WorldWideScience

Sample records for bovoculi cytotoxin-iscom matrix

  1. Recombinant Moraxella bovoculi cytotoxin-ISCOM matrix adjuvanted vaccine to prevent naturally occurring infectious bovine keratoconjunctivitis.

    Science.gov (United States)

    Angelos, John A; Lane, V Michael; Ball, Louise M; Hess, John F

    2010-03-01

    A randomized, blinded, controlled field trial was conducted during summer 2006 in a northern California, USA, herd of beef cattle to evaluate the efficacy of a recombinant Moraxella bovoculi cytotoxin subunit vaccine to prevent naturally occurring infectious bovine keratoconjunctivitis (IBK; pinkeye). A convenience sample comprised of 127 steers were administered a subcutaneous dose of either adjuvant alone (ISCOM matrices; control group) or recombinant M. bovoculi cytotoxin carboxy terminus adjuvanted with ISCOM matrices (MbvA group) and were boostered 21 days later. The steers were examined once weekly for 15 weeks for evidence of IBK. No significant difference in the cumulative proportion of corneal ulcerations was detected between groups. Compared to the control calves, the MbvA vaccinates had significantly higher increases in serum neutralizing titers to M. bovoculi hemolysin between week 0 and week 6. The prevalence of M. bovis isolations was higher from ulcerated eyes of calves vaccinated with MbvA as compared to control calves. Vaccination of calves against the carboxy terminus of M. bovoculi RTX toxin resulted in significant increases in serum hemolysin neutralizing titers and may modulate organism type cultured from ulcerated eyes of calves in herds where both M. bovis and M. bovoculi exist. Use of M. bovoculi antigens alone in vaccines to prevent IBK may not be beneficial in herds where IBK is associated with both M. bovoculi and M. bovis.

  2. Complete Genome Sequence of Mycoplasma bovoculi Strain M165/69T (ATCC 29104).

    Science.gov (United States)

    Calcutt, Michael J; Foecking, Mark F

    2014-02-20

    Bovine ocular infections compromise animal health and result in significant economic losses. Mycoplasma bovoculi is an etiological agent of conjunctivitis. Presented here is the 760,240-bp complete genome sequence of the M. bovoculi type strain M165/69(T). An analysis of the deduced proteome provides insights into the adherence and antigenic variation mechanisms of the strain.

  3. Mycoplasma bovoculi infection increases ocular colonization by Moraxella ovis in calves.

    Science.gov (United States)

    Rosenbusch, R F; Ostle, A G

    1986-06-01

    To determine whether infection with Mycoplasma bovoculi increases ocular colonization of cattle eyes with Moraxella bovis and other bacteria, colonization of ocular gram-negative bacteria were measured in eyes of cattle infected with Mycoplasma bovoculi. Strains of Moraxella ovis were chosen because these are among the most commonly isolated species of gram-negative bacteria from cattle eyes. Five strains of M ovis were characterized biochemically and by pilus structure, permitting the recognition of 2 biotypes. All strains were tested in a mouse corneal pathogenicity model. One strain of each biotype was selected for testing in calves. All 5 strains were apathogenic for mice, and the 2 strains tested in cattle did not induce keratitis. Infection of calves with Mycoplasma bovoculi increased the amount and persistence of colonization with the strains of M ovis.

  4. Moraxella bovoculi em casos de ceratoconjuntivite infecciosa bovina no Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Felipe Libardoni

    2012-08-01

    Full Text Available A ceratoconjuntivite infecciosa (CI, embora raramente fatal, resulta em perdas econômicas significativas para os rebanhos bovinos e ovinos. Os principais agentes causadores dessa enfermidade são Moraxella bovis e Moraxella ovis. Em 2007 foi descrita uma nova espécie também responsável pela CI e denominada Moraxella bovoculi, que até o presente momento, não havia sido relatada no Brasil. Assim, objetivou-se com este trabalho caracterizar e distinguir 54 isolados de Moraxella spp. de amostras clínicas oriundas de 34 bovinos e 17 ovinos, encaminhadas ao Laboratório de Bacteriologia da Universidade Federal de Santa Maria no período de 1990 a 2011, visando a identificação de M. bovoculi. A distinção dos isolados foi fundamentada nas características genotípicas, pela amplificação parcial da região intergênica 16S-23S e clivagem dos produtos da amplificação com enzima RsaI. Como resultados, 25 (46% isolados foram caracterizados como M. bovis, 17 (32% como M. ovis e 12 (22% como M. bovoculi. Logo, conclui-se que M. bovoculi encontra-se presente no rebanho bovino do Rio Grande do Sul e, portanto, no Brasil.

  5. Draft Genome Sequence of Moraxella bovoculi Strain 237T (ATCC BAA-1259T) Isolated from a Calf with Infectious Bovine Keratoconjunctivitis.

    Science.gov (United States)

    Calcutt, Michael J; Foecking, Mark F; Martin, Neal T; Mhlanga-Mutangadura, Tendai; Reilly, Thomas J

    2014-06-26

    Moraxella bovoculi is a recently identified species, recovered from the bovine eye, which is under investigation as an etiological agent of infectious bovine keratoconjunctivitis. A draft genome sequence of the Moraxella bovoculi type strain 237(T) has been determined to identify features that may be important during host colonization.

  6. Large genomic differences between Moraxella bovoculi isolates acquired from the eyes of cattle with infectious bovine keratoconjunctivitis versus the deep nasopharynx of asymptomatic cattle.

    Science.gov (United States)

    Dickey, Aaron M; Loy, John D; Bono, James L; Smith, Timothy P L; Apley, Mike D; Lubbers, Brian V; DeDonder, Keith D; Capik, Sarah F; Larson, Robert L; White, Brad J; Blom, Jochen; Chitko-McKown, Carol G; Clawson, Michael L

    2016-02-13

    Moraxella bovoculi is a recently described bacterium that is associated with infectious bovine keratoconjunctivitis (IBK) or "pinkeye" in cattle. In this study, closed circularized genomes were generated for seven M. bovoculi isolates: three that originated from the eyes of clinical IBK bovine cases and four from the deep nasopharynx of asymptomatic cattle. Isolates that originated from the eyes of IBK cases profoundly differed from those that originated from the nasopharynx of asymptomatic cattle in genome structure, gene content and polymorphism diversity and consequently placed into two distinct phylogenetic groups. These results suggest that there are genetically distinct strains of M. bovoculi that may not associate with IBK.

  7. Differences in the antimicrobial susceptibility profiles of Moraxella bovis, M. bovoculi and M. ovis

    Science.gov (United States)

    Maboni, Grazieli; Gressler, Leticia T.; Espindola, Julia P.; Schwab, Marcelo; Tasca, Caiane; Potter, Luciana; de Vargas, Agueda Castagna

    2015-01-01

    The aim of this study was to determine the differences in the antimicrobial susceptibility profiles of Moraxella bovis, M. bovoculi and M. ovis. Thirty-two strains of Moraxella spp. isolated from cattle and sheep with infectious keratoconjunctivitis were tested via broth microdilution method to determine their susceptibility to ampicillin, cefoperazone, ceftiofur, cloxacillin, enrofloxacin, florfenicol, gentamicin, neomycin, oxytetracycline and penicillin. The results demonstrated that Moraxella spp. strains could be considered sensitive for most of the antimicrobials tested in this study, but differences between the antimicrobial susceptibility profiles of these three Moraxella species were found. M. bovis might differ from other species due to the higher MIC and MBC values it presented. PMID:26273272

  8. Differences in the antimicrobial susceptibility profiles of Moraxella bovis, M. bovoculi and M. ovis

    Directory of Open Access Journals (Sweden)

    Grazieli Maboni

    2015-06-01

    Full Text Available The aim of this study was to determine the differences in the antimicrobial susceptibility profiles of Moraxella bovis, M. bovoculi and M. ovis. Thirty-two strains of Moraxella spp. isolated from cattle and sheep with infectious keratoconjunctivitis were tested via broth microdilution method to determine their susceptibility to ampicillin, cefoperazone, ceftiofur, cloxacillin, enrofloxacin, florfenicol, gentamicin, neomycin, oxytetracycline and penicillin. The results demonstrated that Moraxella spp. strains could be considered sensitive for most of the antimicrobials tested in this study, but differences between the antimicrobial susceptibility profiles of these three Moraxella species were found. M. bovis might differ from other species due to the higher MIC and MBC values it presented.

  9. Randomized blinded challenge study to assess association between Moraxella bovoculi and Infectious Bovine Keratoconjunctivitis in dairy calves.

    Science.gov (United States)

    Gould, S; Dewell, R; Tofflemire, K; Whitley, R D; Millman, S T; Opriessnig, T; Rosenbusch, R; Trujillo, J; O'Connor, A M

    2013-05-31

    The objective of this study was to evaluate if Moraxella bovoculi was associated with Infectious Bovine Keratoconjunctivitis (IBK) using a corneal scarification model in calves. A 3-arm single-eye block-randomized and blinded challenge study was designed as follows: corneal scarification only, corneal scarification and inoculation with M. bovoculi (ATCC strain: BAA-1259; origin: CA) and corneal scarification and inoculation with Moraxella bovis (strain Epp63-300; origin: NADC). The study was conducted in 3 replicates of 10-12 animals housed in individual pens with no nose-to-nose contact. Calves were enrolled after an ophthalmologist confirmed the absence of corneal, conjunctival, and eyelid abnormalities. Calves were scarified and inoculated in one randomly selected eye, then observed for the primary outcome of interest (corneal ulcers) until euthanized 10 days following scarification. Research group members assessing the outcome were blind to allocation status. The study was approved by the institutional animal care and use committee. Of 36 animals purchased for the study, 5 were excluded prior to enrollment due to ophthalmic abnormalities. Of the 31 enrolled calves, 9/10 (90%) of M. bovis calves, 0/10 (0%) of M. bovoculi calves and 1/11 (9%) of control calves developed corneal ulcerations consistent with IBK in the scarified eyes. The absence of corneal ulcerations in M. bovoculi BAA-1259 inoculated calves suggests it is not a causal organism for IBK in this model and the pathogenicity of this ATCC strain has not been established. Consistent corneal ulceration development in the M. bovis inoculated group demonstrates the ability of the model to induce IBK ulcers.

  10. Moraxella bovoculi sp. nov., isolated from calves with infectious bovine keratoconjunctivitis.

    Science.gov (United States)

    Angelos, John A; Spinks, Phillip Q; Ball, Louise M; George, Lisle W

    2007-04-01

    Eighteen isolates of a Gram-negative coccus (strain 237(T)) were cultured from the eyes of dairy and beef calves affected with infectious bovine keratoconjunctivitis (IBK; 'pinkeye') in northern California, USA, during summer 2002. These isolates had near full-length (1397 bp) 16S rRNA gene sequences that clustered into three groups with 99.9 % sequence similarity. On the basis of 16S rRNA gene sequence, the isolates were most closely associated with Moraxella bovis and Moraxella ovis in clade I of the classical moraxellae. Biochemically, the novel isolates could be distinguished from the other members of the genus Moraxella isolated from animals on the basis of phenylalanine deaminase activity. The results of partial sequence analysis of six housekeeping genes, the 16S-23S rRNA gene interspacer region and partial 23S rRNA gene provide strong support for the inclusion of these isolates in a novel taxon, for which the name Moraxella bovoculi sp. nov. is proposed. The type strain is strain 237(T) (=ATCC BAA-1259(T)=CCUG 52049(T)).

  11. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  12. Matrix Thermalization

    CERN Document Server

    Craps, Ben; Nguyen, Kévin

    2016-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  13. Matrix inequalities

    CERN Document Server

    Zhan, Xingzhi

    2002-01-01

    The main purpose of this monograph is to report on recent developments in the field of matrix inequalities, with emphasis on useful techniques and ingenious ideas. Among other results this book contains the affirmative solutions of eight conjectures. Many theorems unify or sharpen previous inequalities. The author's aim is to streamline the ideas in the literature. The book can be read by research workers, graduate students and advanced undergraduates.

  14. Matrix analysis

    CERN Document Server

    Bhatia, Rajendra

    1997-01-01

    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...

  15. Matrix pentagons

    CERN Document Server

    Belitsky, A V

    2016-01-01

    The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multiparticle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unravelled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  16. Riemann Zeta Matrix Function

    OpenAIRE

    Kargın, Levent; Kurt, Veli

    2015-01-01

    In this study, obtaining the matrix analog of the Euler's reflection formula for the classical gamma function we expand the domain of the gamma matrix function and give a infinite product expansion of sinπxP.  Furthermore we define Riemann zeta matrix function and evaluate some other matrix integrals. We prove a functional equation for Riemann zeta matrix function.

  17. The Matrix Cookbook

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Pedersen, Michael Syskind

    Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices.......Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices....

  18. Matrix with Prescribed Eigenvectors

    Science.gov (United States)

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  19. Parallelism in matrix computations

    CERN Document Server

    Gallopoulos, Efstratios; Sameh, Ahmed H

    2016-01-01

    This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...

  20. Phosphine in various matrixes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Matrix-bound phosphine was determined in the Jiaozhou Bay coastal sediment, in prawn-pond bottom soil, in the eutrophic lake Wulongtan, in the sewage sludge and in paddy soil as well. Results showed that matrix-bound phosphine levels in freshwater and coastal sediment, as well as in sewage sludge, are significantly higher than that in paddy soil. The correlation between matrix bound phosphine concentrations and organic phosphorus contents in sediment samples is discussed.

  1. Mixed matrix membrane development.

    Science.gov (United States)

    Kulprathipanja, Santi

    2003-03-01

    Two types of mixed matrix membranes were developed by UOP in the late 1980s. The first type includes adsorbent polymers, such as silicalite-cellulose acetate (CA), NaX-CA, and AgX-CA mixed matrix membranes. The silicalite-CA has a CO(2)/H(2) selectivity of 5.15 +/- 2.2. In contrast, the CA membrane has a CO(2)/H(2) selectivity of 0.77 +/- 0.06. The second type of mixed matrix membrane is PEG-silicone rubber. The PEG-silicone rubber mixed matrix membrane has high selectivity for polar gases, such as SO(2), NH(3), and H(2)S.

  2. Patience of matrix games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Ibsen-Jensen, Rasmus; Podolskii, Vladimir V.;

    2013-01-01

    For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for image win–lose–draw games (i.e. image matrix games) nonzero probabilities smaller than image are never needed. We also construct an explicit image win–lose game such that the unique optimal...

  3. Improved Matrix Uncertainty Selector

    CERN Document Server

    Rosenbaum, Mathieu

    2011-01-01

    We consider the regression model with observation error in the design: y=X\\theta* + e, Z=X+N. Here the random vector y in R^n and the random n*p matrix Z are observed, the n*p matrix X is unknown, N is an n*p random noise matrix, e in R^n is a random noise vector, and \\theta* is a vector of unknown parameters to be estimated. We consider the setting where the dimension p can be much larger than the sample size n and \\theta* is sparse. Because of the presence of the noise matrix N, the commonly used Lasso and Dantzig selector are unstable. An alternative procedure called the Matrix Uncertainty (MU) selector has been proposed in Rosenbaum and Tsybakov (2010) in order to account for the noise. The properties of the MU selector have been studied in Rosenbaum and Tsybakov (2010) for sparse \\theta* under the assumption that the noise matrix N is deterministic and its values are small. In this paper, we propose a modification of the MU selector when N is a random matrix with zero-mean entries having the variances th...

  4. Elementary matrix theory

    CERN Document Server

    Eves, Howard

    1980-01-01

    The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum.This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineeri

  5. Rheocasting Al matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Girot, F.A.; Albingre, L.; Quenisset, J.M.; Naslain, R.

    1987-11-01

    A development status account is given for the rheocasting method of Al-alloy matrix/SiC-whisker composites, which involves the incorporation and homogeneous distribution of 8-15 vol pct of whiskers through the stirring of the semisolid matrix melt while retaining sufficient fluidity for casting. Both 1-, 3-, and 6-mm fibers of Nicalon SiC and and SiC whisker reinforcements have been experimentally investigated, with attention to the characterization of the resulting microstructures and the effects of fiber-matrix interactions. A thin silica layer is found at the whisker surface. 7 references.

  6. Matrix theory of gravitation

    CERN Document Server

    Koehler, Wolfgang

    2011-01-01

    A new classical theory of gravitation within the framework of general relativity is presented. It is based on a matrix formulation of four-dimensional Riemann-spaces and uses no artificial fields or adjustable parameters. The geometrical stress-energy tensor is derived from a matrix-trace Lagrangian, which is not equivalent to the curvature scalar R. To enable a direct comparison with the Einstein-theory a tetrad formalism is utilized, which shows similarities to teleparallel gravitation theories, but uses complex tetrads. Matrix theory might solve a 27-year-old, fundamental problem of those theories (sec. 4.1). For the standard test cases (PPN scheme, Schwarzschild-solution) no differences to the Einstein-theory are found. However, the matrix theory exhibits novel, interesting vacuum solutions.

  7. Pesticide-Exposure Matrix

    Science.gov (United States)

    The "Pesticide-exposure Matrix" was developed to help epidemiologists and other researchers identify the active ingredients to which people were likely exposed when their homes and gardens were treated for pests in past years.

  8. Matrix comparison, Part 2

    DEFF Research Database (Denmark)

    Schneider, Jesper Wiborg; Borlund, Pia

    2007-01-01

    The present two-part article introduces matrix comparison as a formal means for evaluation purposes in informetric studies such as cocitation analysis. In the first part, the motivation behind introducing matrix comparison to informetric studies, as well as two important issues influencing...... such comparisons, matrix generation, and the composition of proximity measures, are introduced and discussed. In this second part, the authors introduce and thoroughly demonstrate two related matrix comparison techniques the Mantel test and Procrustes analysis, respectively. These techniques can compare...... important. Alternatively, or as a supplement, Procrustes analysis compares the actual ordination results without investigating the underlying proximity measures, by matching two configurations of the same objects in a multidimensional space. An advantage of the Procrustes analysis though, is the graphical...

  9. The Matrix Organization Revisited

    DEFF Research Database (Denmark)

    Gattiker, Urs E.; Ulhøi, John Parm

    1999-01-01

    This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively).......This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively)....

  10. Matrix fractional systems

    Science.gov (United States)

    Tenreiro Machado, J. A.

    2015-08-01

    This paper addresses the matrix representation of dynamical systems in the perspective of fractional calculus. Fractional elements and fractional systems are interpreted under the light of the classical Cole-Cole, Davidson-Cole, and Havriliak-Negami heuristic models. Numerical simulations for an electrical circuit enlighten the results for matrix based models and high fractional orders. The conclusions clarify the distinction between fractional elements and fractional systems.

  11. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  12. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.

  13. Ceramic Matrix Composites .

    Directory of Open Access Journals (Sweden)

    J. Mukerji

    1993-10-01

    Full Text Available The present state of the knowledge of ceramic-matrix composites have been reviewed. The fracture toughness of present structural ceramics are not enough to permit design of high performance machines with ceramic parts. They also fail by catastrophic brittle fracture. It is generally believed that further improvement of fracture toughness is only possible by making composites of ceramics with ceramic fibre, particulate or platelets. Only ceramic-matrix composites capable of working above 1000 degree centigrade has been dealt with keeping reinforced plastics and metal-reinforced ceramics outside the purview. The author has discussed the basic mechanisms of toughening and fabrication of composites and the difficulties involved. Properties of available fibres and whiskers have been given. The best results obtained so far have been indicated. The limitations of improvement in properties of ceramic-matrix composites have been discussed.

  14. Matrix interdiction problem

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory

    2010-01-01

    In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.

  15. Finite Temperature Matrix Theory

    CERN Document Server

    Meana, M L; Peñalba, J P; Meana, Marco Laucelli; Peñalba, Jesús Puente

    1998-01-01

    We present the way the Lorentz invariant canonical partition function for Matrix Theory as a light-cone formulation of M-theory can be computed. We explicitly show how when the eleventh dimension is decompactified, the N=1 eleven dimensional SUGRA partition function appears. From this particular analysis we also clarify the question about the discernibility problem when making statistics with supergravitons (the N! problem) in Matrix black hole configurations. We also provide a high temperature expansion which captures some structure of the canonical partition function when interactions amongst D-particles are on. The connection with the semi-classical computations thermalizing the open superstrings attached to a D-particle is also clarified through a Born-Oppenheimer approximation. Some ideas about how Matrix Theory would describe the complementary degrees of freedom of the massless content of eleven dimensional SUGRA are also discussed.

  16. Matrixed business support comparison study.

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Josh D.

    2004-11-01

    The Matrixed Business Support Comparison Study reviewed the current matrixed Chief Financial Officer (CFO) division staff models at Sandia National Laboratories. There were two primary drivers of this analysis: (1) the increasing number of financial staff matrixed to mission customers and (2) the desire to further understand the matrix process and the opportunities and challenges it creates.

  17. Reduced Google matrix

    CERN Document Server

    Frahm, K M

    2016-01-01

    Using parallels with the quantum scattering theory, developed for processes in nuclear and mesoscopic physics and quantum chaos, we construct a reduced Google matrix $G_R$ which describes the properties and interactions of a certain subset of selected nodes belonging to a much larger directed network. The matrix $G_R$ takes into account effective interactions between subset nodes by all their indirect links via the whole network. We argue that this approach gives new possibilities to analyze effective interactions in a group of nodes embedded in a large directed networks. Possible efficient numerical methods for the practical computation of $G_R$ are also described.

  18. IIB Matrix Model

    CERN Document Server

    Aoki, H; Kawai, H; Kitazawa, Y; Tada, T; Tsuchiya, A

    1999-01-01

    We review our proposal for a constructive definition of superstring, type IIB matrix model. The IIB matrix model is a manifestly covariant model for space-time and matter which possesses N=2 supersymmetry in ten dimensions. We refine our arguments to reproduce string perturbation theory based on the loop equations. We emphasize that the space-time is dynamically determined from the eigenvalue distributions of the matrices. We also explain how matter, gauge fields and gravitation appear as fluctuations around dynamically determined space-time.

  19. Little IIB Matrix Model

    CERN Document Server

    Kitazawa, Y; Saito, O; Kitazawa, Yoshihisa; Mizoguchi, Shun'ya; Saito, Osamu

    2006-01-01

    We study the zero-dimensional reduced model of D=6 pure super Yang-Mills theory and argue that the large N limit describes the (2,0) Little String Theory. The one-loop effective action shows that the force exerted between two diagonal blocks of matrices behaves as 1/r^4, implying a six-dimensional spacetime. We also observe that it is due to non-gravitational interactions. We construct wave functions and vertex operators which realize the D=6, (2,0) tensor representation. We also comment on other "little" analogues of the IIB matrix model and Matrix Theory with less supercharges.

  20. Density matrix perturbation theory.

    Science.gov (United States)

    Niklasson, Anders M N; Challacombe, Matt

    2004-05-14

    An orbital-free quantum perturbation theory is proposed. It gives the response of the density matrix upon variation of the Hamiltonian by quadratically convergent recursions based on perturbed projections. The technique allows treatment of embedded quantum subsystems with a computational cost scaling linearly with the size of the perturbed region, O(N(pert.)), and as O(1) with the total system size. The method allows efficient high order perturbation expansions, as demonstrated with an example involving a 10th order expansion. Density matrix analogs of Wigner's 2n+1 rule are also presented.

  1. Rheocasting Al Matrix Composites

    Science.gov (United States)

    Girot, F. A.; Albingre, L.; Quenisset, J. M.; Naslain, R.

    1987-11-01

    Aluminum alloy matrix composites reinforced by SiC short fibers (or whiskers) can be prepared by rheocasting, a process which consists of the incorporation and homogeneous distribution of the reinforcement by stirring within a semi-solid alloy. Using this technique, composites containing fiber volume fractions in the range of 8-15%, have been obtained for various fibers lengths (i.e., 1 mm, 3 mm and 6 mm for SiC fibers). This paper attempts to delineate the best compocasting conditions for aluminum matrix composites reinforced by short SiC (e.g Nicalon) or SiC whiskers (e.g., Tokamax) and characterize the resulting microstructures.

  2. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  3. Empirical codon substitution matrix

    Directory of Open Access Journals (Sweden)

    Gonnet Gaston H

    2005-06-01

    Full Text Available Abstract Background Codon substitution probabilities are used in many types of molecular evolution studies such as determining Ka/Ks ratios, creating ancestral DNA sequences or aligning coding DNA. Until the recent dramatic increase in genomic data enabled construction of empirical matrices, researchers relied on parameterized models of codon evolution. Here we present the first empirical codon substitution matrix entirely built from alignments of coding sequences from vertebrate DNA and thus provide an alternative to parameterized models of codon evolution. Results A set of 17,502 alignments of orthologous sequences from five vertebrate genomes yielded 8.3 million aligned codons from which the number of substitutions between codons were counted. From this data, both a probability matrix and a matrix of similarity scores were computed. They are 64 × 64 matrices describing the substitutions between all codons. Substitutions from sense codons to stop codons are not considered, resulting in block diagonal matrices consisting of 61 × 61 entries for the sense codons and 3 × 3 entries for the stop codons. Conclusion The amount of genomic data currently available allowed for the construction of an empirical codon substitution matrix. However, more sequence data is still needed to construct matrices from different subsets of DNA, specific to kingdoms, evolutionary distance or different amount of synonymous change. Codon mutation matrices have advantages for alignments up to medium evolutionary distances and for usages that require DNA such as ancestral reconstruction of DNA sequences and the calculation of Ka/Ks ratios.

  4. Dynamic Matrix Rank

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands

    2009-01-01

    We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entri...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions.......We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...

  5. Matrix Embedded Organic Synthesis

    Science.gov (United States)

    Kamakolanu, U. G.; Freund, F. T.

    2016-05-01

    In the matrix of minerals such as olivine, a redox reaction of the low-z elements occurs. Oxygen is oxidized to the peroxy state while the low-Z-elements become chemically reduced. We assign them a formula [CxHyOzNiSj]n- and call them proto-organics.

  6. Matrix string theory

    Science.gov (United States)

    Dijkgraaf, Robbert; Verlinde, Erik; Verlinde, Herman

    1997-02-01

    Via compactification on a circle, the matrix mode] of M-theory proposed by Banks et a]. suggests a concrete identification between the large N limit of two-dimensional N = 8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.

  7. Matrix string theory

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Mathematics; Verlinde, E. [TH-Division, CERN, CH-1211 Geneva 23 (Switzerland)]|[Institute for Theoretical Physics, Universtity of Utrecht, 3508 TA Utrecht (Netherlands); Verlinde, H. [Institute for Theoretical Physics, University of Amsterdam, 1018 XE Amsterdam (Netherlands)

    1997-09-01

    Via compactification on a circle, the matrix model of M-theory proposed by Banks et al. suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states. (orig.).

  8. Matrix String Theory

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.

  9. Holomorphic matrix integrals

    CERN Document Server

    Felder, G; Felder, Giovanni; Riser, Roman

    2004-01-01

    We study a class of holomorphic matrix models. The integrals are taken over middle dimensional cycles in the space of complex square matrices. As the size of the matrices tends to infinity, the distribution of eigenvalues is given by a measure with support on a collection of arcs in the complex planes. We show that the arcs are level sets of the imaginary part of a hyperelliptic integral connecting branch points.

  10. Metal matrix Composites

    Directory of Open Access Journals (Sweden)

    Pradeep K. Rohatgi

    1993-10-01

    Full Text Available This paper reviews the world wide upsurge in metal matrix composite research and development activities with particular emphasis on cast metal-matrix particulate composites. Extensive applications of cast aluminium alloy MMCs in day-to-day use in transportation as well as durable good industries are expected to advance rapidly in the next decade. The potential for extensive application of cast composites is very large in India, especially in the areas of transportation, energy and electromechanical machinery; the extensive use of composites can lead to large savings in materials and energy, and in several instances, reduce environmental pollution. It is important that engineering education and short-term courses be organized to bring MMCs to the attention of students and engineering industry leaders. India already has excellent infrastructure for development of composites, and has a long track record of world class research in cast metal matrix particulate composites. It is now necessary to catalyze prototype and regular production of selected composite components, and get them used in different sectors, especially railways, cars, trucks, buses, scooters and other electromechanical machinery. This will require suitable policies backed up by funding to bring together the first rate talent in cast composites which already exists in India, to form viable development groups followed by setting up of production plants involving the process engineering capability already available within the country. On the longer term, cast composites should be developed for use in energy generation equipment, electronic packaging aerospace systems, and smart structures.

  11. Matrix Theory of Small Oscillations

    Science.gov (United States)

    Chavda, L. K.

    1978-01-01

    A complete matrix formulation of the theory of small oscillations is presented. Simple analytic solutions involving matrix functions are found which clearly exhibit the transients, the damping factors, the Breit-Wigner form for resonances, etc. (BB)

  12. Matrix Completions and Chordal Graphs

    Institute of Scientific and Technical Information of China (English)

    Kenneth John HARRISON

    2003-01-01

    In a matrix-completion problem the aim is to specifiy the missing entries of a matrix inorder to produce a matrix with particular properties. In this paper we survey results concerning matrix-completion problems where we look for completions of various types for partial matrices supported ona given pattern. We see that thc existence of completions of the required type often depends on thechordal properties of graphs associated with the pattern.

  13. THE GENERALIZED POLARIZATION SCATTERING MATRIX

    Science.gov (United States)

    the Least Square Best Estimate of the Generalized Polarization matrix from a set of measurements is then developed. It is shown that the Faraday...matrix data. It is then shown that the Least Square Best Estimate of the orientation angle of a symmetric target is also determinable from Faraday rotation contaminated short pulse monostatic polarization matrix data.

  14. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  15. Supported Molecular Matrix Electrophoresis.

    Science.gov (United States)

    Matsuno, Yu-Ki; Kameyama, Akihiko

    2015-01-01

    Mucins are difficult to separate using conventional gel electrophoresis methods such as SDS-PAGE and agarose gel electrophoresis, owing to their large size and heterogeneity. On the other hand, cellulose acetate membrane electrophoresis can separate these molecules, but is not compatible with glycan analysis. Here, we describe a novel membrane electrophoresis technique, termed "supported molecular matrix electrophoresis" (SMME), in which a porous polyvinylidene difluoride (PVDF) membrane filter is used to achieve separation. This description includes the separation, visualization, and glycan analysis of mucins with the SMME technique.

  16. Matrix vector analysis

    CERN Document Server

    Eisenman, Richard L

    2005-01-01

    This outstanding text and reference applies matrix ideas to vector methods, using physical ideas to illustrate and motivate mathematical concepts but employing a mathematical continuity of development rather than a physical approach. The author, who taught at the U.S. Air Force Academy, dispenses with the artificial barrier between vectors and matrices--and more generally, between pure and applied mathematics.Motivated examples introduce each idea, with interpretations of physical, algebraic, and geometric contexts, in addition to generalizations to theorems that reflect the essential structur

  17. Matrix string partition function

    CERN Document Server

    Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre

    1998-01-01

    We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.

  18. Matrix algebra for linear models

    CERN Document Server

    Gruber, Marvin H J

    2013-01-01

    Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f

  19. Light cone matrix product

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Matthew B [Los Alamos National Laboratory

    2009-01-01

    We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.

  20. Matrix Graph Grammars

    CERN Document Server

    Velasco, Pedro Pablo Perez

    2008-01-01

    This book objective is to develop an algebraization of graph grammars. Equivalently, we study graph dynamics. From the point of view of a computer scientist, graph grammars are a natural generalization of Chomsky grammars for which a purely algebraic approach does not exist up to now. A Chomsky (or string) grammar is, roughly speaking, a precise description of a formal language (which in essence is a set of strings). On a more discrete mathematical style, it can be said that graph grammars -- Matrix Graph Grammars in particular -- study dynamics of graphs. Ideally, this algebraization would enforce our understanding of grammars in general, providing new analysis techniques and generalizations of concepts, problems and results known so far.

  1. Matrix Quantization of Turbulence

    CERN Document Server

    Floratos, Emmanuel

    2011-01-01

    Based on our recent work on Quantum Nambu Mechanics $\\cite{af2}$, we provide an explicit quantization of the Lorenz chaotic attractor through the introduction of Non-commutative phase space coordinates as Hermitian $ N \\times N $ matrices in $ R^{3}$. For the volume preserving part, they satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Matrix Lorenz system develop fast decoherence to N independent Lorenz attractors. On the other hand there is a weak dissipation regime, where the quantum mechanical properties of the volume preserving non-dissipative sector survive for long times.

  2. Matrix elements of unstable states

    CERN Document Server

    Bernard, V; Meißner, U -G; Rusetsky, A

    2012-01-01

    Using the language of non-relativistic effective Lagrangians, we formulate a systematic framework for the calculation of resonance matrix elements in lattice QCD. The generalization of the L\\"uscher-Lellouch formula for these matrix elements is derived. We further discuss in detail the procedure of the analytic continuation of the resonance matrix elements into the complex energy plane and investigate the infinite-volume limit.

  3. Lectures on Matrix Field Theory

    Science.gov (United States)

    Ydri, Badis

    The subject of matrix field theory involves matrix models, noncommutative geometry, fuzzy physics and noncommutative field theory and their interplay. In these lectures, a lot of emphasis is placed on the matrix formulation of noncommutative and fuzzy spaces, and on the non-perturbative treatment of the corresponding field theories. In particular, the phase structure of noncommutative $\\phi^4$ theory is treated in great detail, and an introduction to noncommutative gauge theory is given.

  4. Enhancing an R-matrix

    CERN Document Server

    MacKaay, M A

    1996-01-01

    In order to construct a representation of the tangle category one needs an enhanced R-matrix. In this paper we define a sufficient and necessary condition for enhancement that can be checked easily for any R-matrix. If the R-matrix can be enhanced, we also show how to construct the additional data that define the enhancement. As a direct consequence we find a sufficient condition for the construction of a knot invariant.

  5. Matrix Models and Gravitational Corrections

    CERN Document Server

    Dijkgraaf, R; Temurhan, M; Dijkgraaf, Robbert; Sinkovics, Annamaria; Temurhan, Mine

    2002-01-01

    We provide evidence of the relation between supersymmetric gauge theories and matrix models beyond the planar limit. We compute gravitational R^2 couplings in gauge theories perturbatively, by summing genus one matrix model diagrams. These diagrams give the leading 1/N^2 corrections in the large N limit of the matrix model and can be related to twist field correlators in a collective conformal field theory. In the case of softly broken SU(N) N=2 super Yang-Mills theories, we find that these exact solutions of the matrix models agree with results obtained by topological field theory methods.

  6. A Matrix Model for WZW

    CERN Document Server

    Dorey, Nick; Turner, Carl

    2016-01-01

    We study a U(N) gauged matrix quantum mechanics which, in the large N limit, is closely related to the chiral WZW conformal field theory. This manifests itself in two ways. First, we construct the left-moving Kac-Moody algebra from matrix degrees of freedom. Secondly, we compute the partition function of the matrix model in terms of Schur and Kostka polynomials and show that, in the large $N$ limit, it coincides with the partition function of the WZW model. This same matrix model was recently shown to describe non-Abelian quantum Hall states and the relationship to the WZW model can be understood in this framework.

  7. Extended Matrix Variate Hypergeometric Functions and Matrix Variate Distributions

    Directory of Open Access Journals (Sweden)

    Daya K. Nagar

    2015-01-01

    Full Text Available Hypergeometric functions of matrix arguments occur frequently in multivariate statistical analysis. In this paper, we define and study extended forms of Gauss and confluent hypergeometric functions of matrix arguments and show that they occur naturally in statistical distribution theory.

  8. Matrix Product Operators, Matrix Product States, and ab initio Density Matrix Renormalization Group algorithms

    CERN Document Server

    Chan, Garnet Kin-Lic; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-01-01

    Current descriptions of the ab initio DMRG algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab-initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational par...

  9. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  10. How to Study a Matrix

    Science.gov (United States)

    Jairam, Dharmananda; Kiewra, Kenneth A.; Kauffman, Douglas F.; Zhao, Ruomeng

    2012-01-01

    This study investigated how best to study a matrix. Fifty-three participants studied a matrix topically (1 column at a time), categorically (1 row at a time), or in a unified way (all at once). Results revealed that categorical and unified study produced higher: (a) performance on relationship and fact tests, (b) study material satisfaction, and…

  11. Matrix convolution operators on groups

    CERN Document Server

    Chu, Cho-Ho

    2008-01-01

    In the last decade, convolution operators of matrix functions have received unusual attention due to their diverse applications. This monograph presents some new developments in the spectral theory of these operators. The setting is the Lp spaces of matrix-valued functions on locally compact groups. The focus is on the spectra and eigenspaces of convolution operators on these spaces, defined by matrix-valued measures. Among various spectral results, the L2-spectrum of such an operator is completely determined and as an application, the spectrum of a discrete Laplacian on a homogeneous graph is computed using this result. The contractivity properties of matrix convolution semigroups are studied and applications to harmonic functions on Lie groups and Riemannian symmetric spaces are discussed. An interesting feature is the presence of Jordan algebraic structures in matrix-harmonic functions.

  12. Matrix Model Approach to Cosmology

    CERN Document Server

    Chaney, A; Stern, A

    2015-01-01

    We perform a systematic search for rotationally invariant cosmological solutions to matrix models, or more specifically the bosonic sector of Lorentzian IKKT-type matrix models, in dimensions $d$ less than ten, specifically $d=3$ and $d=5$. After taking a continuum (or commutative) limit they yield $d-1$ dimensional space-time surfaces, with an attached Poisson structure, which can be associated with closed, open or static cosmologies. For $d=3$, we obtain recursion relations from which it is possible to generate rotationally invariant matrix solutions which yield open universes in the continuum limit. Specific examples of matrix solutions have also been found which are associated with closed and static two-dimensional space-times in the continuum limit. The solutions provide for a matrix resolution of cosmological singularities. The commutative limit reveals other desirable features, such as a solution describing a smooth transition from an initial inflation to a noninflationary era. Many of the $d=3$ soluti...

  13. Multivariate Matrix-Exponential Distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    2010-01-01

    In this article we consider the distributions of non-negative random vectors with a joint rational Laplace transform, i.e., a fraction between two multi-dimensional polynomials. These distributions are in the univariate case known as matrix-exponential distributions, since their densities can...... be written as linear combinations of the elements in the exponential of a matrix. For this reason we shall refer to multivariate distributions with rational Laplace transform as multivariate matrix-exponential distributions (MVME). The marginal distributions of an MVME are univariate matrix......-exponential distributions. We prove a characterization that states that a distribution is an MVME distribution if and only if all non-negative, non-null linear combinations of the coordinates have a univariate matrix-exponential distribution. This theorem is analog to a well-known characterization theorem...

