i.e., they occur if a given relationship between θ and C is satisfied. Electron-polarized (ion-polarized) shock waves exhibit, in addition to a reversal of the magnetic field component tangential to the shock front, a maximum (minimum) of the magnetic field amplitude. The jumps of the magnetic field and the relative specific volume between the downstream and the upstream states as a function of the plasma properties are presented. The organization in parameter space of localized structures including in the model the influence of finite Larmor radius is discussed

  19. Chemical kinetics modeling of the influence of molecular structure on shock tube ignition delay

    International Nuclear Information System (INIS)

    Westbrook, C.K.; Pitz, W.J.

    1985-07-01

    The current capabilities of kinetic modeling of hydrocarbon oxidation in shock waves are discussed. The influence of molecular size and structure on ignition delay times are stressed. The n-paraffin fuels from CH 4 to n-C 5 H 12 are examined under shock tube conditions, as well as the branched chain fuel isobutane, and the computed results are compared with available experimental data. The modeling results show that it is important in the reaction mechanism to distinguish between abstraction of primary, secondary and tertiary H atom sites from the fuel molecule. This is due to the fact that both the rates and the product distributions of the subsequent alkyl radical decomposition reactions depend on which H atoms were abstracted. Applications of the reaction mechanisms to shock tube problems and to other practical problems such as engine knock are discussed

  20. Macroeconomic impacts of oil price shocks in Asian economies

    International Nuclear Information System (INIS)

    Cunado, Juncal; Jo, Soojin; Perez de Gracia, Fernando

    2015-01-01

    This paper analyzes the macroeconomic impact of structural oil shocks in four of the top oil-consuming Asian economies, using a VAR model. We identify three different structural oil shocks via sign restrictions: an oil supply shock, an oil demand shock driven by global economic activity and an oil-specific demand shock. The main results suggest that economic activity and prices respond very differently to oil price shocks depending on their types. In particular, an oil supply shock has a limited impact, while a demand shock driven by global economic activity has a significant positive effect in all four Asian countries examined. Our finding also includes that policy tools such as interest rates and exchange rates help mitigating the effects of supply shocks in Japan and Korea; however, they can be more actively used in response to demands shocks. - Highlights: • We analyze the effects of three structural oil price shocks on Asian economies. • Supply shocks have limited impact on the economic activity of Asian economies examined. • Demand shocks due to economic activity boosts GDP of all economies. • CPIs in India and Indonesia were only marginally affected by oil price shocks. • Monetary and exchange rate tools help mitigating supply shocks in Korea and Japan.

  1. Cluster magnetic field observations of the bowshock: Orientation, motion and structure

    Directory of Open Access Journals (Sweden)

    T. S. Horbury

    Full Text Available Four spacecraft Cluster magnetic field observations of the low quasi-perpendicular terrestrial bowshock are presented for the first time. Multiple quasi-perpendicular crossings on 25 December 2000 are analysed. By combining data from the four spacecraft, bowshock orientations and velocities can be calculated. It is shown that, even while in rapid motion, the bowshock normal direction remains remarkably constant, and that coplanarity estimates are accurate to, typically, around 20°. Magnetic field magnitude profiles are shown to be very well correlated between spacecraft although downstream waves with fluctuations perpendicular to the local field, while statistically similar at all four spacecraft, are poorly correlated on separation scales of several hundred km. Examples are shown of a number of bowshock phenomena, including non-standing fluctuations in the shock foot and the shock interacting with changing solar wind conditions.

    Key words. Interplanetary physics (planetary bow shocks Space plasma physics (shock waves; waves and instabilities

  2. Cluster magnetic field observations of the bowshock: Orientation, motion and structure

    Directory of Open Access Journals (Sweden)

    T. S. Horbury

    2001-09-01

    Full Text Available Four spacecraft Cluster magnetic field observations of the low quasi-perpendicular terrestrial bowshock are presented for the first time. Multiple quasi-perpendicular crossings on 25 December 2000 are analysed. By combining data from the four spacecraft, bowshock orientations and velocities can be calculated. It is shown that, even while in rapid motion, the bowshock normal direction remains remarkably constant, and that coplanarity estimates are accurate to, typically, around 20°. Magnetic field magnitude profiles are shown to be very well correlated between spacecraft although downstream waves with fluctuations perpendicular to the local field, while statistically similar at all four spacecraft, are poorly correlated on separation scales of several hundred km. Examples are shown of a number of bowshock phenomena, including non-standing fluctuations in the shock foot and the shock interacting with changing solar wind conditions.Key words. Interplanetary physics (planetary bow shocks Space plasma physics (shock waves; waves and instabilities

  3. Fundamental structure of steady plastic shock waves in metals

    OpenAIRE

    Molinari, A.; Ravichandran, G.

    2004-01-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic–plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large de...

  4. Generation of shock/discontinuity compound structures through magnetic reconnection in the geomagnetic tail

    Energy Technology Data Exchange (ETDEWEB)

    Weng, C. J. [Department of Physics, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Space Science, National Central University, Jungli 320, Taiwan (China); Lin, C. C. [Chemical Systems Research Division, Chung-Shan Institute of Science and Technology, Longtan 325, Taiwan (China); Lee, L. C. [Institute of Earth Science, Academia Sinica, Nankang 115, Taiwan (China); Institute of Space Science, National Central University, Jungli 320, Taiwan (China); Chao, J. K. [Institute of Space Science, National Central University, Jungli 320, Taiwan (China)

    2012-12-15

    We use 1-D hybrid code to simulate the generation and evolution of MHD discontinuities associated with magnetic reconnection in a current sheet. It is found that the leakage of slow shock (SS) downstream particles to upstream region tends to increase the ion parallel temperature and temperature anisotropy with {beta}{sub i||}/{beta}{sub i Up-Tack } Much-Greater-Than 1, where {beta}{sub i||}({beta}{sub i Up-Tack }) is the ion parallel (perpendicular) beta. As a result, the propagation speed of rotational discontinuity (RD) is highly reduced and RD becomes attached to SS, leading to formation of various compound structures in the reconnection outflow region. Four types of compound structure are found in our simulations: (a) RD-SS compound structure: the RD is attached to the leading part of SS, (b) SS-RD (DD) compound structure: RD is attached to the rear part of SS, (c) SS-RD-SS compound structure: RD is trapped inside SS, and (d) switch-off slow shock (SSS) with a rotational wave train. The type of compound structure generated depends on initial ion beta {beta}{sub i0} and magnetic shear angle {phi}. RD tends to move in front of SS to form an RD-SS compound structure for cases with low {beta}{sub i0}. RD stays behind SS and form an SS-RD (DD) compound structure for large {beta}{sub i0}. The SS-RD-SS compound structure is formed for intermediate values of {beta}{sub i0}. When the shear angle is 180 Degree-Sign , SSS with a wave train is formed.

