WorldWideScience

Sample records for bovine somatic cell

  1. Generation of bovine transgenics using somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Stice Steven L

    2003-11-01

    Full Text Available Abstract The ability to produce transgenic animals through the introduction of exogenous DNA has existed for many years. However, past methods available to generate transgenic animals, such as pronuclear microinjection or the use of embryonic stem cells, have either been inefficient or not available in all animals, bovine included. More recently somatic cell nuclear transfer has provided a method to create transgenic animals that overcomes many deficiencies present in other methods. This review summarizes the benefits of using somatic cell nuclear transfer to create bovine transgenics as well as the possible opportunities this method creates for the future.

  2. Generation of bovine transgenics using somatic cell nuclear transfer

    OpenAIRE

    Stice Steven L; Hodges Craig A

    2003-01-01

    Abstract The ability to produce transgenic animals through the introduction of exogenous DNA has existed for many years. However, past methods available to generate transgenic animals, such as pronuclear microinjection or the use of embryonic stem cells, have either been inefficient or not available in all animals, bovine included. More recently somatic cell nuclear transfer has provided a method to create transgenic animals that overcomes many deficiencies present in other methods. This revi...

  3. Relationship between lactoferrin, minerals, and somatic cells in bovine milk

    OpenAIRE

    Soyeurt, Hélène; Arnould, Valérie; Bruwier, Damien; Dardenne, Pierre; Romnee, Jean-Michel; Gengler, Nicolas

    2008-01-01

    Selection for increased mastitis resistance is hampered by lack of available data. Currently, somatic cell count or score are proven indicators. However, it should be a priority to increase the number of available indicator traits for mastitis resistance. The aim of this research was to study the relationships among potential indicator traits as lactoferrin content, concentrations of major minerals in milk (calcium, Ca; sodium, Na; phosphore, P), and somatic cell count. Firs...

  4. Somatic cell bovine cloning: Effect of donor cell and recipients

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Adult somatic cell nuclear transfer was conducted by using cultured ear fibroblast cells obtained from a Holstein female cow (GN) and a Galoway herd bull (GLV). The percentages of reconstructed eggs developed into blastocysts were similar in GN (23.98%, 123 of 513) and in GLV groups (29.55%, 138 of 467). However, the rate of reconstructed female (GN) embryos developed into term was higher than that of male (GLV) (8.02% and 1.82%, respectively). Three kinds of cows, Luxi Yellow cows, Holstein heifers and Holstein cows with normal reproductive records were used as recipients. When the reconstructed embryos from GN were transferred, there was no difference in the pregnancy rate among three kinds of recipients, but the abortion rate of Luxi Yellow cows was significantly higher (85.71%) than in the other two groups (14.29% and 0%, respectively; P < 0.05). And the percentages of newborn calves in transferred embryos were significantly different between Luxi Yellow cows and Holstein breed (1.54%, 10.39% and 20.0%, respectively, P < 0.05). However, when reconstructed embryos from GLV were transferred, there was no difference among three kinds of recipients in the pregnancy rate, the abortion rate and the delivery rate.

  5. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    OpenAIRE

    Page Grier P; Kasinathan Poothappillai; Wang Zhongde; Rodriguez-Osorio Nelida; Robl James M; Memili Erdogan

    2009-01-01

    Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT) is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clo...

  6. Transcriptional Reprogramming of Gene Expression in Bovine Somatic Cell Chromatin Transfer Embryos

    OpenAIRE

    Rodriguez-Osorio, N.; Wang, Zhongde; Page, G. P.; Robl, J M; Memili, E.

    2009-01-01

    Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT) is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from ...

  7. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  8. Full-term development of gaur-bovine interspecies somatic cell nuclear transfer embryos: effect of trichostatin A treatment.

    Science.gov (United States)

    Srirattana, Kanokwan; Imsoonthornruksa, Sumeth; Laowtammathron, Chuti; Sangmalee, Anawat; Tunwattana, Wanchai; Thongprapai, Thamnoon; Chaimongkol, Chockchai; Ketudat-Cairns, Mariena; Parnpai, Rangsun

    2012-06-01

    Trichostatin A (TSA) has previously been used in somatic cell nuclear transfer (SCNT) to improve the cloning efficiency in several species, which led our team to investigate the effects of TSA on the full-term development of bovine SCNT and gaur-bovine interspecies SCNT (gaur iSCNT; gaur somatic cells as donors and bovine oocytes as recipients) embryos. Treatment with 50 nM TSA for 10 h after fusion had no positive effects on the rates of fusion, cleavage, or the development to eight-cell or morula stages in both bovine SCNT and gaur iSCNT embryos. However, TSA treatment significantly enhanced the blastocyst formation rate in bovine SCNT embryos (44 vs. 32-34% in the TSA-treated and TSA-untreated groups, respectively), but had no effects on gaur iSCNT embryos. The fresh blastocysts derived from bovine SCNT and gaur iSCNT embryos (fresh groups), as well as vitrified bovine SCNT blastocysts (vitrified group), were transferred to bovine recipients. We found that TSA treatment increased the pregnancy rates only in recipients receiving fresh bovine SCNT embryos. In recipients receiving TSA-treated bovine SCNT embryos, three cloned calves from the fresh group and twin cloned calves from the vitrified group were delivered; however, no calf was born from the TSA-untreated bovine SCNT embryos. In contrast, one gaur iSCNT calf was born from a recipient receiving blastocysts from the TSA-untreated group. In summary, TSA improved the preimplantation development and pregnancy rates of bovine SCNT embryos, but did not have any beneficial effect on gaur iSCNT embryos. However, one gaur iSCNT calf reached full-term development. PMID:22578161

  9. Improving the development of early bovine somatic-cell nuclear transfer embryos by treating adult donor cells with vitamin C.

    Science.gov (United States)

    Chen, Huanhuan; Zhang, Lei; Guo, Zekun; Wang, Yongsheng; He, Rongjun; Qin, Yumin; Quan, Fusheng; Zhang, Yong

    2015-11-01

    Vitamin C (Vc) has been widely studied in cell and embryo culture, and has recently been demonstrated to promote cellular reprogramming. The objective of this study was to identify a suitable Vc concentration that, when used to treat adult bovine fibroblasts serving as donor cells for nuclear transfer, improved donor-cell physiology and the developmental potential of the cloned embryos that the donor nuclei were used to create. A Vc concentration of 0.15 mM promoted cell proliferation and increased donor-cell 5-hydroxy methyl cytosine levels 2.73-fold (P DNA methylation levels in donor cells, and improves the developmental competence of bovine somatic-cell nuclear transfer embryos. PMID:26212732

  10. Effective Oocyte Vitrification and Survival Techniques for Bovine Somatic Cell Nuclear Transfer.

    Science.gov (United States)

    Park, Min Jee; Lee, Seung Eun; Kim, Eun Young; Lee, Jun Beom; Jeong, Chang Jin; Park, Se Pill

    2015-06-01

    Bovine somatic cell nuclear transfer (SCNT) using vitrified-thawed (VT) oocytes has been studied; however, the cloning efficiency of these oocytes is not comparable with that of nonvitrified (non-V) fresh oocytes. This study sought to optimize the survival and cryopreservation of VT oocytes for SCNT. Co-culture with feeder cells that had been preincubated for 15 h significantly improved the survival of VT oocytes and their in vitro developmental potential following SCNT in comparison to co-culture with feeder cells that had been preincubated for 2, 5, or 24 h (pEVT) group, 13.7%; VT group, 15.0%; p<0.05] and was comparable with that of the non-V group (25.9%). The reactive oxygen species level was significantly lower in the EAVT group than in the other vitrification groups (p<0.05). mRNA levels of maternal genes (ZAR1, BMP15, and NLRP5) and a stress gene (HSF1) were lower in the vitrification groups than in the non-V group (p<0.05), whereas the level of phospho-p44/42 mitogen-activated protein kinase did not differ among the groups. Among the vitrification groups, blastocysts in the EAVT group had the best developmental potential, as judged by their high mRNA expression of developmental potential-related genes (POU5f1, Interferon-tau, and SLC2A5) and their low expression of proapoptotic (CASP3) and stress (Hsp70) genes. This study demonstrates that SCNT using bovine frozen-thawed oocytes can be successfully achieved using optimized vitrification and co-culture techniques. PMID:25984830