  14. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  15. Manufacturing Titanium Metal Matrix Composites by Consolidating Matrix Coated Fibres

    Institute of Scientific and Technical Information of China (English)

    Hua-Xin PENG

    2005-01-01

    Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) method offer optimum properties because of the resulting uniform fibre distribution, minimum fibre damage and fibre volume fraction control. In this paper, the consolidation of Ti-6Al-4V matrix-coated SiC fibres during vacuum hot pressing has been investigated. Experiments were carried out on multi-ply MCFs under vacuum hot pressing (VHP). In contrast to most of existing studies, the fibre arrangement has been carefully controlled either in square or hexagonal arraysthroughout the consolidated sample. This has enabled the dynamic consolidation behaviour of MCFs to be demonstrated by eliminating the fibre re-arrangement during the VHP process. The microstructural evolution of the matrix coating was reported and the deformation mechanisms involved were discussed.

  16. New pole placement algorithm - Polynomial matrix approach

    Science.gov (United States)

    Shafai, B.; Keel, L. H.

    1990-01-01

    A simple and direct pole-placement algorithm is introduced for dynamical systems having a block companion matrix A. The algorithm utilizes well-established properties of matrix polynomials. Pole placement is achieved by appropriately assigning coefficient matrices of the corresponding matrix polynomial. This involves only matrix additions and multiplications without requiring matrix inversion. A numerical example is given for the purpose of illustration.

  17. High temperature polymer matrix composites

    Science.gov (United States)

    Serafini, Tito T. (Editor)

    1987-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) Characterization; (4) environmental effects; and (5) applications.

  18. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    Science.gov (United States)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  19. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    Science.gov (United States)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  20. GoM Diet Matrix

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set was taken from CRD 08-18 at the NEFSC. Specifically, the Gulf of Maine diet matrix was developed for the EMAX exercise described in that center...

  1. Matrix Quantum Mechanics from Qubits

    CERN Document Server

    Hartnoll, Sean A; Mazenc, Edward A

    2016-01-01

    We introduce a transverse field Ising model with order N^2 spins interacting via a nonlocal quartic interaction. The model has an O(N,Z), hyperoctahedral, symmetry. We show that the large N partition function admits a saddle point in which the symmetry is enhanced to O(N). We further demonstrate that this `matrix saddle' correctly computes large N observables at weak and strong coupling. The matrix saddle undergoes a continuous quantum phase transition at intermediate couplings. At the transition the matrix eigenvalue distribution becomes disconnected. The critical excitations are described by large N matrix quantum mechanics. At the critical point, the low energy excitations are waves propagating in an emergent 1+1 dimensional spacetime.

  2. The R-matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P; Baye, D [Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium)], E-mail: pdesc@ulb.ac.be, E-mail: dbaye@ulb.ac.be

    2010-03-15

    The different facets of the R-matrix method are presented pedagogically in a general framework. Two variants have been developed over the years: (i) The 'calculable' R-matrix method is a calculational tool to derive scattering properties from the Schroedinger equation in a large variety of physical problems. It was developed rather independently in atomic and nuclear physics with too little mutual influence. (ii) The 'phenomenological' R-matrix method is a technique to parametrize various types of cross sections. It was mainly (or uniquely) used in nuclear physics. Both directions are explained by starting from the simple problem of scattering by a potential. They are illustrated by simple examples in nuclear and atomic physics. In addition to elastic scattering, the R-matrix formalism is applied to inelastic and radiative-capture reactions. We also present more recent and more ambitious applications of the theory in nuclear physics.

  3. Linear connections on matrix geometries

    CERN Document Server

    Madore, J; Mourad, J; Madore, John; Masson, Thierry; Mourad, Jihad

    1994-01-01

    A general definition of a linear connection in noncommutative geometry has been recently proposed. Two examples are given of linear connections in noncommutative geometries which are based on matrix algebras. They both possess a unique metric connection.

  4. Matrix analysis of electrical machinery

    CERN Document Server

    Hancock, N N

    2013-01-01

    Matrix Analysis of Electrical Machinery, Second Edition is a 14-chapter edition that covers the systematic analysis of electrical machinery performance. This edition discusses the principles of various mathematical operations and their application to electrical machinery performance calculations. The introductory chapters deal with the matrix representation of algebraic equations and their application to static electrical networks. The following chapters describe the fundamentals of different transformers and rotating machines and present torque analysis in terms of the currents based on the p

  5. SVD row or column symmetric matrix

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new architecture for row or column symmetric matrix called extended matrix is defined, and a precise correspondence of the singular values and singular vectors between the extended matrix and its original (namely, the mother matrix) is derived. As an illustration of potential, we show that, for a class of extended matrices, the singular value decomposition using the mother matrix rather than the extended matrix per se can save the CPU time and memory without loss of numerical precision.

  6. Minimal Realizations of Supersymmetry for Matrix Hamiltonians

    CERN Document Server

    Andrianov, Alexandr A

    2014-01-01

    The notions of weak and strong minimizability of a matrix intertwining operator are introduced. Criterion of strong minimizability of a matrix intertwining operator is revealed. Criterion and sufficient condition of existence of a constant symmetry matrix for a matrix Hamiltonian are presented. A method of constructing of a matrix Hamiltonian with a given constant symmetry matrix in terms of a set of arbitrary scalar functions and eigen- and associated vectors of this matrix is offered. Examples of constructing of $2\\times2$ matrix Hamiltonians with given symmetry matrices for the cases of different structure of Jordan form of these matrices are elucidated.

  7. Sparse Planar Array Synthesis Using Matrix Enhancement and Matrix Pencil

    Directory of Open Access Journals (Sweden)

    Mei-yan Zheng

    2013-01-01

    Full Text Available The matrix enhancement and matrix pencil (MEMP plays important roles in modern signal processing applications. In this paper, MEMP is applied to attack the problem of two-dimensional sparse array synthesis. Firstly, the desired array radiation pattern, as the original pattern for approximating, is sampled to form an enhanced matrix. After performing the singular value decomposition (SVD and discarding the insignificant singular values according to the prior approximate error, the minimum number of elements can be obtained. Secondly, in order to obtain the eigenvalues, the generalized eigen-decomposition is employed on the approximate matrix, which is the optimal low-rank approximation of the enhanced matrix corresponding to sparse planar array, and then the ESPRIT algorithm is utilized to pair the eigenvalues related to each dimension of the planar array. Finally, element positions and excitations of the sparse planar array are calculated according to the correct pairing of eigenvalues. Simulation results are presented to illustrate the effectiveness of the proposed approach.

  8. A survey of matrix theory and matrix inequalities

    CERN Document Server

    Marcus, Marvin

    2010-01-01

    Written for advanced undergraduate students, this highly regarded book presents an enormous amount of information in a concise and accessible format. Beginning with the assumption that the reader has never seen a matrix before, the authors go on to provide a survey of a substantial part of the field, including many areas of modern research interest.Part One of the book covers not only the standard ideas of matrix theory, but ones, as the authors state, ""that reflect our own prejudices,"" among them Kronecker products, compound and induced matrices, quadratic relations, permanents, incidence

  9. The Astrobiology Matrix and the "Drake Matrix" in Education

    Science.gov (United States)

    Mizser, A.; Kereszturi, A.

    2003-01-01

    We organized astrobiology lectures in the Eotvos Lorand University of Sciences and the Polaris Observatory in 2002. We present here the "Drake matrix" for the comparison of the astrobiological potential of different bodies [1], and astrobiology matrix for the visualization of the interdisciplinary connections between different fields of astrobiology. Conclusion: In Hungary it is difficult to integrate astrobiology in the education system but the great advantage is that it can connect different scientific fields and improve the view of students. We would like to get in contact with persons and organizations who already have experience in the education of astrobiology.

  10. Matrix factorizations and elliptic fibrations

    Science.gov (United States)

    Omer, Harun

    2016-09-01

    I use matrix factorizations to describe branes at simple singularities of elliptic fibrations. Each node of the corresponding Dynkin diagrams of the ADE-type singularities is associated with one indecomposable matrix factorization which can be deformed into one or more factorizations of lower rank. Branes with internal fluxes arise naturally as bound states of the indecomposable factorizations. Describing branes in such a way avoids the need to resolve singularities. This paper looks at gauge group breaking from E8 fibers down to SU (5) fibers due to the relevance of such fibrations for local F-theory GUT models. A purpose of this paper is to understand how the deformations of the singularity are understood in terms of its matrix factorizations. By systematically factorizing the elliptic fiber equation, this paper discusses geometries which are relevant for building semi-realistic local models. In the process it becomes evident that breaking patterns which are identical at the level of the Kodaira type of the fibers can be inequivalent at the level of matrix factorizations. Therefore the matrix factorization picture supplements information which the conventional less detailed descriptions lack.

  11. Octonionic matrix representation and electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Chanyal, B. C. [Kumaun University, S. S. J. Campus, Almora (India)

    2014-12-15

    Keeping in mind the important role of octonion algebra, we have obtained the electromagnetic field equations of dyons with an octonionic 8 x 8 matrix representation. In this paper, we consider the eight - dimensional octonionic space as a combination of two (external and internal) four-dimensional spaces for the existence of magnetic monopoles (dyons) in a higher-dimensional formalism. As such, we describe the octonion wave equations in terms of eight components from the 8 x 8 matrix representation. The octonion forms of the generalized potential, fields and current source of dyons in terms of 8 x 8 matrix are discussed in a consistent manner. Thus, we have obtained the generalized Dirac-Maxwell equations of dyons from an 8x8 matrix representation of the octonion wave equations in a compact and consistent manner. The generalized Dirac-Maxwell equations are fully symmetric Maxwell equations and allow for the possibility of magnetic charges and currents, analogous to electric charges and currents. Accordingly, we have obtained the octonionic Dirac wave equations in an external field from the matrix representation of the octonion-valued potentials of dyons.

  12. Matrix factorizations and elliptic fibrations

    Directory of Open Access Journals (Sweden)

    Harun Omer

    2016-09-01

    Full Text Available I use matrix factorizations to describe branes at simple singularities of elliptic fibrations. Each node of the corresponding Dynkin diagrams of the ADE-type singularities is associated with one indecomposable matrix factorization which can be deformed into one or more factorizations of lower rank. Branes with internal fluxes arise naturally as bound states of the indecomposable factorizations. Describing branes in such a way avoids the need to resolve singularities. This paper looks at gauge group breaking from E8 fibers down to SU(5 fibers due to the relevance of such fibrations for local F-theory GUT models. A purpose of this paper is to understand how the deformations of the singularity are understood in terms of its matrix factorizations. By systematically factorizing the elliptic fiber equation, this paper discusses geometries which are relevant for building semi-realistic local models. In the process it becomes evident that breaking patterns which are identical at the level of the Kodaira type of the fibers can be inequivalent at the level of matrix factorizations. Therefore the matrix factorization picture supplements information which the conventional less detailed descriptions lack.

  13. On Geometry and Matrix Models

    CERN Document Server

    Dijkgraaf, R; Dijkgraaf, Robbert; Vafa, Cumrun

    2002-01-01

    We point out two extensions of the relation between matrix models, topological strings and N=1 supersymmetric gauge theories. First, we note that by considering double scaling limits of unitary matrix models one can obtain large N duals of the local Calabi-Yau geometries that engineer N=2 gauge theories. In particular, a double scaling limit of the Gross-Witten one-plaquette lattice model gives the SU(2) Seiberg-Witten solution, including its induced gravitational corrections. Secondly, we point out that the effective superpotential terms for N=1 ADE quiver gauge theories is similarly computed by large multi-matrix models, that have been considered in the context of ADE minimal models on random surfaces. The associated spectral curves are multiple branched covers obtained as Virasoro and W-constraints of the partition function.

  14. On geometry and matrix models

    Science.gov (United States)

    Dijkgraaf, Robbert; Vafa, Cumrun

    2002-11-01

    We point out two extensions of the relation between matrix models, topological strings and N=1 supersymmetric gauge theories. First, we note that by considering double scaling limits of unitary matrix models one can obtain large- N duals of the local Calabi-Yau geometries that engineer N=2 gauge theories. In particular, a double scaling limit of the Gross-Witten one-plaquette lattice model gives the SU(2) Seiberg-Witten solution, including its induced gravitational corrections. Secondly, we point out that the effective superpotential terms for N=1 ADE quiver gauge theories is similarly computed by large- N multi-matrix models, that have been considered in the context of ADE minimal models on random surfaces. The associated spectral curves are multiple branched covers obtained as Virasoro and W-constraints of the partition function.

  15. On geometry and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Robbert E-mail: rhd@science.uva.nl; Vafa, Cumrun

    2002-11-11

    We point out two extensions of the relation between matrix models, topological strings and N=1 supersymmetric gauge theories. First, we note that by considering double scaling limits of unitary matrix models one can obtain large-N duals of the local Calabi-Yau geometries that engineer N=2 gauge theories. In particular, a double scaling limit of the Gross-Witten one-plaquette lattice model gives the SU(2) Seiberg-Witten solution, including its induced gravitational corrections. Secondly, we point out that the effective superpotential terms for N=1 ADE quiver gauge theories is similarly computed by large-N multi-matrix models, that have been considered in the context of ADE minimal models on random surfaces. The associated spectral curves are multiple branched covers obtained as Virasoro and W-constraints of the partition function.

  16. Noncommutative spaces from matrix models

    Science.gov (United States)

    Lu, Lei

    Noncommutative (NC) spaces commonly arise as solutions to matrix model equations of motion. They are natural generalizations of the ordinary commutative spacetime. Such spaces may provide insights into physics close to the Planck scale, where quantum gravity becomes relevant. Although there has been much research in the literature, aspects of these NC spaces need further investigation. In this dissertation, we focus on properties of NC spaces in several different contexts. In particular, we study exact NC spaces which result from solutions to matrix model equations of motion. These spaces are associated with finite-dimensional Lie-algebras. More specifically, they are two-dimensional fuzzy spaces that arise from a three-dimensional Yang-Mills type matrix model, four-dimensional tensor-product fuzzy spaces from a tensorial matrix model, and Snyder algebra from a five-dimensional tensorial matrix model. In the first part of this dissertation, we study two-dimensional NC solutions to matrix equations of motion of extended IKKT-type matrix models in three-space-time dimensions. Perturbations around the NC solutions lead to NC field theories living on a two-dimensional space-time. The commutative limit of the solutions are smooth manifolds which can be associated with closed, open and static two-dimensional cosmologies. One particular solution is a Lorentzian fuzzy sphere, which leads to essentially a fuzzy sphere in the Minkowski space-time. In the commutative limit, this solution leads to an induced metric that does not have a fixed signature, and have a non-constant negative scalar curvature, along with singularities at two fixed latitudes. The singularities are absent in the matrix solution which provides a toy model for resolving the singularities of General relativity. We also discussed the two-dimensional fuzzy de Sitter space-time, which has irreducible representations of su(1,1) Lie-algebra in terms of principal, complementary and discrete series. Field

  17. The COMPADRE Plant Matrix Database

    DEFF Research Database (Denmark)

    Salguero-Gomez, Roberto; Jones, Owen; Archer, C. Ruth

    2015-01-01

    growth or decline, such data furthermore help us understand how different biomes shape plant ecology, how plant populations and communities respond to global change, and how to develop successful management tools for endangered or invasive species. 2. Matrix population models summarize the life cycle...... components of survival, growth and reproduction, while explicitly acknowledging heterogeneity among classes of individuals in the population. Matrix models have comparable structures, and their emergent measures of population dynamics, such as population growth rate or mean life expectancy, have direct...... biological interpretations, facilitating comparisons among populations and species. 3. Thousands of plant matrix population models have been parameterized from empirical data, but they are largely dispersed through peer reviewed and grey literature, and thus remain inaccessible for synthetic analysis. Here...

  18. Lectures on matrix field theory

    CERN Document Server

    Ydri, Badis

    2017-01-01

    These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.

  19. Supersymmetry in random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Kieburg, Mario

    2010-05-04

    I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)

  20. Polychoric/Tetrachoric Matrix or Pearson Matrix? A methodological study

    Directory of Open Access Journals (Sweden)

    Dominguez Lara, Sergio Alexis

    2014-04-01

    Full Text Available The use of product-moment correlation of Pearson is common in most studies in factor analysis in psychology, but it is known that this statistic is only applicable when the variables related are in interval scale and normally distributed, and when are used in ordinal data may to produce a distorted correlation matrix . Thus is a suitable option using polychoric/tetrachoric matrices in item-level factor analysis when the items are in level measurement nominal or ordinal. The aim of this study was to show the differences in the KMO, Bartlett`s Test and Determinant of the Matrix, percentage of variance explained and factor loadings in depression trait scale of Depression Inventory Trait - State and the Neuroticism dimension of the short form of the Eysenck Personality Questionnaire -Revised, regarding the use of matrices polychoric/tetrachoric matrices and Pearson. These instruments was analyzed with different extraction methods (Maximum Likelihood, Minimum Rank Factor Analysis, Unweighted Least Squares and Principal Components, keeping constant the rotation method Promin were analyzed. Were observed differences regarding sample adequacy measures, as well as with respect to the explained variance and the factor loadings, for solutions having as polychoric/tetrachoric matrix. So it can be concluded that the polychoric / tetrachoric matrix give better results than Pearson matrices when it comes to item-level factor analysis using different methods.

  1. Symmetries and Interactions in Matrix String Theory

    NARCIS (Netherlands)

    Hacquebord, F.H.

    1999-01-01

    This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory

  2. Properties of the matrix A-XY

    NARCIS (Netherlands)

    Steerneman, A.G.M.; van Perlo -ten Kleij, Frederieke

    2005-01-01

    The main topic of this paper is the matrix V = A - XY*, where A is a nonsingular complex k x k matrix and X and Y are k x p complex matrices of full column rank. Because properties of the matrix V can be derived from those of the matrix Q = I - XY*, we will consider in particular the case where A =

  3. Minimal realizations of supersymmetry for matrix Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Alexander A., E-mail: andrianov@icc.ub.edu; Sokolov, Andrey V., E-mail: avs_avs@rambler.ru

    2015-02-06

    The notions of weak and strong minimizability of a matrix intertwining operator are introduced. Criterion of strong minimizability of a matrix intertwining operator is revealed. Criterion and sufficient condition of existence of a constant symmetry matrix for a matrix Hamiltonian are presented. A method of constructing of a matrix Hamiltonian with a given constant symmetry matrix in terms of a set of arbitrary scalar functions and eigen- and associated vectors of this matrix is offered. Examples of constructing of 2×2 matrix Hamiltonians with given symmetry matrices for the cases of different structure of Jordan form of these matrices are elucidated. - Highlights: • Weak and strong minimization of a matrix intertwining operator. • Criterion of strong minimizability from the right of a matrix intertwining operator. • Conditions of existence of a constant symmetry matrix for a matrix Hamiltonian. • Method of constructing of a matrix Hamiltonian with a given constant symmetry matrix. • Examples of constructing of 2×2 matrix Hamiltonians with a given symmetry matrix.

  4. Towards Google matrix of brain

    Energy Technology Data Exchange (ETDEWEB)

    Shepelyansky, D.L., E-mail: dima@irsamc.ups-tlse.f [Laboratoire de Physique Theorique (IRSAMC), Universite de Toulouse, UPS, F-31062 Toulouse (France); LPT - IRSAMC, CNRS, F-31062 Toulouse (France); Zhirov, O.V. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation)

    2010-07-12

    We apply the approach of the Google matrix, used in computer science and World Wide Web, to description of properties of neuronal networks. The Google matrix G is constructed on the basis of neuronal network of a brain model discussed in PNAS 105 (2008) 3593. We show that the spectrum of eigenvalues of G has a gapless structure with long living relaxation modes. The PageRank of the network becomes delocalized for certain values of the Google damping factor {alpha}. The properties of other eigenstates are also analyzed. We discuss further parallels and similarities between the World Wide Web and neuronal networks.

  5. Random matrix theory and multivariate statistics

    OpenAIRE

    Diaz-Garcia, Jose A.; Jáimez, Ramon Gutiérrez

    2009-01-01

    Some tools and ideas are interchanged between random matrix theory and multivariate statistics. In the context of the random matrix theory, classes of spherical and generalised Wishart random matrix ensemble, containing as particular cases the classical random matrix ensembles, are proposed. Some properties of these classes of ensemble are analysed. In addition, the random matrix ensemble approach is extended and a unified theory proposed for the study of distributions for real normed divisio...

  6. Sign Patterns That Allow the Given Matrix

    Institute of Scientific and Technical Information of China (English)

    邵燕灵; 孙良

    2003-01-01

    Let P be a property referring to a real matrix. For a sign pattern A, if there exists a real matrix B in the qualitative class of A such that B has property P, then we say A allows P. Three cases that A allows an M-matrix, an inverse M-matrix and a P0-matrix are considered. The complete characterizations are obtained.

  7. Multivariate Modelling via Matrix Subordination

    DEFF Research Database (Denmark)

    Nicolato, Elisa

    stochastic volatility via time-change is quite ineffective when applied to the multivariate setting. In this work we propose a new class of models, which is obtained by conditioning a multivariate Brownian Motion to a so-called matrix subordinator. The obtained model-class encompasses the vast majority...

  8. Regularization in Matrix Relevance Learning

    NARCIS (Netherlands)

    Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael

    2010-01-01

    A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can displa

  9. Perturbation semigroup of matrix algebras

    OpenAIRE

    Neumann, N.; Suijlekom, W.D. van

    2016-01-01

    In this article we analyze the structure of the semigroup of inner perturbations in noncommutative geometry. This perturbation semigroup is associated to a unital associative *-algebra and extends the group of unitary elements of this *-algebra. We compute the perturbation semigroup for all matrix algebras.

  10. Bilateral matrix-exponential distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Esparza, Luz Judith R; Nielsen, Bo Friis

    2012-01-01

    In this article we define the classes of bilateral and multivariate bilateral matrix-exponential distributions. These distributions have support on the entire real space and have rational moment-generating functions. These distributions extend the class of bilateral phasetype distributions of [1]...

  11. Student Transfer Matrix, Fall 1996.

    Science.gov (United States)

    Oklahoma State Regents for Higher Education, Oklahoma City.

    The Student Transfer Matrix provides data on the numbers of students transferring from Oklahoma public and private institutions of higher education to other Oklahoma institutions, using data from receiving institutions. Among the highlights are: the number of students who transferred to four-year and two-year institutions remained steady at 57.8…

  12. Adams Operations on Matrix Factorizations

    OpenAIRE

    Brown, Michael K.; Miller, Claudia; Thompson, Peder; Walker, Mark E.

    2016-01-01

    We define Adams operations on matrix factorizations, and we show these operations enjoy analogues of several key properties of the Adams operations on perfect complexes with support developed by Gillet-Soul\\'e in their paper "Intersection Theory Using Adams Operations". As an application, we give a proof of a conjecture of Dao-Kurano concerning the vanishing of Hochster's theta invariant.

  13. Sparse Matrix Vector Processing Formats

    NARCIS (Netherlands)

    Stathis, P.T.

    2004-01-01

    In this dissertation we have identified vector processing shortcomings related to the efficient storing and processing of sparse matrices. To alleviate existent problems we propose two storage formats denoted as Block Based Compression Storage (BBCS) format and Hierarchical Sparse Matrix (HiSM) stor

  14. Unravelling the nuclear matrix proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Knol, Jaco C; Jimenez, Connie R

    2009-01-01

    The nuclear matrix (NM) model posits the presence of a protein/RNA scaffold that spans the mammalian nucleus. The NM proteins are involved in basic nuclear function and are a promising source of protein biomarkers for cancer. Importantly, the NM proteome is operationally defined as the proteins...

  15. Neonatal disorders of germinal matrix

    NARCIS (Netherlands)

    Raets, M M A; Dudink, J; Govaert, P

    2015-01-01

    The germinal matrix (GM) is a richly vascularized, transient layer near the ventricles. It produces neurons and glial cells, and is present in the foetal brain between 8 and 36 weeks of gestation. At 25 weeks, it reaches its maximum volume and subsequently withers. The GM is vulnerable to haemorrhag

  16. The COMPADRE Plant Matrix Database

    DEFF Research Database (Denmark)

    2014-01-01

    COMPADRE contains demographic information on hundreds of plant species. The data in COMPADRE are in the form of matrix population models and our goal is to make these publicly available to facilitate their use for research and teaching purposes. COMPADRE is an open-access database. We only request...

  17. Parallel Sparse Matrix - Vector Product

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Lazarov, Boyan Stefanov; Dammann, Bernd

    This technical report contains a case study of a sparse matrix-vector product routine, implemented for parallel execution on a compute cluster with both pure MPI and hybrid MPI-OpenMP solutions. C++ classes for sparse data types were developed and the report shows how these class can be used...

  18. Matrix Treatment of Ray Optics.

    Science.gov (United States)

    Quon, W. Steve

    1996-01-01

    Describes a method to combine two learning experiences--optical physics and matrix mathematics--in a straightforward laboratory experiment that allows engineering/physics students to integrate a variety of learning insights and technical skills, including using lasers, studying refraction through thin lenses, applying concepts of matrix…

  19. Hyper-systolic matrix multiplication

    NARCIS (Netherlands)

    Lippert, Th.; Petkov, N.; Palazzari, P.; Schilling, K.

    2001-01-01

    A novel parallel algorithm for matrix multiplication is presented. It is based on a 1-D hyper-systolic processor abstraction. The procedure can be implemented on all types of parallel systems. (C) 2001 Elsevier Science B,V. All rights reserved.

  20. The HDTV digital audio matrix

    Science.gov (United States)

    Mason, A. J.

    Multichannel sound systems are being studied as part of the Eureka 95 and Radio-communication Bureau TG10-1 investigations into high definition television. One emerging sound system has five channels; three at the front and two at the back. This raises some compatibility issues. The listener might have only, say, two loudspeakers or the material to be broadcast may have fewer than five channels. The problem is how best to produce a set of signals to be broadcast, which is suitable for all listeners, from those that are available. To investigate this area, a device has been designed and built which has six input channels and six output channels. Each output signal is a linear combination of the input signals. The inputs and outputs are in AES/EBU digital audio format using BBC-designed AESIC chips. The matrix operation, to produce the six outputs from the six inputs, is performed by a Motorola DSP56001. The user interface and 'housekeeping' is managed by a T222 transputer. The operator of the matrix uses a VDU to enter sets of coefficients and a rotary switch to select which set to use. A set of analog controls is also available and is used to control operations other than the simple compatibility matrixing. The matrix has been very useful for simple tasks: mixing a stereo signal into mono, creating a stereo signal from a mono signal, applying a fixed gain or attenuation to a signal, exchanging the A and B channels of an AES/EBU bitstream, and so on. These are readily achieved using simple sets of coefficients. Additions to the user interface software have led to several more sophisticated applications which still consist of a matrix operation. Different multichannel panning laws have been evaluated. The analog controls adjust the panning; the audio signals are processed digitally using a matrix operation. A digital SoundField microphone decoder has also been implemented. digital audio matrix is such that it can be applied to a wide variety of signal processing

  1. A DIRECT ALGORITHM FOR DISTINGUISHING NONSINGULAR M-MATRIX AND H-MATRIX

    Institute of Scientific and Technical Information of China (English)

    Li Yaotang; Zhu Yan

    2005-01-01

    A direct algorithm is proposed by which one can distinguish whether a matrix is an M-matrix (or H-matrix) or not quickly and effectively. Numerical examples show that it is effective and convincible to distinguish M-matrix (or H-matrix) by using the algorithm.

  2. The Constrained Solutions of Two Matrix Equations

    Institute of Scientific and Technical Information of China (English)

    An Ping LIAO; Zhong Zhi BAI

    2002-01-01

    We study the symmetric positive semidefinite solution of the matrix equation AX1AT +BX2BT = C, where A is a given real m × n matrix, B is a given real m × p matrix, and C is a givenreal m × m matrix, with m, n, p positive integers; and the bisymmetric positive semidefinite solutionof the matrix equation DTXD = C, where D is a given real n × m matrix, C is a given real m × mmatrix, with m, n positive integers. By making use of the generalized singular value decomposition, wederive general analytic formulae, and present necessary and sufficient conditions for guaranteeing theexistence of these solutions.

  3. Distributed-memory matrix computations

    DEFF Research Database (Denmark)

    Balle, Susanne Mølleskov

    1995-01-01

    in these algorithms is that many scientific applications rely heavily on the performance of the involved dense linear algebra building blocks. Even though we consider the distributed-memory as well as the shared-memory programming paradigm, the major part of the thesis is dedicated to distributed-memory architectures....... We emphasize distributed-memory massively parallel computers - such as the Connection Machines model CM-200 and model CM-5/CM-5E - available to us at UNI-C and at Thinking Machines Corporation. The CM-200 was at the time this project started one of the few existing massively parallel computers....... Several areas in the numerical linear algebra field are investigated and they illustrate the problems that arise as well as the techniques that are related to the use of massively parallel computers: 1.Study of Strassen's matrix-matrix multiplication on the Connection Machine model CM-200. What...

  4. Standardisation of ceramic matrix composites

    Directory of Open Access Journals (Sweden)

    Gomez Philippe

    2015-01-01

    Full Text Available The standardisation on ceramic matrix composite (CMCs test methods occurred in the 1980's as these materials began to display interesting properties for aeronautical applications. Since the French Office of standardisation B43C has participated in establishing more than 40 standards and guides dealing with their thermal mechanical properties, their reinforcement and their fibre/matrix interface. As their maturity has been demonstrated through several technological development programmes (plugs, flaps, blades …, the air framers and engine manufacturers are now thinking of develop industrial parts which require a certification from airworthiness authorities. Now the standardisation of CMCs has to turn toward documents completing the certification requirement for civil and military applications. The news standards will allow being more confident with CMCs in taking into account their specificity.

  5. Density matrix quantum Monte Carlo

    CERN Document Server

    Blunt, N S; Spencer, J S; Foulkes, W M C

    2013-01-01

    This paper describes a quantum Monte Carlo method capable of sampling the full density matrix of a many-particle system, thus granting access to arbitrary reduced density matrices and allowing expectation values of complicated non-local operators to be evaluated easily. The direct sampling of the density matrix also raises the possibility of calculating previously inaccessible entanglement measures. The algorithm closely resembles the recently introduced full configuration interaction quantum Monte Carlo method, but works all the way from infinite to zero temperature. We explain the theory underlying the method, describe the algorithm, and introduce an importance-sampling procedure to improve the stochastic efficiency. To demonstrate the potential of our approach, the energy and staggered magnetization of the isotropic antiferromagnetic Heisenberg model on small lattices and the concurrence of one-dimensional spin rings are compared to exact or well-established results. Finally, the nature of the sign problem...

  6. Matrix metalloproteinases in lung biology

    Directory of Open Access Journals (Sweden)

    Parks William C

    2000-12-01

    Full Text Available Abstract Despite much information on their catalytic properties and gene regulation, we actually know very little of what matrix metalloproteinases (MMPs do in tissues. The catalytic activity of these enzymes has been implicated to function in normal lung biology by participating in branching morphogenesis, homeostasis, and repair, among other events. Overexpression of MMPs, however, has also been blamed for much of the tissue destruction associated with lung inflammation and disease. Beyond their role in the turnover and degradation of extracellular matrix proteins, MMPs also process, activate, and deactivate a variety of soluble factors, and seldom is it readily apparent by presence alone if a specific proteinase in an inflammatory setting is contributing to a reparative or disease process. An important goal of MMP research will be to identify the actual substrates upon which specific enzymes act. This information, in turn, will lead to a clearer understanding of how these extracellular proteinases function in lung development, repair, and disease.

  7. Matrix dynamics of fuzzy spheres

    CERN Document Server

    Jatkar, D P; Wadia, S R; Yogendran, K P; Jatkar, Dileep P.; Mandal, Gautam; Wadia, Spenta R.

    2002-01-01

    We study the dynamics of fuzzy two-spheres in a matrix model which represents string theory in the presence of RR flux. We analyze the stability of known static solutions of such a theory which contain commuting matrices and SU(2) representations. We find that irreducible as well as reducible representations are stable. Since the latter are of higher energy, this stability poses a puzzle. We resolve this puzzle by noting that reducible representations have marginal directions corresponding to non-spherical deformations. We obtain new static solutions by turning on these marginal deformations. These solutions now have instability or tachyonic directions. We discuss condensation of these tachyons which correspond to classical trajectories interpolating from multiple, small fuzzy spheres to a single, large sphere. We briefly discuss spatially independent configurations of a D3/D5 system described by the same matrix model which now possesses a supergravity dual.

  8. Scrambling with matrix black holes

    Science.gov (United States)

    Brady, Lucas; Sahakian, Vatche

    2013-08-01

    If black holes are not to be dreaded sinks of information but rather fully described by unitary evolution, they must scramble in-falling data and eventually leak it through Hawking radiation. Sekino and Susskind have conjectured that black holes are fast scramblers; they generate entanglement at a remarkably efficient rate, with the characteristic time scaling logarithmically with the entropy. In this work, we focus on Matrix theory—M-theory in the light-cone frame—and directly probe the conjecture. We develop a concrete test bed for quantum gravity using the fermionic variables of Matrix theory and show that the problem becomes that of chains of qubits with an intricate network of interactions. We demonstrate that the black hole system evolves much like a Brownian quantum circuit, with strong indications that it is indeed a fast scrambler. We also analyze the Berenstein-Maldacena-Nastase model and reach the same tentative conclusion.

  9. Link Prediction via Matrix Completion

    CERN Document Server

    Pech, Ratha; Pan, Liming; Cheng, Hong; Zhou, Tao

    2016-01-01

    Inspired by practical importance of social networks, economic networks, biological networks and so on, studies on large and complex networks have attracted a surge of attentions in the recent years. Link prediction is a fundamental issue to understand the mechanisms by which new links are added to the networks. We introduce the method of robust principal component analysis (robust PCA) into link prediction, and estimate the missing entries of the adjacency matrix. On one hand, our algorithm is based on the sparsity and low rank property of the matrix, on the other hand, it also performs very well when the network is dense. This is because a relatively dense real network is also sparse in comparison to the complete graph. According to extensive experiments on real networks from disparate fields, when the target network is connected and sufficiently dense, whatever it is weighted or unweighted, our method is demonstrated to be very effective and with prediction accuracy being considerably improved comparing wit...

  10. Myocardial structure and matrix metalloproteinases.

    Science.gov (United States)

    Aggeli, C; Pietri, P; Felekos, I; Rautopoulos, L; Toutouzas, K; Tsiamis, E; Stefanadis, C

    2012-01-01

    Metalloproteinases (MMPs) are enzymes which enhance proteolysis of extracellular matrix proteins. The pathophysiologic and prognostic role of MMPs has been demonstrated in numerous studies. The present review covers a wide a range of topics with regards to MMPs structural and functional properties, as well as their role in myocardial remodeling in several cardiovascular diseases. Moreover, the clinical and therapeutic implications from their assessment are highlighted.

  11. Clustering-Based Matrix Factorization

    OpenAIRE

    Mirbakhsh, Nima; Ling, Charles X.

    2013-01-01

    Recommender systems are emerging technologies that nowadays can be found in many applications such as Amazon, Netflix, and so on. These systems help users to find relevant information, recommendations, and their preferred items. Slightly improvement of the accuracy of these recommenders can highly affect the quality of recommendations. Matrix Factorization is a popular method in Recommendation Systems showing promising results in accuracy and complexity. In this paper we propose an extension ...

  12. Staggered chiral random matrix theory

    CERN Document Server

    Osborn, James C

    2010-01-01

    We present a random matrix theory (RMT) for the staggered lattice QCD Dirac operator. The staggered RMT is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  13. Model Reduction via Reducibility Matrix

    Institute of Scientific and Technical Information of China (English)

    Musa Abdalla; Othman Alsmadi

    2006-01-01

    In this work, a new model reduction technique is introduced. The proposed technique is derived using the matrix reducibility concept. The eigenvalues of the reduced model are preserved; that is, the reduced model eigenvalues are a subset of the full order model eigenvalues. This preservation of the eigenvalues makes the mathematical model closer to the physical model. Finally, the outcomes of this method are fully illustrated using simulations of two numeric examples.

  14. On Skew Triangular Matrix Rings

    Institute of Scientific and Technical Information of China (English)

    Wang Wei-liang; Wang Yao; Ren Yan-li

    2016-01-01

    Letαbe a nonzero endomorphism of a ring R, n be a positive integer and Tn(R,α) be the skew triangular matrix ring. We show that some properties related to nilpotent elements of R are inherited by Tn(R,α). Meanwhile, we determine the strongly prime radical, generalized prime radical and Behrens radical of the ring R[x;α]/(xn), where R[x;α] is the skew polynomial ring.

  15. Coherence matrix of plasmonic beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Lavrinenko, Andrei

    2013-01-01

    We consider monochromatic electromagnetic beams of surface plasmon-polaritons created at interfaces between dielectric media and metals. We theoretically study non-coherent superpositions of elementary surface waves and discuss their spectral degree of polarization, Stokes parameters, and the for...... of the spectral coherence matrix. We compare the polarization properties of the surface plasmonspolaritons as three-dimensional and two-dimensional fields concluding that the latter is superior....

  16. MALDI Matrix Research for Biopolymers

    Science.gov (United States)

    Fukuyama, Yuko

    2015-01-01

    Matrices are necessary materials for ionizing analytes in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). The choice of a matrix appropriate for each analyte controls the analyses. Thus, in some cases, development or improvement of matrices can become a tool for solving problems. This paper reviews MALDI matrix research that the author has conducted in the recent decade. It describes glycopeptide, carbohydrate, or phosphopeptide analyses using 2,5-dihydroxybenzoic acid (2,5-DHB), 1,1,3,3-tetramethylguanidinium (TMG) salts of p-coumaric acid (CA) (G3CA), 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA) or 3-AQ/CA and gengeral peptide, peptide containing disulfide bonds or hydrophobic peptide analyses using butylamine salt of CHCA (CHCAB), 1,5-diaminonaphthalene (1,5-DAN), octyl 2,5-dihydroxybenzoate (alkylated dihydroxybenzoate, ADHB), or 1-(2,4,6-trihydroxyphenyl)octan-1-one (alkylated trihydroxyacetophenone, ATHAP). PMID:26819908

  17. Topics in Matrix Sampling Algorithms

    CERN Document Server

    Boutsidis, Christos

    2011-01-01

    We study three fundamental problems of Linear Algebra, lying in the heart of various Machine Learning applications, namely: 1)"Low-rank Column-based Matrix Approximation". We are given a matrix A and a target rank k. The goal is to select a subset of columns of A and, by using only these columns, compute a rank k approximation to A that is as good as the rank k approximation that would have been obtained by using all the columns; 2) "Coreset Construction in Least-Squares Regression". We are given a matrix A and a vector b. Consider the (over-constrained) least-squares problem of minimizing ||Ax-b||, over all vectors x in D. The domain D represents the constraints on the solution and can be arbitrary. The goal is to select a subset of the rows of A and b and, by using only these rows, find a solution vector that is as good as the solution vector that would have been obtained by using all the rows; 3) "Feature Selection in K-means Clustering". We are given a set of points described with respect to a large numbe...

