WorldWideScience

Sample records for bovine somatic cell

  1. Bovine somatic cell nuclear transfer.

    Science.gov (United States)

    Ross, Pablo J; Cibelli, Jose B

    2010-01-01

    Somatic cell nuclear transfer (SCNT) is a technique by which the nucleus of a differentiated cell is introduced into an oocyte from which its genetic material has been removed by a process called enucleation. In mammals, the reconstructed embryo is artificially induced to initiate embryonic development (activation). The oocyte turns the somatic cell nucleus into an embryonic nucleus. This process is called nuclear reprogramming and involves an important change of cell fate, by which the somatic cell nucleus becomes capable of generating all the cell types required for the formation of a new individual, including extraembryonic tissues. Therefore, after transfer of a cloned embryo to a surrogate mother, an offspring genetically identical to the animal from which the somatic cells where isolated, is born. Cloning by nuclear transfer has potential applications in agriculture and biomedicine, but is limited by low efficiency. Cattle were the second mammalian species to be cloned after Dolly the sheep, and it is probably the most widely used species for SCNT experiments. This is, in part due to the high availability of bovine oocytes and the relatively higher efficiency levels usually obtained in cattle. Given the wide utilization of this species for cloning, several alternatives to this basic protocol can be found in the literature. Here we describe a basic protocol for bovine SCNT currently being used in our laboratory, which is amenable for the use of the nuclear transplantation technique for research or commercial purposes.

  2. [Product safety analysis of somatic cell cloned bovine].

    Science.gov (United States)

    Hua, Song; Lan, Jie; Song, Yongli; Lu, Chenglong; Zhang, Yong

    2010-05-01

    Somatic cell cloning (nuclear transfer) is a technique through which the nucleus (DNA) of a somatic cell is transferred into an enucleated oocyte for the generation of a new individual, genetically identical to the somatic cell donor. It could be applied for the enhancement of reproduction rate and the improvement of food products involving quality, yield and nutrition. In recent years, the United States, Japan and Europe as well as other countries announced that meat and milk products made from cloned cattle are safe for human consumption. Yet, cloned animals are faced with a wide range of health problems, with a high death rate and a high incidence of disease. The precise causal mechanisms for the low efficiency of cloning remain unclear. Is it safe that any products from cloned animals were allowed into the food supply? This review focuses on the security of meat, milk and products from cloned cattle based on the available data.

  3. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  4. Transcript levels of several epigenome regulatory genes in bovine somatic donor cells are not correlated with their cloning efficiency.

    Science.gov (United States)

    Zhou, Wenli; Sadeghieh, Sanaz; Abruzzese, Ronald; Uppada, Subhadra; Meredith, Justin; Ohlrichs, Charletta; Broek, Diane; Polejaeva, Irina

    2009-09-01

    Among many factors that potentially affect somatic cell nuclear transfer (SCNT) embryo development is the donor cell itself. Cloning potentials of somatic donor cells vary greatly, possibly because the cells have different capacities to be reprogrammed by ooplasma. It is therefore intriguing to identify factors that regulate the reprogrammability of somatic donor cells. Gene expression analysis is a widely used tool to investigate underlying mechanisms of various phenotypes. In this study, we conducted a retrospective analysis investigating whether donor cell lines with distinct cloning efficiencies express different levels of genes involved in epigenetic reprogramming including histone deacetylase-1 (HDAC1), -2 (HDAC2); DNA methyltransferase-1 (DNMT1), -3a (DNMT3a),-3b (DNMT3b), and the bovine homolog of yeast sucrose nonfermenting-2 (SNF2L), a SWI/SNF family of ATPases. Cell samples from 12 bovine donor cell lines were collected at the time of nuclear transfer experiments and expression levels of the genes were measured using quantitative polymerase chain reaction (PCR). Our results show that there are no significant differences in expression levels of these genes between donor cell lines of high and low cloning efficiency defined as live calving rates, although inverse correlations are observed between in vitro embryo developmental rates and expression levels of HDAC2 and SNF2L. We also show that selection of stable reference genes is important for relative quantification, and different batches of cells can have different gene expression patterns. In summary, we demonstrate that expression levels of these epigenome regulatory genes in bovine donor cells are not correlated with cloning potential. The experimental design and data analysis method reported here can be applied to study any genes expressed in donor cells.

  5. Vitamin C supplementation enhances compact morulae formation but reduces the hatching blastocyst rate of bovine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Li, Qian; Wang, Yong-Sheng; Wang, Li-Jun; Zhang, Hui; Li, Rui-Zhe; Cui, Chen-Chen; Li, Wen-Zhe; Zhang, Yong; Jin, Ya-Ping

    2014-08-01

    Vitamin C, an antioxidant that reduces reactive oxygen species (ROS) in cells, is capable of significantly improving the developmental competence of porcine and mouse somatic cell nuclear transfer (SCNT) embryos, both in vitro and in vivo. In the present study, the effects of vitamin C on the developmental competence of bovine SCNT embryos were investigated. The results indicated that vitamin C (40 μg/mL) positively affected the scavenging of intracellular ROS, cleavage rate at 24 h (76.67 vs. 68.26%, pvitamin C supplementation did not significantly affect the blastocyst formation rate and proportion of inner cell mass over total cells per blastocyst on day 7. Moreover, vitamin C supplementation obviously impaired the total cell numbers per blastocyst (97.20 ± 11.35 vs. 88.57 ± 10.43, pVitamin C supplementation preferentially improved the viability of bovine SCNT embryos prior to the blastocyst stage, but did not enhance the formation and quality of blastocysts in vitro. In conclusion, the effect of vitamin C on the development of bovine SCNT embryos is complex, and vitamin C is not a suitable antioxidant chemical for the in vitro culture of bovine SCNT embryos.

  6. Simplification of Bovine Somatic Cell Nuclear Transfer by Application of a Zona-Free Manipulation Technique

    DEFF Research Database (Denmark)

    Booth, Paul J; Tan, Shijian; Reipurth, Rikke

    2001-01-01

    Contemporary nuclear transfer techniques often require the involvement of skilled personnel and extended periods of micromanipulation. Here, we present details of the development of a nuclear transfer technique for somatic cells that is both simpler and faster than traditional methods. The techni......Contemporary nuclear transfer techniques often require the involvement of skilled personnel and extended periods of micromanipulation. Here, we present details of the development of a nuclear transfer technique for somatic cells that is both simpler and faster than traditional methods....... The technique comprises the bisection of zona-free oocytes and the reconstruction of embryos comprising two half cytoplasts and a somatic cell by adherence using phytohaemagglutinin-P (PHA) followed by an electropulse and subsequent culture in microwells (termed WOWs--well of the well). The development......-intact zygotes were not different in either blastocyst yield (44.6 +/- 2.4% versus 51.8 +/- 13.5% [mean +/- SEM]) or quality (126.3 +/- 48.4 versus 119.9 +/- 32.6 total cells), and exposure of zygotes to PHA-P did not reduce blastocyst yields compared to vehicle control (40.8 +/- 11.6% versus 47.1 +/- 20...

  7. Nucleologenesis and embryonic genome activation are defective in interspecies cloned embryos between bovine ooplasm and rhesus monkey somatic cells

    Directory of Open Access Journals (Sweden)

    Han Yong-Mahn

    2009-07-01

    Full Text Available Abstract Background Interspecies somatic cell nuclear transfer (iSCNT has been proposed as a tool to address basic developmental questions and to improve the feasibility of cell therapy. However, the low efficiency of iSCNT embryonic development is a crucial problem when compared to in vitro fertilization (IVF and intraspecies SCNT. Thus, we examined the effect of donor cell species on the early development of SCNT embryos after reconstruction with bovine ooplasm. Results No apparent difference in cleavage rate was found among IVF, monkey-bovine (MB-iSCNT, and bovine-bovine (BB-SCNT embryos. However, MB-iSCNT embryos failed to develop beyond the 8- or 16-cell stages and lacked expression of the genes involved in embryonic genome activation (EGA at the 8-cell stage. From ultrastructural observations made during the peri-EGA period using transmission electron microscopy (TEM, we found that the nucleoli of MB-iSCNT embryos were morphologically abnormal or arrested at the primary stage of nucleologenesis. Consistent with the TEM analysis, nucleolar component proteins, such as upstream binding transcription factor, fibrillarin, nucleolin, and nucleophosmin, showed decreased expression and were structurally disorganized in MB-iSCNT embryos compared to IVF and BB-SCNT embryos, as revealed by real-time PCR and immunofluorescence confocal laser scanning microscopy, respectively. Conclusion The down-regulation of housekeeping and imprinting genes, abnormal nucleolar morphology, and aberrant patterns of nucleolar proteins during EGA resulted in developmental failure in MB-iSCNT embryos. These results provide insight into the unresolved problems of early embryonic development in iSCNT embryos.

  8. Bovine conceptus of Bos indicus produced by somatic cell nuclear transfer and parthenogenesis present morphological variations since the blastocyst stage

    Directory of Open Access Journals (Sweden)

    F.D. Oliveira

    2015-12-01

    Full Text Available In cattle, embryo development is characterized by the appearance of two distinct cell layers, the trophectoderm and the inner cell mass. The latter will undergo differentiation to form the embryonic disc consisting of the epiblast and hypoblast. The aim of this study was to ultrastructurally characterize the bovine embryo from different in vitro production techniques, with emphasis on trophectoderm and inner cell mass cells. Bovine embryos on day 7 (conception = D1 of pregnancy, derived via in vitro production techniques, were fixed for light and transmission electron microscopy processing. Results suggested that embryos produced by nuclear transfer of somatic cells and parthenogenesis showed significant changes in macroscopic and microscopic structure. Size was reduced, and the inner cell mass had no defined shape. Furthermore, organelles responsible for the absorption processes, communication, growth, and cellular metabolism were fewer and had changes in shape, when compared to results in embryos produced by in vitrofertilization. We concluded that embryos produced by parthenogenesis and SCNT exhibit morphological differences when compared with IVF embryos, such as undeveloped blastocoel, poorly defined distribution of ICM, and morphological differences in organelles.

  9. Improved cloning efficiency and developmental potential in bovine somatic cell nuclear transfer with the oosight imaging system.

    Science.gov (United States)

    Kim, Eun Young; Park, Min Jee; Park, Hyo Young; Noh, Eun Ji; Noh, Eun Hyung; Park, Kyoung Sik; Lee, Jun Beom; Jeong, Chang Jin; Riu, Key Zung; Park, Se Pill

    2012-08-01

    In somatic cell nuclear transfer (SCNT) procedures, exquisite enucleation of the recipient oocyte is critical to cloning efficiency. The purpose of this study was to compare the effects of two enucleation systems, Hoechst staining and UV irradiation (hereafter, irradiation group) and Oosight imaging (hereafter, Oosight group), on the in vitro production of bovine SCNT embryos. In the Oosight group, the apoptotic index (2.8 ± 0.5 vs. 7.3 ± 1.2) was lower, and the fusion rate (75.6% vs. 62.9%), cleavage rate (78.0% vs. 63.7%), blastocyst rate (40.2% vs. 29.2%), and total cell number (128.3±4.8 vs. 112.2 ± 7.6) were higher than those in the irradiation group (all p<0.05). The overall efficiency after SCNT was twice as high in the Oosight group as that in the irradiation group (p<0.05). The relative mRNA expression levels of Oct4, Nanog, Interferon-tau, and Dnmt3A were higher and those of Caspase-3 and Hsp70 were lower in the Oosight group compared with the irradiation group (p<0.05). This is the first report to show the positive effect of the Oosight imaging system on molecular gene expression in the SCNT embryo. The Oosight imaging system may become the preferred choice for enucleation because it is less detrimental to the developmental potential of bovine SCNT embryos.

  10. In vitro development of cloned bovine embryos produced by handmade cloning using somatic cells from distinct levels of cell culture confluence.

    Science.gov (United States)

    Gerger, R P C; Ribeiro, E S; Forell, F; Bertolini, L R; Rodrigues, J L; Ambrósio, C E; Miglino, M A; Mezzalira, A; Bertolini, M

    2010-02-18

    The relationship between the level of cell confluence near the plateau phase of growth and blastocyst yield following somatic cell cloning is not well understood. We examined the effect of distinct cell culture confluence levels on in vitro development of cloned bovine embryos. In vitro-matured bovine oocytes were manually bisected and selected by DNA staining. One or two enucleated hemi-cytoplasts were paired and fused with an adult skin somatic cell. Cultured skin cells from an adult Nellore cow harvested at three distinct culture confluence levels (70-80, 80-90, and >95%) were used for construction of embryos and hemi-embryos. After activation, structures were cultured in vitro as one embryo (1 x 100%) or as aggregates of two hemi-embryos (2 x 50%) per microwell. Fusion, cleavage and blastocyst rates were compared using the chi(2) test. The fusion rate for hemi-embryos (51.4%) was lower than for embryos (67.6%), with no influence of degree of cell confluence. However, blastocyst rates improved linearly (7.0, 17.5, and 29.4%) with increases in cell confluence. We conclude that degree of cell culture confluence significantly influences subsequent embryo development; use of a cell population in high confluence (>90%) for nuclear transfer significantly improved blastocyst yield after cloning.

  11. Bovine leukemia virus infection in cattle of China: Association with reduced milk production and increased somatic cell score.

    Science.gov (United States)

    Yang, Y; Fan, W; Mao, Y; Yang, Z; Lu, G; Zhang, R; Zhang, H; Szeto, C; Wang, C

    2016-05-01

    The main objective of this study was to investigate the individual cow effect of bovine leukemia virus (BLV) infection on milk production and somatic cell score (SCS). The fluorescence resonance energy transfer (FRET) quantitative PCR established in this study and a commercial ELISA kit revealed that 49.1% of dairy cattle (964/1,963) from 6 provinces of China and 1.6% of beef cattle (22/1,390) from 15 provinces were BLV positive. In a detailed study of 105 cows, BLV was found most commonly in buffy coat samples that also had highest copy numbers (10(4.75±1.56) per mL); all cows negative for BLV in buffy coat samples were also negative in vaginal swab, milk, and fecal samples. Copy numbers of BLV were 10(2.90±0.42)/gram of feces, 10(0.83±0.62)/mL of milk, and 10(2.18±0.81) per vaginal swab. The BLV-positive cows had significantly lower milk production in the early (26.8 vs. 30.9kg) and middle stages of lactation (22.2 vs. 26.1kg) in animals with ≥4 parities than the BLV-negative cows; they also had significantly higher SCS in early and middle lactation stages (early=5.2 vs. 4.3; middle=4.9 vs. 3.9) in animals with ≥4 parities. Milk production and SCS did not significantly differ between the BLV-infected and -uninfected cows when they were in the late lactation stage or in animals with ≤3 parities. Taken together, our results indicate that BLV infections are widespread in the dairy farms of China. Vaginal secretions and feces may be involved in BLV transmission. A BLV infection may result in reduced milk yield and increased SCS in a parity and lactation stage-restricted manner. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Comparison of efficacies of bovine immune colostral antibody and each immunoglobulin class against verotoxin 2, flagellum and somatic cells of Escherichia coli O157:H7 in mice.

    Science.gov (United States)

    Seita, Tetsurou; Kuribayashi, Takashi; Honjo, Toshio; Yamamoto, Shizuo

    2013-04-01

    The efficacy of bovine immune colostral (colostral) antibodies against verotoxin (VT) 2, flagellum and somatic cells of Escherichia coli (E. coli) O157:H7 in mice was determined. Three major immunoglobulin (Ig) classes were isolated from the colostral antibody against VT2 by affinity chromatography and were used for estimation. Mice inoculated with VT2 were administered each Ig class from the colostral antibody, colostral antibody (colostral whey containing antibody) or serum antibody against VT2 at 1 hour after VT2 inoculation. All control mice (20/20) died after administration of sterilized saline instead of the colostral antibody. The survival rate was 93.3% (14/15) after administration of S-IgA or IgM antibody, or colostral antibody. Survival rates for IgG antibody and serum antibody administration were 80% (12/15) and 60% (9/15), respectively. Serum concentrations of VT2, which was absorbed from the small intestine in mice after administration of VT2 and colostral antibody, were measured by fluorescence enzyme immunoassay (FEIA). Serum concentrations of VT2 after administration of colostral antibody were lower than those after administration of sterilized saline. Mice inoculated with VT2-producing E. coli 157:H7 were administered anti-flagellum or anti-somatic colostral antibodies. Survival rates for E. coli O157:H7-infected mice administered the anti-flagellum and anti-somatic colostral antibodies were 52.4% (11/21) and 22.2% (4/18), respectively. Furthermore, survival rates increased to 89.5% (17/19) with combined administration of anti-flagellum and anti-VT2 colostral antibodies. These results suggest that colostral antibodies against VT2, flagellum and somatic cells are effective against E. coli O157:H7 infection. Copyright © 2012. Published by Elsevier B.V.

  13. Replication of somatic micronuclei in bovine enucleated oocytes

    Directory of Open Access Journals (Sweden)

    Canel Natalia

    2012-11-01

    Full Text Available Abstract Background Microcell-mediated chromosome transfer (MMCT was developed to introduce a low number of chromosomes into a host cell. We have designed a novel technique combining part of MMCT with somatic cell nuclear transfer, which consists of injecting a somatic micronucleus into an enucleated oocyte, and inducing its cellular machinery to replicate such micronucleus. It would allow the isolation and manipulation of a single or a low number of somatic chromosomes. Methods Micronuclei from adult bovine fibroblasts were produced by incubation in 0.05 μg/ml demecolcine for 46 h followed by 2 mg/ml mitomycin for 2 h. Cells were finally treated with 10 μg/ml cytochalasin B for 1 h. In vitro matured bovine oocytes were mechanically enucleated and intracytoplasmatically injected with one somatic micronucleus, which had been previously exposed [Micronucleus- injected (+] or not [Micronucleus- injected (−] to a transgene (50 ng/μl pCX-EGFP during 5 min. Enucleated oocytes [Enucleated (+] and parthenogenetic [Parthenogenetic (+] controls were injected into the cytoplasm with less than 10 pl of PVP containing 50 ng/μl pCX-EGFP. A non-injected parthenogenetic control [Parthenogenetic (−] was also included. Two hours after injection, oocytes and reconstituted embryos were activated by incubation in 5 μM ionomycin for 4 min + 1.9 mM 6-DMAP for 3 h. Cleavage stage and egfp expression were evaluated. DNA replication was confirmed by DAPI staining. On day 2, Micronucleus- injected (−, Parthenogenetic (− and in vitro fertilized (IVF embryos were karyotyped. Differences among treatments were determined by Fisher′s exact test (p≤0.05. Results All the experimental groups underwent the first cell divisions. Interestingly, a low number of Micronucleus-injected embryos showed egfp expression. DAPI staining confirmed replication of micronuclei in most of the evaluated embryos. Karyotype analysis revealed that all Micronucleus-injected embryos had

  14. Numerical Chromosome Errors in Day 7 Somatic Nuclear Transfer Bovine Blastocysts

    DEFF Research Database (Denmark)

    Booth, Paul J.; VIUFF, Dorte; Tan, Shijian

    2002-01-01

    Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona-free manipulat......Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona...

  15. Culture medium composition affects the gene expression pattern and in vitro development potential of bovine somatic cell nuclear transfer (SCNT) embryos.

    Science.gov (United States)

    Arias, María E; Ross, Pablo J; Felmer, Ricardo N

    2013-01-01

    Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT) embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental potential and quality of bovine SCNT embryos cultured in different two-step culture media based on KSOM, SOF and the macromolecules FBS and BSA (K-K/FBS, K-S/BSA and K-K/BSA, respectively). No differences were observed in the cleavage rate for any of the culture systems. However, there was a significant difference (Pculture system yielding a higher rate of blastocysts (28%) compared to other treatments (18 and 15%, for K-S/BSA and K-K/BSA, respectively). Although quality of embryos, as assessed by the total number of cells, was not different, the apoptosis index was significantly affected in the sequential culture system (K-S/BSA). Gene expression analysis showed alterations of DNMT1, IGF2, LIF, and PRDX6 genes in embryos cultured in K-S/FBS and of SOD2 in embryos cultured in K-K/BSA. In conclusion, we demonstrated that culture medium may affect not only the developmental potential of SCNT embryos but also, more importantly, the gene expression pattern and apoptotic index, presenting the possibility to manipulate the culture medium composition to modulate global gene expression and improve the overall efficiency of this technique.

  16. Effect of the time interval between fusion and activation on epigenetic reprogramming and development of bovine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Liu, Jun; Wang, Yongsheng; Su, Jianmin; Wang, Lijun; Li, Ruizhe; Li, Qian; Wu, Yongyan; Hua, Song; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2013-04-01

    Previous studies have shown that the time interval between fusion and activation (FA interval) play an important role in nuclear remodeling and in vitro development of somatic cell nuclear transfer (SCNT) embryos. However, the effects of FA interval on the epigenetic reprogramming and in vivo developmental competence of SCNT embryos remain unknown. In the present study, the effects of different FA intervals (0 h, 2 h, and 4 h) on the epigenetic reprogramming and developmental competence of bovine SCNT embryos were assessed. The results demonstrated that H3 lysine 9 (H3K9ac) levels decreased rapidly after fusion in all three groups. H3K9ac was practically undetectable 2 h after fusion in the 2-h and 4-h FA interval groups. However, H3K9ac was still evidently detectable in the 0-h FA interval group. The H3K9ac levels increased 10 h after fusion in all three groups, but were higher in the 2-h and 4-h FA interval groups than that in the 0-h FA interval group. The methylation levels of the satellite I region in day-7 blastocysts derived from the 2-h or 4-h FA interval groups was similar to that of in vitro fertilization blastocysts and is significantly lower than that of the 0-h FA interval group. SCNT embryos derived from 2-h FA interval group showed higher developmental competence than those from the 0-h and 4-h FA interval groups in terms of cleavage rate, blastocyst formation rate, apoptosis index, and pregnancy and calving rates. Hence, the FA interval is an important factor influencing the epigenetic reprogramming and developmental competence of bovine SCNT embryos.

  17. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming

    OpenAIRE

    Lee Rita SF; Couldrey Christine

    2010-01-01

    Abstract Background Cloning of cattle by somatic cell nuclear transfer (SCNT) is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appr...

  18. Culture medium composition affects the gene expression pattern and in vitro development potential of bovine somatic cell nuclear transfer (SCNT embryos

    Directory of Open Access Journals (Sweden)

    María E Arias

    2013-01-01

    Full Text Available Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental potential and quality of bovine SCNT embryos cultured in different two-step culture media based on KSOM, SOF and the macromolecules FBS and BSA (K-K/FBS, K-S/BSA and K-K/BSA, respectively. No differences were observed in the cleavage rate for any of the culture systems. However, there was a significant difference (P<0.01 in the rate of blastocyst development, with the K-K/ FBS culture system yielding a higher rate of blastocysts (28% compared to other treatments (18 and 15%, for K-S/BSA and K-K/BSA, respectively. Although quality of embryos, as assessed by the total number of cells, was not different, the apoptosis index was significantly affected in the sequential culture system (K-S/BSA. Gene expression analysis showed alterations of DNMT1, IGF2, LIF, and PRDX6 genes in embryos cultured in K-S/FBS and of SOD2 in embryos cultured in K-K/BSA. In conclusion, we demonstrated that culture medium may affect not only the developmental potential of SCNT embryos but also, more importantly, the gene expression pattern and apoptotic index, presenting the possibility to manipulate the culture medium composition to modulate global gene expression and improve the overall efficiency of this technique.

  19. Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle

    Directory of Open Access Journals (Sweden)

    Magee David A

    2010-11-01

    Full Text Available Abstract Background Mastitis, an inflammation of the mammary gland, is a major source of economic loss on dairy farms. The aim of this study was to quantify the associations between two previously identified polymorphisms in the bovine toll-like receptor 2 (TLR2 and chemokine receptor 1 (CXCR1 genes and mammary health indictor traits in (a 246 lactating dairy cow contemporaries representing five breeds from one research farm and (b 848 Holstein-Friesian bulls that represent a large proportion of the Irish dairy germplasm. To expand the study, a further 14 polymorphisms in immune genes were included for association studies in the bull population. Results TLR4-2021 associated (P SERPINA1 haplotype with superior genetic merit for milk protein yield and milk fat percentage (P Conclusion Of the sixteen polymorphisms in seven immune genes genotyped, just CXCR1-777 tended to associate with SCS, albeit only in the on-farm study. The lack of an association between the polymorphisms with SCS in the Holstein-Friesian data set would question the potential importance of these variants in selection for improved mastitis resistance in the Holstein-Friesian cow.

  20. The prevalence of embryonic remnants following the recovery of post-hatching bovine embryos produced in vitro or by somatic cell nuclear transfer.

    Science.gov (United States)

    Alexopoulos, Natalie I; French, Andrew J

    2009-08-01

    The reliable collection of peri-implantation embryos in the bovine has important ramifications to post-transfer consequences, particularly in the elucidation of mechanisms associated with post-hatching embryo development and to perturbations in developmental growth following transfer. This study analyzed both in vitro produced (IVP) and somatic cell nuclear transfer (SCNT) embryo-like structures (ELS) recovered at Day (D) 14 and D21. The recovered ELS were subsequently processed for histological examination. At D14 and D21, many of the embryos recovered in the IVP group conformed to the appropriate stage of development. However, a significant number of anomalies were present in the SCNT groups when examined in more detail. Histological examination revealed that irrespective of whether these embryos had undergone trophoblast expansion to an ovoid, tubular or filamentous morphology, many had a degenerated hypoblast layer and a large proportion did not possess an epiblast and therefore could not differentiate into any of the three germ layers as would be expected at the neural groove or somite stage. The prevalence of this developmental pattern was random and did not correlate with treatment (IVP or SCNT) or with types of structures recovered. The rapid embryo elongation period also coincides with the time of greatest embryonic loss and these observations could have important implications for assessing the recovery of embryos post-transfer where incorrect morphological assessment could lead to false implantation and pregnancy determination rates. The implementation of additional methodology is required to adequately characterize the quality of IVP and SCNT-derived embryos collected post-transfer.

  1. Expression profile of genes as indicators of developmental competence and quality of in vitro fertilization and somatic cell nuclear transfer bovine embryos.

    Directory of Open Access Journals (Sweden)

    Maria Jesús Cánepa

    Full Text Available Reproductive biotechnologies such as in vitro fertilization (IVF and somatic cell nuclear transfer (SCNT enable improved reproductive efficiency of animals. However, the birth rate of in vitro-derived embryos still lags behind that of their in vivo counterparts. Thus, it is critical to develop an accurate evaluation and prediction system of embryo competence, both for commercial purposes and for scientific research. Previous works have demonstrated that in vitro culture systems induce alterations in the relative abundance (RA of diverse transcripts and thus compromise embryo quality. The aim of this work was to analyze the RA of a set of genes involved in cellular stress (heat shock protein 70-kDa, HSP70, endoplasmic reticulum (ER stress (immunoglobulin heavy chain binding protein, Bip; proteasome subunit β5, PSMB5 and apoptosis (BCL-2 associated X protein, Bax; cysteine aspartate protease-3, Caspase-3 in bovine blastocysts produced by IVF or SCNT and compare it with that of their in vivo counterparts. Poly (A + mRNA was isolated from three pools of 10 blastocysts per treatment and analyzed by real-time RT-PCR. The RA of three of the stress indicators analyzed (Bax, PSMB5 and Bip was significantly increased in SCNT embryos as compared with that of in vivo-derived blastocysts. No significant differences were found in the RA of HSP70 and Caspase-3 gene transcripts. This study could potentially complement morphological analyses in the development of an effective and accurate technique for the diagnosis of embryo quality, ultimately aiding to improve the efficiency of assisted reproductive techniques (ART.

  2. DNA Methylation at a Bovine Alpha Satellite I Repeat CpG Site during Development following Fertilization and Somatic Cell Nuclear Transfer

    OpenAIRE

    Couldrey, Christine; Wells, David N.

    2013-01-01

    Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT). Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5) during development of cattle generated either by artificial insemination (AI) or in vitro fertilization (IVF) and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT bla...

  3. Monitoring Milk Somatic Cell Counts

    Directory of Open Access Journals (Sweden)

    Gheorghe Şteţca

    2014-11-01

    Full Text Available The presence of somatic cells in milk is a widely disputed issue in milk production sector. The somatic cell counts in raw milk are a marker for the specific cow diseases such as mastitis or swollen udder. The high level of somatic cells causes physical and chemical changes to milk composition and nutritional value, and as well to milk products. Also, the mastitic milk is not proper for human consumption due to its contribution to spreading of certain diseases and food poisoning. According to these effects, EU Regulations established the maximum threshold of admitted somatic cells in raw milk to 400000 cells / mL starting with 2014. The purpose of this study was carried out in order to examine the raw milk samples provided from small farms, industrial type farms and milk processing units. There are several ways to count somatic cells in milk but the reference accepted method is the microscopic method described by the SR EN ISO 13366-1/2008. Generally samples registered values in accordance with the admissible limit. By periodical monitoring of the somatic cell count, certain technological process issues are being avoided and consumer’s health ensured.

  4. Nuclear donor cell lines considerably influence cloning efficiency and the incidence of large offspring syndrome in bovine somatic cell nuclear transfer.

    Science.gov (United States)

    Liu, J; Wang, Y; Su, J; Luo, Y; Quan, F; Zhang, Y

    2013-08-01

    Total five ear skin fibroblast lines (named F1, F2, F3, F4 and F5) from different newborn Holstein cows have been used as nuclear donor cells for producing cloned cows by somatic cell nuclear transfer (SCNT). The effects of these cell lines on both in vitro and in vivo developmental rates of cloned embryos, post-natal survivability and incidence of large offspring syndrome (LOS) were examined in this study. We found that the different cell lines possessed the same capacity to support pre-implantation development of cloned embryos, the cleavage and blastocyst formation rates ranged from 80.2 ± 0.9 to 84.5 ± 2.5% and 28.5 ± 0.9 to 33.3 ± 1.4%, respectively. However, their capacities to support the in vivo development of SCNT embryos showed significant differences (p cloning efficiency was significantly higher in group F5 than those in group F1, F2, F3 and F4 (9.3% vs 4.1%, 1.2%, 2.0% and 5.0%, respectively, p cloned offspring from cell line F1, F2, F3 and F4 showed LOS and gestation length delay, while all cloned offspring from F5 showed normal birthweight and gestation length. We concluded that the nuclear donor cell lines have significant impact on the in vivo development of cloned embryos and the incidence of LOS in cloned calves. © 2013 Blackwell Verlag GmbH.

  5. DNA methylation at a bovine alpha satellite I repeat CpG site during development following fertilization and somatic cell nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Christine Couldrey

    Full Text Available Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT. Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5 during development of cattle generated either by artificial insemination (AI or in vitro fertilization (IVF and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT blastocysts showed significantly more methylation than IVF blastocysts. At implantation, no difference in methylation was observed between SCNT and AI in trophoblast tissue at αsatI-5, however, SCNT embryos were significantly hyper-methylated compared to AI controls at this time point. Following implantation, DNA methylation at αsatI-5 decreased in AI but not SCNT placental tissues. In contrast to placenta, the proportion of methylation at αsatI-5 remained high in adrenal, kidney and muscle tissues during development. Differences in the average proportion of methylation were smaller in somatic tissues than placental tissues but, on average, SCNT somatic tissues were hyper-methylated at αsatI-5. Although sperm from all bulls was less methylated than somatic tissues at αsatI-5, on average this site remained hyper-methylated in sperm from cloned bulls compared with control bulls. This developmental time course confirms that epigenetic reprogramming does occur, at least to some extent, following SCNT. However, the elevated methylation levels observed in SCNT blastocysts and cellular derivatives implies that there is either insufficient time or abundance of appropriate reprogramming factors in oocytes to ensure complete reprogramming. Incomplete reprogramming at this CpG site may be a contributing factor to low SCNT success rates, but more likely represents the tip of the iceberg in terms of incompletely reprogramming. Until protocols ensure the epigenetic

  6. Review of somatic cell nuclear transfer in pig | Muenthaisong ...

    African Journals Online (AJOL)

    It is now more than 8 years, since the first cloned pig from nuclear transfer was reported. Success of somatic cell nuclear transfer (SCNT) in pig is still low compared to that in bovine. Embryonic and neonatal abnormalities of cloned piglets are probably a result of incorrect or incomplete reprogramming of the transferred ...

  7. Effect of intramammary infusion of recombinant bovine GM-CSF and IL-8 on CMT score, somatic cell count, and milk mononuclear cell populations in Holstein cows with Staphylococcus aureus subclinical mastitis.

    Science.gov (United States)

    Kiku, Yoshio; Ozawa, Tomomi; Takahashi, Hideyuki; Kushibiki, Shiro; Inumaru, Shigeki; Shingu, Hiroyuki; Nagasawa, Yuya; Watanabe, Atsushi; Hata, Eiji; Hayashi, Tomohito

    2017-09-01

    The effect of intramammary infusion of recombinant bovine granulocyte-macrophage colony-stimulating factor (rbGM-CSF) and interleukin-8 (rbIL-8) on mononuclear cell populations in quarters, somatic cell count (SCC) and the California Mastitis Test (CMT) score were investigated. From the selected cows with naturally occurring Staphylococcus aureus subclinical mastitis, one quarter of each cow were selected for the infusions of rbGM-CSF (400 μg/5 mL/quarter, n = 9), rbIL-8 (1 mg/5 mL/quarter, n = 9), and phosphate-buffered saline (5 mL/quarter, n = 7). The CMT score of both cytokines post infusion temporarily increased between days 0 and 1 and significantly decreased between days 7 and 14 compared to the preinfusion level. The SCC on day 14 after infusions of rbGM-CSF tended to be lower than that of the control group. The percentage of CD14+ cells increased on days 1 and 2 post infusion of rbGM-CSF. The percentage of CD4+ and CD8+ cells also increased on days 2 and 3, suggesting that the infusion of rbGM-CSF enhanced cellular immunity in the mammary gland. In contrast, the percentage of CD14+ cells decreased on days 0.25 and 1 post infusion of rbIL-8. No significant changes in the percentages of CD4+ and CD8+ cells in milk after infusion of rbIL-8 were evident during the experimental period, which suggested that rbIL-8 had little effect on the function of T cells in the mammary gland. These results indicated that rbGM-CSF and rbIL-8 decreased the CMT score by a different mechanism and may have a potential as therapeutic agents for subclinical mastitis.

  8. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming

    Directory of Open Access Journals (Sweden)

    Lee Rita SF

    2010-03-01

    Full Text Available Abstract Background Cloning of cattle by somatic cell nuclear transfer (SCNT is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appropriately established during nuclear reprogramming following SCNT. A panel of imprinted, non-imprinted genes and satellite repeat sequences was examined in tissues collected from viable and failing mid-gestation SCNT foetuses and compared with similar tissues from gestation-matched normal foetuses generated by artificial insemination (AI. Results Most of the genomic regions examined in tissues from viable and failing SCNT foetuses had DNA methylation patterns similar to those in comparable tissues from AI controls. However, statistically significant differences were found between SCNT and AI at specific CpG sites in some regions of the genome, particularly those associated with SNRPN and KCNQ1OT1, which tended to be hypomethylated in SCNT tissues. There was a high degree of variation between individuals in methylation levels at almost every CpG site in these two regions, even in AI controls. In other genomic regions, methylation levels at specific CpG sites were tightly controlled with little variation between individuals. Only one site (HAND1 showed a tissue-specific pattern of DNA methylation. Overall, DNA methylation patterns in tissues of failing foetuses were similar to apparently viable SCNT foetuses, although there were individuals showing extreme deviant patterns. Conclusion These results show that SCNT foetuses that had developed to mid-gestation had largely undergone nuclear reprogramming and that the epigenetic signature at this stage was not a

  9. Cellular Mechanisms of Somatic Stem Cell Aging

    Science.gov (United States)

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  10. Microrganismos patogênicos, celularidade e resíduos de antimicrobianos no leite bovino produzido no sistema orgânico Pathogenic microorganisms, somatic cell count and drug residues evaluation in organic bovine milk

    Directory of Open Access Journals (Sweden)

    Márcio Garcia Ribeiro

    2009-01-01

    antimicrobianos em fazendas de leite orgânico.In last years increase the importance of milk quality and conditions of bovine milking. Simultaneously, increase the interest about organic milk and derivates. The aim of present study was investigate the milk pathogens, sensitivity and multiple drug resistance of isolates, somatic cell count and residues of drugs in milk, from cattle with and without mastitis, come from four little organic dairy farms in State of São Paulo, Brazil. Were used 148 cattle on the middle period of lactation. From these, two showed clinical mastitis, 72 subclinical mastitis and 74 without signs of mammary inflammation (controls. Staphylococcusaureus (25.7%, Streptococcus spp. (21.4%, Corynebacterium bovis (12.9%, Streptococcus agalactiae (4.3% and Staphylococcus spp. (4.3% were the more-frequent microorganisms isolated from animals with mastitis. Aspergillus spp. was isolated from one animal. Ceftiofur (95.2%, oxacillin (84.2%, gentamicin (76.3% and cefoperazone (70.3% were the more effective drugs. High resistance of isolates were found to penicillin (53.5%, ampicillin (41.6% and neomycin (38.6%. Multiple drug resistance to three or more drugs was observed in 40 (39.6% isolates. Media of somatic cell count encountered in animals with mastitis and controls were 175,742.67cs/mL and 58,227.6 cs/mL, respectively. Antimicrobials residues in milk were detected in four (2.7% animals. The present findings showed the low somatic cell count of animals, indicative of good quality of milk. However, pointed the need of control measures for contagious pathogens of bovine mastitis and more attention for prohibition of antimicrobial use in organic dairy farms.

  11. Nuclear and nuclear reprogramming during the first cell cycle in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Østrup, Olga; Petrovicova, Ida; Strejcek, Frantisek

    2009-01-01

    Abstract The immediate events of genomic reprogramming at somatic cell nuclear transfer (SCNT) are to high degree unknown. This study was designed to evaluate the nuclear and nucleolar changes during the first cell cycle. Bovine SCNT embryos were produced from starved bovine fibroblasts and fixed......, somatic cell nuclei introduced into enucleated oocytes displayed chromatin condensation, partial nuclear envelope breakdown, nucleolar desegregation and transcriptional quiescence already at 0.5 hpa. Somatic cell cytoplasm remained temporally attached to introduced nucleus and nucleolus was partially...... restored indicating somatic influence in the early SCNT phases. At 1-3 hpa, chromatin gradually decondensed toward the nucleus periphery and nuclear envelope reformed. From 4 hpa, the somatic cell nucleus gained a PN-like appearance and displayed NPBs suggesting ooplasmic control of development....

  12. Human somatic cell nuclear transfer and cloning.

    Science.gov (United States)

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Dogs cloned from adult somatic cells.

    Science.gov (United States)

    Lee, Byeong Chun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hossein, M Shamim; Shamim, M Hossein; Kim, Jung Ju; Kang, Sung Keun; Schatten, Gerald; Hwang, Woo Suk

    2005-08-04

    Several mammals--including sheep, mice, cows, goats, pigs, rabbits, cats, a mule, a horse and a litter of three rats--have been cloned by transfer of a nucleus from a somatic cell into an egg cell (oocyte) that has had its nucleus removed. This technology has not so far been successful in dogs because of the difficulty of maturing canine oocytes in vitro. Here we describe the cloning of two Afghan hounds by nuclear transfer from adult skin cells into oocytes that had matured in vivo. Together with detailed sequence information generated by the canine-genome project, the ability to clone dogs by somatic-cell nuclear transfer should help to determine genetic and environmental contributions to the diverse biological and behavioural traits associated with the many different canine breeds.

  14. The Influence of Interspecies Somatic Cell Nuclear Transfer on Epigenetic Enzymes Transcription in Early Embryos

    DEFF Research Database (Denmark)

    Morovic, Martin; Murin, Matej; Strejcek, Frantisek

    2016-01-01

    in oocytes and early embryos of several species including bovine and porcine zygotes is species-dependent process and the incomplete DNA methylation correlates with the nuclear transfer failure rate in mammals. In this study the transcription of DNA methyltransferase 1 and 3a (DNMT1, DNMT3a) genes in early......One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription....... In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly...

  15. Endangered wolves cloned from adult somatic cells.

    Science.gov (United States)

    Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hwang, Woo Suk; Hossein, Mohammad Shamim; Kim, Joung Joo; Shin, Nam Shik; Kang, Sung Keun; Lee, Byeong Chun

    2007-01-01

    Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.

  16. Advances in reprogramming somatic cells to induced pluripotent stem cells.

    Science.gov (United States)

    Patel, Minal; Yang, Shuying

    2010-09-01

    Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.

  17. Protecting genomic integrity in somatic cells and embryonic stem cells

    International Nuclear Information System (INIS)

    Hong, Y.; Cervantes, R.B.; Tichy, E.; Tischfield, J.A.; Stambrook, P.J.

    2007-01-01

    Mutation frequencies at some loci in mammalian somatic cells in vivo approach 10 -4 . The majority of these events occur as a consequence of loss of heterozygosity (LOH) due to mitotic recombination. Such high levels of DNA damage in somatic cells, which can accumulate with age, will cause injury and, after a latency period, may lead to somatic disease and ultimately death. This high level of DNA damage is untenable for germ cells, and by extrapolation for embryonic stem (ES) cells, that must recreate the organism. ES cells cannot tolerate such a high frequency of damage since mutations will immediately impact the altered cell, and subsequently the entire organism. Most importantly, the mutations may be passed on to future generations. ES cells, therefore, must have robust mechanisms to protect the integrity of their genomes. We have examined two such mechanisms. Firstly, we have shown that mutation frequencies and frequencies of mitotic recombination in ES cells are about 100-fold lower than in adult somatic cells or in isogenic mouse embryonic fibroblasts (MEFs). A second complementary protective mechanism eliminates those ES cells that have acquired a mutational burden, thereby maintaining a pristine population. Consistent with this hypothesis, ES cells lack a G1 checkpoint, and the two known signaling pathways that mediate the checkpoint are compromised. The checkpoint kinase, Chk2, which participates in both pathways is sequestered at centrosomes in ES cells and does not phosphorylate its substrates (i.e. p53 and Cdc25A) that must be modified to produce a G1 arrest. Ectopic expression of Chk2 does not rescue the p53-mediated pathway, but does restore the pathway mediated by Cdc25A. Wild type ES cells exposed to ionizing radiation do not accumulate in G1 but do so in S-phase and in G2. ES cells that ectopically express Chk2 undergo cell cycle arrest in G1 as well as G2, and appear to be protected from apoptosis

  18. Recent advancements in cloning by somatic cell nuclear transfer.

    Science.gov (United States)

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-05

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  19. Recent advancements in cloning by somatic cell nuclear transfer

    Science.gov (United States)

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  20. INFLUENCE OF SOMATIC CELL COUNT IN THE COMPOSITION OF GIROLANDO COW’S MILK IN TROPICAL ZONE

    Directory of Open Access Journals (Sweden)

    Vanessa Nunes Silva

    2016-08-01

    Full Text Available Bovine mastitis has been identified as the main disease affecting dairy cattle worldwide. Somatic Cell Count (SCC in milk is one of the most important indicators to evaluate the udder health of cows due to the high direct correlation with the mammary gland’s degree of infection. This study aimed to evaluate the different ranges of somatic cell count (SCC on the composition of bovine milk as well as finding a correlation between somatic cell count and body condition score on milk production and composition of this species. The experiment was conducted on a commercial farm located in São José de Mipibu, Rio Grande do Norte, Brazil. The same cows were milked mechanically, obtaining a milk production record for the period of December 2011 to May 2012. For this, 24 Girolando breed cows (3/4 and 7/8 were used, being 50% primiparous and 50% multiparous with average production 7.51 ± 2.58 kg day-1 and 10.98 ± 2.49 kg day-1, respectively. The cows were milked mechanically, obtaining a record of milk production over a period of five months, and milk samples were collected and sent for laboratory analysis. The levels of milk composition were evaluated. Lactose, non-fat solids and milk urea nitrogen were influenced by different intervals of somatic cell count of milk. In milk samples from primiparous and multiparous cows, positive correlations between somatic cell count and some components were found. As for body condition score, significant correlations were also found for milk production and composition. It was concluded the different levels of somatic cell count influenced the percentage of lactose, non-fat solids and milk urea nitrogen. Somatic cell count and body condition score also showed significant correlations with milk production and composition.

  1. Breeding value estimation for somatic cell score in South African ...

    African Journals Online (AJOL)

    Breeding value estimation for somatic cell score in South African dairy cattle. ... are not unity, the RM-model estimates more competitive variances and requires ... are therefore recommended for breeding value estimation on a national basis.

  2. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    Science.gov (United States)

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  3. Somatic cell cloning in Buffalo (Bubalus bubalis): effects of interspecies cytoplasmic recipients and activation procedures.

    Science.gov (United States)

    Kitiyanant, Y; Saikhun, J; Chaisalee, B; White, K L; Pavasuthipaisit, K

    2001-01-01

    Successful nuclear transfer (NT) of somatic cell nuclei from various mammalian species to enucleated bovine oocytes provides a universal cytoplast for NT in endangered or extinct species. Buffalo fetal fibroblasts were isolated from a day 40 fetus and were synchronized in presumptive G(0) by serum deprivation. Buffalo and bovine oocytes from abattoir ovaries were matured in vitro and enucleated at 22 h. In the first experiment, we compared the ability of buffalo and bovine oocyte cytoplasm to support in vitro development of NT embryos produced by buffalo fetal fibroblasts as donor nuclei. There were no significant differences (p > 0.05) between the NT embryos derived from buffalo and bovine oocytes, in fusion (74% versus 71%) and cleavage (77% versus 75%) rates, respectively. No significant differences were also observed in blastocyst development (39% versus 33%) and the mean cell numbers of day 7 cloned blastocysts (88.5 +/- 25.7 versus 51.7 +/- 5.4). In the second experiment, we evaluated the effects of activation with calcium ionophore A23187 on development of NT embryos after electrical fusion. A significantly higher (p cloned buffalo blastocysts similar to those transferred into buffalo oocytes. Calcium ionophore used in conjunction with 6-DMAP effectively induces NT embryo development.

  4. Cloning animals by somatic cell nuclear transfer – biological factors

    Science.gov (United States)

    Tian, X Cindy; Kubota, Chikara; Enright, Brian; Yang, Xiangzhong

    2003-01-01

    Cloning by nuclear transfer using mammalian somatic cells has enormous potential application. However, somatic cloning has been inefficient in all species in which live clones have been produced. High abortion and fetal mortality rates are commonly observed. These developmental defects have been attributed to incomplete reprogramming of the somatic nuclei by the cloning process. Various strategies have been used to improve the efficiency of nuclear transfer, however, significant breakthroughs are yet to happen. In this review we will discuss studies conducted, in our laboratories and those of others, to gain a better understanding of nuclear reprogramming. Because cattle are a species widely used for nuclear transfer studies, and more laboratories have succeeded in cloning cattle than any other specie, this review will be focused on somatic cell cloning of cattle. PMID:14614770

  5. File list: Oth.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.50.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  6. File list: Oth.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.05.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  7. File list: Pol.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.50.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  8. NUTRIENTS AND EPIGENETICS IN BOVINE CELLS

    Science.gov (United States)

    This is a chapter for a book titled “Livestock Epigenetics” edited by Dr. Hasan Khatib and published by Wiley-Blackwell. This chapter is focused on the research development in our laboratory in the area of interaction of nutrients and genomic phonotype in bovine cells. Briefly, the Research on nutri...

  9. Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.

    Science.gov (United States)

    Caplan, Z; Melilli, C; Barbano, D M

    2013-04-01

    The objective of experiment 1 was to determine if the extent of gravity separation of milk fat, bacteria, and somatic cells is influenced by the time and temperature of gravity separation or the level of contaminating bacteria present in the raw milk. The objective of experiment 2 was to determine if different temperatures of milk heat treatment affected the gravity separation of milk fat, bacteria, and somatic cells. In raw milk, fat, bacteria, and somatic cells rose to the top of columns during gravity separation. About 50 to 80% of the fat and bacteria were present in the top 8% of the milk after gravity separation of raw milk. Gravity separation for 7h at 12°C or for 22h at 4°C produced equivalent separation of fat, bacteria, and somatic cells. The completeness of gravity separation of fat was influenced by the level of bacteria in the milk before separation. Milk with a high bacterial count had less (about 50 to 55%) gravity separation of fat than milk with low bacteria count (about 80%) in 22h at 4°C. Gravity separation caused fat, bacteria, and somatic cells to rise to the top of columns for raw whole milk and high temperature, short-time pasteurized (72.6°C, 25s) whole milk. Pasteurization at ≥76.9°C for 25s prevented all 3 components from rising, possibly due to denaturation of native bovine immunoglobulins that normally associate with fat, bacteria, and somatic cells during gravity separation. Gravity separation can be used to produce reduced-fat milk with decreased bacterial and somatic cell counts, and may be a critical factor in the history of safe and unique traditional Italian hard cheeses produced from gravity-separated raw milk. A better understanding of the mechanism of this natural process could lead to the development of new nonthermal thermal technology (that does not involve heating the milk to high temperatures) to remove bacteria and spores from milk or other liquids. Copyright © 2013 American Dairy Science Association. Published by

  10. Transcriptomes of bovine ovarian follicular and luteal cells

    Directory of Open Access Journals (Sweden)

    Sarah M. Romereim

    2017-02-01

    Full Text Available Affymetrix Bovine GeneChip® Gene 1.0 ST Array RNA expression analysis was performed on four somatic ovarian cell types: the granulosa cells (GCs and theca cells (TCs of the dominant follicle and the large luteal cells (LLCs and small luteal cells (SLCs of the corpus luteum. The normalized linear microarray data was deposited to the NCBI GEO repository (GSE83524. Subsequent ANOVA determined genes that were enriched (≥2 fold more or decreased (≤−2 fold less in one cell type compared to all three other cell types, and these analyzed and filtered datasets are presented as tables. Genes that were shared in enriched expression in both follicular cell types (GCs and TCs or in both luteal cells types (LLCs and SLCs are also reported in tables. The standard deviation of the analyzed array data in relation to the log of the expression values is shown as a figure. These data have been further analyzed and interpreted in the companion article “Gene expression profiling of ovarian follicular and luteal cells provides insight into cellular identities and functions” (Romereim et al., 2017 [1].

  11. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells.

    Science.gov (United States)

    Yang, Zhengtao; Fu, Yunhe; Gong, Pengtao; Zheng, Jingtong; Liu, Li; Yu, Yuqiang; Li, Jianhua; Li, He; Yang, Ju; Zhang, Xichen

    2015-08-01

    Cryptosporidium parvum (C. parvum) is an intestinal parasite that causes diarrhea in neonatal calves. It results in significant morbidity of neonatal calves and economic losses for producers worldwide. Innate resistance against C. parvum is thought to depend on engagement of pattern recognition receptors. However, the role of innate responses to C. parvum has not been elucidated in bovine. The aim of this study was to evaluate the role of TLRs in host-cell responses during C. parvum infection of cultured bovine intestinal epithelial cells. The expressions of TLRs in bovine intestinal epithelial cells were detected by qRT-PCR. To determine which, if any, TLRs may play a role in the response of bovine intestinal epithelial cells to C. parvum, the cells were stimulated with C. parvum and the expression of TLRs were tested by qRT-PCR. The expression of NF-κB was detected by western blotting. Further analyses were carried out in bovine TLRs transfected HEK293 cells and by TLRs-DN transfected bovine intestinal epithelial cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs. The expression of TLR2 and TLR4 were up-regulated when bovine intestinal epithelial cells were treated with C. parvum. Meanwhile, C. parvum induced IL-8 production in TLR2 or TLR4/MD-2 transfected HEK293 cells. Moreover, C. parvum induced NF-κB activation and cytokine expression in bovine intestinal epithelial cells. The induction of NF-κB activation and cytokine expression by C. parvum were reduced in TLR2-DN and TLR4-DN transfected cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs, and bovine intestinal epithelial cells recognized and responded to C. parvum via TLR2 and TLR4. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Lethals induced by γ-radiation in drosophila somatic cells

    International Nuclear Information System (INIS)

    Ivanov, A.I.

    1989-01-01

    Exposure of 3-hour drosophila male embryos to γ-radiation during the topographic segregation of the germ anlage nuclei caused recessive sex-linked lethals in somatic cells only. The selectivity of the screening was determined by the ratio of mutation frequencies induced in embryos and adult males. Analysis of lethal mutations shows that a minimal rate of the divergence between germinal and somatic patterns of the cell development is observed in the embryogenesis, the 3d instar larva and prepupa, and maximal in the 1st and 2nd larva and pupa

  13. The major bovine mastitis pathogens have different cell tropisms in cultures of bovine mammary gland cells

    NARCIS (Netherlands)

    Lammers, A.; Vorstenbosch, van C.J.; Erkens, J.H.F.; Smith, H.E.

    2001-01-01

    We previously showed that Staphylococcus aureus cells adhered mainly to an elongated cell type, present in cultures of bovine mammary gland cells. Moreover. we showed that this adhesion was mediated by binding to fibronectin. The same in vitro model was used here, to study adhesion of other

  14. Buffalo milk: proteins electrophoretic profile and somatic cell count

    Directory of Open Access Journals (Sweden)

    S. Mattii

    2011-03-01

    Full Text Available Water buffalo milk differs from the cow’s milk for greater fat and protein content, very important features in cheese making. Proteins, casein and whey-proteins in particular, are the most important factors determining cheese yield. Several previous research discussed the rule of SCC in cow milk production (Varisco, 1999 and the close relationship existing between cow’s milk cheese yield and somatic cell count (Barbano, 2000. In particular the inverse correlation between cheese yields and somatic cells’content have been demonstrated. In Italy the regulation in force DPR 54/97 acknowledges what expressed in EEC 46/92 Directive (Tripodi, 1999 without fixing the limit threshold of somatic cells for buffalo’s milk....

  15. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells.

    Science.gov (United States)

    Heo, Young Tae; Quan, Xiaoyuan; Xu, Yong Nan; Baek, Soonbong; Choi, Hwan; Kim, Nam-Hyung; Kim, Jongpil

    2015-02-01

    Efficient and precise genetic engineering in livestock such as cattle holds great promise in agriculture and biomedicine. However, techniques that generate pluripotent stem cells, as well as reliable tools for gene targeting in livestock, are still inefficient, and thus not routinely used. Here, we report highly efficient gene targeting in the bovine genome using bovine pluripotent cells and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nuclease. First, we generate induced pluripotent stem cells (iPSCs) from bovine somatic fibroblasts by the ectopic expression of yamanaka factors and GSK3β and MEK inhibitor (2i) treatment. We observed that these bovine iPSCs are highly similar to naïve pluripotent stem cells with regard to gene expression and developmental potential in teratomas. Moreover, CRISPR/Cas9 nuclease, which was specific for the bovine NANOG locus, showed highly efficient editing of the bovine genome in bovine iPSCs and embryos. To conclude, CRISPR/Cas9 nuclease-mediated homologous recombination targeting in bovine pluripotent cells is an efficient gene editing method that can be used to generate transgenic livestock in the future.

  16. Somatic cell count distributions during lactation predict clinical mastitis

    NARCIS (Netherlands)

    Green, M.J.; Green, L.E.; Schukken, Y.H.; Bradley, A.J.; Peeler, E.J.; Barkema, H.W.; Haas, de Y.; Collis, V.J.; Medley, G.F.

    2004-01-01

    This research investigated somatic cell count (SCC) records during lactation, with the purpose of identifying distribution characteristics (mean and measures of variation) that were most closely associated with clinical mastitis. Three separate data sets were used, one containing quarter SCC (n =

  17. Effect of the somatic cell count on physicochemical components of ...

    African Journals Online (AJOL)

    xz

    2015-04-29

    Apr 29, 2015 ... the standard method to determine the quality of raw milk. (Ribas, 1999). Magalhães .... somatic cell score (SCS) resulted in an increase in the protein concentration of .... Yield of Dairy Herds]. C. E. Martins, C. N. Costa, J. R. F..