  11. Effects of Insulin-like Growth Factor-1 on Development of Somatic Cell Cloned Bovine Embryos.

    Science.gov (United States)

    Qu, Pengxiang; Li, Yanyan; Deng, Tengfei; Jia, Dan; Qing, Suzhu; Su, Jianmin; Zhang, Yong; Wang, Yongsheng

    2016-06-01

    The aim of this study was to assess the effect of insulin-like growth factor-1 (IGF-1) on the developmental competence of somatic cell nuclear transfer (SCNT) bovine embryos. First, the expression levels of IGF-1 receptor (IGF-1R) and IGF-1 in the oocytes and embryos of different developmental stages were examined. Then the effects of exogenous IGF-1 on the development of SCNT embryos were evaluated both in vitro and in vivo. The results showed that IGF-1 was not expressed in both IVF and SCNT embryos, whereas IGF-1R could be detected throughout the preimplantation stages in both protein and mRNA levels. Also, exogenous IGF-1 had no obvious impact on the developmental competence of IVF embryos. However, it could improve the developmental competence of SCNT embryos in terms of blastocyst developmental rate (31.3% vs. 43.2%, p < 0.05), total cell number (93.0 ± 9.9 vs. 101.0 ± 9.8, p < 0.05), ratio of inner cell mass (ICM) to trophectoderm (TE) (0.29 ± 0.006 vs. 0.39 ± 0.005, p < 0.05), and apoptosis index in day 7 blastocysts (2.5 ± 0.22 vs. 8.7 ± 0.41, p < 0.05) compared to the control group. Although no statistical difference in pregnancy rate and birth rate was observed after embryo transfer, there was an upward tendency in both examined terms in the IGF-1-supplemented group when compared with the control group. In conclusion, the present study showed that supplementing exogenous IGF-1 to the culture medium has an obvious positive effect on the development competence of SCNT embryos. PMID:27135251

  12. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model

    Science.gov (United States)

    Ma, Li-bing; He, Xiao-ning; Si, Wan-tong; Zheng, Yue-Mao

    2016-01-01

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos. PMID:26243608

  13. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model.

    Science.gov (United States)

    He, Xiao-Ying; Ma, Li-Bing; He, Xiao-Ning; Si, Wan-Tong; Zheng, Yue-Mao

    2016-06-30

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos. PMID:26243608

  14. DNA methylation status of H19 and Xist genos in lungs of somatic cell nuclear transfer bovines

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; LI DongJie; LIU YanQin; ZHANG Cui; DAI YunPing; LI ShiJie; LINing

    2008-01-01

    In somatic cell nuclear transfer (SCNT) technologies, the donor cell's nuclei need to be epigenetically reprogrammed for embryonic development. The incomplete reprogramming of donor cell nuclei has been implicated as a primary reason for the low efficiency of SCNT. DNA methylation is a major epige- netic modification of the genome that regulates crucial aspects of genome function, including estab-lishment of genomic imprinting. In order to make sure whether the DNA methylation reprogramming is efficient in SCNT animals, we analyzed the DNA methylation status of two imprinting genes, H19 and Xist, in lungs of deceased SCNT bovines that died within 48 h of birth using bisulfite sequencing analysis. Our findings demonstrated that cloned bovines showed significantly lower DNA methylation of H19 than controls (P<0.05), and three tested CpGs sites (1, 2, 3) exhibited unmethylation in one cloned bovine (9C3); however, Xist showed similar DNA methylation levels between clones and con- trols, and both showed hypermethylation (96.11% and 86.67%).

  15. Nucleologenesis and embryonic genome activation are defective in interspecies cloned embryos between bovine ooplasm and rhesus monkey somatic cells

    Directory of Open Access Journals (Sweden)

    Han Yong-Mahn

    2009-07-01

    Full Text Available Abstract Background Interspecies somatic cell nuclear transfer (iSCNT has been proposed as a tool to address basic developmental questions and to improve the feasibility of cell therapy. However, the low efficiency of iSCNT embryonic development is a crucial problem when compared to in vitro fertilization (IVF and intraspecies SCNT. Thus, we examined the effect of donor cell species on the early development of SCNT embryos after reconstruction with bovine ooplasm. Results No apparent difference in cleavage rate was found among IVF, monkey-bovine (MB-iSCNT, and bovine-bovine (BB-SCNT embryos. However, MB-iSCNT embryos failed to develop beyond the 8- or 16-cell stages and lacked expression of the genes involved in embryonic genome activation (EGA at the 8-cell stage. From ultrastructural observations made during the peri-EGA period using transmission electron microscopy (TEM, we found that the nucleoli of MB-iSCNT embryos were morphologically abnormal or arrested at the primary stage of nucleologenesis. Consistent with the TEM analysis, nucleolar component proteins, such as upstream binding transcription factor, fibrillarin, nucleolin, and nucleophosmin, showed decreased expression and were structurally disorganized in MB-iSCNT embryos compared to IVF and BB-SCNT embryos, as revealed by real-time PCR and immunofluorescence confocal laser scanning microscopy, respectively. Conclusion The down-regulation of housekeeping and imprinting genes, abnormal nucleolar morphology, and aberrant patterns of nucleolar proteins during EGA resulted in developmental failure in MB-iSCNT embryos. These results provide insight into the unresolved problems of early embryonic development in iSCNT embryos.

  16. Targeting exogenous GDNF gene to the bovine somatic cell beta-casein locus for the production of transgenic bovine animals.

    Science.gov (United States)

    Zhang, X M; Luo, F H; Ding, H M; Li, B; Zhang, J J; Wu, Y J

    2015-01-01

    Considerable attention is currently being directed toward methods for producing recombinant human proteins in the mammary glands of genetically modified transgenic livestock. However, the expression of inserted genes in transgenic animals is variable and often very low because of the randomness of the site of transgene integration. One possible strategy to avoid the expression problem associated with random integration is to use site-specific integration by targeting integration to a high expression locus and, thereby, to improve expression of the transferred gene. In the present study, we focused on glial cell line-derived neurotrophic factor (GDNF), a novel type of neurotrophic factor first cloned in 1993. Research has shown that GDNF may have potential applications in the treatment of Parkinson's disease and other diseases of the central nervous system since it acts as a protective factor for central dopaminergic neurons. Here, we constructed a gene targeting vector to knock-in the human GDNF gene at the bovine beta-casein gene locus as a first step to producing transgenic animals with a high level of expression of human GDNF protein in their mammary glands. Bovine fetal fibroblast cells were transfected with linearized pNRTCNbG by electroporation. Three cell clones were identified with successful targeting to the beta-casein locus; and were confirmed using both polymerase chain reaction analysis and sequencing. Gene-targeted cells were used as nuclear donors; a total of 161 embryos were reconstructed, 23 of which developed to the blastocyst stage. These blastocysts were transferred to 8 recipient cows, but no offspring were obtained. PMID:26634460

  17. In Vitro Developmental Potential of Cloned Embryos Derived from Bovine Somatic Cells and Rabbits Oocyte

    Institute of Scientific and Technical Information of China (English)

    LIU Ya; LI Bin; ZHAO Huan; CHENG Li-zi; ZHANG Xiao-rong; CHEN Da-yuan; ZHANG Yun-hai; ZHANG Zhi-guo; JING Ren-tao; WANG Cun-li; ZHANG Mei-lin; LI Dong-wei

    2003-01-01

    180 reconstituted embryos were produced by nuclear transplantation using bovine ear fibroblasts at G0 or non-G0 stage as donor nuclei and oocytes collected from superovulated multiparous or young rabbits as recipients. After cultivation in two kinds of medium M199+ 10%FBS or RD+ 10%FBS, 112 of them developed to 2-cell stage (62.2%) and 26 to morula stage (14.4%) and 20 of them eventually developed to blastocyst stage (11. 1% ). There is no significant difference for the cleavage rates in two groups of reconstituted embryos derived from G0-stage and non-G0 stage donor cells respectively. However, G0-stage donor cells could result in higher rate of 8-cell - 16-cell stage embryos significantly (P<0.05), as well as higher rate of blastocysts (P<0.01). It seems that using two different culture systems had no significant effects on the cleavage rate, morula rate or blastocyst rate (P>0.05).