  18. Integrable matrix theory: Level statistics

    Science.gov (United States)

    Scaramazza, Jasen A.; Shastry, B. Sriram; Yuzbashyan, Emil A.

    2016-09-01

    We study level statistics in ensembles of integrable N ×N matrices linear in a real parameter x . The matrix H (x ) is considered integrable if it has a prescribed number n >1 of linearly independent commuting partners Hi(x ) (integrals of motion) "]Hi(x ) ,Hj(x ) ]">H (x ) ,Hi(x ) =0 , for all x . In a recent work [Phys. Rev. E 93, 052114 (2016), 10.1103/PhysRevE.93.052114], we developed a basis-independent construction of H (x ) for any n from which we derived the probability density function, thereby determining how to choose a typical integrable matrix from the ensemble. Here, we find that typical integrable matrices have Poisson statistics in the N →∞ limit provided n scales at least as logN ; otherwise, they exhibit level repulsion. Exceptions to the Poisson case occur at isolated coupling values x =x0 or when correlations are introduced between typically independent matrix parameters. However, level statistics cross over to Poisson at O (N-0.5) deviations from these exceptions, indicating that non-Poissonian statistics characterize only subsets of measure zero in the parameter space. Furthermore, we present strong numerical evidence that ensembles of integrable matrices are stationary and ergodic with respect to nearest-neighbor level statistics.

  19. Integrable matrix theory: Level statistics.

    Science.gov (United States)

    Scaramazza, Jasen A; Shastry, B Sriram; Yuzbashyan, Emil A

    2016-09-01

    We study level statistics in ensembles of integrable N×N matrices linear in a real parameter x. The matrix H(x) is considered integrable if it has a prescribed number n>1 of linearly independent commuting partners H^{i}(x) (integrals of motion) [H(x),H^{i}(x)]=0, [H^{i}(x),H^{j}(x)]=0, for all x. In a recent work [Phys. Rev. E 93, 052114 (2016)2470-004510.1103/PhysRevE.93.052114], we developed a basis-independent construction of H(x) for any n from which we derived the probability density function, thereby determining how to choose a typical integrable matrix from the ensemble. Here, we find that typical integrable matrices have Poisson statistics in the N→∞ limit provided n scales at least as logN; otherwise, they exhibit level repulsion. Exceptions to the Poisson case occur at isolated coupling values x=x_{0} or when correlations are introduced between typically independent matrix parameters. However, level statistics cross over to Poisson at O(N^{-0.5}) deviations from these exceptions, indicating that non-Poissonian statistics characterize only subsets of measure zero in the parameter space. Furthermore, we present strong numerical evidence that ensembles of integrable matrices are stationary and ergodic with respect to nearest-neighbor level statistics.

  20. Cubic Matrix, Nambu Mechanics and Beyond

    OpenAIRE

    Kawamura, Y

    2002-01-01

    We propose a generalization of cubic matrix mechanics by introducing a canonical triplet and study its relation to Nambu mechanics. The generalized cubic matrix mechanics we consider can be interpreted as a “quantum” generalization of Nambu mechanics.

  1. Matrix Superpotential Linear in Variable Parameter

    CERN Document Server

    Karadzhov, Yuri

    2011-01-01

    The paper presents the classification of matrix valued superpotentials corresponding to shape invariant systems of Schr\\"odinger equations. All inequivalent irreducible matrix superpotentials realized by matrices of arbitrary dimension with linear dependence on variable parameter are presented explicitly.

  2. "On some definitions in matrix algebra"

    OpenAIRE

    Magnus, Jan R.; Karim M. Abadir

    2007-01-01

    Many definitions in matrix algebra are not standardized. This notediscusses some of thepitfalls associated with undesirable orwrong definitions, anddealswith central conceptslikesymmetry, orthogonality, square root, Hermitian and quadratic forms, and matrix derivatives.

  3. Orthogonal Matrix-Valued Wavelet Packets

    Institute of Scientific and Technical Information of China (English)

    Qingjiang Chen; Cuiling Wang; Zhengxing Cheng

    2007-01-01

    In this paper,we introduce matrix-valued multiresolution analysis and matrixvalued wavelet packets. A procedure for the construction of the orthogonal matrix-valued wavelet packets is presented. The properties of the matrix-valued wavelet packets are investigated. In particular,a new orthonormal basis of L2(R,Cs×s) is obtained from the matrix-valued wavelet packets.

  4. Random Matrix theory approach to Quantum mechanics

    OpenAIRE

    Chaitanya, K. V. S. Shiv

    2015-01-01

    In this paper, we give random matrix theory approach to the quantum mechanics using the quantum Hamilton-Jacobi formalism. We show that the bound state problems in quantum mechanics are analogous to solving Gaussian unitary ensemble of random matrix theory. This study helps in identify the potential appear in the joint probability distribution function in the random matrix theory as a super potential. This approach allows to extend the random matrix theory to the newly discovered exceptional ...

  5. Continued Fraction Algorithm for Matrix Exponentials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A recursive rational algorithm for matrix exponentials was obtained by making use of the generalized inverse of a matrix in this paper. On the basis of the n-th convergence of Thiele-type continued fraction expansion, a new type of the generalized inverse matrix-valued Padé approximant (GMPA) for matrix exponentials was defined and its remainder formula was proved. The results of this paper were illustrated by some examples.

  6. An inversion algorithm for general tridiagonal matrix

    Institute of Scientific and Technical Information of China (English)

    Rui-sheng RAN; Ting-zhu HUANG; Xing-ping LIU; Tong-xiang GU

    2009-01-01

    An algorithm for the inverse of a general tridiagonal matrix is presented. For a tridiagonal matrix having the Doolittle factorization, an inversion algorithm is established.The algorithm is then generalized to deal with a general tridiagonal matrix without any restriction. Comparison with other methods is provided, indicating low computational complexity of the proposed algorithm, and its applicability to general tridiagonal matrices.

  7. Matrix Sampling of Test Items. ERIC Digest.

    Science.gov (United States)

    Childs, Ruth A.; Jaciw, Andrew P.

    This Digest describes matrix sampling of test items as an approach to achieving broad coverage while minimizing testing time per student. Matrix sampling involves developing a complete set of items judged to cover the curriculum, then dividing the items into subsets and administering one subset to each student. Matrix sampling, by limiting the…

  8. Positivity of Matrices with Generalized Matrix Functions

    Institute of Scientific and Technical Information of China (English)

    Fuzhen ZHANG

    2012-01-01

    Using an elementary fact on matrices we show by a unified approach the positivity of a partitioned positive semidefinite matrix with each square block replaced by a compound matrix,an elementary symmetric function or a generalized matrix function.In addition,we present a refined version of the Thompson determinant compression theorem.

  9. Matrix algebra for higher order moments

    NARCIS (Netherlands)

    Meijer, Erik

    2005-01-01

    A large part of statistics is devoted to the estimation of models from the sample covariance matrix. The development of the statistical theory and estimators has been greatly facilitated by the introduction of special matrices, such as the commutation matrix and the duplication matrix, and the corre

  10. Teaching Tip: When a Matrix and Its Inverse Are Stochastic

    Science.gov (United States)

    Ding, J.; Rhee, N. H.

    2013-01-01

    A stochastic matrix is a square matrix with nonnegative entries and row sums 1. The simplest example is a permutation matrix, whose rows permute the rows of an identity matrix. A permutation matrix and its inverse are both stochastic. We prove the converse, that is, if a matrix and its inverse are both stochastic, then it is a permutation matrix.

  11. Diffusive dynamics on paper matrix

    Science.gov (United States)

    Chaudhury, Kaustav; Kar, Shantimoy; Chakraborty, Suman

    2016-11-01

    Writing with ink on a paper and the rapid diagnostics of diseases using paper cartridge, despite their remarkable diversities from application perspective, both involve the motion of a liquid from a source on a porous hydrophilic substrate. Here we bring out a generalization in the pertinent dynamics by appealing to the concerned ensemble-averaged transport with reference to the underlying molecular picture. Our results reveal that notwithstanding the associated complexities and diversities, the resultant liquid transport characteristics on a paper matrix, in a wide variety of applications, resemble universal diffusive dynamics. Agreement with experimental results from diversified applications is generic and validates our unified theory.

  12. Random Matrix Theory and Econophysics

    Science.gov (United States)

    Rosenow, Bernd

    2000-03-01

    Random Matrix Theory (RMT) [1] is used in many branches of physics as a ``zero information hypothesis''. It describes generic behavior of different classes of systems, while deviations from its universal predictions allow to identify system specific properties. We use methods of RMT to analyze the cross-correlation matrix C of stock price changes [2] of the largest 1000 US companies. In addition to its scientific interest, the study of correlations between the returns of different stocks is also of practical relevance in quantifying the risk of a given stock portfolio. We find [3,4] that the statistics of most of the eigenvalues of the spectrum of C agree with the predictions of RMT, while there are deviations for some of the largest eigenvalues. We interpret these deviations as a system specific property, e.g. containing genuine information about correlations in the stock market. We demonstrate that C shares universal properties with the Gaussian orthogonal ensemble of random matrices. Furthermore, we analyze the eigenvectors of C through their inverse participation ratio and find eigenvectors with large ratios at both edges of the eigenvalue spectrum - a situation reminiscent of localization theory results. This work was done in collaboration with V. Plerou, P. Gopikrishnan, T. Guhr, L.A.N. Amaral, and H.E Stanley and is related to recent work of Laloux et al.. 1. T. Guhr, A. Müller Groeling, and H.A. Weidenmüller, ``Random Matrix Theories in Quantum Physics: Common Concepts'', Phys. Rep. 299, 190 (1998). 2. See, e.g. R.N. Mantegna and H.E. Stanley, Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999). 3. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series'', Phys. Rev. Lett. 83, 1471 (1999). 4. V. Plerou, P. Gopikrishnan, T. Guhr, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Random Matrix Theory

  13. Integrable matrix theory: Level statistics

    OpenAIRE

    2016-01-01

    We study level statistics in ensembles of integrable $N\\times N$ matrices linear in a real parameter $x$. The matrix $H(x)$ is considered integrable if it has a prescribed number $n>1$ of linearly independent commuting partners $H^i(x)$ (integrals of motion) $\\left[H(x),H^i(x)\\right] = 0$, $\\left[H^i(x), H^j(x)\\right]$ = 0, for all $x$. In a recent work, we developed a basis-independent construction of $H(x)$ for any $n$ from which we derived the probability density function, thereby determin...

  14. Matrix Completion from Noisy Entries

    CERN Document Server

    Keshavan, Raghunandan H; Oh, Sewoong

    2009-01-01

    Given a matrix M of low-rank, we consider the problem of reconstructing it from noisy observations of a small, random subset of its entries. The problem arises in a variety of applications, from collaborative filtering (the `Netflix problem') to structure-from-motion and positioning. We study a low complexity algorithm introduced by Keshavan et al.(2009), based on a combination of spectral techniques and manifold optimization, that we call here OptSpace. We prove performance guarantees that are order-optimal in a number of circumstances.

  15. Neonatal disorders of germinal matrix.

    Science.gov (United States)

    Raets, M M A; Dudink, J; Govaert, P

    2015-11-01

    The germinal matrix (GM) is a richly vascularized, transient layer near the ventricles. It produces neurons and glial cells, and is present in the foetal brain between 8 and 36 weeks of gestation. At 25 weeks, it reaches its maximum volume and subsequently withers. The GM is vulnerable to haemorrhage in preterm infants. This selective vulnerability is explained by limited astrocyte end-feet coverage of microvessels, reduced expression of fibronectin and immature tight junctions. Focal lesions in the neonatal period include haemorrhage, germinolysis and stroke. Such lesions in transient layers interrupt normal brain maturation and induce neurodevelopmental sequelae.

  16. Random matrix theory within superstatistics.

    Science.gov (United States)

    Abul-Magd, A Y

    2005-12-01

    We propose a generalization of the random matrix theory following the basic prescription of the recently suggested concept of superstatistics. Spectral characteristics of systems with mixed regular-chaotic dynamics are expressed as weighted averages of the corresponding quantities in the standard theory assuming that the mean level spacing itself is a stochastic variable. We illustrate the method by calculating the level density, the nearest-neighbor-spacing distributions, and the two-level correlation functions for systems in transition from order to chaos. The calculated spacing distribution fits the resonance statistics of random binary networks obtained in a recent numerical experiment.

  17. MatrixPlot: visualizing sequence constraints

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Stærfeldt, Hans Henrik; Lund, Ole

    1999-01-01

    MatrixPlot: visualizing sequence constraints. Sub-title Abstract Summary : MatrixPlot is a program for making high-quality matrix plots, such as mutual information plots of sequence alignments and distance matrices of sequences with known three-dimensional coordinates. The user can add information...... about the sequences (e.g. a sequence logo profile) along the edges of the plot, as well as zoom in on any region in the plot. Availability : MatrixPlot can be obtained on request, and can also be accessed online at http://www. cbs.dtu.dk/services/MatrixPlot. Contact : gorodkin@cbs.dtu.dk...

  18. Singular Value Decomposition for Unitary Symmetric Matrix

    Institute of Scientific and Technical Information of China (English)

    ZOUHongxing; WANGDianjun; DAIQionghai; LIYanda

    2003-01-01

    A special architecture called unitary sym-metric matrix which embodies orthogonal, Givens, House-holder, permutation, and row (or column) symmetric ma-trices as its special cases, is proposed, and a precise corre-spondence of singular values and singular vectors between the unitary symmetric matrix and its mother matrix is de-rived. As an illustration of potential, it is shown that, for a class of unitary symmetric matrices, the singular value decomposition (SVD) using the mother matrix rather than the unitary symmetric matrix per se can save dramatically the CPU time and memory without loss of any numerical precision.

  19. Linear algebra and matrix analysis for statistics

    CERN Document Server

    Banerjee, Sudipto

    2014-01-01

    Matrices, Vectors, and Their OperationsBasic definitions and notations Matrix addition and scalar-matrix multiplication Matrix multiplication Partitioned matricesThe ""trace"" of a square matrix Some special matricesSystems of Linear EquationsIntroduction Gaussian elimination Gauss-Jordan elimination Elementary matrices Homogeneous linear systems The inverse of a matrixMore on Linear EquationsThe LU decompositionCrout's Algorithm LU decomposition with row interchanges The LDU and Cholesky factorizations Inverse of partitioned matrices The LDU decomposition for partitioned matricesThe Sherman-W

  20. Sparse Matrix Inversion with Scaled Lasso

    CERN Document Server

    Sun, Tingni

    2012-01-01

    We propose a new method of learning a sparse nonnegative-definite target matrix. Our primary example of the target matrix is the inverse of a population covariance matrix or correlation matrix. The algorithm first estimates each column of the matrix by scaled Lasso, a joint estimation of regression coefficients and noise level, and then adjusts the matrix estimator to be symmetric. The procedure is efficient in the sense that the penalty level of the scaled Lasso for each column is completely determined by the data via convex minimization, without using cross-validation. We prove that this method guarantees the fastest proven rate of convergence in the spectrum norm under conditions of weaker form than those in the existing analyses of other $\\ell_1$ algorithms, and has faster guaranteed rate of convergence when the ratio of the $\\ell_1$ and spectrum norms of the target inverse matrix diverges to infinity. A simulation study also demonstrates the competitive performance of the proposed estimator.

  1. Interpolation of rational matrix functions

    CERN Document Server

    Ball, Joseph A; Rodman, Leiba

    1990-01-01

    This book aims to present the theory of interpolation for rational matrix functions as a recently matured independent mathematical subject with its own problems, methods and applications. The authors decided to start working on this book during the regional CBMS conference in Lincoln, Nebraska organized by F. Gilfeather and D. Larson. The principal lecturer, J. William Helton, presented ten lectures on operator and systems theory and the interplay between them. The conference was very stimulating and helped us to decide that the time was ripe for a book on interpolation for matrix valued functions (both rational and non-rational). When the work started and the first partial draft of the book was ready it became clear that the topic is vast and that the rational case by itself with its applications is already enough material for an interesting book. In the process of writing the book, methods for the rational case were developed and refined. As a result we are now able to present the rational case as an indepe...

  2. Solid-matrix luminescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hurtubise, R.J.

    1993-01-15

    Several interactions with lumiphors adsorbed on filter paper were elucidated from experiments with moisture, modulus and heavy-atom salts. The data were interpreted using static and dynamic quenching models, heavy-atom theory, and a theory related to the modulus of paper. With cyclodextrin-salt matrices, it was shown that 10% [alpha]-cyclodextrin/NaCl was very effective for obtaining strong room-temperature fluorescence and moderate room-temperature phosphorescence from adsorbed stereoisomeric tetrols. Extensive photophysical information was obtained for the four tetrols on 10% [alpha]-cyclodextrin/NaCl. The photophysical information acquired was used to develop a method for characterizing two of the tetrols. Work with model compounds adsorbed on deuterated sodium acetate showed that C-H vibrations in the undeuterated sodium acetate were not responsible for the deactivation of the excited triplet state in the model phosphors investigated. A considerable amount of solution luminescence and solid-matrix luminescence data were compared. The most important finding was that in several cases the room-temperature solid-matrix luminescence quantum yields were greater than the solution low-temperature quantum yield values.

  3. The Biblical Matrix of Economics

    Directory of Open Access Journals (Sweden)

    Grigore PIROŞCĂ

    2012-05-01

    Full Text Available The rationale of this paper is a prime pattern of history of economic thought in the previous ages of classic ancient times of Greek and Roman civilizations using a methodological matrix able to capture the mainstream ideas from social, political and religious events within the pages of Bible. The economic perspective of these events follows the evolution of the seeds of economic thinking within the Fertile Crescent, focused on the Biblical patriarchic heroes’ actions, but also on the empires which their civilization interacted to. The paper aims to discover the path followed by the economic doctrines from the Bible in order to find a match with economic actuality of present days.

  4. Density matrix theory and applications

    CERN Document Server

    Blum, Karl

    2012-01-01

    Written in a clear pedagogic style, this book deals with the application of density matrix theory to atomic and molecular physics. The aim is to precisely characterize sates by a vector and to construct general formulas and proofs of general theorems. The basic concepts and quantum mechanical fundamentals (reduced density matrices, entanglement, quantum correlations) are discussed in a comprehensive way. The discussion leads up to applications like coherence and orientation effects in atoms and molecules, decoherence and relaxation processes. This third edition has been updated and extended throughout and contains a completely new chapter exploring nonseparability and entanglement in two-particle spin-1/2 systems. The text discusses recent studies in atomic and molecular reactions. A new chapter explores nonseparability and entanglement in two-particle spin-1/2 systems.

  5. Intermetallic bonded ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B.; Becher, P.F.; Schneibel, J.H.; Waters, S.B.; Menchhofer, P.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-07-01

    A range of carbide and oxide-based cermets have been developed utilizing ductile nickel aluminide (Ni{sub 3}Al) alloy binder phases. Some of these, notably materials based upon tungsten and titanium carbides (WC and TiC respectively), offer potential as alternatives to the cermets which use cobalt binders (i.e. WC/Co). Samples have been prepared by blending commercially available Ni{sub 3}Al alloy powders with the desired ceramic phases, followed by hot-pressing. Alumina (Al{sub 2}O{sub 3}) matrix materials have also been prepared by pressurized molten alloy infiltration. The microstructure, flexure strength and fracture toughness of selected materials are discussed.

  6. Eigenvalues properties of terms correspondences matrix

    Science.gov (United States)

    Bondarchuk, Dmitry; Timofeeva, Galina

    2016-12-01

    Vector model representations of text documents are widely used in the intelligent search. In this approach a collection of documents is represented in the form of the term-document matrix, reflecting the frequency of terms. In the latent semantic analysis the dimension of the vector space is reduced by the singular value decomposition of the term-document matrix. Authors use a matrix of terms correspondences, reflecting the relationship between the terms, to allocate a semantic core and to obtain more simple presentation of the documents. With this approach, reducing the number of terms is based on the orthogonal decomposition of the matrix of terms correspondences. Properties of singular values of the term-document matrix and eigenvalues of the matrix of terms correspondences are studied in the case when documents differ substantially in length.

  7. Differential analysis of matrix convex functions

    DEFF Research Database (Denmark)

    Hansen, Frank; Tomiyama, Jun

    2007-01-01

    We analyze matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided differences given by Kraus [F. Kraus, Über konvekse Matrixfunktionen, Math. Z. 41 (1936) 18-42]. We obtain for each order conditions...... for matrix convexity which are necessary and locally sufficient, and they allow us to prove the existence of gaps between classes of matrix convex functions of successive orders, and to give explicit examples of the type of functions contained in each of these gaps. The given conditions are shown to be also...... globally sufficient for matrix convexity of order two. We finally introduce a fractional transformation which connects the set of matrix monotone functions of each order n with the set of matrix convex functions of the following order n + 1...

  8. Optimized Projection Matrix for Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Jianping Xu

    2010-01-01

    Full Text Available Compressive sensing (CS is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.

  9. Riemann--Hilbert problems, matrix orthogonal polynomials and discrete matrix equations with singularity confinement

    CERN Document Server

    Cassatella-Contra, Giovanni A

    2011-01-01

    In this paper matrix orthogonal polynomials in the real line are described in terms of a Riemann--Hilbert problem. This approach provides an easy derivation of discrete equations for the corresponding matrix recursion coefficients. The discrete equation is explicitly derived in the matrix Freud case, associated with matrix quartic potentials. It is shown that, when the initial condition and the measure are simultaneously triangularizable, this matrix discrete equation possesses the singularity confinement property, independently if the solution under consideration is given by recursion coefficients to quartic Freud matrix orthogonal polynomials or not.

  10. String Interactions in c=1 Matrix Model

    CERN Document Server

    De Boer, J; Verlinde, E; Yee, J T; Boer, Jan de; Sinkovics, Annamaria; Verlinde, Erik; Yee, Jung-Tay

    2004-01-01

    We study string interactions in the fermionic formulation of the c=1 matrix model. We give a precise nonperturbative description of the rolling tachyon state in the matrix model, and discuss S-matrix elements of the c=1 string. As a first step to study string interactions, we compute the interaction of two decaying D0-branes in terms of free fermions. This computation is compared with the string theory cylinder diagram using the rolling tachyon ZZ boundary states.

  11. Micromechanical Evaluation of Ceramic Matrix Composites

    Science.gov (United States)

    1991-02-01

    Materials Sciences Corporation AD-A236 756 M.hM. 9 1 0513 IEIN HIfINU IIl- DTIC JUN 06 1991 MICROMECHANICAL EVALUATION OF S 0 CERAMIC MATRIX COMPOSITES C...Classification) \\() Micromechanical Evaluation of Ceramic Matrix Composites ) 12. PERSONAL AUTHOR(S) C-F. Yen, Z. Hashin, C. Laird, B.W. Rosen, Z. Wang 13a. TYPE...and strengthen the ceramic composites. In this task, various possibilities of crack propagation in unidirectional ceramic matrix composites under

  12. Imposing causality on a matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, Dario [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, N2L 2Y5, Waterloo ON (Canada)], E-mail: dbenedetti@perimeterinstitute.ca; Henson, Joe [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, N2L 2Y5, Waterloo ON (Canada)

    2009-07-13

    We introduce a new matrix model that describes Causal Dynamical Triangulations (CDT) in two dimensions. In order to do so, we introduce a new, simpler definition of 2D CDT and show it to be equivalent to the old one. The model makes use of ideas from dually weighted matrix models, combined with multi-matrix models, and can be studied by the method of character expansion.

  13. New recursive algorithm for matrix inversion

    Institute of Scientific and Technical Information of China (English)

    Cao Jianshu; Wang Xuegang

    2008-01-01

    To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms Ⅰ and Ⅱ, respectively)are presented. Algorithm Ⅰ is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm Ⅱ, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm Ⅰ. The implementation, for algorithm Ⅱ or Ⅰ, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid.

  14. Basic matrix algebra and transistor circuits

    CERN Document Server

    Zelinger, G

    1963-01-01

    Basic Matrix Algebra and Transistor Circuits deals with mastering the techniques of matrix algebra for application in transistors. This book attempts to unify fundamental subjects, such as matrix algebra, four-terminal network theory, transistor equivalent circuits, and pertinent design matters. Part I of this book focuses on basic matrix algebra of four-terminal networks, with descriptions of the different systems of matrices. This part also discusses both simple and complex network configurations and their associated transmission. This discussion is followed by the alternative methods of de

  15. Matrix Krylov subspace methods for image restoration

    Directory of Open Access Journals (Sweden)

    khalide jbilou

    2015-09-01

    Full Text Available In the present paper, we consider some matrix Krylov subspace methods for solving ill-posed linear matrix equations and in those problems coming from the restoration of blurred and noisy images. Applying the well known Tikhonov regularization procedure leads to a Sylvester matrix equation depending the Tikhonov regularized parameter. We apply the matrix versions of the well known Krylov subspace methods, namely the Least Squared (LSQR and the conjugate gradient (CG methods to get approximate solutions representing the restored images. Some numerical tests are presented to show the effectiveness of the proposed methods.

  16. Risk matrix model for rotating equipment

    Directory of Open Access Journals (Sweden)

    Wassan Rano Khan

    2014-07-01

    Full Text Available Different industries have various residual risk levels for their rotating equipment. Accordingly the occurrence rate of the failures and associated failure consequences categories are different. Thus, a generalized risk matrix model is developed in this study which can fit various available risk matrix standards. This generalized risk matrix will be helpful to develop new risk matrix, to fit the required risk assessment scenario for rotating equipment. Power generation system was taken as case study. It was observed that eight subsystems were under risk. Only vibration monitor system was under high risk category, while remaining seven subsystems were under serious and medium risk categories.

  17. A Generalization of the Alias Matrix

    DEFF Research Database (Denmark)

    Kulahci, Murat; Bisgaard, S.

    2006-01-01

    The investigation of aliases or biases is important for the interpretation of the results from factorial experiments. For two-level fractional factorials this can be facilitated through their group structure. For more general arrays the alias matrix can be used. This tool is traditionally based...... on the assumption that the error structure is that associated with ordinary least squares. For situations where that is not the case, we provide in this article a generalization of the alias matrix applicable under the generalized least squares assumptions. We also show that for the special case of split plot error...... structure, the generalized alias matrix simplifies to the ordinary alias matrix....

  18. Multiscale Modeling of Ceramic Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  19. Partitioned R-matrix theory for molecules

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT (United Kingdom)

    2004-03-14

    R-matrix calculations usually require all the eigenvalues and eigenvectors of the inner region Hamiltonian matrix. For molecular problems, particularly when large configuration interaction expansions are used for the target, the Hamiltonian matrix is often too large to be completely diagonalized. Berrington and Ballance (2002 J. Phys. B: At. Mol. Opt. Phys. 35 2275) proposed a partitioned R-matrix theory which only required a proportion of the solutions of the Hamiltonian matrix. This theory was implemented and tested in the atomic R-matrix code. The theory is adapted to the needs of R-matrix calculations on low-energy electron-molecule collisions. A number of alternative procedures are tested. The best is shown to give reliable results with explicit inclusion of only a fraction of the solutions. It is shown that with this revised theory the number of solutions required does not depend on the complexity of the target wavefunction even though this strongly influences the size of the final Hamiltonian matrix. This method will be implemented as part of the UK molecular R-matrix program suite.

  20. A random matrix theory of decoherence

    Energy Technology Data Exchange (ETDEWEB)

    Gorin, T [Departamento de FIsica, Universidad de Guadalajara, Blvd Marcelino GarcIa Barragan y Calzada OlImpica, Guadalajara CP 44840, JalIsco (Mexico); Pineda, C [Institut fuer Physik und Astronomie, University of Potsdam, 14476 Potsdam (Germany); Kohler, H [Fachbereich Physik, Universitaet Duisburg-Essen, D-47057 Duisburg (Germany); Seligman, T H [Instituto de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico (Mexico)], E-mail: thomas.gorin@red.cucei.udg.mx, E-mail: carlospgmat03@gmail.com

    2008-11-15

    Random matrix theory is used to represent generic loss of coherence of a fixed central system coupled to a quantum-chaotic environment, represented by a random matrix ensemble, via random interactions. We study the average density matrix arising from the ensemble induced, in contrast to previous studies where the average values of purity, concurrence and entropy were considered; we further discuss when one or the other approach is relevant. The two approaches agree in the limit of large environments. Analytic results for the average density matrix and its purity are presented in linear response approximation. The two-qubit system is analysed, mainly numerically, in more detail.

  1. Developed Matrix inequalities via Positive Multilinear Mappings

    OpenAIRE

    Dehghani, Mahdi; Kian, Mohsen; Seo, Yuki

    2015-01-01

    Utilizing the notion of positive multilinear mappings, we give some matrix inequalities. In particular, Choi--Davis--Jensen and Kantorovich type inequalities including positive multilinear mappings are presented.

  2. A random matrix theory of decoherence

    Science.gov (United States)

    Gorin, T.; Pineda, C.; Kohler, H.; Seligman, T. H.

    2008-11-01

    Random matrix theory is used to represent generic loss of coherence of a fixed central system coupled to a quantum-chaotic environment, represented by a random matrix ensemble, via random interactions. We study the average density matrix arising from the ensemble induced, in contrast to previous studies where the average values of purity, concurrence and entropy were considered; we further discuss when one or the other approach is relevant. The two approaches agree in the limit of large environments. Analytic results for the average density matrix and its purity are presented in linear response approximation. The two-qubit system is analysed, mainly numerically, in more detail.

  3. Query Through Heterogeneous Ontologies Using Association Matrix

    Institute of Scientific and Technical Information of China (English)

    KANG Da-zhou; XU Bao-wen; LU Jian-jiang; WANG Peng; LI Yan-hui

    2004-01-01

    This paper introduces the definition and calculation of the association matrix between ontologies.It uses the association matrix to describe the relations between concepts in different ontologies and uses concept vectors to represent queries; then computes the vectors with the association matrix in order to rewrite queries.This paper proposes a simple method of querying through heterogeneous Ontology using association matrix.This method is based on the correctness of approximate information filtering theory; and it is simple to be implemented and expected to run quite fast.

  4. Titanium Matrix Composite Pressure Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  5. Faster Algorithms for Rectangular Matrix Multiplication

    CERN Document Server

    Gall, François Le

    2012-01-01

    Let {\\alpha} be the maximal value such that the product of an n x n^{\\alpha} matrix by an n^{\\alpha} x n matrix can be computed with n^{2+o(1)} arithmetic operations. In this paper we show that \\alpha>0.30298, which improves the previous record \\alpha>0.29462 by Coppersmith (Journal of Complexity, 1997). More generally, we construct a new algorithm for multiplying an n x n^k matrix by an n^k x n matrix, for any value k\

  6. Reduction of multipartite qubit density matrixes to bipartite qubit density matrixes and criteria of partial separability of multipartite qubit density matrixes

    OpenAIRE

    Zhong, Zai-Zhe

    2004-01-01

    The partial separability of multipartite qubit density matrixes is strictly defined. We give a reduction way from N-partite qubit density matrixes to bipartite qubit density matrixes, and prove a necessary condition that a N-partite qubit density matrix to be partially separable is its reduced density matrix to satisfy PPT condition.

  7. TRASYS form factor matrix normalization

    Science.gov (United States)

    Tsuyuki, Glenn T.

    1992-01-01

    A method has been developed for adjusting a TRASYS enclosure form factor matrix to unity. This approach is not limited to closed geometries, and in fact, it is primarily intended for use with open geometries. The purpose of this approach is to prevent optimistic form factors to space. In this method, nodal form factor sums are calculated within 0.05 of unity using TRASYS, although deviations as large as 0.10 may be acceptable, and then, a process is employed to distribute the difference amongst the nodes. A specific example has been analyzed with this method, and a comparison was performed with a standard approach for calculating radiation conductors. In this comparison, hot and cold case temperatures were determined. Exterior nodes exhibited temperature differences as large as 7 C and 3 C for the hot and cold cases, respectively when compared with the standard approach, while interior nodes demonstrated temperature differences from 0 C to 5 C. These results indicate that temperature predictions can be artificially biased if the form factor computation error is lumped into the individual form factors to space.

  8. Direct Model Checking Matrix Algorithm

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Tao; Hans Kleine Büning; Li-Fu Wang

    2006-01-01

    During the last decade, Model Checking has proven its efficacy and power in circuit design, network protocol analysis and bug hunting. Recent research on automatic verification has shown that no single model-checking technique has the edge over all others in all application areas. So, it is very difficult to determine which technique is the most suitable for a given model. It is thus sensible to apply different techniques to the same model. However, this is a very tedious and time-consuming task, for each algorithm uses its own description language. Applying Model Checking in software design and verification has been proved very difficult. Software architectures (SA) are engineering artifacts that provide high-level and abstract descriptions of complex software systems. In this paper a Direct Model Checking (DMC) method based on Kripke Structure and Matrix Algorithm is provided. Combined and integrated with domain specific software architecture description languages (ADLs), DMC can be used for computing consistency and other critical properties.

  9. Matrix perturbations: bounding and computing eigenvalues

    NARCIS (Netherlands)

    Reis da Silva, R.J.

    2011-01-01

    Despite the somewhat negative connotation of the word, not every perturbation is a bad perturbation. In fact, while disturbing the matrix entries, many perturbations still preserve useful properties such as the orthonormality of the basis of eigenvectors or the Hermicity of the original matrix. In t

  10. Matrix Management: An Organizational Alternative for Libraries.

    Science.gov (United States)

    Johnson, Peggy

    1990-01-01

    Describes various organizational structures and models, presents matrix management as an alternative to traditional hierarchical structures, and suggests matrix management as an appropriate organizational alternative for academic libraries. Benefits that are discussed include increased flexibility, a higher level of professional independence, and…

  11. The Matrix exponential, Dynamic Systems and Control

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    2004-01-01

    The matrix exponential can be found in various connections in analysis and control of dynamic systems. In this short note we are going to list a few examples. The matrix exponential usably pops up in connection to the sampling process, whatever it is in a deterministic or a stochastic setting...

  12. Differential analysis of matrix convex functions II

    DEFF Research Database (Denmark)

    Hansen, Frank; Tomiyama, Jun

    2009-01-01

    We continue the analysis in [F. Hansen, and J. Tomiyama, Differential analysis of matrix convex functions. Linear Algebra Appl., 420:102--116, 2007] of matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divide...

  13. Fragmentation of extracellular matrix by hypochlorous acid

    DEFF Research Database (Denmark)

    Woods, Alan A; Davies, Michael Jonathan

    2003-01-01

    The interaction of extracellular matrix with cells regulates their adhesion, migration and proliferation, and it is believed that damage to vascular matrix components is a factor in the development of atherosclerosis. Evidence has been provided for a role for the haem enzyme MPO (myeloperoxidase...

  14. FINITE RIODAN MATRIX AND RIODAN GROUP

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Riodan Matrix is a lower triangular matrix of in finite order with certainly restricted conditions.In this paper,the author defines two kinds of finite Riodan matrices which are not limited to lower triangular.Properties of group theory of the two kinds matrices are considered.Applications of the finite Riodan matrices are researched.

  15. Confocal Microscopy Imaging of the Biofilm Matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise

    2016-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens...

  16. New Matrix Loop Algebra and Its Application

    Institute of Scientific and Technical Information of China (English)

    DONG Huan-He; XU Yue-Cai

    2008-01-01

    A new matrix Lie algebra and its corresponding Loop algebra are constructed firstly, as its appfication, the multi-component TC equation hierarchy is obtained, then by use of trace identity the Hamiltonian structure of the above system is presented. Finally, the integrable couplings of the obtained system is worked out by the expanding matrix Loop algebra.

  17. Exploratory matrix factorization for PET image analysis.

    Science.gov (United States)

    Kodewitz, A; Keck, I R; Tomé, A M; Lang, E W

    2010-01-01

    Features are extracted from PET images employing exploratory matrix factorization techniques such as nonnegative matrix factorization (NMF). Appropriate features are fed into classifiers such as a support vector machine or a random forest tree classifier. An automatic feature extraction and classification is achieved with high classification rate which is robust and reliable and can help in an early diagnosis of Alzheimer's disease.

  18. Matrix subordinators and related Upsilon transformations

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Pérez-Abreu, V.

    2008-01-01

    A class of upsilon transformations of Lévy measures for matrix subordinators is introduced. Some regularizing properties of these transformations are derived, such as absolute continuity and complete monotonicity. The class of Lévy measures with completely monotone matrix densities is characterized....... Examples of infinitely divisible nonnegative definite random matrices are constructed using an upsilon transformation....

  19. The Cartan Matrix of a Centralizer Algebra

    Indian Academy of Sciences (India)

    Umesh V Dubey; Amritanshu Prasad; Pooja Singla

    2012-02-01

    The centralizer algebra of a matrix consists of those matrices that commute with it. We investigate the basic representation-theoretic invariants of centralizer algebras, namely their radicals, projective indecomposable modules, injective indecomposable modules, simple modules and Cartan matrices. With the help of our Cartan matrix calculations we determine their global dimensions. Many of these algebras are of infinite global dimension.

  20. Modeling and Simulation of Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

  1. Finding nonoverlapping substructures of a sparse matrix

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, Ali; Vassilevska, Virginia

    2004-08-09

    Many applications of scientific computing rely on computations on sparse matrices, thus the design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of non overlapping rectangular dense blocks in a sparse matrix, which has not been studied in the sparse matrix community. We show that the maximum non overlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm for 2 times 2 blocks that runs in linear time in the number of nonzeros in the matrix. We discuss alternatives to rectangular blocks such as diagonal blocks and cross blocks and present complexity analysis and approximation algorithms.

  2. Matrix model description of baryonic deformations

    Energy Technology Data Exchange (ETDEWEB)

    Bena, Iosif; Murayama, Hitoshi; Roiban, Radu; Tatar, Radu

    2003-03-13

    We investigate supersymmetric QCD with N{sub c} + 1 flavors using an extension of the recently proposed relation between gauge theories and matrix models.The impressive agreement between the two sides provides a beautiful confirmation of the extension of the gauge theory-matrix model relation to this case.