  5. Transverse MHD shock waves in a partly ionized plasma

    International Nuclear Information System (INIS)

    Mathers, C.D.

    1980-01-01

    The structure of transverse MHD shock waves in a partly ionized hydrogen plasma is studied using a three-fluid model with collisional transport coefficients. The morphology of the various sublayers in the shock front is analyzed in detail and it is shown that strong shock waves have a characteristic viscous structure. Weak to moderate strength shock waves display a resistive structure in which the enhanced transverse resistivity due to ion-slip plays a significant role, leading to a pronounced peak in the ion temperature profile. Calculated shock structure profiles are also compared with experimental temperature data. Results in the form of tables and figures are presented for shock waves with fast Mach number ranging from 1-10 in hydrogen plasma with initial degree of ionization ranging from 5-100%. (author)

  6. Early structural changes of the heart after experimental polytrauma and hemorrhagic shock

    Science.gov (United States)

    Halbgebauer, Rebecca; Eisele, Philipp; Messerer, David A. C.; Weckbach, Sebastian; Schultze, Anke; Braumüller, Sonja; Gebhard, Florian

    2017-01-01

    Evidence is emerging that systemic inflammation after trauma drives structural and functional impairment of cardiomyocytes and leads to cardiac dysfunction, thus worsening the outcome of polytrauma patients. This study investigates the structural and molecular changes in heart tissue 4 h after multiple injuries with additional hemorrhagic shock using a clinically relevant rodent model of polytrauma. We determined mediators of systemic inflammation (keratinocyte chemoattractant, macrophage chemotactic protein 1), activated complement component C3a and cardiac troponin I in plasma and assessed histological specimen of the mouse heart via standard histomorphology and immunohistochemistry for cellular and subcellular damage and ongoing apoptosis. Further we investigated spatial and quantitative changes of connexin 43 by immunohistochemistry and western blotting. Our results show significantly increased plasma levels of both keratinocyte chemoattractant and cardiac troponin I 4 h after polytrauma and 2 h after induction of hypovolemia. Although we could not detect any morphological changes, immunohistochemical evaluation showed increased level of tissue high-mobility group box 1, which is both a damage-associated molecule and actively released as a danger response signal. Additionally, there was marked lateralization of the cardiac gap-junction protein connexin 43 following combined polytrauma and hemorrhagic shock. These results demonstrate a molecular manifestation of remote injury of cardiac muscle cells in the early phase after polytrauma and hemorrhagic shock with marked disruption of the cardiac gap junction. This disruption of an important component of the electrical conduction system of the heart may lead to arrhythmia and consequently to cardiac dysfunction. PMID:29084268

  7. Radiography for a Shock-accelerated Liquid Layer

    International Nuclear Information System (INIS)

    P. Meekunnasombat J.G. Oakley/inst M.H. Anderson R. Bonazza

    2005-01-01

    This program supported the experimental study of the interaction of planar shock waves with both solid structures (a single cylinder or a bank of cylinders) and single and multiple liquid layers. Objectives of the study included: characterization of the shock refraction patterns; measurements of the impulsive loading of the solid structures; observation of the response of the liquid layers to shock acceleration; assessment of the shock-mitigation effects of single and multiple liquid layers. The uploaded paper is intended as a final report for the entire funding period. The poster described in the paper won the Best Poster Award at the 25 International Symposium on Shock Waves

  8. Quartz-coesite-stishovite relations in shocked metaquartzites from the Vredefort impact structure, South Africa

    Science.gov (United States)

    Spray, John G.; Boonsue, Suporn

    2018-01-01

    Coesite and stishovite are developed in shock veins within metaquartzites beyond a radius of 30 km from the center of the 2.02 Ga Vredefort impact structure. This work focuses on deploying analytical field emission scanning electron microscopy, electron backscattered diffraction, and Raman spectrometry to better understand the temporal and spatial relations of these silica polymorphs. α-Quartz in the host metaquartzites, away from shock veins, exhibits planar features, Brazil twins, and decorated planar deformation features, indicating a primary (bulk) shock loading of >5 < 35 GPa. Within the shock veins, coesite forms anhedral grains, ranging in size from 0.5 to 4 μm, with an average of 1.25 μm. It occurs in clasts, where it displays a distinct jigsaw texture, indicative of partial reversion to a less dense SiO2 phase, now represented by microcrystalline quartz. It is also developed in the matrix of the shock veins, where it is typically of smaller size (<1 μm). Stishovite occurs as euhedral acicular crystals, typically <0.5 μm wide and up to 15 μm in length, associated with clast-matrix or shock vein margin-matrix interfaces. In this context, the needles occur as radiating or subparallel clusters, which grow into/over both coesite and what is now microcrystalline quartz. Stishovite also occurs as more blebby, subhedral to anhedral grains in the vein matrix (typically <1 μm). We propose a model for the evolution of the veins (1) precursory frictional melting in a microfault ( 1 mm wide) generates a molten matrix containing quartz clasts. This is followed by (2) arrival of the main shock front, which shocks to 35 GPa. This generates coesite in the clasts and in the matrix. (3) On initial shock release, the coesite partly reverts to a less dense SiO2 phase, which is now represented by microcrystalline quartz. (4) With continued release, stishovite forms euhedral needle clusters at solid-liquid interfaces and as anhedral crystals in the matrix. (5) With

  9. Structures, origin and evolution of various carbon phases in the ureilite Northwest Africa 4742 compared with laboratory-shocked graphite

    Science.gov (United States)

    Le Guillou, C.; Rouzaud, J. N.; Remusat, L.; Jambon, A.; Bourot-Denise, M.