  18. Different screening tests and milk somatic cell count for the prevalence of subclinical bovine mastitis in Bangladesh.

    Science.gov (United States)

    Hoque, Md Nazmul; Das, Ziban Chandra; Talukder, Anup Kumar; Alam, Mohammad Shah; Rahman, Abu Nasar Md Aminoor

    2015-01-01

    Identification of cows with subclinical mastitis (SCM) is an important tool for sustainable dairying and implementing effective mastitis control strategies. A total of 892 quarters milk samples from 228 lactating cows were screened by California mastitis test (CMT), White side test (WST), Surf field mastitis test (SFMT), and somatic cell count (SCC) to study the prevalence of bovine SCM in some selected areas of Bangladesh. Out of 228 cows, 148 (64.9%), 138 (60.5%), 132 (57.9%), and 164 (71.9%) were found positive for SCM by CMT, WST, SFMT, and SCC, respectively. The prevalence of bovine SCM was diagnosed 45.7, 40.2, 36.6, and 29.6% in Chittagong, Sirajgonj, Mymensingh, and Gazipur districts, respectively, based on a combination of all tests. The overall quarter-wise prevalence of SCM was 45.7, 43.5, 41.2, and 55.0% for CMT, WST, SFMT, and SCC. Single quarters and left front quarters were more prone to SCM (P CMT, WST, SFMT, and SCC was 65.8, 57.9, 51.0, and 82.5%; specificity 76.2, 72.4, 69.5, and 89.4%; percentage accuracy 70.0, 64.8, 59.9, and 85.2%; positive predictive value 75.2, 69.8, 64.9, and 92.7%, respectively. The categories of CMT reactions were strongly correlated with SCC (P tests (SCC>CMT>WST>SFMT). Thus, CMT was concluded to be the most accurate (r = 0.782) field diagnostic test after laboratory test like SCC (r = 0.924). However, the use of any single test may not be reliable in diagnosing SCM, while the result of CMT supported by SCC might be used effectively to pinpoint diagnosis of SCM in dairy animals than alone. PMID:25326717

  19. Short communication: Genetic correlation of bovine leukosis incidence with somatic cell score and milk yield in a US Holstein population.

    Science.gov (United States)

    Abdalla, E A; Weigel, K A; Byrem, T M; Rosa, G J M

    2016-03-01

    Bovine leukosis (BL) is a retroviral disease caused by the bovine leukosis virus (BLV), which affects only cattle. Dairy cows positive for BL produce less milk and have more days open than cows negative for BL. In addition, the virus also affects the immune system and causes weaker response to vaccines. Heritability estimates of BL incidence have been reported for Jersey and Holstein populations at about 0.08, indicating an important genetic component that can potentially be exploited to reduce the prevalence of the disease. However, before BL is used in selection programs, it is important to study its genetic associations with other economically important traits such that correlated responses to selection can be predicted. Hence, this study aimed to estimate the genetic correlations of BL with milk yield (MY) and with somatic cell score (SCS). Data of a commercial assay (ELISA) used to detect BLV antibodies in milk samples were obtained from Antel BioSystems (Lansing, MI). The data included continuous milk ELISA scores and binary milk ELISA results for 11,554 cows from 112 dairy herds across 16 US states. Continuous and binary milk ELISA were analyzed with linear and threshold models, respectively, together with MY and SCS using multitrait animal models. Genetic correlations (posterior means ± standard deviations) between BL incidence and MY were 0.17±0.077 and 0.14±0.076 using ELISA scores and results, respectively; with SCS, such estimates were 0.20±0.081 and 0.17±0.079, respectively. In summary, the results indicate that selection for higher MY may lead to increased BLV prevalence in dairy herds, but that the inclusion of BL (or SCS as an indicator trait) in selection indexes may help attenuate this problem. PMID:26778307

  20. Investigation of risk factors of bovine mastitis in Ethiopia; Isolation of mastitis causing agents and determination of the content of somatic cells in milk

    OpenAIRE

    Frese, Mathias Lutz

    2010-01-01

    In this thesis, the risk factors of bovine mastitis in different milk production systems in Ethiopia were investigated. Furthermore, mastitis causing agents were isolated after California Mastitis Test (CMT) was used as the field test. Somatic cells were counted and compared with the CMT. Low milk production and low quality of milk are apparently related to a lack of proper hygienic measures throughout the farm clusters.

  1. Astaxanthin Normalizes Epigenetic Modifications of Bovine Somatic Cell Cloned Embryos and Decreases the Generation of Lipid Peroxidation.

    Science.gov (United States)

    Li, R; Wu, H; Zhuo, W W; Mao, Q F; Lan, H; Zhang, Y; Hua, S

    2015-10-01

    Astaxanthin is an extremely common antioxidant scavenging reactive oxygen species (ROS) and blocking lipid peroxidation. This study was conducted to investigate the effects of astaxanthin supplementation on oocyte maturation, and development of bovine somatic cell nuclear transfer (SCNT) embryos. Cumulus-oocyte complexes were cultured in maturation medium with astaxanthin (0, 0.5, 1.0, or 1.5 mg/l), respectively. We found that 0.5 mg/l astaxanthin supplementation significantly increased the proportion of oocyte maturation. Oocytes cultured in 0.5 mg/l astaxanthin supplementation were used to construct SCNT embryos and further cultured with 0, 0.5, 1.0 or 1.5 mg/l astaxanthin. The results showed that the supplementation of 0.5 mg/l astaxanthin significantly improved the proportions of cleavage and blastulation, as well as the total cell number in blastocysts compared with the control group, yet this influence was not concentration dependent. Chromosomal analyses revealed that more blastomeres showed a normal chromosomal complement in 0.5 mg/l astaxanthin treatment group, which was similar to that in IVF embryos. The methylation levels located on the exon 1 of the imprinted gene H19 and IGF2, pluripotent gene OCT4 were normalized, and global DNA methylation, H3K9 and H4K12 acetylation were also improved significantly, which was comparable to that in vitro fertilization (IVF) embryos. Moreover, we also found that astaxanthin supplementation significantly decreased the level of lipid peroxidation. Our findings showed that the supplementation of 0.5 mg/l astaxanthin to oocyte maturation medium and embryo culture medium improved oocyte maturation, SCNT embryo development, increased chromosomal stability and normalized the epigenetic modifications, as well as inhibited overproduction of lipid peroxidation. PMID:26280670

  2. Replication of somatic micronuclei in bovine enucleated oocytes

    Directory of Open Access Journals (Sweden)