  3. Block Hadamard measurement matrix with arbitrary dimension in compressed sensing

    Science.gov (United States)

    Liu, Shaoqiang; Yan, Xiaoyan; Fan, Xiaoping; Li, Fei; Xu, Wen

    2017-01-01

    As Hadamard measurement matrix cannot be used for compressing signals with dimension of a non-integral power-of-2, this paper proposes a construction method of block Hadamard measurement matrix with arbitrary dimension. According to the dimension N of signals to be measured, firstly, construct a set of Hadamard sub matrixes with different dimensions and make the sum of these dimensions equals to N. Then, arrange the Hadamard sub matrixes in a certain order to form a block diagonal matrix. Finally, take the former M rows of the block diagonal matrix as the measurement matrix. The proposed measurement matrix which retains the orthogonality of Hadamard matrix and sparsity of block diagonal matrix has highly sparse structure, simple hardware implements and general applicability. Simulation results show that the performance of our measurement matrix is better than Gaussian matrix, Logistic chaotic matrix, and Toeplitz matrix.

  4. Perturbative analysis of gauged matrix models

    Science.gov (United States)

    Dijkgraaf, Robbert; Gukov, Sergei; Kazakov, Vladimir A.; Vafa, Cumrun

    2003-08-01

    We analyze perturbative aspects of gauged matrix models, including those where classically the gauge symmetry is partially broken. Ghost fields play a crucial role in the Feynman rules for these vacua. We use this formalism to elucidate the fact that nonperturbative aspects of N=1 gauge theories can be computed systematically using perturbative techniques of matrix models, even if we do not possess an exact solution for the matrix model. As examples we show how the Seiberg-Witten solution for N=2 gauge theory, the Montonen-Olive modular invariance for N=1*, and the superpotential for the Leigh-Strassler deformation of N=4 can be systematically computed in perturbation theory of the matrix model or gauge theory (even though in some of these cases an exact answer can also be obtained by summing up planar diagrams of matrix models).

  5. Perturbative Analysis of Gauged Matrix Models

    CERN Document Server

    Dijkgraaf, R; Kazakov, V A; Vafa, C; Dijkgraaf, Robbert; Gukov, Sergei; Kazakov, Vladimir A.; Vafa, Cumrun

    2003-01-01

    We analyze perturbative aspects of gauged matrix models, including those where classically the gauge symmetry is partially broken. Ghost fields play a crucial role in the Feynman rules for these vacua. We use this formalism to elucidate the fact that non-perturbative aspects of N=1 gauge theories can be computed systematically using perturbative techniques of matrix models, even if we do not possess an exact solution for the matrix model. As examples we show how the Seiberg-Witten solution for N=2 gauge theory, the Montonen-Olive modular invariance for N=1*, and the superpotential for the Leigh-Strassler deformation of N=4 can be systematically computed in perturbation theory of the matrix model/gauge theory (even though in some of these cases the exact answer can also be obtained by summing up planar diagrams of matrix models).

  6. Spectral clustering based on matrix perturbation theory

    Institute of Scientific and Technical Information of China (English)

    TIAN Zheng; LI XiaoBin; JU YanWei

    2007-01-01

    This paper exposes some intrinsic characteristics of the spectral clustering method by using the tools from the matrix perturbation theory. We construct a weight matrix of a graph and study its eigenvalues and eigenvectors. It shows that the number of clusters is equal to the number of eigenvalues that are larger than 1, and the number of points in each of the clusters can be approximated by the associated eigenvalue. It also shows that the eigenvector of the weight matrix can be used directly to perform clustering; that is, the directional angle between the two-row vectors of the matrix derived from the eigenvectors is a suitable distance measure for clustering. As a result, an unsupervised spectral clustering algorithm based on weight matrix (USCAWM) is developed. The experimental results on a number of artificial and real-world data sets show the correctness of the theoretical analysis.

  7. Extracellular matrix component signaling in cancer

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A. B.; Leitinger, Birgit; Gullberg, Donald

    2016-01-01

    Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motil...... as well as matrix constitution and protein crosslinking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression. [on SciFinder(R)]......Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization...... and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromols. are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin...

  8. Making the matrix work how matrix managers engage people and cut through complexity

    CERN Document Server

    Hall, Kevan

    2013-01-01

    Welcome to the matrix, where multiple bosses, competing goals, influence withoutauthority and accountability without control make work more complex. Most largeorganizations have adopted some form of matrix organization to manage globalcustomers and supply chains, implement common business processes and run moreintegrated business functions. But in a matrix, structure solves nothing. It ismatrix management, the way people work together, that makes the differencebetween matrix success and failure. Makingthe Matrix Work will show you how to establish and engage networksthat do not depend on role,

  9. [Modern polymers in matrix tablets technology].

    Science.gov (United States)

    Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa

    2014-01-01

    Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.

  10. Decellularized bone matrix grafts for calvaria regeneration

    Science.gov (United States)

    Lee, Dong Joon; Diachina, Shannon; Lee, Yan Ting; Zhao, Lixing; Zou, Rui; Tang, Na; Han, Han; Chen, Xin; Ko, Ching-Chang

    2016-01-01

    Decellularization is a promising new method to prepare natural matrices for tissue regeneration. Successful decellularization has been reported using various tissues including skin, tendon, and cartilage, though studies using hard tissue such as bone are lacking. In this study, we aimed to define the optimal experimental parameters to decellularize natural bone matrix using 0.5% sodium dodecyl sulfate and 0.1% NH4OH. Then, the effects of decellularized bone matrix on rat mesenchymal stem cell proliferation, osteogenic gene expression, and osteogenic differentiations in a two-dimensional culture system were investigated. Decellularized bone was also evaluated with regard to cytotoxicity, biochemical, and mechanical characteristics in vitro. Evidence of complete decellularization was shown through hematoxylin and eosin staining and DNA measurements. Decellularized bone matrix displayed a cytocompatible property, conserved structure, mechanical strength, and mineral content comparable to natural bone. To study new bone formation, implantation of decellularized bone matrix particles seeded with rat mesenchymal stem cells was conducted using an orthotopic in vivo model. After 3 months post-implantation into a critical-sized defect in rat calvaria, new bone was formed around decellularized bone matrix particles and also merged with new bone between decellularized bone matrix particles. New bone formation was analyzed with micro computed tomography, mineral apposition rate, and histomorphometry. Decellularized bone matrix stimulated mesenchymal stem cell proliferation and osteogenic differentiation in vitro and in vivo, achieving effective bone regeneration and thereby serving as a promising biological bone graft. PMID:28228929

  11. Residual, restarting and Richardson iteration for the matrix exponential

    NARCIS (Netherlands)

    Botchev, M.A.

    2010-01-01

    A well-known problem in computing some matrix functions iteratively is a lack of a clear, commonly accepted residual notion. An important matrix function for which this is the case is the matrix exponential. Assume, the matrix exponential of a given matrix times a given vector has to be computed.

  12. Residual, restarting and Richardson iteration for the matrix exponential

    NARCIS (Netherlands)

    Botchev, Mike A.; Grimm, Volker; Hochbruck, Marlis

    2013-01-01

    A well-known problem in computing some matrix functions iteratively is the lack of a clear, commonly accepted residual notion. An important matrix function for which this is the case is the matrix exponential. Suppose the matrix exponential of a given matrix times a given vector has to be computed.

  13. Neutrino masses from an approximate mixing matrix with $\\theta_{13}\

    CERN Document Server

    Damanik, Asan

    2016-01-01

    An approximate neutrino mixing matrix is formutated by using the standard neutrino mixing matrix as a basis and experimental data of neutrino oscillations as inputs. By using the resulted approximate neutrino mixing matrix to proceed the neutrino mass matrix and constraining the resulted neutrino mass matrix with zero texture: $M_{\

  14. A matrix model from string field theory

    Directory of Open Access Journals (Sweden)

    Syoji Zeze

    2016-09-01

    Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.

  15. A matrix model from string field theory

    Science.gov (United States)

    Zeze, Syoji

    2016-09-01

    We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N) vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large N matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.

  16. Partial chord diagrams and matrix models

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Fuji, Hiroyuki; Manabe, Masahide

    spectrum. Furthermore, we consider the boundary length and point spectrum that unifies the last two types of spectra. We introduce matrix models that encode generating functions of partial chord diagrams filtered by each of these spectra. Using these matrix models, we derive partial differential equations......In this article, the enumeration of partial chord diagrams is discussed via matrix model techniques. In addition to the basic data such as the number of backbones and chords, we also consider the Euler characteristic, the backbone spectrum, the boundary point spectrum, and the boundary length...... – obtained independently by cut-and-join arguments in an earlier work – for the corresponding generating functions....

  17. Three-Algebra Bfss Matrix Theory

    Science.gov (United States)

    Sato, Matsuo

    2013-11-01

    We extend the BFSS matrix theory by means of Lie 3-algebra. The extended model possesses the same supersymmetry as the original BFSS matrix theory, and thus as the infinite momentum frame limit of M-theory. We study dynamics of the model by choosing the minimal Lie 3-algebra that includes u(N) algebra. We can solve a constraint in the minimal model and obtain two phases. In one phase, the model reduces to the original matrix model. In another phase, it reduces to a simple supersymmetric model.

  18. Three-Algebra BFSS Matrix Theory

    CERN Document Server

    Sato, Matsuo

    2013-01-01

    We extend the BFSS matrix theory by means of Lie 3-algebra. The extended model possesses the same supersymmetry as the original BFSS matrix theory, and thus as the infinite momentum frame limit of M-theory. We study dynamics of the model by choosing the minimal Lie 3-algebra that includes u(N) algebra. We can solve a constraint in the minimal model and obtain two phases. In one phase, the model reduces to the original matrix model. In another phase, it reduces to a simple supersymmetric model.

  19. Formalization of Matrix Theory in HOL4

    Directory of Open Access Journals (Sweden)

    Zhiping Shi

    2014-08-01

    Full Text Available Matrix theory plays an important role in modeling linear systems in engineering and science. To model and analyze the intricate behavior of complex systems, it is imperative to formalize matrix theory in a metalogic setting. This paper presents the higher-order logic (HOL formalization of the vector space and matrix theory in the HOL4 theorem proving system. Formalized theories include formal definitions of real vectors and matrices, algebraic properties, and determinants, which are verified in HOL4. Two case studies, modeling and verifying composite two-port networks and state transfer equations, are presented to demonstrate the applicability and effectiveness of our work.

  20. Generic construction of efficient matrix product operators

    Science.gov (United States)

    Hubig, C.; McCulloch, I. P.; Schollwöck, U.

    2017-01-01

    Matrix product operators (MPOs) are at the heart of the second-generation density matrix renormalization group (DMRG) algorithm formulated in matrix product state language. We first summarize the widely known facts on MPO arithmetic and representations of single-site operators. Second, we introduce three compression methods (rescaled SVD, deparallelization, and delinearization) for MPOs and show that it is possible to construct efficient representations of arbitrary operators using MPO arithmetic and compression. As examples, we construct powers of a short-ranged spin-chain Hamiltonian, a complicated Hamiltonian of a two-dimensional system and, as proof of principle, the long-range four-body Hamiltonian from quantum chemistry.

  1. Tree Level Supergravity and the Matrix Model

    CERN Document Server

    Dine, Michael; Gray, J P; Dine, Michael; Echols, Robert; Gray, Joshua P.

    2000-01-01

    It has recently been shown that the Matrix model and supergravity give the same predictions for three graviton scattering. This contradicts an earlier claim in the literature. We explain the error in this earlier work, and go on to show that certain terms in the $n$-graviton scattering amplitude involving $v^{2n}$ are given correctly by the Matrix model. The Matrix model also generates certain $v^6$ terms in four graviton scattering at three loops, which do not seem to have any counterparts in supergravity. The connection of these results with nonrenormalization theorems is discussed.

  2. Generalized companion matrix for approximate GCD

    CERN Document Server

    Boito, Paola

    2011-01-01

    We study a variant of the univariate approximate GCD problem, where the coe?- cients of one polynomial f(x)are known exactly, whereas the coe?cients of the second polynomial g(x)may be perturbed. Our approach relies on the properties of the matrix which describes the operator of multiplication by gin the quotient ring C[x]=(f). In particular, the structure of the null space of the multiplication matrix contains all the essential information about GCD(f; g). Moreover, the multiplication matrix exhibits a displacement structure that allows us to design a fast algorithm for approximate GCD computation with quadratic complexity w.r.t. polynomial degrees.

  3. Efficient matrix inversion based on VLIW architecture

    Institute of Scientific and Technical Information of China (English)

    Li Zhang,Fu Li,; Guangming Shi

    2014-01-01

    Matrix inversion is a critical part in communication, signal processing and electromagnetic system. A flexible and scal-able very long instruction word (VLIW) processor with clustered architecture is proposed for matrix inversion. A global register file (RF) is used to connect al the clusters. Two nearby clusters share a local register file. The instruction sets are also designed for the VLIW processor. Experimental results show that the proposed VLIW architecture takes only 45 latency to invert a 4 × 4 matrix when running at 150 MHz. The proposed design is roughly five times faster than the DSP solution in processing speed.

  4. Scattering matrix theory for stochastic scalar fields.

    Science.gov (United States)

    Korotkova, Olga; Wolf, Emil

    2007-05-01

    We consider scattering of stochastic scalar fields on deterministic as well as on random media, occupying a finite domain. The scattering is characterized by a generalized scattering matrix which transforms the angular correlation function of the incident field into the angular correlation function of the scattered field. Within the accuracy of the first Born approximation this matrix can be expressed in a simple manner in terms of the scattering potential of the scatterer. Apart from determining the angular distribution of the spectral intensity of the scattered field, the scattering matrix makes it possible also to determine the changes in the state of coherence of the field produced on scattering.

  5. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  6. CDENPROP: Transition matrix elements involving continuum states

    CERN Document Server

    Harvey, Alex G; Morales, Felipe; Smirnova, Olga

    2014-01-01

    Transition matrix elements between electronic states where one electron can be in the continuum are required for a wide range of applications of the molecular R-matrix method. These include photoionization, photorecombination and photodetachment; electron-molecule scattering and photon-induced processes in the presence of an external D.C. field, and time-dependent R-matrix approaches to study the effect of the exposure of molecules to strong laser fields. We present a new algorithm, implemented as a module (CDENPROP) in the UKRmol electron-molecule scattering code suite.

  7. Embedded systems for controlling LED matrix displays

    Science.gov (United States)

    Marghescu, Cristina; Drumea, Andrei

    2016-12-01

    LED matrix displays are a common presence in everyday life - they can be found in trains, buses, tramways, office information tables or outdoor media. The structure of the display unit is similar for all these devices, a matrix of light emitting diodes coupled between row and column lines, but there are many options for the display controller that switches these lines. Present paper analyzes different types of embedded systems that can control the LED matrix, based on single board computers, on microcontrollers with different peripheral devices or with programmable logic devices like field programmable gate arrays with implemented soft processor cores. Scalability, easiness of implementation and costs are analyzed for all proposed solutions.

  8. Matrix Strings, Compactification Scales and Hagedorn Transition

    CERN Document Server

    Meana, M L; Meana, Marco Laucelli; Peñalba, Jesús Puente

    1999-01-01

    In this work we use the Matrix Model of Strings in order to extract some non-perturbative information on how the Hagedorn critical temperature arises from eleven-dimensional physics. We study the thermal behavior of M and Matrix theories on the compactification backgrounds that correspond to string models. We obtain some information that allows us to state that the Hagedorn temperature is not unique for all Matrix String models and we are also able to sketch how the $S$-duality transformation works in this framework.

  9. A Matrix Construction of Cellular Algebras

    Institute of Scientific and Technical Information of China (English)

    Dajing Xiang

    2005-01-01

    In this paper, we give a concrete method to construct cellular algebras from matrix algebras by specifying certain fixed matrices for the data of inflations. In particular,orthogonal matrices can be chosen for such data.

  10. Matrix Graph Grammars with Application Conditions

    CERN Document Server

    Velasco, Pedro Pablo Perez

    2009-01-01

    In the Matrix approach to graph transformation we represent simple digraphs and rules with Boolean matrices and vectors, and the rewriting is expressed using Boolean operators only. In previous works, we developed analysis techniques that allow studying the applicability of rule sequences, their independence, state reachability and the minimal graph able to fire a sequence. In the present paper we improve our framework in two ways. First, we make explicit (in the form of a Boolean matrix) some negative implicit information in rules. This matrix (called "nihilation matrix") contains the elements that if present, forbid the application of the rule (i.e. potential dangling edges, or newly added edges, which cannot be already present in the simple digraph). Second, we introduce a novel notion of application condition, which combines graph diagrams together with monadic second order logic. This allows more flexibility and expressivity than previous approaches, as well as more concise conditions in certain cases. W...

  11. GB Diet matrix as informed by EMAX

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set was taken from CRD 08-18 at the NEFSC. Specifically, the Georges Bank diet matrix was developed for the EMAX exercise described in that center...

  12. Interacting Giant Gravitons from Spin Matrix Theory

    CERN Document Server

    Harmark, Troels

    2016-01-01

    Using the non-abelian DBI action we find an effective matrix model that describes the dynamics of weakly interacting giant gravitons wrapped on three-spheres in the AdS part of AdS_5 x S^5 at high energies with two angular momenta on the S^5. In parallel we consider the limit of \\CN=4 super Yang-Mills theory near a certain unitarity bound where it reduces to the quantum mechanical theory called SU(2) Spin Matrix Theory. We show that the exact same matrix model that describes the giant gravitons on the string theory side also provides the effective description in the strong coupling and large energy limit of the Spin Matrix Theory. Thus, we are able to match non-supersymmetric dynamics of D-branes on AdS_5 x S^5 to a finite-N regime in \\CN=4 super Yang-Mills theory near a unitarity bound.

  13. The revenge of the S-matrix

    CERN Document Server

    CERN. Geneva

    2016-01-01

    In this talk I will describe recent work aiming to reinvigorate the 50 year old S-matrix program, which aims to constrain scattering of massive particles non-perturbatively. I will begin by considering quantum fields in anti-de Sitter space and show that one can extract information about the S-matrix by considering correlators in conformally invariant theories. The latter can be studied with "bootstrap" techniques, which allow us to constrain the S-matrix. In particular, in 1+1D one obtains bounds which are saturated by known integrable models. I will also show that it is also possible to directly constrain the S-matrix, without using the CFT crutch, by using crossing symmetry and unitarity. This alternative method is simpler and gives results in agreement with the previous approach. Both techniques are generalizable to higher dimensions.

  14. Microwave Processed Multifunctional Polymer Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified polymer matrix composites (PMCs) as a critical need for launch and in-space vehicles, but the significant costs of such materials limits their...

  15. Matrix models of 2d gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  16. Matrix models of 2d gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  17. Comix, a New Matrix Element Generator

    Energy Technology Data Exchange (ETDEWEB)

    Gleisberg, Tanju; /SLAC; Hoche, Stefan; /Durham U., IPPP

    2008-09-03

    We present a new tree-level matrix element generator, based on the color dressed Berends-Giele recursive relations. We discuss two new algorithms for phase space integration, dedicated to be used with large multiplicities and color sampling.

  18. Matrix Models, Monopoles and Modified Moduli

    CERN Document Server

    Erlich, J; Unsal, M; Erlich, Joshua; Hong, Sungho; Unsal, Mithat

    2004-01-01

    Motivated by the Dijkgraaf-Vafa correspondence, we consider the matrix model duals of N=1 supersymmetric SU(Nc) gauge theories with Nf flavors. We demonstrate via the matrix model solutions a relation between vacua of theories with different numbers of colors and flavors. This relation is due to an N=2 nonrenormalization theorem which is inherited by these N=1 theories. Specializing to the case Nf=Nc, the simplest theory containing baryons, we demonstrate that the explicit matrix model predictions for the locations on the Coulomb branch at which monopoles condense are consistent with the quantum modified constraints on the moduli in the theory. The matrix model solutions include the case that baryons obtain vacuum expectation values. In specific cases we check explicitly that these results are also consistent with the factorization of corresponding Seiberg-Witten curves. Certain results are easily understood in terms of M5-brane constructions of these gauge theories.

  19. Matrix Models, Monopoles and Modified Moduli

    Science.gov (United States)

    Erlich, Joshua; Hong, Sungho; Unsal, Mithat

    2004-09-01

    Motivated by the Dijkgraaf-Vafa correspondence, we consider the matrix model duals of Script N = 1 supersymmetric SU(Nc) gauge theories with Nf flavors. We demonstrate via the matrix model solutions a relation between vacua of theories with different numbers of colors and flavors. This relation is due to an Script N = 2 nonrenormalization theorem which is inherited by these Script N = 1 theories. Specializing to the case Nf = Nc, the simplest theory containing baryons, we demonstrate that the explicit matrix model predictions for the locations on the Coulomb branch at which monopoles condense are consistent with the quantum modified constraints on the moduli in the theory. The matrix model solutions include the case that baryons obtain vacuum expectation values. In specific cases we check explicitly that these results are also consistent with the factorization of corresponding Seiberg-Witten curves. Certain results are easily understood in terms of M5-brane constructions of these gauge theories.

  20. Index matrices towards an augmented matrix calculus

    CERN Document Server

    Atanassov, Krassimir T

    2014-01-01

    This book presents the very concept of an index matrix and its related augmented matrix calculus in a comprehensive form. It mostly illustrates the exposition with examples related to the generalized nets and intuitionistic fuzzy sets which are examples of an extremely wide array of possible application areas. The present book contains the basic results of the author over index matrices and some of its open problems with the aim to stimulating more researchers to start working in this area.

  1. Matrix parameters and storage conditions of manure

    Energy Technology Data Exchange (ETDEWEB)

    Weinfurtner, Karlheinz [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg (Germany)

    2011-01-15

    The literature study presents an overview of storage conditions for manure and information about important matrix parameters of manure such as dry matter content, pH value, total organic carbon, total nitrogen and ammonium nitrogen. The presented results show that for matrix parameters a dissimilarity of cattle and pig manure can be observed but no difference within the species for different production types occurred with exception of calves. A scenario for western and central European countries is derived. (orig.)

  2. Orbifold matrix models and fuzzy extra dimensions

    CERN Document Server

    Chatzistavrakidis, Athanasios; Zoupanos, George

    2011-01-01

    We revisit an orbifold matrix model obtained as a restriction of the type IIB matrix model on a Z_3-invariant sector. An investigation of its moduli space of vacua is performed and issues related to chiral gauge theory and gravity are discussed. Modifications of the orbifolded model triggered by Chern-Simons or mass deformations are also analyzed. Certain vacua of the modified models exhibit higher-dimensional behaviour with internal geometries related to fuzzy spheres.

  3. Neutrino Mass Matrix with Approximate Flavor Symmetry

    CERN Document Server

    Riazuddin, M

    2003-01-01

    Phenomenological implications of neutrino oscillations implied by recent experimental data on pattern of neutrino mass matrix are disscussed. It is shown that it is possible to have a neutrino mass matrix which shows approximate flavor symmetry; the neutrino mass differences arise from flavor violation in off-diagonal Yukawa couplings. Two modest extensions of the standard model, which can embed the resulting neutrino mass matix have also been discussed.

  4. Quantized Matrix Algebras and Quantum Seeds

    DEFF Research Database (Denmark)

    Jakobsen, Hans Plesner; Pagani, Chiara

    2015-01-01

    We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees.......We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees....

  5. Correlation matrix for quartet codon usage

    CERN Document Server

    Frappat, L; Sorba, Paul

    2005-01-01

    It has been argued that the sum of usage probabilities for codons, belonging to quartets, that have as third nucleotide C or A, is independent of the biological species for vertebrates. The comparison between the theoretical correlation matrix derived from these sum rules and the experimentally computed matrix for 26 species shows a satisfactory agreement. The Shannon entropy, weakly depending on the biological species, gives further support. Suppression of codons containing the dinucleotides CG or AU is put in evidence.

  6. Computing a Nonnegative Matrix Factorization -- Provably

    CERN Document Server

    Arora, Sanjeev; Kannan, Ravi; Moitra, Ankur

    2011-01-01

    In the Nonnegative Matrix Factorization (NMF) problem we are given an $n \\times m$ nonnegative matrix $M$ and an integer $r > 0$. Our goal is to express $M$ as $A W$ where $A$ and $W$ are nonnegative matrices of size $n \\times r$ and $r \\times m$ respectively. In some applications, it makes sense to ask instead for the product $AW$ to approximate $M$ -- i.e. (approximately) minimize $\

  7. Matrix metalloproteinases in exercise and obesity

    OpenAIRE

    Jaoude J; Koh Y

    2016-01-01

    Jonathan Jaoude,1 Yunsuk Koh2 1Department of Biology, 2Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA Abstract: Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs’ functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and ...

  8. Polymer Matrix Composite Material Oxygen Compatibility

    Science.gov (United States)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  9. Recursive Array Layouts and Fast Matrix Multiplication

    Science.gov (United States)

    2005-01-01

    specialized not only for a specific memory architecture but also for a specific matrix size. The ATLAS project generates code for BLAS 3 routines based on...parallel, rely on good spa- tial and temporal locality of reference for their performance. Matrix multiplication (the BLAS 3 [14] dgemm routine) is a key...multiprocessors with multi-level memory hierarchies, the column-major layout assumed in the BLAS 3 library can produce unfavorable access patterns in the memory

  10. Schwarzchild Black Holes in Matrix Theory, 2

    CERN Document Server

    Banks, T; Klebanov, Igor R; Susskind, Leonard

    1998-01-01

    We present a crude Matrix Theory model for Schwarzchild black holes in uncompactified dimension greater than 5. The model accounts for the size, entropy, and long range static interactions of black holes. The key feature of the model is a Boltzmann gas of D0 branes, a concept which depends on certain qualitative features of Matrix Theory which previously have not been utilized in studies of black holes.

  11. On Quark Mixings and CKM Matrix

    Science.gov (United States)

    Senju, H.

    1991-05-01

    Inspired by unique features of the preon-subpreon model, we study quark mixings and the CKM matrix. The resultant CKM matrix has very nice properties. V_{cb} =~ - V_{ts} is predicted. Our scheme has a strong possibility to explain that V_{us} and V_{cd} are remarkably large compared with other off-diagonal elements and that V_{ub} and V_{td} are much smaller than V_{cb}.

  12. Matrix-valued Quantum Lattice Boltzmann Method

    CERN Document Server

    Mendl, Christian B

    2013-01-01

    We develop a numerical framework for the quantum analogue of the "classical" lattice Boltzmann method (LBM), with the Maxwell-Boltzmann distribution replaced by the Fermi-Dirac function. To accommodate the spin density matrix, the distribution functions become 2x2-matrix valued. We show that the efficient, commonly used BGK approximation of the collision operator is valid in the present setting. The framework could leverage the principles of LBM for simulating complex spin systems, with applications to spintronics.

  13. Loading Arbitrary Knowledge Bases in Matrix Browser

    OpenAIRE

    2009-01-01

    This paper describes the work done on Matrix Browser, which is a recently developed graphical user interface to explore and navigate complex networked information spaces. This approach presents a new way of navigating information nets in windows explorer like widget. The problem on hand was how to export arbitrary knowledge bases in Matrix Browser. This was achieved by identifying the relationships present in knowledge bases and then by forming the hierarchies from this data and these hierarc...

  14. Genetic Relationships Between Chondrules, Rims and Matrix

    Science.gov (United States)

    Huss, G. R.; Alexander, C. M. OD.; Palme, H.; Bland, P. A.; Wasson, J. T.

    2004-01-01

    The most primitive chondrites are composed of chondrules and chondrule fragments, various types of inclusions, discrete mineral grains, metal, sulfides, and fine-grained materials that occur as interchondrule matrix and as chondrule/inclusion rims. Understanding how these components are related is essential for understanding how chondrites and their constituents formed and were processed in the solar nebula. For example, were the first generations of chondrules formed by melting of matrix or matrix precursors? Did chondrule formation result in appreciable transfer of chondrule material into the matrix? Here, we consider three types of data: 1) compositional data for bulk chondrites and matrix, 2) mineralogical and textural information, and 3) the abundances and characteristics of presolar materials that reside in the matrix and rims. We use these data to evaluate the roles of evaporation and condensation, chondrule formation, mixing of different nebular components, and secondary processing both in the nebula and on the parent bodies. Our goal is to identify the things that are reasonably well established and to point out the areas that need additional work.

  15. Ubiquitination of specific mitochondrial matrix proteins.

    Science.gov (United States)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G; Ciechanover, Aaron

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems - at least partially - in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins.

  16. Random matrix theory and robust covariance matrix estimation for financial data

    CERN Document Server

    Frahm, G; Frahm, Gabriel; Jaekel, Uwe

    2005-01-01

    The traditional class of elliptical distributions is extended to allow for asymmetries. A completely robust dispersion matrix estimator (the `spectral estimator') for the new class of `generalized elliptical distributions' is presented. It is shown that the spectral estimator corresponds to an M-estimator proposed by Tyler (1983) in the context of elliptical distributions. Both the generalization of elliptical distributions and the development of a robust dispersion matrix estimator are motivated by the stylized facts of empirical finance. Random matrix theory is used for analyzing the linear dependence structure of high-dimensional data. It is shown that the Marcenko-Pastur law fails if the sample covariance matrix is considered as a random matrix in the context of elliptically distributed and heavy tailed data. But substituting the sample covariance matrix by the spectral estimator resolves the problem and the Marcenko-Pastur law remains valid.

  17. Some Upper Matrix Bounds for the Solution of the Continuous Algebraic Riccati Matrix Equation

    Directory of Open Access Journals (Sweden)

    Zübeyde Ulukök

    2013-01-01

    Full Text Available We propose diverse upper bounds for the solution matrix of the continuous algebraic Riccati matrix equation (CARE by building the equivalent form of the CARE and using some matrix inequalities and linear algebraic techniques. Finally, numerical example is given to demonstrate the effectiveness of the obtained results in this work as compared with some existing results in the literature. These new bounds are less restrictive and provide more efficient results in some cases.

  18. Cache oblivious storage and access heuristics for blocked matrix-matrix multiplication

    CERN Document Server

    Bock, Nicolas; Sałek, Paweł; Niklasson, Anders M N; Challacombe, Matt

    2008-01-01

    We investigate effects of ordering in blocked matrix--matrix multiplication. We find that submatrices do not have to be stored contiguously in memory to achieve near optimal performance. Instead it is the choice of multiplication ordering that leads to a speedup of up to four times for small block sizes. This is in contrast to results for single matrix elements showing that contiguous memory allocation quickly becomes irrelevant as the blocksize increases.

  19. INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1

    Science.gov (United States)

    2003-01-01

    INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 1

  20. Study of ionization process of matrix molecules in matrix-assisted laser desorption ionization

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kazumasa; Sato, Asami; Hashimoto, Kenro; Fujino, Tatsuya, E-mail: fujino@tmu.ac.jp

    2013-06-20

    Highlights: ► Proton transfer and adduction reaction of matrix in MALDI were studied. ► Hydroxyl group forming intramolecular hydrogen bond was related to the ionization. ► Intramolecular proton transfer in the electronic excited state was the initial step. ► Non-volatile analytes stabilized protonated matrix in the ground state. ► A possible mechanism, “analyte support mechanism”, has been proposed. - Abstract: Proton transfer and adduction reaction of matrix molecules in matrix-assisted laser desorption ionization were studied. By using 2,4,6-trihydroxyacetophenone (THAP), 2,5-dihydroxybenzoic acid (DHBA), and their related compounds in which the position of a hydroxyl group is different, it was clarified that a hydroxyl group forming an intramolecular hydrogen bond is related to the ionization of matrix molecules. Intramolecular proton transfer in the electronic excited state of the matrix and subsequent proton adduction from a surrounding solvent to the charge-separated matrix are the initial steps for the ionization of matrix molecules. Nanosecond pump–probe NIR–UV mass spectrometry confirmed that the existence of analyte molecules having large dipole moment in their structures is necessary for the stabilization of [matrix + H]{sup +} in the electronic ground state.

  1. Max–min distance nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-10-26

    Nonnegative Matrix Factorization (NMF) has been a popular representation method for pattern classification problems. It tries to decompose a nonnegative matrix of data samples as the product of a nonnegative basis matrix and a nonnegative coefficient matrix. The columns of the coefficient matrix can be used as new representations of these data samples. However, traditional NMF methods ignore class labels of the data samples. In this paper, we propose a novel supervised NMF algorithm to improve the discriminative ability of the new representation by using the class labels. Using the class labels, we separate all the data sample pairs into within-class pairs and between-class pairs. To improve the discriminative ability of the new NMF representations, we propose to minimize the maximum distance of the within-class pairs in the new NMF space, and meanwhile to maximize the minimum distance of the between-class pairs. With this criterion, we construct an objective function and optimize it with regard to basis and coefficient matrices, and slack variables alternatively, resulting in an iterative algorithm. The proposed algorithm is evaluated on three pattern classification problems and experiment results show that it outperforms the state-of-the-art supervised NMF methods.

  2. Thom-Sebastiani & Duality for Matrix Factorizations

    CERN Document Server

    Preygel, Anatoly

    2011-01-01

    The derived category of a hypersurface has an action by "cohomology operations" k[t], deg t=-2, underlying the 2-periodic structure on its category of singularities (as matrix factorizations). We prove a Thom-Sebastiani type Theorem, identifying the k[t]-linear tensor products of these dg categories with coherent complexes on the zero locus of the sum potential on the product (with a support condition), and identify the dg category of colimit-preserving k[t]-linear functors between Ind-completions with Ind-coherent complexes on the zero locus of the difference potential (with a support condition). These results imply the analogous statements for the 2-periodic dg categories of matrix factorizations. Some applications include: we refine and establish the expected computation of 2-periodic Hochschild invariants of matrix factorizations; we show that the category of matrix factorizations is smooth, and is proper when the critical locus is proper; we show how Calabi-Yau structures on matrix factorizations arise f...

  3. Phase diagram of matrix compressed sensing

    Science.gov (United States)

    Schülke, Christophe; Schniter, Philip; Zdeborová, Lenka

    2016-12-01

    In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bilinear Generalized Approximate Message Passing (P-BiG-AMP) algorithm, recently introduced in J. T. Parker and P. Schniter [IEEE J. Select. Top. Signal Process. 10, 795 (2016), 10.1109/JSTSP.2016.2539123]. We show the existence of two different types of phase transition and their implications for the solvability of the problem, and we compare the results of our theoretical analysis to the numerical performance reached by P-BiG-AMP. Remarkably, the asymptotic replica equations for matrix compressed sensing are the same as those for a related but formally different problem of matrix factorization.

  4. Random matrix theory and symmetric spaces

    Energy Technology Data Exchange (ETDEWEB)

    Caselle, M.; Magnea, U

    2004-05-01

    In this review we discuss the relationship between random matrix theories and symmetric spaces. We show that the integration manifolds of random matrix theories, the eigenvalue distribution, and the Dyson and boundary indices characterizing the ensembles are in strict correspondence with symmetric spaces and the intrinsic characteristics of their restricted root lattices. Several important results can be obtained from this identification. In particular the Cartan classification of triplets of symmetric spaces with positive, zero and negative curvature gives rise to a new classification of random matrix ensembles. The review is organized into two main parts. In Part I the theory of symmetric spaces is reviewed with particular emphasis on the ideas relevant for appreciating the correspondence with random matrix theories. In Part II we discuss various applications of symmetric spaces to random matrix theories and in particular the new classification of disordered systems derived from the classification of symmetric spaces. We also review how the mapping from integrable Calogero-Sutherland models to symmetric spaces can be used in the theory of random matrices, with particular consequences for quantum transport problems. We conclude indicating some interesting new directions of research based on these identifications.

  5. Transfer matrix representation for periodic planar media

    Science.gov (United States)

    Parrinello, A.; Ghiringhelli, G. L.

    2016-06-01

    Sound transmission through infinite planar media characterized by in-plane periodicity is faced by exploiting the free wave propagation on the related unit cells. An appropriate through-thickness transfer matrix, relating a proper set of variables describing the acoustic field at the two external surfaces of the medium, is derived by manipulating the dynamic stiffness matrix related to a finite element model of the unit cell. The adoption of finite element models avoids analytical modeling or the simplification on geometry or materials. The obtained matrix is then used in a transfer matrix method context, making it possible to combine the periodic medium with layers of different nature and to treat both hard-wall and semi-infinite fluid termination conditions. A finite sequence of identical sub-layers through the thickness of the medium can be handled within the transfer matrix method, significantly decreasing the computational burden. Transfer matrices obtained by means of the proposed method are compared with analytical or equivalent models, in terms of sound transmission through barriers of different nature.

  6. Anyons and matrix product operator algebras

    Science.gov (United States)

    Bultinck, N.; Mariën, M.; Williamson, D. J.; Şahinoğlu, M. B.; Haegeman, J.; Verstraete, F.

    2017-03-01

    Quantum tensor network states and more particularly projected entangled-pair states provide a natural framework for representing ground states of gapped, topologically ordered systems. The defining feature of these representations is that topological order is a consequence of the symmetry of the underlying tensors in terms of matrix product operators. In this paper, we present a systematic study of those matrix product operators, and show how this relates entanglement properties of projected entangled-pair states to the formalism of fusion tensor categories. From the matrix product operators we construct a C∗-algebra and find that topological sectors can be identified with the central idempotents of this algebra. This allows us to construct projected entangled-pair states containing an arbitrary number of anyons. Properties such as topological spin, the S matrix, fusion and braiding relations can readily be extracted from the idempotents. As the matrix product operator symmetries are acting purely on the virtual level of the tensor network, the ensuing Wilson loops are not fattened when perturbing the system, and this opens up the possibility of simulating topological theories away from renormalization group fixed points. We illustrate the general formalism for the special cases of discrete gauge theories and string-net models.

  7. On the Instanton R-matrix

    CERN Document Server

    Smirnov, Andrey

    2013-01-01

    A torus action on a symplectic variety allows one to construct solutions to the quantum Yang-Baxter equations (R-matrices). For a torus action on cotangent bundles over flag varieties the resulting R-matrices are the standard rational solutions of the Yang-Baxter equation, which are well known in the theory of quantum integrable systems. The torus action on the instanton moduli space leads to more complicated R-matrices, depending additionally on two equivariant parameters t_1 and t_2. In this paper we derive an explicit expression for the R-matrix associated with the instanton moduli space. We study its matrix elements and its Taylor expansion in the powers of the spectral parameter. Certain matrix elements of this R-matrix give a generating function for the characteristic classes of tautological bundles over the Hilbert schemes in terms of the bosonic cut-and-join operators. In particular we rederive from the R-matrix the well known Lehn's formula for the first Chern class. We explicitly compute the first s...