  18. Effect of the somatic cell count on physicochemical components of ...

    African Journals Online (AJOL)

    ... of the School of Veterinary Medicine and Animal Science of the Federal University of Goiás (Escola de Veterinária e Zootecnia da Universidade Federal de Goiás). Protein, fat, lactose, casein, urea, defatted dry extract and somatic cell counts (SCC) were analyzed. A completely randomized experimental design was used.

  19. The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma

    NARCIS (Netherlands)

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-01-01

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared

  20. Somatic activating ARAF mutations in Langerhans cell histiocytosis

    NARCIS (Netherlands)

    Nelson, David S.; Quispel, Willemijn; Badalian-Very, Gayane; van Halteren, Astrid G. S.; van den Bos, Cor; Bovée, Judith V. M. G.; Tian, Sara Y.; van Hummelen, Paul; Ducar, Matthew; MacConaill, Laura E.; Egeler, R. Maarten; Rollins, Barrett J.

    2014-01-01

    The extracellular signal-regulated kinase (ERK) signaling pathway is activated in Langerhans cell histiocytosis (LCH) histiocytes, but only 60% of cases carry somatic activating mutations of BRAF. To identify other genetic causes of ERK pathway activation, we performed whole exome sequencing on

  1. The cell agglutination agent, phytohemagglutinin-L, improves the efficiency of somatic nuclear transfer cloning in cattle (Bos taurus).

    Science.gov (United States)

    Du, Fuliang; Shen, Perng-Chih; Xu, Jie; Sung, Li-Ying; Jeong, B-Seon; Lucky Nedambale, Tshimangadzo; Riesen, John; Cindy Tian, X; Cheng, Winston T K; Lee, Shan-Nan; Yang, Xiangzhong

    2006-02-01

    One of the several factors that contribute to the low efficiency of mammalian somatic cloning is poor fusion between the small somatic donor cell and the large recipient oocyte. This study was designed to test phytohemagglutinin (PHA) agglutination activity on fusion rate, and subsequent developmental potential of cloned bovine embryos. The toxicity of PHA was established by examining its effects on the development of parthenogenetic bovine oocytes treated with different doses (Experiment 1), and for different durations (Experiment 2). The effective dose and duration of PHA treatment (150 microg/mL, 20 min incubation) was selected and used to compare membrane fusion efficiency and embryo development following somatic cell nuclear transfer (Experiment 3). Cloning with somatic donor fibroblasts versus cumulus cells was also compared, both with and without PHA treatment (150 microg/mL, 20 min). Fusion rate of nuclear donor fibroblasts, after phytohemagglutinin treatment, was increased from 33 to 61% (P cell nuclear donors. The nuclear transfer (NT) efficiency per oocyte used was improved following PHA treatment, for both fibroblast (13% versus 22%) as well as cumulus cells (17% versus 34%; P cloned embryos, both with and without PHA treatment, were subjected to vitrification and embryo transfer testing, and resulted in similar survival (approximately 90% hatching) and pregnancy rates (17-25%). Three calves were born following vitrification and embryo transfer of these embryos; two from the PHA-treated group, and one from non-PHA control group. We concluded that PHA treatment significantly improved the fusion efficiency of somatic NT in cattle, and therefore, increased the development of cloned blastocysts. Furthermore, within a determined range of dose and duration, PHA had no detrimental effect on embryo survival post-vitrification, nor on pregnancy or calving rates following embryo transfer.

  2. File list: His.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.50.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  3. File list: His.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.05.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  4. File list: His.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.10.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  5. File list: His.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.20.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  6. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer.

    Science.gov (United States)

    Sung, Li-Ying; Gao, Shaorong; Shen, Hongmei; Yu, Hui; Song, Yifang; Smith, Sadie L; Chang, Ching-Chien; Inoue, Kimiko; Kuo, Lynn; Lian, Jin; Li, Ao; Tian, X Cindy; Tuck, David P; Weissman, Sherman M; Yang, Xiangzhong; Cheng, Tao

    2006-11-01

    Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.

  7. Cloning mice and ES cells by nuclear transfer from somatic stem cells and fully differentiated cells.

    Science.gov (United States)

    Wang, Zhongde

    2011-01-01

    Cloning animals by nuclear transfer (NT) has been successful in several mammalian species. In addition to cloning live animals (reproductive cloning), this technique has also been used in several species to establish cloned embryonic stem (ntES) cell lines from somatic cells. It is the latter application of this technique that has been heralded as being the potential means to produce isogenic embryonic stem cells from patients for cell therapy (therapeutic cloning). These two types of cloning differ only in the steps after cloned embryos are produced: for reproductive cloning the cloned embryos are transferred to surrogate mothers to allow them to develop to full term and for therapeutic cloning the cloned embryos are used to derive ntES cells. In this chapter, a detailed NT protocol in mouse by using somatic stem cells (neuron and skin stem cells) and fully differentiated somatic cells (cumulus cells and fibroblast cells) as nuclear donors is described.

  8. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated

  9. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.

    Science.gov (United States)

    Furusawa, Tadashi; Ohkoshi, Katsuhiro; Kimura, Koji; Matsuyama, Shuichi; Akagi, Satoshi; Kaneda, Masahiro; Ikeda, Mitsumi; Hosoe, Misa; Kizaki, Keiichiro; Tokunaga, Tomoyuki

    2013-08-01

    Bovine embryonic stem (ES) cells have the potential to provide significant benefits in a range of agricultural and biomedical applications. Here, we employed a combination of conventional methods using glycogen synthase kinase 3 and mitogen-activated protein kinase inhibitors to establish ES cell lines from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) bovine embryos. Five male cell lines were established from IVF embryos, and two female and three male cell lines from SCNT blastocysts; we named these lines bovine ES cell-like cells (bESLCs). The lines exhibited dome-shaped colonies, stained positively for alkaline phosphatase, and expressed pluripotent stem cell markers such as POU5F1, SOX2, and SSEA-1. The expression levels of these markers, especially for NANOG, varied among the cell lines. A DNA methylation assay showed the POU5F1 promoter region was hypomethylated compared to fibroblast cells. An in vitro differentiation assay showed that endoderm and ectoderm marker genes, but not mesoderm markers, were upregulated in differentiating bESLCs. To examine bESLCs in later embryonic stages, we created 22 chimeric blastocysts with a male bESLC line carrying a GFP marker gene and transferred these to a recipient cow. Four chimeric embryos were subsequently retrieved on Day 13 and retransferred to two recipient cows. One living fetus was obtained at Day 62. GFP signals were not identified in fetal cells by fluorescence microscopy; however, genomic PCR analysis detected the GFP gene in major organs. Clusters of GFP-positive cells were observed in amniotic membranes, suggesting that bESLCs can be categorized as a novel type of ICM-derived cells that can potentially differentiate into epiblast and hypoblast lineages.

  10. File list: DNS.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.10.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  11. File list: ALL.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Gon.20.AllAg.Testicular_somatic_cells mm9 All antigens Gonad Testicular somatic... cells SRX591728,SRX591729,SRX591717,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  12. File list: ALL.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Gon.50.AllAg.Testicular_somatic_cells mm9 All antigens Gonad Testicular somatic... cells SRX591728,SRX591729,SRX591717,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  13. File list: Unc.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.10.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  14. File list: DNS.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.20.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  15. File list: Pol.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.05.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  16. File list: Oth.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.20.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  17. File list: Unc.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.50.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  18. File list: DNS.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.50.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  19. File list: Oth.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.10.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  20. File list: DNS.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.05.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  1. File list: Unc.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.05.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  2. File list: Unc.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.20.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  3. File list: Pol.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.20.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  4. File list: ALL.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Gon.05.AllAg.Testicular_somatic_cells mm9 All antigens Gonad Testicular somatic... cells SRX591729,SRX591728,SRX591717,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  5. File list: Pol.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.10.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  6. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    Science.gov (United States)

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved. © 2012 Blackwell Verlag GmbH.

  7. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    Directory of Open Access Journals (Sweden)

    Masakazu Hamada

    Full Text Available The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.

  8. Characterization Of Bovine Adipose-Derived Stem Cells

    OpenAIRE

    Daniel Cebo

    2017-01-01

    Bovine adipose-derived stem cells were obtained from the subcutaneous abdominal adipose tissue. The cells were cultured by the modified tissue-explants method developed in our laboratory and then analyzed using optical microscopy and flow cytometry. These cells were able to replicate in our cell culture conditions. cell Flow cytometry showed that bovine adipose-derived stem cells expressed mesenchymal stem cell markers CD73 and CD90. Meanwhile haematopoietic markers CD45 and CD34 are absent f...

  9. Relationship of milking rate to somatic cell count.

    Science.gov (United States)

    Brown, C A; Rischette, S J; Schultz, L H

    1986-03-01

    Information on milking rate, monthly bucket somatic cell counts, mastitis treatment, and milk production was obtained from 284 lactations of Holstein cows separated into three lactation groups. Significant correlations between somatic cell count (linear score) and other parameters included production in lactation 1 (-.185), production in lactation 2 (-.267), and percent 2-min milk in lactation 2 (.251). Somatic cell count tended to increase with maximum milking rate in all lactations, but correlations were not statistically significant. Twenty-nine percent of cows with milking rate measurements were treated for clinical mastitis. Treated cows in each lactation group produced less milk than untreated cows. In the second and third lactation groups, treated cows had a shorter total milking time and a higher percent 2-min milk than untreated cows, but differences were not statistically significant. Overall, the data support the concept that faster milking cows tend to have higher cell counts and more mastitis treatments, particularly beyond first lactation. However, the magnitude of the relationship was small.

  10. Lipoprotein receptors in cultured bovine endothelial cells

    International Nuclear Information System (INIS)

    Struempfer, A.E.M.

    1983-07-01

    In this study, receptors that may be involved in the uptake of low density lipoproteins (LDL) and low density lipoproteins which have been modified by acetylation (AcLDL), were characterized. Aortic epithelial cells were used and a cell culture system which closely resembled the in vivo monolayer was established. Endothelial cell and lipoprotein interactions were examined by incubating the cells with 125 l-labelled lipoproteins under various conditions. The receptor affinity of bovine aortic endothelial cells was higher for AcLDL than that for LDL. Competition studies demonstrated that there were two distinct receptors for LDL and AcLDL on the endothelial cells. AcLDL did not compete with LDL for the LDL receptor, and conversely LDL did not compete with AcLDL for the AcLDL receptor. The receptor activities for LDL and AcLDL were examined as a function of culture age. Whereas the LDL receptor could be regulated, the AcLDL receptor was not as susceptible to regulation. Upon exposing endothelial cells for 72 h to either LDL or AcLDL, it was found that the total amount of cellular cholesterol increased by about 50%. However, the increase of total cholesterol was largely in the form of free cholesterol. This is in contrast to macrophages, where the increase in total cholesterol upon exposure to AcLDL is largely in the form cholesteryl esters

  11. Cloning Endangered Felids by Interspecies Somatic Cell Nuclear Transfer.

    Science.gov (United States)

    Gómez, Martha C; Pope, C Earle

    2015-01-01

    In 2003, the first wild felid was produced by interspecies somatic cell nuclear transfer. Since then other wild felid clone offspring have been produced by using the same technique with minor modifications. This chapter describes detailed protocols used in our laboratory for (1) the isolation, culture, and preparation of fibroblast cells as donor nucleus, and (2) embryo reconstruction with domestic cat enucleated oocytes to produce cloned embryos that develop to the blastocyst stage in vitro and, after transfer into synchronized recipients, establish successful pregnancies.

  12. A stochastic model of epigenetic dynamics in somatic cell reprogramming

    Directory of Open Access Journals (Sweden)

    Max eFloettmann

    2012-06-01

    Full Text Available Somatic cell reprogramming has dramatically changed stem cell research inrecent years. The high pace of new findings in the field and an ever increasingamount of data from new high throughput techniques make it challengingto isolate core principles of the process. In order to analyze suchmechanisms, we developed an abstract mechanistic model of a subset of theknown regulatory processes during cell differentiation and production of inducedpluripotent stem cells. This probabilistic Boolean network describesthe interplay between gene expression, chromatin modifications and DNAmethylation. The model incorporates recent findings in epigenetics and reproducesexperimentally observed reprogramming efficiencies and changes inmethylation and chromatin remodeling. It enables us to investigate in detail,how the temporal progression of the process is regulated. It also explicitlyincludes the transduction of factors using viral vectors and their silencing inreprogrammed cells, since this is still a standard procedure in somatic cellreprogramming. Based on the model we calculate an epigenetic landscape.Simulation results show good reproduction of experimental observations duringreprogramming, despite the simple stucture of the model. An extensiveanalysis and introduced variations hint towards possible optimizations of theprocess, that could push the technique closer to clinical applications. Fasterchanges in DNA methylation increase the speed of reprogramming at theexpense of efficiency, while accelerated chromatin modifications moderatelyimprove efficiency.

  13. X-ray sensitivity of somatic cell hybrids

    International Nuclear Information System (INIS)

    Zampetti-Bosseler, F.; Heilporn, V.; Lievens, A.; Limbosch, S.

    1976-01-01

    Different somatic cell hybrids have been studied as a function of their x-ray survival and karyotypic properties. Hybrids between x-ray-sensitive mouse lymphoma cells and mouse fibroblasts, retaining a large proportion of both parental chromosomes, were much more resistant to irradiation than either of the parental cells. On the other hand, hybrids between sensitive mouse lymphoma cells and hamster fibroblasts which also retained a relatively high number of chromosomes from both parents had a sensitivity intermediate between the sensitivities of the parental cell lines. Finally, hybrids between mouse fibroblasts and hamster fibroblasts carrying at least one hamster genome and less than one mouse genome resembled the hamster parent with respect to survival capactity. The significance of these results is discussed

  14. Somatic cell genotoxicity at the glycophorin A locus in humans

    International Nuclear Information System (INIS)

    Jensen, R.H.; Grant, S.G.; Langlois, R.G.; Bigbee, W.L.

    1990-01-01

    We have developed an assay for detecting variant erythrocytes that occur as a result of in vivo allele loss at the glycophorin A (GPA) locus on chromosome 4 in humans. This gene codes for an erythroid- specific cell surface glycoprotein, and with our assay we are able to detect rare variant erythrocytes that have lost expression of one of the two GPA alleles. Two distinctly different variant cell types are detected with this assay. One variant cell type (called N OE) is hemizygous. Our assay also detects homozygous variant erythrocytes that have lost expression of the GPA(M) allele and express the GPA(N) allele at twice the heterozygous level. The results of this assay are an enumeration of the frequency of N OE and NN variant cell types for each individual analyzed. These variant cell frequencies provide a measure of the amount of somatic cell genotoxicity that has occurred at the GPA locus. Such genotoxicity could be the result of (1) reactions of toxic chemicals to which the individual has been exposed, or (2) high energy radiation effects on erythroid precursor cells, or (3) errors in DNA replication or repair in these cells of the bone marrow. Thus, the GPA-based variant cell frequency can serve as a biodosimeter that indicates the amount of genotoxic exposure each individual has received. Because two very different kinds of variant cells are enumerated, different kinds of genotoxicity should be distinguishable. Results of the GPA somatic genotoxicity assay may also provide valuable information for cancer-risk estimation on each individual. 16 refs

  15. File list: NoD.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.50.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  16. File list: NoD.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.05.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  17. File list: NoD.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.20.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  18. Local Actions of Melatonin in Somatic Cells of the Testis.

    Science.gov (United States)

    Frungieri, Mónica Beatriz; Calandra, Ricardo Saúl; Rossi, Soledad Paola

    2017-05-31

    The pineal hormone melatonin regulates testicular function through the hypothalamic-adenohypophyseal axis. In addition, direct actions of melatonin in somatic cells of the testis have been described. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular growth, proliferation, energy metabolism and the oxidation state, and consequently may regulate spermatogenesis. These data pinpoint melatonin as a key player in the regulation of testicular physiology (i.e., steroidogenesis, spermatogenesis) mostly in seasonal breeders. In patients with idiopathic infertility, melatonin exerts anti-proliferative and anti-inflammatory effects on testicular macrophages, and provides protective effects against oxidative stress in testicular mast cells. Consequently, melatonin is also involved in the modulation of inflammatory and oxidant/anti-oxidant states in testicular pathology. Overall, the literature data indicate that melatonin has important effects on testicular function and male reproduction.

  19. Sex-reversed somatic cell cloning in the mouse.

    Science.gov (United States)

    Inoue, Kimiko; Ogonuki, Narumi; Mekada, Kazuyuki; Yoshiki, Atsushi; Sado, Takashi; Ogura, Atsuo

    2009-10-01

    Somatic cell nuclear transfer has many potential applications in the fields of basic and applied sciences. However, it has a disadvantage that can never be overcome technically-the inflexibility of the sex of the offspring. Here, we report an accidental birth of a female mouse following nuclear transfer using an immature Sertoli cell. We produced a batch of 27 clones in a nuclear transfer experiment using Sertoli cells collected from neonatal male mice. Among them, one pup was female. This "male-derived female" clone grew into a normal adult and produced offspring by natural mating with a littermate. Chromosomal analysis revealed that the female clone had a 39,X karyotype, indicating that the Y chromosome had been deleted in the donor cell or at some early step during nuclear transfer. This finding suggests the possibility of resuming sexual reproduction after a single male is cloned, which should be especially useful for reviving extinct or endangered species.

  20. Method for somatic cell nuclear transfer in zebrafish.

    Science.gov (United States)

    Siripattarapravat, Kannika; Cibelli, Jose B

    2011-01-01

    Somatic cell nuclear transfer (SCNT) has been a well-known technique for decades and widely applied to generate identical animals, including ones with genetic alterations. The system has been demonstrated successfully in zebrafish. The elaborated requirements of SCNT, however, limit reproducibility of the established model to a few groups in zebrafish research community. In this chapter, we meticulously outline each step of the published protocol as well as preparations of equipments and reagents used in zebrafish SCNT. All describable detailed-tips are elaborated in texts and figures. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization

    OpenAIRE

    Jin, Muzi; Wu, Asga; Dorzhin, Sergei; Yue, Qunhua; Ma, Yuzhen; Liu, Dongjun

    2012-01-01

    Although isolation and characterization of embryonic stem cells have been successful in cattle, maintenance of bovine embryonic stem cells in culture remains difficult. In this study, we compared different methods of cell passaging, feeder cell layers and medium conditions for bovine embryonic stem cell-like cells. We found that a murine embryonic fibroblast feeder layer is more suitable for embryonic stem cell-like cells than bovine embryonic fibroblasts. When murine embryonic fibroblasts we...

  2. Injection molded pinched flow fractionation device for enrichment of somatic cells in cow milk

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Marie, Rodolphe; Olesen, Tom

    2014-01-01

    In this paper the continuous microfluidic separation technique pinched flow fractionation is applied to the enrichment of somatic cells from cow milk. Somatic cells were separated from the smallest fat particles and proteins thus better imaging and analysis of the cells can be achieved...

  3. Somatic embryogenesis in cell cultures of Glycine species.

    Science.gov (United States)

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  4. In vitro oocyte culture and somatic cell nuclear transfer used to produce a live-born cloned goat.

    Science.gov (United States)

    Ohkoshi, Katsuhiro; Takahashi, Seiya; Koyama, Shin-Ichiro; Akagi, Satoshi; Adachi, Noritaka; Furusawa, Tadashi; Fujimoto, Jun-Ichiro; Takeda, Kumiko; Kubo, Masanori; Izaike, Yoshiaki; Tokunaga, Tomoyuki

    2003-01-01

    The use of an in vitro culture system was examined for production of somatic cells suitable for nuclear transfer in the goat. Goat cumulus-oocyte complexes were incubated in tissue culture medium TCM-199 supplemented with 10% fetal bovine serum (FBS) for 20 h. In vitro matured (IVM) oocytes were enucleated and used as karyoplast recipients. Donor cells obtained from the anterior pituitary of an adult male were introduced into the perivitelline space of enucleated IVM oocytes and fused by an electrical pulse. Reconstituted oocytes were cultured in chemically defined medium for 9 days. Two hundred and twenty-eight oocytes (70%) were fused with donor cells. After in vitro culture, seven somatic cell nuclear transfer (SCNT) oocytes (3%) developed to the blastocyst stage. SCNT embryos were transferred to the oviducts of recipient females (four 8-cell embryos per female) or uterine horn (two blastocysts per female). One male clone (NT1) was produced at day 153 from an SCNT blastocyst and died 16 days after birth. This study demonstrates that nuclear transferred goat oocytes produced using an in vitro culture system could develop to term and that donor anterior pituitary cells have the developmental potential to produce term offspring. In this study, it suggested that the artificial control of endocrine system in domestic animal might become possible by the genetic modification to anterior pituitary cells.

  5. The somatic genomic landscape of chromophobe renal cell carcinoma.

    Science.gov (United States)

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-09-08

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared with other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT upregulation in cancer distinct from previously observed amplifications and point mutations. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Deterministic direct reprogramming of somatic cells to pluripotency.

    Science.gov (United States)

    Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H

    2013-10-03

    Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.

  7. Influence of different dose irradiation on genetic effect in mice somatic and germ cells

    International Nuclear Information System (INIS)

    Kostrova, L.N.; Molofej, V.P.; Mosseh, I.B.

    2007-01-01

    Comparison of clastogenic effects of different radiation doses in somatic and germ cells of one the same animals has been studied. Correlation analysis allows to extrapolate genetic effects from somatic cells to germ ones. This can be useful for human model elaboration. (authors)

  8. Genetic associations for pathogen-specific clinical mastitis and patterns of peaks in somatic cell count

    NARCIS (Netherlands)

    Haas, de Y.; Barkema, H.W.; Schukken, Y.H.; Veerkamp, R.F.

    2003-01-01

    Genetic associations were estimated between pathogen-specific cases of clinical mastitis (CM), lactational average somatic cell score (LACSCS), and patterns of peaks in somatic cell count (SCC) which were based on deviations from the typical lactation curve for SCC. The dataset contained test-day

  9. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    International Nuclear Information System (INIS)

    Rauner, Gat; Barash, Itamar

    2014-01-01

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth

  10. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, Gat, E-mail: gat.rauner@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel); The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem (Israel); Barash, Itamar, E-mail: itamar.barash@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel)

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.

  11. Adherence of Moraxella bovis to cell cultures of bovine origin.

    Science.gov (United States)

    Annuar, B O; Wilcox, G E

    1985-09-01

    The adherence of five strains of Moraxella bovis to cell cultures was investigated. M bovis adhered to cultures of bovine corneal epithelial and Madin-Darby bovine kidney cells but not to cell types of non-bovine origin. Both piliated and unpiliated strains adhered but piliated strains adhered to a greater extent than unpiliated strains. Antiserum against pili of one strain inhibited adherence of piliated strains but caused only slight inhibition of adherence to the unpiliated strains. Treatment of bacteria with magnesium chloride caused detachment of pili from the bacterial cell and markedly inhibited adherence of piliated strains but caused only slight inhibition of adherence by the unpiliated strains. The results suggested that adhesion of piliated strains to cell cultures was mediated via pili but that adhesins other than pili may be involved in the attachment of unpiliated strains of M bovis to cells.

  12. CYTOLOGICAL QUALITY OF GOAT MILK ON THE BASIS OF THE SOMATIC CELL COUNT

    Directory of Open Access Journals (Sweden)

    Henryka BERNACKA

    2007-07-01

    Full Text Available The aim of the present paper was to evaluate the cytological quality of goat milk based on the somatic cell count in respective months of lactation. Besides there was defined the effect of somatic cell on the milk production and chemical composition of milk. The research covered goats of color improved breed in the 2nd and 3rd lactation. Daily milk yield, chemical composition of milk and its somatic cell count were defined based on monthly morning and evening control milkings from both teats, following the A4 method applied in District Animal Evaluation Stations. The research indicated that the greater the somatic cell count in milk, the lower the daily milk yield, however the greater the somatic cell count, the greater the percentage content of fat and dry matter and the lower the content of lactose.

  13. Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders.

    Science.gov (United States)

    Hou, Shaoping; Lu, Paul

    2016-01-01

    Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important frontier fields in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or induced neural stem cells are a safer and timelier manner resource in comparison to those derived from induced pluripotent stem cells. In this prospective, we review the recent advances in generation of induced neurons and induced neural stem cells in vitro and in vivo and their potential treatments of neurological disorders.

  14. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    OpenAIRE

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors 1,2 . Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote linea...

  15. Interrelationships of somatic cell count, mastitis, and milk yield in a low somatic cell count herd.

    Science.gov (United States)

    Deluyker, H A; Gay, J M; Weaver, L D

    1993-11-01

    In a high yielding low SCC herd, changes in milk yield associated with SCC and occurrence of clinical mastitis and differences in SCC with parity, clinical mastitis, and DIM were investigated. Milk yield data were obtained at every milking, and SCC was measured once every 48 h in 117 cows during the first 119 d postpartum. Effects of SCC and clinical mastitis on cumulative milk yield in the first 119 d postpartum were evaluated with least squares linear regression. Repeated measures ANOVA was used to detect changes in SCC. The SCC was highest at lactation onset, and cows with clinical mastitis had significantly higher SCC. During the 10 d prior to onset of clinical mastitis, SCC was higher in affected cows than in matched unaffected controls and surged just prior to diagnosis. During the 10-d period following a mastitis treatment, SCC differences between treated and control cows remained significant but became smaller with time and returned to the premastitis differences. Occurrence of clinical mastitis was associated with 5% milk yield loss. Cows with mean SCC > 245,000 cells/ml over the 119 d showed 6.2% yield loss compared with cows with SCC 245,000 cells/ml) because a greater percentage of cows (26%) had clinical mastitis than elevated SCC (12.5%).

  16. Novel somatic and germline mutations in intracranial germ cell tumours.

    Science.gov (United States)

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M; Gibbs, Richard A; Leal, Suzanne M; Wheeler, David A; Lau, Ching C

    2014-07-10

    Intracranial germ cell tumours (IGCTs) are a group of rare heterogeneous brain tumours that are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographical and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically five- to eightfold greater in Japan and other East Asian countries than in Western countries, with peak incidence near the time of puberty. About half of the tumours are located in the pineal region. The male-to-female incidence ratio is approximately 3-4:1 overall, but is even higher for tumours located in the pineal region. Owing to the scarcity of tumour specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next-generation sequencing, single nucleotide polymorphism array and expression array. We find the KIT/RAS signalling pathway frequently mutated in more than 50% of IGCTs, including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gains of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional co-repressor and tumour suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, which codes for a histone demethylase and is a coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway.

  17. Novel somatic and germline mutations in intracranial germ cell tumors

    Science.gov (United States)

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D.; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M.; Gibbs, Richard A.; Leal, Suzanne M.; Wheeler, David A.; Lau, Ching C.

    2015-01-01

    Intracranial germ cell tumors (IGCTs) are a group of rare heterogeneous brain tumors which are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographic and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically 5–8 fold greater in Japan and other East Asian countries than in Western countries1 with peak incidence near the time of puberty2. About half of the tumors are located in the pineal region. The male-to-female incidence ratio is approximately 3–4:1 overall but even higher for tumors located in the pineal region3. Due to the scarcity of tumor specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next generation sequencing, SNP array and expression array. We find the KIT/RAS signaling pathway frequently mutated in over 50% of IGCTs including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gain of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional corepressor and tumor suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, a histone demethylase and coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway. PMID:24896186

  18. The mechanism of gene targeting in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Yinan Kan

    2014-04-01

    Full Text Available Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB repair known as homologous recombination (HR. The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  19. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq.

    Science.gov (United States)

    Reinius, Björn; Mold, Jeff E; Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard

    2016-11-01

    Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and freshly isolated human CD8 + T cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells' transcriptomes, with levels dependent on the cells' transcriptional activity. Notably, clonal aRME was detected, but it was surprisingly scarce (aRME occurs transiently within individual cells, and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells.

  20. File list: InP.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.10.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somati...c cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  1. File list: InP.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.20.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somatic... cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  2. File list: InP.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.50.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somatic... cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  3. File list: NoD.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.10.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  4. Differentiation of Bovine Spermatogonial Stem Cells into Osteoblasts

    OpenAIRE

    Qasemi-Panahi, Babak; Tajik, Parviz; Movahedin, Mansoureh; Moghaddam, Gholamali; Barzgar, Younes; Heidari-Vala, Hamed

    2011-01-01

    Spermatogonial Stem Cell (SSC) technologies provide multiple opportunities for research in the field of biotechnology and regenerative medicine. The therapeutic use of Embryonic Stem Cells (ESCs) is restricted due to severe ethical and immunological concerns. Therefore, we need a new pluripotent cell type. Despite well-known role of germ cells in the gametogenesis, some facts apparently show their multipotentiality. In the present study, bovine SSCs were co-cultured with Sertoli cell for 7 da...

  5. Evaluation of porcine stem cells competence for somatic cell nuclear transfer and production of cloned animals

    DEFF Research Database (Denmark)

    Secher, Jan; Liu, Ying; Petkov, Stoyan

    2017-01-01

    Porcine somatic cell nuclear transfer (SCNT) has been used extensively to create genetically modified pigs, but the efficiency of the methodology is still low. It has been hypothesized that pluripotent or multipotent stem cells might result in increased SCNT efficacy as these cells are closer than...... somatic cells to the epigenetic state found in the blastomeres and therefore need less reprogramming. Our group has worked with porcine SCNT during the last 20 years and here we describe our experience with SCNT of 3 different stem cell lines. The porcine stem cells used were: Induced pluripotent stem...... cells (iPSCs) created by lentiviral doxycycline-dependent reprogramming and cultered with a GSK3β- and MEK-inhibitor (2i) and leukemia inhibitor factor (LIF) (2i LIF DOX-iPSCs), iPSCs created by a plasmid-based reprogramming and cultured with 2i and fibroblast growth factor (FGF) (2i FGF Pl...

  6. Antigen receptors and somatic hypermutation in B-cell chronic lymphocytic leukemia with Richter's transformation

    NARCIS (Netherlands)

    Smit, Laura A.; van Maldegem, Febe; Langerak, Anton W.; van der Schoot, C. Ellen; de Wit, Mireille J.; Bea, Silvia; Campo, Elias; Bende, Richard J.; van Noesel, Carel J. M.

    2006-01-01

    BACKGROUND AND OBJECTIVES: Activation-induced cytidine deaminase is essential for somatic hypermutation and class switch recombination of the immunoglobulin genes in B cells. It has been proposed that aberrant targeting of the somatic hypermutation machinery is instrumental in initiation and

  7. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.

    Science.gov (United States)

    Biswas, Dhruba; Jiang, Peng

    2016-02-06

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming.

  8. Influences of somatic donor cell sex on and embryo development following somatic cell nuclear transfer in pigs

    Directory of Open Access Journals (Sweden)

    Jae-Gyu Yoo

    2017-04-01

    Full Text Available Objective The present study investigates pre- and post-implantation developmental competence of nuclear-transferred porcine embryos derived from male and female fetal fibroblasts. Methods Male and female fetal fibroblasts were transferred to in vitro-matured enucleated oocytes and in vitro and in vivo developmental competence of reconstructed embryos was investigated. And, a total of 6,789 female fibroblast nuclear-transferred embryos were surgically transferred into 41 surrogate gilts and 4,746 male fibroblast nuclear-transferred embryos were surgically transferred into 25 surrogate gilts. Results The competence to develop into blastocysts was not significantly different between the sexes. The mean cell number of female and male cloned blastocysts obtained by in vivo culture (143.8±10.5 to 159.2±14.8 was higher than that of in vitro culture of somatic cell nuclear transfer (SCNT groups (31.4±8.3 to 33.4±11.1. After embryo transfer, 5 pregnant gilts from each treatment delivered 15 female and 22 male piglets. The average birth weight of the cloned piglets, gestation length, and the postnatal survival rates were not significantly different (p<0.05 between sexes. Conclusion The present study found that the sex difference of the nuclear donor does not affect the developmental rate of porcine SCNT embryos. Furthermore, postnatal survivability of the cloned piglets was not affected by the sex of the donor cell.

  9. Somatic cell counts in bulk milk and their importance for milk processing

    Science.gov (United States)

    Savić, N. R.; Mikulec, D. P.; Radovanović, R. S.

    2017-09-01

    Bulk tank milk somatic cell counts are the indicator of the mammary gland health in the dairy herds and may be regarded as an indirect measure of milk quality. Elevated somatic cell counts are correlated with changes in milk composition The aim of this study was to assess the somatic cell counts that significantly affect the quality of milk and dairy products. We examined the somatic cell counts in bulk tank milk samples from 38 farms during the period of 6 months, from December to the May of the next year. The flow cytometry, Fossomatic was used for determination of somatic cell counts. In the same samples content of total proteins and lactose was determined by Milcoscan. Our results showed that average values for bulk tank milk samples were 273,605/ml from morning milking and 292,895/ml from evening milking. The average values for total proteins content from morning and evening milking are 3,31 and 3,34%, respectively. The average values for lactose content from morning and evening milking are 4,56 and 4,63%, respectively. The highest somatic cell count (516,000/ml) was detected in bulk tank milk sample from evening milk in the Winter and the lowest content of lactose was 4,46%. Our results showed that obtained values for bulk tank milk somatic cell counts did not significantly affected the content of total proteins and lactose.

  10. Propagation of bovine spermatogonial stem cells in vitro

    NARCIS (Netherlands)

    Aponte, Pedro M.; Soda, Takeshi; Teerds, Katja J.; Mizrak, S. Canan; van de Kant, Henk J. G.; de Rooij, Dirk G.

    2008-01-01

    The access to sufficient numbers of spermatogonial stem cells (SSCs) is a prerequisite for the study of their regulation and further biomanipulation. A specialized medium and several growth factors were tested to study the in vitro behavior of bovine type A spermatogonia, a cell population that

  11. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    International Nuclear Information System (INIS)

    Robinson, Claire; Kolb, Andreas F.

    2009-01-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A β-galactosidase reporter gene was inserted in place of the β-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the β-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal β-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the β-casein gene

  12. At the crossroads of fate - somatic cell lineage specification in the fetal gonad

    DEFF Research Database (Denmark)

    Rotgers, Emmi; Jørgensen, Anne; Yao, Humphrey Hung-Chang

    2018-01-01

    The reproductive endocrine systems are vastly different between male and female. This sexual dimorphism of endocrine milieu originates from sex-specific differentiation of the somatic cells in the gonads during fetal life. The majority of gonadal somatic cells arise from the adrenogonadal...... of the reproductive tracts. Impairment of lineage specification and function of gonadal somatic cells can lead to disorders of sexual development (DSDs) in humans. Human DSDs and processes for gonadal development have been successfully modelled using genetically modified mouse models. In this review, we focus...

  13. Quercetin decrease somatic cells count in mastitis of dairy cows.

    Science.gov (United States)

    Burmańczuk, Artur; Hola, Piotr; Milczak, Andrzej; Piech, Tomasz; Kowalski, Cezary; Wojciechowska, Beata; Grabowski, Tomasz

    2018-04-01

    Quercetin is a dietary flavonoid which has an effect on inflammation, angiogenesis and vascular inflammation. In several other flavonoids (e.g. kaempferol, astragalin, alpinetin, baicalein, indirubin), anti-inflammatory mechanism was proven by using mice mastitis model. The aim of the current study was pilot analysis of quercetin tolerability and its impact on somatic cells count (SCC) after multiple intramammary treatment on dairy cows with clinical mastitis. Based on SCC and clinical investigation, 9 dairy cows with clinical mastitis of one quarter were selected for the pilot study. Baseline analysis (hematology, TNFα, SCC) was performed every 24h among all cows three days before the first dose (B1-B3). After the baseline monitoring (B1-B3) eight days treatment (D1-D8) was performed with a high and low dose. Selected blood parameters were analyzed. Starting from D1 to D8, a decrease of SCC in relation to baseline was characterized by declining trend. The presented results allowed the confirmation of the significant influence of quercetin on the reduction of SCC in mastitis in dairy cows after 8days of therapy. Copyright © 2018. Published by Elsevier Ltd.

  14. Occurrence of mastitis pathogens in relation to somatic cells

    Directory of Open Access Journals (Sweden)

    Marcela Vyletělová Klimešová

    2013-01-01

    Full Text Available There were examined 161 cows from 4 farms in total. The suspect animals were selected according to viscosity test results, clinical symptoms and somatic cell count (SCC. Milk samples were examined for the presence of pathogens and for SCC. 55 mastitis pathogens were identified. The most frequently isolated species was Enterococcus faecalis (n = 20, followed by Staphylococcus aureus (n = 6 and Streptococcus uberis (n = 5. The SCC ranged from 9 to 24 204 ths.ml−1. There was positive occurrence of bacteria genus Staphylococcus and Enterococcus at lower SCC (50 ths.ml−1 and at higher SCC numbers (> 300 ths. ml−1 bacteria genus Streptococcus, Enterobacter and Escherichia coli. Differences in SCC were significant (P < 0.001 in negative samples xg 131 SCC versus 491 for positive, 611 for staphylococci and 464 ths.ml−1 for other positive. SCC discrimination limit for practical likelihood of pathogen occurrence estimation in infectious sample groups was calculated. This limit for suspicion of infection is 159 for positive group, 113 for staphylococci and 174 ths.ml−1 for other positive. This could be possible to recommend the value 174 ths.ml−1 for practical use with target to apply preventive or curative measures.

  15. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm

    International Nuclear Information System (INIS)

    Alberio, Ramiro; Johnson, Andrew D.; Stick, Reimer; Campbell, Keith H.S.

    2005-01-01

    The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requires permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells

  16. Influence of udder infection status on milk enzyme activities and somatic cell count throughout early lactation in goats

    DEFF Research Database (Denmark)

    Stuhr, T; Aulrich, K; Barth, K

    2013-01-01

    At present the analysis of somatic cell count (SCC) used for the detection of intramammary infections (IMI) in bovine milk is also recommended for goat milk, but due to the various factors influencing SCC it allows only limited conclusions on the udder health of goats. The research on enzyme...... activity in milk appears to show promise in finding an approach with more suitable indicators of the early detection of IMI in goats. Therefore, the present study aimed to investigate the influence of goat udder infection status on different milk enzyme activities and SCC throughout early lactation....... A total of 60 dairy goats were sampled at weekly intervals over a period of 6 weeks after kidding and the bacteriological status, milk SCC and the activity of N-acetyl-β-d-glucosaminidase (NAGase), β-glucuronidase and lactate dehydrogenase (LDH) of udder halves were analysed. Infections with minor...

  17. Economic cost of increased somatic cell count in South African dairy ...

    African Journals Online (AJOL)

    cuthbert

    2014-06-24

    Jun 24, 2014 ... Relative economic values, standardized to the value of protein, were ... as somatic cell count (SCC), is the most widely used measure of raw milk quality. .... Milk (l). Fat (kg). Protein (kg). Calving interval (days). Live weight (kg).

  18. The uranyl influence on a mutation process in germ and somatic cells of mice

    International Nuclear Information System (INIS)

    Kostrova, L.N.; Mosseh, I.B.; Molofej, V.P.

    2008-01-01

    The mutagenic effect of uranyl was revealed by the chromosome rearrangement test in germ and somatic cells of mice. The effect value depended on duration of substance administration into organism. (authors)

  19. Factors affecting somatic cell count in dairy goats: a review

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Granda, R.; Sanchez-Rodriguez, M.; Arce, C.; Rodriguez-Estevez, V.

    2014-06-01

    Somatic cell count (SCC) in monitoring udder health has been described in numerous studies as a useful method for the diagnosis of intramammary infection (IMI), and it is considered in standards of quality and hygiene of cows milk in many countries. However, several authors have questioned the validity of SCC as a reliable IMI diagnosis tool in dairy goats. This review attempts to reflect the importance of different infectious and non-infectious factors that can modify SCC values in goat milk, and must, therefore, be taken into account when using the SCC as a tool in the improvement of udder health and the quality of milk in this species. In dairy goats, some investigations have shown that mammary bacterial infections are a major cause of increased SCC and loss of production. In goats however, the relationship between bacterial infections and SCC values is not as simple as in dairy cattle, since non-infectious factors also have a big impact on SCC. Intrinsic factors are those that depend directly on the animal: time and number of lactation (higher SCC late in lactation and in aged goats), prolificity (higher SCC in multiple births), milking time (higher SCC in evening compared to morning milking) and number of milkings per day, among others. Extrinsic factors include: milking routine (lower SCC in machine than in manual milking), seasonality and food. In addition, milk secretion in goats is mostly apocrine and therefore characterized by the presence of epithelial debris or cytoplasmic particles, which makes the use of DNA specific counters mandatory. All this information is of interest in order to correctly interpret the SCC in goat milk and to establish differential SCC standards. (Author)

  20. Somatic cell count of milk from different goat breeds

    Directory of Open Access Journals (Sweden)

    Csanádi J.

    2015-01-01

    Full Text Available There is no standard limit value for somatic cell count (SCC of raw goat milk in the EU despite that excellent hygienic quality milk is needed for the manufacture of fermented milk products or cheese varieties. Mastitis often results such high SCC - besides the potential risk for humans - that the clotting of milk will not be perfect, resulting slack curd with higher whey releasing; furthermore, wrong structure, ripening, bad sensory properties of cheese can also be its consequences. In this paper, we report the SCC of milk samples from five different goat breeds bred in Hungary, measured with two fast methods compared with the results from the reference method. Furthermore, we investigated the applicability and the accuracy of the MT-02 (Agro Legato Ltd., Hungary instrument. We determined that the White Side test and the instrument MT were suitable for the estimation of possible risks and consequences in the case of the use of high SCC milk before production. The general summarized average milk SCC was 6.64 × 105 ml−1. The highest difference between the results from MT-02 and the fluorometric (reference method was 5 × 105 ml−1, but it was a singular, extreme value. The r2 of the calculated linear calibration equation was 0.7819; consequently, this method seems to be applicable in the measurement of SCC with MT-02 instrument. Furthermore, the SCC of samples did not differ significantly by genotypes and by seasons (spring: 5.85 × 105 ml−1, autumn: 6.22 × 105 ml−1.

  1. Factors affecting somatic cell count in dairy goats: a review

    Directory of Open Access Journals (Sweden)

    Rocío Jiménez-Granado

    2014-02-01

    Full Text Available Somatic cell count (SCC in monitoring udder health has been described in numerous studies as a useful method for the diagnosis of intramammary infection (IMI, and it is considered in standards of quality and hygiene of cow’s milk in many countries. However, several authors have questioned the validity of SCC as a reliable IMI diagnosis tool in dairy goats. This review attempts to reflect the importance of different infectious and non-infectious factors that can modify SCC values in goat milk, and must, therefore, be taken into account when using the SCC as a tool in the improvement of udder health and the quality of milk in this species. In dairy goats, some investigations have shown that mammary bacterial infections are a major cause of increased SCC and loss of production. In goats however, the relationship between bacterial infections and SCC values is not as simple as in dairy cattle, since non-infectious factors also have a big impact on SCC. Intrinsic factors are those that depend directly on the animal: time and number of lactation (higher SCC late in lactation and in aged goats, prolificity (higher SCC in multiple births, milking time (higher SCC in evening compared to morning milking and number of milkings per day, among others. Extrinsic factors include: milking routine (lower SCC in machine than in manual milking, seasonality and food. In addition, milk secretion in goats is mostly apocrine and therefore characterized by the presence of epithelial debris or cytoplasmic particles, which makes the use of DNA specific counters mandatory. All this information is of interest in order to correctly interpret the SCC in goat milk and to establish differential SCC standards.

  2. Bovine Lhx8, a Germ Cell-Specific Nuclear Factor, Interacts with Figla.

    Directory of Open Access Journals (Sweden)

    Liyuan Fu

    Full Text Available LIM homeobox 8 (Lhx8 is a germ cell-specific transcription factor essential for the development of oocytes during early oogenesis. In mice, Lhx8 deficiency causes postnatal oocyte loss and affects the expression of many oocyte-specific genes. The aims of this study were to characterize the bovine Lhx8 gene, determine its mRNA expression during oocyte development and early embryogenesis, and evaluate its interactions with other oocyte-specific transcription factors. The bovine Lhx8 gene encodes a protein of 377 amino acids. A splice variant of Lhx8 (Lhx8_v1 was also identified. The predicted bovine Lhx8 protein contains two LIM domains and one homeobox domain. However, one of the LIM domains in Lhx8_v1 is incomplete due to deletion of 83 amino acids near the N terminus. Both Lhx8 and Lhx8_v1 transcripts were only detected in the gonads but none of the somatic tissues examined. The expression of Lhx8 and Lhx8_v1 appears to be restricted to oocytes as none of the transcripts was detectable in granulosa or theca cells. The maternal Lhx8 transcript is abundant in GV and MII stage oocytes as well as in early embryos but disappear by morula stage. A nuclear localization signal that is required for the import of Lhx8 into nucleus was identified, and Lhx8 is predominantly localized in the nucleus when ectopically expressed in mammalian cells. Finally, a novel interaction between Lhx8 and Figla, another transcription factor essential for oogenesis, was detected. The results provide new information for studying the mechanisms of action for Lhx8 in oocyte development and early embryogenesis.

  3. Exfoliation rate of mammary epithelial cells in milk on bovine mastitis caused by Staphylococcus aureus is associated with bacterial load.

    Science.gov (United States)

    Nagasawa, Yuya; Kiku, Yoshio; Sugawara, Kazue; Tanabe, Fuyuko; Hayashi, Tomohito

    2018-01-01

    The exfoliation rate of mammary epithelial cells (MECs) in milk is affected by physiological, breeding and environmental factors. Little is known about the relationship between the MEC exfoliation into milk and mammary-infected Staphylococcus aureus (S. aureus) load on bovine mastitis caused by S. aureus. The aim of this study was to investigate the relationship between S. aureus load and the proportion of MEC exfoliation in milk using five substantial bovine mastitis models. In 64 randomly extracted milk samples from udders at 3-21 days after S. aureus infusion, there were various samples with different numbers of S. aureus counts and somatic cell counts. No significant correlations were found between the S. aureus counts and somatic cell count (r = 0.338). In contrast, a significant correlation was noted between S. aureus counts and the proportion of cytokeratin-positive cells in the milk from the infused udders (r = 0.734, P mastitis udders caused by S. aureus may contribute to reduced milk yield. © 2017 Japanese Society of Animal Science.

  4. Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos.

    Science.gov (United States)

    Sugimura, S; Narita, K; Yamashiro, H; Sugawara, A; Shoji, T; Terashita, Y; Nishimori, K; Konno, T; Yoshida, M; Sato, E

    2009-09-01

    Interspecies somatic cell nucleus transfer (iSCNT) could be a useful bioassay system for assessing the ability of mammalian somatic cells to develop into embryos. To examine this possibility, we performed canine iSCNT using porcine oocytes, allowed to mature in vitro, as recipients. Canine fibroblasts from the tail tips and dewclaws of a female poodle (Fp) and a male poodle (Mp) were used as donors. We demonstrated that the use of porcine oocytes induced blastocyst formation in the iSCNT embryos cultured in porcine zygote medium-3. In Fp and Mp, the rate of blastocyst formation from cleaved embryos (Fp: 6.3% vs. 22.4%; and Mp: 26.1% vs. 52.4%) and the number of cells at the blastocyst stage (Fp: 30.7 vs. 60.0; and Mp: 27.2 vs. 40.1) were higher in the embryos derived from dewclaw cells than in those derived from tail-tip cells (Ptip cells of Fp. Only blastocysts derived from dewclaw cells of Mp developed outgrowths. However, outgrowth formation was retrieved in the embryos derived from dewclaw cells of Fp by aggregation at the 4-cell stage. We inferred that iSCNT performed using porcine oocytes as recipients could represent a novel bioassay system for evaluating the developmental competence of canine somatic cells.

  5. 40 CFR 798.5300 - Detection of gene mutations in somatic cells in culture.

    Science.gov (United States)

    2010-07-01

    ... cells in culture. 798.5300 Section 798.5300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....5300 Detection of gene mutations in somatic cells in culture. (a) Purpose. Mammalian cell culture... selected by resistance to ouabain. (2) Description. Cells in suspension or monolayer culture are exposed to...

  6. Nuclear reprogramming of somatic nucleus hybridized with embryonic stem cells by electrofusion.

    Science.gov (United States)

    Tada, Masako; Tada, Takashi

    2006-01-01

    Cell fusion is a powerful tool for understanding the molecular mechanisms of epigenetic reprogramming. In hybrid cells of somatic cells and pluripotential stem cells, including embryonic stem (ES) and embryonic germ cells, somatic nuclei acquire pluripotential competence. ES and embryonic germ cells retain intrinsic trans activity to induce epigenetic reprogramming. For generating hybrid cells, we have used the technique of electrofusion. Electrofusion is a highly effective, reproducible, and biomedically safe in vitro system. For successful cell fusion, two sequential steps of electric pulse stimulation are required for the alignment (pearl chain formation) of two different types of cells between electrodes in response to alternating current stimulation and for the fusion of cytoplasmic membranes by direct current stimulation. Optimal conditions for electrofusion with a pulse generator are introduced for ES and somatic cell fusion. Topics in the field of stem cell research include the successful production of cloned animals via the epigenetic reprogramming of somatic cells and contribution of spontaneous cell fusion to generating intrinsic plasticity of tissue stem cells. Cell fusion technology may make important contributions to the fields of epigenetic reprogramming and regenerative medicine.

  7. Viable calves produced by somatic cell nuclear transfer using meiotic-blocked oocytes.

    Science.gov (United States)

    De Bem, Tiago H C; Chiaratti, Marcos R; Rochetti, Raquel; Bressan, Fabiana F; Sangalli, Juliano R; Miranda, Moysés S; Pires, Pedro R L; Schwartz, Kátia R L; Sampaio, Rafael V; Fantinato-Neto, Paulo; Pimentel, José R V; Perecin, Felipe; Smith, Lawrence C; Meirelles, Flávio V; Adona, Paulo R; Leal, Cláudia L V

    2011-10-01

    Somatic cell nuclear transfer (SCNT) has had an enormous impact on our understanding of biology and remains a unique tool for multiplying valuable laboratory and domestic animals. However, the complexity of the procedure and its poor efficiency are factors that limit a wider application of SCNT. In this context, oocyte meiotic arrest is an important option to make SCNT more flexible and increase the number of cloned embryos produced. Herein, we show that the use of butyrolactone I in association with brain-derived neurotrophic factor (BDNF) to arrest the meiotic division for 24 h prior to in vitro maturation provides bovine (Bos indicus) oocytes capable of supporting development of blastocysts and full-term cloned calves at least as efficiently as nonarrested oocytes. Furthermore, the procedure resulted in cloned blastocysts with an 1.5- and twofold increase of POU5F1 and IFNT2 expression, respectively, which are well-known markers of embryonic viability. Mitochondrial DNA (mtDNA) copy number was diminished by prematuration in immature oocytes (718,585±34,775 vs. 595,579±31,922, respectively, control and treated groups) but was unchanged in mature oocytes (522,179±45,617 vs. 498,771±33,231) and blastocysts (816,627±40,235 vs. 765,332±51,104). To our knowledge, this is the first report of cloned offspring born to prematured oocytes, indicating that meiotic arrest could have significant implications for laboratories working with SCNT and in vitro embryo production.

  8. Multilineage Potential Research of Bovine Amniotic Fluid Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yuhua Gao

    2014-02-01

    Full Text Available The use of amnion and amniotic fluid (AF are abundant sources of mesenchymal stem cells (MSCs that can be harvested at low cost and do not pose ethical conflicts. In human and veterinary research, stem cells derived from these tissues are promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. This work aimed to obtain and characterize bovine amniotic fluid mesenchymal stem cells (AFMSC. The bovine AF from the amniotic cavity of pregnant gilts in the early stages of gestation (3- and 4-m-old bovine embryos was collected. AFMSCs exhibit a fibroblastic-like morphology only starting from the fourth passage, being heterogeneous during the primary culture. Immunofluorescence results showed that AFMSCs were positive for β-integrin, CD44, CD73 and CD166, but negative for CD34, CD45. Meanwhile, AFMSCs expressed ES cell markers, such as Oct4, and when appropriately induced, are capable of differentiating into ectodermal and mesodermal lineages. This study reinforces the emerging importance of these cells as ideal tools in veterinary medicine; future studies aimed at a deeper evaluation of their immunological properties will allow a better understanding of their role in cellular therapy.

  9. A quantitative system for discriminating induced pluripotent stem cells, embryonic stem cells and somatic cells.

    Directory of Open Access Journals (Sweden)

    Anyou Wang

    Full Text Available Induced pluripotent stem cells (iPSCs derived from somatic cells (SCs and embryonic stem cells (ESCs provide promising resources for regenerative medicine and medical research, leading to a daily identification of new cell lines. However, an efficient system to discriminate the different types of cell lines is lacking. Here, we develop a quantitative system to discriminate the three cell types, iPSCs, ESCs, and SCs. The system consists of DNA-methylation biomarkers and mathematical models, including an artificial neural network and support vector machines. All biomarkers were unbiasedly selected by calculating an eigengene score derived from analysis of genome-wide DNA methylations. With 30 biomarkers, or even with as few as 3 top biomarkers, this system can discriminate SCs from pluripotent cells (PCs, including ESCs and iPSCs with almost 100% accuracy. With approximately 100 biomarkers, the system can distinguish ESCs from iPSCs with an accuracy of 95%. This robust system performs precisely with raw data without normalization as well as with converted data in which the continuous methylation levels are accounted. Strikingly, this system can even accurately predict new samples generated from different microarray platforms and the next-generation sequencing. The subtypes of cells, such as female and male iPSCs and fetal and adult SCs, can also be discriminated with this method. Thus, this novel quantitative system works as an accurate framework for discriminating the three cell types, iPSCs, ESCs, and SCs. This strategy also supports the notion that DNA-methylation generally varies among the three cell types.

  10. Identification of short hairpin RNA targeting foot-and-mouth disease virus with transgenic bovine fetal epithelium cells.

    Directory of Open Access Journals (Sweden)

    Hongmei Wang

    Full Text Available BACKGROUND: Although it is known that RNA interference (RNAi targeting viral genes protects experimental animals, such as mice, from the challenge of Foot-and-mouth disease virus (FMDV, it has not been previously investigated whether shRNAs targeting FMDV in transgenic dairy cattle or primary transgenic bovine epithelium cells will confer resistance against FMDV challenge. PRINCIPAL FINDING: Here we constructed three recombinant lentiviral vectors containing shRNA against VP2 (RNAi-VP2, VP3 (RNAi-VP3, or VP4 (RNAi-VP4 of FMDV, and found that all of them strongly suppressed the transient expression of a FLAG-tagged viral gene fusion protein in 293T cells. In BHK-21 cells, RNAi-VP4 was found to be more potent in inhibition of viral replication than the others with over 98% inhibition of viral replication. Therefore, recombinant lentiviral vector RNAi-VP4 was transfected into bovine fetal fibroblast cells to generate transgenic nuclear donor cells. With subsequent somatic cell cloning, we generated forty transgenic blastocysts, and then transferred them to 20 synchronized recipient cows. Three transgenic bovine fetuses were obtained after pregnant period of 4 months, and integration into chromosome in cloned fetuses was confirmed by Southern hybridization. The primary tongue epithelium cells of transgenic fetuses were isolated and inoculated with 100 TCID(50 of FMDV, and it was observed that shRNA significantly suppressed viral RNA synthesis and inhibited over 91% of viral replication after inoculation of FMDV for 48 h. CONCLUSION: RNAi-VP4 targeting viral VP4 gene appears to prevent primary epithelium cells of transgenic bovine fetus from FMDV infection, and it could be a candidate shRNA used for cultivation of transgenic cattle against FMDV.