    Canel Natalia

    2012-11-01

    Full Text Available Abstract Background Microcell-mediated chromosome transfer (MMCT was developed to introduce a low number of chromosomes into a host cell. We have designed a novel technique combining part of MMCT with somatic cell nuclear transfer, which consists of injecting a somatic micronucleus into an enucleated oocyte, and inducing its cellular machinery to replicate such micronucleus. It would allow the isolation and manipulation of a single or a low number of somatic chromosomes. Methods Micronuclei from adult bovine fibroblasts were produced by incubation in 0.05 μg/ml demecolcine for 46 h followed by 2 mg/ml mitomycin for 2 h. Cells were finally treated with 10 μg/ml cytochalasin B for 1 h. In vitro matured bovine oocytes were mechanically enucleated and intracytoplasmatically injected with one somatic micronucleus, which had been previously exposed [Micronucleus- injected (+] or not [Micronucleus- injected (−] to a transgene (50 ng/μl pCX-EGFP during 5 min. Enucleated oocytes [Enucleated (+] and parthenogenetic [Parthenogenetic (+] controls were injected into the cytoplasm with less than 10 pl of PVP containing 50 ng/μl pCX-EGFP. A non-injected parthenogenetic control [Parthenogenetic (−] was also included. Two hours after injection, oocytes and reconstituted embryos were activated by incubation in 5 μM ionomycin for 4 min + 1.9 mM 6-DMAP for 3 h. Cleavage stage and egfp expression were evaluated. DNA replication was confirmed by DAPI staining. On day 2, Micronucleus- injected (−, Parthenogenetic (− and in vitro fertilized (IVF embryos were karyotyped. Differences among treatments were determined by Fisher′s exact test (p≤0.05. Results All the experimental groups underwent the first cell divisions. Interestingly, a low number of Micronucleus-injected embryos showed egfp expression. DAPI staining confirmed replication of micronuclei in most of the evaluated embryos. Karyotype analysis revealed that all Micronucleus-injected embryos had

  3. Lowering storage temperature during ovary transport is beneficial to the developmental competence of bovine oocytes used for somatic cell nuclear transfer.

    Science.gov (United States)

    Wang, Y S; Zhao, X; Su, J M; An, Z X; Xiong, X R; Wang, L J; Liu, J; Quan, F S; Hua, S; Zhang, Y

    2011-03-01

    The objective of this study was to determine the effect of storage temperature during ovary transport on the developmental competence of bovine oocytes for use in somatic cell nuclear transfer (SCNT). Ovaries obtained from a slaughterhouse were stored in physiological saline for 3-4h at one of the three temperatures: 15 °C, 25 °C, or 35 °C. The developmental competence of oocytes used for SCNT was ascertained by cleavage and blastocyst formation rate, total cell number, apoptosis index, and the relative abundance of Bax and Hsp70.1 in day 7 blastocysts. Ovaries stored at 35 °C for 3-4h reduced the recovery rate of grade I and II oocytes compared with those stored at 25 °C or 15 °C (45.1±0.7% vs. 76.7±1.2% or 74.8±2.0%, Povaries stored at 15 °C, however, produced blastocysts with higher cell numbers (97.3±8.6 vs. 80.2±10.8 or 77.4±11.7; Povaries stored at 15 °C was lower than those stored at 25 °C or 35 °C (Pquality and developmental competence of oocytes used for SCNT due to the alleviation of stresses on the oocytes compared with those subjected to storage temperatures of 25 °C or 35 °C. PMID:21333472

  4. Occurrence of genes coding for MSCRAMM and biofilm-associated protein Bap in Staphylococcus spp. isolated from bovine subclinical mastitis and relationship with somatic cell counts.

    Science.gov (United States)

    Zuniga, Eveline; Melville, Priscilla A; Saidenberg, André B S; Laes, Marco A; Gonsales, Fernanda F; Salaberry, Sandra R S; Gregori, Fabio; Brandão, Paulo E; dos Santos, Franklin G B; Lincopan, Nilton E; Benites, Nilson R

    2015-12-01

    This study aimed to elucidate aspects of the epidemiology of bovine subclinical mastitis through the assessment of genes encoding MSCRAMM (microbial surface components recognizing adhesive matrix molecules - a group of adhesins) and protein Bap (implicated in biofilm formation), in coagulase-positive (CPS) and coagulase-negative (CNS) Staphylococcus isolated from subclinical mastitis. Milk samples were collected for microbiological exams, somatic cell count (SCC) and a survey of the genes coding for MSCRAMM (cna, eno, ebpS, fnbA, fnbB and fib) and biofilm-associated protein Bap (bap) in 106 Staphylococcus spp. isolates using PCR. The frequencies of occurrence of eno (82.1%), fnbA (72.6%), fib (71.7%) and bap (56.6%) were higher (P < 0.0001) compared with the other assessed genes (cna, ebpS and fnbB). The higher frequency of occurrence (P < 0.005) of the bap gene in CNS compared with CPS suggests that in these species biofilm formation is an important mechanism for the persistence of the infection. The medians of the SCCs in the samples where eno, fnbA, fib and bap genes were detected were higher compared with Staphylococcus without the assessed genes (P < 0.05) and negative samples (P < 0.01), which indicated that the presence of these MSCRAMM may be related to a higher intensity of the inflammatory process. PMID:26318876

  5. Expression Profile of Genes as Indicators of Developmental Competence and Quality of In Vitro Fertilization and Somatic Cell Nuclear Transfer Bovine Embryos

    Science.gov (United States)

    Monteleone, Melisa Carolina; Mucci, Nicolas; Kaiser, German Gustavo; Brocco, Marcela; Mutto, Adrián

    2014-01-01

    Reproductive biotechnologies such as in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) enable improved reproductive efficiency of animals. However, the birth rate of in vitro-derived embryos still lags behind that of their in vivo counterparts. Thus, it is critical to develop an accurate evaluation and prediction system of embryo competence, both for commercial purposes and for scientific research. Previous works have demonstrated that in vitro culture systems induce alterations in the relative abundance (RA) of diverse transcripts and thus compromise embryo quality. The aim of this work was to analyze the RA of a set of genes involved in cellular stress (heat shock protein 70-kDa, HSP70), endoplasmic reticulum (ER) stress (immunoglobulin heavy chain binding protein, Bip; proteasome subunit β5, PSMB5) and apoptosis (BCL-2 associated X protein, Bax; cysteine aspartate protease-3, Caspase-3) in bovine blastocysts produced by IVF or SCNT and compare it with that of their in vivo counterparts. Poly (A) + mRNA was isolated from three pools of 10 blastocysts per treatment and analyzed by real-time RT-PCR. The RA of three of the stress indicators analyzed (Bax, PSMB5 and Bip) was significantly increased in SCNT embryos as compared with that of in vivo-derived blastocysts. No significant differences were found in the RA of HSP70 and Caspase-3 gene transcripts. This study could potentially complement morphological analyses in the development of an effective and accurate technique for the diagnosis of embryo quality, ultimately aiding to improve the efficiency of assisted reproductive techniques (ART). PMID:25269019

  6. Expression profile of genes as indicators of developmental competence and quality of in vitro fertilization and somatic cell nuclear transfer bovine embryos.

    Directory of Open Access Journals (Sweden)

    Maria Jesús Cánepa

    Full Text Available Reproductive biotechnologies such as in vitro fertilization (IVF and somatic cell nuclear transfer (SCNT enable improved reproductive efficiency of animals. However, the birth rate of in vitro-derived embryos still lags behind that of their in vivo counterparts. Thus, it is critical to develop an accurate evaluation and prediction system of embryo competence, both for commercial purposes and for scientific research. Previous works have demonstrated that in vitro culture systems induce alterations in the relative abundance (RA of diverse transcripts and thus compromise embryo quality. The aim of this work was to analyze the RA of a set of genes involved in cellular stress (heat shock protein 70-kDa, HSP70, endoplasmic reticulum (ER stress (immunoglobulin heavy chain binding protein, Bip; proteasome subunit β5, PSMB5 and apoptosis (BCL-2 associated X protein, Bax; cysteine aspartate protease-3, Caspase-3 in bovine blastocysts produced by IVF or SCNT and compare it with that of their in vivo counterparts. Poly (A + mRNA was isolated from three pools of 10 blastocysts per treatment and analyzed by real-time RT-PCR. The RA of three of the stress indicators analyzed (Bax, PSMB5 and Bip was significantly increased in SCNT embryos as compared with that of in vivo-derived blastocysts. No significant differences were found in the RA of HSP70 and Caspase-3 gene transcripts. This study could potentially complement morphological analyses in the development of an effective and accurate technique for the diagnosis of embryo quality, ultimately aiding to improve the efficiency of assisted reproductive techniques (ART.