  8. Redesigning Triangular Dense Matrix Computations on GPUs

    KAUST Repository

    Charara, Ali

    2016-08-09

    A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels fail to achieve the percentage of the theoretical peak performance on GPUs that one would expect when running kernels with similar surface-to-volume ratio on hardware accelerators, i.e., the standard matrix-matrix multiplication (GEMM). The authors propose adopting a recursive formulation, which enriches the TRMM and TRSM inner structures with GEMM calls and, therefore, reduces memory traffic while increasing the level of concurrency. The new implementation enables efficient use of the GPU memory hierarchy and mitigates the latency overhead, to run at the speed of the higher cache levels. Performance comparisons show up to eightfold and twofold speedups for large dense matrix sizes, against the existing state-of-the-art TRMM and TRSM implementations from NVIDIA cuBLAS, respectively, across various GPU generations. Once integrated into high-level Cholesky-based dense linear algebra algorithms, the performance impact on the overall applications demonstrates up to fourfold and twofold speedups, against the equivalent native implementations, linked with cuBLAS TRMM and TRSM kernels, respectively. The new TRMM/TRSM kernel implementations are part of the open-source KBLAS software library (http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx) and are lined up for integration into the NVIDIA cuBLAS library in the upcoming v8.0 release.

  9. A framework for general sparse matrix-matrix multiplication on GPUs and heterogeneous processors

    DEFF Research Database (Denmark)

    Liu, Weifeng; Vinter, Brian

    2015-01-01

    General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method (AMG), breadth first search and shortest path problem. Compared to other sparse BLAS routines, an efficient parallel SpGEMM implementation has to handle...

  10. The minimum amount of "matrix " needed for matrix-assisted pulsed laser deposition of biomolecules

    DEFF Research Database (Denmark)

    Tabetah, Marshall; Matei, Andreea; Constantinescu, Catalin;

    2014-01-01

    of coarse-grained molecular dynamics simulations are performed for a model lysozyme-water system, where the water serves the role of volatile "matrix" that drives the ejection of the biomolecules. The simulations reveal a remarkable ability of a small (5-10 wt %) amount of matrix to cause the ejection...

  11. Cache oblivious storage and access heuristics for blocked matrix-matrix multiplication

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Nicolas [Los Alamos National Laboratory; Rubensson, Emanuel H [Los Alamos National Laboratory; Niklasson, Anders M N [Los Alamos National Laboratory; Challacombe, Matt [Los Alamos National Laboratory; Salek, Pawel [SWEDEN

    2008-01-01

    The authors investigate effects of ordering in blocked matrix-matrix multiplication. They find that submatrices do not have to be stored contiguously in memory in order to achieve near optimal performance. They also find a good choice of execution order of submatrix operations can lead to a speedup of up to four times for small block sizes.

  12. Spectral density of the correlation matrix of factor models: a random matrix theory approach.

    Science.gov (United States)

    Lillo, F; Mantegna, R N

    2005-07-01

    We studied the eigenvalue spectral density of the correlation matrix of factor models of multivariate time series. By making use of the random matrix theory, we analytically quantified the effect of statistical uncertainty on the spectral density due to the finiteness of the sample. We considered a broad range of models, ranging from one-factor models to hierarchical multifactor models.

  13. Imbalance of matrix metalloproteinase-9 and matrix metalloproteinase tissue inhibitor-1 may contribute to hemorrhage in cerebellar arteriovenous malformations

    Institute of Scientific and Technical Information of China (English)

    Fei Di; Tongyan Chen; Hongli Li; Jizong Zhao; Shuo Wang; Yuanli Zhao; Dong Zhang

    2012-01-01

    In this study,we determined the expression levels of matrix metalloproteinase-2 and -9 and matrix metalloproteinase tissue inhibitor-1 and -2 in brain tissues and blood plasma of patients undergoing surgery for cerebellar arteriovenous malformations or primary epilepsy (control group).Immunohistochemistry and enzyme-linked immunosorbent assay revealed that the expression of matrix metalloproteinase-9 and matrix metalloproteinase tissue inhibitor-1 was significantly higher in patients with cerebellar arteriovenous malformations than in patients with primary epilepsy.The ratio of matrix metalloproteinase-9 to matrix metalloproteinase tissue inhibitor-1 was significantly higher in patients with hemorrhagic cerebellar arteriovenous malformations compared with those with non-hemorrhagic malformations.Matrix metalloproteinase-2 and matrix metalloproteinase tissue inhibitor-2 levels were not significantly changed.These findings indicate that an imbalance of matrix metalloproteinase-9 and matrix metalloproteinase tissue inhibitor-1,resulting in a relative overabundance of matrix metalloproteinase-9,might be the underlying mechanism of hemorrhage of cerebellar arteriovenous malformations.

  14. Interface matrix method in AFEN framework

    Energy Technology Data Exchange (ETDEWEB)

    Pogosbekyan, Leonid; Cho, Jin Young; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    In this study, we extend the application of the interface-matrix(IM) method for reflector modeling to Analytic Flux Expansion Nodal (AFEN) method. This include the modifications of the surface-averaged net current continuity and the net leakage balance conditions for IM method in accordance with AFEN formula. AFEN-interface matrix (AFEN-IM) method has been tested against ZION-1 benchmark problem. The numerical result of AFEN-IM method shows 1.24% of maximum error and 0.42% of root-mean square error in assembly power distribution, and 0.006% {Delta} k of neutron multiplication factor. This result proves that the interface-matrix method for reflector modeling can be useful in AFEN method. 3 refs., 4 figs. (Author)

  15. Matrix elements from moments of correlation functions

    CERN Document Server

    Bouchard, Chris; Orginos, Kostas; Richards, David

    2016-01-01

    Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer $Q^2$ for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the $Q^2$ dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various $Q^2$, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.

  16. A Simpler Approach to Matrix Completion

    CERN Document Server

    Recht, Benjamin

    2009-01-01

    This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candes and Recht, Candes and Tao, and Keshavan, Montanari, and Oh. The reconstruction is accomplished by minimizing the nuclear norm, or sum of the singular values, of the hidden matrix subject to agreement with the provided entries. If the underlying matrix satisfies a certain incoherence condition, then the number of entries required is equal to a quadratic logarithmic factor times the number of parameters in the singular value decomposition. The proof of this assertion is short, self contained, and uses very elementary analysis. The novel techniques herein are based on recent work in quantum information theory.

  17. Computing matrix permanent with collective boson operators

    CERN Document Server

    Huh, Joonsuk

    2016-01-01

    Computing permanents of matrices are known to be a classically hard problem that the computational cost grows exponentially with the size of the matrix increases. So far, there exist a few classical algorithms to compute the matrix permanents in deterministic and in randomized ways. By exploiting the series expansion of products of boson operators regarding collective boson operators, a generalized algorithm for computing permanents is developed that the algorithm can handle the arbitrary matrices with repeated columns and rows. In a particular case, the formula is reduced to Glynn's form. Not only the algorithm can be used for a deterministic direct calculation of the matrix permanent but also can be expressed as a sampling problem like Gurvits's randomized algorithm.

  18. Google matrix analysis of directed networks

    Science.gov (United States)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  19. Accelerated Matrix Element Method with Parallel Computing

    CERN Document Server

    Schouten, Doug; Stelzer, Bernd

    2014-01-01

    The matrix element method utilizes ab initio calculations of probability densities as powerful discriminants for processes of interest in experimental particle physics. The method has already been used successfully at previous and current collider experiments. However, the computational complexity of this method for final states with many particles and degrees of freedom sets it at a disadvantage compared to supervised classification methods such as decision trees, k nearest-neighbour, or neural networks. This note presents a concrete implementation of the matrix element technique using graphics processing units. Due to the intrinsic parallelizability of multidimensional integration, dramatic speedups can be readily achieved, which makes the matrix element technique viable for general usage at collider experiments.

  20. Random matrix theory with an external source

    CERN Document Server

    Brézin, Edouard

    2016-01-01

    This is a first book to show that the theory of the Gaussian random matrix is essential to understand the universal correlations with random fluctuations and to demonstrate that it is useful to evaluate topological universal quantities. We consider Gaussian random matrix models in the presence of a deterministic matrix source. In such models the correlation functions are known exactly for an arbitrary source and for any size of the matrices. The freedom given by the external source allows for various tunings to different classes of universality. The main interest is to use this freedom to compute various topological invariants for surfaces such as the intersection numbers for curves drawn on a surface of given genus with marked points, Euler characteristics, and the Gromov–Witten invariants. A remarkable duality for the average of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries.

  1. Studies of fiber-matrix debonding

    Institute of Scientific and Technical Information of China (English)

    Navneet DRONAMRAJU; Johannes SOLASS; Jorg HILDEBRAND

    2015-01-01

    In this paper, the debonding of a single fiber-matrix system of carbon fiber reinforced composite (12FRP) AS4/Epson 828 material is studied using Cohesive Zone Model (CZM). The effect of parameters namely, maximum tangential contact stress, tangential slip distance and artificial damping coefficient on the debonding length at the interface of the fiber-matrix is analyzed. Contact elements used in the CZM are coupled based on a bilinear stress-strain curve. Load is applied on the matrix, tangential to the interface. Hence, debonding is observed primarily in Mode II. Wide range of values are considered to study the inter-dependency of the parameters and its effect on debonding length. Out of the three parameters mentioned, artificial damping coefficient and tangential slip distance significantly affect debonding length. A thorough investigation is recommended for case wise interface debonding analysis, to estimate the optimal parametric values while using CZM.

  2. Random matrix model approach to chiral symmetry

    CERN Document Server

    Verbaarschot, J J M

    1996-01-01

    We review the application of random matrix theory (RMT) to chiral symmetry in QCD. Starting from the general philosophy of RMT we introduce a chiral random matrix model with the global symmetries of QCD. Exact results are obtained for universal properties of the Dirac spectrum: i) finite volume corrections to valence quark mass dependence of the chiral condensate, and ii) microscopic fluctuations of Dirac spectra. Comparisons with lattice QCD simulations are made. Most notably, the variance of the number of levels in an interval containing $n$ levels on average is suppressed by a factor $(\\log n)/\\pi^2 n$. An extension of the random matrix model model to nonzero temperatures and chemical potential provides us with a schematic model of the chiral phase transition. In particular, this elucidates the nature of the quenched approximation at nonzero chemical potential.

  3. Matrix elements from moments of correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia Cheng [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bouchard, Chris [College of William and Mary, Williamsburg, VA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-10-01

    Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer Q2 for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the Q2 dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various Q2, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.

  4. The Oxford handbook of random matrix theory

    CERN Document Server

    Di Francesco, Philippe; Akemann, Gernot

    2015-01-01

    With a foreword by Freeman Dyson, the handbook brings together leading mathematicians and physicists to offer a comprehensive overview of random matrix theory, including a guide to new developments and the diverse range of applications of this approach. In part one, all modern and classical techniques of solving random matrix models are explored, including orthogonal polynomials, exact replicas or supersymmetry. Further, all main extensions of the classical Gaussian ensembles of Wigner and Dyson are introduced including sparse, heavy tailed, non-Hermitian or multi-matrix models. In the second and larger part, all major applications are covered, in disciplines ranging from physics and mathematics to biology and engineering. This includes standard fields such as number theory, quantum chaos or quantum chromodynamics, as well as recent developments such as partitions, growth models, knot theory, wireless communication or bio-polymer folding. The handbook is suitable both for introducing novices to this area of r...

  5. Matrix theory compactifications on twisted tori

    CERN Document Server

    Chatzistavrakidis, Athanasios

    2012-01-01

    We study compactifications of Matrix theory on twisted tori and non-commutative versions of them. As a first step, we review the construction of multidimensional twisted tori realized as nilmanifolds based on certain nilpotent Lie algebras. Subsequently, matrix compactifications on tori are revisited and the previously known results are supplemented with a background of a non-commutative torus with non-constant non-commutativity and an underlying non-associative structure on its phase space. Next we turn our attention to 3- and 6-dimensional twisted tori and we describe consistent backgrounds of Matrix theory on them by stating and solving the conditions which describe the corresponding compactification. Both commutative and non-commutative solutions are found in all cases. Finally, we comment on the correspondence among the obtained solutions and flux compactifications of 11-dimensional supergravity, as well as on relations among themselves, such as Seiberg-Witten maps and T-duality.

  6. A Matrix Hyperbolic Cosine Algorithm and Applications

    CERN Document Server

    Zouzias, Anastasios

    2011-01-01

    Wigderson and Xiao presented an efficient derandomization of the matrix Chernoff bound using the method of pessimistic estimators. Based on their construction, we present a derandomization of the matrix Bernstein inequality which can be viewed as generalization of Spencer's hyperbolic cosine algorithm. We apply our construction to several problems by analyzing its computational efficiency under two special cases of matrix samples; one in which the samples have a group structure and the other in which they have rank-one outer-product structure. As a consequence of the former case, we present a deterministic algorithm that, given the multiplication table of a finite group of size n, constructs an Alon-Roichman expanding Cayley graph of logarithmic degree in O(n^2 log^3 n) time. For the latter case, we present a fast deterministic algorithm for spectral sparsification of positive semi-definite matrices (as defined in [Sri10]) which implies directly an improved deterministic algorithm for spectral graph sparsific...

  7. Decorin modulates matrix mineralization in vitro

    Science.gov (United States)

    Mochida, Yoshiyuki; Duarte, Wagner R.; Tanzawa, Hideki; Paschalis, Eleftherios P.; Yamauchi, Mitsuo

    2003-01-01

    Decorin (DCN), a member of small leucine-rich proteoglycans, is known to modulate collagen fibrillogenesis. In order to investigate the potential roles of DCN in collagen matrix mineralization, several stable osteoblastic cell clones expressing higher (sense-DCN, S-DCN) and lower (antisense-DCN, As-DCN) levels of DCN were generated and the mineralized nodules formed by these clones were characterized. In comparison with control cells, the onset of mineralization by S-DCN clones was significantly delayed; whereas it was markedly accelerated and the number of mineralized nodules was significantly increased in As-DCN clones. The timing of mineralization was inversely correlated with the level of DCN synthesis. In these clones, the patterns of cell proliferation and differentiation appeared unaffected. These results suggest that DCN may act as an inhibitor of collagen matrix mineralization, thus modulating the timing of matrix mineralization.

  8. Bioengineering Human Myocardium on Native Extracellular Matrix

    Science.gov (United States)

    Guyette, Jacques P.; Charest, Jonathan M; Mills, Robert W; Jank, Bernhard J.; Moser, Philipp T.; Gilpin, Sarah E.; Gershlak, Joshua R.; Okamoto, Tatsuya; Gonzalez, Gabriel; Milan, David J.; Gaudette, Glenn R.; Ott, Harald C.

    2015-01-01

    Rationale More than 25 million individuals suffer from heart failure worldwide, with nearly 4,000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only about 2,500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. Objective The objective of this study is to translate previous work to human scale and clinically relevant cells, for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human iPS-derived cardiac myocytes. Methods and Results To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiac myocytes derived from non-transgenic human induced pluripotent stem cells (iPSCs) and generated tissues of increasing three-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole heart scaffolds with human iPSC-derived cardiac myocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue, showed electrical conductivity, left ventricular pressure development, and metabolic function. Conclusions Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human iPS-derived cardiac myocytes, and enable

  9. Inverse Operation of Four-dimensional Vector Matrix

    Directory of Open Access Journals (Sweden)

    H J Bao

    2011-08-01

    Full Text Available This is a new series of study to define and prove multidimensional vector matrix mathematics, which includes four-dimensional vector matrix determinant, four-dimensional vector matrix inverse and related properties. There are innovative concepts of multi-dimensional vector matrix mathematics created by authors with numerous applications in engineering, math, video conferencing, 3D TV, and other fields.

  10. Generating Nice Linear Systems for Matrix Gaussian Elimination

    Science.gov (United States)

    Homewood, L. James

    2004-01-01

    In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…

  11. 48 CFR 1652.370 - Use of the matrix.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Use of the matrix. 1652.370... HEALTH BENEFITS ACQUISITION REGULATION CLAUSES AND FORMS CONTRACT CLAUSES FEHBP Clause Matrix 1652.370 Use of the matrix. (a) The matrix in this section lists the FAR and FEHBAR clauses to be used...

  12. Novel formulations of CKM matrix renormalization

    CERN Document Server

    Kniehl, B A

    2009-01-01

    We review two recently proposed on-shell schemes for the renormalization of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix in the Standard Model. One first constructs gauge-independent mass counterterm matrices for the up- and down-type quarks complying with the hermiticity of the complete mass matrices. Diagonalization of the latter then leads to explicit expressions for the CKM counterterm matrix, which are gauge independent, preserve unitarity, and lead to renormalized amplitudes that are non-singular in the limit in which any two quarks become mass degenerate. One of the schemes also automatically satisfies flavor democracy.

  13. Triminimal parametrization of quark mixing matrix

    Science.gov (United States)

    He, Xiao-Gang; Li, Shi-Wen; Ma, Bo-Qiang

    2008-12-01

    Starting from a new zeroth order basis for quark mixing (CKM) matrix based on the quark-lepton complementarity and the tribimaximal pattern of lepton mixing, we derive a triminimal parametrization of a CKM matrix with three small angles and a CP-violating phase as its parameters. This new triminimal parametrization has the merits of fast convergence and simplicity in application. With the quark-lepton complementary relations, we derive relations between the two unified triminimal parametrizations for quark mixing obtained in this work and for lepton mixing obtained by Pakvasa-Rodejohann-Weiler. Parametrization deviating from quark-lepton complementarity is also discussed.

  14. Matrix metalloproteinase-12 (MMP-12) in osteoclasts

    DEFF Research Database (Denmark)

    Hou, Peng; Troen, Tine; Ovejero, Maria C

    2004-01-01

    bone show MMP-12 expression in osteoclasts in calvariae and long bones. We also demonstrate that recombinant MMP-12 cleaves the putative functional domains of osteopontin and bone sialoprotein, two bone matrix proteins that strongly influence osteoclast activities, such as attachment, spreading......Osteoclasts require matrix metalloproteinase (MMP) activity and cathepsin K to resorb bone, but the critical MMP has not been identified. Osteoclasts express MMP-9 and MMP-14, which do not appear limiting for resorption, and the expression of additional MMPs is not clear. MMP-12, also called...

  15. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Energy Technology Data Exchange (ETDEWEB)

    Naslain, R, E-mail: naslain@lcts.u-bordeaux1.fr [University of Bordeaux 3, Allee de La Boetie, 33600 Pessac (France)

    2011-10-29

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  16. Diffusion method in random matrix theory

    Science.gov (United States)

    Grela, Jacek

    2016-01-01

    We introduce a calculational tool useful in computing ratios and products of characteristic polynomials averaged over Gaussian measures with an external source. The method is based on Dyson’s Brownian motion and Grassmann/complex integration formulas for determinants. The resulting formulas are exact for finite matrix size N and form integral representations convenient for large N asymptotics. Quantities obtained by the method are interpreted as averages over standard matrix models. We provide several explicit and novel calculations with special emphasis on the β =2 Girko-Ginibre ensembles.

  17. On the history of nuclear matrix manifestation

    Institute of Scientific and Technical Information of China (English)

    ZBARSKYIB

    1998-01-01

    The nonchromatin proteinous residue of the cell nucleus was revealed in our laboratory as early as in 1948 and then identified by light and electron microscopy as residual nucleoli,intranuclear network and nuclear envelope before 1960,This structure termed afterwards as "nuclear residue","nuclear skeleton","nuclear cage","nuclear carcass"etc.,was much later(in 1974) isolated,studied and entitled as "nuclear matrix" by Berezney and Coffey,to whom the discovery of this residual structure is often wronly ascribed.The real history of nuclear matrix manifestation is reported in this paper.

  18. Polymeric matrix materials for infrared metamaterials

    Science.gov (United States)

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  19. Polymer Matrix Composites for Propulsion Systems

    Science.gov (United States)

    Nettles, Alan T.

    2003-01-01

    The Access-to-Space study identified the requirement for lightweight structures to achieve orbit with a single-stage vehicle. Thus a task was undertaken to examine the use of polymer matrix composites for propulsion components. It was determined that the effort of this task would be to extend previous efforts with polymer matrix composite feedlines and demonstrate the feasibility of manufacturing large diameter feedlines with a complex shape and integral flanges, (i.e. all one piece with a 90 deg bend), and assess their performance under a cryogenic atmosphere.

  20. Accelerated Solutions for Transcendental Stiffness Matrix Eigenproblems

    Directory of Open Access Journals (Sweden)

    F.W. Williams

    1996-01-01

    Full Text Available This article outlines many existing and forthcoming methods that can be used alone, or in various combinations, to accelerate the solutions of the transcendental stiffness matrix eigenproblems that arise when the stiffness matrix is assembled from exact member stiffnesses, which are obtained by solving the member differential equations exactly. Thus distributed member mass and/or the flexural effect of axial loading are incorporated exactly, and the solutions are the natural frequencies for vibration problems or the critical load factors for buckling problems.

  1. Universality in complex networks: random matrix analysis.

    Science.gov (United States)

    Bandyopadhyay, Jayendra N; Jalan, Sarika

    2007-08-01

    We apply random matrix theory to complex networks. We show that nearest neighbor spacing distribution of the eigenvalues of the adjacency matrices of various model networks, namely scale-free, small-world, and random networks follow universal Gaussian orthogonal ensemble statistics of random matrix theory. Second, we show an analogy between the onset of small-world behavior, quantified by the structural properties of networks, and the transition from Poisson to Gaussian orthogonal ensemble statistics, quantified by Brody parameter characterizing a spectral property. We also present our analysis for a protein-protein interaction network in budding yeast.

  2. Speaker Adaptation with Transformation Matrix Linear Interpolation

    Institute of Scientific and Technical Information of China (English)

    XU Xiang-hua; ZHU Jie

    2004-01-01

    A transformation matrix linear interpolation (TMLI) approach for speaker adaptation is proposed. TMLI uses the transformation matrixes produced by MLLR from selected training speakers and the testing speaker. With only 3 adaptation sentences, the performance shows a 12.12% word error rate reduction. As the number of adaptation sentences increases, the performance saturates quickly. To improve the behavior of TMLI for large amounts of adaptation data, the TMLI+MAP method which combines TMLI with MAP technique is proposed. Experimental results show TMLI+MAP achieved better recognition accuracy than MAP and MLLR+MAP for both small and large amounts of adaptation data.

  3. Subspace decomposition-based correlation matrix multiplication

    Institute of Scientific and Technical Information of China (English)

    Cheng Hao; Guo Wei; Yu Jingdong

    2008-01-01

    The correlation matrix, which is widely used in eigenvalue decomposition (EVD) or singular value decomposition (SVD), usually can be denoted by R = E[yiy'i]. A novel method for constructing the correlation matrix R is proposed. The proposed algorithm can improve the resolving power of the signal eigenvalues and overcomes the shortcomings of the traditional subspace methods, which cannot be applied to low SNR. Then the proposed method is applied to the direct sequence spread spectrum (DSSS) signal's signature sequence estimation.The performance of the proposed algorithm is analyzed, and some illustrative simulation results are presented.

  4. Chaos in the BMN matrix model

    Science.gov (United States)

    Asano, Yuhma; Kawai, Daisuke; Yoshida, Kentaroh

    2015-06-01

    We study classical chaotic motions in the Berenstein-Maldacena-Nastase (BMN) matrix model. For this purpose, it is convenient to focus upon a reduced system composed of two-coupled anharmonic oscillators by supposing an ansatz. We examine three ansätze: 1) two pulsating fuzzy spheres, 2) a single Coulomb-type potential, and 3) integrable fuzzy spheres. For the first two cases, we show the existence of chaos by computing Poincaré sections and a Lyapunov spectrum. The third case leads to an integrable system. As a result, the BMN matrix model is not integrable in the sense of Liouville, though there may be some integrable subsectors.

  5. Chaos in the BMN matrix model

    CERN Document Server

    Asano, Yuhma; Yoshida, Kentaroh

    2015-01-01

    We study classical chaotic motions in the Berenstein-Maldacena-Nastase (BMN) matrix model. For this purpose, it is convenient to focus upon a reduced system composed of two-coupled anharmonic oscillators by supposing an ansatz. We examine three ans\\"atze: 1) two pulsating fuzzy spheres, 2) a single Coulomb-type potential, and 3) integrable fuzzy spheres. For the first two cases, we show the existence of chaos by computing Poincar\\'e sections and a Lyapunov spectrum. The third case leads to an integrable system. As a result, the BMN matrix model is not integrable in the sense of Liouville, though there may be some integrable subsectors.

  6. Matrix Tricks for Linear Statistical Models

    CERN Document Server

    Puntanen, Simo; Styan, George PH

    2011-01-01

    In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and

  7. More on rotations as spin matrix polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Curtright, Thomas L. [Department of Physics, University of Miami, Coral Gables, Florida 33124-8046 (United States)

    2015-09-15

    Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.

  8. TWO APPROACHES TO IMPROVING THE CONSISTENCY OF COMPLEMENTARY JUDGEMENT MATRIX

    Institute of Scientific and Technical Information of China (English)

    XuZeshui

    2002-01-01

    By the transformation relations between complementary judgement matrix and reciprocal judgement matrix ,this paper proposes two methods for improving the consistency of complementary judgement matrix and gives two simple practical iterative algorithms. These two algorithms are easy to implement on computer,and the modified complementary judgement matrices remain most information that original matrix contains. Thus the methods supplement and develop the theory and methodology for improving consistency of complementary judgement matrix.

  9. QR factorization for row or column symmetric matrix

    Institute of Scientific and Technical Information of China (English)

    ZOU; Hongxing(邹红星); WANG; Dianjun(王殿军); DAI; Qionghai(戴琼海); LI; Yanda(李衍达)

    2003-01-01

    The problem of fast computing the QR factorization of row or column symmetric matrix isconsidered. We address two new algorithms based on a correspondence of Q and R matrices between the rowor column symmetric matrix and its mother matrix. Theoretical analysis and numerical evidence show that, fora class of row or column symmetric matrices, the QR factorization using the mother matrix rather than therow or column symmetric matrix per se can save dramatically the CPU time and memory without loss of anynumerical precision.

  10. Uniqueness of the differential Mueller matrix of uniform homogeneous media.

    Science.gov (United States)

    Devlaminck, Vincent; Ossikovski, Razvigor

    2014-06-01

    We show that the differential matrix of a uniform homogeneous medium containing birefringence may not be uniquely determined from its Mueller matrix, resulting in the potential existence of an infinite set of elementary polarization properties parameterized by an integer parameter. The uniqueness depends on the symmetry properties of a special differential matrix derived from the eigenvalue decomposition of the Mueller matrix. The conditions for the uniqueness of the differential matrix are identified, physically discussed, and illustrated in examples from the literature.

  11. The transfer matrix in four-dimensional CDT

    CERN Document Server

    Ambjorn, Jan; Görlich, Andrzej; Jurkiewicz, Jerzy

    2012-01-01

    The Causal Dynamical Triangulation model of quantum gravity (CDT) has a transfer matrix, relating spatial geometries at adjacent (discrete lattice) times. The transfer matrix uniquely determines the theory. We show that the measurements of the scale factor of the (CDT) universe are well described by an effective transfer matrix where the matrix elements are labeled only by the scale factor. Using computer simulations we determine the effective transfer matrix elements and show how they relate to an effective minisuperspace action at all scales.

  12. A note on combined generalized Sylvester matrix equations

    Institute of Scientific and Technical Information of China (English)

    Guangren DUAN

    2004-01-01

    The solution of two combined generalized Sylvester matrix equations is studied.It is first shown that the two combined generalized Sylvester matrix equations can be converted into a normal Sylvester matrix equation through extension,and then with the help of a result for solution to normal Sylvester matrix equations,the complete solution to the two combined generalized Sylvester matrix equations is derived.A demonstrative example shows the effect of the proposed approach.

  13. Design of lipid matrix particles for fenofibrate

    DEFF Research Database (Denmark)

    Xia, Dengning; Cui, Fude; Gan, Yong

    2014-01-01

    The effect of polymorphism of glycerol monostearate (GMS) on drug incorporation and release from lipid matrix particles (LMPs) was investigated using fenofibrate as a model drug. X-ray powder diffraction and differential scanning calorimetry were used to study the polymorphism change of GMS and t...

  14. Matrix transformations and generators of analytic semigroups

    Directory of Open Access Journals (Sweden)

    Medeghri Ahmed

    2006-01-01

    Full Text Available We establish a relation between the notion of an operator of an analytic semigroup and matrix transformations mapping from a set of sequences into , where is either of the sets , , or . We get extensions of some results given by Labbas and de Malafosse concerning applications of the sum of operators in the nondifferential case.

  15. 5D Black Holes and Matrix Strings

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA fivebrane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory.

  16. 5D black holes and matrix strings

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Mathematics; Verlinde, E. [TH-Division, CERN, CH-1211 Geneva 23 (Switzerland)]|[Institute for Theoretical Physics, University of Utrecht, 3508 TA Utrecht (Netherlands); Verlinde, H. [Institute for Theoretical Physics, University of Amsterdam, 1018 XE Amsterdam (Netherlands)

    1997-11-24

    We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA 5-brane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory. (orig.). 38 refs.

  17. Notes on Matrix Strings and Fivebranes

    Science.gov (United States)

    Dijkgraaf, R.; Verlinde, E.; Verlinde, H.

    In these notes we review aspects of the matrix formulation of M-theory compactifications. In particular we highlight the appearance of IIA strings and their interactions, and explain the unifying role of the M-theory five-brane for describing the spectrum of the T5 compactification and its duality symmetries.

  18. 5D black holes and matrix strings

    Science.gov (United States)

    Dijkgraaf, Robbert; Verlinde, Erik; Verlinde, Herman

    1997-02-01

    We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA 5-brane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory.

  19. Notes on matrix strings and fivebranes

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R.; Verlinde, H. [University of Amsterdam, Amsterdam (Netherlands); Verlinde, E. [CERN, Geneva (Switzerland)

    1998-07-01

    In these notes we review aspects of the matrix formulation of M-theory compactifications. In particular we highlight the appearance of IIA string and their interactions, and explain the unifying role of the M-theory five-brane for describing the spectrum of the T{sup 5} compactification and its duality symmetries. (Author). 41 refs., 3 figs.

  20. Incremental Nonnegative Matrix Factorization for Face Recognition

    Directory of Open Access Journals (Sweden)

    Wen-Sheng Chen

    2008-01-01

    Full Text Available Nonnegative matrix factorization (NMF is a promising approach for local feature extraction in face recognition tasks. However, there are two major drawbacks in almost all existing NMF-based methods. One shortcoming is that the computational cost is expensive for large matrix decomposition. The other is that it must conduct repetitive learning, when the training samples or classes are updated. To overcome these two limitations, this paper proposes a novel incremental nonnegative matrix factorization (INMF for face representation and recognition. The proposed INMF approach is based on a novel constraint criterion and our previous block strategy. It thus has some good properties, such as low computational complexity, sparse coefficient matrix. Also, the coefficient column vectors between different classes are orthogonal. In particular, it can be applied to incremental learning. Two face databases, namely FERET and CMU PIE face databases, are selected for evaluation. Compared with PCA and some state-of-the-art NMF-based methods, our INMF approach gives the best performance.

  1. The algebras of large N matrix mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, M.B.; Schwartz, C.

    1999-09-16

    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.

  2. Limit properties of monotone matrix functions

    NARCIS (Netherlands)

    Behrndt, Jussi; Hassi, Seppo; de Snoo, Henk; Wietsma, Rudi

    2012-01-01

    The basic objects in this paper are monotonically nondecreasing n x n matrix functions D(center dot) defined on some open interval l = (a, b) of R and their limit values D(a) and D(b) at the endpoints a and b which are, in general, selfadjoint relations in C-n. Certain space decompositions induced b

  3. Physiology and pathophysiology of matrix metalloproteases

    NARCIS (Netherlands)

    Klein, T.; Bischoff, R.

    2011-01-01

    Matrix metalloproteases (MMPs) comprise a family of enzymes that cleave protein substrates based on a conserved mechanism involving activation of an active site-bound water molecule by a Zn(2+) ion. Although the catalytic domain of MMPs is structurally highly similar, there are many differences with

  4. Half a century of "the nuclear matrix".

    Science.gov (United States)

    Pederson, T

    2000-03-01

    A cell fraction that would today be termed "the nuclear matrix" was first described and patented in 1948 by Russian investigators. In 1974 this fraction was rediscovered and promoted as a fundamental organizing principle of eukaryotic gene expression. Yet, convincing evidence for this functional role of the nuclear matrix has been elusive and has recently been further challenged. What do we really know about the nonchromatin elements (if any) of internal nuclear structure? Are there objective reasons (as opposed to thinly veiled disdain) to question experiments that use harsh nuclear extraction steps and precipitation-prone conditions? Are the known biophysical properties of the nucleoplasm in vivo consistent with the existence of an extensive network of anastomosing filaments coursing dendritically throughout the interchromatin space? To what extent may the genome itself contribute information for its own quarternary structure in the interphase nucleus? These questions and recent work that bears on the mystique of the nuclear matrix are addressed in this essay. The degree to which gene expression literally depends on nonchromatin nuclear structure as a facilitating organizational format remains an intriguing but unsolved issue in eukaryotic cell biology, and considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the in vivo situation.

  5. Comparison of transition-matrix sampling procedures

    DEFF Research Database (Denmark)

    Yevick, D.; Reimer, M.; Tromborg, Bjarne

    2009-01-01

    We compare the accuracy of the multicanonical procedure with that of transition-matrix models of static and dynamic communication system properties incorporating different acceptance rules. We find that for appropriate ranges of the underlying numerical parameters, algorithmically simple yet high...... accurate procedures can be employed in place of the standard multicanonical sampling algorithm....

  6. "Matrix" sobitub iga filosoofiaga / Rando Tooming

    Index Scriptorium Estoniae

    Tooming, Rando

    2003-01-01

    Andy ja Larry Wachowski ulmefilmide triloogia "Matrix" fenomeni analüüsist ajakirja "Vikerkaar" 2003. aasta 9. numbris, kus sellele on pühendatud nelja filosoofi artiklid ( Slavoj Zhizhek, Jüri Eintalu, Bruno Mölder, Tanel Tammet)

  7. Fast output-sensitive matrix multiplication

    DEFF Research Database (Denmark)

    Jacob, Riko; Stöckel, Morten

    2015-01-01

    We consider the problem of multiplying two $U \\times U$ matrices $A$ and $C$ of elements from a field $\\F$. We present a new randomized algorithm that can use the known fast square matrix multiplication algorithms to perform fewer arithmetic operations than the current state of the art for output...

  8. Critical State of Sand Matrix Soils

    Directory of Open Access Journals (Sweden)

    Aminaton Marto

    2014-01-01

    Full Text Available The Critical State Soil Mechanic (CSSM is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.

  9. Critical state of sand matrix soils.

    Science.gov (United States)

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803-0.998, 0.144-0.248, and 1.727-2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.

  10. Hypercontractivity in finite-dimensional matrix algebras

    Energy Technology Data Exchange (ETDEWEB)

    Junge, Marius, E-mail: junge@math.uiuc.edu [Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green St., Urbana, Illinois 61891 (United States); Palazuelos, Carlos, E-mail: carlospalazuelos@ucm.es [Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Plaza de Ciencias s/n, 28040 Madrid (Spain); Parcet, Javier, E-mail: javier.parcet@icmat.es; Perrin, Mathilde, E-mail: mathilde.perrin@icmat.es [Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Científicas, C/ Nicolás Cabrera 13-15, 28049 Madrid (Spain)

    2015-02-15

    We obtain hypercontractivity estimates for a large class of semigroups defined on finite-dimensional matrix algebras M{sub n}. These semigroups arise from Poisson-like length functions ψ on ℤ{sub n} × ℤ{sub n} and provide new hypercontractive families of quantum channels when ψ is conditionally negative. We also study the optimality of our estimates.

  11. Lattice QCD and the CKM matrix

    CERN Document Server

    De Grand, T

    2001-01-01

    These lectures (given at TASI 2000) provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1 (Ch. 2) is a very vanilla introduction to lattice QCD. Lecture 2 (Ch. 3) describes examples of recent lattice calculations relevant to fixing the parameters of the CKM matrix.

  12. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms of th...

  13. Marriage as Matrix, Metaphor or Mysticism

    DEFF Research Database (Denmark)

    Pedersen, Else Marie Wiberg

    2015-01-01

    Taking Julia Kristeva's 'Tales of Love' with its more or less slight treatment of Bernard's and Luther's peceptions of love as its point of departure, this article shows that both the monk Bernard and the married theologian Luther use conjugal love as a matrix for an abundant, heterogenous love b...

  14. Resin diffusion through demineralized dentin matrix

    Directory of Open Access Journals (Sweden)

    CARVALHO Ricardo M.

    1999-01-01

    Full Text Available This paper has focused on the factors that may affect the permeability of adhesive resins into the demineralized dentin matrix during the development of the bonding process. The effects of surface moisture are discussed respectively to the adhesive systems, and the problems related to incomplete hybrid layer formation presented.

  15. Fast Output-sensitive Matrix Multiplication

    DEFF Research Database (Denmark)

    Jacob, Riko; Stöckel, Morten

    2015-01-01

    We consider the problem of multiplying two $U \\times U$ matrices $A$ and $C$ of elements from a field $\\F$. We present a new randomized algorithm that can use the known fast square matrix multiplication algorithms to perform fewer arithmetic operations than the current state of the art for output...

  16. Matrix Recipes for Hard Thresholding Methods

    Science.gov (United States)

    2012-11-07

    present below some characteristic examples for the linear operator A: Matrix Completion (MC): As a motivating example, consider the famous Netflix ...basis independent models from point queries via low-rank methods. Technical report, EPFL, 2012. [8] J. Bennett and S. Lanning. The netflix prize. In In

  17. Error Analysis of Band Matrix Method

    OpenAIRE

    Taniguchi, Takeo; Soga, Akira

    1984-01-01

    Numerical error in the solution of the band matrix method based on the elimination method in single precision is investigated theoretically and experimentally, and the behaviour of the truncation error and the roundoff error is clarified. Some important suggestions for the useful application of the band solver are proposed by using the results of above error analysis.

  18. Enhanced Resource Descriptions Help Learning Matrix Users.

    Science.gov (United States)

    Roempler, Kimberly S.