    2010-07-01

    Mineralogical structures of carbon phases within the ureilite North West Africa 4742, a recent find, are investigated at various scales by high-resolution transmission electron microscopy (HRTEM), Raman microspectrometry and X-ray diffraction. Ureilites are the most carbon-rich of all meteorites, containing up to 6 wt.% carbon. Diamond, graphite and so-called "amorphous carbon" are typically described, but their crystallographic relationships and respective thermal histories remain poorly constrained. We especially focus on the origin of "amorphous carbon" and graphite, as well as their relationship with diamond. Two aliquots of carbon-bearing material were extracted: the insoluble organic matter (IOM) and the diamond fraction. We also compare the observed structures with those of laboratory-shocked graphite. Polycrystalline diamond aggregates with mean coherent domains of about 40 nm are reported for the first time in a ureilite and TEM demonstrates that all carbon phases are crystallographically related at the nanometre scale. Shock features show that diamond is produced from graphite through a martensitic transition. This observation demonstrates that graphite was present when the shock occurred and is consequently a precursor of diamond. The structure of what is commonly described as the "amorphous carbon" has been identified. It is not completely amorphous but only disordered and consists of nanometre-sized polyaromatic units surrounding the diamond. Comparison with laboratory-shocked graphite, partially transformed into diamond, indicates that the disordered carbon could be the product of diamond post-shock annealing. As diamond is the carrier of noble gases, whereas graphite is noble gas free, graphite cannot be the sole diamond precursor. This implies a multiple-stage history. A first generation of diamond could have been synthesized from a noble gas rich precursor or environment by either a shock or a condensation process. Thermally-induced graphitization

  10. Airfoil structure

    Science.gov (United States)

    Frey, G.A.; Twardochleb, C.Z.

    1998-01-13

    Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally ``C`` configuration of the airfoil. The generally ``C`` configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion. 6 figs.

  11. Statistical study of particle acceleration in the core of foreshock transients

    OpenAIRE

    Liu, Terry Z.; Angelopoulos, Vassilis; Hietala, Heli; Wilson III, Lynn B.

    2017-01-01

    Several types of foreshock transients upstream of Earth's bow shock possessing a tenuous, hot core have been observed and simulated. Because of the low dynamic pressure in their cores, these phenomena can significantly disturb the bow shock and the magnetosphere-ionosphere system. Recent observations have also demonstrated that foreshock transients can accelerate particles which, when transported earthward, can affect space weather. Understanding the potential of foreshock transients to accel...

  12. Two-Polarisation Physical Model of Bowed Strings with Nonlinear Contact and Friction Forces, and Application to Gesture-Based Sound Synthesis

    Directory of Open Access Journals (Sweden)

    Charlotte Desvages

    2016-05-01

    Full Text Available Recent bowed string sound synthesis has relied on physical modelling techniques; the achievable realism and flexibility of gestural control are appealing, and the heavier computational cost becomes less significant as technology improves. A bowed string sound synthesis algorithm is designed, by simulating two-polarisation string motion, discretising the partial differential equations governing the string’s behaviour with the finite difference method. A globally energy balanced scheme is used, as a guarantee of numerical stability under highly nonlinear conditions. In one polarisation, a nonlinear contact model is used for the normal forces exerted by the dynamic bow hair, left hand fingers, and fingerboard. In the other polarisation, a force-velocity friction curve is used for the resulting tangential forces. The scheme update requires the solution of two nonlinear vector equations. The dynamic input parameters allow for simulating a wide range of gestures; some typical bow and left hand gestures are presented, along with synthetic sound and video demonstrations.

  13. Numerical modeling of slow shocks

    International Nuclear Information System (INIS)

    Winske, D.

    1987-01-01

    This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs

  14. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    Science.gov (United States)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  15. Thermal shock problems of bonded structure for plasma facing components

    International Nuclear Information System (INIS)

    Shibui, M.; Kuroda, T.; Kubota, Y.

    1991-01-01

    Thermal shock tests have been performed on W(Re)/Cu and Mo/Cu duplex structures with a particular emphasis on two failure modes: failure on the heated surface and failure near the bonding interface. The results indicate that failure of the duplex structure largely depends on the constraint of thermal strain on the heated surface and on the ductility changes of armour materials. Rapid debonding of the bonding interface may be attributed to the yielding of armour materials. This leads to a residual bending deformation when the armour cools down. Arguments are also presented in this paper on two parameter characterization of the failure of armour materials and on stress distribution near the free edge of the bonding interface. (orig.)

  16. Search for OB stars running away from young star clusters. I. NGC 6611

    Science.gov (United States)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-11-01

    N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.

  17. Calculation modelling of the RCCA movement through bowed FA guide tubes

    International Nuclear Information System (INIS)

    Razoumovsky, D.V.; Lihkachev, Yu.I.; Troyanov, V.M.

    2000-01-01

    Rod control cluster assembly movement through the bowed guide tubes is considered. The movement equation is presented with some of the assumptions and special attention is paid to the determination of the mechanical friction force. The numerical algorithm is described and some results of parametric studies are presented. (author)

  18. Central bank policy under significant balance-of-payment shocks and structural shifts

    Directory of Open Access Journals (Sweden)

    Andrey Sinyakov

    2016-09-01

    Full Text Available In this paper, we analyze a number of monetary and FX policy alternatives using the model of a small open oil-exporting economy hit by severe balance-of-payment shocks, such as those that simultaneously affected the Russian economy in 2014–2015. For our purposes, we modify Romer's (2013 IS-MP general equilibrium model by adding a structure similar to the Russian economy (tradables and oil vs. non-tradables. In the model, we consider an optimal policy mix that includes a floating exchange rate, FX liquidity provision by a central bank and temporary tightening of monetary policy. The flexible exchange rate works as a shock absorber, helping restore aggregate demand and domestic production. If inflation expectations are not anchored, contractionary monetary policy helps to stabilize them. Financial stability risks are addressed by lending FX liquidity to the banking sector.

  19. HH 222: A GIANT HERBIG-HARO FLOW FROM THE QUADRUPLE SYSTEM V380 ORI

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo; Aspin, Colin; Connelley, M. S. [Institute for Astronomy, University of Hawaii at Manoa, 640 North Aohoku Place, Hilo, HI 96720 (United States); Bally, John [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Geballe, T. R. [Gemini Observatory, 670 North Aohoku Place, Hilo, HI 96720 (United States); Kraus, Stefan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Appenzeller, Immo [Landessternwarte Heidelberg, Königstuhl 12, D-69117 Heidelberg (Germany); Burgasser, Adam, E-mail: reipurth@ifa.hawaii.edu, E-mail: caa@ifa.hawaii.edu, E-mail: msc@ifa.hawaii.edu, E-mail: John.Bally@colorado.edu, E-mail: tgeballe@gemini.edu, E-mail: stefan.kraus@cfa.harvard.edu, E-mail: iappenze@lsw.uni-heidelberg.de, E-mail: aburgasser@ucsd.edu [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States)