  11. PGRMC1 participates in late events of bovine granulosa cells mitosis and oocyte meiosis.

    Science.gov (United States)

    Terzaghi, L; Tessaro, I; Raucci, F; Merico, V; Mazzini, G; Garagna, S; Zuccotti, M; Franciosi, F; Lodde, V

    2016-08-02

    Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in both oocyte and ovarian somatic cells, where it is found in multiple cellular sub-compartments including the mitotic spindle apparatus. PGRMC1 localization in the maturing bovine oocytes mirrors its localization in mitotic cells, suggesting a possible common action in mitosis and meiosis. To test the hypothesis that altering PGRMC1 activity leads to similar defects in mitosis and meiosis, PGRMC1 function was perturbed in cultured bovine granulosa cells (bGC) and maturing oocytes and the effect on mitotic and meiotic progression assessed. RNA interference-mediated PGRMC1 silencing in bGC significantly reduced cell proliferation, with a concomitant increase in the percentage of cells arrested at G2/M phase, which is consistent with an arrested or prolonged M-phase. This observation was confirmed by time-lapse imaging that revealed defects in late karyokinesis. In agreement with a role during late mitotic events, a direct interaction between PGRMC1 and Aurora Kinase B (AURKB) was observed in the central spindle at of dividing cells. Similarly, treatment with the PGRMC1 inhibitor AG205 or PGRMC1 silencing in the oocyte impaired completion of meiosis I. Specifically the ability of the oocyte to extrude the first polar body was significantly impaired while meiotic figures aberration and chromatin scattering within the ooplasm increased. Finally, analysis of PGRMC1 and AURKB localization in AG205-treated oocytes confirmed an altered localization of both proteins when meiotic errors occur. The present findings demonstrate that PGRMC1 participates in late events of both mammalian mitosis and oocyte meiosis, consistent with PGRMC1's localization at the mid-zone and mid-body of the mitotic and meiotic spindle.

  12. Somaticell® as a screening method for somatic cell count from bovine milk Avaliação do Somaticell® como método de triagem para contagem de células somáticas do leite de bovinos

    Directory of Open Access Journals (Sweden)

    Hélio Langoni

    2012-06-01

    Full Text Available The objectives of the present study were to evaluate the correlation between electronic somatic cell count (eSCC and Somaticell® under different milk somatic cell count (SCC conditions and to different mastitis pathogens and calculate the, sensitivity, specificity and predictive values of Somaticell® using different SCC limits established by different countries. Three-hundred and forty milk samples were aseptically collected according to the California Mastitis Test (CMT result. The Somaticell® and eSCC were carried out in all milk samples. The correlation between Somaticell® test results and electronic counts was determined according to the CMT, isolated pathogen and eSCC score. According to the SCC scores established, 26.5% milk samples showed score 1 (69-166x10³cells mL-1, 26.8% score 2 (167-418x10³cells mL-1, 27.4% score 3 (419-760x10³cells mL-1 and 19.4% score 4 (761 to 1,970x10³cells mL-1. According to Spearmann correlation test, eSCC and Somaticell® had a positive correlation (POs objetivos do presente estudo foram avaliar a correlação entre a contagem eletrônica de células somáticas (eCCS com o Somaticell® sob diferentes níveis de contagem de células somáticas (CCS do leite e patógenos causadores de mastites, além de calcular a sensibilidade, especificidade e valores preditivos do Somaticell® utilizando diferentes limites de CCS estabelecidos pelos diferentes países. Trezentos e quarenta amostras de leite foram coletadas assepticamente após realização do California Mastitis Test (CMT. O Somaticell® e a eCCS foram realizados em todas as amostras de leite. A correlação entre o Somaticell® e a contagem eletrônica foi determinada de acordo com o CMT, patógeno isolado e escore de eCCS. De acordo com os escores de CCS estabelecidos, 26,5% das amostras de leite apresentaram escore 1 (69-166 x10³células mL-1, 26,8% escore 2 (167-418x10³células mL-1, 27,4% escore 3 (419-760x10³células mL-1 e 19,4% escore 4

  13. Expression of uncoupling protein 1 in bovine muscle cells.

    Science.gov (United States)

    Abd Eldaim, M A; Hashimoto, O; Ohtsuki, H; Yamada, T; Murakami, M; Onda, K; Sato, R; Kanamori, Y; Qiao, Y; Tomonaga, S; Matsui, T; Funaba, M

    2016-12-01

    Uncoupling protein 1 (Ucp1) is predominantly expressed in brown/beige adipocytes in mammals. Although myogenic cells have been suggested to commit to a brown adipocyte lineage through the induction of Prdm16 expression, Prdm16 is also expressed in skeletal muscle. Thus, we examined expression of Ucp1 in bovine myogenic cells. Considering that Ucp1 is a principle molecule that induces energy expenditure in brown/beige adipocytes, expression of Ucp1 is not preferable in beef cattle because of potential decrease in energy (fattening) efficiency. The RT-PCR analyses revealed the expression of Ucp1 in the skeletal muscle of cattle; expression levels were markedly lower than those in the brown fat of calves. Immunohistochemical analyses showed that Ucp1 surrounded muscle fibers, but not adipocytes residing in skeletal muscle. Myosatellite cells cultured in myogenic medium showed an increase in the expression levels of myogenic regulatory factors ( levels were greater in cells after myogenic culture for 12 d than in those after myogenic culture for 6 d ( bovine skeletal muscle, which suggests the necessity for further studies on Ucp1-mediated energy expenditure in bovine skeletal muscle.

  14. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  15. Specific insulin binding in bovine chromaffin cells; demonstration of preferential binding to adrenalin-storing cells

    International Nuclear Information System (INIS)

    Serck-Hanssen, G.; Soevik, O.

    1987-01-01

    Insulin binding was studied in subpopulations of bovine chromaffin cells enriched in adrenalin-producing cells (A-cells) or noradrenalin-producing cells (NA-cells). Binding of 125 I-insulin was carried out at 15 0 C for 3 hrs in the absence or presence of excess unlabeled hormone. Four fractions of cells were obtained by centrifugation on a stepwise bovine serum albumin gradient. The four fractions were all shown to bind insulin in a specific manner and the highest binding was measured in the cell layers of higher densities, containing mainly A-cells. The difference in binding of insulin to the four subpopulations of chromaffin cells seemed to be related to differences in numbers of receptors as opposed to receptor affinities. The authors conclude that bovine chromaffin cells possess high affinity binding sites for insulin and that these binding sites are mainly confined to A-cells. 24 references, 2 figures, 1 table

  16. Eimeria tenella: in vitro development in irradiated bovine kidney cells

    Energy Technology Data Exchange (ETDEWEB)

    Crane, M.St.J.; Schmatz, D.M.; Stevens, S.; Habbersett, M.C.; Murray, P.K. (Merck Sharp and Dohme Research Labs., Rahway, NJ (USA))

    1984-06-01

    The initial infection and first-generation development of Eimeria tenella was quantified using a cloned MDBK (Madin-Darby Bovine Kidney) cell line, irradiated with gamma radiation prior to infection, as the host cell. Irradiated cell cultures were found to be more susceptible to infection and had a greater capacity to support parasite development than non-irradiated cultures. It was suggested that the larger proportion of cells in the G/sub 2/ phase of the cell cycle, the larger individual cell size and the inhibition of cell division in the irradiated cultures were all factors contributing to the increased susceptibility to infection and capacity to support parasite growth and development. The application of this technique (host cell irradiation) to the cultivation of other intracellular, protozoan parasites is discussed.

  17. Eimeria tenella: in vitro development in irradiated bovine kidney cells

    International Nuclear Information System (INIS)

    Crane, M. St.J.; Schmatz, D.M.; Stevens, S.; Habbersett, M.C.; Murray, P.K.

    1984-01-01

    The initial infection and first-generation development of Eimeria tenella was quantified using a cloned MDBK (Madin-Darby Bovine Kidney) cell line, irradiated with gamma radiation prior to infection, as the host cell. Irradiated cell cultures were found to be more susceptible to infection and had a greater capacity to support parasite development than non-irradiated cultures. It was suggested that the larger proportion of cells in the G 2 phase of the cell cycle, the larger individual cell size and the inhibition of cell division in the irradiated cultures were all factors contributing to the increased susceptibility to infection and capacity to support parasite growth and development. The application of this technique (host cell irradiation) to the cultivation of other intracellular, protozoan parasites is discussed. (author)

  18. Telomere Elongation and Naive Pluripotent Stem Cells Achieved from Telomerase Haplo-Insufficient Cells by Somatic Cell Nuclear Transfer

    Directory of Open Access Journals (Sweden)

    Li-Ying Sung

    2014-12-01

    Full Text Available Summary: Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs have been efficiently achieved by somatic cell nuclear transfer (SCNT. We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc+/− mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc+/− cells exhibit naive pluripotency as evidenced by generation of Terc+/− ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells. : Sung et al. demonstrate in a mouse model that telomeres of telomerase haplo-insufficient cells can be elongated by somatic cell nuclear transfer. Moreover, ntESCs derived from Terc+/− cells exhibit pluripotency evidenced by generation of Terc+/−ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency.

  19. Role of ooplasm in nuclear and nucleolar remodeling of intergeneric somatic cell nuclear transfer embryos during the first cell cycle

    DEFF Research Database (Denmark)

    Østrup, Olga; Strejcek, Frantisek; Petrovicova, Ida

    2011-01-01

    Initially, development of the zygote is under control of the oocyte ooplasm. However, it is presently unknown if and to what extent is the ooplasm able to interact with a transferred somatic cell from another species in the context of interspecies somatic cell nuclear transfer (SCNT). Here, one-c...... in sequence-specific interactions between the ooplasm and chromatin of another genus. In conclusion, the results demonstrate a possible reason why the intergeneric SCNT embryos never reached the full term....

  20. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?

    Science.gov (United States)

    Burnouf, Thierry; Strunk, Dirk; Koh, Mickey B C; Schallmoser, Katharina

    2016-01-01

    The essential physiological role of platelets in wound healing and tissue repair builds the rationale for the use of human platelet derivatives in regenerative medicine. Abundant growth factors and cytokines stored in platelet granules can be naturally released by thrombin activation and clotting or artificially by freeze/thaw-mediated platelet lysis, sonication or chemical treatment. Human platelet lysate prepared by the various release strategies has been established as a suitable alternative to fetal bovine serum as culture medium supplement, enabling efficient propagation of human cells under animal serum-free conditions for a multiplicity of applications in advanced somatic cell therapy and tissue engineering. The rapidly increasing number of studies using platelet derived products for inducing human cell proliferation and differentiation has also uncovered a considerable variability of human platelet lysate preparations which limits comparability of results. The main variations discussed herein encompass aspects of donor selection, preparation of the starting material, the possibility for pooling in plasma or additive solution, the implementation of pathogen inactivation and consideration of ABO blood groups, all of which can influence applicability. This review outlines the current knowledge about human platelet lysate as a powerful additive for human cell propagation and highlights its role as a prevailing supplement for human cell culture capable to replace animal serum in a growing spectrum of applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells

    DEFF Research Database (Denmark)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprograming, pluripotency, and differentiation cap...

  2. Piwi Is Required to Limit Exhaustion of Aging Somatic Stem Cells

    Directory of Open Access Journals (Sweden)

    Pedro Sousa-Victor

    2017-09-01

    Full Text Available Sophisticated mechanisms that preserve genome integrity are critical to ensure the maintenance of regenerative capacity while preventing transformation of somatic stem cells (SCs, yet little is known about mechanisms regulating genome maintenance in these cells. Here, we show that intestinal stem cells (ISCs induce the Argonaute family protein Piwi in response to JAK/STAT signaling during acute proliferative episodes. Piwi function is critical to ensure heterochromatin maintenance, suppress retrotransposon activation, and prevent DNA damage in homeostasis and under regenerative pressure. Accordingly, loss of Piwi results in the loss of actively dividing ISCs and their progenies by apoptosis. We further show that Piwi expression is sufficient to allay age-related retrotransposon expression, DNA damage, apoptosis, and mis-differentiation phenotypes in the ISC lineage, improving epithelial homeostasis. Our data identify a role for Piwi in the regulation of somatic SC function, and they highlight the importance of retrotransposon control in somatic SC maintenance.

  3. Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse.

    Science.gov (United States)

    Gambini, Andrés; De Stéfano, Adrián; Jarazo, Javier; Buemo, Carla; Karlanian, Florencia; Salamone, Daniel Felipe

    2016-09-01

    The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes

  4. Use of somatic cell banks in the conservation of wild felids.

    Science.gov (United States)

    Praxedes, Érika A; Borges, Alana A; Santos, Maria V O; Pereira, Alexsandra F

    2018-05-03

    The conservation of biological resources is an interesting strategy for the maintenance of biodiversity, especially for wild felids who are constantly threatened with extinction. For this purpose, cryopreservation techniques have been used for the long-term storage of gametes, embryos, gonadal tissues, and somatic cells and tissues. The establishment of these banks has been suggested as a practical approach to the preservation of species and, when done in tandem with assisted reproductive techniques, could provide the means for reproducing endangered species. Somatic cell banks have been shown remarkable for the conservation of genetic material of felids; by merely obtaining skin samples, it is possible to sample a large group of individuals without being limited by factors such as gender or age. Thus, techniques for somatic tissue recovery, cryopreservation, and in vitro culture of different wild felids have been developed, resulting in a viable method for the conservation of species. One of the most notable conservation programs for wild felines using somatic samples was the one carried out for the Iberian lynx, the most endangered feline in the world. Other wild felids have also been studied in other continents, such as the jaguar in South America. This review aims to present the technical progress achieved in the conservation of somatic cells and tissues in different wild felids, as well address the progress that has been achieved in a few species. © 2018 Wiley Periodicals, Inc.

  5. Human somatic cell nuclear transfer and reproductive cloning: an Ethics Committee opinion.

    Science.gov (United States)

    2016-04-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer and cloning," last published in Fertil Steril 2012;98:804-7. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Differentiation of bovine spermatogonial stem cells into osteoblasts.

    Science.gov (United States)

    Qasemi-Panahi, Babak; Tajik, Parviz; Movahedin, Mansoureh; Moghaddam, Gholamali; Barzgar, Younes; Heidari-Vala, Hamed

    2011-07-01

    Spermatogonial Stem Cell (SSC) technologies provide multiple opportunities for research in the field of biotechnology and regenerative medicine. The therapeutic use of Embryonic Stem Cells (ESCs) is restricted due to severe ethical and immunological concerns. Therefore, we need a new pluripotent cell type. Despite well-known role of germ cells in the gametogenesis, some facts apparently show their multipotentiality. In the present study, bovine SSCs were co-cultured with Sertoli cell for 7 days. Sertoli cells and SSCs were identified by Vimentin and Oct-4 immunocytochemical staining method, respectively. In order to differentiate SSCs into osteoblasts, we used consecutive inducer media without separation of the colonies. We characterized osteoblasts using Alizarin red staining.

  7. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

    Science.gov (United States)

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2015-07-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

  8. Bovine annulus fibrosus cell lines isolated from intervertebral discs

    Directory of Open Access Journals (Sweden)

    Petra Kraus

    2016-12-01

    Full Text Available The adult bovine (Bos taurus intervertebral disc is primarily comprised of two major tissue types: The outer annulus fibrosus (AF and the central nucleus pulposus (NP. We isolated several primary cell lineages of passage (P 0 cells from the AF tissue omitting typically used enzymatic tissue digestion protocols. The cells grow past p10 without signs of senescence in DMEM + 10% FCS on 0.1% gelatin coated/uncoated surfaces of standard cell culture plates and survive freeze-thawing. Preliminary analysis of the AF derived cells for expression of the two structural genes Col1a1 and Col2a1 was performed by PISH recapitulating the expression observed in vivo.

  9. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Fang, Zhen F.; Gai, Hui; Huang, You Z.; Li, Shan G.; Chen, Xue J.; Shi, Jian J.; Wu, Li; Liu, Ailian; Xu, Ping; Sheng, Hui Z.

    2006-01-01

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines

  10. Restoration of Mitochondrial NAD+ Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells.

    Science.gov (United States)

    Son, Myung Jin; Kwon, Youjeong; Son, Taekwon; Cho, Yee Sook

    2016-12-01

    The fundamental tenet that aging is irreversible has been challenged by the development of reprogramming technology that can restore molecular and cellular age by reversing the progression of aging. The use of cells from aged individuals as sources for reprogramming or transplantation creates a major barrier in stem cell therapy with respect to cell quality and quantity. Here, we investigated the molecular features underlying senescence and rejuvenation during aged cell reprogramming and identified novel factors that can overcome age-associated barriers. Enzymes, such as nicotinamide nucleotide transhydrogenase (NNT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), that control mitochondrial NAD + levels appear to be susceptible to aging. In aged cells, mitochondrial NAD + levels decrease, accompanied by reduced SIRT3 activity; these changes severely impede cell fate transition. However, in cells collected from aged p16 knockout mice, which exhibit delayed cellular senescence, no changes in NNT or NMNAT3 expression were found. Importantly, restoring mitochondrial NAD + levels by overexpressing NNT and NMNAT3 enhanced reprogramming efficiency of aged somatic cells and extended the lifespan of human mesenchymal stem cells by delaying replicative senescence. These results demonstrate that maintenance of mitochondrial NAD + levels is critical for reversing the mechanisms of aging and ensuring that cells collected from aged individuals are of high quality. Stem Cells 2016;34:2840-2851. © 2016 AlphaMed Press.

  11. Genetic aspects of somatic cell count and udder health in the Italian Valle del Belice dairy sheep

    NARCIS (Netherlands)

    Riggio, V.

    2012-01-01

    Mastitis is an inflammation of the udder, which leads to economic loss, mainly consisting of discarded milk, reduced milk production and quality, and increased health costs. Somatic cell count (SCC), and therefore somatic cell score (SCS), is widely used as indicator of mastitis. In this thesis,

  12. Somatic cell nuclear transfer in its first and the second decade: sussesses, setbacks, paradoxes and perspectives

    DEFF Research Database (Denmark)

    Vajta, Gabor

    2007-01-01

    The present review gives a subjective outline of the past and future of somatic cell nuclear trensfer (SCNT). The first decade was full of contradictions: amazing successes were followed by frustrating fiascos. Although the possibility of reversing somatic cell differentiation completely is a more...

  13. Cholinergic regulation of protein phosphorylation in bovine adrenal chromaffin cells

    International Nuclear Information System (INIS)

    Haycock, J.W.; Browning, M.D.; Greengard, P.

    1988-01-01

    Chromaffin cells were isolated from bovine adrenal medullae and maintained in primary culture. After prelabeling with 32 PO 4 , exposure of the chromaffin cells to acetylcholine increased the phosphorylation of a M/sub r/ ≅ 100,000 protein and a M/sub r/ ≅ 60,000 protein (tyrosine hydroxylase), visualized after separation of total cellular proteins in NaDodSO 4 /polyacrylamide gels. Immunoprecipitation with antibodies to three known phosphoproteins (100-kDa, 87-kDa, and protein III) revealed an acetylcholine-dependent phosphorylation of these proteins. These three proteins were also shown to be present in bovine adrenal chromaffin cells by immunolabeling techniques. 100-kDa is a M/sub r/ ≅ 100,000 protein selectively phosphorylated by calcium/calmodulin-dependent protein kinase III, 87-kDa is a M/sub r/ ≅ 87,000 protein selectively phosphorylated by protein kinase C, and protein III is a phosphoprotein doublet of M/sub r/ ≅ 74,000 (IIIa) and M/sub r/ ≅ 55,000 (IIIb) phosphorylated by cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase I. The data demonstrate that cholinergic activation of chromaffin cells increases the phosphorylation of several proteins and that several protein kinase systems may be involved in these effects

  14. Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells.

    Science.gov (United States)

    Hu, Chenxia; Li, Lanjuan

    2016-01-01

    Induced pluripotent stem cells (iPSCs) paved the way for research fields including cell therapy, drug screening, disease modeling and the mechanism of embryonic development. Although iPSC technology has been improved by various delivery systems, direct transduction and small molecule regulation, low reprogramming efficiency and genomic modification steps still inhibit its clinical use. Improvements in current vectors and the exploration of novel vectors are required to balance efficiency and genomic modification for reprogramming. Herein, we set out a comprehensive analysis of current reprogramming systems for the generation of iPSCs from somatic cells. By clarifying advantages and disadvantages of the current reprogramming systems, we are striding toward an effective route to generate clinical grade iPSCs.

  15. A Comparative View on Human Somatic Cell Sources for iPSC Generation

    Directory of Open Access Journals (Sweden)

    Stefanie Raab

    2014-01-01

    Full Text Available The breakthrough of reprogramming human somatic cells was achieved in 2006 by the work of Yamanaka and Takahashi. From this point, fibroblasts are the most commonly used primary somatic cell type for the generation of induced pluripotent stem cells (iPSCs. Various characteristics of fibroblasts supported their utilization for the groundbreaking experiments of iPSC generation. One major advantage is the high availability of fibroblasts which can be easily isolated from skin biopsies. Furthermore, their cultivation, propagation, and cryoconservation properties are uncomplicated with respect to nutritional requirements and viability in culture. However, the required skin biopsy remains an invasive approach, representing a major drawback for using fibroblasts as the starting material. More and more studies appeared over the last years, describing the reprogramming of other human somatic cell types. Cells isolated from blood samples or urine, as well as more unexpected cell types, like pancreatic islet beta cells, synovial cells, or mesenchymal stromal cells from wisdom teeth, show promising characteristics for a reprogramming strategy. Here, we want to highlight the advantages of keratinocytes from human plucked hair as a widely usable, noninvasive harvesting method for primary material in comparison with other commonly used cell types.

  16. A matter of identity — Phenotype and differentiation potential of human somatic stem cells

    Directory of Open Access Journals (Sweden)

    S.E.P. New

    2015-07-01

    Full Text Available Human somatic stem cells with neural differentiation potential can be valuable for developing cell-based therapies, including treatment of birth-related defects, while avoiding issues associated with cell reprogramming. Precisely defining the “identity” and differentiation potential of somatic stem cells from different sources, has proven difficult, given differences in sets of specific markers, protocols used and lack of side-by-side characterization of these cells in different studies. Therefore, we set to compare expression of mesenchymal and neural markers in human umbilical cord-derived mesenchymal stem cells (UC-MSCs, pediatric adipose-derived stem cells (p-ADSCs in parallel with human neural stem cells (NSCs. We show that UC-MSCs at a basal level express mesenchymal and so-called “neural” markers, similar to that we previously reported for the p-ADSCs. All somatic stem cell populations studied, independently from tissue and patient of origin, displayed a remarkably similar expression of surface markers, with the main difference being the restricted expression of CD133 and CD34 to NSCs. Expression of certain surface and neural markers was affected by the expansion medium used. As predicted, UC-MSCs and p-ADSCs demonstrated tri-mesenchymal lineage differentiation potential, though p-ADSCs display superior chondrogenic differentiation capability. UC-MSCs and p-ADSCs responded also to neurogenic induction by up-regulating neuronal markers, but crucially they appeared morphologically immature when compared with differentiated NSCs. This highlights the need for further investigation into the use of these cells for neural therapies. Crucially, this study demonstrates the lack of simple means to distinguish between different cell types and the effect of culture conditions on their phenotype, and indicates that a more extensive set of markers should be used for somatic stem cell characterization, especially when developing therapeutic

  17. Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem.

    Science.gov (United States)

    Oh, H J; Kim, M K; Jang, G; Kim, H J; Hong, S G; Park, J E; Park, K; Park, C; Sohn, S H; Kim, D Y; Shin, N S; Lee, B C

    2008-09-01

    The objective of the present study was to investigate whether nuclear transfer of postmortem wolf somatic cells into enucleated dog oocytes, is a feasible method to produce a cloned wolf. In vivo-matured oocytes (from domestic dogs) were enucleated and fused with somatic cells derived from culture of tissue obtained from a male gray wolf 6h after death. The reconstructed embryos were activated and transferred into the oviducts of naturally synchronous domestic bitches. Overall, 372 reconstructed embryos were transferred to 17 recipient dogs; four recipients (23.5%) were confirmed pregnant (ultrasonographically) 23-25 d after embryo transfer. One recipient spontaneously delivered two dead pups and three recipients delivered, by cesarean section, four cloned wolf pups, weighing 450, 190, 300, and 490g, respectively. The pup that weighed 190g died within 12h after birth. The six cloned wolf pups were genetically identical to the donor wolf, and their mitochondrial DNA originated from the oocyte donors. The three live wolf pups had a normal wolf karyotype (78, XY), and the amount of telomeric DNA, assessed by quantitative fluorescence in situ hybridization, was similar to, or lower than, that of the nuclear donor. In conclusion, the present study demonstrated the successful cloning of an endangered male gray wolf via interspecies transfer of somatic cells, isolated postmortem from a wolf, and transferred into enucleated dog oocytes. Therefore, somatic cell nuclear transfer has potential for preservation of canine species in extreme situations, including sudden death.

  18. Genetic Analysis of Somatic Cell Score in Danish Holsteins Using a Liability-Normal Mixture Model

    DEFF Research Database (Denmark)

    Madsen, P; Shariati, M M; Ødegård, J

    2008-01-01

    Mixture models are appealing for identifying hidden structures affecting somatic cell score (SCS) data, such as unrecorded cases of subclinical mastitis. Thus, liability-normal mixture (LNM) models were used for genetic analysis of SCS data, with the aim of predicting breeding values for such cas...

  19. Low somatic cell count : a risk factor for subsequent clinical mastitis in a dairy herd

    NARCIS (Netherlands)

    Suriyasathaporn, W.; Schukken, Y.H.; Nielen, M.; Brand, A.

    2000-01-01

    A case-control study was conducted to evaluate factors measured at the udder inflammation-free state as risk factors for subsequent clinical mastitis. The factors including somatic cell count (SCC), body condition score, milk yield, percentages of milk fat and milk protein, and diseases were

  20. Associations between somatic cell count patterns and the incidence of clinical mastitis

    NARCIS (Netherlands)

    Haas, de Y.; Barkema, H.W.; Schukken, Y.H.; Veerkamp, R.F.

    2005-01-01

    Associations between clinical mastitis (CM) and the proportional distribution of patterns in somatic cell count (SCC) on a herd level were determined in this study. Data on CM and SCC over a 12-month period from 274 Dutch herds were used. The dataset contained parts of 29,719 lactations from 22,955

  1. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer

    NARCIS (Netherlands)

    Inoue, K.; Kohda, T.; Sugimoto, M.; Sado, T.; Ogonuki, N.; Matoba, S.; Shiura, H.; Ikeda, R.; Mochida, K.; Fujii, T.; Sawai, K.; Otte, A.P.; Tian, X.C.; Yang, X.; Ishino, F.; Abe, K.; Ogura, A.

    2010-01-01

    Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that

  2. The economic value of somatic cell count in South African Holstein ...

    African Journals Online (AJOL)

    Somatic cell count (SCC) is of economic importance in dairy production as it directly influences the revenue from the sale of milk. The current study was carried out to determine the economic value of SCC in South African Holstein and Jersey cattle, in order to establish its relative emphasis in breeding objectives. Bulk-tank ...

  3. Health status and productive performance of somatic cell cloned cattle and their offspring produced in Japan.

    Science.gov (United States)

    Watanabe, Shinya; Nagai, Takashi

    2008-02-01

    Since the first somatic cell cloned calves were born in Japan in 1998, more than 500 cloned cattle have been produced by somatic cell nuclear transfer and many studies concerning cloned cattle and their offspring have been conducted in this country. However, most of the results have been published in Japanese; thus, the data produced in this country is not well utilized by researchers throughout the world. This article reviews the 65 reports produced by Japanese researchers (62 written in Japanese and 3 written in English), which employed 171 clones and 32 offspring, and categorizes them according to the following 7 categories: (1) genetic similarities and muzzle prints, (2) hematology and clinical chemistry findings, (3) pathology, (4) growth performance, (5) reproductive performance, (6) meat production performance and (7) milk production performance. No remarkable differences in health status or reproductive performance were found among conventionally bred cattle, somatic cell cloned cattle surviving to adulthood and offspring of somatic cell cloned cattle. Similarities in growth performance and meat quality were observed between nuclear donor cattle and their clones. The growth curves of the offspring resembled those of their full siblings.

  4. Automatic detection of clinical mastitis is improved by in-line monitoring of somatic cell count

    NARCIS (Netherlands)

    Kamphuis, C.; Sherlock, R.; Jago, J.; Mein, G.; Hogeveen, H.

    2008-01-01

    This study explored the potential value of in-line composite somatic cell count (ISCC) sensing as a sole criterion or in combination with quarter-based electrical conductivity (EC) of milk, for automatic detection of clinical mastitis (CM) during automatic milking. Data generated from a New Zealand

  5. Number and importance of somatic cells in goat’s milk

    Directory of Open Access Journals (Sweden)

    Lidija Kozačinski

    2001-04-01

    Full Text Available Goat’s milk samples were examined on mastitis using stable procedure (California-mastitis test. 427 of the examined milk samples (46.82% had positive reaction from 1 to 3 while other 485 samples (53.18% had negative reaction on the mastitis test, indicating that no illness of mammary gland occurred. Number of somatic cells, counted using “Fossomatic” counter, was 1.3x106/ml average. By comparing the results of mastitis-test evaluation (CMT with the number of somatic cells and findings of mastitis agents in milk showed that higher number of somatic cells is not the only indication of goat’s mammary gland illness. Mastitis-test is method that can exclude inflammation of goat’s mammary gland, but every positive reaction should be confirmed or eliminate with bacteriological examination. Based on the results of this research, it has been shown that the limit for somatic cells number in goat's milk can be over 1 000 000/ml.

  6. Associations between pathogen-specific clinical mastitis and somatic cell count patterns

    NARCIS (Netherlands)

    Haas, de Y.; Veerkamp, R.F.; Barkema, H.W.; Gröhn, Y.T.; Schukken, Y.H.

    2004-01-01

    Associations were estimated between pathogen-specific cases of clinical mastitis (CM) and somatic cell count (SCC) patterns based on deviations from the typical curve for SCC during lactation and compared with associations between pathogen-specific CM and lactation average SCC. Data from 274 Dutch

  7. Relationship between intramammary infection prevalence and somatic cell score in commercial dairy herds

    NARCIS (Netherlands)

    Shook, G.E.; Kirk, R.L.B.; Welcome, Frank L.; Schukken, Y.H.; Ruegg, P.L.

    2017-01-01

    We examined consistency of the relationship between intramammary infection (IMI) and somatic cell score (SCS) across several classes of cow, herd, and sampling time variables. Microbial cultures of composite milk samples were performed by New York Quality Milk Production Services from 1992 to

  8. Relationship between intramammary infection prevalence and somatic cell score in commercial dairy herds

    NARCIS (Netherlands)

    Shook, G. E.; Kirk, R. L.Bamber; Welcome, Frank L.; Schukken, Y. H.; Ruegg, P. L.

    2017-01-01

    We examined consistency of the relationship between intramammary infection (IMI) and somatic cell score (SCS) across several classes of cow, herd, and sampling time variables. Microbial cultures of composite milk samples were performed by New York Quality Milk Production Services from 1992 to 2004.

  9. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    DEFF Research Database (Denmark)

    Su, Ying; Subedee, Ashim; Bloushtain-Qimron, Noga

    2015-01-01

    Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrate...

  10. STUDY REGARDING THE CORELATION BETWEEN SOMATIC CELLS COUNT AND MAJOR CHEMICAL COMPOUNDS IN RAW MILK

    Directory of Open Access Journals (Sweden)

    S. ACATINCĂI

    2008-10-01

    Full Text Available This study approaches the dynamic of somatic cells number and chemical composition of milk during 13 months of control. The study also investigates the correlations between the number of somatic cells and some chemical parameters in milk. Studies were carried out on Romanian Black and White cows between March 2005 and March 2006 at the Didactical farm of the Banat University of Agricultural Sciences Timisoara. As quality indicator, the number of somatic cells has different values among the controls. Average values for the 13 months of control, with the exception of three controls, were below maximum limit admitted from 1th of January 2007 (600000 SCC/ml milk. There weren’t any significant differences for SCC between the two seasons. Chemical parameters in milk varied in close limits and the differences were not significant, with one exception for fat percent. Fat percent is higher (p<0.05 in the cold season 3.87% compared with 3.55% during the warm season. Somatic cells number is weak correlated with lactose and strong correlated with proteins.

  11. Alternative Somatic Cell Count Traits as Mastitis Indicators for Genetic Selection

    NARCIS (Netherlands)

    Haas, de Y.; Ouweltjes, W.; Napel, ten J.; Windig, J.J.; Jong, de G.

    2008-01-01

    The aim of this study was to define alternative traits of somatic cell count (SCC) that can be used to decrease genetic susceptibility to clinical and subclinical mastitis (CM and SCM, respectively). Three kinds of SCC traits were evaluated: 1) lactation-averages of SCC, 2) traits derived from the

  12. Effect of colostrum on gravity separation of milk somatic cells in skim milk.

    Science.gov (United States)

    Geer, S R; Barbano, D M

    2014-02-01

    Our objective was to determine if immunoglobulins play a role in the gravity separation (rising to the top) of somatic cells (SC) in skim milk. Other researchers have shown that gravity separation of milk fat globules is enhanced by IgM. Our recent research found that bacteria and SC gravity separate in both raw whole and skim milk and that heating milk to >76.9 °C for 25s stopped gravity separation of milk fat, SC, and bacteria. Bovine colostrum is a good natural source of immunoglobulins. An experiment was designed where skim milk was heated at high temperatures (76 °C for 7 min) to stop the gravity separation of SC and then colostrum was added back to try to restore the gravity separation of SC in increments to achieve 0, 0.4, 0.8, 2.0, and 4.0 g/L of added immunoglobulins. The milk was allowed to gravity separate for 22 h at 4 °C. The heat treatment of skim milk was sufficient to stop the gravity separation of SC. The treatment of 4.0 g/L of added immunoglobulins was successful in restoring the gravity separation of SC as compared with raw skim milk. Preliminary spore data on the third replicate suggested that bacterial spores gravity separate the same way as the SC in heated skim milk and heated skim milk with 4.0 g/L of added immunoglobulins. Strong evidence exists that immunoglobulins are at least one of the factors necessary for the gravity separation of SC and bacterial spores. It is uncertain at this time whether SC are a necessary component for gravity separation of fat, bacteria, and spores to occur. Further research is needed to determine separately the role of immunoglobulins and SC in gravity separation of bacteria and spores. Understanding the mechanism of gravity separation may allow the development of a continuous flow technology to remove SC, bacteria, and spores from milk. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Watanabe, Masahito; Umeyama, Kazuhiro; Matsunari, Hitomi; Takayanagi, Shuko; Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka; Nakauchi, Hiromitsu

    2010-01-01

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  14. Prototheca zopfii isolated from bovine mastitis induced oxidative stress and apoptosis in bovine mammary epithelial cells.

    Science.gov (United States)

    Shahid, Muhammad; Gao, Jian; Zhou, Yanan; Liu, Gang; Ali, Tariq; Deng, Youtian; Sabir, Naveed; Su, Jingliang; Han, Bo

    2017-05-09

    Bovine protothecal mastitis results in considerable economic losses worldwide. However, Prototheca zopfii induced morphological alterations and oxidative stress in bovine mammary epithelial cells (bMECs) is not comprehensively studied yet. Therefore, the aim of this current study was to investigate the P. zopfii induced pathomorphological changes, oxidative stress and apoptosis in bMECs. Oxidative stress was assessed by evaluating catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA) contents and lactate dehydrogenase (LDH) activity, while ROS generation and apoptosis was measured by confocal laser scanning microscopy. The results revealed that infection of P. zopfii genotype II (GTII) significantly changed bMECs morphology, increased apoptotic rate and MDA contents at 12 h (p < 0.05) and 24 h (p < 0.01) in comparison with control group, in time-dependent manner. LDH activity and ROS generation was also increased (p < 0.01) at 12 h and 24 h. However, SOD and CAT contents in bMECs infected with GTII were decreased (p < 0.05) at 12 h, while GPx (p < 0.01), SOD (p < 0.05) and CAT (p < 0.01) levels were reduced at 24 h. In case of GTI, only CAT and GPx activities were significantly decreased when the duration prolonged to 24 h but lesser than GTII. This suggested that GTII has more devastating pathogenic effects in bMECs, and the findings of this study concluded that GTII induced apoptosis and oxidative stress in bMECs via the imbalance of oxidant and antioxidant defenses as well as the production of intracellular ROS.

  15. Bovine parvovirus uses clathrin-mediated endocytosis for cell entry.

    Science.gov (United States)

    Dudleenamjil, Enkhmart; Lin, Chin-Yo; Dredge, Devin; Murray, Byron K; Robison, Richard A; Johnson, F Brent

    2010-12-01

    Entry events of bovine parvovirus (BPV) were studied. Transmission electron micrographs of infected cells showed virus particles in cytoplasmic vesicles. Chemical inhibitors that block certain aspects of the cellular machinery were employed to assess viral dependency upon those cellular processes. Chlorpromazine, ammonium chloride, chloroquine and bafilamicin A1 were used to inhibit acidification of endosomes and clathrin-associated endocytosis. Nystatin was used as an inhibitor of the caveolae pathway. Cytochalasin D and ML-7 were used to inhibit actin and myosin functions, respectively. Nocodazole and colchicine were employed to inhibit microtubule activity. Virus entry was assessed by measuring viral transcription using real-time PCR, synthesis of capsid protein and assembly of infectious progeny virus in the presence of inhibitor blockage. The results indicated that BPV entry into embryonic bovine trachael cells utilizes endocytosis in clathrin-coated vesicles, is dependent upon acidification, and appears to be associated with actin and microtubule dependency. Evidence for viral entry through caveolae was not obtained. These findings provide a fuller understanding of the early cell-entry events of the replication cycle for members of the genus Bocavirus.

  16. Pre-screening method for somatic cell contamination in human sperm epigenetic studies.

    Science.gov (United States)

    Jenkins, Timothy G; Liu, Lihua; Aston, Kenneth I; Carrell, Douglas T

    2018-04-01

    Sperm epigenetic profiles are frequently studied and are of great interest in many fields. One major technical concern when assessing these marks is the potential for somatic cell contamination. Because somatic cells have dramatically different epigenetic signatures, even small levels of contamination can result in significant problems in analysis and interpretation of data. In this study we evaluate an assay, which we designed to offer a reliable 'pre-screen' for somatic cell contamination that directly assesses the DNA being used in the study to determine tissue purity. In brief, we designed an inexpensive and simple assay that utilizes the strong differential methylation between sperm and somatic cells at four genomic loci to assess the general purity of samples prior to performing expensive and time intensive assays. The assay is able to reliably detect contamination qualitatively by running the sample on an agarose gel, or quantitatively with the use of a bioanalyzer. With this technique we have found that we can detect potentially contaminating signals in samples of many different types, including those from patients with poor sperm phenotypes (oligozoospermia, asthenozoospermia, and teratozoospermia). We also have found that the use of multiple sites to determine potential contamination is key, as some conditions (asthenozoospermia specifically) appear at one site to reflect a somatic-like profile, while at all other sites it appears to have very typical sperm DNA methylation signatures. Taken together, the use of the assay described herein was effective at identifying contamination and could be implemented in many labs to quickly and inexpensively pre-screen samples prior to performing far more expensive and labor intensive procedures. Additionally, the principles applied to the development of this assay could be easily adapted for the development of other assays to pre-screen different tissue/cell types or model organisms.

  17. Somatic (CSS and differential cell count (DCC during a lactation period in ass’milk

    Directory of Open Access Journals (Sweden)

    Paolo Polidori

    2010-01-01

    Full Text Available Hypoallergenic properties of ass’s milk protein fractions have been recently con- firmed, allowing ass’s milk to be considered as a valid substitute of the available hypoallergenic infant formulas. The objective of this study was to give a further contribution to the knowledge of ass’s milk safety and quality characteristics. A new procedure has been developed with a cytospin centrifuge in differential counts of milk somatic cells. Somatic cells count (SCC, differential somatic cells count (DCC and cultural examinations have been carried out in 62 milk samples collected from 11 asses at three different stages of lactation. Four major cells populations had been identified in ass’s milk too: lymphocytes (Ly, monocytes/macrophages (MA, polymorphonuclear neutrophils (PMNL, and epithelial cells (CE. The patterns of these cells have been discussed in comparison with cells found in dairy cows and ewes milk. In conclusion, a reproducible standard procedure has been developed to determine cell count of ass’s milk.

  18. DNA Methylation in Peripheral Blood Cells of Pigs Cloned by Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Gao, Fei; Li, Shengting; Lin, Lin

    2011-01-01

    To date, the genome-wide DNA methylation status of cloned pigs has not been investigated. Due to the relatively low success rate of pig cloning by somatic cell nuclear transfer, a better understanding of the epigenetic reprogramming and the global methylation patterns associated with development...... in cloned pigs is required. In this study we applied methylation-specific digital karyotyping tag sequencing by Solexa technology and investigated the genome-wide DNA methylation profiles of peripheral blood cells in cloned pigs with normal phenotypes in comparison with their naturally bred controls....... In the result, we found that globally there was no significant difference of DNA methylation patterns between the two groups. Locus-specifically, some genes involved in embryonic development presented a generally increased level of methylation. Our findings suggest that in cloned pigs with normal phenotypes...

  19. Hierarchical Oct4 Binding in Concert with Primed Epigenetic Rearrangements during Somatic Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2016-02-01

    Full Text Available The core pluripotency factor Oct4 plays key roles in somatic cell reprogramming through transcriptional control. Here, we profile Oct4 occupancy, epigenetic changes, and gene expression in reprogramming. We find that Oct4 binds in a hierarchical manner to target sites with primed epigenetic modifications. Oct4 binding is temporally continuous and seldom switches between bound and unbound. Oct4 occupancy in most of promoters is maintained throughout the entire reprogramming process. In contrast, somatic cell-specific enhancers are silenced in the early and intermediate stages, whereas stem cell-specific enhancers are activated in the late stage in parallel with cell fate transition. Both epigenetic remodeling and Oct4 binding contribute to the hyperdynamic enhancer signature transitions. The hierarchical Oct4 bindings are associated with distinct functional themes at different stages. Collectively, our results provide a comprehensive molecular roadmap of Oct4 binding in concert with epigenetic rearrangements and rich resources for future reprogramming studies.

  20. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    International Nuclear Information System (INIS)

    Yue, Xiao-shan; Fujishiro, Masako; Toyoda, Masashi; Akaike, Toshihiro; Ito, Yoshihiro

    2010-01-01

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  1. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xiao-shan [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Fujishiro, Masako [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Toyoda, Masashi [Department of Reproductive Biology, National Institute for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535 (Japan); Akaike, Toshihiro [Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Ito, Yoshihiro, E-mail: y-ito@riken.jp [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan)

    2010-04-16

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  2. Detection of bluetongue virus by using bovine endothelial cells and embryonated chicken eggs.

    OpenAIRE

    Wechsler, S J; Luedke, A J

    1991-01-01

    Two systems, inoculation of bovine endothelial cells and of embryonated chicken eggs, were compared for detection of bluetongue virus (BTV) in blood specimens from experimentally inoculated sheep. For all BTV serotypes tested, embryonated chicken eggs detected longer periods of viremia than did bovine endothelial cells, primarily by detecting BTV in samples containing lower virus concentrations.

  3. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model*

    OpenAIRE

    Tong, Guo-qing; Heng, Boon-chin; Ng, Soon-chye

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 µmol/L strontium chloride for 5 h and sub...

  4. Improved detection of Bovine Viral Diarrhea Virus in Bovine lymphoid cell lines using PrimeFlow RNA assay

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) infections, whether as acute, persistent or contributing to co-infections, result in significant losses for cattle producers. BVDV can be identified by real-time PCR and ELISA, detection and quantification of viral infection at the single cell level is extremely di...

  5. Loss of centrioles causes chromosomal instability in vertebrate somatic cells.

    Science.gov (United States)

    Sir, Joo-Hee; Pütz, Monika; Daly, Owen; Morrison, Ciaran G; Dunning, Mark; Kilmartin, John V; Gergely, Fanni

    2013-12-09

    Most animal cells contain a centrosome, which comprises a pair of centrioles surrounded by an ordered pericentriolar matrix (PCM). Although the role of this organelle in organizing the mitotic spindle poles is well established, its precise contribution to cell division and cell survival remains a subject of debate. By genetically ablating key components of centriole biogenesis in chicken DT40 B cells, we generated multiple cell lines that lack centrioles. PCM components accumulated in acentriolar microtubule (MT)-organizing centers but failed to adopt a higher-order structure, as shown by three-dimensional structured illumination microscopy. Cells without centrioles exhibited both a delay in bipolar spindle assembly and a high rate of chromosomal instability. Collectively, our results expose a vital role for centrosomes in establishing a mitotic spindle geometry that facilitates correct kinetochore-MT attachments. We propose that centrosomes are essential in organisms in which rapid segregation of a large number of chromosomes needs to be attained with fidelity.

  6. Somatic mutation and cell differentiation in neoplastic transformation

    International Nuclear Information System (INIS)

    Huberman, E.; Collart, F.R.

    1987-01-01

    In brief, the authors suggest that tumor formation may result from continuous expression of growth facilitating genes that, as a result of irreversible changes during the initiation step, are placed under the control of genes expressed during normal differentiation. Thus, to understand carcinogenesis, we must decipher the processes that lead to the acquisition of a mature phenotype in both normal and tumor cells and characterize the growth dependency of tumor cells to inducers of cell differentiation. Furthermore, the growth of a variety of tumors may be controlled through the use of inducers of maturation that activate genes located beyond the gene that is altered during tumor initiation. 22 refs., 3 figs

  7. Effects of herd management practices on somatic cell counts in an arid climate

    Directory of Open Access Journals (Sweden)

    Ali Sadeghi-Sefidmazgi

    2014-09-01

    Full Text Available The objective of this study was to evaluate associations between average lactation somatic cell counts (SCC and herd management practices in an arid climate. A total of 38,530 average lactation SCC records for 10,216 Holstein cows gathered on 25 dairy farms from January 2009 to October 2012 in Isfahan (Iran were analyzed. Average lactation SCC (cells × 1,000 was 250.79 ranging from 90.31 to 483.23 cells/mL across investigated farms. Herd-level management factors associated with average lactation SCC were determined separately using mixed linear models in the MIXED procedure with average lactation somatic cell score (SCS included as the dependent variable. Some of the management practices associated with low average lactation SCS included sawdust combined with sand bedding, using automatic cup removers, disinfection of the teats by dipping into disinfectant, using washable towels for teat cleaning, free-stall barns, wet disposable tissue for udder washing, wearing gloves during milking and the use of humidifiers and shade. Lower-production herds and larger-size herds had lower average lactation somatic cell counts. Most herd management practices associated with average lactation SCC in dairy herds in the arid region of Isfahan are in agreement with most previous studies. However, different results are found for use of humidifier, bedding materials and herd size.

  8. Increased somatic cell mutant frequency in atomic bomb survivors

    International Nuclear Information System (INIS)

    Hakoda, Masayuki; Akiyama, Mitoshi; Kyoizumi, Seishi; Awa, A.A.; Yamakido, Michio; Otake, Masanori.

    1988-05-01

    Frequencies of mutant T-cells in peripheral blood, which are deficient in the activity of hypoxanthine guanine phosphoribosyltransferase (HPRT) were determined for atomic bomb survivors by direct clonal assay using a previously reported method. Results from 30 exposed survivors (exposed to more than 1 rad) and 17 age- and sex-matched controls (exposed to less than 1 rad) were analyzed. The mean mutant frequency (Mf) in the exposed (5.2 x 10 -6 ; range 0.8 - 14.4 x 10 -6 ) was significantly higher than in controls (3.4 x 10 -6 ; range 1.3 - 9.3 x 10 -6 ), a fact not attributable to lower nonmutant cell cloning efficiencies in the exposed group since cell cloning efficiencies were virtually identical in both groups. An initial analysis of the data did not reveal a significant correlation between individual Mfs and individual radiation dose estimates when the latter were defined by the original, tentative estimates (T65D), even though there was a significant positive correlation of Mfs with individual frequency of lymphocytes bearing chromosome aberration. However, reanalysis using the newer revised individual dose estimates (DS86) for 27 exposed survivors and 17 controls did reveal a significant but shallow positive correlation between T-cell Mf values and individual exposure doses. These results indicate that HPRT mutation in vivo in human T-cells could be detected in these survivors 40 years after the presumed mutational event. (author)

  9. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.

    Science.gov (United States)

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-12-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.

  10. Global gene expression response to telomerase in bovine adrenocortical cells

    International Nuclear Information System (INIS)

    Perrault, Steven D.; Hornsby, Peter J.; Betts, Dean H.

    2005-01-01

    The infinite proliferative capability of most immortalized cells is dependent upon the presence of the enzyme telomerase and its ability to maintain telomere length and structure. However, telomerase may be involved in a greater system than telomere length regulation, as recent evidence has shown it capable of increasing wound healing in vivo, and improving cellular proliferation rate and survival from apoptosis in vitro. Here, we describe the global gene expression response to ectopic telomerase expression in an in vitro bovine adrenocortical cell model. Telomerase-immortalized cells showed an increased ability for proliferation and survival in minimal essential medium above cells transgenic for GFP. cDNA microarray analyses revealed an altered cell state indicative of increased adrenocortical cell proliferation regulated by the IGF2 pathway and alterations in members of the TGF-B family. As well, we identified alterations in genes associated with development and wound healing that support a model that high telomerase expression induces a highly adaptable, progenitor-like state

  11. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells.

    Directory of Open Access Journals (Sweden)

    Jakub Cieslak

    Full Text Available Apart from the well-known role of somatic cell count as a parameter reflecting the inflammatory status of the mammary gland, the composition of cells isolated from milk is considered as a valuable material for gene expression studies in mammals. Due to its unique composition, in recent years an increasing interest in mare's milk consumption has been observed. Thus, investigating the genetic background of horse's milk variability presents and interesting study model. Relying on 39 milk samples collected from mares representing three breeds (Polish Primitive Horse, Polish Cold-blooded Horse, Polish Warmblood Horse we aimed to investigate the utility of equine milk somatic cells as a source of mRNA and to screen the best reference genes for RT-qPCR using geNorm and NormFinder algorithms. The results showed that despite relatively low somatic cell counts in mare's milk, the amount and the quality of the extracted RNA are sufficient for gene expression studies. The analysis of the utility of 7 potential reference genes for RT-qPCR experiments for the normalization of equine milk somatic cells revealed some differences between the outcomes of the applied algorithms, although in both cases the KRT8 and TOP2B genes were pointed as the most stable. Analysis by geNorm showed that the combination of 4 reference genes (ACTB, GAPDH, TOP2B and KRT8 is required for apropriate RT-qPCR experiments normalization, whereas NormFinder algorithm pointed the combination of KRT8 and RPS9 genes as the most suitable. The trial study of the relative transcript abundance of the beta-casein gene with the use of various types and numbers of internal control genes confirmed once again that the selection of proper reference gene combinations is crucial for the final results of each real-time PCR experiment.

  12. Characterization of Bovine 5′-flanking Region during Differentiation of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hye-Jeong Jang

    2015-12-01

    Full Text Available Embryonic stem cells (ESCs have been used as a powerful tool for research including gene manipulated animal models and the study of developmental gene regulation. Among the critical regulatory factors that maintain the pluripotency and self-renewal of undifferentiated ESCs, NANOG plays a very important role. Nevertheless, because pluripotency maintaining factors and specific markers for livestock ESCs have not yet been probed, few studies of the NANOG gene from domestic animals including bovine have been reported. Therefore, we chose mouse ESCs in order to understand and compare NANOG expression between bovine, human, and mouse during ESCs differentiation. We cloned a 600 bp (−420/+181 bovine NANOG 5′-flanking region, and tagged it with humanized recombinant green fluorescent protein (hrGFP as a tracing reporter. Very high GFP expression for bovine NANOG promoter was observed in the mouse ESC line. GFP expression was monitored upon ESC differentiation and was gradually reduced along with differentiation toward neurons and adipocyte cells. Activity of bovine NANOG (−420/+181 promoter was compared with already known mouse and human NANOG promoters in mouse ESC and they were likely to show a similar pattern of regulation. In conclusion, bovine NANOG 5-flanking region functions in mouse ES cells and has characteristics similar to those of mouse and human. These results suggest that bovine gene function studied in mouse ES cells should be evaluated and extrapolated for application to characterization of bovine ES cells.

  13. Total bacterial count and somatic cell count in refrigerated raw milk stored in communal tanks

    Directory of Open Access Journals (Sweden)

    Edmar da Costa Alves

    2014-09-01

    Full Text Available The current industry demand for dairy products with extended shelf life has resulted in new challenges for milk quality maintenance. The processing of milk with high bacterial counts compromises the quality and performance of industrial products. The study aimed to evaluate the total bacteria counts (TBC and somatic cell count (SCC in 768 samples of refrigerated raw milk, from 32 communal tanks. Samples were collected in the first quarter of 2010, 2011, 2012 and 2013 and analyzed by the Laboratory of Milk Quality - LQL. Results showed that 62.5%, 37.5%, 15.6% and 27.1% of the means for TBC in 2010, 2011, 2012 and 2013, respectively, were above the values established by legislation. However, we observed a significant reduction in the levels of total bacterial count (TBC in the studied periods. For somatic cell count, 100% of the means indicated values below 600.000 cells/mL, complying with the actual Brazilian legislation. The values found for the somatic cell count suggests the adoption of effective measures for the sanitary control of the herd. However, the results must be considered with caution as it highlights the need for quality improvements of the raw material until it achieves reliable results effectively.

  14. SOMATIC MITOSES IN CELLS OF PICEA GLUCA CULTIVATED IN VITRO.

    Science.gov (United States)

    RISSER, P G

    1964-02-07

    The cytology of one strain of tumor tissue from the spruce tree, Picea glauca, grown in vitro for more than a year was examined. The cells of this strain are characterized by a uniform chromosome number of 24, and the strain appears to be quite stable. The implications of the results of this study and previous studies on similar material are discussed.

  15. Effects of somatic cell count on the gross composition, protein ...

    African Journals Online (AJOL)

    and >265,000 cells/ml) on ewe milk composition, protein fractions and ... 6.38, true protein, true whey protein, fat, lactose, dry matter, ash, phosphorus, ... management practices, and representative of the typical ewe herd .... pasteurised before being analysed. .... Mastitis detection: current trends and future perspectives.

  16. Molecular Evolution of Two Distinct dmrt1 Promoters for Germ and Somatic Cells in Vertebrate Gonads.

    Science.gov (United States)

    Mawaribuchi, Shuuji; Musashijima, Masato; Wada, Mikako; Izutsu, Yumi; Kurakata, Erina; Park, Min Kyun; Takamatsu, Nobuhiko; Ito, Michihiko

    2017-03-01

    The transcription factor DMRT1 has important functions in two distinct processes, somatic-cell masculinization and germ-cell development in mammals. However, it is unknown whether the functions are conserved during evolution, and what mechanism underlies its expression in the two cell lineages. Our analysis of the Xenopus laevis and Silurana tropicalis dmrt1 genes indicated the presence of two distinct promoters: one upstream of the noncoding first exon (ncEx1), and one within the first intron. In contrast, only the ncEx1-upstream promoter was detected in the dmrt1 gene of the agnathan sand lamprey, which expressed dmrt1 exclusively in the germ cells. In X. laevis, the ncEx1- and exon 2-upstream promoters were predominantly used for germ-cell and somatic-cell transcription, respectively. Importantly, knockdown of the ncEx1-containing transcript led to reduced germ-cell numbers in X. laevis gonads. Intriguingly, two genetically female individuals carrying the knockdown construct developed testicles. Analysis of the reptilian leopard gecko dmrt1 revealed the absence of ncEx1. We propose that dmrt1 regulated germ-cell development in the vertebrate ancestor, then acquired another promoter in its first intron to regulate somatic-cell masculinization during gnathostome evolution. In the common ancestor of reptiles and mammals, only one promoter got function for both the two cell lineages, accompanied with the loss of ncEx1. In addition, we found a conserved noncoding sequence (CNS) in the dmrt1 5'-flanking regions only among amniote species, and two CNSs in the introns among most vertebrates except for agnathans. Finally, we discuss relationships between these CNSs and the promoters of dmrt1 during vertebrate evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Flow-cytometric measurements of somatic cell mutations in Thorotrast patients

    International Nuclear Information System (INIS)

    Umeki, Shigeko; Kyoizumi, Seishi; Kusunoki, Yoichiro; Nakamura, Nori; Sasaki, Masao; Mori, Takesaburo; Ishikawa, Yuichi; Cologne, J.B.; Akiyama, Mitoshi.