    2003-01-01

    Describes the Learning Matrix digital library which focuses on improving the preparation of math and science teachers by supporting faculty who teach introductory math and science courses in two- and four-year colleges. Suggests it is a valuable resource for school library media specialists to support new science and math teachers. (LRW)

  19. Mueller matrix imaging ellipsometry for nanostructure metrology.

    Science.gov (United States)

    Liu, Shiyuan; Du, Weichao; Chen, Xiuguo; Jiang, Hao; Zhang, Chuanwei

    2015-06-29

    In order to achieve effective process control, fast, inexpensive, nondestructive and reliable nanometer scale feature measurements are extremely useful in high-volume nanomanufacturing. Among the possible techniques, optical scatterometry is relatively ideal due to its high throughput, low cost, and minimal sample damage. However, this technique is inherently limited by the illumination spot size of the instrument and the low efficiency in construction of a map of the sample over a wide area. Aiming at these issues, we introduce conventional imaging techniques to optical scatterometry and combine them with Mueller matrix ellipsometry based scatterometry, which is expected to be a powerful tool for the measurement of nanostructures in future high-volume nanomanufacturing, and propose to apply Mueller matrix imaging ellipsometry (MMIE) for nanostructure metrology. Two kinds of nanostructures were measured using an in-house developed Mueller matrix imaging ellipsometer in this work. The experimental results demonstrate that we can achieve Mueller matrix measurement and analysis for nanostructures with pixel-sized illumination spots by using MMIE. We can also efficiently construct parameter maps of the nanostructures over a wide area with pixel-sized lateral resolution by performing parallel ellipsometric analysis for all the pixels of interest.

  20. The Bushido Matrix for Couple Communication

    Science.gov (United States)

    Li, Chi-Sing; Lin, Yu-Fen; Ginsburg, Phil; Eckstein, Daniel

    2012-01-01

    The concept of Japanese Bushido and its seven virtues were introduced by the authors in this article for the practice and application of couple communication. The Bushido Matrix Worksheet (BMW) was created for enhancing couple's awareness and understanding of each other's values and experiences. An activity and a case study to demonstrate the use…

  1. Zeroes in continuum - continuum dipole matrix elements

    Science.gov (United States)

    Obolensky, Oleg I.; Pratt, R. H.; Korol, Andrei

    2003-05-01

    It is well known that Cooper minima in photoeffect cross sections are due to zeroes in corresponding bound-free dipole matrix elements. As was discussed before(C. D. Shaffer, R. H. Pratt, and S. D. Oh, Phys. Rev. A. 57), 227 (1998)., free-free dipole matrix elements in screened (atomic or ionic) potentials can also have zeroes. Such zeroes (existing at energies of the order of 1-100 eV) result in structures in the energy dependence of bremsstrahlung cross sections and angular distributions(A. Florescu, O. I. Obolensky, C. D. Shaffer, and R. H. Pratt, AIP Conference Proceedings, 576), 60 (2001).. In the soft photon limit, zeroes of radiative free-free matrix elements are related to Ramsauer-Townsend minima in elastic scattering of electrons by atoms. Here we study properties of the trajectories of dipole matrix element zeroes in the plane of initial and final electron energies. We show how the trajectories in this plane evolve with ionicity for several low ℓ dipole transitions ℓ → ℓ ± 1.

  2. Matrix compliance and the regulation of cytokinesis

    Directory of Open Access Journals (Sweden)

    Savitha Sambandamoorthy

    2015-07-01

    Full Text Available Integrin-mediated cell adhesion to the ECM regulates many physiological processes in part by controlling cell proliferation. It is well established that many normal cells require integrin-mediated adhesion to enter S phase of the cell cycle. Recent evidence indicates that integrins also regulate cytokinesis. Mechanical properties of the ECM can dictate entry into S phase; however, it is not known whether they also can affect the successful completion of cell division. To address this issue, we modulated substrate compliance using fibronectin-coated acrylamide-based hydrogels. Soft and hard substrates were generated with approximate elastic moduli of 1600 and 34,000 Pascals (Pa respectively. Our results indicate that dermal fibroblasts successfully complete cytokinesis on hard substrates, whereas on soft substrates, a significant number fail and become binucleated. Cytokinesis failure occurs at a step following the formation of the intercellular bridge connecting presumptive daughter cells, suggesting a defect in abscission. Like dermal fibroblasts, mesenchymal stem cells require cell-matrix adhesion for successful cytokinesis. However, in contrast to dermal fibroblasts, they are able to complete cytokinesis on both hard and soft substrates. These results indicate that matrix stiffness regulates the successful completion of cytokinesis, and does so in a cell-type specific manner. To our knowledge, our study is the first to demonstrate that matrix stiffness can affect cytokinesis. Understanding the cell-type specific contribution of matrix compliance to the regulation of cytokinesis will provide new insights important for development, as well as tissue homeostasis and regeneration.

  3. Scandia doped tungsten matrix for impregnated cathode

    Institute of Scientific and Technical Information of China (English)

    WANG Jinshu; WANG Yanchun; LIU Wei; LI Hongyi; ZHOU Meiling

    2008-01-01

    As a matrix for Sc-type impregnated cathode,scandia doped tungsten with a uniform ldistribution of SC2O3 was obtained by powder metallurgy combined with the liquid-solid doping method.The microstructure and composition of the powder and the anti-ion bombardment behavior of scandium in the matrix were studied by means of SEM,EDS,XRD,and in-situ AES methods.Tungsten powder covered with scandium oxide,an ideal scandium oxide-doped tungsten powder for the preparation of Sc-type impregnated cathode,was obtained using the liquid-solid doping method.Compared with the matrix prepared with the mechanically mixed powder of tungsten and scandium oxide,SC2O3-W matrix prepared with this kind of powder had smaller grain size and uniform distribution of scandium.Sc on the surface of Sc2O3 doped tungsten mauix had good high temperature stability and good anti-ion bombardment capability.

  4. High performance SMC matrix for structural applications

    Science.gov (United States)

    Salard, T.; Lortie, F.; Gérard, J. F.; Peyre, C.

    2016-07-01

    Mechanical properties of a common SMC (Sheet Molding Compound) matrix constituted of a vinylester resin and a Low-Profile Additive (LPA) were compared to those of vinylester modified with core-shell rubber (CSR) particles. Valuable properties are brought by CSR, especially high impact strength, high fracture toughness with little loss in stiffness, in spite of the presence of CSR agglomerates in blends.

  5. Robust Matrix Completion with Corrupted Columns

    CERN Document Server

    Chen, Yudong; Caramanis, Constantine; Sanghavi, Sujay

    2011-01-01

    This paper considers the problem of matrix completion, when some number of the columns are arbitrarily corrupted, potentially by a malicious adversary. It is well-known that standard algorithms for matrix completion can return arbitrarily poor results, if even a single column is corrupted. What can be done if a large number, or even a constant fraction of columns are corrupted? In this paper, we study this very problem, and develop an efficient algorithm for its solution. Our results show that with a vanishing fraction of observed entries, it is nevertheless possible to succeed in performing matrix completion, even when the number of corrupted columns grows. When the number of corruptions is as high as a constant fraction of the total number of columns, we show that again exact matrix completion is possible, but in this case our algorithm requires many more -- a constant fraction -- of observations. One direct application comes from robust collaborative filtering. Here, some number of users are so-called mani...

  6. Non-Hermitian Euclidean random matrix theory.

    Science.gov (United States)

    Goetschy, A; Skipetrov, S E

    2011-07-01

    We develop a theory for the eigenvalue density of arbitrary non-Hermitian Euclidean matrices. Closed equations for the resolvent and the eigenvector correlator are derived. The theory is applied to the random Green's matrix relevant to wave propagation in an ensemble of pointlike scattering centers. This opens a new perspective in the study of wave diffusion, Anderson localization, and random lasing.

  7. Controllability of semilinear matrix Lyapunov systems

    Directory of Open Access Journals (Sweden)

    Bhaskar Dubey

    2013-02-01

    Full Text Available In this article, we establish some sufficient conditions for the complete controllability of semilinear matrix Lyapunov systems involving Lipschitzian and non-Lipschitzian nonlinearities. In case of non-Lipschitzian nonlinearities, we assume that nonlinearities are of monotone type.

  8. Electromagnetic Compatibility of Matrix Converter System

    Directory of Open Access Journals (Sweden)

    S. Fligl

    2006-12-01

    Full Text Available The presented paper deals with matrix converters pulse width modulation strategies design with emphasis on the electromagnetic compatibility. Matrix converters provide an all-silicon solution to the problem of converting AC power from one frequency to another, offering almost all the features required of an ideal static frequency changer. They possess many advantages compared to the conventional voltage or current source inverters. A matrix converter does not require energy storage components as a bulky capacitor or an inductance in the DC-link, and enables the bi-directional power flow between the power supply and load. The most of the contemporary modulation strategies are able to provide practically sinusoidal waveforms of the input and output currents with negligible low order harmonics, and to control the input displacement factor. The perspective of matrix converters regarding EMC in comparison with other types of converters is brightly evident because it is no need to use any equipment for power factor correction and current and voltage harmonics reduction. Such converter with proper control is properly compatible both with the supply mains and with the supplied load. A special digital control system was developed for the realized experimental test bed which makes it possible to achieve greater throughput of the digital control system and its variability.

  9. Extracellular matrix and tissue engineering applications

    NARCIS (Netherlands)

    Fernandes, Hugo; Moroni, Lorenzo; Blitterswijk, van Clemens; Boer, de Jan

    2009-01-01

    The extracellular matrix is a key component during regeneration and maintenance of tissues and organs, and it therefore plays a critical role in successful tissue engineering as well. Tissue engineers should recognise that engineering technology can be deduced from natural repair processes. Due to a

  10. Supersymmetric Matrix model on Z-orbifold

    CERN Document Server

    Miyake, A

    2003-01-01

    We find that the IIA Matrix models defined on the non-compact $C^3/Z_6$, $C^2/Z_2$ and $C^2/Z_4$ orbifolds preserve supersymmetry where the fermions are on-mass-shell Majorana-Weyl fermions. In these examples supersymmetry is preserved both in the orbifolded space and in the non-orbifolded space at the same time. The Matrix model on $C^3/Z_6$ orbifold has the same ${\\cal N}=2$ supersymmetry as the case of $C^3/Z_3$ orbifold, whose particular case was previously pointed out. On the other hand the Matrix models on $C^2/Z_2$ and $C^2/Z_4$ orbifold have a half of the ${\\cal N}=2$ supersymmetry. We further find that the Matrix model on $C^2/Z_2$ orbifold with parity-like identification preserves ${\\cal N}=2$ supersymmetry both in the orbifolded space and non-orbifolded space, and furthermore has ${\\cal N}=4$ supersymmetry parameters in the total space.

  11. Parallel Programming with Matrix Distributed Processing

    CERN Document Server

    Di Pierro, Massimo

    2005-01-01

    Matrix Distributed Processing (MDP) is a C++ library for fast development of efficient parallel algorithms. It constitues the core of FermiQCD. MDP enables programmers to focus on algorithms, while parallelization is dealt with automatically and transparently. Here we present a brief overview of MDP and examples of applications in Computer Science (Cellular Automata), Engineering (PDE Solver) and Physics (Ising Model).

  12. Interacting giant gravitons from spin matrix theory

    Science.gov (United States)

    Harmark, Troels

    2016-09-01

    Using the non-Abelian Dirac-Born-Infeld action we find an effective matrix model that describes the dynamics of weakly interacting giant gravitons wrapped on three-spheres in the anti-de Sitter (AdS) part of AdS5×S5 at high energies with two angular momenta on the S5. In parallel we consider the limit of N =4 super Yang-Mills theory near a certain unitarity bound where it reduces to the quantum mechanical theory called S U (2 ) spin matrix theory. We show that the exact same matrix model that describes the giant gravitons on the string theory side also provides the effective description in the strong coupling and large energy limit of the spin matrix theory. Thus, we are able to match nonsupersymmetric dynamics of D-branes on AdS5×S5 to a finite-N regime in N =4 super Yang-Mills theory near a unitarity bound.

  13. Better Size Estimation for Sparse Matrix Products

    DEFF Research Database (Denmark)

    Amossen, Rasmus Resen; Campagna, Andrea; Pagh, Rasmus

    2010-01-01

    We consider the problem of doing fast and reliable estimation of the number of non-zero entries in a sparse Boolean matrix product. Let n denote the total number of non-zero entries in the input matrices. We show how to compute a 1 ± ε approximation (with small probability of error) in expected...

  14. On affine non-negative matrix factorization

    DEFF Research Database (Denmark)

    Laurberg, Hans; Hansen, Lars Kai

    2007-01-01

    We generalize the non-negative matrix factorization (NMF) generative model to incorporate an explicit offset. Multiplicative estimation algorithms are provided for the resulting sparse affine NMF model. We show that the affine model has improved uniqueness properties and leads to more accurate...

  15. Liver Fibrosis and Altered Matrix Synthesis

    Directory of Open Access Journals (Sweden)

    Katrin Neubauer

    2001-01-01

    Full Text Available Liver fibrosis represents the uniform response of liver to toxic, infectious or metabolic agents. The process leading to liver fibrosis resembles the process of wound healing, including the three phases following tissue injury: inflammation, synthesis of collagenous and noncollagenous extracellular matrix components, and tissue remodelling (scar formation. While a single liver tissue injury can be followed by an almost complete restitution ad integrum, the persistence of the original damaging noxa results in tissue damage. During the establishment of liver fibrosis, the basement membrane components collagen type IV, entactin and laminin increase and form a basement membrane-like structure within the space of Disse. The number of endothelial fenestrae of the sinusoids decreases. These changes of the sinusoids are called 'capillarization' because the altered structure of the sinusoids resembles that of capillaries. At the cellular level, origin of liver fibrogenesis is initiated by the damage of hepatocytes, resulting in the recruitment of inflammatory cells and platelets, and activation of Kupffer cells, with subsequent release of cytokines and growth factors. The hepatic stellate cells seem to be the primary target cells for these inflammatory stimuli, because during fibrogenesis, they undergo an activation process to a myofibroblast-like cell, which represents the major matrix-producing cell. Based on this pathophysiological mechanism, therapeutic methods are developed to inhibit matrix synthesis or stimulate matrix degradation. A number of substances are currently being tested that either neutralize fibrogenic stimuli and prevent the activation of hepatic stellate cells, or directly modulate the matrix metabolism. However, until now, the elimination of the hepatotoxins has been the sole therapeutic concept available for the treatment of liver fibrogenesis in humans.

  16. Multiple mainlobe interferences suppression based on subspace matrix filtering and covariance matrix reconstruction

    Science.gov (United States)

    Wang, Yasen; Bao, Qinglong; Chen, Zengping

    2016-07-01

    In order to suppress multiple mainlobe interferences and sidelobe interferences simultaneously, a mainlobe interference suppression algorithm is proposed. In this algorithm, the number of mainlobe interferences is estimated through a matrix filter at first. Then, the eigenvectors associated with mainlobe interference are determined and the eigen-projection matrix can be calculated. Next, the sidelobe-interference-plus-noise covariance matrix is reconstructed through eigenvalue replacement procedure. Finally, we can get the adaptive weight vector. Simulation results demonstrate the effectiveness of the proposed method when multiple mainlobe interferences exist.

  17. An Efficient GPU General Sparse Matrix-Matrix Multiplication for Irregular Data

    DEFF Research Database (Denmark)

    Liu, Weifeng; Vinter, Brian

    2014-01-01

    irregularity from three aspects: (1) the number of the nonzero entries in the result sparse matrix is unknown in advance, (2) very expensive parallel insert operations at random positions in the result sparse matrix dominate the execution time, and (3) load balancing must account for sparse data in both input...... matrices. Recent work on GPU SpGEMM has demonstrated rather good both time and space complexity, but works best for fairly regular matrices. In this work we present a GPU SpGEMM algorithm that particularly focuses on the above three problems. Memory pre-allocation for the result matrix is organized...

  18. Solution of the Lyapunov matrix equation for a system with a time-dependent stiffness matrix

    DEFF Research Database (Denmark)

    Pommer, Christian; Kliem, Wolfhard

    2004-01-01

    The stability of the linearized model of a rotor system with non-symmetric strain and axial loads is investigated. Since we are using a fixed reference system, the differential equations have the advantage to be free of Coriolis and centrifugal forces. A disadvantage is nevertheless the occurrenc...... of time-dependent periodic terms in the stiffness matrix. However, by solving the Lyapunov matrix equation we can formulate several stability conditions for the rotor system. Hereby the positive definiteness of a certain averaged stiffness matrix plays a crucial role....

  19. How to get the Matrix Organization to Work

    DEFF Research Database (Denmark)

    Burton, Richard M.; Obel, Børge; Håkonsson, Dorthe Døjbak

    2015-01-01

    Many organizations, both public and private, are changing their structure to a complex matrix in order to meet the growing complexity in the world in which they operate. Often, those organizations struggle to obtain the benefits of a matrix organization. In this article, we discuss how to get...... a matrix to work, taking a multi-contingency perspective. We translate the matrix concept for designers and managers who are considering a matrix organization and argue that three factors are critical for its success: (1) Strong purpose: Only choose the matrix structure if there are strong reasons...... for doing so, (2) Alignment among contingencies: A matrix can only be successful if key contingencies are aligned with the matrix’s purpose, and (3) Management of junctions: The success of a matrix depends on how well activities at the junctions of the matrix are managed....

  20. Role of work hardening characteristics of matrix alloys in the strengthening of metal matrix composites

    Indian Academy of Sciences (India)

    K T Kashyap; C Ramachandra; C Dutta; B Chatterji

    2000-02-01

    The strengthening of particulate reinforced metal–matrix composites is associated with a high dislocation density in the matrix due to the difference in coefficient of thermal expansion between the reinforcement and the matrix. While this is valid, the role of work hardening characteristics of the matrix alloys in strengthening of these composites is addressed in the present paper. It is found that commercial purity aluminium which has the lowest work hardening rate exhibits the highest strength increment. This effect is due to increased prismatic punching of dislocations. This relationship of decreasing work hardening rate associated with increasing prismatic punching of dislocations in the order 7075, 2014, 7010, 2024, 6061 and commercial purity aluminium leading to increased strength increments is noted.

  1. Application of transmissibility matrix and random matrix to Bayesian system identification with response measurements only

    Science.gov (United States)

    Yan, Wang-Ji; Katafygiotis, Lambros S.

    2016-10-01

    The problem of stochastic system identification utilizing response measurements only is considered in this paper. A negative log-likelihood function utilized to determine the posterior most probable parameters and their associated uncertainties is formulated by incorporating transmissibility matrix concept, random matrix theory and Bayes’ theorem. A numerically iterative coupled method involving the optimization of the parameters in groups is proposed so as to reduce the dimension of the numerical optimization problem involved. The initial guess for the parameters to be optimized is also properly estimated through asymptotic analysis. One novel feature of the proposed method is to avoid repeated time-consuming evaluation of the determinant and inverse of the covariance matrix during optimization due to exploring the statistical properties of the trace of Wishart matrix. The proposed method requires no information about the model of the external input. The theory described in this work is illustrated with synthetic data and field data measured from a laboratory model installed with wireless sensors.

  2. 2matrix: A Utility for Indel Coding and Phylogenetic Matrix Concatenation

    Directory of Open Access Journals (Sweden)

    Nelson R. Salinas

    2014-01-01

    Full Text Available Premise of the study: Phylogenetic analysis of DNA and amino acid sequences requires the creation of files formatted specifically for each analysis package. Programs currently available cannot simultaneously code inferred insertion/deletion (indel events in sequence alignments and concatenate data sets. Methods and Results: A novel Perl script, 2matrix, was created to concatenate matrices of non-molecular characters and/or aligned sequences and to code indels. 2matrix outputs a variety of formats compatible with popular phylogenetic programs. Conclusions: 2matrix efficiently codes indels and concatenates matrices of sequences and non-molecular data. It is available for free download under a GPL (General Public License open source license (https://github.com/nrsalinas/2matrix/archive/master.zip.

  3. A Novel MALDI Matrix for Analyzing Peptides and Proteins: Paraffin Wax Immobilized Matrix

    Institute of Scientific and Technical Information of China (English)

    WEI Yuanlong; MEI Yuan; XU Zhe; WANG Cuihong; GUO Yinlong; DU Yiping; ZHANG Weibing

    2009-01-01

    A new kind of MALDI matrix, termed paraffin wax immobilized matrix, was used to study peptide mixtures and proteins. During the preparation process, the paraffin wax was heated and coated on the stainless-steel target plate, and then 2,5-dihydrobenzoic acid (DHB) was deposited on the paraffin layer and stainless-steel target plate to obtain different kinds of matrix spots. The morphology of matrices on different supports and peptide-matrix co-crystallization were observed by a high resolution digital-video microscopy system. Peptide mixtures and bovine serum albumin (BSA) digests were used to investigate the performance of the immobilized matrices on the paraffin target. The MALDI-FTMS analysis results also showed that the detection sensitivity of matrices immobilized in the paraffin sample support was better than that on other sample supports.

  4. Dentin matrix degradation by host Matrix Metalloproteinases: inhibition and clinical perspectives towards regeneration.

    Directory of Open Access Journals (Sweden)

    Catherine eChaussain

    2013-11-01

    Full Text Available Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration.

  5. Optimizing Tpetra%3CU%2B2019%3Es sparse matrix-matrix multiplication routine.

    Energy Technology Data Exchange (ETDEWEB)

    Nusbaum, Kurtis Lee

    2011-08-01

    Over the course of the last year, a sparse matrix-matrix multiplication routine has been developed for the Tpetra package. This routine is based on the same algorithm that is used in EpetraExt with heavy modifications. Since it achieved a working state, several major optimizations have been made in an effort to speed up the routine. This report will discuss the optimizations made to the routine, its current state, and where future work needs to be done.

  6. Water ice as a matrix for film production by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Schou, Jørgen; Christensen, Bo Toftmann;

    2007-01-01

    We have studied water ice as a matrix for the production of PEG (polyethylene glycol) films by MAPLE at 355 nm. The deposition rate is small compared with other matrices typically used in MAPLE, but the deposition of photofragments from the matrix can be avoided. At temperatures above -50 degrees...... of the target holder the deposition rate increases strongly, but the evaporation pressure in the MAPLE chamber also increases drastically....

  7. Matrix forming excipients from natural origin for controlled release matrix type tablets

    OpenAIRE

    Hamman, Josias Hendrik; Jambwa, T.; Viljoen, A

    2011-01-01

    Since excipients from renewable sources are attractive due to their sustainable mass production, this study aimed at investigating the use of gel and whole leaf materials from Aloe vera and Aloe ferox to produce controlled release mini-matrix type tablets. The flow properties of the aloe materials were determined by means of different tests. Matrix type tablets manufactured from each aloe material individually and in combina- tion with other polymers were evaluated in terms of their physical ...

  8. The participation ratios of cement matrix and latex network in latex cement co-matrix strength

    Directory of Open Access Journals (Sweden)

    Ahmed M. Diab

    2014-06-01

    Full Text Available This investigation aims to determine the participation ratio of cement matrix and latex network in latex cement co-matrix strength. The first stage of this study was carried out to investigate the effect of styrene butadiene rubber (SBR on cement matrix participation ratio by measuring degree of hydration and compressive strength. The second stage in this study shows an attempt to evaluate the latex participation ratio in mortar and concrete strength with different latex chemical bases. Effect of latex particle size on latex network strength was studied. The test results indicated that the latex participation ratio in co-matrix strength is influenced by type of cement matrix, type of curing, latex type, latex solid/water ratio, strength type and age. For modified concrete, when the SBR solid/water ratio increases the latex participation ratio in flexural and pull out bond strength increases. The latex participation ratio in co-matrix strength decreases as latex particle size increases.

  9. SZEG? KERNEL FOR HARDY SPACE OF MATRIX FUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    Fuli HE; Min KU; Uwe K ?HLER

    2016-01-01

    By the characterization of the matrix Hilbert transform in the Hermitian Clifford analysis, we introduce the matrix Szeg? projection operator for the Hardy space of Hermitean monogenic functions defined on a bounded sub-domain of even dimensional Euclidean space, establish the Kerzman-Stein formula which closely connects the matrix Szeg? projection operator with the Hardy projection operator onto the Hardy space, and get the matrix Szeg? projection operator in terms of the Hardy projection operator and its adjoint. Furthermore, we construct the explicit matrix Szeg? kernel function for the Hardy space on the sphere as an example, and get the solution to a boundary value problem for matrix functions.

  10. Image registration based on matrix perturbation analysis using spectral graph

    Institute of Scientific and Technical Information of China (English)

    Chengcai Leng; Zheng Tian; Jing Li; Mingtao Ding

    2009-01-01

    @@ We present a novel perspective on characterizing the spectral correspondence between nodes of the weighted graph with application to image registration.It is based on matrix perturbation analysis on the spectral graph.The contribution may be divided into three parts.Firstly, the perturbation matrix is obtained by perturbing the matrix of graph model.Secondly, an orthogonal matrix is obtained based on an optimal parameter, which can better capture correspondence features.Thirdly, the optimal matching matrix is proposed by adjusting signs of orthogonal matrix for image registration.Experiments on both synthetic images and real-world images demonstrate the effectiveness and accuracy of the proposed method.

  11. Google matrix of business process management

    CERN Document Server

    Abel, M

    2010-01-01

    Development of efficient business process models and determination of their characteristic properties are subject of intense interdisciplinary research. Here, we consider a business process model as a directed graph. Its nodes correspond to the units identified by the modeler and the link direction indicates the causal dependencies between units. It is of primary interest to obtain the stationary flow on such a directed graph, which corresponds to the steady-state of a firm during the business process. Following the ideas developed recently for the World Wide Web, we construct the Google matrix for our business process model and analyze its spectral properties. The importance of nodes is characterized by Page-Rank and recently proposed CheiRank and 2DRank, respectively. The results show that this two-dimensional ranking gives a significant information about the influence and communication properties of business model units. We argue that the Google matrix method, described here, provides a new efficient tool ...

  12. Social patterns revealed through random matrix theory

    Science.gov (United States)

    Sarkar, Camellia; Jalan, Sarika

    2014-11-01

    Despite the tremendous advancements in the field of network theory, very few studies have taken weights in the interactions into consideration that emerge naturally in all real-world systems. Using random matrix analysis of a weighted social network, we demonstrate the profound impact of weights in interactions on emerging structural properties. The analysis reveals that randomness existing in particular time frame affects the decisions of individuals rendering them more freedom of choice in situations of financial security. While the structural organization of networks remains the same throughout all datasets, random matrix theory provides insight into the interaction pattern of individuals of the society in situations of crisis. It has also been contemplated that individual accountability in terms of weighted interactions remains as a key to success unless segregation of tasks comes into play.

  13. Matrix Metalloproteinases as Regulators of Periodontal Inflammation

    Science.gov (United States)

    Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández

    2017-01-01

    Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the ‘protease web’ is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules—such as cytokines, chemokines, and growth factors, among others—regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation. PMID:28218665

  14. Examples of Matrix Factorizations from SYZ

    Directory of Open Access Journals (Sweden)

    Cheol-Hyun Cho

    2012-08-01

    Full Text Available We find matrix factorization corresponding to an anti-diagonal in CP^1×CP^1, and circle fibers in weighted projective lines using the idea of Chan and Leung of Strominger-Yau-Zaslow transformations. For the tear drop orbifolds, we apply this idea to find matrix factorizations for two types of potential, the usual Hori-Vafa potential or the bulk deformed (orbi-potential. We also show that the direct sum of anti-diagonal with its shift, is equivalent to the direct sum of central torus fibers with holonomy (1,−1 and (−1,1 in the Fukaya category of CP^1×CP^1, which was predicted by Kapustin and Li from B-model calculations.

  15. Embedded random matrix ensembles in quantum physics

    CERN Document Server

    Kota, V K B

    2014-01-01

    Although used with increasing frequency in many branches of physics, random matrix ensembles are not always sufficiently specific to account for important features of the physical system at hand. One refinement which retains the basic stochastic approach but allows for such features consists in the use of embedded ensembles.  The present text is an exhaustive introduction to and survey of this important field. Starting with an easy-to-read introduction to general random matrix theory, the text then develops the necessary concepts from the beginning, accompanying the reader to the frontiers of present-day research. With some notable exceptions, to date these ensembles have primarily been applied in nuclear spectroscopy. A characteristic example is the use of a random two-body interaction in the framework of the nuclear shell model. Yet, topics in atomic physics, mesoscopic physics, quantum information science and statistical mechanics of isolated finite quantum systems can also be addressed using these ensemb...

  16. $S_3$ symmetry and the CKM matrix

    CERN Document Server

    Das, Dipankar; Pal, Palash B

    2016-01-01

    We impose an $S_3$ symmetry on the quark fields under which two of three quarks transform like a doublet and the remaining one as singlet, and use a scalar sector with the same structure of $SU(2)$ doublets. After gauge symmetry breaking, a $\\mathbb{Z}_2$ subgroup of the $S_3$ remains unbroken. We show that this unbroken subgroup can explain the approximate block structure of the CKM matrix. By allowing soft breaking of the $S_3$ symmetry in the scalar sector, we show that one can generate the small elements, of quadratic or higher order in the Wolfenstein parametrization of the CKM matrix. We also predict the existence of exotic new scalars, with unconventional decay properties, which can be used to test our model experimentally.

  17. Google matrix analysis of directed networks

    CERN Document Server

    Ermann, Leonardo; Shepelyansky, Dima L

    2014-01-01

    In past ten years, modern societies developed enormous communication and social networks. Their classification and information retrieval processing become a formidable task for the society. Due to the rapid growth of World Wide Web, social and communication networks, new mathematical methods have been invented to characterize the properties of these networks on a more detailed and precise level. Various search engines are essentially using such methods. It is highly important to develop new tools to classify and rank enormous amount of network information in a way adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency on various examples including World Wide Web, Wikipedia, software architecture, world trade, social and citation networks, brain neural networks, DNA sequences and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chain...

  18. Emerging Trends in Polymer Matrix Composites .

    Directory of Open Access Journals (Sweden)

    Vikas M. Nadkarni

    1993-10-01

    Full Text Available The performance characteristics of PMC products are determined by the microstructure developed during the processing of composite materials. The structure development in processing is the result of integration of process parameters and inherent material characteristics. The properties of PMCs can thus be manipulated through both changes in the materials composition and process conditions. The present article illustrates the scientific approach followed in engineering of matrix materials and optimization of the processing conditions with specific reference to case studies on toughening of thermosetting resins and structure development in injection molding of thermoplastic composites. A novel approach is demonstrated for toughening of unsaturated polyester resins that involves the use of reactive liquid polymers chemically bonded to the matrix. The use of processing science is demonstrated by the significant effect of the mold temperature on the crystallinity and properties of molded poly (phenylene sulfide, a high performance engineering thermoplastic. An interactive approach is proposed for specific product and applications development.

  19. Conserving T-matrix theory of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Morawetz, Klaus [University of Applied Science Muenster, Stegerwaldstrasse 39, 48565 Steinfurt (Germany); International Center for Condensed Matter Physics, Universidade de Brasilia, 70904-910, Brasilia-DF (Brazil); Lipavsky, Pavel [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2 (Czech Republic); Institute of Physics, Academy of Sciences, Cukrovarnicka 10, 16253 Prague 6 (Czech Republic); Sopik, Bretislav [Institute of Physics, Academy of Sciences, Cukrovarnicka 10, 16253 Prague 6 (Czech Republic); Maennel, Michael [Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz (Germany)

    2010-07-01

    Any many-body approximation corrected for unphysical repeated collisions in a given condensation channel is shown to provide the same set of equations as they appear by using anomalous propagators. The ad-hoc assumption in the latter theory about non-conservation of particle numbers can be released. In this way the widespread used anomalous propagator approach is given another physical interpretation. A generalized Soven equation follows which improves any approximation in the same way as the coherent potential approximation (CPA) improves the averaged T-matrix for impurity scattering. A selfconsistent T-matrix theory of many-Fermion systems is proposed. In the normal state the theory agrees with the Galitskii-Feynmann approximation, in the superconducting state it has the form of the renormalized Kadanoff-Martin approximation. The two-particle propagator satisfies the Baym-Kadanoff symmetry condition which guarantees that the theory conserves the number of particles, momentum and energy.

  20. Constructing acoustic timefronts using random matrix theory

    CERN Document Server

    Hegewisch, Katherine C

    2012-01-01

    In a recent letter [Europhys. Lett. {\\bf 97}, 34002 (2012)], random matrix theory is introduced for long-range acoustic propagation in the ocean. The theory is expressed in terms of unitary propagation matrices that represent the scattering between acoustic modes due to sound speed fluctuations induced by the ocean's internal waves. The scattering exhibits a power-law decay as a function of the differences in mode numbers thereby generating a power-law, banded, random unitary matrix ensemble. This work gives a more complete account of that approach and extends the methods to the construction of an ensemble of acoustic timefronts. The result is a very efficient method for studying the statistical properties of timefronts at various propagation ranges that agrees well with propagation based on the parabolic equation. It helps identify which information about the ocean environment survives in the timefronts and how to connect features of the data to the surviving environmental information. It also makes direct c...

  1. Algebraic matrix equations in two unknowns

    CERN Document Server

    Bourgeois, Gerald

    2011-01-01

    Let r1,r2,s1,s2 be integers such that gcd(r1,r2)=1 and gcd(s1,s2)=1. We solve the matrix equation A^{r1}B^{s1}A^{r2}B^{s2}=+-Identity where A,B are 2,2 complex matrices that have no common eigenvectors. Let p,q be coprime integers such that |p|+|q|>2. We study the matrix equation B^{-1}A^pB=A^q where A,B are n,n complex invertible matrices. We show that such matrices satisfy B^{-1}AB and A commute. We provide a necessary and sufficient condition for similarity of A^p and A^q. We explicitly solve this problem when A has n distinct eigenvalues and in other particular cases.

  2. Numerical matrix method for quantum periodic potentials

    Science.gov (United States)

    Le Vot, Felipe; Meléndez, Juan J.; Yuste, Santos B.

    2016-06-01

    A numerical matrix methodology is applied to quantum problems with periodic potentials. The procedure consists essentially in replacing the true potential by an alternative one, restricted by an infinite square well, and in expressing the wave functions as finite superpositions of eigenfunctions of the infinite well. A matrix eigenvalue equation then yields the energy levels of the periodic potential within an acceptable accuracy. The methodology has been successfully used to deal with problems based on the well-known Kronig-Penney (KP) model. Besides the original model, these problems are a dimerized KP solid, a KP solid containing a surface, and a KP solid under an external field. A short list of additional problems that can be solved with this procedure is presented.

  3. Matrix product states for gauge field theories.

    Science.gov (United States)

    Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank

    2014-08-29

    The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field.

  4. Random matrix model for disordered conductors

    Indian Academy of Sciences (India)

    Zafar Ahmed; Sudhir R Jain

    2000-03-01

    We present a random matrix ensemble where real, positive semi-definite matrix elements, , are log-normal distributed, $\\exp[-\\log^{2}(x)]$. We show that the level density varies with energy, , as 2/(1 + ) for large , in the unitary family, consistent with the expectation for disordered conductors. The two-level correlation function is studied for the unitary family and found to be largely of the universal form despite the fact that the level density has a non-compact support. The results are based on the method of orthogonal polynomials (the Stieltjes-Wigert polynomials here). An interesting random walk problem associated with the joint probability distribution of the ensuing ensemble is discussed and its connection with level dynamics is brought out. It is further proved that Dyson's Coulomb gas analogy breaks down whenever the confining potential is given by a transcendental function for which there exist orthogonal polynomials.

  5. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  6. Reliability analysis of ceramic matrix composite laminates

    Science.gov (United States)

    Thomas, David J.; Wetherhold, Robert C.

    1991-01-01

    At a macroscopic level, a composite lamina may be considered as a homogeneous orthotropic solid whose directional strengths are random variables. Incorporation of these random variable strengths into failure models, either interactive or non-interactive, allows for the evaluation of the lamina reliability under a given stress state. Using a non-interactive criterion for demonstration purposes, laminate reliabilities are calculated assuming previously established load sharing rules for the redistribution of load as the failure of laminae occur. The matrix cracking predicted by ACK theory is modeled to allow a loss of stiffness in the fiber direction. The subsequent failure in the fiber direction is controlled by a modified bundle theory. Results using this modified bundle model are compared with previous models which did not permit separate consideration of matrix cracking, as well as to results obtained from experimental data.

  7. Random matrix analysis of complex networks.

    Science.gov (United States)

    Jalan, Sarika; Bandyopadhyay, Jayendra N

    2007-10-01

    We study complex networks under random matrix theory (RMT) framework. Using nearest-neighbor and next-nearest-neighbor spacing distributions we analyze the eigenvalues of the adjacency matrix of various model networks, namely, random, scale-free, and small-world networks. These distributions follow the Gaussian orthogonal ensemble statistic of RMT. To probe long-range correlations in the eigenvalues we study spectral rigidity via the Delta_{3} statistic of RMT as well. It follows RMT prediction of linear behavior in semilogarithmic scale with the slope being approximately 1pi;{2} . Random and scale-free networks follow RMT prediction for very large scale. A small-world network follows it for sufficiently large scale, but much less than the random and scale-free networks.

  8. Universal shocks in random matrix theory.

    Science.gov (United States)

    Blaizot, Jean-Paul; Nowak, Maciej A

    2010-11-01

    We link the appearance of universal kernels in random matrix ensembles to the phenomenon of shock formation in some fluid dynamical equations. Such equations are derived from Dyson's random walks after a proper rescaling of the time. In the case of the gaussian unitary ensemble, on which we focus in this paper, we show that the characteristics polynomials and their inverse evolve according to a viscid Burgers equation with an effective "spectral viscosity" ν(s)=1/2N, where N is the size of the matrices. We relate the edge of the spectrum of eigenvalues to the shock that naturally appears in the Burgers equation for appropriate initial conditions, thereby suggesting a connection between the well-known microscopic universality of random matrix theory and the universal properties of the solution of the Burgers equation in the vicinity of a shock.

  9. Nuclei, Primes and the Random Matrix Connection

    Directory of Open Access Journals (Sweden)

    Steven J. Miller

    2009-09-01

    Full Text Available In this article, we discuss the remarkable connection between two very different fields, number theory and nuclear physics. We describe the essential aspects of these fields, the quantities studied, and how insights in one have been fruitfully applied in the other. The exciting branch of modern mathematics – random matrix theory – provides the connection between the two fields. We assume no detailed knowledge of number theory, nuclear physics, or random matrix theory; all that is required is some familiarity with linear algebra and probability theory, as well as some results from complex analysis. Our goal is to provide the inquisitive reader with a sound overview of the subjects, placing them in their historical context in a way that is not traditionally given in the popular and technical surveys.