    2013-11-01

    HH 222 is a giant shocked region in the L1641 cloud, and is popularly known as the Orion Streamers or ''the waterfall'' on account of its unusual structure. At the center of these streamers are two infrared sources coincident with a nonthermal radio jet aligned along the principal streamer. The unique morphology of HH 222 has long been associated with this radio jet. However, new infrared images show that the two sources are distant elliptical galaxies, indicating that the radio jet is merely an improbable line-of-sight coincidence. Accurate proper motion measurements of HH 222 reveal that the shock structure is a giant bow shock moving directly away from the well-known, very young, Herbig Be star V380 Ori. The already known Herbig-Haro object HH 35 forms part of this flow. A new Herbig-Haro object, HH 1041, is found precisely in the opposite direction of HH 222 and is likely to form part of a counterflow. The total projected extent of this HH complex is 5.3 pc, making it among the largest HH flows known. A second outflow episode from V380 Ori is identified as a pair of HH objects, HH 1031 to the northwest and the already known HH 130 to the southeast, along an axis that deviates from that of HH 222/HH 1041 by only 3.°7. V380 Ori is a hierarchical quadruple system, including a faint companion of spectral type M5 or M6, which at an age of ∼1 Myr corresponds to an object straddling the stellar-to-brown dwarf boundary. We suggest that the HH 222 giant bow shock is a direct result of the dynamical interactions that led to the conversion from an initial non-hierarchical multiple system into a hierarchical configuration. This event occurred no more than 28,000 yr ago, as derived from the proper motions of the HH 222 giant bow shock.

  20. The source of real and nominal exchange rate fluctuations in Thailand: Real shock or nominal shock

    OpenAIRE

    Le Thanh, Binh

    2015-01-01

    This paper examines the source of exchange rate fluctuations in Thailand. We employed a structural vector auto-regression (SVAR) model with the long-run neutrality restriction of Blanchard and Quah (1989) to investigate the changes in real and nominal exchange rates from 1994 to 2015. In this paper, we assume that there are two types of shocks which related to exchange rate movements: real shocks and nominal shocks. The empirical analysis indicates that real shocks are the fundamental compon...

  1. The role of the umrhubhe bow as transmitter of cultural knowledge ...

    African Journals Online (AJOL)

    The focus is also on Madosini's responses to several questions regarding her method of playing umrhubhe, with a view to understanding the indigenous use of technical language in its description of the process of producing musical sound on an unbraced,4 mouth-resonated bow. Journal of Musical Arts in Africa Vol.

  2. Femoral shaft bowing in the coronal plane has more significant effect on the coronal alignment of TKA than proximal or distal variations of femoral shape.

    Science.gov (United States)

    Kim, Jong-Min; Hong, Soo-Heon; Kim, Jong-Min; Lee, Bum-Sik; Kim, Dong-Eun; Kim, Kyung-Ah; Bin, Seong-Il

    2015-07-01

    The aim of this study was to determine (1) variations in the shape of the proximal, middle, and distal femur in a series of Korean patients who had undergone total knee arthroplasty (TKA), (2) the preoperative relationship between these three parameters and the distal valgus cutting angle referenced off the femoral intramedullary guide, and (3) whether there was any relationship between femoral bowing and variations in the shape of the proximal or distal femur in the coronal plane. The preoperative long-standing anteroposterior radiographs of 316 consecutive osteoarthritis patients who underwent primary TKA from 2009 to 2011 were examined. The femoral neck shaft angle, the femoral shaft bowing angle, and the mechanical lateral distal femoral angle were measured to assess the shape of the proximal, middle, and distal femur, respectively. The valgus cutting angle of the femur was defined as the angle between the distal anatomical and mechanical axes of the femur. The study population showed large variations in femoral shape. The mean femoral intramedullary guide angle was 6.5° ± 1.3° (range: 4°-13°). The femoral shaft bowing angle was the factor that showed the strongest correlation with this angle (P shaft angle showed no correlation (n.s.). The femoral shaft bowing angle showed a weak correlation with the mechanical lateral distal femoral angle (P = 0.001), but was not significantly correlated with the femoral neck shaft angle (n.s.). Apparent femoral bowing (>3° of lateral or medial bowing) was found in 42 (13.3 %) of cases (37 cases of lateral bowing and five of medial bowing). Cases with lateral apparent femoral bowing >3° had a distal cutting angle of 8.6° ± 2.2° relative to the femoral intramedullary guide. The femoral intramedullary guide angle was mainly influenced by femoral shaft bowing among femoral deformities in the coronal plane. Therefore, to increase the accuracy of distal femoral cut during TKA, it is necessary to confirm femoral

  3. Multicentre randomised double bind crossover trial on contamination of conventional ties and bow ties in routine obstetric and gynaecological practice.

    Science.gov (United States)

    Biljan, M M; Hart, C A; Sunderland, D; Manasse, P R; Kingsland, C R

    1993-01-01

    OBJECTIVE--To assess level of contamination of neckwear worn by gynaecologists and obstetricians during routine working week. DESIGN--Multicentre randomised double blind crossover trial. Participants wore the same conventional ties for three days in one week and bow ties for the same period in second week. SETTING--Two teaching and three district general hospitals in the midlands, Wales, and north England. SUBJECTS--15 registrars and senior registrars. INTERVENTIONS--A swab soaked in sterile saline was taken from specific area on ties at end of first and third working days and sent in transport medium for culture on chocolatised blood and MacConkey agar for 48 hours. MAIN OUTCOME MEASURES--Level of bacteriological growth assessed semiquantitatively (0 for no contamination; for heavy contamination) after swabs had been cultured. At end of study the participants completed a questionnaire to assess their attitude toward wearing different types of necktie. RESULTS--12 doctors (80%) completed the study. Although bow ties were significantly less contaminated at end of first working day (z = -2.354, p = 0.019), this difference was not maintained; there was no difference in level of contamination on third day. Level of contamination did not increase between first and third day of wearing the same garment. One of the 10 doctors who returned the questionnaire found the bow tie very uncomfortable. All participants would consider wearing a bow tie if it proved to be less contaminated than a conventional tie. CONCLUSIONS--Although a significant difference in contamination was established between conventional and bow ties on first day of study, this difference was not confirmed on third day and there is unlikely to be any real association between tie type and bacterial contamination. Because of its negative image and difficulty to tie, the bow tie will probably remain a minority fashion. Images p1583-a PMID:8292945

  4. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    Science.gov (United States)

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.

  5. Analysis of Silver Ink Bow-Tie RFID Tag Antennas Printed on Paper Substrates

    Directory of Open Access Journals (Sweden)

    Sari Merilampi

    2007-01-01

    Full Text Available In this study, polymeric silver inks, paper substrates, and screen printing were used to produce prototype Bow-Tie tags. Because of increasing interest in applying passive UHF-RFID systems in paper industry, the Bow-Tie antenna used in this study was designed to work through paper. The maximum reliable read ranges of the tags were measured thorough stacked paper and also in air. The analysis and functioning of the antenna design are also discussed. All inks and paper substrates were suitable as antenna material and the prototype tag antennas had good reading performance. The maximum reliable read ranges were quite the same as for copper and aluminum tags studied elsewhere. This means that printed UHF tags are competitive solutions for the identification of simple mass products.