    1992-10-01

    Exposure to ionizing radiation is a well-recognized risk factor for cancer development. Because ionizing radiation can induce mutations, an accurate way of measuring somatic mutation frequencies could be a useful tool for evaluating cancer risk. In the present study, we have examined in vivo somatic mutation frequencies at the erythrocyte glycophorin A and T-cell receptor loci in 18 Thorotrast patients. These persons have been continuously irradiated with alpha particles emitted from the internal deposition of thorium dioxide and thus have increased risks of certain malignant tumors. When compared with controls, the Thorotrast patients showed a significantly higher frequency of mutants at the lymphocyte T-cell receptor loci but not at the erythrocyte glycophorin A loci. (author)

  18. Perspectives for induced pluripotent stem cell technology: new insights into human physiology involved in somatic mosaicism.

    Science.gov (United States)

    Nagata, Naoki; Yamanaka, Shinya

    2014-01-31

    Induced pluripotent stem cell technology makes in vitro reprogramming of somatic cells from individuals with various genetic backgrounds possible. By applying this technology, it is possible to produce pluripotent stem cells from biopsy samples of arbitrarily selected individuals with various genetic backgrounds and to subsequently maintain, expand, and stock these cells. From these induced pluripotent stem cells, target cells and tissues can be generated after certain differentiation processes. These target cells/tissues are expected to be useful in regenerative medicine, disease modeling, drug screening, toxicology testing, and proof-of-concept studies in drug development. Therefore, the number of publications concerning induced pluripotent stem cells has recently been increasing rapidly, demonstrating that this technology has begun to infiltrate many aspects of stem cell biology and medical applications. In this review, we discuss the perspectives of induced pluripotent stem cell technology for modeling human diseases. In particular, we focus on the cloning event occurring through the reprogramming process and its ability to let us analyze the development of complex disease-harboring somatic mosaicism.

  19. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig

    Directory of Open Access Journals (Sweden)

    Richter Anne

    2012-11-01

    Full Text Available Abstract Background Somatic cell nuclear transfer (SCNT is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination. Results PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs and porcine ear fibroblasts (PEFs could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the NucleofectorTM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT. Conclusion The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.

  20. Feeder Cell Type Affects the Growth of In Vitro Cultured Bovine Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Islam M. Saadeldin

    2017-01-01

    Full Text Available Trophectoderm cells are the foremost embryonic cells to differentiate with prospective stem-cell properties. In the current study, we aimed at improving the current approach for trophoblast culture by using granulosa cells as feeders. Porcine granulosa cells (PGCs compared to the conventional mouse embryonic fibroblasts (MEFs were used to grow trophectoderm cells from hatched bovine blastocysts. Isolated trophectoderm cells were monitored and displayed characteristic epithelial/cuboidal morphology. The isolated trophectoderm cells expressed mRNA of homeobox protein (CDX2, cytokeratin-8 (KRT8, and interferon tau (IFNT. The expression level was higher on PGCs compared to MEFs throughout the study. In addition, primary trophectoderm cell colonies grew faster on PGCs, with a doubling time of approximately 48 hrs, compared to MEFs. PGCs feeders produced a fair amount of 17β-estradiol and progesterone. We speculated that the supplementation of sex steroids and still-unknown factors during the trophoblasts coculture on PGCs have helped to have better trophectoderm cell’s growth than on MEFs. This is the first time to use PGCs as feeders to culture trophectoderm cells and it proved superior to MEFs. We propose PGCs as alternative feeders for long-term culture of bovine trophectoderm cells. This model will potentially benefit studies on the early trophoblast and embryonic development in bovines.

  1. Bovine aortic endothelial cells are susceptible to Hantaan virus infection

    International Nuclear Information System (INIS)

    Bahr, U.; Muranyi, W.; Mueller, S.; Kehm, R.; Handermann, M.; Darai, G.; Zeier, M.

    2004-01-01

    Hantavirus serotype Hantaan (HTN) is one of the causative agents of hemorrhagic fever with renal syndrome (HFRS, lethality up to 10%). The natural host of HTN is Apodemus agrarius. Recent studies have shown that domestic animals like cattle are sporadically seropositive for hantaviruses. In the present study, the susceptibility of bovine aortic endothelial cells (BAEC) expressing α V β 3 -integrin to a HTN infection was investigated. Viral nucleocapsid protein and genomic RNA segments were detected in infected BAEC by indirect immunofluorescence assay, Western blot analysis, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. The results of this study strongly support our previous observation on Puumala virus (PUU) that has been propagated efficiently in BAEC. These findings open a new window to contemplate the ecology of hantavirus infection and transmission route from animal to man

  2. The glycophorin A assay for somatic cell mutations in humans

    International Nuclear Information System (INIS)

    Langlois, R.G.; Bigbee, W.L.; Jensen, R.H.

    1989-01-01

    In this report we briefly review our past experience and some new developments with the GPA assay. Particular emphasis will be placed on two areas that affect the utility of the GPA assay for human population monitoring. The first is our efforts to simplify the GPA assay to make it more generally available for large population studies. The second is to begin to understand some of the characteristics of human hemopoiesis which affect the accumulation and expression of mutant phenotype cells. 11 refs., 4 figs

  3. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Ki-Eun Park

    2016-05-01

    Full Text Available The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT. By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals.

  4. Expression and Function of Cell Wall-Bound Cationic Peroxidase in Asparagus Somatic Embryogenesis

    Science.gov (United States)

    Takeda, Hiroyuki; Kotake, Toshihisa; Nakagawa, Naoki; Sakurai, Naoki; Nevins, Donald J.

    2003-01-01

    Cultured asparagus (Asparagus officinalis L. cv Y6) cells induced to regenerate into whole plants through somatic embryogenesis secreted a 38-kD protein into cell walls. The full-length cDNA sequence of this protein (Asparagus officinalis peroxidase 1 [AoPOX1]) determined by reverse transcriptase-polymerase chain reaction showed similarity with plant peroxidases. AoPOX1 transcripts were particularly abundant during early somatic embryogenesis. To evaluate the in vivo function of AoPOX1 protein, purified recombinant AoPOX1 protein was reacted with a series of phenolic substrates. The AoPOX1 protein was effective in the metabolism of feruloyl (o-methoxyphenol)-substituted substrates, including coniferyl alcohol. The reaction product of coniferyl alcohol was fractionated and subjected to gas chromatography-mass spectrometry analysis and 1H-nuclear magnetic resonance analysis, indicating that the oxidation product of coniferyl alcohol in the presence of AoPOX1 was dehydrodiconiferyl alcohol. The concentration of dehydrodiconiferyl alcohol in the cultured medium of the somatic embryos was in the range of 10−8 m. Functions of the AoPOX1 protein in the cell differentiation are discussed. PMID:12692335

  5. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro

    OpenAIRE

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-01-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1–5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic ...

  6. DOT1L inhibitor improves early development of porcine somatic cell nuclear transfer embryos

    DEFF Research Database (Denmark)

    Tao, Jia; Zhang, Yu; Zuo, Xiaoyuan

    2017-01-01

    Incomplete epigenetic reprogramming of the genome of donor cells causes poor early and full-term developmental efficiency of somatic cell nuclear transfer (SCNT) embryos. Previous research indicate that inhibition of the histone H3 K79 methyltransferase DOT1L, using a selective pharmacological...... inhibitor EPZ004777 (EPZ), significantly improved reprogramming efficiency during the generation of mouse induced pluripotent stem cells. However, the roles of DOT1L in porcine nuclear transfer-mediated cellular reprogramming are not yet known. Here we showed that DOT1L inhibition via 0.5 nM EPZ treatment...

  7. Effects of herd management practices on somatic cell counts in an arid climate

    OpenAIRE

    Ali Sadeghi-Sefidmazgi; Farahnaz Rayatdoost-Baghal

    2014-01-01

    The objective of this study was to evaluate associations between average lactation somatic cell counts (SCC) and herd management practices in an arid climate. A total of 38,530 average lactation SCC records for 10,216 Holstein cows gathered on 25 dairy farms from January 2009 to October 2012 in Isfahan (Iran) were analyzed. Average lactation SCC (cells × 1,000) was 250.79 ranging from 90.31 to 483.23 cells/mL across investigated farms. Herd-level management factors associated with average lac...

  8. Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells.

    Science.gov (United States)

    Shin, Dong-Hyuk; Lee, Jeoung-Eun; Eum, Jin Hee; Chung, Young Gie; Lee, Hoon Taek; Lee, Dong Ryul

    2017-12-01

    Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.

  9. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Andrew D. Renault

    2012-08-01

    Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor.

  10. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster.

    Science.gov (United States)

    Renault, Andrew D

    2012-10-15

    Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor.

  11. Transfection of bovine spermatogonial stem cells in vitro.

    Science.gov (United States)

    Tajik, P; Hoseini Pajooh, Kh; Fazle Elahi, Z; Javdani Shahedin, G; Ghasemzadeh-Nava, H

    2017-01-01

    Spermatogonial stem cells (SSCs) are the only stem cells in adults that can transfer genetic information to the future generations. Considering the fact that a single SSC gives rise to a vast number of spermatozoa, genetic manipulation of these cells is a potential novel technology with feasible application to various animal species. The aim of this study was to evaluate enhanced green fluorescent protein (EGFP) gene transfection into bovine SSCs via liposome carrier and assess the best incubation day in uptake exogenous gene by SSCs. Transfection efficiency of EGFP gene with lipofectamine 2000 was determined in days following each three day of transfection (day 4, 6 and 8 of the culture) by fluorescent microscope. Results showed that the transfected cells through lipofection increased significantly (Ptransfection in comparison with those of the control groups. The transfected SSCs were higher in comparison with those of the free exogenous gene carrier groups (Ptransfection proceeds at day four. It was concluded that lipofectamine can be used safely for direct loading exogenous DNA to SSCs particularly during the fourth day of culture.

  12. Genetic relationship of lactation persistency with milk yield, somatic cell score, reproductive traits, and longevity in Slovak Holstein cattle

    OpenAIRE

    Strapáková, Eva; Candrák, Juraj; Strapák, Peter

    2016-01-01

    The objective of this study was to estimate the breeding values (BVs) of lactation persistency, the test day of milk yield, the somatic cell score, reproductive traits (calving interval, days open), longevity in Slovak Holstein dairy cattle. BVs were used for the detection of relationships among the persistency of lactation and other selected traits. Data for the estimation of BVs of milk production and somatic cell score were collected from 855 240 cows. BVs for reproductive t...

  13. Potential role of centrioles in determining the morphogenetic status of animal somatic cells.

    Science.gov (United States)

    Tkemaladze, J; Chichinadze, K

    2005-05-01

    Irreversible differentiation (change of morphogenetic status) and programmed death (apoptosis) are observed only in somatic cells. Cell division is the only way by which the morphogenetic status of the offspring cells may be modified. It is known that there is a fixed limit to the number of possible cell divisions, the so-called 'Hayflick limit'. Existing links between cell division, differentiation and apoptosis make it possible to conclude that all these processes could be controlled by a single self-reproducing structure. Potential candidates for this replicable structure in a somatic cell are chromosomes, mitochondria (both contain DNA), and centrioles. Centrioles (diplosome) are the most likely unit that can fully regulate the processes of irreversible differentiation, determination and modification of the morphogenetic status. It may contain differently encoded RNA molecules stacked in a definite order. During mitosis, these RNA molecules are released one by one into the cytoplasm. In the presence of reverse transcriptase and endonuclease, RNA can be embedded in nuclear DNA. This process presumably changes the status of repressed and potentially active genes and, subsequently, the morphogenetic status of a cell.

  14. THE EFFECT OF BLOOD AND MILK SERUM ZINC CONCENTRATION ON MILK SOMATIC CELL COUNT IN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Ivana Davidov

    2016-11-01

    Full Text Available The objective of this study was to evaluate the effect of blood and milk zinc concentration on somatic cell count and occurrence of subclinical mastitis cases. The study was performed on thirty Holstein cows approximate same body weight, ages 3 to 5 years, with equally milk production. Blood samples were taken after the morning milking from the caudal vein and milk from all four quarters was taken before morning milking. All samples of blood and milk were taken to determined zinc, using inductively coupled plasma mass spectrometry. 37.67% (11/30 cows have blood serum zinc concentration below 7µmol/l, and 63.33% or 19/30 cows have blood serum zinc concentration higher then 13µmol/l. Also 30% (9/30 cows have somatic cell count lower then 400.000/ml which indicate absence of subclinical mastitis, but 70% (21/30 cows have somatic cell count higher then 400.000/ml which indicate subclinical mastitis. Results indicate that cows with level of zinc in blood serum higher then 13 µmol/l have lower somatic cell count. Cows with lower zinc blood serum concentration then 7 µmol/l have high somatic cell count and high incidence of subclinical mastitis. According to results in this research there is no significant effect of milk serum zinc concentration on somatic cell count in dairy cows.

  15. Nucleosome organizations in induced pluripotent stem cells reprogrammed from somatic cells belonging to three different germ layers.

    Science.gov (United States)

    Tao, Yu; Zheng, Weisheng; Jiang, Yonghua; Ding, Guitao; Hou, Xinfeng; Tang, Yitao; Li, Yueying; Gao, Shuai; Chang, Gang; Zhang, Xiaobai; Liu, Wenqiang; Kou, Xiaochen; Wang, Hong; Jiang, Cizhong; Gao, Shaorong

    2014-12-21

    Nucleosome organization determines the chromatin state, which in turn controls gene expression or silencing. Nucleosome remodeling occurs during somatic cell reprogramming, but it is still unclear to what degree the re-established nucleosome organization of induced pluripotent stem cells (iPSCs) resembles embryonic stem cells (ESCs), and whether the iPSCs inherit some residual gene expression from the parental fibroblast cells. We generated genome-wide nucleosome maps in mouse ESCs and in iPSCs reprogrammed from somatic cells belonging to three different germ layers using a secondary reprogramming system. Pairwise comparisons showed that the nucleosome organizations in the iPSCs, regardless of the iPSCs' tissue of origin, were nearly identical to the ESCs, but distinct from mouse embryonic fibroblasts (MEF). There is a canonical nucleosome arrangement of -1, nucleosome depletion region, +1, +2, +3, and so on nucleosomes around the transcription start sites of active genes whereas only a nucleosome occupies silent transcriptional units. Transcription factor binding sites possessed characteristic nucleosomal architecture, such that their access was governed by the rotational and translational settings of the nucleosome. Interestingly, the tissue-specific genes were highly expressed only in the parental somatic cells of the corresponding iPS cell line before reprogramming, but had a similar expression level in all the resultant iPSCs and ESCs. The re-established nucleosome landscape during nuclear reprogramming provides a conserved setting for accessibility of DNA sequences in mouse pluripotent stem cells. No persistent residual expression program or nucleosome positioning of the parental somatic cells that reflected their tissue of origin was passed on to the resulting mouse iPSCs.

  16. An Epigenetic Modifier Results in Improved In Vitro Blastocyst production after Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Zhang, Yunhai; Li, Juan; Villemoes, Klaus

    2007-01-01

    The present study was designed to examine the effect of trichostatin A (TSA), an inhibitor of histone deacetylase, on development of porcine cloned embryos. Our results showed that treatment of cloned embryos derived from sow oocytes with 50 nM TSA for up to 24 h after the onset of activation cou...... were tested, and for all cell lines an enhancement in blastocyst development compared to their corresponding control was observed. Our data demonstrate that TSA treatment after somatic cell nuclear transfer in the pig can significantly improve the in vitro blastocyst production...

  17. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  18. Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells.

    Science.gov (United States)

    Yoshida, Keita; Hozumi, Akiko; Treen, Nicholas; Sakuma, Tetsushi; Yamamoto, Takashi; Shirae-Kurabayashi, Maki; Sasakura, Yasunori

    2017-03-15

    The ascidian Ciona intestinalis has a high regeneration capacity that enables the regeneration of artificially removed primordial germ cells (PGCs) from somatic cells. We utilized PGC regeneration to establish efficient methods of germ line mutagenesis with transcription activator-like effector nucleases (TALENs). When PGCs were artificially removed from animals in which a TALEN pair was expressed, somatic cells harboring mutations in the target gene were converted into germ cells, this germ cell population exhibited higher mutation rates than animals not subjected to PGC removal. PGC regeneration enables us to use TALEN expression vectors of specific somatic tissues for germ cell mutagenesis. Unexpectedly, cis elements for epidermis, neural tissue and muscle could be used for germ cell mutagenesis, indicating there are multiple sources of regenerated PGCs, suggesting a flexibility of differentiated Ciona somatic cells to regain totipotency. Sperm and eggs of a single hermaphroditic, PGC regenerated animal typically have different mutations, suggesting they arise from different cells. PGCs can be generated from somatic cells even though the maternal PGCs are not removed, suggesting that the PGC regeneration is not solely an artificial event but could have an endogenous function in Ciona. This study provides a technical innovation in the genome-editing methods, including easy establishment of mutant lines. Moreover, this study suggests cellular mechanisms and the potential evolutionary significance of PGC regeneration in Ciona. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    International Nuclear Information System (INIS)

    Fan, Yong; Chen, Xinjie; Luo, Yumei; Chen, Xiaolin; Li, Shaoying; Huang, Yulin; Sun, Xiaofang

    2009-01-01

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  20. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yong; Chen, Xinjie; Luo, Yumei; Chen, Xiaolin; Li, Shaoying; Huang, Yulin [Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Duobao Road 63, Guangzhou, Guangdong (China); Sun, Xiaofang, E-mail: xiaofangsun@hotmail.com [Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Duobao Road 63, Guangzhou, Guangdong (China)

    2009-04-24

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  1. Effective donor cell fusion conditions for production of cloned dogs by somatic cell nuclear transfer.

    Science.gov (United States)

    Park, JungEun; Oh, HyunJu; Hong, SoGun; Kim, MinJung; Kim, GeonA; Koo, OkJae; Kang, SungKeun; Jang, Goo; Lee, ByeongChun

    2011-03-01

    As shown by the birth of the first cloned dog 'Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Host-pathogen interactions in bovine mammary epithelial cells and HeLa cells by Staphylococcus aureus isolated from subclinical bovine mastitis.

    Science.gov (United States)

    Castilho, Ivana G; Dantas, Stéfani Thais Alves; Langoni, Hélio; Araújo, João P; Fernandes, Ary; Alvarenga, Fernanda C L; Maia, Leandro; Cagnini, Didier Q; Rall, Vera L M

    2017-08-01

    Staphylococcus aureus is a common pathogen that causes subclinical bovine mastitis due to several virulence factors. In this study, we analyzed S. aureus isolates collected from the milk of cows with subclinical mastitis that had 8 possible combinations of bap, icaA, and icaD genes, to determine their capacity to produce biofilm on biotic (bovine primary mammary epithelial cells and HeLa cells) and abiotic (polystyrene microplates) surfaces, and their ability to adhere to and invade these cells. We also characterized isolates for microbial surface components recognizing adhesive matrix molecules (MSCRAMM) and agr genes, and for their susceptibility to cefquinome sulfate in the presence of biofilm. All isolates adhered to and invaded both cell types, but invasion indexes were higher in bovine primary mammary epithelial cells. Using tryptic soy broth + 1% glucose on abiotic surfaces, 5 out of 8 isolates were biofilm producers, but only the bap + icaA + icaD + isolate was positive in Dulbecco's Modified Eagle's medium. The production of biofilm on biotic surfaces occurred only with this isolate and only on HeLa cells, because the invasion index for bovine primary mammary epithelial cells was too high, making it impossible to use these cells in this assay. Of the 5 biofilm producers in tryptic soy broth + 1% glucose, 4 presented with the bap/fnbA/clfA/clfB/eno/fib/ebpS combination, and all were protected from cefquinome sulfate. We found no predominance of any agr group. The high invasive potential of S. aureus made it impossible to observe biofilm in bovine primary mammary epithelial cells, and we concluded that cells with lower invasion rates, such as HeLa cells, were more appropriate for this assay. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Somatically Acquired LINE-1 Insertions in Normal Esophagus Undergo Clonal Expansion in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Doucet-O'Hare, Tara T; Sharma, Reema; Rodić, Nemanja; Anders, Robert A; Burns, Kathleen H; Kazazian, Haig H

    2016-09-01

    Squamous cell carcinoma of the esophagus (SCC) is the most common form of esophageal cancer in the world and is typically diagnosed at an advanced stage when successful treatment is challenging. Understanding the mutational profile of this cancer may identify new treatment strategies. Because somatic retrotransposition has been shown in tumors of the gastrointestinal system, we focused on LINE-1 (L1) mobilization as a source of genetic instability in this cancer. We hypothesized that retrotransposition is ongoing in SCC patients. The expression of L1 encoded proteins is necessary for retrotransposition to occur; therefore, we evaluated the expression of L1 open reading frame 1 protein (ORF1p). Using immunohistochemistry, we detected ORF1p expression in all four SCC cases evaluated. Using L1-seq, we identified and validated 74 somatic insertions in eight tumors of the nine evaluated. Of these, 12 insertions appeared to be somatic, not genetically inherited, and sub-clonal (i.e., present in less than one copy per genome equivalent) in the adjacent normal esophagus (NE), while clonal in the tumor. Our results indicate that L1 retrotransposition is active in SCC of the esophagus and that insertion events are present in histologically NE that expands clonally in the subsequent tumor. © 2016 WILEY PERIODICALS, INC.

  4. Recombinant bovine growth hormone (rBGH) enhances somatic growth by regulating the GH-IGF axis in fingerlings of gilthead sea bream (Sparus aurata).

    Science.gov (United States)

    Vélez, Emilio J; Perelló, Miquel; Azizi, Sheida; Moya, Alberto; Lutfi, Esmail; Pérez-Sánchez, Jaume; Calduch-Giner, Josep A; Navarro, Isabel; Blasco, Josefina; Fernández-Borràs, Jaume; Capilla, Encarnación; Gutiérrez, Joaquim

    2018-02-01

    The growth hormone (GH)/insulin-like growth factors (IGFs) endocrine axis is the main growth-regulator system in vertebrates. Some authors have demonstrated the positive effects on growth of a sustained-release formulation of a recombinant bovine GH (rBGH) in different fish species. The aim of this work was to characterize the effects of a single injection of rBGH in fingerlings of gilthead sea bream on growth, GH-IGF axis, and both myogenic and osteogenic processes. Thus, body weight and specific growth rate were significantly increased in rBGH-treated fish respect to control fish at 6weeks post-injection, whereas the hepatosomatic index was decreased and the condition factor and mesenteric fat index were unchanged, altogether indicating enhanced somatic growth. Moreover, rBGH injection increased the plasma IGF-I levels in parallel with a rise of hepatic mRNA from total IGF-I, IGF-Ic and IGF-II, the binding proteins IGFBP-1a and IGFBP-2b, and also the receptors IGF-IRb, GHR-I and GHR-II. In skeletal muscle, the expression of IGF-Ib and GHR-I was significantly increased but that of IGF-IRb was reduced; the mRNA levels of myogenic regulatory factors, proliferation and differentiation markers (PCNA and MHC, respectively), or that of different molecules of the signaling pathway (TOR/AKT) were unaltered. Besides, the growth inhibitor myostatin (MSTN1 and MSTN2) and the hypertrophic marker (MLC2B) expression resulted significantly enhanced, suggesting altogether that the muscle is in a non-proliferative stage of development. Contrarily in bone, although the expression of most molecules of the GH/IGF axis was decreased, the mRNA levels of several osteogenic genes were increased. The histology analysis showed a GH induced lipolytic effect with a clear decrease in the subcutaneous fat layer. Overall, these results reveal that a better growth potential can be achieved on this species and supports the possibility to improve growth and quality through the optimization of its

  5. Generation of Mouse Haploid Somatic Cells by Small Molecules for Genome-wide Genetic Screening

    Directory of Open Access Journals (Sweden)

    Zheng-Quan He

    2017-08-01

    Full Text Available The recent success of derivation of mammalian haploid embryonic stem cells (haESCs has provided a powerful tool for large-scale functional analysis of the mammalian genome. However, haESCs rapidly become diploidized after differentiation, posing challenges for genetic analysis. Here, we show that the spontaneous diploidization of haESCs happens in metaphase due to mitotic slippage. Diploidization can be suppressed by small-molecule-mediated inhibition of CDK1 and ROCK. Through ROCK inhibition, we can generate haploid somatic cells of all three germ layers from haESCs, including terminally differentiated neurons. Using piggyBac transposon-based insertional mutagenesis, we generated a haploid neural cell library harboring genome-wide mutations for genetic screening. As a proof of concept, we screened for Mn2+-mediated toxicity and identified the Park2 gene. Our findings expand the applications of mouse haploid cell technology to somatic cell types and may also shed light on the mechanisms of ploidy maintenance.

  6. Somatic cell nuclear transfer: Infinite reproduction of a unique diploid genome

    International Nuclear Information System (INIS)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-01-01

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the 'Hayflick limit'. However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to 'passage' a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the 'passage' of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels

  7. Somatic cell nuclear transfer: infinite reproduction of a unique diploid genome.

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-06-10

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the "Hayflick limit". However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to "passage" a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the "passage" of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels.

  8. Biological effect of ultraviolet radiation on cattle: bovine ocular squamous cell carcinoma

    International Nuclear Information System (INIS)

    Kopecky, K.E.; Pugh, G.W. Jr.; Hughes, D.E.; Booth, G.D.; Cheville, N.F.

    1979-01-01

    The relationship between bovine ocular squamous cell carcinoma and ultraviolet radiation was studied. Experimental procedures were devised to irradiate cattle with predetermined quantities of ultraviolet beta. Irradiation induced a preneoplastic ocular growth in one of four irradiated cattle. An epizootiologic study indicates that since 1950 the occurrence of bovine ocular squamous cell carcinoma reported at slaughter has increased. This increase was real and not due to an increase in numbers of cattle

  9. Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Domenico Iuso

    Full Text Available The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT. Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT.

  10. Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.

    Science.gov (United States)

    Iuso, Domenico; Czernik, Marta; Di Egidio, Fiorella; Sampino, Silvestre; Zacchini, Federica; Bochenek, Michal; Smorag, Zdzislaw; Modlinski, Jacek A; Ptak, Grazyna; Loi, Pasqualino

    2013-01-01

    The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT). Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT.

  11. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    International Nuclear Information System (INIS)

    Doupnik, C.A.; Leikauf, G.D.

    1990-01-01

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein

  12. Bovine mammary stem cells: Cell biology meets production agriculture

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  13. In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle

    Directory of Open Access Journals (Sweden)

    Goff Alan K

    2009-02-01

    Full Text Available Abstract Background Embryo in vitro manipulations during early development are thought to increase mortality by altering the epigenetic regulation of some imprinted genes. Using a bovine interspecies model with a single nucleotide polymorphism, we assessed the imprinting status of the small nuclear ribonucleoprotein polypeptide N (SNRPN gene in bovine embryos produced by artificial insemination (AI, in vitro culture (IVF and somatic cell nuclear transfer (SCNT and correlated allelic expression with the DNA methylation patterns of a differentially methylated region (DMR located on the SNRPN promoter. Results In the AI group, SNRPN maternal expression is silenced at day 17 and 40 of development and a third of the alleles analyzed are methylated in the DMR. In the IVF group, maternal transcripts were identified at day 17 but methylation levels were similar to the AI group. However, day-40 fetuses in the IVF group showed significantly less methylation when compared to the AI group and SNRPN expression was mostly paternal in all fetal tissues studied, except in placenta. Finally, the SCNT group presented severe loss of DMR methylation in both day-17 embryos and 40 fetuses and biallelic expression was observed in all stages and tissues analyzed. Conclusion Together these results suggest that artificial reproductive techniques, such as prolonged in vitro culture and SCNT, lead to abnormal reprogramming of imprinting of SNRPN gene by altering methylation levels at this locus.

  14. Activation of specific cellular immunity toward murine leukemia in mice rejecting syngeneic somatic hybrid cells

    International Nuclear Information System (INIS)

    Liang, W.; Cohen, E.P.

    1977-01-01

    ASL-1 x LM(TK) - somatic hybrid cells form both H-2/sup a/ and H-2/sup k/ antigen complexes. After forming a localized tumor in syngeneic (A/J x C 3 H/HeJ)F 1 mice, they are rejected. Such mice are resistant to otherwise invariably lethal injections of ASL-1 cells, surviving for prolonged and, in some instances, indefinite periods. To examine the basis of immunity, the capacity of spleen cells from mice rejecting hybrid cells to stimulate the release of 51 Cr from labeled ASL-1 cells was investigated. Cells from the spleens of mice rejecting ASL-1 x LM(TK) - cells stimulated the release of 51 Cr from labeled ASL-1 cells, but not from Ehrlich ascites or P815 cells. Cells from mice injected with mitomycin-C-treated ASL-1 cells led to the release of 51 Cr from labeled ASL-1 cells as well, but the extent of 51 Cr release was approximately one-third as occurred in the presence of cells from hybrid cell-injected mice. Cells from noninjected mice or from mice injected with LM(TK) - cells failed to lead to the specific release of 51 Cr from ASL-1 cells. The presence of unlabeled ASL-1 cells, but not Ehrlich ascites cells, competitively inhibited the spleen cell-stimulated release of 51 Cr from labeled ASL-1 cells. Sera from A/J mice injected with mitomycin-C-treated ASL-1 cells contained antibodies specific for the tumor-associated antigen of ASL-1 cells

  15. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells.

    Science.gov (United States)

    Shipony, Zohar; Mukamel, Zohar; Cohen, Netta Mendelson; Landan, Gilad; Chomsky, Elad; Zeliger, Shlomit Reich; Fried, Yael Chagit; Ainbinder, Elena; Friedman, Nir; Tanay, Amos

    2014-09-04

    Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and then guide cell-type-specific gene expression. Here we develop new methods for quantitative inference of DNA methylation turnover rates, and show that human embryonic stem cells preserve their epigenetic state by balancing antagonistic processes that add and remove methylation marks rather than by copying epigenetic information from mother to daughter cells. In contrast, somatic cells transmit considerable epigenetic information to progenies. Paradoxically, the persistence of the somatic epigenome makes it more vulnerable to noise, since random epimutations can accumulate to massively perturb the epigenomic ground state. The rate of epigenetic perturbation depends on the genomic context, and, in particular, DNA methylation loss is coupled to late DNA replication dynamics. Epigenetic perturbation is not observed in the pluripotent state, because the rapid turnover-based equilibrium continuously reinforces the canonical state. This dynamic epigenetic equilibrium also explains how the epigenome can be reprogrammed quickly and to near perfection after induced pluripotency.

  16. Effects of somatic cell count in subclinical mastitis on raw milk quality in dairy farms of Khuzestan province

    Directory of Open Access Journals (Sweden)

    mohammad Hossieni nejad

    2016-01-01

    Full Text Available Mastitis is an infectious disease that is spread in livestock and can cause cattle mortality. Generally a cow with mastitis has a 15 per cent decrease in milk production. In addition, losses from changes in some components of milk should also be considered. Any change in milk properties can be severe hazard for milk producers, dairy factories and consumers. In this study, the effect of somatic cell count on row milk quality of cows affected by subclinical mastitis was studied. For this purpose 240 milk samples were collected from dairy farms with subclinical mastitis (traditional and industrial of Khuzestan province in 2014 and their somatic cell count, protein and lipid contact and acidity determined. The mean±SD for somatic cells, acidity, protein and fat were 3.20×105±1.37×105 SCC/ml, 14.50±0.62 D°, 3.12±0.06% and 3.23±0.14% respectively. After statistical analysis, reverse correlation were found between somatic cell count with milk fat and protein. However, direct correlation was observed between range of milk fat and protein (p>0.01. Furthermore the results indicated that the range of acidity in spring and winter, protein and fat in winter and somatic cell in summer and autumn were more than the other seasons. According to statistical analysis, protein percent of milk samples in industrial farms were higher than traditional farms although the range of somatic cells was higher for traditional milk samples ‏p>0.05 According to the result, it seems that the somatic cell count of milk influences raw milk fat and protein content and acidity.

  17. Bovine Mastitis Resistance: Novel Quantitative Trait Loci and the Role of Bovine Mammary Epithelial Cells

    OpenAIRE

    Kurz, Jacqueline P.

    2018-01-01

    Bovine mastitis, or inflammation of the mammary gland, has substantial economic and animal welfare implications. A genetic basis for mastitis resistance traits is recognized and can be used to guide selective breeding programs. The discovery of regions of the genome associated with mastitis resistance, and knowledge of the underlying molecular mechanisms responsible, can facilitate development of efficient mastitis control and therapeutic strategies. The objectives of this dissertation resear...

  18. Somatic mosaicism of androgen receptor CAG repeats in colorectal carcinoma epithelial cells from men.

    Science.gov (United States)

    Di Fabio, Francesco; Alvarado, Carlos; Gologan, Adrian; Youssef, Emad; Voda, Linda; Mitmaker, Elliot; Beitel, Lenore K; Gordon, Philip H; Trifiro, Mark

    2009-06-01

    The X-linked human androgen receptor gene (AR) contains an exonic polymorphic trinucleotide CAG. The length of this encoded CAG tract inversely affects AR transcriptional activity. Colorectal carcinoma is known to express the androgen receptor, but data on somatic CAG repeat lengths variations in malignant and normal epithelial cells are still sporadic. Using laser capture microdissection (LCM), epithelial cells from colorectal carcinoma and normal-appearing mucosa were collected from the fresh tissue of eight consecutive male patients undergoing surgery (mean age, 70 y; range, 54-82). DNA isolated from each LCM sample underwent subsequent PCR and DNA sequencing to precisely determine AR CAG repeat lengths and the presence of microsatellite instability (MSI). Different AR CAG repeat lengths were observed in colorectal carcinoma (ranging from 0 to 36 CAG repeats), mainly in the form of multiple shorter repeat lengths. This genetic heterogeneity (somatic mosaicism) was also found in normal-appearing colorectal mucosa. Half of the carcinoma cases examined tended to have a higher number of AR CAG repeat lengths with a wider range of repeat size variation compared to normal mucosa. MSI carcinomas tended to have longer median AR CAG repeat lengths (n = 17) compared to microsatellite stable carcinomas (n = 14), although the difference was not significant (P = 0.31, Mann-Whitney test). Multiple unique somatic mutations of the AR CAG repeats occur in colorectal mucosa and in carcinoma, predominantly resulting in shorter alleles. Colorectal epithelial cells carrying AR alleles with shorter CAG repeat lengths may be more androgen-sensitive and therefore have a growth advantage.

  19. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.

    Science.gov (United States)

    Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C

    2017-11-10

    Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering

  20. Role of cumulus cells during vitrification and fertilization of mature bovine oocytes

    NARCIS (Netherlands)

    Ortiz-Escribano, N.; Smits, K.; Piepers, S.; Abbeel, Van den E.; Woelders, H.; Soom, Van A.

    2016-01-01

    This study was designed to determine the role of cumulus cells during vitrification of bovine oocytes. Mature cumulus-oocyte complexes (COCs) with many layers of cumulus cells, corona radiata oocytes (CRs), with a few layers of cumulus cells, and denuded oocytes (DOs) without cumulus cells were

  1. Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Pedersen, Hanne Gervi; Jakobsen, Anne Sørig

    2007-01-01

    The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell...

  2. Longitudinal Analysis of Somatic Cell Count for Joint Genetic Evaluation of Mastitis and Recovery Liability

    DEFF Research Database (Denmark)

    Welderufael, Berihu Gebremedhin; de Koning, D J; Janss, Luc

    Abstract Text: Better models of genetic evaluation for mastitis can be developed through longitudinal analysis of somatic cell count (SCC) which usually is used as a proxy for mastitis. Mastitis and recovery data with weekly observations of SCC were simulated for daughter groups of 60 and 240 per...... sire. Data were created to define cases: 1 if SCC was above a pre-specified boundary, else 0. A transition from below to above the boundary indicates probability to contract mastitis, and the other way indicates recovery. The MCMCglmm package was used to estimate breeding values. In the 60 daughters...

  3. Cigarette smoking during early pregnancy reduces the number of embryonic germ and somatic cells

    DEFF Research Database (Denmark)

    Mamsen, Linn; Lutterodt, M C; Andersen, Elisabeth Anne Wreford

    2010-01-01

    BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first-trimeste......BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first......-trimester gonads in relation to maternal smoking. METHODS: The study includes 24 human first-trimester testes, aged 37-68 days post-conception, obtained from women undergoing legal termination of pregnancy. A questionnaire was used to obtain information about smoking and drinking habits during pregnancy. Validated...... confounders such as alcohol and coffee consumption (P = 0.002). The number of germ cells in embryonic gonads, irrespective of gender, was also significantly reduced by 41% (95% CI 58-19%, P = 0.001) in exposed versus non-exposed embryonic gonads. CONCLUSIONS: Prenatal exposure to maternal cigarette smoke...

  4. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  5. Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency?

    Science.gov (United States)

    Wakayama, Teruhiko

    2007-02-01

    Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), most cloned embryos usually undergo developmental arrest prior to or soon after implantation, and the success rate for producing live offspring by cloning remains below 5%. The low success rate is believed to be associated with epigenetic errors, including abnormal DNA hypermethylation, but the mechanism of "reprogramming" is unclear. We have been able to develop a stable NT method in the mouse in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Especially in the mouse, only a few laboratories can make clones from adult somatic cells, and cloned mice are never successfully produced from most mouse strains. However, this technique promises to be an important tool for future research in basic biology. For example, NT can be used to generate embryonic stem (NT-ES) cell lines from a patient's own somatic cells. We have shown that NT-ES cells are equivalent to ES cells derived from fertilized embryos and that they can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. In general, NT-ES cell techniques are expected to be applied to regenerative medicine; however, this technique can also be applied to the preservation of genetic resources of mouse strain instead of embryos, oocytes and spermatozoa. This review describes how to improve cloning efficiency and NT-ES cell establishment and further applications.

  6. Inducing somatic meiosis-like reduction at high frequency by caffeine in root-tip cells of Vicia faba.

    Science.gov (United States)

    Chen, Y; Zhang, L; Zhou, Y; Geng, Y; Chen, Z

    2000-07-20

    Germinated seeds of Vicia faba were treated in caffeine solutions of different concentration for different durations to establish the inducing system of somatic meiosis-like reduction. The highest frequency of somatic meiosis-like reduction could reach up to 54.0% by treating the root tips in 70 mmol/l caffeine solution for 2 h and restoring for 24 h. Two types of somatic meiosis-like reduction were observed. One was reductional grouping, in which the chromosomes in a cell usually separated into two groups, and the role of spindle fibers did not show. The other type was somatic meiosis, which was analogous to meiosis presenting in gametogenesis, and chromosome pairing and chiasmata were visualized.

  7. Diphtheria toxin resistance in human lymphocytes and lymphoblasts in the in vivo somatic cell mutation test

    International Nuclear Information System (INIS)

    Tomkins, D.J.; Wei, L.; Laurie, K.E.

    1985-01-01

    It has been shown that circulating peripheral blood lymphocytes can be used for the enumeration of 6-thioguanine-resistant cells that presumably arise by mutation in vivo. This somatic cell mutation test has been studied in lymphocytes from human populations exposed to known mutagens and/or carcinogens. The sensitivity of the test could be further enhanced by including other gene markers, since there is evidence for locus-specific differences in response to mutagens. Resistance to diphtheria toxin (Dip/sup r/) seemed like a potential marker to incorporate into the test because the mutation acts codominantly, can readily be selected in human diploid fibroblasts and Chinese hamster cells with no evidence for cell density or cross-feeding effects, and can be assayed for in nondividing cells by measuring protein synthesis inhibition. Blood samples were collected from seven individuals, and fresh, cryopreserved, or Epstein-Barr virus (EBV)-transformed lymphocytes were tested for continued DNA synthesis ( 3 H-thymidine, autoradiography) or protein synthesis ( 35 S-methionine, scintillation counting). Both fresh and cryopreserved lymphocytes, stimulated to divide with phytohemagglutinin (PHA), continued to synthesize DNA in the presence of high doses of diphtheria toxin (DT). Similarly, both dividing (PHA-stimulated) and nondividing fresh lymphocytes carried on significant levels of protein synthesis even 68 hr after exposure to 100 flocculating units (LF)/ml DT. The results suggest that human T and B lymphocytes may not be as sensitive to DT protein synthesis inhibition as human fibroblast and Chinese hamster cells. For this reason, Dip/sup r/ may not be a suitable marker for the somatic cell mutation test

  8. Interaction of bovine peripheral blood polymorphonuclear cells and Leptospira species; innate responses in the natural bovine reservoir host.

    Directory of Open Access Journals (Sweden)

    Jennifer H Wilson-Welder

    2016-07-01

    Full Text Available Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and can also be reservoir hosts of other Leptospira species such as L. kirschneri, and L. interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murine neutrophils have shown activation of neutrophil extracellular trap or NET formation, and upregulation of inflammatory mediators by neutrophils in the presence of Leptospira. Humans, companion animals and most widely studied models of Leptospirosis are of acute infection, hallmarked by systemic inflammatory response, neutrophilia and septicemia. In contrast, cattle exhibit chronic infection with few outward clinical signs aside from reproductive failure. Taking into consideration that there is host species variation in innate immunity, especially in pathogen recognition and response, the interaction of bovine peripheral blood polymorphonuclear cells (PMNs and several Leptospira strains was evaluated. Studies including bovine-adapted strains, human pathogen strains, a saprophyte and inactivated organisms. Incubation of PMNs with Leptospira did induce slight activation of neutrophil NETs, greater than unstimulated cells but less than the quantity from E. coli P4 stimulated PMNs. Very low but significant from non-stimulated, levels of reactive oxygen peroxides were produced in the presence of all Leptospira strains and E. coli P4. Similarly, significant levels of reactive nitrogen intermediaries (NO2 was produced from PMNs when incubated with the Leptospira strains and greater quantities in the presence of E. coli P4. PMNs incubated with Leptospira induced RNA transcripts of IL-1β, MIP-1α, and TNF-α, with greater amounts induced by live organisms when compared to heat-inactivated leptospires. Transcript for inflammatory cytokine IL-8 was also induced, at similar levels regardless of Leptospira strain or viability. However, incubation of

  9. DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome...

  10. DNA methylation in porcine preimplantation embryos developed in-vivo or produced by in-vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome...

  11. IL-10 release by bovine epithelial cells cultured with Trichomonas vaginalis and Tritrichomonas foetus

    Directory of Open Access Journals (Sweden)

    Ricardo Chaves Vilela

    2013-02-01

    Full Text Available Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells.

  12. Aspects of Chemical Composition and Somatic Cell count of Cow Milk Marketed at Dispensers

    Directory of Open Access Journals (Sweden)

    Mircea Valentin MUNTEAN

    2018-05-01

    Full Text Available Milk quality is influenced by many factors: lactation, fat, protein, lactose, number of somatic cells. In order to process raw milk and compare with criteria of quality and food safety the Regulation of European Parliament and the council no. 853/2004. Analysing the total number of somatic cells (SCC in the period July-August 2017 it is noted that in case of samples collected from first automatic milk dispenser exceed 2 times the maximum admissible values and the samples collected from second automatic milk dispenser are up to the maximum allowable values which show that milking hygiene and animal health are at the European standards required. Analysis of fat content for both cases indicates that it is within the standard values for cow's milk and fat variations for DM1 samples are very low at temperatures above 30 degrees Celsius which shows that high temperatures do not influence these parameters. The biological material study was represented analysed by 30 samples of milk from only two cow milk dispensers functional located in this period in Cluj-Napoca city. These samples were collected at the same time period during July-August months. The aim of present study is to determine whether milk marketed through dispensers under the high temperature conditions specific to this period is affected in terms of qualitative parameter analysis.

  13. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  14. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    2014-11-01

    Full Text Available Cloned pigs generated by somatic cell nuclear transfer (SCNT show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP. q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos.

  15. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Science.gov (United States)

    Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue

    2014-01-01

    Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426

  16. Blood count and number of somatic cells in milk of cows infected with Coxiella burnetii

    Directory of Open Access Journals (Sweden)

    Radinović Miodrag

    2011-01-01

    Full Text Available The objective of the work was to examine the intensity of the local immune response of the mammary gland and the changes in the differential blood count of chronically infected cows. An experiment was performed on a group of cows with Q fever serologically proven using the ELISA test (IDEXX. Based on the ELISA test results, an experimental group of ten infected cows was formed. Blood was sampled from the experimental cows, and cumulative milk samples were taken. The number of erythrocytes was determined spectrophotometrically, and the number of leucocytes using the method according to Bürker - Türk. The blood analysis established an increased number of erythrocytes, while the number of leucocytes was within the limits of physiological values. The milk samples were used for the determination of the number of somatic cells using flow cytometric measurements. The processing of the milk samples established an average number of somatic cells of 853.000 /mL milk.

  17. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Engelhardt John F

    2003-11-01

    Full Text Available Abstract Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR gene in mice does not adequately replicate spontaneous bacterial infections observed in the human CF lung. Hence, several laboratories are pursuing alternative animal models of CF in larger species such as the pig, sheep, rabbits, and ferrets. Our laboratory has focused on developing the ferret as a CF animal model. Over the past few years, we have investigated several experimental parameters required for gene targeting and nuclear transfer (NT cloning in the ferret using somatic cells. In this review, we will discuss our progress and the hurdles to NT cloning and gene-targeting that accompany efforts to generate animal models of genetic diseases in species such as the ferret.

  18. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-01-01

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies

  19. Measuring bovine gamma delta T cell function at the site of Mycobacterium bovis infection

    Science.gov (United States)

    Bovine gamma delta T cells are amongst the first cells to accumulate at the site of Mycobacterium bovis infection; however, their role in the developing lesion remains unclear. We utilized transcriptomics analysis, in situ hybridization, and a macrophage/gamma delta T cell co-culture system to eluc...

  20. Phosphoprotein phosphatase of bovine spleen cell nuclei: physicochemical properties

    International Nuclear Information System (INIS)

    Rezyapkin, V.I.; Leonova, L.E.; Komkova, A.I.

    1986-01-01

    The physicochemical properties of phosphoprotein phosphatase (EC 1.3.1.16) from bovine spleen cell nuclei were studied. The enzyme possesses broad substrate specificity and catalyzes the dephosphorylation of phosphocasein, ATP, ADP, and p-nitrophenyl phosphate (pNPP). K/sub m/ for ATP, ADP, and pNPP are equal to 0.44, 0.43, and 1.25 mM, respectively. M/sub r/ of the enzyme, according to the data of gel filtraction of Sephadex G-75 and electrophoresis in polyacrylamide gel of various concentrations is ∼ 33,000. In electrophoresis in the presence of SDS, two protein bands with M/sub r/ 12,000 and 18,000 are detected. In the enzyme molecule, acid amino acid residues predominate; two free SH groups and two disulfide bridges are detected. Phosphoprotein phosphatase is a glycoprotein, containing ∼ 22% carbonhydrates. The protein possesses a supplementary absorption maximum at 560 nm. Ammonium molybdate is a competitive inhibitor with K/sub i/ 0.37 μM, while sodium fluoride is a noncompetitive inhibitor with K/sub i/ 1.3 mM. Incubation in the presence of 2 mM phenylmethylsulfonyl fluoride for 25 h leads to a loss of ∼ 46% of the enzymatic activity. Ammonium molybdate, sodium fluoride, and PMSF are reversible inhibitors. Modifications of the SH groups, NH 2 groups, and histidine leads to a decrease in the enzymatic activity. Incubation of phosphoprotein phosphatase with [γ- 32 P]ATP leads to the incorporation of 0.33 mole 33 P per mole of the enzyme. The mechanism of hydrolysis of the phosphodiester bond, catalyzed by the enzyme, is discussed

  1. Generation of a persistently infected MDBK cell line with natural bovine spongiform encephalopathy (BSE.

    Directory of Open Access Journals (Sweden)

    Dongseob Tark

    Full Text Available Bovine spongiform encephalopathy (BSE is a zoonotic transmissible spongiform encephalopathy (TSE thought to be caused by the same prion strain as variant Creutzfeldt-Jakob disease (vCJD. Unlike scrapie and chronic wasting disease there is no cell culture model allowing the replication of proteinase K resistant BSE (PrPBSE and the further in vitro study of this disease. We have generated a cell line based on the Madin-Darby Bovine Kidney (MDBK cell line over-expressing the bovine prion protein. After exposure to naturally BSE-infected bovine brain homogenate this cell line has shown to replicate and accumulate PrPBSE and maintain infection up to passage 83 after initial challenge. Collectively, we demonstrate, for the first time, that the BSE agent can infect cell lines over-expressing the bovine prion protein similar to other prion diseases. These BSE infected cells will provide a useful tool to facilitate the study of potential therapeutic agents and the diagnosis of BSE.

  2. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Müller Mathias

    2007-12-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. Results The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88. The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS PCR (i.e. ARMS-qPCR. For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR. We report the first cases (n = 4 fetuses, n = 3 lambs of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6 indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5% was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. Conclusion Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones

  3. Distribution of non-aureus staphylococci species in udder quarters with low and high somatic cell count, and clinical mastitis.

    Science.gov (United States)

    Condas, Larissa A Z; De Buck, Jeroen; Nobrega, Diego B; Carson, Domonique A; Roy, Jean-Philippe; Keefe, Greg P; DeVries, Trevor J; Middleton, John R; Dufour, Simon; Barkema, Herman W

    2017-07-01

    The effect of non-aureus staphylococci (NAS) in bovine mammary health is controversial. Overall, NAS intramammary infections (IMI) increase somatic cell count (SCC), with an effect categorized as mild, mostly causing subclinical or mild to moderate clinical mastitis. However, based on recent studies, specific NAS may affect the udder more severely. Some of these apparent discrepancies could be attributed to the large number of species that compose the NAS group. The objectives of this study were to determine (1) the SCC of quarters infected by individual NAS species compared with NAS as a group, culture-negative, and major pathogen-infected quarters; (2) the distribution of NAS species isolated from quarters with low SCC (mastitis; and (3) the prevalence of NAS species across quarters with low and high SCC. A total of 5,507 NAS isolates, 3,561 from low SCC quarters, 1,873 from high SCC quarters, and 73 from clinical mastitis cases, were obtained from the National Cohort of Dairy Farms of the Canadian Bovine Mastitis Research Network. Of quarters with low SCC, high SCC, or clinical mastitis, 7.6, 18.5, and 4.3% were NAS positive, respectively. The effect of NAS IMI on SCC was estimated using mixed-effect linear regression; prevalence of NAS IMI was estimated using Bayesian analyses. Mean SCC of NAS-positive quarters was 70,000 cells/mL, which was higher than culture-negative quarters (32,000 cells/mL) and lower than major pathogen-positive quarters (129,000 to 183,000 cells/mL). Compared with other NAS species, SCC was highest in quarters positive for Staphylococcus capitis, Staphylococcus gallinarum, Staphylococcus hyicus, Staphylococcus agnetis, or Staphylococcus simulans. In NAS-positive quarters, Staphylococcus xylosus (12.6%), Staphylococcus cohnii (3.1%), and Staphylococcus equorum (0.6%) were more frequently isolated from quarters with low SCC than other NAS species, whereas Staphylococcus sciuri (14%) was most frequently isolated from clinical mastitis cases

  4. Influence of somatic cell count on mineral content and salt equilibria of milk

    Directory of Open Access Journals (Sweden)

    Primo Mariani

    2010-01-01

    Full Text Available Aim of this research was to study the effect of somatic cell count on mineral content and salt equilibria at the level of quarter milk samples. Ten Italian Friesian cows, in which two homologous quarters (front quarters in 1 cow, rear quarters in 6 cows and both rear and front quarters in 3 cows were characterised by a milk SCC400,000 cells/mL (HC-milk, respectively, were selected. Cows were milked at quarter level during the morning milking and a single sample was collected from each selected quarter, thus, 26 quarter milk samples were collected. Compared to LC-milk, HC-milk was characterised by a lower content of phosphorus and potassium and by a higher content of both sodium and chloride. The equilibrium of calcium, phosphorus and magnesium between the colloidal and soluble phase of milk and the mineralisation degree of the casein micelles, were not different between HC and LC milk.

  5. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    Science.gov (United States)

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.

  6. Genotoxicity evaluation of buprofezin, petroleum oil and profenofos in somatic and germ cells of male mice.

    Science.gov (United States)

    Fahmy, M A; Abdalla, E F

    1998-01-01

    The two pest control agents, buprofezin and petroleum oil (Super Royal), were tested to evaluate their potential mutagenicity, in comparison with the organophosphorus insecticide profenofos. Chromosomal aberration analysis was used in both somatic and germ cells of male mice. Single oral treatment at three different dose levels (1/16, 1/8 and 1/4 LD50) for each insecticide induced an increase in the percentage of chromosomal aberrations in bone-marrow cells 24 h post-treatment, indicating a dose-dependent relationship. The percentage of chromosomal aberrations reached 23 +/- 0.73, 10.5 +/- 0.64 and 15 +/- 1.4 after treatment with the highest tested dose of profenofos, buprofezin and Super Royal, respectively. Such percentages did not exceed the corresponding value of the positive control, mitomycin C (29.2 +/- 0.69). The percentage of chromosomal aberrations induced by the different doses of profenofos was still highly significant even after excluding gaps. The same trend of results was noticed only at the highest tested dose of buprofezin and Super Royal. With respect to germ cells, profenofos is also a potent inducer of chromosomal aberrations in 1ry spermatocytes, giving percentages of 14 +/- 1.3 and 19 +/- 1.6 at the two higher doses of 4.25 and 8.5 mg kg(-1) body wt., respectively. Buprofezin and Super Royal had no significant effect on mouse spermatocytes at the tested concentrations. The various types of induced aberrations were examined and recorded in both somatic and germ cells. In conclusion, the present investigation indicates that the two pest control agents buprofezin and Super Royal are relatively much safer compounds than the conventional organophosphorus insecticides.

  7. Somatic stem cell differentiation is regulated by PI3K/Tor signaling in response to local cues.

    Science.gov (United States)

    Amoyel, Marc; Hillion, Kenzo-Hugo; Margolis, Shally R; Bach, Erika A

    2016-11-01

    Stem cells reside in niches that provide signals to maintain self-renewal, and differentiation is viewed as a passive process that depends on loss of access to these signals. Here, we demonstrate that the differentiation of somatic cyst stem cells (CySCs) in the Drosophila testis is actively promoted by PI3K/Tor signaling, as CySCs lacking PI3K/Tor activity cannot differentiate properly. We find that an insulin peptide produced by somatic cells immediately outside of the stem cell niche acts locally to promote somatic differentiation through Insulin-like receptor (InR) activation. These results indicate that there is a local 'differentiation' niche that upregulates PI3K/Tor signaling in the early daughters of CySCs. Finally, we demonstrate that CySCs secrete the Dilp-binding protein ImpL2, the Drosophila homolog of IGFBP7, into the stem cell niche, which blocks InR activation in CySCs. Thus, we show that somatic cell differentiation is controlled by PI3K/Tor signaling downstream of InR and that the local production of positive and negative InR signals regulates the differentiation niche. These results support a model in which leaving the stem cell niche and initiating differentiation are actively induced by signaling. © 2016. Published by The Company of Biologists Ltd.

  8. Cell cycle progression in irradiated endothelial cells cultured from bovine aorta

    International Nuclear Information System (INIS)

    Rubin, D.B.; Drab, E.A.; Ward, W.F.; Bauer, K.D.