  10. A Geometric Approach to Matrix Ordering

    CERN Document Server

    Auer, B O Fagginger

    2011-01-01

    We present a recursive way to partition hypergraphs which creates and exploits hypergraph geometry and is suitable for many-core parallel architectures. Such partitionings are then used to bring sparse matrices in a recursive Bordered Block Diagonal form (for processor-oblivious parallel LU decomposition) or recursive Separated Block Diagonal form (for cache-oblivious sparse matrix-vector multiplication). We show that the quality of the obtained partitionings and orderings is competitive by comparing obtained fill-in for LU decomposition with SuperLU (with better results for 8 of the 28 test matrices) and comparing cut sizes for sparse matrix-vector multiplication with Mondriaan (with better results for 4 of the 12 test matrices). The main advantage of the new method is its speed: it is on average 21.6 times faster than Mondriaan.

  11. Random Matrix Theory and Quantum Chromodynamics

    CERN Document Server

    Akemann, Gernot

    2016-01-01

    These notes are based on the lectures delivered at the Les Houches Summer School in July 2015. They are addressed at a mixed audience of physicists and mathematicians with some basic working knowledge of random matrix theory. The first part is devoted to the solution of the chiral Gaussian Unitary Ensemble in the presence of characteristic polynomials, using orthogonal polynomial techniques. This includes all eigenvalue density correlation functions, smallest eigenvalue distributions and their microscopic limit at the origin. These quantities are relevant for the description of the Dirac operator spectrum in Quantum Chromodynamics with three colours in four Euclidean space-time dimensions. In the second part these two theories are related based on symmetries, and the random matrix approximation is explained. In the last part recent developments are covered including the effect of finite chemical potential and finite space-time lattice spacing, and their corresponding orthogonal polynomials. We also give some ...

  12. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  13. Characteristic Polynomials of Complex Random Matrix Models

    CERN Document Server

    Akemann, G

    2003-01-01

    We calculate the expectation value of an arbitrary product of characteristic polynomials of complex random matrices and their hermitian conjugates. Using the technique of orthogonal polynomials in the complex plane our result can be written in terms of a determinant containing these polynomials and their kernel. It generalizes the known expression for hermitian matrices and it also provides a generalization of the Christoffel formula to the complex plane. The derivation we present holds for complex matrix models with a general weight function at finite-N, where N is the size of the matrix. We give some explicit examples at finite-N for specific weight functions. The characteristic polynomials in the large-N limit at weak and strong non-hermiticity follow easily and they are universal in the weak limit. We also comment on the issue of the BMN large-N limit.

  14. Examples of Matrix Factorizations from SYZ

    Science.gov (United States)

    Cho, Cheol-Hyun; Hong, Hansol; Lee, Sangwook

    2012-08-01

    We find matrix factorization corresponding to an anti-diagonal in CP^1 × CP^1, and circle fibers in weighted projective lines using the idea of Chan and Leung of Strominger-Yau-Zaslow transformations. For the tear drop orbifolds, we apply this idea to find matrix factorizations for two types of potential, the usual Hori-Vafa potential or the bulk deformed (orbi)-potential. We also show that the direct sum of anti-diagonal with its shift, is equivalent to the direct sum of central torus fibers with holonomy (1,-1) and (-1,1) in the Fukaya category of CP^1 × CP^1, which was predicted by Kapustin and Li from B-model calculations.

  15. Examples of Matrix Factorizations from SYZ

    CERN Document Server

    Cho, Cheol-Hyun; Lee, Sangwook

    2012-01-01

    We find matrix factorization corresponding to an anti-diagonal in $\\CP^1 \\times \\CP^1$, and circle fibers in weighted projective lines using the idea of Chan and Leung of Strominger-Yau-Zaslow transformations. For the tear drop orbifolds, we apply this idea to find matrix factorizations for two types of potential, the usual Hori-Vafa potential or the bulk deformed (orbi)-potential. We also show that the direct sum of anti-diagonal with its shift, is equivalent to the direct sum of central torus fibers with holonomy $(1,-1)$ and $(-1,1)$ in the Fukaya category of $\\CP^1 \\times \\CP^1$, which was predicted by Kapustin and Li from B-model calculations.

  16. Generalized multicritical one-matrix models

    CERN Document Server

    Ambjorn, J; Makeenko, Y

    2016-01-01

    We show that there exists a simple generalization of Kazakov's multicritical one-matrix model, which interpolates between the various multicritical points of the model. The associated multicritical potential takes the form of a power series with a heavy tail, leading to a cut of the potential and its derivative at the real axis, and reduces to a polynomial at Kazakov's multicritical points. From the combinatorial point of view the generalized model allows polygons of arbitrary large degrees (or vertices of arbitrary large degree, when considering the dual graphs), and it is the weight assigned to these large order polygons which brings about the interpolation between the multicritical points in the one-matrix model.

  17. Generalized multicritical one-matrix models

    Science.gov (United States)

    Ambjørn, J.; Budd, T.; Makeenko, Y.

    2016-12-01

    We show that there exists a simple generalization of Kazakov's multicritical one-matrix model, which interpolates between the various multicritical points of the model. The associated multicritical potential takes the form of a power series with a heavy tail, leading to a cut of the potential and its derivative at the real axis, and reduces to a polynomial at Kazakov's multicritical points. From the combinatorial point of view the generalized model allows polygons of arbitrary large degrees (or vertices of arbitrary large degree, when considering the dual graphs), and it is the weight assigned to these large order polygons which brings about the interpolation between the multicritical points in the one-matrix model.

  18. Relativistic recursion relations for transition matrix elements

    CERN Document Server

    Martínez y Romero, R P; Salas-Brito, A L

    2004-01-01

    We review some recent results on recursion relations which help evaluating arbitrary non-diagonal, radial hydrogenic matrix elements of $r^\\lambda$ and of $\\beta r^\\lambda$ ($\\beta$ a Dirac matrix) derived in the context of Dirac relativistic quantum mechanics. Similar recursion relations were derived some years ago by Blanchard in the non relativistic limit. Our approach is based on a generalization of the second hypervirial method previously employed in the non-relativistic Schr\\"odinger case. An extension of the relations to the case of two potentials in the so-called unshifted case, but using an arbitrary radial function instead of a power one, is also given. Several important results are obtained as special instances of our recurrence relations, such as a generalization to the relativistic case of the Pasternack-Sternheimer rule. Our results are useful in any atomic or molecular calculation which take into account relativistic corrections.

  19. Engineering hydrogels as extracellular matrix mimics

    OpenAIRE

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun; Demirci, Utkan

    2010-01-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell–cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable....

  20. Notes on matrix and micro strings

    Science.gov (United States)

    Dijkgraaf, Robbert; Verlinde, E.; Verlinde, H.

    1998-11-01

    We review some recent developments in the study of M-theory compactifications via Matrix theory. In particular we highlight the appearance of IIA strings and their interactions, and explain the unifying role of the M-theory five-brane for describing the spectrum of the T5 compactification and its duality symmetries. The 5+1-dimensional micro-string theory that lives on the fivebrane world-volume takes a central place in this presentation.

  1. Notes on Matrix and Micro Strings

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1998-01-01

    We review some recent developments in the study of M-theory compactifications via Matrix theory. In particular we highlight the appearance of IIA strings and their interactions, and explain the unifying role of the M-theory five-brane for describing the spectrum of the T^5 compactification and its duality symmetries. The 5+1-dimensional micro-string theory that lives on the fivebrane world-volume takes a central place in this presentation.

  2. Notes on matrix and micro strings

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Mathematics; Verlinde, E. [TH-Division, CERN, 1211 Geneva 23 (Switzerland)]|[Institute for Theoretical Physics, University of Utrecht, 3508 TA Utrecht (Netherlands); Verlinde, H. [Institute for Theoretical Physics, University of Amsterdam, 1018 XE Amsterdam (Netherlands)

    1998-11-01

    We review some recent developments in the study of M-theory compactifications via matrix theory. In particular we highlight the appearance of IIA strings and their interactions, and explain the unifying role of the M-theory five-brane for describing the spectrum of the T{sup 5} compactification and its duality symmetries. The 5+1-dimensionalmicro-string theory that lives on the fivebrane world-volume takes a central place in this presentation. (orig.) 51 refs.

  3. Fatigue damage mechanisms in polymer matrix composites

    OpenAIRE

    1997-01-01

    Polymer matrix composites are finding increased use in structural applications, in particular for aerospace and automotive purposes. Mechanical fatigue is the most common type of failure of structures in service. The relative importance of fatigue has yet to be reflected in design where static conditions still prevail. The fatigue behavior of composite materials is conventionally characterized by a Wöhler or S-N curve. For every new material with a new lay-up, altered constituents or differen...

  4. Risk evaluation with enhaced covariance matrix

    CERN Document Server

    Urbanowicz, K; Richmond, P; Holyst, Janusz A.; Richmond, Peter; Urbanowicz, Krzysztof

    2006-01-01

    We propose a route for the evaluation of risk based on a transformation of the covariance matrix. The approach uses a `potential' or `objective' function. This allows us to rescale data from diferent assets (or sources) such that each set then has similar statistical properties in terms of their probability distributions. The method is tested using historical data from both the New York and Warsaw Stock Exchanges.

  5. Matrix-addressable electrochromic display cell

    Science.gov (United States)

    Beni, G.; Schiavone, L. M.

    1981-04-01

    We report an electrochromic display cell with intrinsic matrix addressability. The cell, based on a sputtered iridium oxide film (SIROF) and a tantalum-oxide hysteretic counterelectrode, has electrochromic parameters (i.e., response times, operating voltages, and contrast) similar to those of other SIROF display devices, but in addition, has short-circuit memory and voltage threshold. Memory and threshold are sufficiently large to allow, in principle, multiplexing of electrochromic display panels of large-screen TV pixel size.

  6. Efficient Matrix Models for Relational Learning

    Science.gov (United States)

    2009-10-01

    contains no information about Z. Aldous ex- changeability is an extension of de Finetti exchangeability to matrices of random variables, and like de... Finetti exchangeability, it leads to a representation theorem: Theorem 1 (Aldous’ Theorem [1]). If Z is row-column exchangeable, then there exists a...objectives for matrix factorization. It should be noted that Theorem 1 is descriptive, not prescriptive (just like de Finetti exchangeability): no

  7. Spin Forming of Aluminum Metal Matrix Composites

    Science.gov (United States)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    An exploratory effort between NASA-Marshall Space Flight Center (MSFC) and SpinCraft, Inc., to experimentally spin form cylinders and concentric parts from small and thin sheets of aluminum Metal Matrix Composites (MMC), successfully yielded good microstructure data and forming parameters. MSFC and SpinCraft will collaborate on the recent technical findings and develop strategy to implement this technology for NASA's advanced propulsion and airframe applications such as pressure bulkheads, combustion liner assemblies, propellant tank domes, and nose cone assemblies.

  8. Five years of density matrix embedding theory

    CERN Document Server

    Wouters, Sebastian; Chan, Garnet K -L

    2016-01-01

    Density matrix embedding theory (DMET) describes finite fragments in the presence of a surrounding environment. In contrast to most embedding methods, DMET explicitly allows for quantum entanglement between both. In this chapter, we discuss both the ground-state and response theory formulations of DMET, and review several applications. In addition, a proof is given that the local density of states can be obtained by working with a Fock space of bath orbitals.

  9. Matrix Extracellular Phosphoglycoprotein Inhibits Phosphate Transport

    OpenAIRE

    Marks, J; Churchill, L J; Debnam, E. S.; Unwin, R J

    2008-01-01

    The role of putative humoral factors, known as phosphatonins, in phosphate homeostasis and the relationship between phosphate handling by the kidney and gastrointestinal tract are incompletely understood. Matrix extracellular phosphoglycoprotein (MEPE), one of several candidate phosphatonins, promotes phosphaturia, but whether it also affects intestinal phosphate absorption is unknown. Here, using the in situ intestinal loop technique, we demonstrated that short-term infusion of MEPE inhibits...

  10. Chiral random matrix theory for staggered fermions

    CERN Document Server

    Osborn, James C

    2012-01-01

    We present a completed random matrix theory for staggered fermions which incorporates all taste symmetry breaking terms at their leading order from the staggered chiral Lagrangian. This is an extension of previous work which only included some of the taste breaking terms. We will also discuss the effects of taste symmetry breaking on the eigenvalues in the weak and strong taste breaking limits, and compare with some results from lattice simulations.

  11. Pseudo-Hermitian random matrix theory

    Science.gov (United States)

    Srivastava, S. C. L.; Jain, S. R.

    2013-02-01

    Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available.

  12. Matrix metalloproteinases (MMPs) and trophoblast invasion

    Institute of Scientific and Technical Information of China (English)

    LI Jing; ZHAO Tianfu; DUAN Enkui

    2005-01-01

    MMPs and their natural tissue inhibitors TIMPs are crucial in coordinated breakdown and remodeling of the extracellular matrix (ECM) in physiological and pathological situations. Placentation is a key event of pregnancy in which MMPs/TIMPs system plays important roles in regulating the extravillus cytotrophoblast (EVTs) invasion. This paper focuses on expression patterns and regulatory mechanisms of MMPs/TIMPs family members during the process of placentation. Their implications in curing pregnancy-related diseases are also discussed.

  13. A random matrix approach to decoherence

    CERN Document Server

    Gorin, T; Gorin, Thomas; Seligman, Thomas H.

    2001-01-01

    In order to analyze the effect of chaos or order on the rate of decoherence in a subsystem, we aim to distinguish effects of the two types of dynamics by choosing initial states as random product states from two factor spaces representing two subsystems. We introduce a random matrix model that permits to vary the coupling strength between the subsystems. The case of strong coupling is analyzed in detail, and we find no significant differences except for very low-dimensional spaces.

  14. Zero Triple Product Determined Matrix Algebras

    Directory of Open Access Journals (Sweden)

    Hongmei Yao

    2012-01-01

    triple product in the aforementioned definition is replaced by Jordan triple product, then A is called zero Jordan triple product determined. This paper mainly shows that matrix algebra Mn(B, n≥3, where B is any commutative unital algebra even different from the above mentioned commutative unital algebra C, is always zero triple product determined, and Mn(F, n≥3, where F is any field with chF≠2, is also zero Jordan triple product determined.

  15. R-matrix calculation for photoionization

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    We have employed the R-matrix method to calculate differe ntial cross sections for photoionization of helium leaving helium ion in an exci ted state for incident photon energy between the N=2 and N=3 thresholds (69~73 eV) of He+ ion. Differential cross sections for photoionization in the N=2 level at emission angle 0° are provide. Our results are in good agreem ent with available experimental data and theoretical calculations.

  16. Constructing positive maps in matrix algebras

    Science.gov (United States)

    Chruściński, D.; Kossakowski, A.

    2011-10-01

    We analyze several classes of positive maps in infinite dimensional matrix algebras. Such maps provide basic tools for studying quantum entanglement infinite dimensional Hilbert spaces. Instead of presenting the most general approach to the problem we concentrate on specific examples. We stress that there is no general construction of positive maps. We show how to generalize well known maps in low dimensional algebras: Choi map in M3(C) and Robertson map in M4(C).

  17. Absorption properties of waste matrix materials

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, J.B. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-06-01

    This paper very briefly discusses the need for studies of the limiting critical concentration of radioactive waste matrix materials. Calculated limiting critical concentration values for some common waste materials are listed. However, for systems containing large quantities of waste materials, differences up to 10% in calculated k{sub eff} values are obtained by changing cross section data sets. Therefore, experimental results are needed to compare with calculation results for resolving these differences and establishing realistic biases.

  18. Ranking hubs and authorities using matrix functions

    OpenAIRE

    2012-01-01

    The notions of subgraph centrality and communicability, based on the exponential of the adjacency matrix of the underlying graph, have been effectively used in the analysis of undirected networks. In this paper we propose an extension of these measures to directed networks, and we apply them to the problem of ranking hubs and authorities. The extension is achieved by bipartization, i.e., the directed network is mapped onto a bipartite undirected network with twice as many nodes in order to ob...

  19. Graphite matrix materials for nuclear waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  20. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  1. Diagonalizing sensing matrix of broadband RSE

    Science.gov (United States)

    Sato, Shuichi; Kokeyama, Keiko; Kawazoe, Fumiko; Somiya, Kentaro; Kawamura, Seiji

    2006-03-01

    For a broadband-operated RSE interferometer, a simple and smart length sensing and control scheme was newly proposed. The sensing matrix could be diagonal, owing to a simple allocation of two RF modulations and to a macroscopic displacement of cavity mirrors, which cause a detuning of the RF modulation sidebands. In this article, the idea of the sensing scheme and an optimization of the relevant parameters will be described.

  2. Recurrence relation for relativistic atomic matrix elements

    CERN Document Server

    Martínez y Romero, R P; Salas-Brito, A L

    2000-01-01

    Recurrence formulae for arbitrary hydrogenic radial matrix elements are obtained in the Dirac form of relativistic quantum mechanics. Our approach is inspired on the relativistic extension of the second hypervirial method that has been succesfully employed to deduce an analogous relationship in non relativistic quantum mechanics. We obtain first the relativistic extension of the second hypervirial and then the relativistic recurrence relation. Furthermore, we use such relation to deduce relativistic versions of the Pasternack-Sternheimer rule and of the virial theorem.

  3. Fast rectangular matrix multiplication and some applications

    Institute of Scientific and Technical Information of China (English)

    KE ShanXue; ZENG BenSheng; HAN WenBao; Victor Y PAN

    2008-01-01

    We study asymptotically fast multiplication algorithms for matrix pairs of arbitrary dimensions, and optimize the exponents of their arithmetic complexity bounds. For a large class of input matrix pairs, we improve the known exponents. We also show some applications of our results: (ⅰ) we decrease from O(n2 + n1+o(1) log q) to O(n1.9998 + n1+o(1) log q) the known arithmetic complexity bound for the univariate polynomial factorization of degree n over a finite field with q elements; (ⅱ) we decrease from 2.837 to 2.7945 the known exponent of the work and arithmetic processor bounds for fast deterministic (NC) parallel evaluation of the determinant, the characteristic polynomial, and the inverse of an n × n matrix, as well as for the solution to a nonsingular linear system of n equations; (ⅲ) we decrease from O(m1.575n) to O(m1.5356n) the known bound for computing basic solutions to a linear programming problem with m constraints and n variables.

  4. Fast rectangular matrix multiplication and some applications

    Institute of Scientific and Technical Information of China (English)

    Victor; Y; PAN

    2008-01-01

    We study asymptotically fast multiplication algorithms for matrix pairs of arbitrary di- mensions, and optimize the exponents of their arithmetic complexity bounds. For a large class of input matrix pairs, we improve the known exponents. We also show some applications of our results:(i) we decrease from O(n2+n1+o(1)logq)to O(n1.9998+n1+o(1)logq)the known arithmetic complexity bound for the univariate polynomial factorization of degree n over a finite field with q elements; (ii) we decrease from 2.837 to 2.7945 the known exponent of the work and arithmetic processor bounds for fast deterministic(NC)parallel evaluation of the determinant, the characteristic polynomial, and the inverse of an n×n matrix, as well as for the solution to a nonsingular linear system of n equations; (iii)we decrease from O(m1.575n)to O(m1.5356n)the known bound for computing basic solutions to a linear programming problem with m constraints and n variables.

  5. Matrix Metalloproteinases-7 and Kidney Fibrosis

    Science.gov (United States)

    Ke, Ben; Fan, Chuqiao; Yang, Liping; Fang, Xiangdong

    2017-01-01

    Matrix metalloproteinase-7 (MMP-7) is a secreted zinc- and calcium-dependent endopeptidase that degrades a broad range of extracellular matrix substrates and additional substrates. MMP-7 playsa crucial role in a diverse array of cellular processes and appears to be a key regulator of fibrosis in several diseases, including pulmonary fibrosis, liver fibrosis, and cystic fibrosis. In particular, the relationship between MMP-7 and kidney fibrosis has attracted significant attention in recent years. Growing evidence indicates that MMP-7 plays an important role in the pathogenesis of kidney fibrosis. Here, we summarize the recent progress in the understanding of the role of MMP-7 in kidney fibrosis. In particular, we discuss how MMP-7 contributes to kidney fibrotic lesions via the following three pathways: epithelial-mesenchymal transition (EMT), transforming growth factor-beta (TGF-β) signaling, and extracellular matrix (ECM) deposition. Further dissection of the crosstalk among and regulation of these pathways will help clinicians and researchers develop effective therapeutic approaches for treating chronic kidney disease.

  6. Thermoforming of thermoplastic matrix composites. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Harper, R.C.

    1992-03-01

    Long-fiber-reinforced polymer matrix composites find widespread use in a variety of commercial applications requiring properties that cannot be provided by unreinforced plastics or other common materials of construction. However, thermosetting matrix resins have long been plagued by production processes that are slow and difficult to automate. This has limited the use of long-fiber-reinforced composites to relatively low productivity applications in which higher production costs can be justified. Unreinforced thermoplastics, by their very nature, can easily be made into sheet form and processed into a variety of formed shapes by various pressure assisted thermoforming means. It is possible to incorporate various types of fiber reinforcement to suit the end use of the thermoformed shape. Recently developed thermoplastic resins can also sometimes correct physical property deficiencies in a thermoset matrix composite. Many forms of thermoplastic composite material now exist that meet all the requirements of present day automotive and aerospace parts. Some of these are presently in production, while others are still in the development stage. This opens the possibility that long-fiber-reinforced thermoplastics might break the barrier that has long limited the applications for fiber-reinforced composites. 37 refs., 8 figs., 5 tabs.

  7. Analyticity and the Holographic S-Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A.Liam; /Stanford U., Phys. Dept.; Kaplan, Jared; /SLAC

    2012-04-03

    We derive a simple relation between the Mellin amplitude for AdS/CFT correlation functions and the bulk S-Matrix in the flat spacetime limit, proving a conjecture of Penedones. As a consequence of the Operator Product Expansion, the Mellin amplitude for any unitary CFT must be a meromorphic function with simple poles on the real axis. This provides a powerful and suggestive handle on the locality vis-a-vis analyticity properties of the S-Matrix. We begin to explore analyticity by showing how the familiar poles and branch cuts of scattering amplitudes arise from the holographic description. For this purpose we compute examples of Mellin amplitudes corresponding to 1-loop and 2-loop Witten diagrams in AdS. We also examine the flat spacetime limit of conformal blocks, implicitly relating the S-Matrix program to the Bootstrap program for CFTs. We use this connection to show how the existence of small black holes in AdS leads to a universal prediction for the conformal block decomposition of the dual CFT.

  8. Full CKM matrix with lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Masataka; /Fermilab

    2004-12-01

    The authors show that it is now possible to fully determine the CKM matrix, for the first time, using lattice QCD. |V{sub cd}|, |V{sub cs}|, |V{sub ub}|, |V{sub cb}| and |V{sub us}| are, respectively, directly determined with the lattice results for form factors of semileptonic D {yields} {pi}lv, D {yields} Klv, B {yields} {pi}lv, B {yields} Dlv and K {yields} {pi}lv decays. The error from the quenched approximation is removed by using the MILC unquenced lattice gauge configurations, where the effect of u, d and s quarks is included. The error from the ''chiral'' extrapolation (m{sub l} {yields} m{sub ud}) is greatly reduced by using improved staggered quarks. The accuracy is comparable to that of the Particle Data Group averages. In addition, |V{sub ud}|, |V{sub ts}|, |V{sub ts}| and |V{sub td}| are determined by using unitarity of the CKM matrix and the experimental result for sin (2{beta}). In this way, they obtain all 9 CKM matrix elements, where the only theoretical input is lattice QCD. They also obtain all the Wolfenstein parameters, for the first time, using lattice QCD.

  9. Matrix metalloproteinases in wound repair (review).

    Science.gov (United States)

    Ravanti, L; Kähäri, V M

    2000-10-01

    Wound repair is initiated with the aggregation of platelets, formation of a fibrin clot, and release of growth factors from the activated coagulation pathways, injured cells, platelets, and extracellular matrix (ECM), followed by migration of inflammatory cells to the wound site. Thereafter, keratinocytes migrate over the wound, angiogenesis is initiated, and fibroblasts deposit and remodel the granulation tissue. Cell migration, angiogenesis, degradation of provisional matrix, and remodeling of newly formed granulation tissue, all require controlled degradation of the ECM. Disturbance in the balance between ECM production and degradation leads to formation of chronic ulcers with excessive ECM degradation, or to fibrosis, for example hypertrophic scars or keloids characterized by excessive accumulation of ECM components. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, which as a group can degrade essentially all ECM components. So far, 20 members of the human MMP family have been identified. Based on their structure and substrate specificity, they can be divided into subgroups of collagenases, stromelysins, stromelysin-like MMPs, gelatinases, membrane-type MMPs (MT-MMPs), and other MMPs. In this review, the role of MMPs in normal wound repair as well as in chronic ulcers is discussed. In addition, the role of signaling pathways, in particular, mitogen-activated protein kinases (MAPKs) in regulating MMP expression is discussed as possible therapeutical targets for wound healing disorders.

  10. Matrix product states for lattice field theories

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Saito, H. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Tsukuba Univ., Ibaraki (Japan). Graduate School of Pure and Applied Sciences

    2013-10-15

    The term Tensor Network States (TNS) refers to a number of families of states that represent different ansaetze for the efficient description of the state of a quantum many-body system. Matrix Product States (MPS) are one particular case of TNS, and have become the most precise tool for the numerical study of one dimensional quantum many-body systems, as the basis of the Density Matrix Renormalization Group method. Lattice Gauge Theories (LGT), in their Hamiltonian version, offer a challenging scenario for these techniques. While the dimensions and sizes of the systems amenable to TNS studies are still far from those achievable by 4-dimensional LGT tools, Tensor Networks can be readily used for problems which more standard techniques, such as Markov chain Monte Carlo simulations, cannot easily tackle. Examples of such problems are the presence of a chemical potential or out-of-equilibrium dynamics. We have explored the performance of Matrix Product States in the case of the Schwinger model, as a widely used testbench for lattice techniques. Using finite-size, open boundary MPS, we are able to determine the low energy states of the model in a fully non-perturbativemanner. The precision achieved by the method allows for accurate finite size and continuum limit extrapolations of the ground state energy, but also of the chiral condensate and the mass gaps, thus showing the feasibility of these techniques for gauge theory problems.

  11. S-matrix Theory and Entanglement

    CERN Document Server

    Fujikawa, Kazuo; Zhang, Chengjie

    2013-01-01

    The entanglement is studied in the framework of Dyson's S-matrix theory in relativistic quantum field theory, which leads to the natural definitions of entangled states of a particle-antiparticle pair and the associated spin operator from a Noether current. The decay of a massive pseudo-scalar particle into a pair of electron and positron is analyzed. The entanglement measured by spin correlation becomes maximal at the threshold of the decay where the electron-positron pair is extremely non-relativistic, while we argue that the entanglement is replaced by the maximal correlation for the ultra-relativistic electron-positron pair by analogy to the case of neutrinos, for which a hidden-variables-type description is possible. The possible use of weak interactions in the analysis of entanglement at high energies is suggested. No issues of space-time non-locality and causality appear in this S-matrix theory, and the perfect consistency of the S-matrix description of entanglement with the uncertainty principle is em...

  12. Thermoreversible copolymer gels for extracellular matrix.

    Science.gov (United States)

    Vernon, B; Kim, S W; Bae, Y H

    2000-07-01

    To improve the properties of a reversible synthetic extracellular matrix based on a thermally reversible polymer, copolymers of N-isopropylacrylamide and acrylic acid were prepared in benzene with varying contents of acrylic acid (0 to 3%) and the thermal properties were evaluated. The poly(N-isopropylacrylamide) and copolymers made with acrylic acid had molecular weights from 0.8 to 1.7 x10(6) D. Differential scanning calorimetry (DSC) showed the high-molecular-weight acrylic acid copolymers had similar onset temperatures to the homopolymers, but the peak width was considerably increased with increasing acrylic acid content. DSC and cloud point measurements showed that polymers with 0 to 3% acrylic acid exhibit a lower critical solution temperature (LCST) transition between 30 degrees and 37 degrees C. In swelling studies, the homopolymer showed significant syneresis at temperatures above 31 degrees C. Copolymers with 1 and 1.5% showed syneresis beginning at 32 degrees and 37 degrees C, respectively. At 37 degrees C the copolymers with 1.5-3% acrylic acid showed little or no syneresis. Due to the high water content and a transition near physiologic conditions (below 37 degrees C), the polymers with 1.5-2.0% acrylic acid exhibited properties that would be useful in the development of a refillable synthetic extracellular matrix. Such a matrix could be applied to several cell types, including islets of Langerhans, for a biohybrid artificial pancreas.

  13. Google matrix, dynamical attractors, and Ulam networks

    Science.gov (United States)

    Shepelyansky, D. L.; Zhirov, O. V.

    2010-03-01

    We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius operator of the Chirikov typical map with dissipation. The finite-size matrix approximant of this operator is constructed by the Ulam method. This method applied to the simple dynamical model generates directed Ulam networks with approximate scale-free scaling and characteristics being in certain features similar to those of the world wide web with approximate scale-free degree distributions as well as two characteristics similar to the web: a power-law decay in PageRank that mirrors the decay of PageRank on the world wide web and a sensitivity to the value α in PageRank. The simple dynamical attractors play here the role of popular websites with a strong concentration of PageRank. A variation in the Google parameter α or other parameters of the dynamical map can drive the PageRank of the Google matrix to a delocalized phase with a strange attractor where the Google search becomes inefficient.

  14. Notes on Mayer expansions and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Bourgine, Jean-Emile, E-mail: jebourgine@apctp.org

    2014-03-15

    Mayer cluster expansion is an important tool in statistical physics to evaluate grand canonical partition functions. It has recently been applied to the Nekrasov instanton partition function of N=2 4d gauge theories. The associated canonical model involves coupled integrations that take the form of a generalized matrix model. It can be studied with the standard techniques of matrix models, in particular collective field theory and loop equations. In the first part of these notes, we explain how the results of collective field theory can be derived from the cluster expansion. The equalities between free energies at first orders is explained by the discrete Laplace transform relating canonical and grand canonical models. In a second part, we study the canonical loop equations and associate them with similar relations on the grand canonical side. It leads to relate the multi-point densities, fundamental objects of the matrix model, to the generating functions of multi-rooted clusters. Finally, a method is proposed to derive loop equations directly on the grand canonical model.

  15. Sparse Matrix Decompositions and Graph Characterizations

    CERN Document Server

    Khare, Kshitij

    2011-01-01

    The question of when zeros (i.e., sparsity) in a positive definite matrix $A$ are preserved in its Cholesky decomposition, and vice versa, was addressed by Paulsen et al. in the Journal of Functional Analysis (85, pp151-178). In particular, they prove that for the pattern of zeros in $A$ to be retained in the Cholesky decomposition of $A$, the pattern of zeros in $A$ has to necessarily correspond to a chordal (or decomposable) graph associated with a specific type of vertex ordering. This result therefore yields a characterization of chordal graphs in terms of sparse positive definite matrices. It has also proved to be extremely useful in probabilistic and statistical analysis of Markov random fields where zeros in positive definite correlation matrices are intimately related to the notion of stochastic independence. Now, consider a positive definite matrix $A$ and its Cholesky decomposition given by $A = LDL^T$, where $L$ is lower triangular with unit diagonal entries, and $D$ a diagonal matrix with positive...

  16. Multispectral Palmprint Recognition Using a Quaternion Matrix

    Directory of Open Access Journals (Sweden)

    Yafeng Li

    2012-04-01

    Full Text Available Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR illuminations were represented by a quaternion matrix, then principal component analysis (PCA and discrete wavelet transform (DWT were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%.

  17. Polymer Matrix Composite Lines and Ducts

    Science.gov (United States)

    Nettles, A. T.

    2001-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, a task was undertaken to assess the feasibility of making cryogenic feedlines with integral flanges from polymer matrix composite materials. An additional level of complexity was added by having the feedlines be elbow shaped. Four materials, each with a unique manufacturing method, were chosen for this program. Feedlines were to be made by hand layup (HLU) with standard autoclave cure, HLU with electron beam cure, solvent-assisted resin transfer molding (SARTM), and thermoplastic tape laying (TTL). A test matrix of fill and drain cycles with both liquid nitrogen and liquid helium, along with a heat up to 250 F, was planned for each of the feedlines. A pressurization to failure was performed on any feedlines that passed the cryogenic cycling testing. A damage tolerance subtask was also undertaken in this study. The effects of foreign object impact to the materials used was assessed by cross-sectional examination and by permeability after impact testing. At the end of the program, the manufacture of the electron beam-cured feedlines never came to fruition. All of the TTL feedlines leaked heavily before any cryogenic testing, all of the SARTM feedlines leaked heavily after one cryogenic cycle. Thus, only the HLU with autoclave cure feedlines underwent the complete test matrix. They passed the cyclic testing and were pressurized to failure.

  18. Matrix metalloproteinase gene polymorphisms and oral cancer.

    Science.gov (United States)

    Pereira, Andresa C; Dias do Carmo, Elaine; Dias da Silva, Marco A; Blumer Rosa, Luiz E

    2012-12-01

    Since oral squamous cell carcinoma (OSCC) is the most prevalent malignant cancer in the oral cavity, several researches have been performed to study the role of important enzymes in this disease. Among them, the matrix metalloproteinases (MMPs) are highlighted, due to the fact that they are proteinases responsible to degrade many extra-cellular matrix components, making possible the invasion of neoplasic cells. Important tools in cancer prognosis have been utilized aiming to correlate high levels of MMPs and OSCC, such as immunohistochemical, zymographic and mRNA detection methods. However, these techniques are usually applied after cancer detection, characterizing a curative but not a preventive medicine. Trying to make interventions before the development of the disease and making possible the identification of people at high risk and, analysis of modifications in MMP genes has been a chance for modern medicine. Recently, polymorphisms in MMP genes have been related to different neoplasias, including OSCC. Despite investigation is beginning, MMP gene polymorphisms seems to have a promising future in oral cancer research and some of the present results have shown that there are MMP polymorphisms related to an increased risk for developing oral cancer. Key words:Oral cancer, polymorphism, matrix metalloproteinase.

  19. Extracellular matrix proteins involved in pseudoislets formation.

    Science.gov (United States)

    Maillard, Elisa; Sencier, Marie-Christine; Langlois, A; Bietiger, William; Krafft, Mp; Pinget, Michel; Sigrist, Séverine

    2009-01-01

    Extracellular matrix proteins are known to mediate, through integrins, cell adhesion and are involved in a number of cellular processes, including insulin expression and secretion in pancreatic islets. We investigated whether expression of some extracellular matrix proteins were implied in islets-like structure formation, named pseudoislets. For this purpose, we cultured the β-cell line, RINm5F, during 1, 3, 5 and 7 days of culture on treated or untreated culture plate to form adherent cells or pseudoislets and analysed insulin, collagen IV, fibronectin, laminin 5 and β1-integrin expression. We observed that insulin expression and secretion were increased during pseudoislets formation. Moreover, we showed by immunohistochemistry an aggregation of insulin secreting cells in the centre of the pseudoislets. Peripheral β-cells of pseudoislets did not express insulin after 7 days of culture. RT-PCR and immunohistochemistry studies showed a transient expression of type IV collagen in pseudoislets for the first 3 days of culture. Study of fibronectin expression indicated that adherent cells expressed more fibronectin than pseudoislets. In contrast, laminin 5 was more expressed in pseudoislets than in adherent cells. Finally, expression of β1-integrin was increased in pseudoislets as compared to adherent cells. In conclusion, laminin 5 and collagen IV might be implicated in pseudoislets formation whereas fibronectin might be involved in cell adhesion. These data suggested that extracellular matrix proteins may enhance the function of pseudoislets.

  20. Computing the Matrix p-norm

    CERN Document Server

    Bhaskara, Aditya

    2010-01-01

    A matrix is said to be positive if all its entries are >0. We consider n x n positive matrices where the ratio of the largest to smallest entry is at most N, for some parameter N. We show that for any p>1, the p-norm of the matrix, which is defined to be |A|_p = Max_x ||Ax||_p, where ||x||_p=1 can be computed to a factor of (1+$\\delta$) in time polynomial in $\\log(1/\\delta)$, N and the dimension of the matrix n. However, in the case of general $n$-dimensional matrices, for p>1, p != 2, we show that it is NP-hard to approximate the p-norm to within a factor if (1+n^{-c}), for any constant c>0. This implies, for instance, that it is hard to obtain a $(1+\\delta)$ approximation in time polynomial in n, $1/\\delta$. Finally, we observe that the p-norm is multiplicative under tensor products, and thus if we can approximate the $p$-norm to some constant in polynomial time, we can also approximate it to an arbitrarily small constant. Recently, Englert and Racke [ER] showed the existence of an O(log n)-competitive obli...

  1. Matrix strings in a B-field

    CERN Document Server

    Grignani, G; Semenoff, Gordon W; Grignani, Gianluca; Orselli, Marta; Semenoff, Gordon W.

    2001-01-01

    We study the discrete light-cone quantization (DLCQ) of closed strings in the background of Minkowski space-time and a constant Neveu-Schwarz $B$-field. For the Bosonic string, we identify the $B$-dependent part of the thermodynamic free energy to all orders in string perturbation theory. For every genus, $B$ appears in a constraint in the path integral which restricts the world-sheet geometries to those which are branched covers of a certain torus. This is the extension of a previous result where the $B$-field was absent \\cite{Grignani:2000zm}. We then discuss the coupling of a $B$-field to the Matrix model of M-theory. We show that, when we consider this theory at finite temperature and in a finite $B$-field, the Matrix variables are functions which live on a torus with the same Teichm\\"uller parameter as the one that we identified in string theory. We show explicitly that the thermodynamic partition function of the Matrix string model in the limit of free strings reproduces the genus 1 thermodynamic partit...

  2. Constructing acoustic timefronts using random matrix theory.

    Science.gov (United States)

    Hegewisch, Katherine C; Tomsovic, Steven

    2013-10-01

    In a recent letter [Hegewisch and Tomsovic, Europhys. Lett. 97, 34002 (2012)], random matrix theory is introduced for long-range acoustic propagation in the ocean. The theory is expressed in terms of unitary propagation matrices that represent the scattering between acoustic modes due to sound speed fluctuations induced by the ocean's internal waves. The scattering exhibits a power-law decay as a function of the differences in mode numbers thereby generating a power-law, banded, random unitary matrix ensemble. This work gives a more complete account of that approach and extends the methods to the construction of an ensemble of acoustic timefronts. The result is a very efficient method for studying the statistical properties of timefronts at various propagation ranges that agrees well with propagation based on the parabolic equation. It helps identify which information about the ocean environment can be deduced from the timefronts and how to connect features of the data to that environmental information. It also makes direct connections to methods used in other disordered waveguide contexts where the use of random matrix theory has a multi-decade history.