  7. Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle

    Directory of Open Access Journals (Sweden)

    Magee David A

    2010-11-01

    Full Text Available Abstract Background Mastitis, an inflammation of the mammary gland, is a major source of economic loss on dairy farms. The aim of this study was to quantify the associations between two previously identified polymorphisms in the bovine toll-like receptor 2 (TLR2 and chemokine receptor 1 (CXCR1 genes and mammary health indictor traits in (a 246 lactating dairy cow contemporaries representing five breeds from one research farm and (b 848 Holstein-Friesian bulls that represent a large proportion of the Irish dairy germplasm. To expand the study, a further 14 polymorphisms in immune genes were included for association studies in the bull population. Results TLR4-2021 associated (P SERPINA1 haplotype with superior genetic merit for milk protein yield and milk fat percentage (P Conclusion Of the sixteen polymorphisms in seven immune genes genotyped, just CXCR1-777 tended to associate with SCS, albeit only in the on-farm study. The lack of an association between the polymorphisms with SCS in the Holstein-Friesian data set would question the potential importance of these variants in selection for improved mastitis resistance in the Holstein-Friesian cow.

  8. Monitoring Milk Somatic Cell Counts

    Directory of Open Access Journals (Sweden)

    Gheorghe Şteţca

    2014-11-01

    Full Text Available The presence of somatic cells in milk is a widely disputed issue in milk production sector. The somatic cell counts in raw milk are a marker for the specific cow diseases such as mastitis or swollen udder. The high level of somatic cells causes physical and chemical changes to milk composition and nutritional value, and as well to milk products. Also, the mastitic milk is not proper for human consumption due to its contribution to spreading of certain diseases and food poisoning. According to these effects, EU Regulations established the maximum threshold of admitted somatic cells in raw milk to 400000 cells / mL starting with 2014. The purpose of this study was carried out in order to examine the raw milk samples provided from small farms, industrial type farms and milk processing units. There are several ways to count somatic cells in milk but the reference accepted method is the microscopic method described by the SR EN ISO 13366-1/2008. Generally samples registered values in accordance with the admissible limit. By periodical monitoring of the somatic cell count, certain technological process issues are being avoided and consumer’s health ensured.

  9. Reprogrammed Pluripotent Stem Cells from Somatic Cells

    OpenAIRE

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-01-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-li...

  10. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming

    Directory of Open Access Journals (Sweden)

    Lee Rita SF

    2010-03-01

    Full Text Available Abstract Background Cloning of cattle by somatic cell nuclear transfer (SCNT is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appropriately established during nuclear reprogramming following SCNT. A panel of imprinted, non-imprinted genes and satellite repeat sequences was examined in tissues collected from viable and failing mid-gestation SCNT foetuses and compared with similar tissues from gestation-matched normal foetuses generated by artificial insemination (AI. Results Most of the genomic regions examined in tissues from viable and failing SCNT foetuses had DNA methylation patterns similar to those in comparable tissues from AI controls. However, statistically significant differences were found between SCNT and AI at specific CpG sites in some regions of the genome, particularly those associated with SNRPN and KCNQ1OT1, which tended to be hypomethylated in SCNT tissues. There was a high degree of variation between individuals in methylation levels at almost every CpG site in these two regions, even in AI controls. In other genomic regions, methylation levels at specific CpG sites were tightly controlled with little variation between individuals. Only one site (HAND1 showed a tissue-specific pattern of DNA methylation. Overall, DNA methylation patterns in tissues of failing foetuses were similar to apparently viable SCNT foetuses, although there were individuals showing extreme deviant patterns. Conclusion These results show that SCNT foetuses that had developed to mid-gestation had largely undergone nuclear reprogramming and that the epigenetic signature at this stage was not a

  11. Numerical chromosome errors in day 7 somatic nuclear transfer bovine blastocysts

    DEFF Research Database (Denmark)

    Booth, Paul J; Viuff, Dorthe; Tan, Shijian;

    2003-01-01

    Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona-free manipulat......Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona...... families, consisting of 112 blastocysts reconstructed from five different primary granulosa cell cultures, were examined. Overall, the mean chromosome complement within embryos was 86.9 +/- 3.7% (mean +/- SEM) diploid, 2.6 +/- 0.5% triploid, 10.0 +/- 3.1% tetraploid, and 0.5 +/- 0.2% pentaploid or greater......; the vast majority (>75%) of the abnormal nuclei were tetraploid. Completely diploid and mixoploid embryos represented 22.1 +/- 4.5% and 73.7 +/- 5.5%, respectively, of all clones. Six totally polyploid blastocysts, containing or=5N chromosome complements, respectively) between two clone families were...

  12. Reprogrammed pluripotent stem cells from somatic cells.

    Science.gov (United States)

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-06-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-like pluripotency by transferring somatic cell nuclei into oocytes, by cell fusion with pluripotent cells. Retroviral-mediated introduction of four factors, Oct4, Sox2, Klf4 and c-Myc can successfully reprogram somatic cells into ES cell-like pluripotent stem cells, known as induced pluripotent stem (iPS) cells. These cells closely resemble ES cells in gene expression pattern, cell biologic and phenotypic characteristics. However, to reach the eventual goal of clinical application, it is necessary to overcome the major drawbacks such as low reprogramming efficiency and genomic alterations due to viral integration. In this review, we discuss the current reprogramming techniques and mechanisms of nuclear reprogramming induced by transcription factor transduction. PMID:24298328

  13. Bovine subclinical intramammary infection caused by coagulase-negative staphylococci increases somatic cell count but has no effect on milk yield or composition.

    Science.gov (United States)

    Tomazi, T; Gonçalves, J L; Barreiro, J R; Arcari, M A; dos Santos, M V

    2015-05-01

    The aim of this study was to evaluate the effect of subclinical intramammary infection (IMI) caused by coagulase-negative staphylococci (CNS) as a group and by specific CNS species on milk yield and composition and somatic cell count (SCC) of dairy cows. Selection of cows with IMI caused by CNS was performed by microbiological cultures of composite samples collected from 1,242 dairy cows distributed in 21 dairy herds. After selection of cows, milk yield was measured and milk samples were collected at the mammary quarter level (i.e., 1,140 mammary samples collected from 285 cows) for analysis of milk composition and SCC. In total, 108 isolates of CNS were identified at the species level by PCR-RFLP analysis. Forty-one pairs of contralateral mammary quarters, with and without IMI, were used to evaluate the effect of CNS on milk yield and composition. Mammary quarters infected with CNS had higher geometric mean SCC (306,106 cells/mL) than noninfected contralateral mammary quarters (62,807 cells/mL). Intramammary infection caused by CNS had no effect on milk yield or on contents of fat, crude protein, casein, lactose, total solids, and solids-not-fat. Staphylococcus chromogenes was the most prevalent CNS species in this study and the only species that allowed within-cow evaluation. The IMI caused by S. chromogenes increased SCC but had no effect on milk yield and composition at the quarter level. In conclusion, subclinical mastitis caused by CNS increased the SCC but had no effect on milk yield and composition of dairy cows. PMID:25726098

  14. Effects of bovine subclinical mastitis caused by Corynebacterium spp. on somatic cell count, milk yield and composition by comparing contralateral quarters.