  6. Computational analysis of transient gas release from a high pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, G.; Oshkai, P.; Djilali, N. [Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems; Penau, F. [CERAM Euro-American Inst. of Technology, Sophia Antipolis (France)

    2006-07-01

    Gas jets exiting from compressed vessels can undergo several regimes as the pressure in the vessel decreases, and a greater understanding of the characteristics of gas jets is needed to determine safety requirements in the transport, distribution, and use of hydrogen. This paper provided a study of the bow shock waves that typically occur during the initial stage of a gas jet incident. The transient behaviour of an initiated jet was investigated using unsteady, compressible flow simulations. The gas was considered to be ideal, and the domain was considered to be axisymmetric. Tank pressure for the analysis was set at a value of 100 atm. Jet structure was examined, as well as the shock structures and separation due to adverse pressure gradients at the nozzle. Shock structure displacement was also characterized.

  7. On the interplay between cosmological shock waves and their environment

    Science.gov (United States)

    Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent

    2017-05-01

    Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.

  8. Shock-induced chemistry in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  9. Structural phase change and optical band gap bowing in hot wall deposited CdSe{sub x}Te{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumarasamy, N. [Department of Physics, Coimbatore Institute of Technology, Coimbatore, Tamilnadu (India); Jayakumar, S.; Kannan, M.D.; Balasundaraprabhu, R. [Thin Film Center, PSG College of Technology, Coimbatore, Tamilnadu (India)

    2009-04-15

    CdSe{sub x}Te{sub 1-x} thin films of different compositions have been deposited on glass substrates by hot wall deposition method under conditions very close to thermodynamical equilibrium with minimum loss of material. The structural studies carried out on the deposited films revealed that they are crystalline in nature and exhibit either cubic zinc blende or hexagonal phase or both depending on the composition of the material. The lattice parameter values for both cubic and hexagonal phases have been determined and are observed to vary with composition according to Vegard's law. The optical properties of the deposited CdSe{sub x}Te{sub 1-x} thin films have been studied using transmittance spectra. The spectra shows a sharp fall in transmittance at wavelength corresponding to the band gap of the material. The optical band gap has been determined and found to be direct allowed. The band gap has been observed to strongly depend on film composition. The variation of band gap with composition has been observed to be quadratic in nature exhibiting a bowing behaviour. (author)

  10. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  11. Shock disturbance of the I-Xe system

    International Nuclear Information System (INIS)

    Caffee, M.W.; Hohenberg, C.M.; Podosek, F.A.; Swindle, T.D.

    1982-01-01

    Three separate samples of the meteorite Bjurbole were artificially shocked at pressures of 70 kb, 200 kb, and 400 kb. Analysis of xenon released in stepwise heating shows that the I-Xe system of the 400 kb sample is substantially altered by the shock loading, and it is no longer possible to infer an age or trapped xenon composition for that sample. The 200-kb and 70-kb samples display isotopic structures progressively less altered demonstrating the gradations in shock disturbance likely to be found in natural systems. Interpretations of the I-Xe and Ar-40-Ar-39 systems for several naturally shocked meteorites are also presented. New data for Arapahoe do not confirm the previously reported age and trapped xenon composition, demonstrating instead that its I-Xe structure has been strongly disturbed by shock

  12. Bowing to the Dharma: Japanese Buddhist Women Leaders & Healers

    Directory of Open Access Journals (Sweden)

    Paula Arai

    2017-11-01

    Full Text Available The prodigious stream of Japanese Buddhist women in roles of leadership and healing extends the length of Japanese Buddhist history. This article will highlight the transformative power of bowing that helped galvanize Sōtō Zen nuns on the eve of the twentieth century and feature twentieth-century leaders who institutionalized their disciplined commitments. It will also offer a window into the creative healing practices that characterizes women’s activity in the home.

  13. ISEE observations of radiation at twice the solar wind plasma frequency

    International Nuclear Information System (INIS)

    Lacombe, C.; Harvey, C.C.; Hoang, S.

    1988-01-01

    Radiation produced in the vicinity of the Earth's bow shock at twice the solar wind electron plasma frequency f p is seen by both ISEE-1 and ISEE-3, respectively at about 20 and about 200 R E from the Earth. This electromagnetic radiation is due to the presence, in the electron foreshock, of electrons reflected and accelerated at the Earth's bow shock. We show that the source is near the upstream boundary of the foreshock, the surface where the magnetic field lines are tangent to the bow shock. A typical diameter of the source is 120-150 R E . Emissivity is given. The angular size of the source, seen by ISEE-3, is increased by scattering of the 2f p radio waves on the solar wind density fluctuations. We examine whether the bandwidth and directivity predicted by current source models are consistent with our observations

  14. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Oskinova, L. M. [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States)

    2017-04-01

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations of AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.

  15. Electromagnetically driven radiative shocks and their measurements

    International Nuclear Information System (INIS)

    Kondo, K.; Watanabe, M.; Nakajima, M.; Kawamura, T.; Horioka, K.

    2005-01-01

    Experimental results on a generation of strong shocks in a compact pulse power device are reported. The characteristics of strong shocks are different from hydrodynamical shocks' because they depend on not only collisions but radiation processes. Radiative shocks are relevant to high energy density phenomena such as the explosions of supernovae. When initial pressure is lower than about 50 mtorr, an interesting structure is confirmed at the shock front, which might indicate a phenomenon proceeded by the radiative process. (author)

  16. Testing the structure of earthquake networks from multivariate time series of successive main shocks in Greece

    Science.gov (United States)

    Chorozoglou, D.; Kugiumtzis, D.; Papadimitriou, E.

    2018-06-01

    The seismic hazard assessment in the area of Greece is attempted by studying the earthquake network structure, such as small-world and random. In this network, a node represents a seismic zone in the study area and a connection between two nodes is given by the correlation of the seismic activity of two zones. To investigate the network structure, and particularly the small-world property, the earthquake correlation network is compared with randomized ones. Simulations on multivariate time series of different length and number of variables show that for the construction of randomized networks the method randomizing the time series performs better than methods randomizing directly the original network connections. Based on the appropriate randomization method, the network approach is applied to time series of earthquakes that occurred between main shocks in the territory of Greece spanning the period 1999-2015. The characterization of networks on sliding time windows revealed that small-world structure emerges in the last time interval, shortly before the main shock.