  3. Renormalization Group Equations for the CKM matrix

    CERN Document Server

    Kielanowski, P; Montes de Oca Y, J H

    2008-01-01

    We derive the one loop renormalization group equations for the Cabibbo-Kobayashi-Maskawa matrix for the Standard Model, its two Higgs extension and the minimal supersymmetric extension in a novel way. The derived equations depend only on a subset of the model parameters of the renormalization group equations for the quark Yukawa couplings so the CKM matrix evolution cannot fully test the renormalization group evolution of the quark Yukawa couplings. From the derived equations we obtain the invariant of the renormalization group evolution for three models which is the angle $\\alpha$ of the unitarity triangle. For the special case of the Standard Model and its extensions with $v_{1}\\approx v_{2}$ we demonstrate that also the shape of the unitarity triangle and the Buras-Wolfenstein parameters $\\bar{\\rho}=(1-{1/2}\\lambda^{2})\\rho$ and $\\bar{\\eta}=(1-{1/2}\\lambda^{2})\\eta$ are conserved. The invariance of the angles of the unitarity triangle means that it is not possible to find a model in which the CKM matrix mi...

  4. Wall Crossing As Seen By Matrix Models

    CERN Document Server

    Ooguri, Hirosi; Yamazaki, Masahito

    2010-01-01

    The number of BPS bound states of D-branes on a Calabi-Yau manifold depends on two sets of data, the BPS charges and the stability conditions. For D0 and D2-branes bound to a single D6-brane wrapping a Calabi-Yau 3-fold $X$, both are naturally related to the K\\"ahler moduli space ${\\cal M}(X)$. We construct unitary one-matrix models which count such BPS states for a class of toric Calabi-Yau manifolds at infinite 't Hooft coupling. The matrix model for the BPS counting on $X$ turns out to give the topological string partition function for another Calabi-Yau manifold $Y$, whose K\\"ahler moduli space ${\\cal M}(Y)$ contains two copies of ${\\cal M}(X)$, one related to the BPS charges and another to the stability conditions. The two sets of data are unified in ${\\cal M}(Y)$. The matrix models have a number of other interesting features. They compute spectral curves and mirror maps relevant to the remodeling conjecture. For finite 't Hooft coupling they give rise to yet more general geometry $\\widetilde{Y}$ contain...

  5. Involvement of extracellular matrix constituents in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Bissell, Mina J

    1995-06-01

    It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.

  6. 110x110 optical mode transfer matrix inversion.

    Science.gov (United States)

    Carpenter, Joel; Eggleton, Benjamin J; Schröder, Jochen

    2014-01-13

    The largest complete mode transfer matrix of a fiber is measured consisting of 110 spatial and polarization modes. This matrix is then inverted and the pattern required to produce a desired output at the receiver are launched at the transmitter.

  7. Chains of Darboux transformations for the matrix Schroedinger equation

    CERN Document Server

    Samsonov, B F; Samsonov, Boris F; Pecheritsin, AA

    2004-01-01

    Chains of Darboux transformations for the matrix Schroedinger equation are considered. Matrix generalization of the well-known for the scalar equation Crum-Krein formulas for the resulting action of such chains is given.

  8. Overlap Dirac Operator, Eigenvalues and Random Matrix Theory

    OpenAIRE

    Edwards, Robert G.; Heller, Urs M.; Kiskis, Joe; Narayanan, Rajamani

    1999-01-01

    The properties of the spectrum of the overlap Dirac operator and their relation to random matrix theory are studied. In particular, the predictions from chiral random matrix theory in topologically non-trivial gauge field sectors are tested.

  9. The Chondrule-Matrix Complementarity, a Big Data Approach

    Science.gov (United States)

    Harak, M.; Hezel, D. C.

    2016-08-01

    We compiled >3500 chondrule and matrix data from 80 literature sources. We developed an algorithm to automatically search this database, and identified a large number of complementary element relationships between chondrules and matrix.

  10. Orbit Classification of Qutrit via the Gram Matrix

    Institute of Scientific and Technical Information of China (English)

    B. A. Tay; Hishamuddin Zainuddin

    2008-01-01

    We classify the orbits generated by unitary transformation on the density matrices of the three-state quantum systems (qutrits) via the Gram matrix. The Gram matrix is a real symmetric matrix formed from the Hilbert-Schmidt scalar products of the vectors lying in the tangent space to the orbits. The rank of the Gram matrix determines the dimensions of the orbits, which fall into three classes for qutrits.

  11. Matrix-model dualities in the collective field formulation

    CERN Document Server

    Andric, I

    2005-01-01

    We establish a strong-weak coupling duality between two types of free matrix models. In the large-N limit, the real-symmetric matrix model is dual to the quaternionic-real matrix model. Using the large-N conformal invariant collective field formulation, the duality is displayed in terms of the generators of the conformal group. The conformally invariant master Hamiltonian is constructed and we conjecture that the master Hamiltonian corresponds to the hermitian matrix model.

  12. Novel entries in a fungal biofilm matrix encyclopedia.

    Science.gov (United States)

    Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade; Marita, Jane M; Bothe, Jameson R; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D; Ntambi, James M; Nett, Jeniel E; Mitchell, Aaron P; Andes, David R

    2014-08-05

    Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. Importance: This report is the first to decipher the complex and unique macromolecular composition of the Candida biofilm matrix, demonstrate the clinical relevance of matrix components, and show that multiple matrix components are needed

  13. String coupling and interactions in type IIB matrix model

    CERN Document Server

    Kitazawa, Yoshihisa

    2008-01-01

    We investigate the interactions of closed strings in IIB matrix model. The basic interaction of the closed superstring is realized by the recombination of two intersecting strings. Such interaction is investigated in IIB matrix model via two dimensional noncommutative gauge theory in the IR limit. By estimating the probability of the recombination, we identify the string coupling g_s in IIB matrix model. We confirm that our identification is consistent with matrix string theory.

  14. Diffusion bonded matrix of high gradient magnetic filter

    Energy Technology Data Exchange (ETDEWEB)

    Soda, F.; Ishibe, H.; Yukawa, T.

    1985-03-01

    For improving the performance of high gradient magnetic filter (HGMF) used in steel mill process waste water treatment, a new filtering medium of diffusion bonded matrix has been developed. This new matrix has an excellent high filtering efficiency for feebly paramagnetic particles, and also has strong structural stiffness that prevents the matrix from compaction and the flow-out of fine wool fractions, which are serious defects in the conventional stainless wool matrix.

  15. An algorithm for the matrix lambert W function

    OpenAIRE

    Massimiliano Fasi, Nicholas J. Higham, Bruno Iannazzo

    2015-01-01

    An algorithm is proposed for computing primary matrix Lambert $W$ functions of a square matrix $A$, which are solutions of the matrix equation $We^W = A$. The algorithm employs the Schur decomposition and blocks the triangular form in such a way that Newton's method can be used on each diagonal block, with a starting matrix depending on the block. A natural simplification of Newton's method for the Lambert $W$ function is shown to be numerically unstable. By reorganizing the...

  16. Mirror of the refined topological vertex from a matrix model

    CERN Document Server

    Eynard, B

    2011-01-01

    We find an explicit matrix model computing the refined topological vertex, starting from its representation in terms of plane partitions. We then find the spectral curve of that matrix model, and thus the mirror symmetry of the refined vertex. With the same method we also find a matrix model for the strip geometry, and we find its mirror curve. The fact that there is a matrix model shows that the refined topological string amplitudes also satisfy the remodeling the B-model construction.

  17. Matrix Expression of the Orthogonal Wavelet(Packets)Transform

    Institute of Scientific and Technical Information of China (English)

    杜红彬; 姚平经; 等

    2002-01-01

    Matrix expression of finite orthogonal wavelet transform of finite impulse response signal is nmore valuable for theoretical analysis and understanding.However,clear deduction for matrix expression has not been provided yet.In this paper,the formulation to generate the related matrix is put forware and the theorem on the orthogonality of this matrix proved.This effort deploys a basis for more deeper and wider applications in chemical processes.

  18. New Criteria for Judging Generalized Strictly Diagonally Dominant Matrix

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-song

    2015-01-01

    Generalized strictly diagonally dominant matrices play a wide and important role in computational mathematics, mathematical physics, theory of dynamical systems, etc. But it is difficult to judge a matrix is or not generalized strictly diagonally dominant matrix. In this paper, by using the properties of α-chain diagonally dominant matrix, we obtain new criteria for judging generalized strictly diagonally dominant matrix, which enlarge the identification range.

  19. Separation of matrix alloy and reinforcement from aluminum metal matrix composites scrap by salt flux addition

    Indian Academy of Sciences (India)

    K R Ravi; R M Pillai; B C Pai; M Chakraborty

    2007-08-01

    Separation of matrix alloy and reinforcements from pure Al–SiCp composite scrap by salt flux addition has been theoretically predicted using interface free energies. Experiments performed confirm the theoretical prediction. Complete separation of matrix aluminum and reinforcement from metal matrix composites (MMCs) scrap has been achieved by addition of 2.05 wt% of equimolar mixture of NaCl–KCl salt flux with a metal and particle yield of 84 and 50%, respectively. By adding 5 wt% of NaF to equimolar mixture of NaCl–KCl, metal and particle yield improved to 91 and 73%, respectively. Reusability of both the matrix aluminum and the SiC separated from Al–SiCp scraps has been analysed using XRD, SEM and DTA techniques. The matrix alloy separated from Al–SiCp scraps can be used possibly as a low Si content Al–Si alloy. However, the interfacial reaction that occurred during the fabrication of the composites had degraded the SiC particles.

  20. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  1. Truncating an exact matrix product state for the XY model: Transfer matrix and its renormalization

    Science.gov (United States)

    Rams, Marek M.; Zauner, Valentin; Bal, Matthias; Haegeman, Jutho; Verstraete, Frank

    2015-12-01

    We discuss how to analytically obtain an essentially infinite matrix product state (MPS) representation of the ground state of the XY model. On one hand this allows us to illustrate how the Ornstein-Zernike form of the correlation function emerges in the exact case using standard MPS language. On the other hand we study the consequences of truncating the bond dimension of the exact MPS, which is also part of many tensor network algorithms, and analyze how the truncated MPS transfer matrix is representing the dominant part of the exact quantum transfer matrix. In the gapped phase we observe that the correlation length obtained from a truncated MPS approaches the exact value following a power law in effective bond dimension. In the gapless phase we find a good match between a state obtained numerically from standard MPS techniques with finite bond dimension and a state obtained by effective finite imaginary time evolution in our framework. This provides a direct hint for a geometric interpretation of finite entanglement scaling at the critical point in this case. Finally, by analyzing the spectra of transfer matrices, we support the interpretation put forward by V. Zauner et al. [New J. Phys. 17, 053002 (2015), 10.1088/1367-2630/17/5/053002] that the MPS transfer matrix emerges from the quantum transfer matrix though the application of Wilson's numerical renormalization group along the imaginary-time direction.

  2. DNA-MATRIX: a tool for constructing transcription factor binding sites Weight matrix

    Directory of Open Access Journals (Sweden)

    Chandra Prakash Singh,

    2009-12-01

    Full Text Available Despite considerable effort to date, DNA transcription factor binding sites prediction in whole genome remains a challenge for the researchers. Currently the genome wide transcription factor binding sites prediction tools required either direct pattern sequence or weight matrix. Although there are known transcription factor binding sites pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a DNA-MATRIX tool for searching putative transcription factor binding sites in genomic sequences. DNA-MATRIX uses the simple heuristic approach for weight matrix construction, which can be transformed into different formats as per the requirement of researcher’s for further genome wide prediction and therefore provides the possibility to identify the conserved known DNA binding sites in the coregulated genes and also to search for a great variety of different regulatory binding patterns. The user may construct and save specific weight or frequency matrices in different formats derived through user selected set of known motif sequences.

  3. Some Noncommutative Matrix Algebras Arising in the Bispectral Problem

    Science.gov (United States)

    Grünbaum, F. Alberto

    2014-07-01

    I revisit the so called ''bispectral problem'' introduced in a joint paper with Hans Duistermaat a long time ago, allowing now for the differential operators to have matrix coefficients and for the eigenfunctions, and one of the eigenvalues, to be matrix valued too. In the last example we go beyond this and allow both eigenvalues to be matrix valued.

  4. The Community Mental Health Center as a Matrix Organization.

    Science.gov (United States)

    White, Stephen L.

    1978-01-01

    This article briefly reviews the literature on matrix organizational designs and discusses the ways in which the matrix design might be applied to the special features of a community mental health center. The phases of one community mental health center's experience in adopting a matrix organizational structure are described. (Author)

  5. Spectral averaging techniques for Jacobi matrices with matrix entries

    CERN Document Server

    Sadel, Christian

    2009-01-01

    A Jacobi matrix with matrix entries is a self-adjoint block tridiagonal matrix with invertible blocks on the off-diagonals. Averaging over boundary conditions leads to explicit formulas for the averaged spectral measure which can potentially be useful for spectral analysis. Furthermore another variant of spectral averaging over coupling constants for these operators is presented.

  6. The $N=2$ supersymmetric unconstrained matrix GNLS hierarchies

    NARCIS (Netherlands)

    Sorin, A.S.; Kersten, P.H.M.

    2002-01-01

    The generalization of the $N=2$ supersymmetric chiral matrix $(k|n,m)$--GNLS hierarchy to the case when matrix entries are bosonic and fermionic unconstrained $N=2$ superfields is proposed. This is done by exhibiting the corresponding matrix Lax--pair representation in terms of $N=2$ unconstrained s

  7. The Matrix Element Method and Vector-Like Quark Searches

    CERN Document Server

    Morrison, Benjamin

    2016-01-01

    In my time at the CERN summer student program, I worked on applying the matrix element method to vector-like quark identification. I worked in the ATLAS University of Geneva group under Dr. Olaf Nackenhorst. I developed automated plotting tools with ROOT, a script for implementing and optimizing generated matrix element calculation code, and kinematic transforms for the matrix element method.

  8. Matrix Determination of Reflectance of Hidden Object via Indirect Photography

    Science.gov (United States)

    2012-03-01

    resolution elements by method ............26 2. with laser spots 7.5” from C...because of the matrix nature of this research, a large amount of linear algebra is required, particularly relating to matrix inversion. For this...The principles used in developing a transport matrix will receive a fuller treatment here, however, as these were applied in the current research as

  9. Fast sparse matrix-vector multiplication by partitioning and reordering

    NARCIS (Netherlands)

    Yzelman, A.N.

    2011-01-01

    The thesis introduces a cache-oblivious method for the sparse matrix-vector (SpMV) multiplication, which is an important computational kernel in many applications. The method works by permuting rows and columns of the input matrix so that the resulting reordered matrix induces cache-friendly behavio

  10. Matrix Training of Preliteracy Skills with Preschoolers with Autism

    Science.gov (United States)

    Axe, Judah B.; Sainato, Diane M.

    2010-01-01

    Matrix training is a generative approach to instruction in which words are arranged in a matrix so that some multiword phrases are taught and others emerge without direct teaching. We taught 4 preschoolers with autism to follow instructions to perform action-picture combinations (e.g., circle the pepper, underline the deer). Each matrix contained…

  11. Conversion of a Rhotrix to a "Coupled Matrix"

    Science.gov (United States)

    Sani, B.

    2008-01-01

    In this note, a method of converting a rhotrix to a special form of matrix termed a "coupled matrix" is proposed. The special matrix can be used to solve various problems involving n x n and (n - 1) x (n - 1) matrices simultaneously.

  12. SALTSTONE MATRIX CHARACTERIZATION AND STADIUM SIMULATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.

    2009-07-30

    SIMCO Technologies, Inc. was contracted to evaluate the durability of the saltstone matrix material and to measure saltstone transport properties. This information will be used to: (1) Parameterize the STADIUM{reg_sign} service life code, (2) Predict the leach rate (degradation rate) for the saltstone matrix over 10,000 years using the STADIUM{reg_sign} concrete service life code, and (3) Validate the modeled results by conducting leaching (water immersion) tests. Saltstone durability for this evaluation is limited to changes in the matrix itself and does not include changes in the chemical speciation of the contaminants in the saltstone. This report summarized results obtained to date which include: characterization data for saltstone cured up to 365 days and characterization of saltstone cured for 137 days and immersed in water for 31 days. Chemicals for preparing simulated non-radioactive salt solution were obtained from chemical suppliers. The saltstone slurry was mixed according to directions provided by SRNL. However SIMCO Technologies Inc. personnel made a mistake in the premix proportions. The formulation SIMCO personnel used to prepare saltstone premix was not the reference mix proportions: 45 wt% slag, 45 wt% fly ash, and 10 wt% cement. SIMCO Technologies Inc. personnel used the following proportions: 21 wt% slag, 65 wt% fly ash, and 14 wt% cement. The mistake was acknowledged and new mixes have been prepared and are curing. The results presented in this report are assumed to be conservative since the excessive fly ash was used in the SIMCO saltstone. The SIMCO mixes are low in slag which is very reactive in the caustic salt solution. The impact is that the results presented in this report are expected to be conservative since the samples prepared were deficient in slag and contained excess fly ash. The hydraulic reactivity of slag is about four times that of fly ash so the amount of hydrated binder formed per unit volume in the SIMCO saltstone samples is

  13. Error analysis and feasibility study of dynamic stiffness matrix-based damping matrix identification

    Science.gov (United States)

    Ozgen, Gokhan O.; Kim, Jay H.

    2009-02-01

    Developing a method to formulate a damping matrix that represents the actual spatial distribution and mechanism of damping of the dynamic system has been an elusive goal. The dynamic stiffness matrix (DSM)-based damping identification method proposed by Lee and Kim is attractive and promising because it identifies the damping matrix from the measured DSM without relying on any unfounded assumptions. However, in ensuing works it was found that damping matrices identified from the method had unexpected forms and showed traces of large variance errors. The causes and possible remedies of the problem are sought for in this work. The variance and leakage errors are identified as the major sources of the problem, which are then related to system parameters through numerical and experimental simulations. An improved experimental procedure is developed to reduce the effect of these errors in order to make the DSM-based damping identification method a practical option.

  14. Curing of epoxy matrix composite in stratosphere

    Science.gov (United States)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela

    Large structures for habitats, greenhouses, space bases, space factories are needed for next stage of space exploitation. A new approach enabling large-size constructions in space relies on the use of the polymerization technology of fiber-filled composites with a curable polymer matrix applied in the free space environment. The polymerisation process is proposed for the material exposed to high vacuum, dramatic temperature changes, space plasma, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The stratospheric flight experiments are directed to an investigation of the curing polymer matrix under the stratospheric conditions on. The unique combination of low atmospheric pressure, high intensity UV radiation including short wavelength UV and diurnal temperature variations associated with solar irradiation strongly influences the chemical processes in polymeric materials. The first flight experiment with uncured composites was a part of the NASA scientific balloon flight program realised at the NASA stratospheric balloon station in Alice Springs, Australia. A flight cassette installed on payload was lifted with a “zero-pressure” stratospheric balloon filled with Helium. Columbia Scientific Balloon Facility (CSBF) provided the launch, flight telemetry and landing of the balloon and payload. A cassette of uncured composite materials with an epoxy resin matrix was exposed 3 days in the stratosphere (40 km altitude). The second flight experiment was realised in South Australia in 2012, when the cassette was exposed in 27 km altitude. An analysis of the chemical structure of the composites showed, that the space irradiations are responsible for crosslinking of the uncured polymers exposed in the stratosphere. The first prepreg in the world was cured successfully in stratosphere. The investigations were supported by Alexander von Humboldt Foundation, NASA and RFBR (12-08-00970) grants.

  15. AHP-ENHANCED SWOT MATRIX TEACHING STRATEGY

    Directory of Open Access Journals (Sweden)

    Mario Chipoco Quevedo

    2015-12-01

    Full Text Available ABSTRACT The SWOT matrix is the quintessential analysis tool for business purposes, and is taught both in undergraduate and postgraduate courses. However, it is widely understood that the selection of the critical success factors (CSFs that are included for analysis in the matrix is a very subjective and unstructured process, leaving room for bias and arbitrariness. One way to give a better foundation and support to the analysis results is by utilizing Analytic Hierarchical Process (AHP in order to weigh the importance of CSFs in the SWOT matrix and increase reliability of the output. This paper contains the design of a strategy to teach this topic in a marketing planning course, with the addition of a useful technique to overcome the limitations of the tool. RESUMEN La matriz FODA es la herramienta de análisis por excelencia para fines de negocios, y se enseña en cursos de pregrado y postgrado. Sin embargo, se entiende que la elección de los factores críticos de éxito (FCEs que se incluyen en la matriz para el análisis es un proceso muy subjetivo y no estructurado, que da cabida a sesgos y arbitrariedad. Una forma de dar una mejor base y respaldo a los resultados del análisis es mediante la utilización del Proceso Jerárquico Analítico (AHP con el fin de ponderar la importancia de los FCEs en la matriz FODA y aumentar la fiabilidad de los resultados. Este documento contiene el diseño de una estrategia para enseñar este tema en un curso de planificación de marketing, con la adición de una técnica útil para superar las limitaciones de la herramienta.

  16. Analytical techniques for instrument design - matrix methods

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, R.A. [Los Alamos National Lab., NM (United States)

    1997-09-01

    We take the traditional Cooper-Nathans approach, as has been applied for many years for steady-state triple-axis spectrometers, and consider its generalisation to other inelastic scattering spectrometers. This involves a number of simple manipulations of exponentials of quadratic forms. In particular, we discuss a toolbox of matrix manipulations that can be performed on the 6- dimensional Cooper-Nathans matrix: diagonalisation (Moller-Nielsen method), coordinate changes e.g. from ({Delta}k{sub I},{Delta}k{sub F} to {Delta}E, {Delta}Q & 2 dummy variables), integration of one or more variables (e.g. over such dummy variables), integration subject to linear constraints (e.g. Bragg`s Law for analysers), inversion to give the variance-covariance matrix, and so on. We show how these tools can be combined to solve a number of important problems, within the narrow-band limit and the gaussian approximation. We will argue that a generalised program that can handle multiple different spectrometers could (and should) be written in parallel to the Monte-Carlo packages that are becoming available. We will also discuss the complementarity between detailed Monte-Carlo calculations and the approach presented here. In particular, Monte-Carlo methods traditionally simulate the real experiment as performed in practice, given a model scattering law, while the Cooper-Nathans method asks the inverse question: given that a neutron turns up in a particular spectrometer configuration (e.g. angle and time of flight), what is the probability distribution of possible scattering events at the sample? The Monte-Carlo approach could be applied in the same spirit to this question.

  17. Organic Thin Film Electroluminescent Passive Matrix Display

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Long life green-emitting matrix display based on organic light-emitting diode is reported. The pixel number is 96×60, equivalent pixel size 0.4×0.4 mm2, and the pixel gap 0.1 mm. An image with no crosstalk between pixels is obtained. The average luminance of these pixels at duty cycle of 1/64 is 100 cd/m2, and the power consumption is 0.6 W. The dark room contrast of 1:100 is achieved without using a polarization filter.

  18. Experimental Status of the CKM Matrix

    CERN Document Server

    Porter, Frank C

    2016-01-01

    The CKM matrix, V, relates the quark mass and flavor bases. In the standard model, V is unitary 3X3, and specified by four arbitrary parameters, including a phase allowing for $CP$ violation. We review the experimental determination of V, including the four parameters in the standard model context. This is an active field; the precision of experimental measurements and theoretical inputs continues to improve. The consistency of the determination with the standard model unitarity is investigated. While there remain some issues the overall agreement with standard model unitarity is good.

  19. Cosmology and the S-matrix

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael

    2005-01-25

    We study conditions for the existence of asymptotic observables in cosmology. With the exception of de Sitter space, the thermal properties of accelerating universes permit arbitrarily long observations, and guarantee the production of accessible states of arbitrarily large entropy. This suggests that some asymptotic observables may exist, despite the presence of an event horizon. Comparison with decelerating universes shows surprising similarities: Neither type suffers from the limitations encountered in de Sitter space, such as thermalization and boundedness of entropy. However, we argue that no realistic cosmology permits the global observations associated with an S-matrix.

  20. Quantum hyperparallel algorithm for matrix multiplication.

    Science.gov (United States)

    Zhang, Xin-Ding; Zhang, Xiao-Ming; Xue, Zheng-Yuan

    2016-04-29

    Hyperentangled states, entangled states with more than one degree of freedom, are considered as promising resource in quantum computation. Here we present a hyperparallel quantum algorithm for matrix multiplication with time complexity O(N(2)), which is better than the best known classical algorithm. In our scheme, an N dimensional vector is mapped to the state of a single source, which is separated to N paths. With the assistance of hyperentangled states, the inner product of two vectors can be calculated with a time complexity independent of dimension N. Our algorithm shows that hyperparallel quantum computation may provide a useful tool in quantum machine learning and "big data" analysis.

  1. Entanglement classification with matrix product states.

    Science.gov (United States)

    Sanz, M; Egusquiza, I L; Di Candia, R; Saberi, H; Lamata, L; Solano, E

    2016-07-26

    We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by .

  2. Domestic tourism in Uruguay: a matrix approach

    Directory of Open Access Journals (Sweden)

    Magdalena Domínguez Pérez

    2016-01-01

    Full Text Available In this paper domestic tourism in Uruguay is analyzed by introducing an Origin-Destination matrix approach, and an attraction coefficient is calculated. We show that Montevideo is an attractive destination to every department except itself (even if it emits more trips than it receives, and the Southeast region is the main destination. Another important outcome is the importance of intra-regional patterns, associated to trips to bordering departments. Findings provide destination managers with practical knowledge, useful for reducing seasonality and attracting more domestic tourists throughout the year, as well as to deliver a better service offer, that attracts both usual visitors and new ones from competitive destinations.

  3. Altered permeability barrier structure in cholesteatoma matrix

    DEFF Research Database (Denmark)

    Svane-Knudsen, Viggo; Halkier-Sørensen, Lars; Rasmussen, Gurli

    2002-01-01

    The stratum corneum of the cholesteatoma epithelium comprises the greater part of the cholesteatoma matrix. The permeability barrier that militates against diffusion and penetration of infectious and toxic agents into and through the epithelium is situated here. The multiple long sheets of lamellar...... lipid structures filling the intercellular spaces mainly control the barrier function. The barrier in cholesteatoma epithelium is several times thicker than in unaffected skin but presents distinctive features of a defective barrier as seen in other scaling skin diseases. The intercellular spaces appear...

  4. Bidirectional extracellular matrix signaling during tissue morphogenesis

    Science.gov (United States)

    Gjorevski, Nikolce; Nelson, Celeste M.

    2009-01-01

    Normal tissue development and function are regulated by the interplay between cells and their surrounding extracellular matrix (ECM). The ECM provides biochemical and mechanical contextual information that is conveyed from the cell membrane through the cytoskeleton to the nucleus to direct cell phenotype. Cells, in turn, remodel the ECM and thereby sculpt their local microenvironment. Here we review the mechanisms by which cells interact with, respond to, and influence the ECM, with particular emphasis placed on the role of this bidirectional communication during tissue morphogenesis. We also discuss the implications for successful engineering of functional tissues ex vivo. PMID:19896886

  5. A random matrix approach to credit risk.

    Science.gov (United States)

    Münnix, Michael C; Schäfer, Rudi; Guhr, Thomas

    2014-01-01

    We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided.

  6. RESEARCH ON CONSTRUCTING SYNTHETIC MATRIX IN AHP

    Institute of Scientific and Technical Information of China (English)

    XU Zeshui

    2002-01-01

    This paper presents a new method for constructing synthetic matrix whichis obtained by extending the given judgement matrices in the Analytic Hierarchy Process(AHP). The consistency relationship among the given matrices and their synthetic matrixis studied. The method can be used to deal with situations where the number of the givenalternatives is larger than nine, and needs less pairwise comparisons than any others. Thusit will aid in the design of the AHP, which will reduce the information overload of decisionmaker, a major drawback of the original AHP algorithm. Finally, a numerical example isgiven to show the feasibility and effectiveness of the method.

  7. PRODUCT PORTFOLIO ANALYSIS - ARTHUR D. LITTLE MATRIX

    Directory of Open Access Journals (Sweden)

    Curmei Catalin Valeriu

    2011-07-01

    Full Text Available In recent decades we have witnessed an unseen dynamism among companies, which is explained by their desire to engage in more activities that provide a high level of development and diversification. Thus, as companies are diversifying more and more, their managers confront a number of challenges arising from the management of resources for the product portfolio and the low level of resources with which companies can identify, at a time. Responding to these challenges, over time were developed a series of analytical product portfolio methods through which managers can balance the sources of cash flows from the multiple products and also can identify the place and role of products, in strategic terms, within the product portfolio. In order to identify these methods the authors of the present paper have conducted a desk research in order to analyze the strategic marketing and management literature of the last 2 decades. Widely were studied a series of methods that are presented in the marketing and management literature as the main instruments used within the product portfolio strategic planning process. Among these methods we focused on the Arthur D. Little matrix. Thus the present paper has the purpose to outline the characteristics and strategic implications of the ADL matrix within a company’s product portfolio. After conducting this analysis we have found that restricting the product portfolio analysis to the A.D.L. matrix is not a very wise decision. The A.D.L. matrix among with other marketing tools of product portfolio analysis have some advantages and disadvantages and is trying to provide, at a time, a specific diagnosis of a company’s product portfolio. Therefore, the recommendation for the Romanian managers consists in a combined use of a wide range of tools and techniques for product portfolio analysis. This leads to a better understanding of the whole mix of product markets, included in portfolio analysis, the strategic position

  8. Fundamentals of matrix analysis with applications

    CERN Document Server

    Saff, Edward Barry

    2015-01-01

    This book provides comprehensive coverage of matrix theory from a geometric and physical perspective, and the authors address the functionality of matrices and their ability to illustrate and aid in many practical applications.  Readers are introduced to inverses and eigenvalues through physical examples such as rotations, reflections, and projections, and only then are computational details described and explored.  MATLAB is utilized to aid in reader comprehension, and the authors are careful to address the issue of rank fragility so readers are not flummoxed when MATLAB displays conflict wit

  9. Transfer Matrix for Fibonacci Dielectric Superlattice

    Institute of Scientific and Technical Information of China (English)

    蔡祥宝

    2001-01-01

    The transfer matrices, which transfer the amplitudes of the electric fields of second- and third-harmonic waves from one side of the interface to the other, are defined for layers joined coherently, and the total transfer matrices for several sequential interfaces can be simply obtained by multiplication of the matrices. Using the transfer matrix method, the interacting processes of second- and third-harmonic waves in a one-dimensional finite Fibonacci dielectric superlattice are investigated. Applying the numerical procedure described in this letter, the dependence of the second- and third-harmonic fields on sample thickness is obtained. The numerical results agree with the quasi-phase-matching theory.

  10. Corrosion Protection of Metal Matrix Composites

    Science.gov (United States)

    1990-04-01

    2, 162 (1986). 8. B. R. W. Hinton, D. R. Arnott, and N. E. Ryan, Metals Forum, Z, 211,(1984) 9. Ullmann , Fritz, "Ullmann’s Encyclopedia of Industrial ... Chemistry ", (1985). 10. F. Keller, M. S . Hunter, and 0. L. Robinson, J. Electrochem Soc., IM0, 411 0 (1953) 11. F. Mansfeld, S . Lin, S . Kim, and H...OIC FILE COPY "/9° * AD-A222 951 CORROSION PROTECTION OF METAL MATRIX COMPOSITES 0 FINAL REPORT F. MANSFELD, S . LIN AND H. SHIN APRIL 1990 0 U. S

  11. Markov chains with quasitoeplitz transition matrix: applications

    OpenAIRE

    1990-01-01

    Application problems are investigated for the Markov chains with quasitoeplitz transition matrix. Generating functions of transient and steady state probabilities, first zero hitting probabilities and mean times are found for various particular cases, corresponding to some known patterns of feedback ( “warm-up,” “switch at threshold” etc.), Level depending dams and queue-depending queueing systems of both M/G/1 and MI/G/1 types with arbitrary random sizes of arriving and departing groups are ...

  12. Open quantum systems and Random Matrix Theory

    CERN Document Server

    Mulhall, Declan

    2014-01-01

    A simple model for open quantum systems is analyzed with Random Matrix Theory. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the $\\Delta_3(L)$ statistic, width distribution and level spacing are examined as a function of the strength of this coupling. A super-radiant transition is observed, and it is seen that as it is formed, the level spacing and $\\Delta_3(L)$ statistic exhibit the signatures of missed levels.

  13. Pseudo-Hermitian random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.L. [RIBFG, Variable Energy Cyclotron Centre, 1/AF Bidhan nagar, Kolkata-700 064 (India); Jain, S.R. [NPD, Bhabha Atomic Research Centre, Mumbai-400 085 (India)

    2013-02-15

    Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Open quantum systems and random matrix theory

    Science.gov (United States)

    Mulhall, Declan

    2015-01-01

    A simple model for open quantum systems is analyzed with random matrix theory. The system is coupled to the continuum in a minimal way. In this paper the effect on the level statistics of opening the system is seen. In particular the Δ3(L ) statistic, the width distribution and the level spacing are examined as a function of the strength of this coupling. The emergence of a super-radiant transition is observed. The level spacing and Δ3(L ) statistics exhibit the signatures of missed levels or intruder levels as the super-radiant state is formed.

  15. Heavy-tailed chiral random matrix theory

    Science.gov (United States)

    Kanazawa, Takuya

    2016-05-01

    We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.

  16. Evaluation of lymphangiogenesis in acellular dermal matrix

    Directory of Open Access Journals (Sweden)

    Mario Cherubino

    2014-01-01

    Full Text Available Introduction: Much attention has been directed towards understanding the phenomena of angiogenesis and lymphangiogenesis in wound healing. Thanks to the manifold dermal substitute available nowadays, wound treatment has improved greatly. Many studies have been published about angiogenesis and cell invasion in INTEGRA® . On the other hand, the development of the lymphatic network in acellular dermal matrix (ADM is a more obscure matter. In this article, we aim to characterize the different phases of host cell invasion in ADM. Special attention was given to lymphangiogenic aspects. Materials and Methods: Among 57 rats selected to analyse the role of ADM in lymphangiogenesis, we created four groups. We performed an excision procedure on both thighs of these rats: On the left one we did not perform any action except repairing the borders of the wound; while on the right one we used INTEGRA® implant. The excision biopsy was performed at four different times: First group after 7 days, second after 14 days, third after 21 days and fourth after 28 days. For our microscopic evaluation, we used the classical staining technique of haematoxylin and eosin and a semi-quantitative method in order to evaluate cellularity counts. To assess angiogenesis and lymphangiogenesis development we employed PROX-1 Ab and CD31/PECAM for immunohistochemical analysis. Results: We found remarkable wound contraction in defects that healed by secondary intention while minor wound contraction was observed in defects treated with ADM. At day 7, optical microscopy revealed a more plentiful cellularity in the granulation tissue compared with the dermal regeneration matrix. The immunohistochemical process highlighted vascular and lymphatic cells in both groups. After 14 days a high grade of fibrosis was noticeable in the non-treated group. At day 21, both lymphatic and vascular endothelial cells were better developed in the group with a dermal matrix application. At day 28

  17. A random matrix approach to decoherence

    Energy Technology Data Exchange (ETDEWEB)

    Gorin, T [Theoretische Quantendynamik, Fakutaet fuer Physik, Universitaet Freiburg, Hermann-Herder-Strasse 3 D-79104 (Germany); Seligman, T H [Centro de Ciencias Fisicas, University of Mexico (UNAM), Avenida Universidad s/n, CP 62210 Cuernavaca (Mexico)

    2002-08-01

    In order to analyse the effect of chaos or order on the rate of decoherence in a subsystem, we aim to distinguish the effects of the two types of dynamics by choosing initial states as random product states from two factor spaces representing two subsystems. We introduce a random matrix model that allows us to vary the coupling strength between the subsystems. The case of strong coupling is analysed in detail, and we find no significant differences except for very low-dimensional spaces.

  18. Two-Matrix model with ABAB interaction

    CERN Document Server

    Kazakov, V A

    1999-01-01

    Using recently developed methods of character expansions we solve exactly in the large N limit a new two-matrix model of hermitean matrices A and B with the action S={1øver 2}(\\tr A^2+\\tr B^2)-{\\alphaøver 4}(\\tr A^4+\\tr B^4)-{\\betaøver 2} \\tr(AB)^2. This model can be mapped onto a special case of the 8-vertex model on dynamical planar graphs. The solution is parametrized in terms of elliptic functions. A phase transition is found: the critical point is a conformal field theory with central charge c=1 coupled to 2D quantum gravity.

  19. Random matrix techniques in quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Benoît, E-mail: collins@math.kyoto-u.ac.jp [Department of Mathematics, Kyoto University, Kyoto 606-8502 (Japan); Département de Mathématique et Statistique, Université d’Ottawa, 585 King Edward, Ottawa, Ontario K1N6N5 (Canada); CNRS, Lyon (France); Nechita, Ion, E-mail: nechita@irsamc.ups-tlse.fr [Zentrum Mathematik, M5, Technische Universität München, Boltzmannstrasse 3, 85748 Garching (Germany); Laboratoire de Physique Théorique, CNRS, IRSAMC, Université de Toulouse, UPS, F-31062 Toulouse (France)

    2016-01-15

    The purpose of this review is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review and of more detailed examples—coming mainly from research projects in which the authors were involved. We focus on two main topics, random quantum states and random quantum channels. We present results related to entropic quantities, entanglement of typical states, entanglement thresholds, the output set of quantum channels, and violations of the minimum output entropy of random channels.

  20. Drilling of polymer-matrix composites

    CERN Document Server

    Krishnaraj, Vijayan; Davim, J Paulo

    2013-01-01

    Polymeric composites are recognised as good candidates for structural components due to their inherent properties. However, they present several kinds of damages while creating holes for assembly. Delamination is considered the most serious damage since it reduces service life of the component. Thrust and delamination can be controlled by proper drill point geometry. Drilling at high speed is also a current requirement of the aerospace industry. This book focus on drilling of polymer matrix composites for aerospace and defence applications. The book presents introduction to machining of polymer composites and discusses drilling as a processing of composites.