    Science.gov (United States)

    Gonçalves, Juliano Leonel; Tomazi, Tiago; Barreiro, Juliana Regina; Beuron, Daniele Cristine; Arcari, Marcos André; Lee, Sarah Hwa In; Martins, Cristian Marlon de Magalhães Rodrigues; Araújo Junior, João Pessoa; dos Santos, Marcos Veiga

    2016-03-01

    Subclinical mastitis caused by Corynebacterium spp. (as a group and at the species level) was investigated by evaluating contralateral (healthy and infected) mammary quarters for somatic cell count (SCC), milk yield and composition. Selection of cows with subclinical mastitis caused by Corynebacterium spp. was performed by microbiological culture of composite samples collected from 1242 dairy cows from 21 dairy herds. For each of the selected cows, milk yield was measured and milk samples were collected at the mammary quarter level (i.e., 1140 mammary samples collected from 285 cows) for analysis of milk composition and SCC. The identification of Corynebacterium spp. isolates was performed by 16S rRNA gene sequencing. One hundred and eighty Corynebacterium spp. isolates were identified, of which 167 (92.77%) were C.bovis and eight (4.44%) non-C.bovis; for five of the Corynebacterium spp. isolates (2.77%), sequencing of 16S rRNA genes did not allow identification at the species level. Mammary quarters infected with Corynebacterium spp. as a group had a higher geometric mean SCC (197,900 cells/mL) than healthy contralateral mammary quarters (85,800 cells/mL). Species of Corynebacterium non-C.bovis were infrequently isolated and did not change SCC, milk yield or milk solid contents when evaluated at the contralateral quarter level. Although C.bovis infection showed no effect on milk yield, fat, protein, casein or total solids in milk, it increased SCC and decreased lactose and milk solids non-fat content. PMID:26831159

  15. Microrganismos patogênicos, celularidade e resíduos de antimicrobianos no leite bovino produzido no sistema orgânico Pathogenic microorganisms, somatic cell count and drug residues evaluation in organic bovine milk

    Directory of Open Access Journals (Sweden)

    Márcio Garcia Ribeiro

    2009-01-01

    antimicrobianos em fazendas de leite orgânico.In last years increase the importance of milk quality and conditions of bovine milking. Simultaneously, increase the interest about organic milk and derivates. The aim of present study was investigate the milk pathogens, sensitivity and multiple drug resistance of isolates, somatic cell count and residues of drugs in milk, from cattle with and without mastitis, come from four little organic dairy farms in State of São Paulo, Brazil. Were used 148 cattle on the middle period of lactation. From these, two showed clinical mastitis, 72 subclinical mastitis and 74 without signs of mammary inflammation (controls. Staphylococcusaureus (25.7%, Streptococcus spp. (21.4%, Corynebacterium bovis (12.9%, Streptococcus agalactiae (4.3% and Staphylococcus spp. (4.3% were the more-frequent microorganisms isolated from animals with mastitis. Aspergillus spp. was isolated from one animal. Ceftiofur (95.2%, oxacillin (84.2%, gentamicin (76.3% and cefoperazone (70.3% were the more effective drugs. High resistance of isolates were found to penicillin (53.5%, ampicillin (41.6% and neomycin (38.6%. Multiple drug resistance to three or more drugs was observed in 40 (39.6% isolates. Media of somatic cell count encountered in animals with mastitis and controls were 175,742.67cs/mL and 58,227.6 cs/mL, respectively. Antimicrobials residues in milk were detected in four (2.7% animals. The present findings showed the low somatic cell count of animals, indicative of good quality of milk. However, pointed the need of control measures for contagious pathogens of bovine mastitis and more attention for prohibition of antimicrobial use in organic dairy farms.

  16. Generation of cloned calves from different types of somatic cells

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Six types of bovine somatic cell lines,including a granulosa cell line of Chinese red-breed yellow cattle(YGR),a granulosa cell line of Holstein cow(HGR),two skin fibroblast cell lines of two adult Holstein cows respectively(AFB1 and AFB2),a skin fibroblast cell line(FFB)and an oviduct epithelial cell line(FOV)of a Holstein fetus,were established.Somatic cell nuclear transfer(SCNT)was carried out using these cells as nuclei donor,and a total of 12 healthy calves were cloned.The effects of different types of donor cells on developmental potential of bovine SCNT embryos were investigated.(i)There was no significant difference in development rates to the blastocyst stage for SCNT embryos from YGR and HGR(33.2% and 35.1%,respectively).Pregnancy rates of them were 33.3% and 30.2%,respectively; and birth rates were 16.7%and 11.6%,respectively.(ii)Development rates to the blastocyst stage for SCNT embryos from diffetent individuals(AFB1 and AFB2)differed significantly(27.9% and 39.4%,respectively,P <0.05).Pregnancy rates of them were 36.2% and 36.4%,respectively; and birth rates were 14.9% and 27.3%,respectively.(iii)There was significant difference in development rates to the blastocyst stage for SCNT embryos from FFB and FOV of the same fetus(37.9% and 41.5%,respectively,P < 0.05).Pregnancy rates of them were 45.7% and 24.1%,respectively; and birth rates were 22.9 % and 10.3%,respectively.Finally,developmental potential of bovine SCNT embryos from all four types of somatic cells from Holstein cows(HGR,AFB,FFB and FOV)were compared.For in vitro development stage,development rates to the blastocyst stage for SCNT embryos from HGR,AFB,FFB and FOV were 35.1%A,29.4%B,37.9%A and 41.5%C,respectively(pABC<0.05); for in vivo development stage,pregnancy rates of them were 30.2%,36.2%,45.7%and 24.1%,respectively; and birth rates of them were 11.6%,17.2%,22.9% and 10.3% respectively.

  17. China Succeeded in Somatic Cell Cloning

    Institute of Scientific and Technical Information of China (English)

    Song Jianlan

    2002-01-01

    @@ Chinese scientists have succeeded in cloning a colony of cattle from fully differentiated somatic cells. The news was announced jointly by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NSFC) and the government of Shandong Province at a press conference held on March 7, 2002.

  18. Nuclear and nuclear reprogramming during the first cell cycle in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Østrup, Olga; Petrovicova, Ida; Strejcek, Frantisek;

    2009-01-01

    Abstract The immediate events of genomic reprogramming at somatic cell nuclear transfer (SCNT) are to high degree unknown. This study was designed to evaluate the nuclear and nucleolar changes during the first cell cycle. Bovine SCNT embryos were produced from starved bovine fibroblasts and fixed......, somatic cell nuclei introduced into enucleated oocytes displayed chromatin condensation, partial nuclear envelope breakdown, nucleolar desegregation and transcriptional quiescence already at 0.5 hpa. Somatic cell cytoplasm remained temporally attached to introduced nucleus and nucleolus was partially...... restored indicating somatic influence in the early SCNT phases. At 1-3 hpa, chromatin gradually decondensed toward the nucleus periphery and nuclear envelope reformed. From 4 hpa, the somatic cell nucleus gained a PN-like appearance and displayed NPBs suggesting ooplasmic control of development....

  19. Somatic Cell Nuclear Transfer in the Mouse

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  20. Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer

    OpenAIRE

    Degrelle, Severine; Jaffrézic, Florence; Campion, Evelyne; Le Cao, Kim-Anh; Le Bourhis, Daniel; Richard, Christophe; Rodde, Nathalie; Fleurot, Renaud; Everts, Robin E.; Lecardonnel, Jérôme; Heyman, Yvan; Vignon, Xavier; Yang, Xiangzhong; Tian, Xiuchun C.; Lewin, Harris A

    2012-01-01

    Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulatin...