    1988-01-01

    Logarithmically growing endothelial cells from bovine aortas were exposed to single doses of 0-10 Gy of 60Co gamma rays, and cell cycle phase distribution and progression were examined by flow cytometry and autoradiography. In some experiments, cells were synchronized in the cell cycle with hydroxyurea (1 mM). Cell number in sham-irradiated control cultures doubled in approximately 24 h. Estimated cycle stage times for control cells were 14.4 h for G1 phase, 7.2 h for S phase, and 2.4 h for G2 + M phase. Irradiated cells demonstrated a reduced distribution at the G1/S phase border at 4 h, and an increased distribution in G2 + M phase at 24 h postirradiation. Autoradiographs of irradiated cells after continuous [3H]thymidine labeling indicated a block in G1 phase or at the G1/S-phase border. The duration of the block was dose dependent (2-3 min/cGy). Progression of the endothelial cells through S phase after removal of the hydroxyurea block also was retarded by irradiation, as demonstrated by increased distribution in early S phase and decreased distribution in late S phase. These results indicate that progression of asynchronous cultured bovine aortic endothelial cells through the DNA synthetic cycle is susceptible to radiation inhibition at specific sites in the cycle, resulting in redistribution and partial synchronization of the population. Thus aortic endothelial cells, diploid cells from a normal tissue, resemble many immortal cell types that have been examined in this regard in vitro

  9. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration

    Science.gov (United States)

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205

  10. High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos

    DEFF Research Database (Denmark)

    Li, J.; Østrup, Olga; Villemoes, Klaus

    2008-01-01

    Abnormal epigenetic modification is supposed to be one of factors accounting for inefficient reprogramming of the donor cell nuclei in ooplasm after somatic cell nuclear transfer (SCNT). Trichostatin A (TSA) is an inhibitor of histone deacetylase, potentially enhancing cloning efficiency. The aim...... transferred to 2 recipients resulting in one pregnancy and birth of one live and five dead piglets. Our data demonstrate that TSA treatment after HMC in pigs may affect reprogramming of the somatic genome resulting in higher in vitro embryo development, and enable full-term in vivo development....

  11. Activities of indigenous proteolytic enzymes in caprine milk of different somatic cell counts.

    Science.gov (United States)

    Albenzio, M; Santillo, A; Kelly, A L; Caroprese, M; Marino, R; Sevi, A

    2015-11-01

    Individual caprine milk with different somatic cell counts (SCC) were studied with the aim of investigating the percentage distribution of leukocyte cell types and the activities of indigenous proteolytic enzymes; proteolysis of casein was also studied in relation to cell type following recovery from milk. The experiment was conducted on 5 intensively managed dairy flocks of Garganica goats; on the basis of SCC, the experimental groups were denoted low (L-SCC; 1,501,000 cells/mL) SCC. Leukocyte distribution differed between groups; polymorphonuclear neutrophilic leukocytes were higher in M-SCC and H-SCC milk samples, the percentage macrophages was the highest in H-SCC, and levels of nonviable cells significantly decreased with increasing SCC. Activities of all the main proteolytic enzymes were affected by SCC; plasmin activity was the highest in H-SCC milk and the lowest in L-SCC, and elastase and cathepsin D activities were the highest in M-SCC. Somatic cell count influenced casein hydrolysis patterns, with less intact α- and β-casein in H-SCC milk. Higher levels of low electrophoretic mobility peptides were detected in sodium caseinate incubated with leukocytes isolated from L-SCC milk, independent of cell type, whereas among cells recovered from M-SCC milk, macrophages yielded the highest levels of low electrophoretic mobility peptides from sodium caseinate. The level of high electrophoretic mobility peptides was higher in sodium caseinate incubated with polymorphonuclear neutrophilic leukocytes and macrophages isolated from M-SCC, whereas the same fraction of peptides was always the highest, independent of leukocyte type, for cells recovered from H-SCC milk. In caprine milk, a level of 700,000 cells/mL represented the threshold for changes in leukocyte distribution, which is presumably related to the immune status of the mammary gland. Differences in the profile of indigenous lysosomal proteolytic enzymes in caprine milk may influence the integrity of casein

  12. Effect of TCEA3 on the differentiation of bovine skeletal muscle satellite cells

    International Nuclear Information System (INIS)

    Zhu, Yue; Tong, Hui-Li; Li, Shu-Feng; Yan, Yun-Qin

    2017-01-01

    Bovine muscle-derived satellite cells (MDSCs) are important for animal growth. In this study, the effect of transcription elongation factor A3 (TCEA3) on bovine MDSC differentiation was investigated. Western blotting, immunofluorescence assays, and cytoplasmic and nuclear protein isolation and purification techniques were used to determine the expression pattern and protein localization of TCEA3 in bovine MDSCs during in vitro differentiation. TCEA3 expression was upregulated using the CRISPR/Cas9 technique to study its effects on MDSC differentiation in vitro. TCEA3 expression gradually increased during the in vitro differentiation of bovine MDSCs and peaked on the 5th day of differentiation. TCEA3 was mainly localized in the cytoplasm of bovine MDSCs, and its expression was not detected in the nucleus. The level of TCEA3 was relatively higher in myotubes at a higher degree of differentiation than during early differentiation. After transfection with a TCEA3-activating plasmid vector (TCEA3 overexpression) for 24 h, the myotube fusion rate, number of myotubes, and expression levels of the muscle differentiation-related loci myogenin (MYOG) and myosin heavy chain 3 (MYH3) increased significantly during the in vitro differentiation of bovine MDSCs. After transfection with a TCEA3-inhibiting plasmid vector for 24 h, the myotube fusion rate, number of myotubes, and expression levels of MYOG and MYH3 decreased significantly. Our results indicated, for the first time, that TCEA3 promotes the differentiation of bovine MDSCs and have implications for meat production and animal rearing. - Highlights: • Muscle-derived satellite cell differentiation is promoted by TCEA3. • TCEA3 protein was localized in the cytoplasm, but not nuclei of bovine MDSCs. • TCEA3 levels increased as myotube differentiation increased. • TCEA3 affected myotube fusion, myotube counts, and MYOG and MYH3 levels.

  13. Cyto-adherence of Mycoplasma mycoides subsp. mycoides to bovine lung epithelial cells.

    Science.gov (United States)

    Aye, Racheal; Mwirigi, Martin Kiogora; Frey, Joachim; Pilo, Paola; Jores, Joerg; Naessens, Jan

    2015-02-07

    Mycoplasma mycoides subsp. mycoides (Mmm) is the causative agent of contagious bovine pleuropneumonia (CBPP), a respiratory disease of cattle, whereas the closely related Mycoplasma mycoides subsp. capri (Mmc) is a goat pathogen. Cyto-adherence is a crucial step in host colonization by mycoplasmas and subsequent pathogenesis. The aim of this study was to investigate the interactions between Mmm and mammalian host cells by establishing a cyto-adherence flow cytometric assay and comparing tissue and species specificity of Mmm and Mmc strains. There were little significant differences in the adherence patterns of eight different Mmm strains to adult bovine lung epithelial cells. However, there was statistically significant variation in binding to different host cells types. Highest binding was observed with lung epithelial cells, intermediate binding with endothelial cells and very low binding with fibroblasts, suggesting the presence of effective adherence of Mmm on cells lining the airways of the lung, which is the target organ for this pathogen, possibly by high expression of a specific receptor. However, binding to bovine fetal lung epithelial cells was comparably low; suggesting that the lack of severe pulmonary disease seen in many infected young calves can be explained by reduced expression of a specific receptor. Mmm bound with high efficiency to adult bovine lung cells and less efficiently to calves or goat lung cells. The data show that cyto-adherence of Mmm is species- and tissue- specific confirming its role in colonization of the target host and subsequent infection and development of CBPP.

  14. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    Science.gov (United States)

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, Pcloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression. © 2016 Society for Reproduction and Fertility.

  15. Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats

    Directory of Open Access Journals (Sweden)

    Olofsson Ida

    2011-03-01

    Full Text Available Abstract Background Mastitis is the most important and costly disease in dairy goat production. Subclinical mastitis is common in goats and is mainly caused by contagious bacteria. Several methods to diagnose subclinical mastitis are available. In this study indirect measurement of somatic cell count (SCC by California Mastitis Test (CMT and direct measurement of SCC using a portable deLaval cell counter (DCC are evaluated. Swedish goat farmers would primarily benefit from diagnostic methods that can be used at the farm. The purpose of the study was to evaluate SCC measured by CMT and DCC as possible markers for intramammary infection (IMI in goats without clinical symptoms of mastitis. Moreover to see how well indirect measurement of SCC (CMT corresponded to direct measurement of SCC (DCC. Method Udder half milk samples were collected once from dairy goats (n = 111, in five different farms in Northern and Central Sweden. Only clinically healthy animals were included in the study. All goats were in mid to late lactation at sampling. Milk samples were analyzed for SCC by CMT and DCC at the farm, and for bacterial growth at the laboratory. Results Intramammary infection, defined as growth of udder pathogens, was found in 39 (18% of the milk samples. No growth was found in 180 (81% samples while 3 (1% samples were contaminated. The most frequently isolated bacterial species was coagulase negative staphylococci (CNS (72% of all isolates, followed by Staphylococcus aureus (23% of all isolates. Somatic cell count measured by DCC was strongly (p = 0.000 associated with bacterial growth. There was also a very strong association between CMT and bacterial growth. CMT 1 was associated with freedom of IMI while CMT ≥2 was associated with IMI. Indirect measurement of SCC by CMT was well correlated with SCC measured by DCC. Conclusions According to the results, SCC measured with CMT or DCC can predict udder infection in goats, and CMT can be used as a

  16. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    Energy Technology Data Exchange (ETDEWEB)

    Ostrup, Olga, E-mail: osvarcova@gmail.com [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway); Hyttel, Poul; Klaerke, Dan A. [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Collas, Philippe, E-mail: philc@medisin.uio.no [Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway)

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  17. Stem Cell Interaction with Somatic Niche May Hold the Key to Fertility Restoration in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Deepa Bhartiya

    2012-01-01

    Full Text Available The spontaneous return of fertility after bone marrow transplantation or heterotopic grafting of cryopreserved ovarian cortical tissue has surprised many, and a possible link with stem cells has been proposed. We have reviewed the available literature on ovarian stem cells in adult mammalian ovaries and presented a model that proposes that the ovary harbors two distinct populations of stem cells, namely, pluripotent, quiescent, very small embryonic-like stem cells (VSELs, and slightly larger “progenitor” ovarian germ stem cells (OGSCs. Besides compromising the somatic niche, oncotherapy destroys OGSCs since, like tumor cells, they are actively dividing; however VSELs persist since they are relatively quiescent. BMT or transplanted ovarian cortical tissue may help rejuvenate the ovarian niche, which possibly supports differentiation of persisting VSELs resulting in neo-oogenesis and follicular development responsible for successful pregnancies. Postnatal oogenesis in mammalian ovary from VSELs may be exploited for fertility restoration in cancer survivors including those who were earlier deprived of gametes and/or gonadal tissue cryopreservation options.

  18. Stem Cell Research: A Novel Boulevard towards Improved Bovine Mastitis Management

    Science.gov (United States)

    Sharma, Neelesh; Jeong, Dong Kee

    2013-01-01

    The dairy industry is a multi-billion dollar industry catering the nutritional needs of all age groups globally through the supply of milk. Clinical mastitis has a severe impact on udder tissue and is also an animal welfare issue. Moreover, it significantly reduces animal value and milk production. Mammary tissue damage reduces the number and activity of epithelial cells and consequently contributes to decreased milk production. The high incidence, low cure rate of this highly economic and sometimes deadly disease is an alarming for dairy sector as well as policy makers. Bovine mammary epithelial cells (MECs) and their stem cells are very important in milk production and bioengineering. The adult mammary epithelium consists of two main cell types; an inner layer of luminal epithelial cells, which produce the milk during lactation, and an outer layer of myoepithelial cells resting on a basement membrane, which are responsible for pushing the milk through the ductal network to the teat cistern. Inner layer of columner/luminal cells of bovine MECs, is characterized by cytokeratin18, 19 (CK18, CK19) and outer layer such as myoepithelial cells which are characterized by CK14, α-smooth muscle actin (α-SMA) and p63. Much work has been done in mouse and human, on mammary gland stem cell research, particularly in cancer therapy, but stem cell research in bovine is still in its infancy. Such stem/progenitor cell discoveries in human and mouse mammary gland bring some hope for application in bovines. These progenitors may be therapeutically adopted to correct the structural/cytological defects in the bovine udder due to mastitis. In the present review we focused on various kinds of stem/progenitor cells which can have therapeutic utility and their possibilities to use as a potential stem cell therapy in the management of bovine post-mastitis damage in orders to restore milk production. The possibilities of bovine mammary stem cell therapy offers significant potential for

  19. Transcription of ribosomal RNA genes is initiated in the third cell cycle of bovine embryos

    DEFF Research Database (Denmark)

    Jakobsen, Anne Sørig; Avery, Birthe; Dieleman, Steph J.

    2006-01-01

    Transcription from the embryos own ribosomal genes is initiated in most species at the same time as the maternal-embryonic transition. Recently data have indicated that a minor activation may take place during the third embryonic cell cycle in the bovine, one cell cycle before the major activation...

  20. Development of Fibroblast Cell Lines From the Cow Used to Sequence the Bovine Genome

    Science.gov (United States)

    Two cell lines, designated MARC.BGCF.2 and MARC.BGCF.1-3, were initiated from skin biopsies obtained from the Hereford cow whose DNA was used in sequencing the bovine genome. These cell lines were submitted to American Type Culture Collection (ATCC, Manassas, VA, USA) and will be made publicly avai...

  1. Single cell analysis demonstrating somatic mosaicism involving 11p in a patient with paternal isodisomy and Beckwith-Wiedemann Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, F.Z.; McCaskill, C.; Subramanian, S. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Beckwith-Wiedemann Syndrome (BWS) is characterized by numerous growth abnormalities including exomphalos, macroglossia, gigantism, and hemihypertrophy or hemihyperplasia. The {open_quotes}BWS gene{close_quotes} appears to be maternally repressed and is suspected to function as a growth factor or regulator of somatic growth, since activation of this gene through a variety of mechanisms appears to result in somatic overgrowth and tumor development. Mosaic paternal isodisomy of 11p has been observed previously by others in patients with BWS by Southern blot analysis of genomic DNA. The interpretation of these results was primarily based on the intensities of the hybridization signals for the different alleles. In our study, we demonstrate somatic mosaicism directly through PCR and single cell analysis. Peripheral blood was obtained from a patient with BWS and initial genomic DNA analysis by PCR was suggestive of somatic mosaicism for paternal isodisomy of 11p. Through micromanipulation, single cells were isolated and subjected to primer extention preamplification. Locus-specific microsatellite marker analyses by PCR were performed to determine the chromosome 11 origins in the preamplified individual cells. Two populations of cells were detected, a population of cells with normal biparental inheritance and a population of cells with paternal isodisomy of 11p and biparental disomy of 11q. Using the powerful approach of single cell analysis, the detected somatic mosaicism provides evidence for a mitotic recombinational event that has resulted in loss of the maternal 11p region and gain of a second copy of paternal 11p in some cells. The direct demonstration of mosaicism may explain the variable phenotypes and hemihypertrophy often observed in BWS.

  2. Production of somatic chimera chicks by injection of bone marrow cells into recipient blastoderms.

    Science.gov (United States)

    Heo, Young Tae; Lee, Sung Ho; Kim, Teoan; Kim, Nam Hyung; Lee, Hoon Taek

    2012-01-01

    Several types of cells, including blastoderm cells, primordial germ cells, and embryonic germ cells were injected into early-stage recipient embryos to produce chimera avians and to gain insights into cell development. However, a limited number of studies of avian adult stem cells have also been conducted. This study is, to the best of our knowledge, the first to evaluate chicken bone marrow cells' (chBMC) ability to differentiate into multiple cell lineages and capability to generate chimera chicks. We induced random differentiation of chBMCs in vitro and injected immunologically selected pluripotent cells in chBMCs into the blastoderms of recipient eggs. The multipotency of BMCs from the barred Plymouth rock (BPR) was confirmed via AP staining, RT-PCR, immunocytochemistry, and FACS using specific markers, such as Oct-4 and SSEA-1, 3 and 4. Isolated chBMCs were found to be able to induce in vitro differentiation to multiple cell lineages. Approximately 5,000 chBMCs were injected into the blastoderms of white leghorn (WL) recipients and proved able to contribute to the generation of somatic chimera chicks with a frequency of 2.7% (2 of 73). Confirmation of chimerism in hatched chicks was achieved via PCR analysis using D-loop-specific primers of BPR and WL. Our study demonstrated the successful production of chimera chicks using chBMC. Therefore, we propose that the use of adult chBMCs may constitute a new possible approach to the production of chimera poultry, and may provide helpful studies in avian developmental biology.

  3. In vitro development of canine somatic cell nuclear transfer embryos in different culture media.

    Science.gov (United States)

    Kim, Dong-Hoon; No, Jin-Gu; Choi, Mi-Kyung; Yeom, Dong-Hyeon; Kim, Dong-Kyo; Yang, Byoung-Chul; Yoo, Jae Gyu; Kim, Min Kyu; Kim, Hong-Tea

    2015-01-01

    The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos.

  4. Effects of heat stress on production, somatic cell score and conception rate in Holsteins.

    Science.gov (United States)

    Hagiya, Koichi; Hayasaka, Kiyoshi; Yamazaki, Takeshi; Shirai, Tatsuo; Osawa, Takefumi; Terawaki, Yoshinori; Nagamine, Yoshitaka; Masuda, Yutaka; Suzuki, Mitsuyoshi

    2017-01-01

    We examined the effects of heat stress (HS) on production traits, somatic cell score (SCS) and conception rate at first insemination (CR) in Holsteins in Japan. We used a total of 228 242 records of milk, fat and protein yields, and SCS for the first three lactations, as well as of CR in heifers and in first- and second-lactation cows that had calved for the first time between 2000 and 2012. Records from 47 prefectural weather stations throughout Japan were used to calculate the temperature-humidity index (THI); areas were categorized into three regional groups: no HS (THI cows, CR was affected by the interaction between HS group and insemination month: with summer and early autumn insemination, there was a reduction in CR, and it was much larger in the mild- and moderate-HS groups than in the no-HS group. © 2016 Japanese Society of Animal Science.

  5. Time-series models on somatic cell score improve detection of matistis

    DEFF Research Database (Denmark)

    Norberg, E; Korsgaard, I R; Sloth, K H M N

    2008-01-01

    In-line detection of mastitis using frequent milk sampling was studied in 241 cows in a Danish research herd. Somatic cell scores obtained at a daily basis were analyzed using a mixture of four time-series models. Probabilities were assigned to each model for the observations to belong to a normal...... "steady-state" development, change in "level", change of "slope" or "outlier". Mastitis was indicated from the sum of probabilities for the "level" and "slope" models. Time-series models were based on the Kalman filter. Reference data was obtained from veterinary assessment of health status combined...... with bacteriological findings. At a sensitivity of 90% the corresponding specificity was 68%, which increased to 83% using a one-step back smoothing. It is concluded that mixture models based on Kalman filters are efficient in handling in-line sensor data for detection of mastitis and may be useful for similar...

  6. Somatic hypermutation of T cell receptor α chain contributes to selection in nurse shark thymus.

    Science.gov (United States)

    Ott, Jeannine A; Castro, Caitlin D; Deiss, Thaddeus C; Ohta, Yuko; Flajnik, Martin F; Criscitiello, Michael F

    2018-04-17

    Since the discovery of the T cell receptor (TcR), immunologists have assigned somatic hypermutation (SHM) as a mechanism employed solely by B cells to diversify their antigen receptors. Remarkably, we found SHM acting in the thymus on α chain locus of shark TcR. SHM in developing shark T cells likely is catalyzed by activation-induced cytidine deaminase (AID) and results in both point and tandem mutations that accumulate non-conservative amino acid replacements within complementarity-determining regions (CDRs). Mutation frequency at TcRα was as high as that seen at B cell receptor loci (BcR) in sharks and mammals, and the mechanism of SHM shares unique characteristics first detected at shark BcR loci. Additionally, fluorescence in situ hybridization showed the strongest AID expression in thymic corticomedullary junction and medulla. We suggest that TcRα utilizes SHM to broaden diversification of the primary αβ T cell repertoire in sharks, the first reported use in vertebrates. © 2018, Ott et al.

  7. Somatic cell count and biochemical components of milk related to udder health in buffaloes

    Directory of Open Access Journals (Sweden)

    S.T. Singh

    2010-02-01

    Full Text Available The 399 clinically healthy quarters from 101 Murrah buffaloes were analyzed for somatic cell count (SCC; DCC and microscope methods and biochemical composition of milk in relation to udder health. The udder health revealed specific subclinical mastitis (SSM in 7% and non-specific mastitis (NSM in 49% of quarters. Latent infections comprised 1%. Staphylococci (43%, streptococci (39% and corynebacteria (18% constituted chief etiological agents in SSM. Electrical conductivity increased significantly both in SSM and NSM compared to healthy quarters. Significant effects for SNF and density were seen in SSM only. DCC and microscope depicted similar cell counts with a correlation coefficient of 0.89. The correlations of DCC with CMT and EC were 0.85 and 0.51, respectively. Quarters with negative CMT reactions had DCC values of < 3 × 105 cells/ml. The DCC means for negative, trace, and +1 to 2 CMT scores were 122, 238, and 593 (× 103 cells/ml, respectively. Lactose with discrimination ability of 83.76% was found better indicator of udder inflammation in buffaloes. Buffaloes unlike cows have low numbers of quarter infections, respond similarly as cows to udder inflammation but at different levels, and DCC may be effectively employed for expressing milk cell count in this species.

  8. Glis family proteins are differentially implicated in the cellular reprogramming of human somatic cells.

    Science.gov (United States)

    Lee, Seo-Young; Noh, Hye Bin; Kim, Hyeong-Taek; Lee, Kang-In; Hwang, Dong-Youn

    2017-09-29

    The ground-breaking discovery of the reprogramming of somatic cells into pluripotent cells, termed induced pluripotent stem cells (iPSCs), was accomplished by delivering 4 transcription factors, Oct4, Sox2, Klf4, and c-Myc, into fibroblasts. Since then, several efforts have attempted to unveil other factors that are directly implicated in or might enhance reprogramming. Importantly, a number of transcription factors are reported to retain reprogramming activity. A previous study suggested Gli-similar 1 (Glis1) as a factor that enhances the reprogramming of fibroblasts during iPSC generation. However, the implication of other Glis members, including Glis2 and Glis3 (variants 1 and 2), in cellular reprogramming remains unknown. In this study, we investigated the potential involvement of human Glis family proteins, including hGlis1-3, in cellular reprogramming. Our results demonstrate that hGlis1, which is reported to reprogram human fibroblasts, promotes the reprogramming of human adipose-derived stromal cells (hADSCs), indicating that the reprogramming activity of Glis1 is not cell type-specific. Strikingly, hGlis3 promoted the reprogramming of hADSCs as efficiently as hGlis1. On the contrary, hGlis2 showed a strong negative effect on reprogramming. Together, our results reveal clear differences in the cellular reprogramming activity among Glis family members and provide valuable insight into the development of a new reprogramming strategy using Glis family proteins.

  9. Expression of members of immunoglobulin gene family in somatic cell hybrids between human B and T cells

    International Nuclear Information System (INIS)

    Kozbor, D.; Burioni, R.; Ar-Rushdi, A.; Zmijewski, C.; Croce, C.M.

    1987-01-01

    Somatic cell hybrids were obtained between human T and B cells and tested for the expression of differentiated traits of both cell lineages. The T-cell parent SUP-T1 is CD3 - , CD4 + , CD1 + , CD8 + , is weakly positive for HLA class I determinants, and has an inversion of chromosome 14 due to a site-specific recombination event between an immunoglobulin heavy-chain variable gene and the joining segment of the T-cell receptor α chain. The B-cell parent, the 6-thioguanine- and ouabain-resistant mutant GM1500, is a lymphoblastoid cell line that secretes IgG2, K chains, and expresses B1, B532, and HLA class I and II antigens. All hybrids expressed characteristics of B cells (Ig + , B1 + , B532 + , EBNA + , HLA antigens), whereas only CD4 among the T-cell markers was expressed. The level of T-cell receptor β-chain transcript was greatly reduced and no RNA of the chimeric T-cell receptor α-chain joining segment-immunoglobulin heavy-chain variable region was detected. Southern blot analysis indicated that absence of T-cell differentiation markers in the hybrids was not due to chromosomal loss. Rather, some B-cell-specific factor present in the hybrids may account for the suppression

  10. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  11. Novel Secondary Somatic Mutations in Ewing's Sarcoma and Desmoplastic Small Round Cell Tumors

    Science.gov (United States)

    Janku, Filip; Ludwig, Joseph A.; Naing, Aung; Benjamin, Robert S.; Brown, Robert E.; Anderson, Pete; Kurzrock, Razelle

    2014-01-01

    Background Ewing's sarcoma (ES) and desmoplastic small round cell tumors (DSRCT) are small round blue cell tumors driven by an N-terminal containing EWS translocation. Very few somatic mutations have been reported in ES, and none have been identified in DSRCT. The aim of this study is to explore potential actionable mutations in ES and DSRCT. Methodology Twenty eight patients with ES or DSRCT had tumor tissue available that could be analyzed by one of the following methods: 1) Next-generation exome sequencing platform; 2) Multiplex PCR/Mass Spectroscopy; 3) Polymerase chain reaction (PCR)-based single- gene mutation screening; 4) Sanger sequencing; 5) Morphoproteomics. Principal Findings Novel somatic mutations were identified in four out of 18 patients with advanced ES and two of 10 patients with advanced DSRCT (six out of 28 (21.4%));KRAS (n = 1), PTPRD (n = 1), GRB10 (n = 2), MET (n = 2) and PIK3CA (n = 1). One patient with both PTPRD and GRB10 mutations and one with a GRB10 mutation achieved a complete remission (CR) on an Insulin like growth factor 1 receptor (IGF1R) inhibitor based treatment. One patient, who achieved a partial remission (PR) with IGF1R inhibitor treatment, but later developed resistance, demonstrated a KRAS mutation in the post-treatment resistant tumor, but not in the pre-treatment tumor suggesting that the RAF/RAS/MEK pathway was activated with progression. Conclusions We have reported several different mutations in advanced ES and DSRCT that have direct implications for molecularly-directed targeted therapy. Our technology agnostic approach provides an initial mutational roadmap used in the path towards individualized combination therapy. PMID:25119929

  12. Establishment of primary bovine intestinal epithelial cell culture and clone method.

    Science.gov (United States)

    Zhan, Kang; Lin, Miao; Liu, Ming-Mei; Sui, Yang-Nan; Zhao, Guo-Qi

    2017-01-01

    The aim of this study was to establish bovine intestinal epithelial cell (BIEC) line and provide a novel clone cell method. Although various strategies of bovine cell culture and clone techniques have been reported, these methods remain not established. Here, we culture successfully primary BIECs and establish a novel clone cell method. Our result showed that BIECs could be successfully cultured and passaged about generation 5. These cellular aggregates and clusters were adherent loosely at day 2 of culture. Cell aggregates and clusters start to proliferate after approximately 4 d. The BIECs showed positive reaction against cytokeratin 18, E-cadherin, and characteristics of epithelial-like morphology. In addition, the fatty acid-binding proteins (FABPs), villin, and intestinal peptidase (IP) band were positive in BIECs. Our results suggest that the establishment of culturing and clone BIEC methods will apply to isolate and clone other primary cells. These BIECs could therefore contribute to the study of bovine intestinal nutrient absorption and regulation, immune regulation, and the pathogenesis of the bovine intestinal disease, which will provide intestinal cell model in vitro.

  13. Bovine natural killer cells are present in Escherichia coli infected mammary gland tissue and show antimicrobial activity in vitro

    NARCIS (Netherlands)

    Sipka, Anja; Pomeroy, Brianna; Klaessig, Suzanne; Schukken, Ynte

    2016-01-01

    Natural killer (NK) cells are early responders in bacterial infections but their role in bovine mastitis has not been characterized. For the first time, we show the presence of NK cells (NKp46+/CD3) in bovine mammary gland tissue after an intramammary challenge with

  14. Bovine natural killer cells are present in Escherichia coli infected mammary gland tissue and show antimicrobial activity in vitro

    NARCIS (Netherlands)

    Sipka, Anja; Pomeroy, Brianna; Klaessig, Suzanne; Schukken, Ynte

    2016-01-01

    Natural killer (NK) cells are early responders in bacterial infections but their role in bovine mastitis has not been characterized. For the first time, we show the presence of NK cells (NKp46+/CD3−) in bovine mammary gland tissue after an intramammary challenge with Escherichia (E.) coli. A small

  15. Receiver-operating characteristic curves for somatic cell scores and California mastitis test in Valle del Be lice dairy sheep

    NARCIS (Netherlands)

    Riggio, V.; Pesce, L.L.; Morreale, S.; Portolano, B.

    2013-01-01

    Using receiver-operating characteristic (ROC) curve methodology this study was designed to assess the diagnostic effectiveness of somatic cell count (SCC) and the California mastitis test (CMT) in Valle del Belice sheep, and to propose and evaluate threshold values for those tests that would

  16. Genetic relationships among linear type traits, milk yield, body weight, fertility and somatic cell count in primiparous dairy cows

    NARCIS (Netherlands)

    Berry, D.P.; Buckley, F.; Dillon, P.P.; Evans, R.D.; Veerkamp, R.F.

    2004-01-01

    Phenotypic and genetic (co)variances among type traits, milk yield, body weight, fertility and somatic cell count were estimated. The data analysed included 3,058 primiparous spring-calving Holstein-Friesian cows from 80 farms throughout the south of Ireland. Heritability estimates for the type

  17. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    NARCIS (Netherlands)

    Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms,

  18. CD335 (NKp46+ T-Cell Recruitment to the Bovine Upper Respiratory Tract during a Primary Bovine Herpesvirus-1 Infection

    Directory of Open Access Journals (Sweden)

    Rahwa A. Osman

    2017-10-01

    Full Text Available Bovine natural killer (NK cells were originally defined by the NK activation receptor CD335 [natural killer cell p46-related protein (NKp46], but following the discovery of NKp46 expression on human T-cells, the definition of conventional bovine NK cells was modified to CD335+CD3− cells. Recently, a bovine T-cell population co-expressing CD335 was identified and these non-conventional T-cells were shown to produce interferon (IFN-γ and share functional properties with both conventional NK cells and T-cells. It is not known, however, if CD335+ bovine T-cells are recruited to mucosal surfaces and what chemokines play a role in recruiting this unique T-cell subpopulation. In this study, bovine herpesvirus-1 (BHV-1, which is closely related to herpes simplex virus-1, was used to investigate bovine lymphocyte cell populations recruited to the upper respiratory tract following a primary respiratory infection. Immunohistochemical staining with individual monoclonal antibodies revealed significant (P < 0.05 recruitment of CD335+, CD3+, and CD8+ lymphocyte populations to the nasal turbinates on day 5 following primary BHV-1 infection. Dual-color immunofluorescence revealed that cells recruited to nasal turbinates were primarily T-cells that co-expressed both CD335 and CD8. This non-conventional T-cell population represented 77.5% of CD355+ cells and 89.5% of CD8+ cells recruited to nasal turbinates on day 5 post-BHV-1 infection. However, due to diffuse IFN-γ staining of nasal turbinate tissue, it was not possible to directly link increased IFN-γ production following BHV-1 infection with the recruitment of non-conventional T-cells. Transcriptional analysis revealed CCL4, CCL5, and CXCL9 gene expression was significantly (P < 0.05 upregulated in nasal turbinate tissue following BHV-1 infection. Therefore, no single chemokine was associated with recruitment of non-conventional T-cells. In conclusion, the specific recruitment of CD335+ and CD8

  19. In vitro and in vivo genotoxic effects of somatic cell nuclear transfer cloned cattle meat.

    Science.gov (United States)

    Lee, Nam-Jin; Yang, Byoung-Chul; Jung, Yu-Ri; Lee, Jung-Won; Im, Gi-Sun; Seong, Hwan-Hoo; Park, Jin-Ki; Kang, Jong-Koo; Hwang, Seongsoo

    2011-09-01

    Although the nutritional composition and health status after consumption of the meat and milk derived from both conventionally bred (normal) and somatic cell nuclear transferred (cloned) animals and their progeny are not different, little is known about their food safeties like genetic toxicity. This study is performed to examine both in vitro (bacterial mutation and chromosome aberration) and in vivo (micronucleus) genotoxicity studies of cloned cattle meat. The concentrations of both normal and cloned cattle meat extracts (0-10×) were tested to five strains of bacteria (Salmonella typhimurium: TA98, TA100, TA1535, and TA1537; Escherichia coli: WP2uvrA) for bacterial mutation and to Chinese hamster lung (CHL/IU) cells for chromosome aberration, respectively. For micronucleus test, ICR mice were divided into five dietary groups: commercial pellets (control), pellets containing 5% (N-5) and 10% (N-10) normal cattle meat, and pellets containing 5% (C-5) and 10% (C-10) cloned cattle meat. No test substance-related genotoxicity was noted in the five bacterial strains, CHL/IU cells, or mouse bone marrow cells, suggesting that the cloned cattle meat potentially may be safe in terms of mutagenic hazards. Thus, it can be postulated that the cloned cattle meat do not induce any harmful genotoxic effects in vitro and in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ying Su

    2015-06-01

    Full Text Available Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrated genetic and epigenetic (DNA methylation and chromatin profiling. We found that the basal-like trait is generally dominant and is largely defined by epigenetic repression of luminal transcription factors. Definition of super-enhancers highlighted a core program common in luminal cells but a high degree of heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells are sufficient to induce a luminal-to-basal phenotypic switch, implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required for luminal-basal fusions, and we identified EN1, TBX18, and TCF4 as candidate transcriptional regulators of the luminal-to-basal switch. Our findings highlight the remarkable epigenetic plasticity of breast cancer cells.

  1. BC-Box Motif-Mediated Neuronal Differentiation of Somatic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Kanno

    2018-02-01

    Full Text Available Von Hippel-Lindau tumor suppressor protein (pVHL functions to induce neuronal differentiation of neural stem/progenitor cells (NSCs and skin-derived precursors (SKPs. Here we identified a neuronal differentiation domain (NDD in pVHL. Neuronal differentiation of SKPs was induced by intracellular delivery of a peptide composed of the amino-acid sequences encoded by the NDD. Neuronal differentiation mediated by the NDD was caused by the binding between it and elongin C followed by Janus kinase-2 (JAK2 ubiquitination of JAK2 and inhibition of the JAK2/the signal transducer and activator of transcription-3(STAT3 pathway. The NDD in pVHL contained the BC-box motif ((A,P,S,TLXXX (A,C XXX(A,I,L,V corresponding to the binding site of elongin C. Therefore, we proposed that other BC-box proteins might also contain an NDD; and subsequently also identified in them an NDD containing the amino-acid sequence encoded by the BC-box motif in BC-box proteins. Furthermore, we showed that different NDD peptide-delivered cells differentiated into different kinds of neuron-like cells. That is, dopaminergic neuron-like cells, cholinergic neuron-like cells, GABAnergic neuron-like cells or rhodopsin-positive neuron-like cells were induced by different NDD peptides. These novel findings might contribute to the development of a new method for promoting neuronal differentiation and shed further light on the mechanism of neuronal differentiation of somatic stem cells.

  2. The special cell effects and somatic consequences of exposure to low dose radiation

    International Nuclear Information System (INIS)

    Regina Fedortseva; Sergei Aleksanin; Eugene Zheleznyakov; Irina Bychkovskaya

    2007-01-01

    Complete text of publication follows. Objective: The experimental data presented in the report put some clarity into the ongoing polemics about possibility of induction of harmful non-carcinogenic effects in human body as a result of exposure to low doses of radiation. The denial of this possibility is based on the fact that traditionally studied genotoxic effects cannot be the cause of this pathology: the incidence of these effects in exposure to low doses of radiation is fairly low; the effects are not overt in critical slowly regenerating tissues, since they can only be morphologically manifested in actively growing cell populations. Methods: Endothelium of myocardial and alveolar capillaries were studied ultra-structurally in 236 rats irradiated by a wide range of X-ray doses (0,25;0,5;2,25;4,5;9;30;48;100) and 28 intact control animals. Studies were conducted during 12-18 months. The material consisted of 2-3 portions from various parts of myocardium and lung. From each portion, sections were prepared, in which all capillary sections were analyzed and ultra-structure of all lining capillary endotheliocytes (their number most often was more than 100) was studied. In each animal the percentage of non-viable endotheliocytes with signs of generalized organoid destruction, damage of plasmalemma and nuclear structures was accounted. Results: Irradiation of rat to low and higher doses caused significant (up to 7 times) increase number of endothelial cells with various ultra-structural damages (from relatively light ones to in the cell death). Even the lowest dose - 0,25 Gy produce an increasing degeneration, intracellular lysis and defects of mitochondria. We found unusual features of postradiational endothelium changes: dose independence, necessity of revealing the long-term, non-mutational cellular effects, massive involvement of cells, early development of the maximum effect already after the low dose irradiation. These special somatic effects, unlike genotoxic

  3. Assessing somatic hypermutation in Ramos B cells after overexpression or knockdown of specific genes.

    Science.gov (United States)

    Upton, Dana C; Unniraman, Shyam

    2011-11-01

    B cells start their life with low affinity antibodies generated by V(D)J recombination. However, upon detecting a pathogen, the variable (V) region of an immunoglobulin (Ig) gene is mutated approximately 100,000-fold more than the rest of the genome through somatic hypermutation (SHM), resulting in high affinity antibodies. In addition, class switch recombination (CSR) produces antibodies with different effector functions depending on the kind of immune response that is needed for a particular pathogen. Both CSR and SHM are initiated by activation-induced cytidine deaminase (AID), which deaminates cytosine residues in DNA to produce uracils. These uracils are processed by error-prone forms of repair pathways, eventually leading to mutations and recombination. Our current understanding of the molecular details of SHM and CSR come from a combination of studies in mice, primary cells, cell lines, and cell-free experiments. Mouse models remain the gold standard with genetic knockouts showing critical roles for many repair factors (e.g. Ung, Msh2, Msh6, Exo1, and polymerase η). However, not all genes are amenable for knockout studies. For example, knockouts of several double-strand break repair proteins are embryonically lethal or impair B-cell development. Moreover, sometimes the specific function of a protein in SHM or CSR may be masked by more global defects caused by the knockout. In addition, since experiments in mice can be lengthy, altering expression of individual genes in cell lines has become an increasingly popular first step to identifying and characterizing candidate genes. Ramos - a Burkitt lymphoma cell line that constitutively undergoes SHM - has been a popular cell-line model to study SHM. One advantage of Ramos cells is that they have a built-in convenient semi-quantitative measure of SHM. Wild type cells express IgM and, as they pick up mutations, some of the mutations knock out IgM expression. Therefore, assaying IgM loss by fluorescence

  4. Somatic mosaicism in families with hemophilia B: 11% of germline mutations originate within a few cell divisions post-fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Knoell, A.; Ketterling, R.P.; Vielhaber, E. [Mayo Clinic/Foundation, Rochester, MN (United States)] [and others

    1994-09-01

    Previous molecular estimates of mosaicism in the dystrophin and other genes generally have focused on the transmission of the mutated allele to two or more children by an individual without the mutation in leukocyte DNA. We have analyzed 414 families with hemophilia B by direct genomic sequencing and haplotype analysis, and have deduced the origin of mutation in 56 families. There was no origin individual who transmitted a mutant allele to more than one child. However, somatic mosaicism was detected by sequence analysis of four origin individuals (3{female} and 1{male}). The sensitivity of this analysis is typically one part in ten. In one additional female who had close to a 50:50 ratio of mutant to normal alleles, three of four noncarrier daughters inherited the haplotype associated with the mutant allele. This highlights a caveat in molecular analysis: a presumptive carrier in a family with sporadic disease does not necessarily have a 50% probability of transmitting the mutant allele to her offspring. After eliminating those families in which mosaicism could not be detected because of a total gene deletion or absence of DNA from a deduced origin individual, 5 of 43 origin individuals exhibited somatic mosaicism at a level that reflects a mutation within the first few cell divisions after fertilization. In one patient, analysis of cervical scrapings and buccal mucosa confirm the generalized distribution of somatic mutation. Are the first few cell divisions post-fertilization highly mutagenic, or do mutations at later divisions also give rise to somatic mosaicism? To address this question, DNA from origin individuals are being analyzed to detect somatic mosaicism at a sensitivity of 1:1000. Single nucleotide primer extension (SNuPE) has been utilized in eight families to date and no mosaicism has been detected. When the remaining 30 samples are analyzed, it will be possible to compare the frequency of somatic mosaicism at 0.1-10% with that of {ge}10%.

  5. Effect of temperament on milk production, somatic cell count, chemical composition and physical properties in Lacaune dairy sheep breed

    Directory of Open Access Journals (Sweden)

    Gábor Tóth

    2017-01-01

    Full Text Available Effect of temperament on milk yield, lactation length, physico-chemical properties and somatic cell count of Lacaune ewes were evaluated. The investigation was carried out at a sheep farm in the county of Győr-Moson-Sopron. The temperament of 106 Lacaune ewes was measured by the temperament 5-point-scale test (1=very nervous, 5=very quiet during milking. Furthermore, 42 ewes were randomly selected from a herd of 106 animals for the analysis of milk composition (fat, protein and lactose, pH, electrical conductivity as well as somatic cell count. It was found that the temperament had a significant effect on lactation length and lactation milk production, lactose, electrical conductivity and somatic cell count. Calm ewes had significantly longer lactation (4 score: 220.7 day; 5 score: 201.4 day as well as higher milk production (4 score: 207.9 kg; 5 score: 193.3 kg compared to more temperamental animals (2+3 scores: 166.5 day and 135.5 kg; P<0.05. The content of lactose was significantly lower (4.32 in the more temperamental group, while electrical conductivity was higher (4.81 mS cm-1 compared to calmer animals (4.69 % and 4.16 mS cm-1. Additionally, significant differences were found in milk somatic cell count among the temperament categories. Calmer ewes had a lower somatic cell count in milk (5.17 log cm-3 than more temperamental ones (5.67 log cm-3; P<0.05.

  6. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.

    Science.gov (United States)

    Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P

    2015-04-23

    With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

  7. Testicular germ cell tumours in dogs are predominantly of spermatocytic seminoma type and are frequently associated with somatic cell tumours

    DEFF Research Database (Denmark)

    Bush, J M; Gardiner, D W; Palmer, J S

    2011-01-01

    Unlike seminomas in humans, seminomas in animals are not typically sub-classified as classical or spermatocytic types. To compare testicular germ cell tumours (TGCT) in dogs with those of men, archived tissues from 347 cases of canine testicular tumours were morphologically evaluated...... in canine TGCT. None of the canine TGCT evaluated demonstrated the presence of carcinoma in situ cells, a standard feature of human classical seminomas, suggesting that classical seminomas either do not occur in dogs or are rare in occurrence. Canine spermatocytic seminomas may provide a useful model...... and characterized using human classification criteria. Histopathological and immunohistological analysis of PLAP, KIT, DAZ and DMRT1 expression revealed that canine seminomas closely resemble human spermatocytic seminomas. In addition, a relatively frequent concomitant presence of somatic cell tumours was noted...

  8. Proliferation of germ cells and somatic cells in first trimester human embryonic gonads as indicated by S and S+G2+M phase fractions

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær; Lutterodt, Melissa Catherine R; Mamsen, Linn S

    2011-01-01

    The number of germ cells and somatic cells in human embryonic and foetal gonads has previously been estimated by stereological methods, which are time- and labour-consuming with little information concerning cell proliferation. Here, we studied whether flow cytometry could be applied as an easier...

  9. Somatic mosaicism caused by monoallelic reversion of a mutation in T cells of a patient with ADA-SCID and the effects of enzyme replacement therapy on the revertant phenotype.

    Science.gov (United States)

    Moncada-Vélez, M; Vélez-Ortega, A; Orrego, J; Santisteban, I; Jagadeesh, J; Olivares, M; Olaya, N; Hershfield, M; Candotti, F; Franco, J

    2011-11-01

    Patients with adenosine deaminase (ADA) deficiency exhibit spontaneous and partial clinical remission associated with somatic reversion of inherited mutations. We report a child with severe combined immunodeficiency (T-B- SCID) due to ADA deficiency diagnosed at the age of 1 month, whose lymphocyte counts including CD4+ and CD8+ T and NK cells began to improve after several months with normalization of ADA activity in Peripheral blood lymphocytes (PBL), as a result of somatic mosaicism caused by monoallelic reversion of the causative mutation in the ADA gene. He was not eligible for haematopoietic stem cell transplantation (HSCT) or gene therapy (GT); therefore he was placed on enzyme replacement therapy (ERT) with bovine PEG-ADA. The follow-up of metabolic and immunologic responses to ERT included gradual improvement in ADA activity in erythrocytes and transient expansion of most lymphocyte subsets, followed by gradual stabilization of CD4+ and CD8+ T (with naïve phenotype) and NK cells, and sustained expansion of TCRγδ+ T cells. This was accompanied by the disappearance of the revertant T cells as shown by DNA sequencing from PBL. Although the patient's clinical condition improved marginally, he later developed a germinal cell tumour and eventually died at the age of 67 months from sepsis. This case adds to our current knowledge of spontaneous reversion of mutations in ADA deficiency and shows that the effects of the ERT may vary among these patients, suggesting that it could depend on the cell and type in which the somatic mosaicism is established upon reversion. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  10. Use of domestic detergents in the California mastitis test for high somatic cell counts in milk.

    Science.gov (United States)

    Leach, K A; Green, M J; Breen, J E; Huxley, J N; Macaulay, R; Newton, H T; Bradley, A J

    2008-11-08

    The California mastitis test (CMT) is used on farms to identify subclinical mastitis by an indirect estimation of the somatic cell count (SCC) in milk. Four commercially available detergents were compared with a bespoke cmt fluid for their ability to detect milk samples with a scc above 200,000 cells/ml; differences between the interpretation of the results of the tests by eight operators were also investigated. The sensitivity and specificity of the test were affected by the type of detergent, and by the operators' interpretations. When used by the most sensitive operator, suitably diluted Fairy Liquid performed almost identically to cmt fluid in identifying milk samples with more than 200,000 cells/ml. The average sensitivities achieved by the eight operators for detecting this threshold were 82 per cent for Fairy Liquid and 84 per cent for cmt fluid, and the specificities were 93 and 91 per cent respectively. The other detergents contained less anionic surfactants and were less sensitive but similarly specific.

  11. Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes.

    Science.gov (United States)

    Hwang, Insung; Jeong, Yeon Woo; Kim, Joung Joo; Lee, Hyo Jeong; Kang, Mina; Park, Kang Bae; Park, Jung Hwan; Kim, Yeun Wook; Kim, Woo Tae; Shin, Taeyoung; Hyun, Sang Hwan; Jeung, Eui-Bae; Hwang, Woo Suk

    2013-01-01

    Interspecies somatic cell nuclear transfer (iSCNT) is an emerging assisted reproductive technology (ART) for preserving Nature's diversity. The scarcity of oocytes from some species makes utilisation of readily available oocytes inevitable. In the present study, we describe the successful cloning of coyotes (Canis latrans) through iSCNT using oocytes from domestic dogs (Canis lupus familiaris or dingo). Transfer of 320 interspecies-reconstructed embryos into 22 domestic dog recipients resulted in six pregnancies, from which eight viable offspring were delivered. Fusion rate and cloning efficiency during iSCNT cloning of coyotes were not significantly different from those observed during intraspecies cloning of domestic dogs. Using neonatal fibroblasts as donor cells significantly improved the cloning efficiency compared with cloning using adult fibroblast donor cells (Pcloning of coyotes in the present study holds promise for cloning other endangered species in the Canidae family using similar techniques. However, there are still limitations of the iSCNT technology, as demonstrated by births of morphologically abnormal coyotes and the clones' inheritance of maternal domestic dog mitochondrial DNA.

  12. Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Yao, Chaogang; Zhou, Yang; Zhu, Jianguo; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2011-12-01

    Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.

  13. The passive cable properties of hair cell stereocilia and their contribution to somatic capacitance measurements.

    Science.gov (United States)

    Breneman, Kathryn D; Highstein, Stephen M; Boyle, Richard D; Rabbitt, Richard D

    2009-01-01

    Somatic measurements of whole-cell capacitance are routinely used to understand physiologic events occurring in remote portions of cells. These studies often assume the intracellular space is voltage-clamped. We questioned this assumption in auditory and vestibular hair cells with respect to their stereocilia based on earlier studies showing that neurons, with radial dimensions similar to stereocilia, are not always isopotential under voltage-clamp. To explore this, we modeled the stereocilia as passive cables with transduction channels located at their tips. We found that the input capacitance measured at the soma changes when the transduction channels at the tips of the stereocilia are open compared to when the channels are closed. The maximum capacitance is felt with the transducer closed but will decrease as the transducer opens due to a length-dependent voltage drop along the stereocilium length. This potential drop is proportional to the intracellular resistance and stereocilium tip conductance and can produce a maximum capacitance error on the order of fF for single stereocilia and pF for the bundle.

  14. Determination of methyl methanesulfonate pretreatment effect in Drosophila melanogaster larvaes upon repair mechanisms in somatic cells

    International Nuclear Information System (INIS)

    Hernandez Paz, M.

    1992-01-01

    To make evident the existence of SOS repair mecanism in somatic cells, larvaes of drosophila melanogaster with MWH markers for females and FLR markers for males were used. This larvaes received a pretreatment with MMS at concentrations of 0.0007% and 0.0014% during 24 hours and latter a treatment with gamma rays at different dosis. SMART program was used to make stastistical evaluations. Small spots were observed which can have two origins. First could be damage in the last part of third stage in which cells are in last divisions and second could be the damage to larvaes in early stages in shich pretreatment with MMS cause lesions which prevent the reproduction of the cells. Also big spots were observed which presence is due to recombination. It was detected than the bigger the concentration of MMS and radiation dose, the bigger the induced damage. In some groups such observation was impossible may be to technical problems as relative humidity, out of phase in the growth of larvaes giving place that treatment were given in three stages. For this reasons it was impossible to discriminate if drosophila melanogaster is wheter or not capable to induce a repair mechanism (Author)

  15. NF-κB activation impairs somatic cell reprogramming in ageing.

    Science.gov (United States)

    Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos

    2015-08-01

    Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.

  16. Looking into the Black Box: Insights into the Mechanisms of Somatic Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Wrana

    2011-01-01

    Full Text Available The dramatic discovery that somatic cells could be reprogrammed to induced pluripotent stem cells (iPSCs, by the expression of just four factors, has opened new opportunities for regenerative medicine and novel ways of modeling human diseases. Extensive research over the short time since the first iPSCs were generated has yielded the ability to reprogram various cell types using a diverse range of methods. However the duration, efficiency, and safety of induced reprogramming have remained a persistent limitation to achieving a robust experimental and therapeutic system. The field has worked to resolve these issues through technological advances using non-integrative approaches, factor replacement or complementation with microRNA, shRNA and drugs. Despite these advances, the molecular mechanisms underlying the reprogramming process remain poorly understood. Recently, through the use of inducible secondary reprogramming systems, researchers have now accessed more rigorous mechanistic experiments to decipher this complex process. In this review we will discuss some of the major recent findings in reprogramming, pertaining to proliferation and cellular senescence, epigenetic and chromatin remodeling, and other complex cellular processes such as morphological changes and mesenchymal-to-epithelial transition. We will focus on the implications of this work in the construction of a mechanistic understanding of reprogramming and discuss unexplored areas in this rapidly expanding field.

  17. Somatic ACE regulates self-renewal of mouse spermatogonial stem cells via the MAPK signaling pathway.

    Science.gov (United States)

    Gao, Tingting; Zhao, Xin; Liu, Chenchen; Shao, Binbin; Zhang, Xi; Li, Kai; Cai, Jinyang; Wang, Su; Huang, Xiaoyan

    2018-05-24

    Spermatogonial stem cell (SSC) self-renewal is an indispensable part of spermatogenesis. Angiotensin I-converting enzyme (ACE) is a zinc dipeptidyl carboxypeptidase that plays a critical role in regulation of the renin-angiotensin system. Here, we used RT-PCR and Western blot analysis to confirm that somatic ACE (sACE) but not testicular ACE (tACE) is highly expressed in mouse testis before postpartum day 7 and in cultured SSCs. Our results revealed that sACE is located on the membrane of SSCs. Treating cultured SSCs with the ACE competitive inhibitor captopril was found to inhibit sACE activity, and significantly reduced the proliferation rate of SSCs. Microarray analysis identified 651 genes with significant differential expression. KEGG pathway analysis showed that these differentially expressed genes are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway and cell cycle. sACE was found to play an important role in SSC self-renewal via the regulation of MAPK-dependent cell proliferation.

  18. Culture of somatic cells isolated from frozen-thawed equine semen using fluorescence-assisted cell sorting.

    Science.gov (United States)

    Brom-de-Luna, Joao Gatto; Canesin, Heloísa Siqueira; Wright, Gus; Hinrichs, Katrin

    2018-03-01

    Nuclear transfer using somatic cells from frozen semen (FzSC) would allow cloning of animals for which no other genetic material is available. Horses are one of the few species for which cloning is commercially feasible; despite this, there is no information available on the culture of equine FzSC. After preliminary trials on equine FzSC, recovered by density-gradient centrifugation, resulted in no growth, we hypothesized that sperm in the culture system negatively affected cell proliferation. Therefore, we evaluated culture of FzSC isolated using fluorescence-assisted cell sorting. In Exp. 1, sperm were labeled using antibodies to a sperm-specific antigen, SP17, and unlabeled cells were collected. This resulted in high sperm contamination. In Exp. 2, FzSC were labeled using an anti-MHC class I antibody. This resulted in an essentially pure population of FzSC, 13-25% of which were nucleated. Culture yielded no proliferation in any of nine replicates. In Exp. 3, 5 × 10 3 viable fresh, cultured horse fibroblasts were added to the frozen-thawed, washed semen, then this suspension was labeled and sorted as for Exp. 2. The enriched population had a mean of five sperm per recovered somatic cell; culture yielded formation of monolayers. In conclusion, an essentially pure population of equine FzSC could be obtained using sorting for presence of MHC class I antigens. No equine FzSC grew in culture; however, the proliferation of fibroblasts subjected to the same processing demonstrated that the labeling and sorting methods, and the presence of few sperm in culture, were compatible with cell viability. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    C Lin

    Full Text Available Our previous studies showed that bovine respiratory syncytial virus (BRSV followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2 epithelial cells with H. somni concentrated culture supernatant (CCS stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2--RSAD2 and ISG15 (IFN-stimulated gene 15--ubiquitin-like modifier were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo.

  20. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum

    OpenAIRE

    Ziegler, Anja; Everett, Helen; Hamza, Eman; Garbani, Mattia; Gerber, Vinzenz; Marti, Eliane; Steinbach, Falko

    2016-01-01

    BACKGROUND: Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including hor...

  1. Effects of putrescine, cadaverine, spermine, spermidine and beta-phenylethylamine on cultured bovine mammary epithelial cells

    DEFF Research Database (Denmark)

    Fusi, Eleonora; Baldi, Antonella; Cheli, Federica

    2008-01-01

    (0-50 mM in BME-UV1 and 0-4 mM in primary bovine organoids) in the appropriate saline solution for the cell culture considered. In order to determine the activity of each compound tritiated thymidine incorporation was used. At low concentrations, all amines induced cell proliferation in both cultures....... In BME-UV1, spermine significantly inhibited cell proliferation (Pcultured in the presence of all amines...

  2. Development of an antibody to bovine IL-2 reveals multifunctional CD4 T(EM) cells in cattle naturally infected with bovine tuberculosis.