  17. Nonrelativistic grey Sn-transport radiative-shock solutions

    International Nuclear Information System (INIS)

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    2017-01-01

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that this monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.

  18. Dayside magnetospheric and ionospheric responses to a foreshock transient on June 25, 2008: 2. 2-D evolution based on dayside auroral imaging

    OpenAIRE

    Wang, Boyi; Nishimura, Yukitoshi; Hietala, Heli; Shen, Xiao-Chen; Shi, Quanqi; Zhang, Hui; Lyons, Larry; Zou, Ying; Angelopoulos, Vassilis; Ebihara, Yusuke; Weatherwax, Allan

    2018-01-01

    The foreshock region involves localized and transient structures such as foreshock cavities and hot flow anomalies due to solar wind-bow shock interactions, and foreshock transients have been shown to lead to magnetospheric and ionospheric responses. In this paper, the interaction between a foreshock transient and the magnetosphere-ionosphere system is investigated using dayside aurora imagers revealing structures and propagation in greater detail than previously possible. A foreshock transie...

  19. Transient shocks beyond the heliopause

    International Nuclear Information System (INIS)

    Fermo, R L; Pogorelov, N V; Burlaga, L F

    2015-01-01

    The heliopause is a rich, dynamic surface affected by the time-dependent solar wind. Stream interactions due to coronal mass ejections (CMEs), corotating interaction regions (CIRs), and other transient phenomena are known to merge producing global merged interaction regions (GMIRs). Numerical simulations of the solar wind interaction with the local interstellar medium (LISM) show that GMIRs, as well other time-dependent structures in the solar wind, may produce compression/rarefaction waves and shocks in the LISM behind the heliopause. These shocks may initiate wave activity observed by the Voyager spacecraft. The magnetometer onboard Voyager 1 indeed observed a few structures that may be interpreted as shocks. We present numerical simulations of such shocks in the year of 2000, when both Voyager spacecraft were in the supersonic solar wind region, and in 2012, when Voyager 1 observed traveling shocks. In the former case, Voyager observations themselves provide time- dependent boundary conditions in the solar wind. In the latter case, we use OMNI data at 1 AU to analyze the plasma and magnetic field behavior after Voyager 1 crossed the heliospheric boundary. Numerical results are compared with spacecraft observations. (paper)

  20. The Heliospheric Termination Shock

    Science.gov (United States)

    Jokipii, J. R.

    2013-06-01

    The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.

  1. Dynamics of the aortic arch submitted to a shock loading: Parametric study with fluid-structure models.

    Science.gov (United States)

    El Baroudi, A; Razafimahery, F; Rakotomanana, L

    2012-01-01

    This work aims to present some fluid-structure models for analyzing the dynamics of the aorta during a brusque loading. Indeed, various lesions may appear at the aortic arch during car crash or other accident such as brusque falling. Aortic stresses evolution are simulated during the shock at the cross section and along the aorta. One hot question was that if a brusque deceleration can generate tissue tearing, or a shock is necessary to provoke such a damage. Different constitutive laws of blood are then tested whereas the aorta is assumed linear and elastic. The overall shock model is inspired from an experimental jig. We show that the viscosity has strong influence on the stress and parietal moments and forces. The nonlinear viscosity has no significant additional effects for healthy aorta, but modifies the stress and parietal loadings for the stenotic aorta.

  2. Plasma rest frame distributions of suprathermal ions in the earth's foreshock region

    International Nuclear Information System (INIS)

    Sentman, D.D.; Kennel, C.F.; Frank, L.A.

    1981-01-01

    We present rest frame ion distributions computed from three-dimensional observations of upstream superthermal ions gained by the Universtiy of Iowa Quadrispherical Lepedea on ISEE-1. The observations are for a single inbound, midmorning pass starting upstream from the ion foreshock and continuing across the quasiparallel bow shock into the magnetosheath. The crossing of the ion foreshock boundary is marked by a several minute burst of ions of temperature 100--200 eV moving along the IMF away from the bow shock at 500 km/s relative to the solar wind. The observation of these 'reflected' ions is followed by an extended interval of 'diffuse' ions of temperatures 2--3 keV flowing at approx.250 km/s relative to the solar wind and persisting until the bow shock is crossed. The diffuse ion β has a value of approximately 6 in the region of the superthermal ions, exceeding the normal thermal β of the solar wind by roughly an order of magnitude. Both types of superthermal ions constitute roughly 2% of the total ion density and carry a parallel heat flux of approx.2 x 10 -2 ergs cm -2 s -2 . When integrated over an assumed 10 x 10 R/sub E/ bow shock emission area, this implies an upstream dissipation that may approach 10 17 to 10 18 ergs/s, comparable to a modest substorm

  3. The structure of shock wave in a gas consisting of ideally elastic, rigid spherical molecules

    Science.gov (United States)

    Cheremisin, F. G.

    1972-01-01

    Principal approaches are examined to the theoretical study of the shock layer structure. The choice of a molecular model is discussed and three procedures are formulated. These include a numerical calculation method, solution of the kinetic relaxation equation, and solution of the Boltzmann equation.

  4. Modelling of bow-tie microstrip antennas using modified locally conformal FDTD method

    NARCIS (Netherlands)

    George, J.

    2000-01-01

    An analysis of bow-tie microstrip antennas is presented based on the use of the modified locally conformal finite-difference time-domain (FDTD) method. This approach enables the number of cells along the antenna length and width to be chosen independently of the antenna central width, which helps to

  5. Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture.

    Science.gov (United States)

    Leibowitz, L. P.

    1973-01-01

    Shock structure during ionization of a hydrogen-helium mixture has been followed using hydrogen line and continuum emission measurements. A reaction scheme is proposed which includes hydrogen dissociation and a two-step excitation-ionization mechanism for hydrogen ionization by atom-atom and atom-electron collisions. Agreement has been achieved between numerical calculations and measurements of emission intensity as a function of time for shock velocities from 13 to 20 km/sec in a 0.208 H2-0.792 He mixture. The electron temperature was found to be significantly different from the heavy particle temperature during much of the ionization process. Similar time histories for H beta and continuum emission indicate upper level populations of hydrogen in equilibrium with the electron concentration during the relaxation process.