  1. Somatic cell genetic approaches to Down's syndrome.

    Science.gov (United States)

    Patterson, D; Jones, C; Scoggin, C; Miller, Y E; Graw, S

    1982-01-01

    Somatic cell genetic analysis of mutants of Chinese hamster ovary cells with deficient purine synthesis and of hybrids between these mutants and human cells is described. Data are presented substantiating that two genes for enzymes of purine synthesis, AdeC and AdeG, can be coordinately regulated in mammalian cells. Analysis of a human-hamster hybrid cell, Ade C/21, which contains a normal complement of hamster chromosomes and human chromosome 21 as its only human genetic component recognizable by electrophoretic and immunogenetic techniques demonstrates that genes associated with the presence of human chromosome 21 and required for the synthesis of specific polypeptides and specific human lethal cell surface antigens can be detected in these hybrids. PMID:6217778

  2. Direct reprogramming of somatic cells: an update

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2015-03-01

    Full Text Available Direct epigenetic reprogramming is a technique that converts a differentiated adult cell into another differentiated cell and mdash;such fibroblasts to cardiomyocytes and mdash;without passage through an undifferentiated pluripotent stage. This novel technology is opening doors in biological research and regenerative medicine. Some preliminary studies about direct reprogramming started in the 1980s when differentiated adult cells could be converted into other differentiated cells by overexpressing transcription-factor genes. These studies also showed that differentiated cells have plasticity. Direct reprogramming can be a powerful tool in biological research and regenerative medicine, especially the new frontier of personalized medicine. This review aims to summarize all direct reprogramming studies of somatic cells by master control genes as well as potential applications of these techniques in research and treatment of selected human diseases. [Biomed Res Ther 2015; 2(3.000: 231-240

  3. Somatic Cell Count, Importance and Effect Factors in Dairy Cattle

    OpenAIRE

    İbrahim Aytekin; Saim Boztepe

    2014-01-01

    The somatic cell count (SCC) is commonly used as a measure of udder health and milk quality. Thus, to determine the milk quality standards in many countries, it legally determined as an indicator of somatic cell count raw milk and determines the level of payments to milk producers. The present study investigated that the somatic cell count is an indicator of udder health status, diagnosis of subclinical mastitis, health and quality of milk and milk products, its importance and effect factors ...

  4. Aneuploidy in mammalian somatic cells in vivo.

    Science.gov (United States)

    Cimino, M C; Tice, R R; Liang, J C

    1986-01-01

    Aneuploidy is an important potential source of human disease and of reproductive failure. Nevertheless, the ability of chemical agents to induce aneuploidy has been investigated only sporadically in intact (whole-animal) mammalian systems. A search of the available literature from the EMCT Aneuploidy File (for years 1970-1983) provided 112 papers that dealt with aneuploidy in mammalian somatic cells in vivo. 59 of these papers did not meet minimal criteria for analysis and were rejected from subsequent review. Of the remaining 53 papers that dealt with aneuploidy induction by chemical agents in mammalian somatic cells in vivo, only 3 (6%) contained data that were considered to be supported conclusively by adequate study designs, execution, and reporting. These 3 papers dealt with 2 chemicals, one of which, mercury, was negative for aneuploidy induction in humans, and the other, pyrimethamine, was positive in an experimental rodent study. The majority of papers (94%) were considered inconclusive for a variety of reasons. The most common reasons for calling a study inconclusive were (a) combining data on hyperploidy with those on hypoploidy and/or polyploidy, (b) an inadequate or unspecified number of animals and/or cells per animal scored per treatment group, and (c) poor data presentation such that animal-to-animal variability could not be assessed. Suggestions for protocol development are made, and the future directions of research into aneuploidy induction are discussed. PMID:3941670

  5. Production of transgenic calves by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    GONG Guochun; WAN Rong; HUANG Yinghua; LI Ning; DAI Yunping; FAN Baoliang; ZHU Huabing; WANG Lili; WANG Haiping; TANG Bo; LIU Ying; LI Rong

    2004-01-01

    Bovine fetal oviduct epithelial cells were transfected with constructed double marker selective vector (pCE-EGFP-IRES-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation, and a transgenic cell line was obtained. Somatic cell nuclear transfer (SCNT) was carried out using the transgenic cells as nuclei donor. A total of 424 SCNT embryos were reconstructed and 208 (49.1%) of them developed to blastocyst stage. 17 blastocysts on D 7 after reconstruction were transferred to 17 surrogate calves, and 5 (29.4%) recipients were found to be pregnant. Three of them maintained to term and delivered three cloned calves. PCR and Southern blot analysis confirmed the integration of transgene in all of the three cloned calves. In addition, expression of EGFP was detected in biopsy isolated from the transgenic cloned calves and fibroblasts derived from the biopsy. Our results suggest that transgenic calves could be efficiently produced by SCNT using transgenic cells as nuclei donor. Furthermore, all cloned animals could be ensured to be transgenic by efficiently pre-screening transgenic cells and SCNT embryos using the constructed double marker selective vector.

  6. Influence of udder infection status on milk enzyme activities and somatic cell count throughout early lactation in goats

    DEFF Research Database (Denmark)

    Stuhr, T; Aulrich, K; Barth, K;

    2013-01-01

    At present the analysis of somatic cell count (SCC) used for the detection of intramammary infections (IMI) in bovine milk is also recommended for goat milk, but due to the various factors influencing SCC it allows only limited conclusions on the udder health of goats. The research on enzyme...

  7. Role of ooplasm in nuclear and nucleolar remodeling of intergeneric somatic cell nuclear transfer embryos during the first cell cycle

    DEFF Research Database (Denmark)

    Østrup, Olga; Strejcek, Frantisek; Petrovicova, Ida;

    2011-01-01

    intergeneric SCNT embryos were compared to their parthenogenetic counterparts to assess the effects of the introduced somatic cell. Despite the absence of morphological remodeling (premature chromatin condensation, nuclear envelope breakdown), reconstructed embryos showed nuclear and nucleolar precursor body......Initially, development of the zygote is under control of the oocyte ooplasm. However, it is presently unknown if and to what extent is the ooplasm able to interact with a transferred somatic cell from another species in the context of interspecies somatic cell nuclear transfer (SCNT). Here, one......-cell stage embryos were processed at different points in time post activation (2 hpa, 4 hpa, 8 hpa, and 12 hpa) for detailed nuclear and nucleolar analysis by TEM, and immunofluorescence for visualization of nucleolar proteins related to transcription (UBF) and processing (fibrillarin). Bovine and porcine...

  8. The histone chaperone CAF-1 safeguards somatic cell identity

    OpenAIRE

    Cheloufi, Sihem; Elling, Ulrich; Hopfgartner, Barbara; Youngsook L. Jung; Murn, Jernej; Ninova, Maria; Hubmann, Maria; Badeaux, Aimee I; Ang, Cheen Euong; Tenen, Danielle; Wesche, Daniel J; Abazova, Nadezhda; Hogue, Max; Tasdemir, Nilgun; Brumbaugh, Justin

    2016-01-01

    Cellular differentiation involves profound remodeling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly ...

  9. The histone chaperone CAF-1 safeguards somatic cell identity

    OpenAIRE

    Cheloufi, Sihem; Elling, Ulrich; Hopfgartner, Barbara; Youngsook L. Jung; Murn, Jernej; Ninova, Maria; Hubmann, Maria; Badeaux, Aimee I; Ang, Cheen Euong; Tenen, Danielle; Wesche, Daniel J; Abazova, Nadezhda; Hogue, Max; Tasdemir, Nilgun; Brumbaugh, Justin

    2015-01-01

    Cellular differentiation involves profound remodeling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly ...