    Science.gov (United States)

    Whelan, Adam O; Villarreal-Ramos, Bernardo; Vordermeier, H Martin; Hogarth, Philip J

    2011-01-01

    Gaining a better understanding of the T cell mechanisms underlying natural immunity to bovine tuberculosis would help to identify immune correlates of disease progression and facilitate the rational design of improved vaccine and diagnostic strategies. CD4 T cells play an established central role in immunity to TB, and recent interest has focussed on the potential role of multifunctional CD4 T cells expressing IFN-γ, IL-2 and TNF-α. Until now, it has not been possible to assess the contribution of these multifunctional CD4 T cells in cattle due to the lack of reagents to detect bovine IL-2 (bIL-2). Using recombinant phage display technology, we have identified an antibody that recognises biologically active bIL-2. Using this antibody, we have developed a polychromatic flow cytometric staining panel that has allowed the investigation of multifunctional CD4 T-cells responses in cattle naturally infected with M. bovis. Assessment of the frequency of antigen specific CD4 T cell subsets reveals a dominant IFN-γ(+)IL-2(+)TNF-α(+) and IFN-γ(+) TNF-α(+) response in naturally infected cattle. These multifunctional CD4 T cells express a CD44(hi)CD45RO(+)CD62L(lo) T-effector memory (T(EM)) phenotype and display higher cytokine median fluorescence intensities than single cytokine producers, consistent with an enhanced 'quality of response' as reported for multifunctional cells in human and murine systems. Through our development of these novel immunological bovine tools, we provide the first description of multifunctional T(EM) cells in cattle. Application of these tools will improve our understanding of protective immunity in bovine TB and allow more direct comparisons of the complex T cell mediated immune responses between murine models, human clinical studies and bovine TB models in the future. © 2011 Whelan et al.

  3. Development of an antibody to bovine IL-2 reveals multifunctional CD4 T(EM cells in cattle naturally infected with bovine tuberculosis.

    Directory of Open Access Journals (Sweden)

    Adam O Whelan

    Full Text Available Gaining a better understanding of the T cell mechanisms underlying natural immunity to bovine tuberculosis would help to identify immune correlates of disease progression and facilitate the rational design of improved vaccine and diagnostic strategies. CD4 T cells play an established central role in immunity to TB, and recent interest has focussed on the potential role of multifunctional CD4 T cells expressing IFN-γ, IL-2 and TNF-α. Until now, it has not been possible to assess the contribution of these multifunctional CD4 T cells in cattle due to the lack of reagents to detect bovine IL-2 (bIL-2. Using recombinant phage display technology, we have identified an antibody that recognises biologically active bIL-2. Using this antibody, we have developed a polychromatic flow cytometric staining panel that has allowed the investigation of multifunctional CD4 T-cells responses in cattle naturally infected with M. bovis. Assessment of the frequency of antigen specific CD4 T cell subsets reveals a dominant IFN-γ(+IL-2(+TNF-α(+ and IFN-γ(+ TNF-α(+ response in naturally infected cattle. These multifunctional CD4 T cells express a CD44(hiCD45RO(+CD62L(lo T-effector memory (T(EM phenotype and display higher cytokine median fluorescence intensities than single cytokine producers, consistent with an enhanced 'quality of response' as reported for multifunctional cells in human and murine systems. Through our development of these novel immunological bovine tools, we provide the first description of multifunctional T(EM cells in cattle. Application of these tools will improve our understanding of protective immunity in bovine TB and allow more direct comparisons of the complex T cell mediated immune responses between murine models, human clinical studies and bovine TB models in the future.

  4. Transcriptional landscape of ncRNA and Repeat elements in somatic cells

    KAUST Repository

    Ghosheh, Yanal

    2016-12-01

    The advancement of Nucleic acids (DNA and RNA) sequencing technology has enabled many projects targeted towards the identification of genome structure and transcriptome complexity of organisms. The first conclusions of the human and mouse projects have underscored two important, yet unexpected, findings. First, while almost the entire genome is transcribed, only 5% of it encodes for proteins. Thereby, most transcripts are noncoding RNA. This includes both short RNA (<200 nucleotides (nt)) comprising piRNAs; microRNAs (miRNAs); endogenous Short Interfering RNAs (siRNAs) among others, and includes lncRNA (>200nt). Second, a significant portion of the mammalian genome (45%) is composed of Repeat Elements (REs). RE are mostly relics of ancestral viruses that during evolution have invaded the host genome by producing thousands of copies. Their roles within their host genomes have yet to be fully explored considering that they sometimes produce lncRNA, and have been shown to influence expression at the transcriptional and post-transcriptional levels. Moreover, because some REs can still mobilize within host genomes, host genomes have evolved mechanisms, mainly epigenetic, to maintain REs under tight control. Recent reports indicate that REs activity is regulated in somatic cells, particularily in the brain, suggesting a physiological role of RE mobilization during normal development. In this thesis, I focus on the analysis of ncRNAs, specifically REs; piRNAs; lncRNAs in human and mouse post-mitotic somatic cells. The main aspects of this analysis are: Using sRNA-Seq, I show that piRNAs, a class of ncRNAs responsible for the silencing of Transposable elements (TEs) in testes, are present also in adult mouse brain. Furthermore, their regulation shows only a subset of testes piRNAs are expressed in the brain and may be controlled by known neurogenesis factors. To investigate the dynamics of the transcriptome during cellular differentiation, I examined deep RNA-Seq and Cap

  5. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    Science.gov (United States)

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  6. The risks of using allogeneic cell lines for vaccine production : The example of Bovine Neonatal Pancytopenia

    NARCIS (Netherlands)

    Benedictus, Lindert; Bell, Charlotte R

    2017-01-01

    INTRODUCTION: Bovine neonatal pancytopenia (BNP) is a hemorrhagic disease that emerged in calves across Europe in 2007. Its occurrence is attributed to immunization of the calf's mother with a vaccine produced using an allogeneic cell line. Vaccine-induced alloantibodies specific for

  7. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    -brain barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  8. Polyfunctional CD4 T cells in the response to bovine tuberculosis

    Science.gov (United States)

    Polyfunctional CD4 T cells simultaneously produce interferon-gamma (IFN-gamma), interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-alpha) and play relevant roles in several chronic infections, including human TB and HIV. However, the assessment of this response in bovine infections was not fe...

  9. Effect of adiponectin on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development

    Directory of Open Access Journals (Sweden)

    Coyral-Castel Stéphanie

    2010-03-01

    Full Text Available Abstract Background Adiponectin is an adipokine, mainly produced by adipose tissue. It regulates several reproductive processes. The protein expression of the adiponectin system (adiponectin, its receptors, AdipoR1 and AdipoR2 and the APPL1 adaptor in bovine ovary and its role on ovarian cells and embryo, remain however to be determined. Methods Here, we identified the adiponectin system in bovine ovarian cells and embryo using RT-PCR, immunoblotting and immunohistochemistry. Furthermore, we investigated in vitro the effects of recombinant human adiponectin (10 micro g/mL on proliferation of granulosa cells (GC measured by [3H] thymidine incorporation, progesterone and estradiol secretions measured by radioimmunoassay in the culture medium of GC, nuclear oocyte maturation and early embryo development. Results We show that the mRNAs and proteins for the adiponectin system are present in bovine ovary (small and large follicles and corpus luteum and embryo. Adiponectin, AdipoR1 and AdipoR2 were more precisely localized in oocyte, GC and theca cells. Adiponectin increased IGF-1 10(-8 M-induced GC proliferation (P Conclusions In bovine species, adiponectin decreased insulin-induced steroidogenesis and increased IGF-1-induced proliferation of cultured GC through a potential involvement of ERK1/2 MAPK pathway, whereas it did not modify oocyte maturation and embryo development in vitro.

  10. Estimating milk yield and value losses from increased somatic cell count on US dairy farms.

    Science.gov (United States)

    Hadrich, J C; Wolf, C A; Lombard, J; Dolak, T M

    2018-04-01

    Milk loss due to increased somatic cell counts (SCC) results in economic losses for dairy producers. This research uses 10 mo of consecutive dairy herd improvement data from 2013 and 2014 to estimate milk yield loss using SCC as a proxy for clinical and subclinical mastitis. A fixed effects regression was used to examine factors that affected milk yield while controlling for herd-level management. Breed, milking frequency, days in milk, seasonality, SCC, cumulative months with SCC greater than 100,000 cells/mL, lactation, and herd size were variables included in the regression analysis. The cumulative months with SCC above a threshold was included as a proxy for chronic mastitis. Milk yield loss increased as the number of test days with SCC ≥100,000 cells/mL increased. Results from the regression were used to estimate a monetary value of milk loss related to SCC as a function of cow and operation related explanatory variables for a representative dairy cow. The largest losses occurred from increased cumulative test days with a SCC ≥100,000 cells/mL, with daily losses of $1.20/cow per day in the first month to $2.06/cow per day in mo 10. Results demonstrate the importance of including the duration of months above a threshold SCC when estimating milk yield losses. Cows with chronic mastitis, measured by increased consecutive test days with SCC ≥100,000 cells/mL, resulted in higher milk losses than cows with a new infection. This provides farm managers with a method to evaluate the trade-off between treatment and culling decisions as it relates to mastitis control and early detection. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Somatic isoform of angiotensin I-converting enzyme in the pathology of testicular germ cell tumors.

    Science.gov (United States)

    Franke, F E; Pauls, K; Kerkman, L; Steger, K; Klonisch, T; Metzger, R; Alhenc-Gelas, F; Burkhardt, E; Bergmann, M; Danilov, S M

    2000-12-01

    Retained fetal expression of angiotensin I-converting enzyme (ACE, CD143) has recently been shown in intratubular germ cell neoplasms (IGCN) and invasive germ cell tumors (GCT), suggesting the somatic isoform (sACE) as a characteristic component of neoplastic germ cells. We analyzed the distribution of sACE in 159 testicular GCT, including 87 IGCN. sACE protein was determined by immunohistochemistry (MAb CG2) on routinely formalin-fixed and paraffin-embedded tissue sections, supplemented by mRNA expression analysis using in situ hybridization. These data were compared with those obtained by germ cell/placental alkaline phosphatases (PIAP; MAbs PL8-F6 and 8A9) employing an uniform score system for the evaluation of immunoreactivity (IRS; possible values from 0 to 12). Expression of sACE and PIAP was found in all 87 analyzed IGCN (IRS > 4, median IRS of 12). Heterogeneous staining patterns were not related to the type of adjacent GCT but correlated with low expression in adjacent seminomas (P =.032 for sACE; P =.005 for PIAP). Both sACE and PIAP often showed a decreased and more heterogeneous but still moderate expression in 91 classic seminomas (median IRS of 8) and were completely absent in tumor cells of spermatocytic seminomas. Despite all similarities, we found sACE and PIAP differently regulated during GCT progression. This was documented by a well-preserved expression of either sACE or PIAP or both in all classic seminomas, low PIAP immunoreactivity in metastasis of seminomas, and completely diverging expression patterns in nonseminomatous GCT. Our findings underline the close molecular relationship between IGCN and seminoma, and suggest sACE as an appropriate marker for seminomatous differentiated tumors. HUM PATHOL 31:1466-1476. Copyright 2000 by W.B. Saunders Company

  12. Cytogenetic effects of leachates from tannery solid waste on the somatic cells of Vicia faba.

    Science.gov (United States)

    Chandra, Saurabh; Chauhan, L K S; Pande, P N; Gupta, S K

    2004-04-01

    The contamination of surface- and groundwater by the leaching of solid wastes generated by industrial activities as a result of water runoff and rainfall is a matter of great concern. The leachates from tannery solid waste (TSW), a major environmental pollutant, were examined for their possible genotoxic effects on the somatic cells of Vicia faba. Leachates were prepared from solid wastes procured from leather-tanning industrial sites, and V. faba seedlings were exposed to three test concentrations, 2.5%, 5%, and 10%, through soil and aqueous media for 5 days. The root tips examined for cytogenetic damage revealed that leachate of TSW significantly inhibited the mitotic index and induced significantly frequent chromosomal and mitotic aberrations (CA/MA) in a dose-dependent manner. The chemical analysis of TSW samples revealed that the chief constituents were chromium and nickel, which may cause genetic abnormalities. The frequency of aberrations was found to be higher in the root meristematic cells of Vicia faba exposed through the aqueous medium than those exposed through the soil medium. The results of the present study indicated that contamination of potable water bodies by leachates of TSW may cause genotoxicity. For the biomonitoring of complex mixtures of toxicants with the V. faba bioassay, the use of the aqueous medium seems to be a more promising method than the use of the soil medium. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 129-133, 2004.

  13. Dairy Herd Mastitis Program in Argentina: Farm Clusters and Effects on Bulk Milk Somatic Cell Counts

    Directory of Open Access Journals (Sweden)

    C Vissio1*, SA Dieser2, CG Raspanti2, JA Giraudo1, CI Bogni2, LM Odierno2 and AJ Larriestra1

    2013-01-01

    Full Text Available This research has been conducted to characterize dairy farm clusters according to mastitis control program practiced among small and medium dairy producer from Argentina, and also to evaluate the effect of such farm cluster patterns on bulk milk somatic cell count (BMSCC. Two samples of 51 (cross-sectional and 38 (longitudinal herds were selected to identify farm clusters and study the influence of management on monthly BMSCC, respectively. The cross-sectional sample involved the milking routine and facilities assessment of each herd visited. Hierarchical cluster analysis was used to find the most discriminating farm attributes in the cross sectional sample. Afterward, the herd cluster typologies were identified in the longitudinal sample. Herd monthly BMSCC average was evaluated during 12 months fitting a linear mixed model. Two clusters were identified, the farms in the Cluster I applied a comprehensive mastitis program in opposite to Cluster II. Post-dipping, dry cow therapy and milking machine test were routinely applied in Cluster I. In the longitudinal study, 14 out of 38 dairy herds were labeled as Cluster I and the rest were assigned to Cluster II. Significant difference in BMSCC was found between cluster I and II (60,000 cells/mL. The present study showed the relevance and potential impact of promoting mastitis control practices among small and medium sized dairy producers in Argentina.

  14. Current status and applications of somatic cell nuclear transfer in dogs.

    Science.gov (United States)

    Jang, Goo; Kim, Min Kyu; Lee, Byeong Chun

    2010-11-01

    Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Cell adhesion molecules expression pattern indicates that somatic cells arbitrate gonadal sex of differentiating bipotential fetal mouse gonad.

    Science.gov (United States)

    Piprek, Rafal P; Kolasa, Michal; Podkowa, Dagmara; Kloc, Malgorzata; Kubiak, Jacek Z

    2017-10-01

    Unlike other organ anlagens, the primordial gonad is sexually bipotential in all animals. In mouse, the bipotential gonad differentiates into testis or ovary depending on the genetic sex (XY or XX) of the fetus. During gonad development cells segregate, depending on genetic sex, into distinct compartments: testis cords and interstitium form in XY gonad, and germ cell cysts and stroma in XX gonad. However, our knowledge of mechanisms governing gonadal sex differentiation remains very vague. Because it is known that adhesion molecules (CAMs) play a key role in organogenesis, we suspected that diversified expression of CAMs should also play a crucial role in gonad development. Using microarray analysis we identified 129 CAMs and factors regulating cell adhesion during sexual differentiation of mouse gonad. To identify genes expressed differentially in three cell lines in XY and XX gonads: i) supporting (Sertoli or follicular cells), ii) interstitial or stromal cells, and iii) germ cells, we used transgenic mice expressing EGFP reporter gene and FACS cell sorting. Although a large number of CAMs expressed ubiquitously, expression of certain genes was cell line- and genetic sex-specific. The sets of CAMs differentially expressed in supporting versus interstitial/stromal cells may be responsible for segregation of these two cell lines during gonadal development. There was also a significant difference in CAMs expression pattern between XY supporting (Sertoli) and XX supporting (follicular) cells but not between XY and XX germ cells. This indicates that differential CAMs expression pattern in the somatic cells but not in the germ line arbitrates structural organization of gonadal anlagen into testis or ovary. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Study on relationship of dose-effect and time-effect of APA microencapsulated bovine chromaffin cells on pain treatment].

    Science.gov (United States)

    Hui, Jianfeng; Li, Tao; Du, Zhi; Song, Jichang

    2011-12-01

    This study was to investigate the relationship of dose-effect and time-effect of Alginate-Polylysine-Alginate (APA) microencapsulated bovine chromaffin cells on the treatment of pain model rats. Using a rat model of painful peripheral neuropathy, the antinociceptive effects of APA microencapsulated bovine cells transplanted into the subarachnoid space was evaluated by cold allodynia test and hot hyperalgesia test. Compared with control group, the withdrawal difference with cell number 50 thousands groups, 100 thousands groups and 200 thousands groups was reduced (P APA microencapsulated bovine chromaffin cells which were transplanted to treat pain model rats, and the effective antinociception remained longer than 12 weeks.

  17. Somatic cell nuclear transfer using transported in vitro-matured oocytes in cynomolgus monkey.

    Science.gov (United States)

    Chen, N; Liow, S-L; Abdullah, R Bin; Embong, W Khadijah Wan; Yip, W-Y; Tan, L-G; Tong, G-Q; Ng, S-C

    2007-02-01

    Somatic cell nuclear transfer (SCNT) is not successful so far in non-human primates. The objective of this study was to investigate the effects of stimulation cycles (first and repeat) on oocyte retrieval and in vitro maturation (IVM) and to evaluate the effects of stimulation cycles and donor cell type (cumulus and fetal skin fibroblasts) on efficiency of SCNT with transported IVM oocytes. In this study, 369 immature oocytes were collected laparoscopically at 24 h following human chorionic gonadotrophin (hCG) treatment from 12 cynomolgus macaque (Macaca fascicularis) in 24 stimulation cycles, and shipped in pre-equilibrated IVM medium for a 5 h journey, placed in a dry portable incubator (37 degrees C) without CO(2) supplement. A total of 70.6% (247/350) of immature oocytes reached metaphase II (MII) stage at 36 h after hCG administration, MII spindle could be seen clearly in 80.6% (104/129) of matured IVM oocytes under polarized microscopy. A total of 50.0% (37/74) of reconstructive SCNT embryos cleaved after activation; after cleavage, 37.8% (14/37) developed to the 8-cell stage and 8.1% (3/37) developed to morula, but unfortunately none developed to the blastocyst stage. Many more oocytes could be retrieved per cycle from monkeys in the first cycle than in repeated cycles (19.1 vs. 11.7, p vs. 71.4%, p > 0.05) and MII spindle rate under polarized microscopy (76.4 vs. 86.0%, p > 0.05) between the first and repeat cycles. There were also no significant differences in the cleavage rate, and the 4-cell, 8-cell and morula development rate of SCNT embryos between the first and repeat cycles. When fibroblast cells and cumulus cells were used as the donor cells for SCNT, first cleavage rate was not significantly different, but 4-cell (50.0 vs. 88.9%, p vs. 51.9%, p < 0.01) development rate were significantly lower for the former. In conclusion, the number of stimulation cycles has a significant effect on oocyte retrieval, but has no effect on maturation and SCNT embryo

  18. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mohammed Saeed-Zidane

    Full Text Available Various environmental insults including diseases, heat and oxidative stress could lead to abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth and oocyte maturation. Despite the fact that cells exposed to oxidative stress are responding transcriptionally, the potential release of transcripts associated with oxidative stress response into extracellular space through exosomes is not yet determined. Therefore, here we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspirated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells were treated with 5 μM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Furthermore, gene and protein expression analysis were performed in H2O2-challenged versus control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocytochemistry assay, respectively. Moreover, exosomes were isolated from spent media using ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In the second experiment, exosomes released by granulosa cells under oxidative stress (StressExo or those released by granulosa cells without oxidative stress (NormalExo were co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of defense molecules from exosomes to granulosa cells and investigate any phenotype changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS, reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant genes (both mRNA and protein, altered the cell cycle transitions and induced cellular apoptosis. Granulosa cells

  19. [The effects of di-n-butyl phthalate on the somatic cells of laboratory mice].

    Science.gov (United States)

    Dobrzyńska, Małgorzata M; Tyrkiel, Ewa J; Hernik, Agnieszka; Derezińska, Edyta; Góralczyk, Katarzyna; Ludwicki, Jan K

    2010-01-01

    Phthalates are widely used as a plasticizers in manufacture of synthetic materials and as solvents in sanitary products, cosmetics and pharmaceutical products. Dibutylphthalate (DBP) is used as a plasticizers and as a textile lubricating agent and as solvent in printing ink. The study aimed the evaluation of the magnitude of DNA damage in liver and bone marrow cells and estimation of dibutyl phthalate (DBP) concentration in peripheral blood following prolonged exposure to DBP. Experiments were conducted an the Pzh:Sfis male mice. Animals were exposed 8 weeks, 3 days per week per os to DBP suspension in oil in doses of 500 mg/kg bw (1/16 LD50) and 2000 mg/kg bw (1/4 LD50). Following groups of mice were sacrificed 4 and 8 weeks after the start of exposure and 4 weeks after the end of exposure. Decreased body weight of mice and statistically significant decreased liver and relative liver weights were observed following 8-weeks exposure to 2000 mg/kg bw DBP. In the same time higher however not statistically significant level of DNA damage measured by Comet assay in liver cells were noted. DBP did not induce enhanced frequency of DNA damage in bone marrow cells. Following 8-weeks exposure to the dose of 2000 mg/kg bw DBP the increased level of DBP in peripheral blood was observed. Enhanced levels of DBP were still noted 4 weeks after the termination of exposure. Results confirmed that DBP acts as a weak mutagen for DNA of somatic cells. However, following prolonged exposure this compound seems to undergo slower metabolism and was reaching temporarily higher levels in peripheral blood.

  20. Isolation, culture and characterisation of somatic cells derived from semen and milk of endangered sheep and eland antelope.

    Science.gov (United States)

    Nel-Themaat, L; Gómez, M C; Damiani, P; Wirtu, G; Dresser, B L; Bondioli, K R; Lyons, L A; Pope, C E; Godke, R A

    2007-01-01

    Semen and milk are potential sources of somatic cells for genome banks. In the present study, we cultured and characterised cells from: (1) cooled sheep milk; (2) fresh, cooled and frozen-thawed semen from Gulf Coast native (GCN) sheep (Ovis aries); and (3) fresh eland (Taurotragus oryx) semen. Cells attached to the culture surface from fresh (29%), cooled (43%) and slow-frozen (1 degrees C/min; 14%) ram semen, whereas no attachment occurred in the fast-frozen (10 degrees C/min) group. Proliferation occurred in fresh (50%) and cooled (100%) groups, but no cells proliferated after passage 1 (P1). Eland semen yielded cell lines (100%) that were cryopreserved at P1. In samples from GCN and cross-bred milk, cell attachment (83% and 95%, respectively) and proliferation (60% and 37%, respectively) were observed. Immunocytochemical detection of cytokeratin indicated an epithelial origin of semen-derived cells, whereas milk yielded either fibroblasts, epithelial or a mixture of cell types. Deoxyribonucleic acid microsatellite analysis using cattle-derived markers confirmed that eland cells were from the semen donor. Eland epithelial cells were transferred into eland oocytes and 12 (71%), six (35%) and two (12%) embryos cleaved and developed to morulae or blastocyst stages, respectively. In conclusion, we have developed a technique for obtaining somatic cells from semen. We have also demonstrated that semen-derived cells can serve as karyoplast donors for nuclear transfer.

  1. The Drosophila BCL6 homolog Ken and Barbie promotes somatic stem cell self-renewal in the testis niche.

    Science.gov (United States)

    Issigonis, Melanie; Matunis, Erika

    2012-08-15

    Stem cells sustain tissue regeneration by their remarkable ability to replenish the stem cell pool and to generate differentiating progeny. Signals from local microenvironments, or niches, control stem cell behavior. In the Drosophila testis, a group of somatic support cells called the hub creates a stem cell niche by locally activating the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in two adjacent types of stem cells: germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Here, we find that ken and barbie (ken) is autonomously required for the self-renewal of CySCs but not GSCs. Furthermore, Ken misexpression in the CySC lineage induces the cell-autonomous self-renewal of somatic cells as well as the nonautonomous self-renewal of germ cells outside the niche. Thus, Ken, like Stat92E and its targets ZFH1 (Leatherman and Dinardo, 2008) and Chinmo (Flaherty et al., 2010), is necessary and sufficient for CySC renewal. However, ken is not a JAK-STAT target in the testis, but instead acts in parallel to Stat92E to ensure CySC self-renewal. Ken represses a subset of Stat92E targets in the embryo (Arbouzova et al., 2006) suggesting that Ken maintains CySCs by repressing differentiation factors. In support of this hypothesis, we find that the global JAK-STAT inhibitor Protein tyrosine phosphatase 61F (Ptp61F) is a JAK-STAT target in the testis that is repressed by Ken. Together, our work demonstrates that Ken has an important role in the inhibition of CySC differentiation. Studies of ken may inform our understanding of its vertebrate orthologue B-Cell Lymphoma 6 (BCL6) and how misregulation of this oncogene leads to human lymphomas. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Ring-like distribution of constitutive heterochromatin in bovine senescent cells.

    Science.gov (United States)

    Pichugin, Andrey; Beaujean, Nathalie; Vignon, Xavier; Vassetzky, Yegor

    2011-01-01

    Cells that reach "Hayflick limit" of proliferation, known as senescent cells, possess a particular type of nuclear architecture. Human senescent cells are characterized by the presence of highly condensed senescent associated heterochromatin foci (SAHF) that can be detected both by immunostaining for histone H3 three-methylated at lysine 9 (H3K9me3) and by DAPI counterstaining. We have studied nuclear architecture in bovine senescent cells using a combination of immunofluorescence and 3D fluorescent in-situ hybridization (FISH). Analysis of heterochromatin distribution in bovine senescent cells using fluorescent in situ hybridization for pericentric chromosomal regions, immunostaining of H3K9me3, centromeric proteins CENP A/B and DNA methylation showed a lower level of heterochromatin condensation as compared to young cells. No SAHF foci were observed. Instead, we observed fibrous ring-like or ribbon-like heterochromatin patterns that were undetectable with DAPI counterstaining. These heterochromatin fibers were associated with nucleoli. Constitutive heterochromatin in bovine senescent cells is organized in ring-like structures.

  3. Ring-like distribution of constitutive heterochromatin in bovine senescent cells.

    Directory of Open Access Journals (Sweden)

    Andrey Pichugin

    Full Text Available BACKGROUND: Cells that reach "Hayflick limit" of proliferation, known as senescent cells, possess a particular type of nuclear architecture. Human senescent cells are characterized by the presence of highly condensed senescent associated heterochromatin foci (SAHF that can be detected both by immunostaining for histone H3 three-methylated at lysine 9 (H3K9me3 and by DAPI counterstaining. METHODS: We have studied nuclear architecture in bovine senescent cells using a combination of immunofluorescence and 3D fluorescent in-situ hybridization (FISH. RESULTS: Analysis of heterochromatin distribution in bovine senescent cells using fluorescent in situ hybridization for pericentric chromosomal regions, immunostaining of H3K9me3, centromeric proteins CENP A/B and DNA methylation showed a lower level of heterochromatin condensation as compared to young cells. No SAHF foci were observed. Instead, we observed fibrous ring-like or ribbon-like heterochromatin patterns that were undetectable with DAPI counterstaining. These heterochromatin fibers were associated with nucleoli. CONCLUSIONS: Constitutive heterochromatin in bovine senescent cells is organized in ring-like structures.

  4. Platelet lysate: a replacement for fetal bovine serum in animal cell culture?

    OpenAIRE

    Johansson, Liselott; Klinth, Jeanna; Holmqvist, Olov; Ohlson, Sten

    2003-01-01

    A new cell culture supplement, platelet lysate, was evaluated with reference to fetal bovine serum (FBS), an established industrial medium for animal cell culture. Chemical and bacteriological profiles were conducted including the presence of platelet-derived growth factor (PDGF). PDGF was detected in the platelet lysate but it was not present in FBS. The platelet lysate medium demonstrated lack of microorganisms, mycoplasma and endotoxins. The platelet lysate was investigated in culture stud...

  5. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue; Pang, Daxin; Ouyang, Hongsheng

    2011-01-01

    Highlights: → Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. → The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. → A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 μg/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  6. Somatic hypermutation and antigen-driven selection of B cells are altered in autoimmune diseases.

    Science.gov (United States)

    Zuckerman, Neta S; Hazanov, Helena; Barak, Michal; Edelman, Hanna; Hess, Shira; Shcolnik, Hadas; Dunn-Walters, Deborah; Mehr, Ramit

    2010-12-01

    B cells have been found to play a critical role in the pathogenesis of several autoimmune (AI) diseases. A common feature amongst many AI diseases is the formation of ectopic germinal centers (GC) within the afflicted tissue or organ, in which activated B cells expand and undergo somatic hypermutation (SHM) and antigen-driven selection on their immunoglobulin variable region (IgV) genes. However, it is not yet clear whether these processes occurring in ectopic GCs are identical to those in normal GCs. The analysis of IgV mutations has aided in revealing many aspects concerning B cell expansion, mutation and selection in GC reactions. We have applied several mutation analysis methods, based on lineage tree construction, to a large set of data, containing IgV productive and non-productive heavy and light chain sequences from several different tissues, to examine three of the most profoundly studied AI diseases - Rheumatoid Arthritis (RA), Multiple Sclerosis (MS) and Sjögren's Syndrome (SS). We have found that RA and MS sequences exhibited normal mutation spectra and targeting motifs, but a stricter selection compared to normal controls, which was more apparent in RA. SS sequence analysis results deviated from normal controls in both mutation spectra and indications of selection, also showing differences between light and heavy chain IgV and between different tissues. The differences revealed between AI diseases and normal control mutation patterns may result from the different microenvironmental influences to which ectopic GCs are exposed, relative to those in normal secondary lymphoid tissues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Pang, Daxin, E-mail: pdx@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Ouyang, Hongsheng, E-mail: ouyh@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China)

    2011-07-29

    Highlights: {yields} Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. {yields} The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. {yields} A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 {mu}g/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  8. Effect of mastitis treatment and somatic cell counts on milk yield in Danish organic dairy cows.

    Science.gov (United States)

    Bennedsgaard, T W; Enevoldsen, C; Thamsborg, S M; Vaarst, M

    2003-10-01

    Production and disease data from 17,488 lactations in 48 Danish organic dairy herds from 1997 to 2001 were analyzed to obtain estimates on the effect of somatic cell counts (SCC) and mastitis treatment on milk production. A multilevel three-parameter piecewise random coefficients linear model with energy-corrected milk (ECM) as dependent variable and herd, lactation, and test days as levels, was used to model the lactation curve. Covariates related to production, SCC, veterinary treatments, and reproductive performance in the previous lactation as well as information on other diseases in the current lactation were included to describe the production capacity of the individual cow. The average daily milk production at herd level was 20.8, 24.2, and 25.8 kg of ECM/d in first, second, and third or later lactation. The estimates for production losses were on average 0.2, 0.3, and 0.4 kg of ECM/d in first, second, and third or later lactation with each twofold increase in SCC between 100,000 and 1,500,000 cells/ml. The effect varied with the stage of lactation and was nonsignificant around 60 d postpartum and highest at the end of the lactation. The production losses in cows treated for mastitis varied with parity and stage of lactation and were modified by the SCC after treatment. For a cow in third lactation with a SCC below 100,000 cells/ ml before treatment at days in milk = 15, the predicted loss was 435 kg of ECM, including a loss of 135 kg of ECM because of higher SCC compared with the level before treatment. Most of the variation in production related to SCC and mastitis was at the lactation level, and no significant differences were found between herds grouped according to milk production level, SCC, or prevalence of mastitis treatment.

  9. Seasonal and Milking-to-Milking Variations in Cow Milk Fat, Protein and Somatic Cell Counts

    Directory of Open Access Journals (Sweden)

    Elena Raluca PAVEL

    2011-05-01

    Full Text Available The first objective of this study was to examine milking-to-milking variations in milk fat, protein and SCC (somatic cell count. The second objective of this study was to examine variations of milk components (fat, protein and SCC over a period of six months (April-September 2010 at Agricultural Research Development Station Simnic. A total of 128 milk samples (64 morning milking and 64 evening milking ones from milk bulk tank commingled from 904 Holstein cows, were collected and analyzed for fat, protein and SCC. Data suggested that milking period effects milk fat, making the fat percentage lower in the morning compared with the evening milking period, effect which was not similar in protein content. Seasonal differences in milk fat and protein were also investigated. The season of year had influenced SCC, fat and protein: SCC increased, while fat and protein decreased. The period of the day when milking took place and the season influenced fat, protein and SCC, but the composition of milk, as well as its hygienic quality, fell within the aplicabile standards for raw milk.

  10. Seasonal and Milking-to-Milking Variations in Cow Milk Fat, Protein and Somatic Cell Counts

    Directory of Open Access Journals (Sweden)

    Elena Raluca PAVEL

    2011-05-01

    Full Text Available The first objective of this study was to examine milking-to-milking variations in milk fat, protein and SCC (somatic cell count. The second objective of this study was to examine variations of milk components (fat, protein and SCC over a period of six months (April-September 2010 at Agricultural Research Development Station Simnic. A total of 128 milk samples (64 morning milking and 64 evening milking ones from milk bulk tank commingled from 90�4 Holstein cows, were collected and analyzed for fat, protein and SCC. Data suggested that milking period effects milk fat, making the fat percentage lower in the morning compared with the evening milking period, effect which was not similar in protein content. Seasonal differences in milk fat and protein were also investigated. The season of year had influenced SCC, fat and protein: SCC increased, while fat and protein decreased. The period of the day when milking took place and the season influenced fat, protein and SCC, but the composition of milk, as well as its hygienic quality, fell within the aplicabile standards for raw milk.

  11. The main factors affecting somatic cell count in organic dairy farming

    Energy Technology Data Exchange (ETDEWEB)

    Orjales, I.; Lopez-Alonso, M.; Miranda, M.; Rodríguez-Bermúdez, R.; Rey-Crespo, F.; Villar, A.

    2017-07-01

    Preventive management practices are essential for maintaining acceptable udder health status, especially in organic farming, in which the use of antimicrobials is restricted. The contribution of the following factors to somatic cell count (SCC) was assessed in 788 cows from 15 organically reared herds in northern Spain: milk production, lactation number, treatments applied, selective dry cow therapy and teat dipping routines. The data were examined by linear logistic regression. Lactation number was the main factor affecting logSCC (β= 0.339, p<0.001) followed in order of importance by milk production (β= -0.205, p<0.001), use of alternative treatments (β=0.153, p<0.001), selective dry cow therapy (β=0.120, p=0.005) and teat dipping routines (β=-0.076, p=0.028). However, the model only explained 17.0% of the total variation in SCC. This variable depends on factors other than those considered here, amongst which udder infection is probably one of the most important. Nonetheless, the study findings enabled us to determine the contribution of the main management factors that should be taken into account to improve udder health status on organic farms.

  12. Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minhwa; Jang, Won-Gu; Hwang, Jeong Hee; Jang, Hoon; Kim, Eun-Jung; Jeong, Eun-Jeong [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of); Shim, Hosup [Department of Physiology, Dankook University School of Medicine, Cheonan 330 714 (Korea, Republic of); Hwang, Sung Soo; Oh, Keon Bong; Byun, Sung June [Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon (Korea, Republic of); Kim, Jin-Hoi [Department of Animal Biotechnology, Konkuk University, Seoul 143 701 (Korea, Republic of); Lee, Jeong Woong, E-mail: jwlee@kribb.re.kr [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer We success serial SCNT through the third generation using pig fibroblasts. Black-Right-Pointing-Pointer Donor-specific mtDNA in the recloned pigs was detected. Black-Right-Pointing-Pointer SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A{yields}T), 16062 (T{yields}C), and 16135 (G{yields}A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.

  13. Comparing milk yield, chemical properties and somatic cell count from organic and conventional mountain farming systems

    Directory of Open Access Journals (Sweden)

    Marcello Bianchi

    2010-01-01

    Full Text Available A study was undertaken to investigate the effects of farming systems (organic vs. conventional, diet (hay/concentrate vs. pasture and their interaction on milk yield, gross composition and fatty acid (FA profile of dairy cows bred in mountainous areas. For this purpose four dairy farms (two organic and two conventional were chosen in the alpine territory of Aosta Valley (NW Italy; individual milk yield was recorded daily and bulk milk samples were collected monthly from February to September 2007 to cover dietary variations. Higher levels of milk production (P<0.05 and lower milk protein amounts (P<0.01 were observed in the organic farms with respect to the conventional ones, while no significant differences were noticed in milk fat and lactose contents and in somatic cell count. Concerning fatty acids, only small differences were detected between organic and conventional milk and such differences seemed to be related mainly to the stabled period. Diet affected almost all variables studied: pasture feeding provided a significant improvement in the fatty acid composition in both organic and conventional systems leading to lower hypercholesterolemic saturated fatty acids, higher mono- and polyunsaturated fatty acids and conjugated linoleic acid amounts (P<0.001.

  14. Peptidoglycan inhibits progesterone and androstenedione production in bovine ovarian theca cells.

    Science.gov (United States)

    Magata, F; Horiuchi, M; Miyamoto, A; Shimizu, T

    2014-08-01

    Uterine bacterial infection perturbs uterine and ovarian functions in postpartum dairy cows. Peptidoglycan (PGN) produced by gram-positive bacteria has been shown to disrupt the ovarian function in ewes. The aim of this study was to determine the effect of PGN on steroid production in bovine theca cells at different stages of follicular development. Bovine theca cells isolated from pre- and post-selection ovarian follicles (8.5mm in diameter, respectively) were cultured in vitro and challenged with PGN. Steroid production was evaluated by measuring progesterone (P4) and androstenedione (A4) concentration in culture media after 48 h or 96 h of culture. Bovine theca cells expressed PGN receptors including Toll-like receptor 2 and nucleotide-binding oligomerization domain 1 and 2. Treatment with PGN (1, 10, or 50 μg/ml) led to a decrease in P4 and A4 production by theca cells in both pre- and post-selection follicles. The mRNA expression of steroidogenic enzymes were decreased by PGN treatment. Moreover, A4 production was further suppressed when theca cells of post-selection follicles were simultaneously treated by PGN and lipopolysaccharide (0.1, 1, or 10 μg/ml). These findings indicate that bacterial toxins may act locally on ovarian steroidogenic cells and compromise follicular development in postpartum dairy cows. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Characterization of putative receptors specific for quercetin on bovine aortic smooth-muscle cells

    International Nuclear Information System (INIS)

    Yu, S.C.; Becker, C.G.

    1986-01-01

    The authors have reported that tobacco glycoprotein (TGP), rutin-bovine serum albumin conjugates (R-BSA), quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells (SMC). To investigate whether there are binding sites or receptors for these polyphenol-containing molecules on SMC, the authors have synthesized 125 I-labeled rutin-bovine serum albumin ([ 125 I]R-BSA) of high specific activity (20 Ci/mmol). SMC were isolated from a bovine thoracic aorta and maintained in Eagle's minimum essential medium with 10% calf serum in culture. These SMC at early subpassages were suspended (3-5 x 10 7 cells/ml) in phosphate-buffered saline and incubated with [ 125 I]R-BSA (10 pmol) in the presence or absence of 200-fold unlabeled R-BSA, TGP, BSA, rutin, quercetin or related polyphenols, and catecholamines. Binding of [ 125 I]R-BSA to SMC was found to be reproducible and the radioligand was displaced by R-BSA, and also by TGP, rutin, quercetin, and chlorogenic acid, but not by BSA, ellagic acid, naringin, hesperetin, dopamine, epinephrine, or isoproterenol. The binding was saturable, reversible, and pH-dependent. These results demonstrate the presence of specific binding sites for quercetinon arterial SMC

  16. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells.

    Science.gov (United States)

    Kim, Young Mi; Kang, Yun Gyeong; Park, So Hee; Han, Myung-Kwan; Kim, Jae Ho; Shin, Ji Won; Shin, Jung-Woog

    2017-06-08

    Mechanical stimuli play important roles in the proliferation and differentiation of adult stem cells. However, few studies on their effects on induced pluripotent stem cells (iPSCs) have been published. Human dermal fibroblasts were seeded onto flexible membrane-bottom plates, and infected with retrovirus expressing the four reprogramming factors OCT4, SOX2, KLF, and c-MYC (OSKM). The cells were subjected to equiaxial stretching (3% or 8% for 2, 4, or 7 days) and seeded on feeder cells (STO). The reprogramming into iPSCs was evaluated by the expression of pluripotent markers, in vitro differentiation into three germ layers, and teratoma formation. Equiaxial stretching enhanced reprogramming efficiency without affecting the viral transduction rate. iPSCs induced by transduction of four reprogramming factors and application of equiaxial stretching had characteristics typical of iPSCs in terms of pluripotency and differentiation potentials. This is the first study to show that mechanical stimuli can increase reprogramming efficiency. However, it did not enhance the infection rate, indicating that mechanical stimuli, defined as stretching in this study, have positive effects on reprogramming rather than on infection. Additional studies should evaluate the mechanism underlying the modulation of reprogramming of somatic cells into iPSCs.

  17. Rat primary embryo fibroblast cells suppress transformation by the E6 and E7 genes of human papillomavirus type 16 in somatic hybrid cells.

    OpenAIRE

    Miyasaka, M; Takami, Y; Inoue, H; Hakura, A

    1991-01-01

    The E6 and E7 genes of human papillomavirus type 16 (HPV-16) transform established lines of rat cells but not rat cells in primary culture irrespective of the expression of the two genes. The reason for this difference between the susceptibilities of cell lines and primary cells was examined by using hybrid cells obtained by somatic cell fusion of rat cell lines transformed by the E6 and E7 genes of HPV-16 and freshly isolated rat embryo fibroblast cells. In these hybrid cells, transformed ph...

  18. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    OpenAIRE

    Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms, 3 bulk milk samples were collected at intervals of 2 wk. The samples were cultured for SPC, coliform count, and staphylococcal count and for the presence of Staphylococcus aureus. Furthermore, SCC ...

  19. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    OpenAIRE

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Link, Brian K.; Zou, Lihua

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include...

  20. 309 proteomic analysis of the blastocoel fluid and remaining cells of bovine blastocysts

    DEFF Research Database (Denmark)

    Jensen, P L; Groendahl, M L; Beck, Helle

    2012-01-01

    Human embryonic stem cells (hESC) are derived from the human blastocyst and possess the potential to differentiate into any cell type present in the adult human body. Human ESC are considered to have great potential in regenerative medicine for the future treatment of severe diseases and conditions...... such as Parkinson's disease, diabetes, and spinal cord injury. One of today's challenges in regenerative medicine is to define proper culture conditions for hESC. The natural milieu in the blastocyst may provide clues on how to improve culture conditions, and the aim of the present study was to determine...... the proteome of the blastocoel fluid and the remaining cells of bovine blastocysts. Bovine blastocysts were produced by in vitro fertilization of oocytes retrieved from slaughterhouse ovaries. The blastocoel from 195 blastocysts (1-8nL per blastocyst) were isolated by micromanipulation and analysed by nano...

  1. Novel Cell Preservation Technique to Extend Bovine In Vitro White Blood Cell Viability.

    Directory of Open Access Journals (Sweden)

    Emilie L Laurin

    Full Text Available Although cell-mediated immunity based diagnostics can be integral assays for early detection of various diseases of dairy cows, processing of blood samples for these tests is time-sensitive, often within 24 hours of collection, to maintain white blood cell viability. Therefore, to improve utility and practicality of such assays, the objective of this study was to assess the use of a novel white blood cell preservation technology in whole bovine blood. Blood samples from ten healthy cows were each divided into an unpreserved control sample and a test sample preserved with commercially-available cell transport medium. Samples were maintained at room temperature and stimulated with the mitogens pokeweed and concanavalinA, as well as with interleukin-12 p40. Stimulation was completed on days 1, 5, and 8 post-sampling. Viability of white blood cells was assessed through interferon gamma production determined with a commercial enzyme linked immunosorbent assay. In addition, mononuclear cell viability was assessed with propidium iodide flow cytometry. Greater interferon gamma production was observed on days 5 and 8 post-collection in preserved samples, with both pokeweed and concanavalinA stimulating positive interferon gamma production on day 5 post-collection. A greater proportion of the amount of interferon gamma produced on day 1 continued to be produced on days 5 and 8 post-collection with concanavalinA stimulation (with or without interleukin 12 as compared to pokeweed stimulation. Additionally, viable mononuclear cells were still present at eight days post-collection, with a higher mean proportion detected at days 5 and 8 in all stimulated preserved samples. This practical and simple method to extend in vitro white blood cell viability could benefit the efficient utilization of cell-based blood tests in ruminants.

  2. Somatic cell count and alkaline phosphatase activity in milk for evaluation of mastitis in buffalo

    Science.gov (United States)

    Patil, M. P.; Nagvekar, A. S.; Ingole, S. D.; Bharucha, S. V.; Palve, V. T.

    2015-01-01

    Background and Aim: Mastitis is a serious disease of dairy animals causing great economic losses due to a reduction in milk yield as well as lowering its nutritive value. The application of somatic cell count (SCC) and alkaline phosphatase activity in the milk for diagnosis of mastitis in buffalo is not well documented. Therefore, the present study was conducted to observe the SCC and alkaline phosphatase activity for evaluation of mastitis in buffalo. Materials and Methods: Milk samples of forty apparently healthy lactating buffaloes were selected and categorized into five different groups viz. normal buffaloes, buffaloes with subclinical mastitis with CMT positive milk samples (+1 Grade), (+2 Grade), (+3 Grade), and buffaloes with clinical mastitis with 8 animals in each group. The milk samples were analyzed for SCC and alkaline phosphatase activity. Results: The levels of SCC (×105 cells/ml) and alkaline phosphatase (U/L) in different groups were viz. normal (3.21±0.179, 16.48±1.432), subclinical mastitis with CMT positive milk samples with +1 Grade (4.21±0.138, 28.11±1.013), with +2 Grade (6.34±0.183, 34.50±1.034), with +3 Grade (7.96±0.213, 37.73±0.737) and buffaloes with clinical mastitis (10.21±0.220, 42.37±0.907) respectively, indicating an increasing trend in the values and the difference observed among various group was statistically significant. Conclusion: In conclusion, the results of the present study indicate that the concentration of milk SCC and alkaline phosphatase activity was higher in the milk of buffaloes with mastitis than in the milk of normal buffaloes. PMID:27047098

  3. Somatic cell count and alkaline phosphatase activity in milk for evaluation of mastitis in buffalo

    Directory of Open Access Journals (Sweden)

    M. P. Patil

    2015-03-01

    Full Text Available Background and Aim: Mastitis is a serious disease of dairy animals causing great economic losses due to a reduction in milk yield as well as lowering its nutritive value. The application of somatic cell count (SCC and alkaline phosphatase activity in the milk for diagnosis of mastitis in buffalo is not well documented. Therefore, the present study was conducted to observe the SCC and alkaline phosphatase activity for evaluation of mastitis in buffalo. Materials and Methods: Milk samples of forty apparently healthy lactating buffaloes were selected and categorized into five different groups viz. normal buffaloes, buffaloes with subclinical mastitis with CMT positive milk samples (+1 Grade, (+2 Grade, (+3 Grade, and buffaloes with clinical mastitis with 8 animals in each group. The milk samples were analyzed for SCC and alkaline phosphatase activity. Results: The levels of SCC (×105 cells/ml and alkaline phosphatase (U/L in different groups were viz. normal (3.21±0.179, 16.48±1.432, subclinical mastitis with CMT positive milk samples with +1 Grade (4.21±0.138, 28.11±1.013, with +2 Grade (6.34±0.183, 34.50±1.034, with +3 Grade (7.96±0.213, 37.73±0.737 and buffaloes with clinical mastitis (10.21±0.220, 42.37±0.907 respectively, indicating an increasing trend in the values and the difference observed among various group was statistically significant. Conclusion: In conclusion, the results of the present study indicate that the concentration of milk SCC and alkaline phosphatase activity was higher in the milk of buffaloes with mastitis than in the milk of normal buffaloes.

  4. Contagem de células somáticas e isolamento de agentes causadores de mastite em búfalas (Bubalus bubalis Somatic cell count and mastitis causing pathogens isolation in water buffaloes (Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    L.B. Carvalho

    2007-02-01

    Full Text Available The research was accomplished in eight dairy water buffalo herds, randomically choosen in Região do Alto São Francisco, State of Minas Gerais, Brazil. Information was collected from March to November, 2003 during 270 days of observation. In order to determine the somatic cell count (SCC in presence or absence of microbial isolation, 1,393 samples were collected from 285 lactating females and microbiological exams and SCC were done. Samples obtained from udders without evidence of clinical or subclinical inflammation showed infection for a great variety of microbial mastitis pathogens. The low SCC did not necessarily indicate the absence of intramammary infection, suggesting that SCC patterns used for bovine cannot be appropriate in order to control mastitis in buffalo herds.

  5. Embryonic stem-like cells derived from in vitro produced bovine blastocysts

    Directory of Open Access Journals (Sweden)

    Erika Regina Leal de Freitas

    2011-06-01

    Full Text Available The aim of this work was to study the derivation of bovine embryonic stem-like (ES-like cells from the inner cell mass (ICM of in vitro produced blastocysts. The ICMs were mechanically isolated and six out of seventeen (35% ICMs could attach to a monolayer of murine embryonic fibroblasts (MEF. Ten days after, primary outgrowths were mechanically dissected into several small clumps and transferred to a new MEF layer. Cells were further propagated and passaged by physical dissociation over a 60 days period. The pluripotency of the bovine ES-like cells was confirmed by RT-PCR of Oct-4 and STAT-3 gene markers. The colonies were weakly stained for alkaline phosphatase and the mesoderm and endoderm differentiation gene markers such as GATA-4 and Flk-1, respectively, were not expressed. Embryoid bodies were spontaneously formed at the seventh passage. Results showed that bovine ES-like cells could be obtained and passaged by mechanical procedures from the fresh in vitro produced blastocysts.

  6. Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    Science.gov (United States)

    Jeong, Chang Hee; Cheng, Wei Nee; Bae, Hyojin; Lee, Kyung Woo; Han, Sang Mi; Petriello, Michael C; Lee, Hong Gu; Seo, Han Geuk; Han, Sung Gu

    2017-10-28

    The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides ( e.g. , melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS (1 μg/ml) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and 5 μg/ml) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-α. Activation of NF-κB, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species ( e.g. , superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-κB, ERK1/2, and COX-2 signaling.

  7. Effects of diurnal temperature difference and gamma radiation on the frequency of somatic cell mutations in the stamen hairs

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Won Rok; Kim, Jae Sung; Shin, Hae Shick; Lee, Jeong Joo

    1998-01-01

    This study deals with the effects of diurnal temperature difference (DTD) on somatic cell mutation frequencies in Tradescantia stamen hairs irradiated with radiation. Potted plants of Tradescantia 4430 were irradiated with 0.3, 0.5, 1.0 and 2.0 Gy of gamma radiation. The irradiated plants were maintained under two different experimental conditions; at constant temperature of 20 degree C (DTD0) and at 28 degree C for 14-h day and 8 degree C for 10-h night (DTD20). The somatic cell mutation rate in 0.5 Gy irradiated group showed a big increase on the 6th day and reached a maximum value on the 10th day after irradiation while the rate in the experimental group under the condition of DTD20 started to increase on the 8th day and got to a maximal value on the 14th day postirradiation. In both of the two experiments, the dose-response relationships were clearly linear. The slope of the DTD20 dose-response curve was much steeper than that of the DTD0 one. In conclusion, a great DTD, as one of environmental stresses, enhanced the effectiveness of radiation in the induction of somatic cell mutations and caused a shift of the peak interval of radiation-induced mutations in Tradescantia stamen hairs

  8. Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes.

    Science.gov (United States)

    Astolfi, P A; Salamini, F; Sgaramella, V

    2010-09-01

    Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans', could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the "nature vs nurture" dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes "completed" so far. They may compound the variations associated to our epigenomes and make of each of us an "(epi)genomic" mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments.

  9. Plasma α-tocopherol content and its relationship with milk somatic cells count in Italian commercial herds.

    Directory of Open Access Journals (Sweden)

    Adriano Pilotto

    2015-07-01

    We did not observe a correlation between plasmatic vitamin E and somatic cell score, and this can be explained by the low level of somatic cell score (averages 1.64 and 1.26. The lowest value of vitamin E was observed at parturition (1.64 µg/ml and 1.95 µg/ml. A significant (P<0.01 negative (-20% correlation was observed between NEFA serum content and α-tocopherol plasma concentration. Serum selenium content was positively correlated (+42%, P<0.0001 to zinc concentration. Grouping cows on the basis of their plasma α-tocopherol content higher or lower than 3 μg/mL at dry off, SCS at 30 and 60 DIM tended to be higher in lactating animals with lower content of α-tocopherol (1.12 vs. 1.72, P=0.18 at 30d; 0.92 vs. 1.72, P=0.07 at 60d. However, plasma α-tocopherol content at dry off could be usefully correlated with somatic cell count in fresh cows.

  10. Phenotypic, ultra-structural, and functional characterization of bovine peripheral blood dendritic cell subsets.

    Directory of Open Access Journals (Sweden)

    Janet J Sei

    Full Text Available Dendritic cells (DC are multi-functional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets directly ex vivo, without further in vitro manipulation. Multi-color flow cytometric analysis revealed that three DC subsets could be identified. Bovine plasmacytoid DC were phenotypically identified by a unique pattern of cell surface protein expression including CD4, exhibited an extensive endoplasmic reticulum and Golgi apparatus, efficiently internalized and degraded exogenous antigen, and were the only peripheral blood cells specialized in the production of type I IFN following activation with Toll-like receptor (TLR agonists. Conventional DC were identified by expression of a different pattern of cell surface proteins including CD11c, MHC class II, and CD80, among others, the display of extensive dendritic protrusions on their plasma membrane, expression of very high levels of MHC class II and co-stimulatory molecules, efficient internalization and degradation of exogenous antigen, and ready production of detectable levels of TNF-alpha in response to TLR activation. Our investigations also revealed a third novel DC subset that may be a precursor of conventional DC that were MHC class II+ and CD11c-. These cells exhibited a smooth plasma membrane with a rounded nucleus, produced TNF-alpha in response to TLR-activation (albeit lower than CD11c+ DC, and were the least efficient in internalization/degradation of exogenous antigen. These studies define three bovine blood DC subsets with distinct phenotypic and functional characteristics which can be analyzed during immune responses to pathogens and vaccinations of cattle.

  11. Effects of vitamin D and its metabolites on cell viability and Staphylococcus aureus invasion in bovine mammary epithelial cells

    DEFF Research Database (Denmark)

    Yue, Yuan; Hymøller, Lone; Jensen, Søren Krogh

    2017-01-01

    Vitamin D has been found have various biological effects that may be potent in preventing bovine mastitis. Two forms of vitamin D, vitamin D2 (D2) and vitamin D3 (D3), can be hydroxylated to functional metabolites in cattle. The objectives of the present study were to investigate the effects of D2...... and D3 compounds on bovine mammary epithelial cell proliferation and Staphylococcus aureus (S. aureus) invasion.. Results showed that 1,25-dihydroxyvitamin D2 have an anti-proliferation activity comparable to 1,25-dihydroxyvitamin D3, while D2 and 25-hydroxyvitamin D2 (25(OH)D2) was slightly more potent...