  6. Dynamic load synthesis for shock numerical simulation in space structure design

    Science.gov (United States)

    Monti, Riccardo; Gasbarri, Paolo

    2017-08-01

    Pyroshock loads are the most stressing environments that a space equipment experiences during its operating life from a mechanical point of view. In general, the mechanical designer considers the pyroshock analysis as a very demanding constraint. Unfortunately, due to the non-linear behaviour of the structure under such loads, only the experimental tests can demonstrate if it is able to withstand these dynamic loads. By taking all the previous considerations into account, some preliminary information about the design correctness could be done by performing ;ad-hoc; numerical simulations, for example via commercial finite element software (i.e. MSC Nastran). Usually these numerical tools face the shock solution in two ways: 1) a direct mode, by using a time dependent enforcement and by evaluating the time-response and space-response as well as the internal forces; 2) a modal basis approach, by considering a frequency dependent load and of course by evaluating internal forces in the frequency domain. This paper has the main aim to develop a numerical tool to synthetize the time dependent enforcement based on deterministic and/or genetic algorithm optimisers. In particular starting from a specified spectrum in terms of SRS (Shock Response Spectrum) a time dependent discrete function, typically an acceleration profile, will be obtained to force the equipment by simulating the shock event. The synthetizing time and the interface with standards numerical codes will be two of the main topics dealt with in the paper. In addition a congruity and consistency methodology will be presented to ensure that the identified time dependent loads fully match the specified spectrum.

  7. Validation by numerical simulation of the behaviour of protective structures of machinery cabins subjected to standardized shocks

    Science.gov (United States)

    Dumitrache, P.; Goanţă, A. M.

    2017-08-01

    The ability of the cabins to insure the operator protection in the case of the shock loading that appears at the roll-over of the machine or when the cab is struck by the falling objects, it’s one of the most important performance criterions that it must comply by the machines and the mobile equipments. The experimental method provides the most accurate information on the behaviour of protective structures, but generates high costs due to experimental installations and structures which may be compromised during the experiments. In these circumstances, numerical simulation of the actual problem (mechanical shock applied to a strength structure) is a perfectly viable alternative, given that the hardware and software current performances provides the necessary support to obtain results with an acceptable level of accuracy. In this context, the paper proposes using FEA platforms for virtual testing of the actual strength structures of the cabins using their finite element models based on 3D models generated in CAD environments. In addition to the economic advantage above mentioned, although the results obtained by simulation using the finite element method are affected by a number of simplifying assumptions, the adequate modelling of the phenomenon can be a successful support in the design process of structures to meet safety performance criteria imposed by current standards. In the first section of the paper is presented the general context of the security performance requirements imposed by current standards on the cabins strength structures. The following section of the paper is dedicated to the peculiarities of finite element modelling in problems that impose simulation of the behaviour of structures subjected to shock loading. The final section of the paper is dedicated to a case study and to the future objectives.

  8. Relationship of Interplanetary Shock Micro and Macro Characteristics: A Wind Study

    Science.gov (United States)

    Szabo, Adam; Koval, A

    2008-01-01

    The non-linear least squared MHD fitting technique of Szabo 11 9941 has been recently further refined to provide realistic confidence regions for interplanetary shock normal directions and speeds. Analyzing Wind observed interplanetary shocks from 1995 to 200 1, macro characteristics such as shock strength, Theta Bn and Mach numbers can be compared to the details of shock micro or kinetic structures. The now commonly available very high time resolution (1 1 or 22 vectors/sec) Wind magnetic field data allows the precise characterization of shock kinetic structures, such as the size of the foot, ramp, overshoot and the duration of damped oscillations on either side of the shock. Detailed comparison of the shock micro and macro characteristics will be given. This enables the elucidation of shock kinetic features, relevant for particle energization processes, for observations where high time resolution data is not available. Moreover, establishing a quantitative relationship between the shock micro and macro structures will improve the confidence level of shock fitting techniques during disturbed solar wind conditions.

  9. The solar wind on 1 November 1984: observations by the AMPTE-UKS spacecraft

    International Nuclear Information System (INIS)

    Bryant, D.A.; Bingham, R.; Farrugia, C.J.

    1988-01-01

    The AMPTE-UKS spacecraft was well place to monitor the solar wind and its variations during the unusual compression of the earth's magnetosphere on 1 November 1984. Ions, electrons, magnetic fields and plasma waves observed between 0815 and 1300 UT upstream from the bow shock at geocentric distances of 14-19 Rsub(e) and magnetic local times ∼ 0900 MLT are reported and assessed with respect to magnetopause and bow-shock crossings closer to the earth by the AMPTE-CCE. (author)

  10. Short Wavelength Electrostatic Waves in the Earth’s Magnetosheath.

    Science.gov (United States)

    1982-07-01

    to an antenna effect. Emissions likely to be ion-acoustic mode waves have been found up- stream of the bow shock ( foreshock ) in the solar wind...particles apparently reflected at the bow shock and associated with ion- acoustic mode waves in the Earth’s foreshock are also observed [Eastman et al...Res., 86, A 4493-4510, 1981. Eastman, T.E., 1.R. Anderson, L.A. Frank, and G.K. Parks, Upstream particles observed in the Earth’s foreshock region

  11. Structure of dense shock-melted alkali halides: Evidence for a continuous pressure-induced structural transition in the melt

    International Nuclear Information System (INIS)

    Ross, M.; Rogers, F.J.

    1985-01-01

    Hypernetted-chain equation calculations have been made for the ion-ion pair distribution functions in shock-melted CsI, CsBr, KBr, KCl, NaCl, and LiF. The results show that the melt undergoes a gradual pressure-induced structural change from an open NaCl-like structure with six nearest neighbors of opposite charge to one that has a rare-gas close-packed-like arrangement containing about 12 neighbors of mixed charge. These effects are most pronounced for the larger ions in which the short-range repulsions are stronger relative to long-range Coulomb attractions

  12. Advanced Computational Modeling Approaches for Shock Response Prediction

    Science.gov (United States)

    Derkevorkian, Armen; Kolaini, Ali R.; Peterson, Lee

    2015-01-01

    Motivation: (1) The activation of pyroshock devices such as explosives, separation nuts, pin-pullers, etc. produces high frequency transient structural response, typically from few tens of Hz to several hundreds of kHz. (2) Lack of reliable analytical tools makes the prediction of appropriate design and qualification test levels a challenge. (3) In the past few decades, several attempts have been made to develop methodologies that predict the structural responses to shock environments. (4) Currently, there is no validated approach that is viable to predict shock environments overt the full frequency range (i.e., 100 Hz to 10 kHz). Scope: (1) Model, analyze, and interpret space structural systems with complex interfaces and discontinuities, subjected to shock loads. (2) Assess the viability of a suite of numerical tools to simulate transient, non-linear solid mechanics and structural dynamics problems, such as shock wave propagation.