  12. Role of chromosome stability and telomere length in the production of viable cell lines for somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Betts Dean H

    2006-08-01

    Full Text Available Abstract Background Somatic cell nuclear transfer (SCNT provides an appealing alternative for the preservation of genetic material in non-domestic and endangered species. An important prerequisite for successful SCNT is the availability of good quality donor cells, as normal embryo development is dependent upon proper reprogramming of the donor genome so that embryonic genes can be appropriately expressed. The characteristics of donor cell lines and their ability to produce embryos by SCNT were evaluated by testing the effects of tissue sample collection (DART biopsy, PUNCH biopsy, post-mortem EAR sample and culture initiation (explant, collagenase digestion techniques. Results Differences in initial sample size based on sample collection technique had an effect on the amount of time necessary for achieving primary confluence and the number of population doublings (PDL produced. Thus, DART and PUNCH biopsies resulted in cultures with decreased lifespans (50 PDL and chromosomally stable (>70% normal cells at 20 PDL cultures produced by post-mortem EAR samples. Chromosome stability was influenced by sample collection technique and was dependent upon the culture's initial telomere length and its rate of shortening over cell passages. Following SCNT, short-lived cultures resulted in significantly lower blastocyst development (≤ 0.9% compared to highly proliferative cultures (11.8%. Chromosome stability and sample collection technique were significant factors in determining blastocyst development outcome. Conclusion These data demonstrate the influence of culture establishment techniques on cell culture characteristics, including the viability, longevity and normality of cells. The identification of a quantifiable marker associated with SCNT embryo developmental potential, chromosome stability, provides a means by which cell culture conditions can be monitored and improved.

  13. A bovine cell line that can be infected by natural sheep scrapie prions.

    Directory of Open Access Journals (Sweden)

    Anja M Oelschlegel

    Full Text Available Cell culture systems represent a crucial part in basic prion research; yet, cell lines that are susceptible to prions, especially to field isolated prions that were not adapted to rodents, are very rare. The purpose of this study was to identify and characterize a cell line that was susceptible to ruminant-derived prions and to establish a stable prion infection within it. Based on species and tissue of origin as well as PrP expression rate, we pre-selected a total of 33 cell lines that were then challenged with natural and with mouse propagated BSE or scrapie inocula. Here, we report the successful infection of a non-transgenic bovine cell line, a sub-line of the bovine kidney cell line MDBK, with natural sheep scrapie prions. This cell line retained the scrapie infection for more than 200 passages. Selective cloning resulted in cell populations with increased accumulation of PrPres, although this treatment was not mandatory for retaining the infection. The infection remained stable, even under suboptimal culture conditions. The resulting infectivity of the cells was confirmed by mouse bioassay (Tgbov mice, Tgshp mice. We believe that PES cells used together with other prion permissive cell lines will prove a valuable tool for ongoing efforts to understand and defeat prions and prion diseases.

  14. Immunoprotective capability of somatic hybrid cells in comparison with parental tumor cells maintained in vitro

    International Nuclear Information System (INIS)

    Mizushima, Yutaka; Cohen, E.P.

    1985-01-01

    The immunogenicity of X-irradiated hybrid cells derived from fusion of ASL-1 leukemia (A origin) and LM (TK - ) fibroblasts (C3H origin) was compared to X-irradiated parental ASL-1 leukemia cells maintained in vivo (V-ASL-1) and to X-irradiated ASL-1 leukemia cells maintained in vitro (C-ASL-1). Immunization with hybrid cells induced transplantation resistance against tumor rechallenge with V-ASL-1 more effectively than did immunization with V-ASL-1 tumor cells. Immunization with X-irradiated C-ASL-1 cells produced the same, or slightly stronger level of transplantation resistance than that with X-irradiated hybrid cells. These findings were observed both in A/J and in (C3H/HeJxA/J) F 1 mice. These results raise a question about whether the apparent increased immunogenicity of hybrid cells is due to a result of cell fusion or a result of their growth in vitro. (author)

  15. Remodeling of bovine oviductal epithelium by mitosis of secretory cells.

    Science.gov (United States)

    Ito, Sayaka; Kobayashi, Yoshihiko; Yamamoto, Yuki; Kimura, Koji; Okuda, Kiyoshi

    2016-11-01

    Two types of oviductal epithelial cells, secretory and ciliated, play crucial roles in the first days after fertilization in mammals. Secretory cells produce various molecules promoting embryo development, while ciliated cells facilitate transport of oocytes and zygotes by ciliary beating. The proportions of the two cell types change during the estrous cycle. The proportion of ciliated cells on the oviductal luminal surface is abundant at the follicular phase, whereas the proportion of secretory cells gradually increases with the formation of the corpus luteum. In the present study, we hypothesize that the proportions of ciliated and secretory epithelial cells are regulated by mitosis. The proportion of the cells being positive for FOXJ1 (a ciliated cell marker) or Ki67 (a mitosis marker) in epithelial cells during the estrous cycle were immunohistochemically examined. Ki67 and FOXJ1 or PAX8 (a secretory cell marker), were double-stained to clarify which types of epithelial cells undergo mitosis. In the ampulla, the percentage of FOXJ1-positive cells was highest at the day of ovulation (Day 0) and decreased by about 50 % by Days 8-12, while in the isthmus it did not change during the estrous cycle. The proportion of Ki67-positive cells was highest at around the time of ovulation in both the ampulla and isthmus. All the Ki67-positive cells were PAX8-positive and FOXJ1-negative in both the ampulla and isthmus. These findings suggest that epithelial remodeling, which is regulated by differentiation and/or proliferation of secretory cells of the oviduct, provides the optimal environment for gamete transport, fertilization and embryonic development.

  16. Somatic Cells in Bulk Samples and Purchase Prices of Cow Milk

    Directory of Open Access Journals (Sweden)

    Jindřich Kvapilík

    2017-01-01

    Full Text Available There were calculated the somatic cell count (SCC 209 (36 – 468 103ml–1, the total count of microorganisms (TCM 25 103ml–1 (from 5 to 377, fat 3.84 % (from 3.23 to 4.46 and protein content 3.39 % (from 3.04 to 3.75 and milk freezing point (MFP –0.525 °C (from –0.534 to –0.395 of the 522 monthly bulk milk samples from 11 experimental stables during the period from 2012 to 2015. Residues of inhibitory substances were not detected in any sample. Milk sale reached 7,999 liters (l with fluctuating between 6,150 and 10,532 l per cow. This can be deduced from the regression coefficients that due to increase in the SCC by 100 103ml–1 the TCM increased by 2.9 to 4.2 103ml–1, the fat content decreased by 0.09 to 0.13 % and protein about 0.01 to 0.05 %. Influence of SCC, TCM and the fat and protein content calculated from monthly samples for individual stables can be estimated at –0.12 CZC, fluctuations between the stables at +0.46 to –0.84 CZC per l of milk. The increase in milk price by 0.17 CZC in the range of –0.92 to +0.92 CZC per l of milk corresponds to averages of indicators calculated from 522 samples.

  17. Significant improvement of pig cloning efficiency by treatment with LBH589 after somatic cell nuclear transfer.

    Science.gov (United States)

    Jin, Jun-Xue; Li, Suo; Gao, Qing-Shan; Hong, Yu; Jin, Long; Zhu, Hai-Ying; Yan, Chang-Guo; Kang, Jin-Dan; Yin, Xi-Jun

    2013-10-01

    The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  18. Direct Reprogramming of Adult Human Somatic Stem Cells Into Functional Neurons Using Sox2, Ascl1, and Neurog2

    Directory of Open Access Journals (Sweden)

    Jessica Alves de Medeiros Araújo

    2018-06-01

    Full Text Available Reprogramming of somatic cells into induced pluripotent stem cells (iPS or directly into cells from a different lineage, including neurons, has revolutionized research in regenerative medicine in recent years. Mesenchymal stem cells are good candidates for lineage reprogramming and autologous transplantation, since they can be easily isolated from accessible sources in adult humans, such as bone marrow and dental tissues. Here, we demonstrate that expression of the transcription factors (TFs SRY (sex determining region Y-box 2 (Sox2, Mammalian achaete-scute homolog 1 (Ascl1, or Neurogenin 2 (Neurog2 is sufficient for reprogramming human umbilical cord mesenchymal stem cells (hUCMSC into induced neurons (iNs. Furthermore, the combination of Sox2/Ascl1 or Sox2/Neurog2 is sufficient to reprogram up to 50% of transfected hUCMSCs into iNs showing electrical properties of mature neurons and establishing synaptic contacts with co-culture primary neurons. Finally, we show evidence supporting the notion that different combinations of TFs (Sox2/Ascl1 and Sox2/Neurog2 may induce multiple and overlapping neuronal phenotypes in lineage-reprogrammed iNs, suggesting that neuronal fate is determined by a combination of signals involving the TFs used for reprogramming but also the internal state of the converted cell. Altogether, the data presented here contribute to the advancement of techniques aiming at obtaining specific neuronal phenotypes from lineage-converted human somatic cells to treat neurological disorders.

  19. Cell-associated proteoheparan sulfate from bovine arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Schmidt, A.; Buddecke, E.

    1988-01-01

    Cell-associated proteoheparan sulfate has been isolated from bovine arterial smooth muscle cells preincubated with [ 35 S]sulfate or a combination of [ 3 H]glucosamine and [ 35 S]methionine. The purified proteoheparan sulfate had an apparent M r of 200,000 on calibrated Sepharose CL-2B columns. The glycosaminoglycan component (M r ∼30,000) was identified as heparan sulfate by its susceptibility to specific enzymatic and chemical degradation. After degradation of the proteoheparan sulfate by microbial heparitinase the resulting protein core had an apparent M r of 92,000 on SDS-polyacrylamide gels. Its mobility was similar in the absence and presence of reducing agents indicating that the protein core consists of a single polypeptide chain. Pulse-chase experiments revealed that about 40% of the cell layer-associated proteoheparan sulfate was released into the medium, while the remainder was internalized and converted to smaller species through a series of degradation steps. Initially there was a proteolytical cleavage of the protein core generating glycosaminoglycan peptide intermediates with polysaccharides chains similar in size to the original. The half-life of the native proteoheparan sulfate was found to be about 4 h

  20. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction.

    Science.gov (United States)

    Steeneveld, W; Vernooij, J C M; Hogeveen, H

    2015-06-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study was to investigate the effect of using sensor systems on measures of health and production in dairy herds. Data of 414 Dutch dairy farms with (n=152) and without (n=262) sensor systems were available. For these herds, information on milk production per cow, days to first service, first calving age, and somatic cell count (SCC) was provided for the years 2003 to 2013. Moreover, year of investment in sensor systems was available. For every farm year, we determined whether that year was before or after the year of investment in sensor systems on farms with an automatic milking system (AMS) or a conventional milking system (CMS), or whether it was a year on a farm that never invested in sensor systems. Separate statistical analyses were performed to determine the effect of sensor systems for mastitis detection (color, SCC, electrical conductivity, and lactate dehydrogenase sensors), estrus detection for dairy cows, estrus detection for young stock, and other sensor systems (weighing platform, rumination time sensor, fat and protein sensor, temperature sensor, milk temperature sensor, urea sensor, β-hydroxybutyrate sensor, and other sensor systems). The AMS farms had a higher average SCC (by 12,000 cells/mL) after sensor investment, and CMS farms with a mastitis detection system had a lower average SCC (by 10,000 cells/mL) in the years after sensor investment. Having sensor systems was associated with a higher average production per cow on AMS farms, and with a lower average production per cow on CMS farms in the years after investment. The most likely reason for this lower milk production after investment was that on 96% of CMS farms, the sensor system investment occurred

  1. Inhibition of Staphylococcus aureus Invasion into Bovine Mammary Epithelial Cells by Contact with Live Lactobacillus casei

    OpenAIRE

    Bouchard, Damien S.; Rault, Lucie; Berkova, Nadia; Le Loir, Yves; Even, Sergine

    2013-01-01

    Staphylococcus aureus is a major pathogen that is responsible for mastitis in dairy herds. S. aureus mastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability of S. aureus to invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability of Lactobacillus casei strains to prevent...

  2. Proteomic analysis of bovine blastocoel fluid and blastocyst cells

    DEFF Research Database (Denmark)

    Jensen, Pernille Linnert; Grøndahl, Marie Louise; Beck, Hans Christian

    2014-01-01

    by micromanipulation. From two independent replicates, 23 proteins were identified in the blastocoel fluid while 803 proteins were identified in the remaining cell material. The proteins were grouped into categories according to their gene ontology (GO) terms by which proteins involved in cell differentiation, cell...... proliferation, development, and reproduction could be derived. Proteins classified in these categories could be candidates for further functional studies to understand pluripotency and early mammalian development....

  3. Development capacity of pre- and postpubertal pig oocytes evaluated by somatic cell nuclear transfer and parthenogenetic activation

    DEFF Research Database (Denmark)

    Skovsgaard, Hanne; Li, Rong; Liu, Ying

    2013-01-01

    Most of the porcine oocytes used for in vitro studies are collected from gilts. Our aims were to study development capacity of gilt v. sow oocytes (pre- and postpubertal respectively) using 2 techniques illustrating development competence [parthenogenetic activation (PA) and somatic cell nuclear...... transfer (SCNT)], and to describe a simple method to select the most competent oocytes. Inside-ZP diameter of in vitro-matured gilt oocytes was measured (µm; small ≤110; medium >110; large ≥120). Gilt and sow oocytes were morphologically grouped as good (even cytoplasm, smooth cell membrane, visible...

  4. Effects of injectable trace mineral supplementation in lactating dairy cows with elevated somatic cell counts.

    Science.gov (United States)

    Ganda, E K; Bisinotto, R S; Vasquez, A K; Teixeira, A G V; Machado, V S; Foditsch, C; Bicalho, M; Lima, F S; Stephens, L; Gomes, M S; Dias, J M; Bicalho, R C

    2016-09-01

    Objectives of this clinical trial were to evaluate the effects of injectable trace mineral supplementation (ITMS) on somatic cell count (SCC), linear score (LS), milk yield, milk fat and protein contents, subclinical mastitis cure, and incidence of clinical mastitis in cows with elevated SCC. Holstein cows from a commercial dairy farm in New York were evaluated for subclinical mastitis, defined as SCC ≥200×10(3) cells/mL on the test day preceding enrollment. Cows with a history of treatment for clinical mastitis in the current lactation and those pregnant for more than 150d were not eligible for enrollment. Cows fitting inclusion criteria were randomly allocated to 1 of 2 treatment groups. Cows assigned to ITMS (n=306) received 1 subcutaneous injection containing zinc (300mg), manganese (50mg), selenium (25mg), and copper (75mg) at enrollment (d 0). Control cows (CTRL; n=314) received 1 subcutaneous injection of sterile saline solution. Following treatment, visual assessment of milk was performed daily, and cows with abnormal milk (i.e., presence of flakes, clots, or serous milk) were diagnosed with clinical mastitis (CM). Chronic clinical mastitis was defined as cows with 3 or more cases of CM. Milk yield, milk fat and protein contents, SCC, and LS were evaluated once monthly. Additionally, randomly selected animals were sampled to test serum concentrations of selected minerals on d0 and 30 (n=30 cows/treatment). Treatment did not affect serum concentrations of calcium, magnesium, phosphorus, potassium, copper, iron, manganese, selenium, and zinc on d30. Injectable supplementation with trace minerals did not improve overall cure of subclinical mastitis (CTRL=42.8 vs. ITMS=46.5%), although a tendency was observed in cows with 3 or more lactations (CTRL=27.1 vs. ITMS=40.0%). Supplementation did not reduce treatment incidence of CM (CTRL=48.2 vs. ITMS=41.7%); however, it tended to reduce the proportion of cows diagnosed with chronic CM (CTRL=16.9 vs. ITMS=12

  5. Invited review: effect of udder health management practices on herd somatic cell count.

    Science.gov (United States)

    Dufour, S; Fréchette, A; Barkema, H W; Mussell, A; Scholl, D T

    2011-02-01

    A systematic review of the scientific literature on relationships between management practices used on dairy farms and herd somatic cell count (SCC) was undertaken to distinguish those management practices that have been consistently shown to be associated with herd SCC from those lacking evidence of association. Relevant literature was identified using a combination of database searches (PubMed, Medline, CAB, Agricola, and Web of Science) and iterative screening of references. To be included in the review, a manuscript had to be published after 1979 in French, English, or Dutch; study design had to be other than case report or case series; herds studied had to be composed of ≥ 40 milking cows producing on average ≥ 7,000kg of milk in 305 d; interventions studied had to be management practices applied at the herd level and used as udder health control strategies; and SCC had to be measured using electronic cell counting methods. The 36 manuscripts selected were mainly observational cross-sectional studies; 8 manuscripts dealt exclusively with automatic milking systems and 4 with management of calves and heifers and its effect on SCC in early lactation heifers. Most practices having consistent associations with SCC were related to milking procedures: wearing gloves during milking, using automatic take-offs, using postmilking teat dipping, milking problem cows last, yearly inspection of the milking system, and use of a technique to keep cows standing following milking; all were consistently associated with lower herd SCC. Other practices associated with lower SCC were the use of a freestall system, sand bedding, cleaning the calving pen after each calving, surveillance of dry-cow udders for mastitis, use of blanket dry-cow therapy, parenteral selenium supplementation, udder hair management, and frequent use of the California Mastitis Test. Regarding SCC of heifers, most of the consistent associations reported were related to interventions made during the

  6. Milk losses associated with somatic cell counts by parity and stage of lactation.

    Science.gov (United States)

    Gonçalves, Juliano L; Cue, Roger I; Botaro, Bruno G; Horst, José A; Valloto, Altair A; Santos, Marcos V

    2018-05-01

    The reduction of milk production caused by subclinical mastitis in dairy cows was evaluated through the regression of test-day milk yield on log-transformed somatic cell counts (LnSCC). Official test-day records (n = 1,688,054) of Holstein cows (n = 87,695) were obtained from 719 herds from January 2010 to December 2015. Editing was performed to ensure both reliability and consistency for the statistical analysis, and the final data set comprised 232,937 test-day records from 31,692 Holstein cows in 243 herds. A segmented regression was fitted to estimate the cutoff point in the LnSCC scale where milk yield started to be affected by mastitis. The statistical model used to explain daily milk yield included the effect of herd as a random effect and days in milk and LnSCC as fixed effects regressions, and analyses were performed by parity and stage of lactation. The cutoff point where milk yield starts to be affected by changes in LnSCC was estimated to be around 2.52 (the average of all estimates of approximately 12,400 cells/mL) for Holsteins cows from Brazilian herds. For first-lactation cows, milk losses per unit increase of LnSCC had estimates around 0.68 kg/d in the beginning of the lactation [5 to 19 d in milk (DIM)], 0.55 kg/d in mid-lactation (110 to 124 DIM), and 0.97 kg/d at the end of the lactation (289 to 304 DIM). For second-lactation cows, milk losses per unit increase of LnSCC had estimates around 1.47 kg/d in the beginning of the lactation (5 to 19 DIM), 1.09 kg/d in mid-lactation (110 to 124 DIM), and 2.45 kg/d at the end of the lactation (289 to 304 DIM). For third-lactation cows, milk losses per unit increase of LnSCC had estimates around 2.22 kg/d in the beginning of the lactation (5 to 19 DIM), 1.13 kg/d in mid-lactation (140 to 154 DIM), and 2.65 kg/d at the end of the lactation (289 to 304 DIM). Daily milk losses caused by increased LnSCC were dependent on parity and stage of lactation, and these factors should be considered when estimating

  7. Effects of trehalose supplementation on cell viability and oxidative stress variables in frozen-thawed bovine calf testicular tissue.

    Science.gov (United States)

    Zhang, Xiao-Gang; Wang, Yan-Hua; Han, Cong; Hu, Shan; Wang, Li-Qiang; Hu, Jian-Hong

    2015-06-01

    Trehalose is widely used for cryopreservation of various cells and tissues. Until now, the effect of trehalose supplementation on cell viability and antioxidant enzyme activity in frozen-thawed bovine calf testicular tissue remains unexplored. The objective of the present study was to compare the effect of varying doses of trehalose in cryomedia on cell viability and key antioxidant enzymes activities in frozen-thawed bovine calf testicular tissue. Bovine calf testicular tissue samples were collected and cryopreserved in the cryomedias containing varying doses (0, 5, 10, 15, 20 and 25%; v/v) of trehalose, respectively. Cell viability, total antioxidant capacity (T-AOC) activity, catalase (CAT) activity, superoxide dismutase (SOD) activity, glutathione (GSH) content and malondialdehyde (MDA) content were measured and analyzed. The results showed that cell viability, T-AOC activity, SOD activity, CAT activity and GSH content of frozen-thawed bovine calf testicular tissue was decreased compared with that of fresh group (Pcell viability and antioxidant enzyme activity (SOD and CAT) among frozen-thawed groups (P0.05). In conclusion, the cryomedia added 15% trehalose reduced the oxidative stress and improved the cryoprotective effect of bovine calf testicular tissue. Further studies are required to obtain more concrete results on the determination of antioxidant capacity of trehalose in frozen-thawed bovine calf testicular tissue. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Formation of nucleoli in interspecies nuclear transfer embryos derived from bovine, porcine, and rabbit oocytes and nuclear donor cells of various species.

    Science.gov (United States)

    Lagutina, Irina; Zakhartchenko, Valeri; Fulka, Helena; Colleoni, Silvia; Wolf, Eckhard; Fulka, Josef; Lazzari, Giovanna; Galli, Cesare

    2011-04-01

    The most successful development of interspecies somatic cell nuclear transfer (iSCNT) embryos has been achieved in closely related species. The analyses of embryonic gene activity in iSCNT embryos of different species combinations have revealed the existence of significant aberrations in expression of housekeeping genes and genes dependent on the major embryonic genome activation (EGA). However, there are many studies with successful blastocyst (BL) development of iSCNT embryos derived from donor cells and oocytes of animal species with distant taxonomical relations (inter-family/inter-class) that should indicate proper EGA at least in terms of RNA polymerase I activation, nucleoli formation, and activation of genes engaged in morula and BL formation. We investigated the ability of bovine, porcine, and rabbit oocytes to activate embryonic nucleoli formation in the nuclei of somatic cells of different mammalian species. In iSCNT embryos, nucleoli precursor bodies originate from the oocyte, while most proteins engaged in the formation of mature nucleoli should be transcribed from genes de novo in the donor nucleus at the time of EGA. Thus, the success of nucleoli formation depends on species compatibility of many components of this complex process. We demonstrate that the time and cell stage of nucleoli formation are under the control of recipient ooplasm. Oocytes of the studied species possess different abilities to support nucleoli formation. Formation of nucleoli, which is a complex but small part of the whole process of EGA, is essential but not absolutely sufficient for the development of iSCNT embryos to the morula and BL stages.

  9. Genetic parameters for production traits and somatic cell score of the ...

    African Journals Online (AJOL)

    Paula Bouwer

    2013-05-26

    May 26, 2013 ... of the other South African dairy breeds, based on the same model. ... Keywords: Genetic evaluation, genetic parameters, milk, protein, butterfat, somatic ... By means of performance measurements, the breeding values (genetic value) ... In comparison with the 63% of dairy cattle that are tested in other ICAR ...

  10. A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis.

    Science.gov (United States)

    Sharma, Neelesh; Huynh, Do Luong; Kim, Sung Woo; Ghosh, Mrinmoy; Sodhi, Simrinder Singh; Singh, Amit Kumar; Kim, Nam Eun; Lee, Sung Jin; Hussain, Kafil; Oh, Sung Jong; Jeong, Dong Kee

    2017-11-28

    The antibacterial and anti-inflammatory properties of lactoferricin have been ascribed to its ability to sequester essential iron. The objective of the study was to clone bovine lactoferricin ( LFcinB ) gene into PiggyBac Transposon vector, expression study in the bovine mammary epithelial stem cells (bMESCs) and also to determine the antimicrobial property of recombinant LFcinB against bovine mastitis-causing organisms. The PiggyBac-LFcinB was transfected into bMESCs by electroporation and a three fold of LFcinB secretion was observed in the transfected bMESCs medium by ELISA assay. Furthermore, the assessment of antimicrobial activity against mastitis causing pathogens Staphylococcus aureus and Escherichia coli demonstrated convincing evidence to prove strong antibacterial activity of LFcinB with 14.0±1.0 mm and 18.0±1.5 mm zone of inhibition against both organisms, respectively. The present study provides the convincing evidence to suggest the potential of PiggyBac transposon system to transfer antibacterial peptide into bMESCs or cow mammary gland and also pave the way to use bovine mammary gland as the bioreactors. Simultaneously, it also suggest toward commercial utilization of LFcinB bioreactor system in pharmaceutical industry.

  11. Effect of Somatic Cell Types and Culture Medium on in vitro Maturation, Fertilization and Early Development Capability of Buffalo Oocytes

    Directory of Open Access Journals (Sweden)

    H. Jamil*, H. A. Samad, N. Rehman, Z. I. Qureshi and L. A. Lodhi

    2011-04-01

    Full Text Available This study was designed to evaluate the efficacy of different somatic cell types and media in supporting in vitro maturation (IVM, in vitro fertilization (IVF and early embryonic development competence of buffalo follicular oocytes. Cumulus oocyte complexes were collected for maturation from follicles (>6mm of buffalo ovaries collected at the local abattoir. Oocytes were co-cultured in tissue culture medium (TCM-199 with either granulosa cells, cumulus cells, or buffalo oviductal epithelial cells (BOEC @ 3x106 cells/ml or in TCM-199 without helper cells (control at 39°C and 5%CO2 in humidified air. Fresh semen was prepared in modified Ca++ free Tyrode medium. Fertilization was carried out in four types of media: i Tyrode lactate albumin pyruvate (TALP, ii TALP+BOEC, iii modified Ca++ free Tyrode and iv modified Ca++ free Tyrode+BOEC. Fertilized oocytes were cultured for early embryonic development in TCM-199 with and without BOEC. Higher maturation rates were observed in the granulosa (84.24% and cumulus cells (83.44% than BOEC co culture system (73.37%. Highest fertilization rate was obtained in modified Ca++ free Tyrode with BOEC co culture (70.42%, followed by modified Ca++ free Tyrode alone (63.77%, TALP with BOEC (36.92% and TALP alone (10.94%. Development of early embryos (8-cell stage improved in TCM-199 with BOEC co culture than TCM-199 alone. From the results of this study, it can be concluded that addition of somatic cells (granulosa cells, cumulus cells results in higher maturation rates of buffalo follicular oocytes than BOEC co culture system, while fertilization rate improved in modified Ca++ free Tyrode with and without BOEC. Addition of BOEC to TCM-199 improved the developmental capacity of early embryo.

  12. In Vitro toxicological effects of Fumonisin B1 and Beauvericin on bovine granulosa cells

    Directory of Open Access Journals (Sweden)

    Marco Albonico

    2015-07-01

    Full Text Available Fumonisin B1 (FB1 and beauvericin (BEA are fusariotoxins found to co-exist in food and feed commodities. The aim of this study is to evaluate the individual and combined effects of FB1 and BEA on bovine granulosa cell proliferation and steroid production. Granulosa cells (GC from small bovine follicles (1-5 mm were cultured for 48 hours in 10% fetal bovine serum followed by 48 hours in a serum-free medium containing 500 ng/ml of testosterone (as an estradiol precursor, 30 ng/ml of FSH and 30 ng/ml of IGF-I with and without FB1 (3 µM and BEA (3 µM. At the end of the experiment, the numbers of GC were determined using a Coulter counter (Beckman Coulter, USA and concentrations of progesterone and estradiol in the culture medium were determined by radioimmunoassay. FB1 and BEA, both individually and in combination, showed an inhibitory effect (P 0.05 on estradiol and progesterone production, whereas BEA (3 µM, both alone and in combination with FB1 (3 µM, was found to decrease (P < 0.001 the production of both steroids drastically. In conclusion, this in vitro study indicates that FB1 and BEA, both individually and in combination, may affect GC proliferation to different extents and shows the drastic inhibitory effects of BEA on steroid production.

  13. Vitamin K2 improves proliferation and migration of bovine skeletal muscle cells in vitro.

    Science.gov (United States)

    Rønning, Sissel Beate; Pedersen, Mona Elisabeth; Berg, Ragnhild Stenberg; Kirkhus, Bente; Rødbotten, Rune

    2018-01-01

    Skeletal muscle function is highly dependent on the ability to regenerate, however, during ageing or disease, the proliferative capacity is reduced, leading to loss of muscle function. We have previously demonstrated the presence of vitamin K2 in bovine skeletal muscles, but whether vitamin K has a role in muscle regulation and function is unknown. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to assess a potential effect of vitamin K2 (MK-4) during myogenesis of muscle cells. Cell viability experiments demonstrate that the amount of ATP produced by the cells was unchanged when MK-4 was added, indicating viable cells. Cytotoxicity analysis show that MK-4 reduced the lactate dehydrogenase (LDH) released into the media, suggesting that MK-4 was beneficial to the muscle cells. Cell migration, proliferation and differentiation was characterised after MK-4 incubation using wound scratch analysis, immunocytochemistry and real-time PCR analysis. Adding MK-4 to the cells led to an increased muscle proliferation, increased gene expression of the myogenic transcription factor myod as well as increased cell migration. In addition, we observed a reduction in the fusion index and relative gene expression of muscle differentiation markers, with fewer complex myotubes formed in MK-4 stimulated cells compared to control cells, indicating that the MK-4 plays a significant role during the early phases of muscle proliferation. Likewise, we see the same pattern for the relative gene expression of collagen 1A, showing increased gene expression in proliferating cells, and reduced expression in differentiating cells. Our results also suggest that MK-4 incubation affect low density lipoprotein receptor-related protein 1 (LRP1) and the low-density lipoprotein receptor (LDLR) with a peak in gene expression after 45 min of MK-4 incubation. Altogether, our experiments show that MK-4 has a positive effect on muscle cell migration and

  14. Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells.

    Directory of Open Access Journals (Sweden)

    Ding Zhang

    Full Text Available Cadmium ions (Cd2+ have been reported to accumulate in bovine tissues, although Cd2+ cytotoxicity has not been investigated thoroughly in this species. Zinc ions (Zn2+ have been shown to antagonize the toxic effects of heavy metals such as Cd2+ in some systems. The present study investigated Cd2+ cytotoxicity in Madin-Darby bovine kidney (MDBK epithelial cells, and explored whether this was modified by Zn2+. Exposure to Cd2+ led to a dose- and time-dependent increase in apoptotic cell death, with increased intracellular levels of reactive oxygen species and mitochondrial damage. Zn2+ supplementation alleviated Cd2+-induced cytotoxicity and this protective effect was more obvious when cells were exposed to a lower concentration of Cd2+ (10 μM, as compared to 50 μM Cd2+. This indicated that high levels of Cd2+ accumulation might induce irreversible damage in bovine kidney cells. Metallothioneins (MTs are metal-binding proteins that play an essential role in heavy metal ion detoxification. We found that co-exposure to Zn2+ and Cd2+ synergistically enhanced RNA and protein expression of MT-1, MT-2, and the metal-regulatory transcription factor 1 in MDBK cells. Notably, addition of Zn2+ reduced the amounts of cytosolic Cd2+ detected following MDBK exposure to 10 μM Cd2+. These findings revealed a protective role of Zn2+ in counteracting Cd2+ uptake and toxicity in MDBK cells, indicating that this approach may provide a means to protect livestock from excessive Cd2+ accumulation.

  15. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Xudong Sun

    2017-06-01

    Full Text Available Background/Aims: Subacute ruminal acidosis (SARA is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Methods: Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor cultured in different pH medium (pH 7.2 or 5.5. qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. Results: The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2 and acidic (pH=5.5 medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α, interleukin 6 (IL-6 and interleukin 1 beta (IL-1β, thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. Conclusion: The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway.

  16. Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture.

    Science.gov (United States)

    Schmaltz-Panneau, Barbara; Cordova, Amanda; Dhorne-Pollet, Sophie; Hennequet-Antier, Christelle; Uzbekova, Sveltlana; Martinot, Emmanuelle; Doret, Sarah; Martin, Patrice; Mermillod, Pascal; Locatelli, Yann

    2014-10-01

    In mammals, the oviduct may participate to the regulation of early embryo development. In vitro co-culture of early bovine embryos with bovine oviduct epithelial cells (BOEC) has been largely used to mimic the maternal environment. However, the mechanisms of BOEC action have not been clearly elucidated yet. The aim of this study was to determine the response of BOEC cultures to the presence of developing bovine embryos. A 21,581-element bovine oligonucleotide array was used compare the gene expression profiles of confluent BOEC cultured for 8 days with or without embryos. This study revealed 34 differentially expressed genes (DEG). Of these 34 genes, IFI6, ISG15, MX1, IFI27, IFI44, RSAD2, IFITM1, EPSTI1, USP18, IFIT5, and STAT1 expression increased to the greatest extent due to the presence of embryos with a major impact on antiviral and immune response. Among the mRNAs at least 25 are already described as induced by interferons. In addition, transcript levels of new candidate genes involved in the regulation of transcription, modulation of the maternal immune system and endometrial remodeling were found to be increased. We selected 7 genes and confirmed their differential expression by quantitative RT-PCR. The immunofluorescence imaging of cellular localization of STAT1 protein in BOEC showed a nuclear translocation in the presence of embryos, suggesting the activation of interferon signaling pathway. This first systematic study of BOEC transcriptome changes in response to the presence of embryos in cattle provides some evidences that these cells are able to adapt their transcriptomic profile in response to embryo signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Bovine ocular squamous cell carcinoma: UV sensitivity in lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, M.F.; Jennings, P.A.; Hughes, D.J. (Queensland Univ., Brisbane (Australia))

    1982-05-01

    Increased sensitivity to UV light has been demonstrated in Phytohaemagglutinin stimulated lymphocytes from normal and tumour-bearing Hereford cattle when compared to lymphocytes from other breeds. Trypan blue exclusion and inhibition of DNA synthesis were used to determine cell viability. The results obtained from time course and radiation dose experiments demonstrate biphasic survival kinetics. This is indicative of at least two separate cell populations, exhibiting differential sensitivity to UV. The increased sensitivity to UV observed in Herefords may reflect a general sensitivity to UV or alternatively a different cellular constitution in the mitogen stimulated cultures. DNA repair synthesis, measured in the presence of hydroxyurea, was of similar levels in cell cultures from Herefords and one of the control breeds.

  18. Bovine ocular squamous cell carcinoma: UV sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Lavin, M.F.; Jennings, P.A.; Hughes, D.J.

    1982-01-01

    Increased sensitivity to UV light has been demonstrated in Phytohaemagglutinin stimulated lymphocytes from normal and tumour-bearing Hereford cattle when compared to lymphocytes from other breeds. Trypan blue exclusion and inhibition of DNA synthesis were used to determine cell viability. The results obtained from time course and radiation dose experiments demonstrate biphasic survival kinetics. This is indicative of at least two separate cell populations, exhibiting differential sensitivity to UV. The increased sensitivity to UV observed in Herefords may reflect a general sensitivity to UV or alternatively a different cellular constitution in the mitogen stimulated cultures. DNA repair synthesis, measured in the presence of hydroxyurea, was of similar levels in cell cultures from Herefords and one of the control breeds. (author)

  19. Sulfated glycosaminoglycans in cultured endothelial cells from capillaries and large vessels of human and bovine origin

    International Nuclear Information System (INIS)

    Bar, R.S.; Dake, B.L.; Spanheimer, R.G.

    1985-01-01

    The ( 35 S)glycosaminoglycans (( 35 S)GAG) synthesized by capillary endothelial cells were analyzed and compared to GAG synthesized by endothelial cells cultured from 4 larger vessels. Two separate cultures of endothelial cells were established from bovine fat capillaries and from 4 larger vessels of human origin (umbilical vein) and bovine origin (pulmonary artery, pulmonary vein and aorta). After incubation with 35 SO 4 for 72 h, the ( 35 S)glycosaminoglycans (GAG) composition of the media, pericellular and cellular fractions of each culture were determined by selective degradation with nitrous acid, chondroitinase ABC and chondroitinase AC. All endothelial cells produced large amounts of ( 35 S)GAG with increased proportions of heparinoids (heparan sulfate and heparin) in the cellular and pericellular fractions. Each culture showed a distinct distribution of ( 35 S)GAG in the media, pericellular and cellular fractions with several specific differences found among the 5 cultures. The differences in GAG content were confirmed in a second group of separate cultures from each of the 5 vessels indicating that, although having several features of GAG metabolism in common, each endothelial cell culture demonstrated a characteristic complement of synthesized, secreted and cell surface-sulfated glycosaminoglycans. (author)

  20. Sulfated glycosaminoglycans in cultured endothelial cells from capillaries and large vessels of human and bovine origin

    Energy Technology Data Exchange (ETDEWEB)

    Bar, R.S.; Dake, B.L.; Spanheimer, R.G.

    1985-07-01

    The (/sup 35/S)glycosaminoglycans ((/sup 35/S)GAG) synthesized by capillary endothelial cells were analyzed and compared to GAG synthesized by endothelial cells cultured from 4 larger vessels. Two separate cultures of endothelial cells were established from bovine fat capillaries and from 4 larger vessels of human origin (umbilical vein) and bovine origin (pulmonary artery, pulmonary vein and aorta). After incubation with /sup 35/SO/sub 4/ for 72 h, the (/sup 35/S)glycosaminoglycans (GAG) composition of the media, pericellular and cellular fractions of each culture were determined by selective degradation with nitrous acid, chondroitinase ABC and chondroitinase AC. All endothelial cells produced large amounts of (/sup 35/S)GAG with increased proportions of heparinoids (heparan sulfate and heparin) in the cellular and pericellular fractions. Each culture showed a distinct distribution of (/sup 35/S)GAG in the media, pericellular and cellular fractions with several specific differences found among the 5 cultures. The differences in GAG content were confirmed in a second group of separate cultures from each of the 5 vessels indicating that, although having several features of GAG metabolism in common, each endothelial cell culture demonstrated a characteristic complement of synthesized, secreted and cell surface-sulfated glycosaminoglycans. (author). 16 refs.

  1. Endotoxin induction of an inhibitor of plasminogen activator in bovine pulmonary artery endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-05

    The effects of bacterial lipopolysaccharide (endotoxin) on the fibrinolytic activity of bovine pulmonary artery endothelial cells were examined. Endotoxin suppressed the net fibrinolytic activity of cell extracts and conditioned media in a dose-dependent manner. The effects of endotoxin required at least 6 h for expression. Cell extracts and conditioned media contained a 44-kDa urokinase-like plasminogen activator. Media also contained multiple plasminogen activators with molecular masses of 65-75 and 80-100 kDa. Plasminogen activators in extracts and media were unchanged by treatment of cells with endotoxin. Diisopropyl fluorophosphate (DFP)-abolished fibrinolytic activity of extracts and conditioned media. DFP-treated samples from endotoxin-treated but not untreated cells inhibited urokinase and tissue plasminogen activator, but not plasmin. Inhibitory activity was lost by incubation at pH 3 or heating to 56/sup 0/C for 10 min. These treatments did not affect inhibitory activity of fetal bovine serum. Incubation of /sup 125/I-urokinase with DFP-treated medium from endotoxin-treated cells produced an inactive complex with an apparent molecular mass of 80-85 kDa.

  2. Bradykinin B2 receptor-mediated phosphoinositide hydrolysis in bovine cultured tracheal smooth muscle cells.

    OpenAIRE

    Marsh, K. A.; Hill, S. J.

    1992-01-01

    1. Bovine tracheal smooth muscle cells were established in culture to study agonist-induced phosphoinositide (PI) hydrolysis in this tissue. 2. Bradykinin (0.1 nM-10 microM) evoked a concentration-dependent increase (log EC50 (M) = -9.4 +/- 0.2; n = 8) in the accumulation of total [3H]-inositol phosphates in cultured tracheal smooth muscle cells whereas the selective B1 receptor agonist des-Arg9-bradykinin (10 microM) was significantly less effective (16% of bradykinin maximal response; relat...

  3. TGF-β1 resulting in differential microRNA expression in bovine granulosa cells.

    Science.gov (United States)

    Xu, Yefen; Niu, Jiaqiang; Xi, Guangying; Niu, Xuezhi; Wang, Yuheng; Guo, Ming; Yangzong, Qiangba; Yao, Yilong; Sizhu, Suo Lang; Tian, Jianhui

    2018-07-15

    To explore the expression profile of the cellular miRNAs in bovine ovarian granulosa cells responding to transforming growth factor-β1 (TGF-β1), the effect of TGF-β1 on cell proliferation was firstly investigated by CCK-8 method and the results showed that there was a significant inhibitory effect on bovine granulosa cell proliferation treated with 5/10 ng/mL human recombinant TGF-β1 for 24 h compared to the control (P cells stimulated with or without 10 ng/mL human recombinant TGF-β1. A total of 13,257,248 and 138,726,391 clean reads per library were obtained from TGF-β1 and control groups, respectively. There were 498 and 499 bovine-specific exist miRNAs (exist miRNAs), 627 and 570 conserved known miRNAs (known miRNAs), and 593 and 585 predicted novel miRNAs in TGF-β1 and control groups, respectively. A total of 78 miRNAs with significant differential expression, including 39 up-regulated miRNAs and 39 down-regulated miRNAs were identified in the TGF-β1 group compared with the control. Real-time quantitative PCR analyses of bta-miR-106a and bta-miR-1434-5p showed that their up-expressions were interrupted by SB431542, an inhibitor that blocks TGFβ1/Smad signaling, which supported the sequencing data. GO analysis showed involvement of the predicted genes of the differentially expressed miRNAs in a broad spectrum of cell biological processes, cell components, and molecular functions. KEGG pathway analysis of the predicted miRNA targets further indicated that these differentially expressed miRNAs are involved in various signaling pathways, such as Wnt, MAPK, and TGF-β signaling, which might be involved in follicular development. These results provide valuable information on the composition, expression, and function of miRNAs in bovine granulosa cells responding to TGF-β1, and will aid in understanding the molecular mechanisms of TGF-β1 in granulosa cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. An integrated inspection of the somatic mutations in a lung squamous cell carcinoma using next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Lucy F Stead

    Full Text Available Squamous cell carcinoma (SCC of the lung kills over 350,000 people annually worldwide, and is the main lung cancer histotype with no targeted treatments. High-coverage whole-genome sequencing of the other main subtypes, small-cell and adenocarcinoma, gave insights into carcinogenic mechanisms and disease etiology. The genomic complexity within the lung SCC subtype, as revealed by The Cancer Genome Atlas, means this subtype is likely to benefit from a more integrated approach in which the transcriptional consequences of somatic mutations are simultaneously inspected. Here we present such an approach: the integrated analysis of deep sequencing data from both the whole genome and whole transcriptome (coding and non-coding of LUDLU-1, a SCC lung cell line. Our results show that LUDLU-1 lacks the mutational signature that has been previously associated with tobacco exposure in other lung cancer subtypes, and suggests that DNA-repair efficiency is adversely affected; LUDLU-1 contains somatic mutations in TP53 and BRCA2, allelic imbalance in the expression of two cancer-associated BRCA1 germline polymorphisms and reduced transcription of a potentially endogenous PARP2 inhibitor. Functional assays were performed and compared with a control lung cancer cell line. LUDLU-1 did not exhibit radiosensitisation or an increase in sensitivity to PARP inhibitors. However, LUDLU-1 did exhibit small but significant differences with respect to cisplatin sensitivity. Our research shows how integrated analyses of high-throughput data can generate hypotheses to be tested in the lab.

  5. Designing bovine T cell vaccines via reverse immunology

    DEFF Research Database (Denmark)

    Nene, Vishvanath; Svitek, Nicholas; Toye, Philip

    2012-01-01

    T cell responses contribute to immunity against many intracellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymph...

  6. Designing bovine T-cell vaccines via reverse immunology

    Science.gov (United States)

    T-cell responses contribute to immunity against many intra-cellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymphop...

  7. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    OpenAIRE

    Li, Robert W; Li, CongJun

    2006-01-01

    Abstract Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Dis...

  8. mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging.

    Science.gov (United States)

    Menendez, Javier A; Vellon, Luciano; Oliveras-Ferraros, Cristina; Cufí, Sílvia; Vazquez-Martin, Alejandro

    2011-11-01

    Molecular controllers of the number and function of tissue stem cells may share common regulatory pathways for the nuclear reprogramming of somatic cells to become induced Pluripotent Stem Cells (iPSCs). If this hypothesis is true, testing the ability of longevity-promoting chemicals to improve reprogramming efficiency may provide a proof-of-concept validation tool for pivotal housekeeping pathways that limit the numerical and/or functional decline of adult stem cells. Reprogramming is a slow, stochastic process due to the complex and apparently unrelated cellular processes that are involved. First, forced expression of the Yamanaka cocktail of stemness factors, OSKM, is a stressful process that activates apoptosis and cellular senescence, which are the two primary barriers to cancer development and somatic reprogramming. Second, the a priori energetic infrastructure of somatic cells appears to be a crucial stochastic feature for optimal successful routing to pluripotency. If longevity-promoting compounds can ablate the drivers and effectors of cellular senescence while concurrently enhancing a bioenergetic shift from somatic oxidative mitochondria toward an alternative ATP-generating glycolytic metabotype, they could maximize the efficiency of somatic reprogramming to pluripotency. Support for this hypothesis is evidenced by recent findings that well-characterized mTOR inhibitors and autophagy activators (e.g., PP242, rapamycin and resveratrol) notably improve the speed and efficiency of iPSC generation. This article reviews the existing research evidence that the most established mTOR inhibitors can notably decelerate the cellular senescence that is imposed by DNA damage-like responses, which are somewhat equivalent to the responses caused by reprogramming factors. These data suggest that fine-tuning mTOR signaling can impact mitochondrial dynamics to segregate mitochondria that are destined for clearance through autophagy, which results in the loss of

  9. Associations of dairy cow behavior, barn hygiene, cow hygiene, and risk of elevated somatic cell count.

    Science.gov (United States)

    Devries, T J; Aarnoudse, M G; Barkema, H W; Leslie, K E; von Keyserlingk, M A G

    2012-10-01

    Poor dairy cow hygiene has been consistently associated with elevated somatic cell count (SCC) and the risk of subclinical mastitis. The objective of this study was to determine the associations between dairy cow standing and lying behavior, barn hygiene, cow hygiene, and the risk of experiencing elevated SCC. Lactating Holstein dairy cows (n=69; 86 ± 51 DIM; parity: 2.0 ± 1.2; means ± SD), kept in 1 of 2 groups, were monitored over a 4-mo period. Each group contained 61 ± 1 (mean ± SD) cows over the study period; complete data were obtained from 37 and 32 animals within each respective group. Cows were housed in a sand-bedded, freestall barn with 2 symmetrical pens, each with a free cow traffic automatic milking system. To vary barn hygiene, in 4 consecutive 28-d periods, alley manure scrapers in each of the 2 pens were randomly assigned to frequencies of operation of 3, 6, 12, and 24 times per day. During the last 7 d of each period, cow hygiene (upper leg/flank, lower legs, and udder; scale of 1 = very clean to 4 = very dirty) and stall hygiene (number of 0.15×0.15-m squares contaminated with manure in a 1.20×1.65-m grid) were recorded. Standing and lying behavior of the cows were collected during those days using data loggers. Individual-cow SCC was recorded at the beginning and end of each 28-d period. Elevated SCC was used as an indicator of subclinical mastitis; incidence of elevated SCC was defined as having a SCC >200,000 cells/mL at the end of each 28-d period, when SCC was <100,000 cells/mL at the beginning of the period. Less frequent scraping of the barn alleys was associated with cows having poorer hygiene. Poor udder hygiene was associated with poor stall hygiene. Longer lying duration was associated with poor hygiene of the upper legs/flank and udder. Greater premilking standing duration was associated with poor udder hygiene and decreased frequency of lying bouts was associated with poor hygiene of the lower legs. Higher milk yield was

  10. Spontaneously immortalised bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li Qianqian

    2010-10-01

    Full Text Available Abstract Background Spontaneous immortalisation of cultured mammary epithelial cells (MECs is an extremely rare event, and the molecular mechanism behind spontaneous immortalisation of MECs is unclear. Here, we report the establishment of a spontaneously immortalised bovine mammary epithelial cell line (BME65Cs and the changes in gene expression associated with BME65Cs cells. Results BME65Cs cells maintain the general characteristics of normal mammary epithelial cells in morphology, karyotype and immunohistochemistry, and are accompanied by the activation of endogenous bTERT (bovine Telomerase Reverse Transcriptase and stabilisation of the telomere. Currently, BME65Cs cells have been passed for more than 220 generations, and these cells exhibit non-malignant transformation. The expression of multiple genes was investigated in BME65Cs cells, senescent BMECs (bovine MECs cells, early passage BMECs cells and MCF-7 cells (a human breast cancer cell line. In comparison with early passage BMECs cells, the expression of senescence-relevant apoptosis-related gene were significantly changed in BME65Cs cells. P16INK4a was downregulated, p53 was low expressed and Bax/Bcl-2 ratio was reversed. Moreover, a slight upregulation of the oncogene c-Myc, along with an undetectable level of breast tumor-related gene Bag-1 and TRPS-1, was observed in BME65Cs cells while these genes are all highly expressed in MCF-7. In addition, DNMT1 is upregulated in BME65Cs. These results suggest that the inhibition of both senescence and mitochondrial apoptosis signalling pathways contribute to the immortality of BME65Cs cells. The expression of p53 and p16INK4a in BME65Cs was altered in the pattern of down-regulation but not "loss", suggesting that this spontaneous immortalization is possibly initiated by other mechanism rather than gene mutation of p53 or p16INK4a. Conclusions Spontaneously immortalised BME65Cs cells maintain many characteristics of normal BMEC cells and

  11. Astaxanthin increases progesterone production in cultured bovine luteal cells.

    Science.gov (United States)

    Kamada, Hachiro; Akagi, Satoshi; Watanabe, Shinya

    2017-06-29

    Although astaxanthin (AST) is known to be a strong antioxidant, its effects on reproductive function in domestic animals have not yet been elucidated in detail. Therefore, we investigated the effects of AST on luteal cells, which produce progesterone (P4), an important hormone for maintaining pregnancy. Luteal cells were prepared by collagenase dispersion of the corpus luteum (CL). The addition of racemic AST at a low concentration (production than RR-AST. When 1 mg/kg·body weight of SS-AST derived from green algae was fed to cows for 2 weeks, its concentration in blood plasma was 10.9 nM on average, which was sufficient to expect an in vitro effect on the production of P4 in cows. These results suggested the potential of SS-AST supplements for cows to elevate luteal function.

  12. Body-weight and chromosome aberrations induced by X-rays in somatic cells of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Marco, A. de; Belloni, M.P.

    1976-01-01

    Body-weight has been shown to influence the final expression of genetic damage by X-rays in Drosophila melanogaster. If larvae of Drosophila were raised up to the third instar in media containing different amounts of the same nutrient and in different conditions of crowding a positive correlation was observed between body-weight and frequency of chromosome aberrations induced by a given dose of X-rays in the somatic cells of their nerve ganglia. This effect, present in both sexes, is most plausibly attributed to a different capacity of big and small larvae for repairing radiation damage. (orig.) [de

  13. Evaluation of the recombination in somatic cells induced by radiation in different stages of Drosophila larval development

    International Nuclear Information System (INIS)

    Cruces, M.P.; Morales R, P.

    1997-01-01

    The mitotic recombination can happen spontaneously and its frequency is very low, however the recombination rate of a cell can be increased by the exposure to agents which cause damage to DNA. This type of agents are knew commonly as recombinogens. The ionizing radiation and a numerous chemical agents can be mentioned (Vogel, 1992). The objective of this work is to determine if the mutation/recombination rate induced by gamma rays varies with the development stage. In order to realize this investigation it was used the mutation and somatic recombination test of Drosophila wing (Graf and col. 1984). The mwh/ mwh and flr 3 /TM3, Ser stocks were used. (Author)

  14. Effects of concanavalin A on the progesterone production by bovine steroidogenic luteal cells in vitro.

    Science.gov (United States)

    Destro, F C; Martin, I; Landim-Alvarenga, Fdc; Ferreira, Jcp; Pate, J L

    2016-10-01

    The aim of this study was to evaluate the effects of concanavalin A (CONA) on the progesterone (P4) production by bovine steroidogenic luteal cells (LCs) in vitro. Luteal cells were collected during the mid-luteal stage (at 10-12 days following ovulation) and processed in the laboratory. Luteal cells were grown for 7 days in a humid atmosphere with 5% CO2 , with or without 10% foetal bovine serum, and were subjected to the following treatments: control: no treatment; CONA (10 μg/ml); LH (100 μg/ml); CONA + LH; LH (100 μg/ml) + prostaglandin F2α (PGF2α) (10 ng/ml); CONA + LH + PGF2α. Samples of the culture media were collected on days 1 (D1) and 7 (D7) for P4 quantification. The cells were counted on D7 of culture. Differences between treatments were considered statistically significant at p < .05. Culture in the presence of CONA decreased the P4-secreting capacity of LCs on D7 of culture, particularly in the absence of serum. The cell numbers did not change between treatments. © 2016 Blackwell Verlag GmbH.

  15. Apoptotic effects of bovine apo-lactoferrin on HeLa tumor cells.

    Science.gov (United States)

    Luzi, Carla; Brisdelli, Fabrizia; Iorio, Roberto; Bozzi, Argante; Carnicelli, Veronica; Di Giulio, Antonio; Lizzi, Anna Rita

    2017-01-01

    Lactoferrin (Lf), a cationic iron-binding glycoprotein of 80 kDa present in body secretions, is known as a compound with marked antimicrobial activity. In the present study, the apoptotic effect of iron-free bovine lactoferrin (apo-bLf) on human epithelial cancer (HeLa) cells was examined in association with reactive oxygen species and glutathione (GSH) levels. Apoptotic effect of iron-free bovine lactoferrin inhibited the growth of HeLa cells after 48 hours of treatment while the diferric-bLf was ineffective in the concentration range tested (from 1 to 12.5 μM). Western blot analysis showed that key apoptotic regulators including Bax, Bcl-2, Sirt1, Mcl-1, and PARP-1 were modulated by 1.25 μM of apo-bLf. In the same cell line, apo-bLf induced apoptosis together with poly (ADP-ribose) polymerase cleavage, caspase activation, and a significant drop of NAD + . In addition, apo-bLf-treated HeLa cells showed a marked increase of reactive oxygen species level and a significant GSH depletion. On the whole, apo-bLf triggered apoptosis of HeLa cells upon oxygen radicals burst and GSH decrease. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

    Directory of Open Access Journals (Sweden)

    Amin Tavassoli

    2015-12-01

    Full Text Available Objective (s: The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (BM-MSCs. Materials and Methods: Bovine articular cartilage that was cut into pieces with 2 mm thickness, were decellularized by combination of physical and chemical methods including snap freeze-thaw and treatment with sodium dodecyl sulfate (SDS. The scaffolds were then seeded with 1, 1’-dioctadecyl-3, 3, 3’, 3’-tetramethylindocarbocyanine perchlorate (DiI labeled BM-MSCs and cultured for up to two weeks. Results: Histological studies of decellularized bovine articular cartilage showed that using 5 cycles of snap freeze-thaw in liquid nitrogen and treatment with 2.5% SDS for 4 hr led to the best decellularization, while preserving the articular cartilage structure. Adherence and penetration of seeded BM-MSCs on to the scaffold were displayed by histological and florescence examinations and also confirmed by electron microscopy. Conclusion: ECM-derived decellularized articular cartilage scaffold provides a suitable environment to support adhesion and maintenance of cultured BM-MSCs and could be applied to investigate cellular behaviors in this system and may also be useful for studies of cartilage tissue engineering.

  17. Prepartum teat apex colonization with Staphylococcus chromogenes in dairy heifers is associated with low somatic cell count in early lactation.

    Science.gov (United States)

    De Vliegher, S; Laevens, H; Devriese, L A; Opsomer, G; Leroy, J L M; Barkema, H W; de Kruif, A

    2003-04-02

    A high number of dairy heifers freshen with udder health problems. The prevalence of teat apex colonization (TAC) with Staphylococcus chromogenes, one of the most widespread coagulase-negative staphylococci (CNS) in milk samples from freshly calved dairy heifers, was measured cross-sectionally in non-lactating heifers on eight commercial dairy farms in Belgium. The influence of age on this prevalence, and the association between teat apex colonization with S. chromogenes prepartum and quarter milk somatic cell count (SCC) in early lactation were studied. In total, 492 teat apices were sampled from 123 heifers. The age of the heifers varied from 8 to 34 months. Overall, 20% of the heifers had at least one teat apex colonized with S. chromogenes. Of all teats sampled, 10% were colonized with S. chromogenes. The chance of having at least one teat apex colonized with S. chromogenes increased with age of the heifer. The presence of prepartum teat apex colonization with S. chromogenes was not associated with intramammary infection (IMI) early postpartum with the same bacterium. On the contrary, teat apex colonization with S. chromogenes prepartum appeared to protect quarters in the first few days of lactation from having somatic cell count >or=200000cells/ml milk, commonly accepted as the threshold for intramammary infection.