  13. Sensitivity of reactivity feedback due to core bowing in a metallic-fueled core

    International Nuclear Information System (INIS)

    Nakagawa, Masatoshi; Kawashima, Masatoshi; Endo, Hiroshi; Nishimura, Tomohiro

    1991-01-01

    A sensitivity study has been carried out on negative reactivity feedback caused by core bowing to assess the potential effectiveness of FBR passive safety features in regard to withstanding an anticipated transient without scram (ATWS). In the present study, an analysis has been carried to obtain the best material and geometrical conditions concerning the core restraint system out for several power to flow rates (P/F), up to 2.0 for a 300 MWe metallic-fueled core. From this study, it was clarified that the pad stiffness at an above core loading pads (ACLP) needs to be large enough to ensure negative reactivity feedback against ATWS. It was also clarified that there is an upper limit for the clearances between ducts at ACLP. A new concept, in regard to increasing the absolute value for negative reactivity feedback due to core bowing at ATWS, is proposed and discussed. (author)

  14. Resonant Alfven wave instabilities driven by streaming fast particles

    International Nuclear Information System (INIS)

    Zachary, A.

    1987-01-01

    A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs

  15. Augmentation of DAA Staggered – Solution Equations in Underwater Shock Problems for Singular Structural Mass Matrices

    OpenAIRE

    DeRuntz Jr., John A.

    2005-01-01

    The numerical solution of underwater shock fluid – structure interaction problems using boundary element/finite element techniques became tractable through the development of the family of Doubly Asymptotic Approximations (DAA). Practical implementation of the method has relied on the so-called augmentation of the DAA equations. The fluid and structural systems are respectively coupled by the structural acceleration vector in the surface normal direction on the right hand side of the DAA equa...

  16. Properties and structure of a plasma non-neutral shock

    International Nuclear Information System (INIS)

    Hu Yemin; Hu Xiwei

    2004-01-01

    The shock is described by the Navier-Stokes equations of the electron and ion fluids, and coupled with Poisson's equation for the self-induced electric field. Profiles of the flow and electric variables in the weak or moderate shock front with or without current for different Debye lengths are presented. Comparison of profiles of flow and electric variables in the front for different heat flow modes is given

  17. THE ASTROSPHERE OF THE ASYMPTOTIC GIANT BRANCH STAR IRC+10216

    International Nuclear Information System (INIS)

    Sahai, Raghvendra; Chronopoulos, Christopher K.

    2010-01-01

    We have discovered a very extended shock structure (i.e., with a diameter of about 24') surrounding the well-known carbon star IRC+10216 in ultraviolet images taken with the Galaxy Evolution Explorer satellite. We conclude that this structure results from the interaction of IRC+10216's molecular wind with the interstellar medium (ISM), as it moves through the latter. All important structural features expected from theoretical models of such interactions are identified: the termination shock, the astrosheath, the astropause, the bow shock, and an astrotail (with vortices). The extent of the astropause provides new lower limits to the envelope age (69,000 years) and mass (1.4 M sun , for a mass-loss rate of 2 x 10 -5 M sun yr -1 ). From the termination-shock standoff distance, we find that IRC+10216 is moving at a speed of about ∼>91 km s -1 (1 cm -3 /n ISM ) 1/2 through the surrounding ISM.

  18. On the stability of rotational discontinuities and intermediate shocks

    International Nuclear Information System (INIS)

    Lee, L.C.; Huang, L.; Chao, J.K.

    1989-01-01

    The stability of rotational discontinuities and intermediate shocks is studied based on a hybrid simulation code. The simulation results show that rotational discontinuities are stable and intermediate shocks are not stationary. Intermediate shocks tend to evolve to rotational discontinuities and waves. The authors employ several different initial profiles for the magnetic field in the transition region and find that the final structure of the discontinuities or shocks is not sensitive to the initial magnetic field profile. The present results are different from those obtained from the resistive MHD simulations. Furthermore, their study indicates that the kinetic effect of particles plays an important role in the structure and stability of rotational discontinuities and intermediate shocks

  19. The statistics of foreshock cavities: results of a Cluster survey

    Directory of Open Access Journals (Sweden)

    L. Billingham

    2008-11-01

    Full Text Available We use Cluster magnetic field, thermal ion, and energetic particle observations upstream of the Earth's bow shock to investigate the occurrence patterns of foreshock cavities. Such cavities are thought to form when bundles of magnetic field connect to the quasi-parallel bow shock. Shock-processed suprathermal ions can then stream along the field, back against the flow of the solar wind. These suprathermals enhance the pressure on shock-connected field lines causing them to expand into the surrounding ambient solar wind plasma. Foreshock cavities exhibit depressions in magnetic field magnitude and thermal ion density, associated with enhanced fluxes of energetic ions. We find typical cavity duration to be few minutes with interior densities and magnetic field magnitudes dropping to ~60% of those in the surrounding solar wind. Cavities are found to occur preferentially in fast, moderate magnetic field strength solar wind streams. Cavities are observed in all parts of the Cluster orbit upstream of the bow shock. When localised in a coordinate system organised by the underlying physical processes in the foreshock, there is a systematic change in foreshock cavity location with IMF cone angle. At low (high cone angles foreshock cavities are observed outside (inside the expected upstream boundary of the intermediate ion foreshock.

  20. The statistics of foreshock cavities: results of a Cluster survey

    Directory of Open Access Journals (Sweden)

    L. Billingham

    2008-11-01

    Full Text Available We use Cluster magnetic field, thermal ion, and energetic particle observations upstream of the Earth's bow shock to investigate the occurrence patterns of foreshock cavities. Such cavities are thought to form when bundles of magnetic field connect to the quasi-parallel bow shock. Shock-processed suprathermal ions can then stream along the field, back against the flow of the solar wind. These suprathermals enhance the pressure on shock-connected field lines causing them to expand into the surrounding ambient solar wind plasma. Foreshock cavities exhibit depressions in magnetic field magnitude and thermal ion density, associated with enhanced fluxes of energetic ions. We find typical cavity duration to be few minutes with interior densities and magnetic field magnitudes dropping to ~60% of those in the surrounding solar wind. Cavities are found to occur preferentially in fast, moderate magnetic field strength solar wind streams. Cavities are observed in all parts of the Cluster orbit upstream of the bow shock. When localised in a coordinate system organised by the underlying physical processes in the foreshock, there is a systematic change in foreshock cavity location with IMF cone angle. At low (high cone angles foreshock cavities are observed outside (inside the expected upstream boundary of the intermediate ion foreshock.