  18. Interaction between bovine-associated coagulase-negative staphylococci species and strains and bovine mammary epithelial cells reflects differences in ecology and epidemiological behavior.

    Science.gov (United States)

    Souza, F N; Piepers, S; Della Libera, A M M P; Heinemann, M B; Cerqueira, M M O P; De Vliegher, S

    2016-04-01

    Bacteria adherence seems to be an essential first stage for the internalization of bacteria into the cytoplasm of the host cell, which is considered an important virulence strategy enabling bacteria to occupy a microenvironment separated from host defense mechanisms. Thus, this study aimed to explore the difference in the capacity of 4 bovine-associated staphylococci species or strains to adhere to and internalize into bovine mammary epithelial cells (MEC). Three different isolates of coagulase-negative staphylococci (CNS) were used: one strain of Staphylococcus fleurettii isolated from sawdust and considered an environmental opportunistic bacterium, and 2 dissimilar Staphylococcus chromogenes isolates, one cultured from a heifer's teat apex (Staph. chromogenes TA) and the other originating from a chronic intramammary infection (Staph. chromogenes IM). Also, one well-characterized strain of Staphylococcus aureus (Newbould 305) was used for comparison with a major mastitis pathogen. The CNS species and strains adhered to and internalized into MEC slower than did Staph. aureus. Still, we observed high variation in adhesion and internalization capacity among the different CNS, with Staph. chromogenes IM showing a greater ability to adhere to and internalize into MEC than the 2 CNS strains isolated from extramammary habitats. In conclusion, the 3 well-characterized bovine-associated CNS species and strains originating from distinct habitats showed clear differences in their capacity to adhere to and internalize into MEC. The observed differences might be related to their diversity in ecology and epidemiological behavior. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. The role of extracellular matrix metalloproteinase inducer (EMMPRIN) in the regulation of bovine endometrial cell functions.

    Science.gov (United States)

    Mishra, Birendra; Kizaki, Keiichiro; Sato, Takashi; Ito, Akira; Hashizume, Kazuyoshi

    2012-06-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a cell surface glycoprotein that stimulates the production of several matrix metalloproteinases (MMPs) for tissue remodeling. Previously, we detected EMMPRIN in the bovine endometrium, and it is mainly expressed in the luminal and glandular epithelium whereas MMPs are expressed in the underlying stroma. From this expression pattern, we hypothesized that EMMPRIN may regulate stromal MMPs in endometrial cell functions. To test this hypothesis, a coculture of epithelial and stromal cells was performed using a transwell system. In the coculture, epithelial cells were cultured on the insert membrane and stromal cell on the surface of well plates. Expression of stromal MMP-2 and MMP-14 was significantly higher in coculture with epithelial cell. Further, with the addition of anti-EMMPRIN antibody into the epithelial cell compartment, the expression of stromal EMMPRIN and MMP-2 and MMP-14 was decreased. To identify the active site of EMMPRIN for the augmentation of MMPs, EMMPRIN synthetic peptides that correspond to the extracellular loop domain-I (EM1, EM2, EM3, and EM4) were added into the epithelial cell compartment, and only EM2 at a higher dose interfered with EMMPRIN-mediated expression of MMP-14. Next, we examined the effects of progesterone and/or estrogen on the expression of EMMPRIN, MMP-2, and MMP-14. Progesterone (300 nM) significantly stimulated the expression of EMMPRIN but had no effects on any of the MMPs. These results suggest that EMMPRIN derived from epithelial cells regulates MMPs in the endometrium under progesterone-rich conditions and may thereby modulate bovine endometrial cell functions during gestation.

  20. Alpha-Tocopherol alters transcription activities that modulate tumor necrosis factor alpha (TNF-¿)-induced inflammatory response in bovine cells

    Science.gov (United States)

    To further investigate the potential role of '-tocopherol in maintaining immuno-homeostasis in bovine cells (Madin-Darby bovine kidney epithelial cell line), we undertook in vitro experiments using recombinant TNF-a as an immuno-stimulant to simulate inflammation response in cells with and without '...

  1. Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage.

    Science.gov (United States)

    Wang, Kai; Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin

    2016-01-01

    Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis.

  2. Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2016-01-01

    Full Text Available Chinese propolis (CP, an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T, we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS, heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis.

  3. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study.

    Science.gov (United States)

    de Almeida, Marcilio; de Almeida, Cristina Vieira; Mendes Graner, Erika; Ebling Brondani, Gilvano; Fiori de Abreu-Tarazi, Monita

    2012-08-01

    The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to

  4. Relationship between somatic cell count and lactose content in milk of various species of mammals

    Directory of Open Access Journals (Sweden)

    Oto Hanuš

    2010-01-01

    Full Text Available Somatic cell count (SCC is an indicator of mammary gland health state. Lactose (L can be reduced with mastitis and SCC increase. Mammary gland health is an essential factor of milk quality. Monitoring of mammary gland health is important for prevention and treatment of milk secretion disorders. The goal of this work was to analyse the relationship between SCC and L in various biological species. 7 sets of individual and bulk milk samples (MSs were analysed (n = 479, 479, 345, 80, 90 and 102 for SCC and L content. 3 sets were with cow (C milk and 1 set with goat (G, 1 with sheep (S and 1 with human (H MSs. The relations in C milk were used as reference. SCC geometric means were markedly lower in C milk (62, 99 and 81 103 . ml−1 and H milk (103 103 . ml−1 as compared to small ruminants (G 3 509 and S 609 103 . ml−1. The mean L values were lower in small ruminants (G 4.36% and S 4.42% as compared to C milk (4.95%, 4.97% and in 1st lactation 5.10% and higher in H milk (5.77%. L contents in Czech Fleckvieh and Holstein correlated negatively to SCC (log SCC in all lactations (−0.36 P < 0.001 and −0.33 P < 0.001. L content in 1st lactation correlated with SCC markedly narrower than in cows for all lactations (−0.49 P < 0.001. The SCC×L relationship in G (White short–haired milk (−0.35 P < 0.01 was in good relation to C milk and in S (Tsigai milk (−0.51 P < 0.001 was markedly narrower as in C and G milk. Lower mean SCC in H milk as compared to G and S milk and comparable to C milk did not show significant negative relationship to L which was 0.08 (P > 0.05 for original SCC values. Surprisingly there was not found the SCC×L relationship in H milk which could be comparable to other mammal species milk. It could be caused by bacteriologically negative results in MSs with higher SCC (> 300 103 . ml−1. As well as at C milk also at G and S milk and in contrast to H milk it is possible to use the SCC×L relationship

  5. Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics--recent achievements.

    Science.gov (United States)

    Samiec, M; Skrzyszowska, M

    2011-01-01

    Somatic cell cloning technology in mammals promotes the multiplication of productively-valuable genetically engineered individuals, and consequently allows also for standardization of transgenic farm animal-derived products, which, in the context of market requirements, will have growing significance. Gene farming is one of the most promising areas in modern biotechnology. The use of live bioreactors for the expression of human genes in the lactating mammary gland of transgenic animals seems to be the most cost-effective method for the production/processing of valuable recombinant therapeutic proteins. Among the transgenic farm livestock species used so far, cattle, goats, sheep, pigs and rabbits are useful candidates for the expression of tens to hundreds of grams of genetically-engineered proteins or xenogeneic biopreparations in the milk. At the beginning of the new millennium, a revolution in the treatment of disease is taking shape due to the emergence of new therapies based on recombinant human proteins. The ever-growing demand for such pharmaceutical or nutriceutical proteins is an important driving force for the development of safe and large-scale production platforms. The aim of this paper is to present an overall survey of the state of the art in investigations which provide the current knowledge for deciphering the possibilities of practical application of the transgenic mammalian species generated by somatic cell cloning in biomedicine, the biopharmaceutical industry, human nutrition/dietetics and agriculture.

  6. Bovine colostrum modulates immune activation cascades in human peripheral blood mononuclear cells in vitro

    DEFF Research Database (Denmark)

    Jenny, Marcel; Pedersen, Ninfa R; Hidayat, Budi J

    2010-01-01

    factors and has a long history of use in traditional medicine. In an approach to evaluate the effects of bovine colostrum (BC) on the T-cell/macrophage interplay, we investigated and compared the capacity of BC containing low and high amounts of lactose and lactoferrin to modulate tryptophan degradation...... of lactose present in BC seems to diminish the activity of BC in our test system, since BC with higher amounts of lactose attenuated the stimulatory as well as the suppressive activity of BC....

  7. Heterogeneity in cytokine profiles of Babesia bovis-specific bovine CD4+ T cells clones activated in vitro.

    OpenAIRE

    Brown, W C; Woods, V M; Dobbelaere, D A; Logan, K S

    1993-01-01

    The central role of T cells in the immune response against hemoprotozoan parasites, both as helper cells for T cell-dependent antibody production and as effector cells acting on intracellular parasites through the elaboration of cytokines, has prompted an investigation of the bovine cellular immune response against Babesia bovis antigens. CD4+ T helper (Th) cell clones generated from four B. bovis-immune cattle by in vitro stimulation with a soluble or membrane-associated merozoite antigen we...

  8. Impact of Somatic Mutations in the D-Loop of Mitochondrial DNA on the Survival of Oral Squamous Cell Carcinoma Patients

    Science.gov (United States)

    Lin, Jin-Ching; Wang, Chen-Chi; Jiang, Rong-San; Wang, Wen-Yi; Liu, Shih-An

    2015-01-01

    Objectives The aim of this study was to investigate somatic mutations in the D-loop of mitochondrial DNA (mtDNA) and their impact on survival in oral squamous cell carcinoma patients. Materials and Methods Surgical specimen confirmed by pathological examination and corresponding non-cancerous tissues were collected from 120 oral squamous cell carcinoma patients. The sequence in the D-loop of mtDNA from non-cancerous tissues was compared with that from paired cancer samples and any sequence differences were recognized as somatic mutations. Results Somatic mutations in the D-loop of mtDNA were identified in 75 (62.5%) oral squamous cell carcinoma patients and most of them occurred in the poly-C tract. Although there were no significant differences in demographic and tumor-related features between participants with and without somatic mutation, the mutation group had a better survival rate (5 year disease-specific survival rate: 64.0% vs. 43.0%, P = 0.0266). Conclusion Somatic mutation in D-loop of mtDNA was associated with a better survival in oral squamous cell carcinoma patients. PMID:25906372

  9. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    Science.gov (United States)

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Zou, Lihua; Gould, Joshua; Saksena, Gordon; Stransky, Nicolas; Rangel-Escareño, Claudia; Fernandez-Lopez, Juan Carlos; Hidalgo-Miranda, Alfredo; Melendez-Zajgla, Jorge; Hernández-Lemus, Enrique; Schwarz-Cruz y Celis, Angela; Imaz-Rosshandler, Ivan; Ojesina, Akinyemi I.; Jung, Joonil; Pedamallu, Chandra S.; Lander, Eric S.; Habermann, Thomas M.; Cerhan, James R.; Shipp, Margaret A.; Getz, Gad; Golub, Todd R.

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease. PMID:22343534

  10. Low density of membrane particles in auditory hair cells of lizards and birds suggests an absence of somatic motility.

    Science.gov (United States)

    Köppl, Christine; Forge, Andrew; Manley, Geoffrey A

    2004-11-08

    Hair cells are the mechanoreceptive cells of the vertebrate lateral line and inner ear. In addition to their sensory function, hair cells display motility and thus themselves generate mechanical energy, which is thought to enhance sensitivity. Two principal cellular mechanism are known that can mediate hair-cell motility in vitro. One of these is based on voltage-dependent changes of an intramembrane protein and has so far been demonstrated only in outer hair cells of the mammalian cochlea. Correlated with this, the cell membranes of outer hair cells carry an extreme density of embedded particles, as revealed by freeze fracturing. The present study explored the possibility of membrane-based motility in hair cells of nonmammals, by determining their density of intramembrane particles. Replicas of freeze-fractured membrane were prepared from auditory hair cells of a lizard, the Tokay gecko, and a bird, the barn owl. These species were chosen because of independent evidence for active cochlear mechanics, in the form of spontaneous otoacoustic emissions. For quantitative comparison, mammalian inner and outer hair cells, as well as vestibular hair, cells were reevaluated. Lizard and bird hair cells displayed median densities of 2,360 and 1,880 intramembrane particles/microm2, respectively. This was not significantly different from the densities in vestibular and mammalian inner hair cells; however, it was about half the density in of mammalian outer hair cells. This suggests that nonmammalian hair cells do not possess high densities of motor protein in their membranes and are thus unlikely to be capable of somatic motility. 2004 Wiley-Liss, Inc.

  11. Numerical chromosome errors in day 7 somatic nuclear blastocysts

    DEFF Research Database (Denmark)

    Booth, Paul J; Viuff, Dorthe; Tan, Shijian J

    2003-01-01

    Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona-free manipulat......Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona...... families, consisting of 112 blastocysts reconstructed from five different primary granulosa cell cultures, were examined. Overall, the mean chromosome complement within embryos was 86.9 +/- 3.7% (mean +/- SEM) diploid, 2.6 +/- 0.5% triploid, 10.0 +/- 3.1% tetraploid, and 0.5 +/- 0.2% pentaploid or greater......; the vast majority (>75%) of the abnormal nuclei were tetraploid. Completely diploid and mixoploid embryos represented 22.1 +/- 4.5% and 73.7 +/- 5.5%, respectively, of all clones. Six totally polyploid blastocysts, containing or=5N chromosome complements, respectively) between two clone families were...

  12. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells.

    Science.gov (United States)

    Maillard, Virginie; Desmarchais, Alice; Durcin, Maeva; Uzbekova, Svetlana; Elis, Sebastien

    2018-04-26

    Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers. The objective of the present study was to analyze the effects of DHA (1, 10, 20 and 50 μM) on proliferation and steroidogenesis (parametric and/or non parametric (permutational) ANOVA) of bovine granulosa cells in vitro and mechanisms of action through protein expression (Kruskal-Wallis) and signaling pathways (non parametric ANOVA) and to investigate whether DHA could exert part of its action through the free fatty acid receptor 4 (FFAR4). DHA (10 and 50 μM) increased granulosa cell proliferation and DHA 10 μM led to a corresponding increase in proliferating cell nuclear antigen (PCNA) expression level. DHA also increased progesterone secretion at 1, 20 and 50 μM, and estradiol secretion at 1, 10 and 20 μM. Consistent increases in protein levels were also reported for the steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), and of the cholesterol transporter steroidogenic acute regulatory protein (StAR), which are necessary for production of progesterone or androstenedione. FFAR4 was expressed in all cellular types of bovine ovarian follicles, and in granulosa cells it was localized close to the cellular membrane. TUG-891 treatment (1 and 50 μM), a FFAR4 agonist, increased granulosa cell proliferation and MAPK14 phosphorylation in a similar way to that observed with DHA treatment. However, TUG-891 treatment (1, 10 and 50 μM) showed no effect on progesterone or estradiol secretion. These data show that DHA stimulated proliferation and steroidogenesis of bovine

  13. Immunoglobulin diversification in B cell malignancies: internal splicing of heavy chain variable region as a by-product of somatic hypermutation

    NARCIS (Netherlands)

    Bende, R. J.; Aarts, W. M.; Pals, S. T.; van Noesel, C. J. M.

    2002-01-01

    In this study we describe alternative splicing of somatically mutated immunoglobulin (Ig) variable heavy chain (V-H) genes in three distinct primary B cell non-Hodgkin's lymphomas (B-NHL). In two V4-34 expressing lymphomas, ie a post-germinal center type B cell chronic lymphocytic leukemia (B-CLL)

  14. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Zhang, Yong, E-mail: zhangyong1956@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China); Gao, Ming-Qing, E-mail: gaomingqing@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China)

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.

  15. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    Science.gov (United States)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    International Nuclear Information System (INIS)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.

  17. Inhibition of Staphylococcus aureus invasion into bovine mammary epithelial cells by contact with live Lactobacillus casei.

    Science.gov (United States)

    Bouchard, Damien S; Rault, Lucie; Berkova, Nadia; Le Loir, Yves; Even, Sergine

    2013-02-01

    Staphylococcus aureus is a major pathogen that is responsible for mastitis in dairy herds. S. aureus mastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability of S. aureus to invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability of Lactobacillus casei strains to prevent invasion of bMEC by two S. aureus bovine strains, RF122 and Newbould305, which reproducibly induce acute and moderate mastitis, respectively. L. casei strains affected adhesion and/or internalization of S. aureus in a strain-dependent manner. Interestingly, L. casei CIRM-BIA 667 reduced S. aureus Newbould305 and RF122 internalization by 60 to 80%, and this inhibition was confirmed for two other L. casei strains, including one isolated from bovine teat canal. The protective effect occurred without affecting bMEC morphology and viability. Once internalized, the fate of S. aureus was not affected by L. casei. It should be noted that L. casei was internalized at a low rate but survived in bMEC cells with a better efficiency than that of S. aureus RF122. Inhibition of S. aureus adhesion was maintained with heat-killed L. casei, whereas contact between live L. casei and S. aureus or bMEC was required to prevent S. aureus internalization. This first study of the antagonism of LAB toward S. aureus in a mammary context opens avenues for the development of novel control strategies against this major pathogen.

  18. Inhibition of Staphylococcus aureus Invasion into Bovine Mammary Epithelial Cells by Contact with Live Lactobacillus casei

    Science.gov (United States)

    Bouchard, Damien S.; Rault, Lucie; Berkova, Nadia; Le Loir, Yves

    2013-01-01

    Staphylococcus aureus is a major pathogen that is responsible for mastitis in dairy herds. S. aureus mastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability of S. aureus to invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability of Lactobacillus casei strains to prevent invasion of bMEC by two S. aureus bovine strains, RF122 and Newbould305, which reproducibly induce acute and moderate mastitis, respectively. L. casei strains affected adhesion and/or internalization of S. aureus in a strain-dependent manner. Interestingly, L. casei CIRM-BIA 667 reduced S. aureus Newbould305 and RF122 internalization by 60 to 80%, and this inhibition was confirmed for two other L. casei strains, including one isolated from bovine teat canal. The protective effect occurred without affecting bMEC morphology and viability. Once internalized, the fate of S. aureus was not affected by L. casei. It should be noted that L. casei was internalized at a low rate but survived in bMEC cells with a better efficiency than that of S. aureus RF122. Inhibition of S. aureus adhesion was maintained with heat-killed L. casei, whereas contact between live L. casei and S. aureus or bMEC was required to prevent S. aureus internalization. This first study of the antagonism of LAB toward S. aureus in a mammary context opens avenues for the development of novel control strategies against this major pathogen. PMID:23183972

  19. Genotype-specific risk factors for Staphylococcus aureus in Swiss dairy herds with an elevated yield-corrected herd somatic cell count.

    Science.gov (United States)

    Berchtold, B; Bodmer, M; van den Borne, B H P; Reist, M; Graber, H U; Steiner, A; Boss, R; Wohlfender, F

    2014-01-01

    Bovine mastitis is a frequent problem in Swiss dairy herds. One of the main pathogens causing significant economic loss is Staphylococcus aureus. Various Staph. aureus genotypes with different biological properties have been described. Genotype B (GTB) of Staph. aureus was identified as the most contagious and one of the most prevalent strains in Switzerland. The aim of this study was to identify risk factors associated with the herd-level presence of Staph. aureus GTB and Staph. aureus non-GTB in Swiss dairy herds with an elevated yield-corrected herd somatic cell count (YCHSCC). One hundred dairy herds with a mean YCHSCC between 200,000 and 300,000cells/mL in 2010 were recruited and each farm was visited once during milking. A standardized protocol investigating demography, mastitis management, cow husbandry, milking system, and milking routine was completed during the visit. A bulk tank milk (BTM) sample was analyzed by real-time PCR for the presence of Staph. aureus GTB to classify the herds into 2 groups: Staph. aureus GTB-positive and Staph. aureus GTB-negative. Moreover, quarter milk samples were aseptically collected for bacteriological culture from cows with a somatic cell count ≥150,000cells/mL on the last test-day before the visit. The culture results allowed us to allocate the Staph. aureus GTB-negative farms to Staph. aureus non-GTB and Staph. aureus-free groups. Multivariable multinomial logistic regression models were built to identify risk factors associated with the herd-level presence of Staph. aureus GTB and Staph. aureus non-GTB. The prevalence of Staph. aureus GTB herds was 16% (n=16), whereas that of Staph. aureus non-GTB herds was 38% (n=38). Herds that sent lactating cows to seasonal communal pastures had significantly higher odds of being infected with Staph. aureus GTB (odds ratio: 10.2, 95% CI: 1.9-56.6), compared with herds without communal pasturing. Herds that purchased heifers had significantly higher odds of being infected with

  20. Test characteristics of milk amyloid A ELISA, somatic cell count, and bacteriological culture for detection of intramammary pathogens that cause subclinical mastitis.

    Science.gov (United States)

    Jaeger, S; Virchow, F; Torgerson, P R; Bischoff, M; Biner, B; Hartnack, S; Rüegg, S R

    2017-09-01

    Bovine mastitis is an important disease in the dairy industry, causing economic losses as a result of withheld milk and treatment costs. Several studies have suggested milk amyloid A (MAA) as a promising biomarker in the diagnosis of mastitis. In the absence of a gold standard for diagnosis of subclinical mastitis, we estimated the diagnostic test accuracy of a commercial MAA-ELISA, somatic cell count (SCC), and bacteriological culture using Bayesian latent class modeling. We divided intramammary infections into 2 classes: those caused by major pathogens (e.g., Escherichia coli, Staphylococcus aureus, streptococci, and lacto-/enterococci) and those caused by all pathogens (major pathogens plus Corynebacterium bovis, coagulase-negative staphylococci, Bacillus spp., Streptomyces spp.). We applied the 3 diagnostic tests to all samples. Of 433 composite milk samples included in this study, 275 (63.5%) contained at least 1 colony of any bacterial species; of those, 56 contained major pathogens and 219 contained minor pathogens. The remaining 158 samples (36.5%) were sterile. We determined 2 different thresholds for the MAA-ELISA using Bayesian latent class modeling: 3.9 µg/mL to detect mastitis caused by major pathogens and 1.6 µg/mL to detect mastitis caused by all pathogens. The optimal SCC threshold for identification of subclinical mastitis was 150,000 cells/mL; this threshold led to higher specificity (Sp) than 100,000 cells/mL. Test accuracy for major-pathogen intramammary infections was as follows: SCC, sensitivity (Se) 92.6% and Sp 72.9%; MAA-ELISA, Se 81.4% and Sp 93.4%; bacteriological culture, Se 23.8% and Sp 95.2%. Test accuracy for all-pathogen intramammary infections was as follows: SCC, sensitivity 90.3% and Sp 71.8%; MAA-ELISA, Se 88.0% and Sp 65.2%; bacteriological culture, Se 83.8% and Sp 54.8%. We suggest the use of SCC and MAA-ELISA as a combined screening procedure for situations such as a Staphylococcus aureus control program. With Bayesian

  1. [Effect of TSA and VPA treatment on long-tailed macaque (Macaca fascicularis)-pig interspecies somatic cell nuclear transfer].

    Science.gov (United States)

    Qin, Zu-Xing; Huang, Gao-Bo; Luo, Jun; Ning, Shu-Fang; Lu, Sheng-Sheng; Lu, Ke-Huan

    2012-03-01

    Long-tailed macaque-pig interspecies somatic cell nuclear transfer (iSCNT) is beneficial to yield embryonic stem cells from iSCNT embryos with similar genetic background as human, which can be used as materials for medical and basic research. The primary objective of this study was to investigate the effects of concentrations and treatment duration of two histone deacetylase inhibitors-Trichostatin A (TSA) and Valproic acid (VPA) and two different embryo culture media (PZM-3 and HECM-10) on the in vitro development of iSCNT embryos. The results suggested that when PZM-3 was used as the embryo culture medium, the blastocyst rate of 10 nmol/L TSA treatment for 48 h was significantly higher than the control group (22.78% vs 9.86%, PTSA treatment could enhance the in vitro developmental potential of long-tailed macaque-pig iSCNT embryos.

  2. A correlative study on the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mammals

    International Nuclear Information System (INIS)

    Buul, P.P.W. van

    1976-01-01

    A series of investigations on the correlation between the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mouse and rhesus monkey is described. In the mouse the induction of reciprocal translocations in bone-marrow cells was compared with that in spermatogonia (as scored in the descending spermatocytes). In the rhesus monkey frequencies of radiation-induced chromosome aberrations in spermatogonia and peripheral blood lymphocytes were studied. Furthermore the effect of multigeneration irradiation (69 generations with 200 rads X-rays) on the sensitivity for translocation induction in spermatogonia of male mice was studied. Frequencies of dicentric chromosomes and chromosomal deletions in cultured peripheral blood lymphocytes of 5 different types of mice were determined following in vitro irradiation with doses of 100 and/or 200 rad X-rays. To obtain more insight into the processes underlying translocation induction in spermatogonia of the mouse, fractionation experiments were conducted

  3. PCI-24781 can improve in vitro and in vivo developmental capacity of pig somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Jin, Long; Zhu, Hai-Ying; Guo, Qing; Li, Xiao-Chen; Zhang, Yu-Chen; Zhang, Guang-Lei; Xing, Xiao-Xu; Xuan, Mei-Fu; Luo, Qi-Rong; Yin, Xi-Jun; Kang, Jin-Dan

    2016-09-01

    To examine the effect of PCI-24781 (abexinostat) on the blastocyst formation rate in pig somatic cell nuclear transferred (SCNT) embryos and acetylation levels of the histone H3 lysine 9 and histone H4 lysine 12. Treatment with 0.5 nM PCI-24781 for 6 h significantly improved the development of cloned embryos, in comparison to the control group (25.3 vs. 10.5 %, P PCI-24781 treatment led to elevated acetylation of H3K9 and H4K12. TUNEL assay and Hoechst 33342 staining revealed that the percentage of apoptotic cells in blastocysts was significantly lower in PCI-24781-treated SCNT embryos than in untreated embryos. Also, PCI-24781-treated embryos were transferred into three surrogate sows, one of whom became pregnant and two fetuses developed. PCI-24781 improves nuclear reprogramming and the developmental potential of pig SCNT embryos.

  4. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification.

    Science.gov (United States)

    Lai, D; Ding, J; Smith, G W; Smith, G D; Takayama, S

    2015-01-01

    Does the use of a new cryoprotectant agent (CPA) exchange protocol designed to minimize osmotic stress improve oocyte or zygote vitrification by reducing sublethal cryodamage? The use of a new CPA exchange protocol made possible by automated microfluidics improved oocyte and zygote vitrification with superior morphology as indicated by a smoother cell surface, higher sphericity, higher cytoplasmic lipid retention, less cytoplasmic leakage and higher developmental competence compared with conventional methods. The use of more 'steps' of CPA exposure during the vitrification protocol increases cryosurvival and development in the bovine model. However, such an attempt to eliminate osmotic stress is limited by the practicality of performing numerous precise pipetting steps in a short amount of time. Murine meiotically competent germinal vesicle intact oocytes and zygotes were harvested from the antral follicles in ovaries and ampulla, respectively. Bovine ovaries were obtained from a local abattoir at random stages of the estrous cycle. A total of 110 murine oocytes, 802 murine zygotes and 52 bovine oocytes were used in this study. Microfluidic devices were fabricated using conventional photo- and soft-lithography. CPAs used were 7.5% ethylene glycol (EG) and 7.5% dimethyl sulfoxide (DMSO) for equilibration solution and 15% EG, 15% DMSO and 0.5 M sucrose for vitrification solution. End-point analyses include mathematical modeling using Kedem-Katchalsky equations, morphometrics assessed by conventional and confocal microscopy, cytoplasmic lipid quantification by nile red staining, cytoplasmic leakage quantification by fluorescent dextran intercalation and developmental competence analysis by 96 h embryo culture and blastomere quantification. The automated microfluidics protocol decreased the shrinkage rate of the oocyte and zygote by 13.8 times over its manual pipetting alternative. Oocytes and zygotes with a lower shrinkage rate during CPA exposure experienced less

  5. Influence of recipient cytoplasm cell stage on transcription in bovine nucleus transfer embryos

    DEFF Research Database (Denmark)

    Smith, Steven D.; Soloy, Eva; Kanka, Jiri

    1996-01-01

    Nucleus transfer for the production of multiple embryos derived from a donor embryo relies upon the reprogramming of the donor nucleus so that it behaves similar to a zygotic nucleus. One indication of nucleus reprogramming is the RNA synthetic activity. In normal bovine embryogenesis, the embryo....... NTE were produced using either a MII phase (nonactivated) cytoplasts at 32 hr of maturation or S-phase (activated) cytoplasts activated with calcium ionophore A23187 and cycloheximide treatment approximately 8 hr prior to fusion with a blastomere from an in-vitro-produced morula stage embryo at 32 hr...... of maturation. Control in-vitro-produced embryos were 3H-uridine-labelled and fixed at the 2-, 4-, early 8-, and late 8-cell stages. NTE were similarly prepared at 1, 3, and 20 hr postfusion and at the 2-, 4-, and 8-cell stages. In the control embryos, RNA synthesis was absent in the 2-, 4-, and early 8-cell...

  6. Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells

    Science.gov (United States)

    Ferrara, Maria Antonietta; Di Caprio, Giuseppe; Managò, Stefano; De Angelis, Annalisa; Sirleto, Luigi; Coppola, Giuseppe; De Luca, Anna Chiara

    2015-01-01

    A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols. PMID:25836358

  7. Evidence of heterogeneity within bovine satellite cells isolated from young and adult animals.

    Science.gov (United States)

    Li, J; Gonzalez, J M; Walker, D K; Hersom, M J; Ealy, A D; Johnson, S E

    2011-06-01

    Satellite cells are a heterogeneous population of myogenic precursors responsible for muscle growth and repair in mammals. The objectives of the experiment were to examine the growth rates and degree of heterogeneity within bovine satellite cells (BSC) isolated from young and adult animals. The BSC were harvested from the semimembranosus of young (4.3 ± 0.5 d) and adult (estimated 24 to 27 mo) cattle and cultured en masse. Young animal BSC re-enter the cell cycle sooner and reach maximal 5-ethynyl-2'-deoxyuridine (EdU) incorporation earlier (P animals after 3, 4, and 5 d in culture. These results indicate that BSC from young animals activate, proliferate, and differentiate sooner than isolates from adult animals. Lineage heterogeneity within BSC was examined using antibodies specific for Pax7 and Myf5, lineage markers of satellite cells, and myoblasts. Immunocytochemistry revealed the majority of Pax7-expressing BSC also express Myf5; a minor population (~5%) fails to exhibit Myf5 immunoreactivity. The percentage of Pax7:Myf5 BSC from young animals decreases sooner (P cell clones were established and analyzed after 10 d. Colonies segregated into 2 groups based upon population doubling time. Immunostaining of the slow-growing colonies (population doubling time ≥ 3 d) revealed that a portion exhibited asymmetric distribution of the lineage markers Pax7 and Myf5, similar to self-renewable mouse muscle stem cells. In summary, these results offer insight into the heterogeneity of BSC and provide evidence for subtle differences between rodent and bovine myogenic precursors.

  8. Bovine cumulus-granulosa cells contain biologically active retinoid receptors that can respond to retinoic acid

    Directory of Open Access Journals (Sweden)

    Malayer Jerry

    2003-11-01

    Full Text Available Abstract Retinoids, a class of compounds that include retinol and its metabolite, retinoic acid, are absolutely essential for ovarian steroid production, oocyte maturation, and early embryogenesis. Previous studies have detected high concentrations of retinol in bovine large follicles. Further, administration of retinol in vivo and supplementation of retinoic acid during in vitro maturation results in enhanced embryonic development. In the present study, we hypothesized that retinoids administered either in vivo previously or in vitro can exert receptor-mediated effects in cumulus-granulosa cells. Total RNA extracted from in vitro cultured cumulus-granulosa cells was subjected to reverse transcription polymerase chain reaction (RT-PCR and mRNA expression for retinol binding protein (RBP, retinoic acid receptor alpha (RARalpha, retinoic acid receptor beta (RARbeta, retinoic acid receptor gamma (RARgamma, retinoid X receptor alpha (RXRalpha, retinoid X receptor beta (RXRbeta, retinaldehyde dehydrogenase-2 (RALDH-2, and peroxisome proliferator activated receptor gamma (PPARgamma. Transcripts were detected for RBP, RARalpha, RARgamma, RXRalpha, RXRbeta, RALDH-2, and PPARgamma. Expression of RARbeta was not detected in cumulus-granulosa cells. Using western blotting, immunoreactive RARalpha, and RXRbeta protein was also detected in bovine cumulus-granulosa cells. The biological activity of these endogenous retinoid receptors was tested using a transient reporter assay using the pAAV-MCS-betaRARE-Luc vector. Addition of 0.5 and 1 micro molar all-trans retinoic acid significantly (P trans retinol stimulated a mild increase in reporter activity, however, the increase was not statistically significant. Based on these results we conclude that cumulus cells contain endogenously active retinoid receptors and may also be competent to synthesize retinoic acid using the precursor, retinol. These results also indirectly provide evidence that retinoids

  9. Efficient production of retroviruses using PLGA/bPEI-DNA nanoparticles and application for reprogramming somatic cells.

    Directory of Open Access Journals (Sweden)

    Eun Jin Seo

    Full Text Available Reprogramming of somatic cells to pluripotent cells requires the introduction of factors driving fate switches. Viral delivery has been the most efficient method for generation of induced pluripotent stem cells. Transfection, which precedes virus production, is a commonly-used process for delivery of nucleic acids into cells. The aim of this study is to evaluate the efficiency of PLGA/ bPEI nanoparticles in transfection and virus production. Using a modified method of producing PLGA nanoparticles, PLGA/bPEI-DNA nanoparticles were examined for transfection efficiency and virus production yield in comparison with PLGA-DNA, bPEI-DNA nanoparticles or liposome-DNA complexes. After testing various ratios of PLGA, bPEI, and DNA, the ratio of 6:3:1 (PLGA:bPEI:DNA, w/w/w was determined to be optimal, with acceptable cellular toxicity. PLGA/bPEI-DNA (6:3:1 nanoparticles showed superior transfection efficiency, especially in multiple gene transfection, and viral yield when compared with liposome-DNA complexes. The culture supernatants of HEK293FT cells transfected with PLGA/bPEI-DNA of viral constructs containing reprogramming factors (Oct4, Sox2, Klf4, or c-Myc successfully and more efficiently generated induced pluripotent stem cell colonies from mouse embryonic fibroblasts. These results strongly suggest that PLGA/bPEI-DNA nanoparticles can provide significant advantages in studying the effect of multiple factor delivery such as in reprogramming or direct conversion of cell fate.

  10. Biochemical and microscopic evidence for the internalization and degradation of heparin-containing mast cell granules by bovine endothelial cells

    International Nuclear Information System (INIS)

    Atkins, F.M.; Friedman, M.M.; Metcalfe, D.D.

    1985-01-01

    Incubation of [ 35 S]heparin-containing mast cell granules with cultured bovine endothelial cells was followed by the appearance of 35 S-granule-associated radioactivity within the endothelial cells and a decrease in radioactivity in the extracellular fluid. These changes occurred during the first 24 hours of incubation and suggested ingestion of the mast cell granules by the endothelial cells. Periodic electron microscopic examination of the monolayers confirmed this hypothesis by demonstrating apposition of the granules to the plasmalemma of endothelial cells, which was followed by the engulfment of the granules by cytoplasmic projections. Under light microscopic examination, mast cell granules within endothelial cells then appeared to undergo degradation. The degradation of [ 35 S]heparin in mast cell granules was demonstrated by a decrease in the amount of intracellular [ 35 S]heparin proteoglycan after 24 hours and the appearance of free [ 35 S]sulfate in the extracellular compartment. Intact endothelial cells were more efficient at degrading [ 35 S]heparin than were cell lysates or cell supernatants. These data provide evidence of the ability of endothelial cells to ingest mast cell granules and degrade native heparin that is presented as a part of the mast cell granule

  11. The Fanconi anemia ortholog FANCM ensures ordered homologous recombination in both somatic and meiotic cells in Arabidopsis.

    Science.gov (United States)

    Knoll, Alexander; Higgins, James D; Seeliger, Katharina; Reha, Sarah J; Dangel, Natalie J; Bauknecht, Markus; Schröpfer, Susan; Franklin, F Christopher H; Puchta, Holger

    2012-04-01

    The human hereditary disease Fanconi anemia leads to severe symptoms, including developmental defects and breakdown of the hematopoietic system. It is caused by single mutations in the FANC genes, one of which encodes the DNA translocase FANCM (for Fanconi anemia complementation group M), which is required for the repair of DNA interstrand cross-links to ensure replication progression. We identified a homolog of FANCM in Arabidopsis thaliana that is not directly involved in the repair of DNA lesions but suppresses spontaneous somatic homologous recombination via a RecQ helicase (At-RECQ4A)-independent pathway. In addition, it is required for double-strand break-induced homologous recombination. The fertility of At-fancm mutant plants is compromised. Evidence suggests that during meiosis At-FANCM acts as antirecombinase to suppress ectopic recombination-dependent chromosome interactions, but this activity is antagonized by the ZMM pathway to enable the formation of interference-sensitive crossovers and chromosome synapsis. Surprisingly, mutation of At-FANCM overcomes the sterility phenotype of an At-MutS homolog4 mutant by apparently rescuing a proportion of crossover-designated recombination intermediates via a route that is likely At-MMS and UV sensitive81 dependent. However, this is insufficient to ensure the formation of an obligate crossover. Thus, At-FANCM is not only a safeguard for genome stability in somatic cells but is an important factor in the control of meiotic crossover formation.

  12. Bovine lactoferrin regulates cell survival, apoptosis and inflammation in intestinal epithelial cells and preterm pig intestine.

    Science.gov (United States)

    Nguyen, Duc Ninh; Jiang, Pingping; Stensballe, Allan; Bendixen, Emøke; Sangild, Per T; Chatterton, Dereck E W

    2016-04-29

    Bovine lactoferrin (bLF) may modulate neonatal intestinal inflammation. Previous studies in intestinal epithelial cells (IECs) indicated that moderate bLF doses enhance proliferation whereas high doses trigger inflammation. To further elucidate cellular mechanisms, we profiled the porcine IEC proteome after stimulation with bLF at 0, 0.1, 1 and 10g/L by LC-MS-based proteomics. Key pathways were analyzed in the intestine of formula-fed preterm pigs with and without supplementation of 10g/L bLF. Levels of 123 IEC proteins were altered by bLF. Low bLF doses (0.1-1g/L) up-regulated 11 proteins associated with glycolysis, energy metabolism and protein synthesis, indicating support of cell survival. In contrast, a high bLF dose (10g/L) up-regulated three apoptosis-inducing proteins, down-regulated five anti-apoptotic and proliferation-inducing proteins and 15 proteins related to energy and amino acid metabolism, and altered three proteins enhancing the hypoxia inducible factor-1 (HIF-1) pathway. In the preterm pig intestine, bLF at 10g/L decreased villus height/crypt depth ratio and up-regulated the Bax/Bcl-2 ratio and HIF-1α, indicating elevated intestinal apoptosis and inflammation. In conclusion, bLF dose-dependently affects IECs via metabolic, apoptotic and inflammatory pathways. It is important to select an appropriate dose when feeding neonates with bLF to avoid detrimental effects exerted by excessive doses. The present work elucidates dose-dependent effects of bLF on the proteomic changes of IECs in vitro supplemented with data from a preterm pig study confirming detrimental effects of enteral feeding with the highest dose of bLF (10g/L). The study contributes to further understanding on mechanisms that bLF, as an important milk protein, can regulate the homeostasis of the immature intestine. Results from this study urge neonatologists to carefully consider the dose of bLF to supplement into infant formula used for preterm neonates. Copyright © 2016 Elsevier B

  13. Effect of anabolics on bovine granulosa-luteal cell primary cultures.

    Directory of Open Access Journals (Sweden)

    Bartolomeo Biolatti

    2007-10-01

    Full Text Available Granulosa cell tumours are observed with increased frequency among calves slaughtered in Northern Italy. The use of illegal anabolics in breeding was taken into account as a cause of this pathology. An in vitro approach was used to detect the possible alterations of cell proliferation induced by anabolics on primary cultures of bovine granulosa-luteal cells. Cultures were treated with different concentrations of substances illegally used in cattle (17beta-estradiol, clenbuterol and boldione. Cytotoxicity was determined by means of MTT test, to exclude toxic effects induced by anabolics and to determine the highest concentration to be tested. Morphological changes were evaluated by means of routine cytology, while PCNA expression was quantified in order to estimate cell proliferation. Cytotoxic effects were revealed at the highest concentrations. The only stimulating effect on cell proliferation was detected in boldione treated cultures: after 48 h treated cells, compared to controls, showed a doubled expression of PCNA. In clenbuterol and 17beta-estradiol treated cells PCNA expression was similar to controls or even decreased. As the data suggest an alteration in cell proliferation, boldione could have a role in the early stage of pathogenesis of granulosa cell tumour in cattle.

  14. Comparative analysis in continuous expansion of bovine and human primary nucleus pulposus cells for tissue repair applications

    Directory of Open Access Journals (Sweden)

    DH Rosenzweig

    2017-03-01

    Full Text Available Autologous NP cell implantation is a potential therapeutic avenue for intervertebral disc (IVD degeneration. However, monolayer expansion of cells isolated from surgical samples may negatively impact matrix production by way of dedifferentiation. Previously, we have used a continuous expansion culture system to successfully preserve a chondrocyte phenotype. In this work, we hypothesised that continuous expansion culture could also preserve nucleus pulposus (NP phenotype. We confirmed that serial passaging drove NP dedifferentiation by significantly decreasing collagen type II, aggrecan and chondroadherin (CHAD gene expression, compared to freshly isolated cells. Proliferation, gene expression profile and matrix production in both culture conditions were compared using primary bovine NP cells. Both standard culture and continuous culture produced clinically relevant cell populations. However, continuous culture cells maintained significantly higher collagen type II, aggrecan and CHAD transcript expression levels. Also, continuous expansion cells generated greater amounts of proteoglycan, collagen type II and aggrecan protein deposition in pellet cultures. To our surprise, continuous expansion of human intervertebral disc cells – isolated from acute herniation tissue – produced less collagen type II, aggrecan and CHAD genes and proteins, compared to standard culture. Also, continuous culture of cells isolated from young non-degenerate tissue did not preserve gene and protein expression, compared to standard culture. These data indicated that primary bovine and human NP cells responded differently to continuous culture, where the positive effects observed for bovine cells did not translate to human cells. Therefore, caution must be exercised when choosing animal models and cell sources for pre-clinical studies.

  15. Proteome analysis of functionally differentiated bovine (Bos indicus) mammary epithelial cells isolated from milk

    KAUST Repository

    Janjanam, Jagadeesh

    2013-10-01

    Mammary gland is made up of a branching network of ducts that end in alveoli. Terminally differentiated mammary epithelial cells (MECs) constitute the innermost layer of aveoli. They are milk-secreting cuboidal cells that secrete milk proteins during lactation. Little is known about the expression profile of proteins in the metabolically active MECs during lactation or their functional role in the lactation process. In the present investigation, we have reported the proteome map of MECs in lactating cows using 2DE MALDI-TOF/TOF MS and 1D-Gel-LC-MS/MS. MECs were isolated from milk using immunomagnetic beads and confirmed by RT-PCR and Western blotting. The 1D-Gel-LC-MS/MS and 2DE-MS/MS based approaches led to identification of 431 and 134 proteins, respectively, with a total of 497 unique proteins. Proteins identified in this study were clustered into functional groups using bioinformatics tools. Pathway analysis of the identified proteins revealed 28 pathways (p < 0.05) providing evidence for involvement of various proteins in lactation function. This study further provides experimental evidence for the presence of many proteins that have been predicted in annotated bovine genome. The data generated further provide a set of bovine MEC-specific proteins that will help the researchers to understand the molecular events taking place during lactation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway.

    Science.gov (United States)

    Sun, Xudong; Yuan, Xue; Chen, Liang; Wang, Tingting; Wang, Zhe; Sun, Guoquan; Li, Xiaobing; Li, Xinwei; Liu, Guowen

    2017-01-01

    Subacute ruminal acidosis (SARA) is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) cultured in different pH medium (pH 7.2 or 5.5). qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2) and acidic (pH=5.5) medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1β), thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    Directory of Open Access Journals (Sweden)

    Sharma Shikhar

    2012-01-01

    Full Text Available Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a is not essential for maintenance of DNA methylation in somatic cells. Knockdown of G9a has no measurable effect on DNA methylation levels at G9a-target loci. DNMT3A/3B remain stably anchored to nucleosomes containing methylated DNA even in the absence of G9a, ensuring faithful propagation of methylated states in cooperation with DNMT1 through somatic divisions. Moreover, G9a also associates with nucleosomes in a DNMT3A/3B and DNA methylation-independent manner. However, G9a knockdown synergizes with pharmacologic inhibition of DNMTs resulting in increased hypomethylation and inhibition of cell proliferation. Conclusions Taken together, these data suggest that G9a is not involved in maintenance of DNA methylation in somatic cells but might play a role in re-initiation of de novo methylation after treatment with hypomethylating drugs, thus serving as a potential target for combinatorial treatments strategies involving DNMTs inhibitors.

  18. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland

    Directory of Open Access Journals (Sweden)

    Meredith Brian K

    2012-03-01

    Full Text Available Abstract Background Contemporary dairy breeding goals have broadened to include, along with milk production traits, a number of non-production-related traits in an effort to improve the overall functionality of the dairy cow. Increased indirect selection for resistance to mastitis, one of the most important production-related diseases in the dairy sector, via selection for reduced somatic cell count has been part of these broadened goals. A number of genome-wide association studies have identified genetic variants associated with milk production traits and mastitis resistance, however the majority of these studies have been based on animals which were predominantly kept in confinement and fed a concentrate-based diet (i.e. high-input production systems. This genome-wide association study aims to detect associations using genotypic and phenotypic data from Irish Holstein-Friesian cattle fed predominantly grazed grass in a pasture-based production system (low-input. Results Significant associations were detected for milk yield, fat yield, protein yield, fat percentage, protein percentage and somatic cell score using separate single-locus, frequentist and multi-locus, Bayesian approaches. These associations were detected using two separate populations of Holstein-Friesian sires and cows. In total, 1,529 and 37 associations were detected in the sires using a single SNP regression and a Bayesian method, respectively. There were 103 associations in common between the sires and cows across all the traits. As well as detecting associations within known QTL regions, a number of novel associations were detected; the most notable of these was a region of chromosome 13 associated with milk yield in the population of Holstein-Friesian sires. Conclusions A total of 276 of novel SNPs were detected in the sires using a single SNP regression approach. Although obvious candidate genes may not be initially forthcoming, this study provides a preliminary framework

  19. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland

    Science.gov (United States)

    2012-01-01

    Background Contemporary dairy breeding goals have broadened to include, along with milk production traits, a number of non-production-related traits in an effort to improve the overall functionality of the dairy cow. Increased indirect selection for resistance to mastitis, one of the most important production-related diseases in the dairy sector, via selection for reduced somatic cell count has been part of these broadened goals. A number of genome-wide association studies have identified genetic variants associated with milk production traits and mastitis resistance, however the majority of these studies have been based on animals which were predominantly kept in confinement and fed a concentrate-based diet (i.e. high-input production systems). This genome-wide association study aims to detect associations using genotypic and phenotypic data from Irish Holstein-Friesian cattle fed predominantly grazed grass in a pasture-based production system (low-input). Results Significant associations were detected for milk yield, fat yield, protein yield, fat percentage, protein percentage and somatic cell score using separate single-locus, frequentist and multi-locus, Bayesian approaches. These associations were detected using two separate populations of Holstein-Friesian sires and cows. In total, 1,529 and 37 associations were detected in the sires using a single SNP regression and a Bayesian method, respectively. There were 103 associations in common between the sires and cows across all the traits. As well as detecting associations within known QTL regions, a number of novel associations were detected; the most notable of these was a region of chromosome 13 associated with milk yield in the population of Holstein-Friesian sires. Conclusions A total of 276 of novel SNPs were detected in the sires using a single SNP regression approach. Although obvious candidate genes may not be initially forthcoming, this study provides a preliminary framework upon which to identify the

  20. Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment.

    Science.gov (United States)

    Hammami, H; Bormann, J; M'hamdi, N; Montaldo, H H; Gengler, N

    2013-03-01

    This study was aimed to evaluate the degree of thermal stress exhibited by Holsteins under a continental temperate climate. Milk, fat, protein, and somatic cell count test-day records collected between 2000 and 2011 from 23,963 cows in 604 herds were combined with meteorological data from 14 public weather stations in Luxembourg. Daily values of 6 different thermal indices (TI) weighted in term of temperature, relative humidity, solar radiation, and wind speed were calculated by averaging hourly TI over 24h. Heat stress thresholds were first identified by a broken-line regression model. Regression models were thereafter applied to quantify milk production losses due to heat stress. The tipping points at which milk and protein yields declined were effectively identified. For fat yield, no valid threshold was identified for any of the studied TI. Daily fat yields tended to decrease steadily with increasing values of TI. Daily somatic cell score patterns were marked by increased values at both lowest and highest TI ranges, with a more pronounced reaction to cold stress for apparent temperature indices. Thresholds differed between TI and traits. For production traits, they ranged from 62 (TI(1)) to 80 (TI(3)) for temperature-humidity indices (THI) and from 16 (TI(5)) to 20 (TI(6)) for apparent temperature indices. Corresponding somatic cell score thresholds were higher and ranged from 66 (TI(1)) to 82 (TI(3)) and from 20 (TI(5)) to 23 (TI(6)), respectively. The largest milk decline per unit of mild, moderate, and extreme heat stress levels of 0.164, 0.356, and 0.955 kg, respectively, was observed when using the conventional THI (TI(1)). The highest yearly milk, fat, and protein losses of 54, 5.7, and 4.2 kg, respectively, were detected by TI(2), the THI index that is adjusted for wind speed and solar radiation. The latter index could be considered as the best indicator of heat stress to be used for forecast and herd management in a first step in temperate regions under

  1. Pluripotency maintenance in mouse somatic cell nuclear transfer embryos and its improvement by treatment with the histone deacetylase inhibitor TSA.

    Science.gov (United States)

    Hai, Tang; Hao, Jie; Wang, Liu; Jouneau, Alice; Zhou, Qi

    2011-02-01

    Reprogramming of somatic cells to pluripotency can be achieved by nuclear transfer into enucleated oocytes (SCNT). A key event of this process is the demethylation of the Oct4 gene and its temporally and spatially regulated expression. Different studies have shown that it occurs abnormally in some SCNT embryos. TSA is a histone deacetylase inhibitor known to increase the efficiency of development to term of SCNT embryos, but its impact on the developmental features of SCNT embryos is poorly understood. Here, we have followed the fate of the pluripotent cells within SCNT embryos, from the late blastocyst to the early epiblast prior to gastrulation. Our data show a delay in development correlated with a defect in forming and maintaining a correct number of Oct4 expressing ICM and epiblast cells in SCNT embryos. As a consequence, during the outgrowth phase of embryonic stem cell derivation as well as during diapause in vivo, part of the SCNT blastocysts completely lose their ICM cells. Meanwhile, the others display a correctly reprogrammed ICM compatible with the derivation of ES cells and development of the epiblast. Our data also indicate that TSA favors the establishment of pluripotency in SCNT embryos.

  2. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    DEFF Research Database (Denmark)

    Østrup, Olga; Hyttel, Poul; Klærke, Dan Arne

    2011-01-01

    Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression....... This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling...... and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation...

  3. Developmental disparity between in vitro-produced and somatic cell nuclear transfer bovine days 14 and 21 embryos

    DEFF Research Database (Denmark)

    Alexopoulos, Natalie I.; Maddox-Hyttel, Poul; Tveden-Nyborg, Pernille Yde

    2008-01-01

    , immunohistochemistry, and transmission electron microscopy to establish in vivo developmental milestones. Following morphological examination, samples were characterized for the presence of epiblast (POU5F1), mesoderm (VIM), and neuroectoderm (TUBB3). On D14, only 25, 15, and 7% of IVP, SUZI, and HMC embryos were...

  4. Isolation and characterization of a spontaneously immortalized bovine retinal pigmented epithelial cell line

    Directory of Open Access Journals (Sweden)

    Griffiths T Daniel

    2009-05-01

    Full Text Available Abstract Background The Retinal Pigmented Epithelium (RPE is juxtaposed with the photoreceptor outer segments of the eye. The proximity of the photoreceptor cells is a prerequisite for their survival, as they depend on the RPE to remove the outer segments and are also influenced by RPE cell paracrine factors. RPE cell death can cause a progressive loss of photoreceptor function, which can diminish vision and, over time, blindness ensues. Degeneration of the retina has been shown to induce a variety of retinopathies, such as Stargardt's disease, Cone-Rod Dystrophy (CRD, Retinitis Pigmentosa (RP, Fundus Flavimaculatus (FFM, Best's disease and Age-related Macular Degeneration (AMD. We have cultured primary bovine RPE cells to gain a further understanding of the mechanisms of RPE cell death. One of the cultures, named tRPE, surpassed senescence and was further characterized to determine its viability as a model for retinal diseases. Results The tRPE cell line has been passaged up to 150 population doublings and was shown to be morphologically similar to primary cells. They have been characterized to be of RPE origin by reverse transcriptase PCR and immunocytochemistry using the RPE-specific genes RPE65 and CRALBP and RPE-specific proteins RPE65 and Bestrophin. The tRPE cells are also immunoreactive to vimentin, cytokeratin and zonula occludens-1 antibodies. Chromosome analysis indicates a normal diploid number. The tRPE cells do not grow in suspension or in soft agar. After 3H thymidine incorporation, the cells do not appear to divide appreciably after confluency. Conclusion The tRPE cells are immortal, but still exhibit contact inhibition, serum dependence, monolayer growth and secrete an extra-cellular matrix. They retain the in-vivo morphology, gene expression and cell polarity. Additionally, the cells endocytose exogenous melanin, A2E and purified lipofuscin granules. This cell line may be a useful in-vitro research model for retinal

  5. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun

    2014-01-01

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further

  6. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  7. The effect of antibody on the adherence of Staphylococcus aureus to bovine mammary epithelial cells

    International Nuclear Information System (INIS)

    Olmsted, S.B.

    1989-01-01

    The ability of S. aureus to adhere to epithelial cells in the ductuals and alveoli of the gland is believed to add greatly to its virulence and may be necessary for colonization. Two in vitro methods were developed for the purpose of quantifying adherence. Both methods utilize bovine mammary epithelial primary cells as targets for labeled bacteria. In one assay, the bacterial are labeled with [methyl- 3 H] thymidine, and incubated on the primary epithelial monolayers. Adherence of the bacterial sample is expressed as the percent radioactivity in the adherent fraction of the total radioactivity in both fractions. The second assay involves labeling the bacteria with biotin. An enzyme-linked immunosorbent assay (ELISA) is then performed with strepavidin conjugated to horseradish peroxidase. Both methods have proven to be reliable, and allow for the testing of many criteria in one assay

  8. Cell patterning without chemical surface modification: Cell cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel

    Science.gov (United States)

    Chen, C. Y.; Barron, J. A.; Ringeisen, B. R.