  10. Cytogenetic analysis of human somatic cell haploidization.

    Science.gov (United States)

    Galat, V; Ozen, S; Rechitsky, S; Kuliev, A; Verlinsky, Y

    2005-02-01

    Despite recent interest in the derivation of female and male gametes through somatic cell nuclear transfer, there is still insufficient data on chromosomal analysis of these gametes resulting from haploidization, especially involving a human nuclear donor and recipient oocytes. The objective of this study was to investigate the fidelity of chromosomal separation during haploidization of human cumulus cells by in-vitro matured human enucleated MII oocytes. A total of 129 oocytes were tested 4-7, 8-14, or 15-21 h after nuclear transfer (NT) followed by electro-stimulation, resulting in 71.3% activation efficiency on average. Haploidization was documented by the formation of two separate groups of chromosomes, originating from either polar body/pronucleus (PB/PN), or only 2PN, which were tested by 5-colour FISH, or DNA analysis for copy number of chromosomes 13, 16, 18, 21, 22 and X. Two PN were formed more frequently than PB/PN, irrespective of incubation time. In agreement with recent reports on mouse oocytes, as many as 90.2% of the resulting haploid sets tested showed abnormal chromosome segregation, suggesting unsuitability of the resulting artificial gametes for practical application at the present time. PMID:15823223

  11. Alternative lengthening of telomeres in normal mammalian somatic cells

    OpenAIRE

    Neumann, Axel A.; Watson, Catherine M.; Noble, Jane R.; Hilda A Pickett; Tam, Patrick P.L.; Reddel, Roger R

    2013-01-01

    Alternative lengthening of telomeres (ALT), a mechanism involving the replication of new telomeric DNA from a DNA template, is used by some cancer cells to lengthen their telomeres. Reddel and colleagues now show that ALT activity exists in normal somatic tissues as well. A telomere with a DNA tag is found to be intertelomerically copied in normal somatic cells but not germline cells, providing important implications for understanding telomere maintenance and its evolution.

  12. The histone chaperone CAF-1 safeguards somatic cell identity

    OpenAIRE

    Cheloufi, Sihem; Ninova, Maria; Aravin, Alexei

    2015-01-01

    Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromat...

  13. Bovine endometrial stromal cells display osteogenic properties

    Directory of Open Access Journals (Sweden)

    Cavirani Sandro

    2008-12-01

    Full Text Available Abstract The endometrium is central to mammalian fertility. The endometrial stromal cells are very dynamic, growing and differentiating throughout the estrous cycle and pregnancy. In humans, stromal cells appear to have progenitor or stem cell capabilities and the cells can even differentiate into bone. It is not clear whether bovine endometrial stromal cells exhibit a similar phenotypic plasticity. So, the present study tested the hypothesis that bovine endometrial stromal cells could be differentiated along an osteogenic lineage. Pure populations of bovine stromal cells were isolated from the endometrium. The endometrial stromal cell phenotype was confirmed by morphology, prostaglandin secretion, and susceptibility to viral infection. However, cultivation of the cells in standard endometrial cell culture medium lead to a mesenchymal phenotype similar to that of bovine bone marrow cells. Furthermore, the endometrial stromal cells developed signs of osteogenesis, such as alizarin positive nodules. When the stromal cells were cultured in a specific osteogenic medium the cells rapidly developed the characteristics of mineralized bone. In conclusion, the present study has identified that stromal cells from the bovine endometrium show a capability for phenotype plasticity similar to mesenchymal progenitor cells. These observations pave the way for further investigation of the mechanisms of stroma cell differentiation in the bovine reproductive tract.

  14. Mouse cloning and somatic cell reprogramming using electrofused blastomeres

    Institute of Scientific and Technical Information of China (English)

    Amjad Riaz; Xiaoyang Zhao; Xiangpeng Dai; Wei Li; Lei Liu; Haifeng Wan; Yang Yu; Liu Wang; Qi Zhou

    2011-01-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem(ES)cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved.Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  15. File list: Oth.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.10.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  16. File list: Oth.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.20.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  17. File list: Pol.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.05.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  18. The Expression of the Related Fatty Acid Synthesis Key Enzyme Genes in Bovine Somatic Cell%牛乳腺脂肪合成关键酶基因在乳汁体细胞中的表达研究

    Institute of Scientific and Technical Information of China (English)

    谢佳喜; 朱河水; 杨国宇; 李宏基; 郭豫杰; 汪新建; 王月影

    2011-01-01

    为了阐明乳脂合成的影响因素及其内在分子机理,为反刍动物原料乳的优化,特别是为乳脂肪的营养调控和遗传改良提供理论依据.本试验以奶牛初乳、常乳和末乳中的乳汁体细胞为研究对象,以看家基因GAPDH为内参,对初乳、常乳和末乳中LPL、CD36、VLDLR、ACSS2、ACSL1、FABP3、ACC、FASN、SCD、ADFP、XDH和BTN1A1 mRNA进行半定量RT-PCR分析.结果发现,LPL、CD36、VLDLR、ACSS2、ACSL1、FABP3、SCD、ADFP、XDH和BTN1Al mRNA在初乳、常乳和末乳中均有表达,而ACC和FASN mRNA只在初乳中表达,常乳和末乳中均不表达;半定量结果表明,与初乳相比,常乳和末乳中LPL、CD36、VLDLR、ACSS2、ACSL1、FABP3、SCD、ADFP、XDH和BTN1Al mRNA转录水平显著降低(P<0.05),且常乳与末乳间差异不显著(P>0.05).研究结果提示初乳期乳腺脂肪合成能力明显高于常乳和末乳期乳腺,且脂肪合成关键酶基因的表达与细胞内脂转运和代谢的生理变化有关.%To clarify the molecular mechanism of milk fat synthesis, optimizing ruminant raw milk, particularly providing theory basis for nutrition regulation and heredity improving for milk fat. Somatic cells in colostrum milk, mature milk and involution milk were selected and housekeeping gene GAPDH was selected as reference, the semi-quantitive RT-PCR was used to analyze the expression of LPL, CD36, VLDLR, ACSS2, ACSLl, FABP3, ACC, FASN, SCD, AD-FP, XDH and BTN1A1 mRNA in milk. The results showed that the genes LPL, CD36, VLDLR, ACSS2, ACSLl, FABP3, ACC, FASN, SCD, ADFP, XDH and BTNV1A1 mRNA expressed in the colostrum milk, mature milk and involution milk. However the genes ACC and FASN were not detected in mature milk and involution milk. The relative quantitive results showed that the expression level of LPL, CD36, VLDLR, ACSS2, ACSLl, FABP3, ACC, FASN, SCD, ADFP, XDH and BTN1A1 mRNA in mature milk and involution milk were significantly decreased(P0. 05) between mature

  19. Somatic Cell Dedifferentiation/Reprogramming for Regenerative Medicine

    OpenAIRE

    Ramesh, Thiyagarajan; Lee, Sun-Hee; Lee, Choon-Soo; Kwon, Yoo-Wook; Cho, Hyun-Jai

    2009-01-01

    The concept of dedifferentiation or reprogramming of a somatic cell into a pluripotent embryonic stem cell-like cell (ES-like cell), which give rise to three germ layers and differentiate various cell types, opens a new era in stem cell biology and provides potential therapeutic modality in regenerative medicine. Here, we outline current dedifferentiation/reprogramming methods and their technical hurdles, and the safety and therapeutic applications of reprogrammed pluripotent stem cells in re...

  20. The histone chaperone CAF-1 safeguards somatic cell identity.

    Science.gov (United States)

    Cheloufi, Sihem; Elling, Ulrich; Hopfgartner, Barbara; Jung, Youngsook L; Murn, Jernej; Ninova, Maria; Hubmann, Maria; Badeaux, Aimee I; Euong Ang, Cheen; Tenen, Danielle; Wesche, Daniel J; Abazova, Nadezhda; Hogue, Max; Tasdemir, Nilgun; Brumbaugh, Justin; Rathert, Philipp; Jude, Julian; Ferrari, Francesco; Blanco, Andres; Fellner, Michaela; Wenzel, Daniel; Zinner, Marietta; Vidal, Simon E; Bell, Oliver; Stadtfeld, Matthias; Chang, Howard Y; Almouzni, Genevieve; Lowe, Scott W; Rinn, John; Wernig, Marius; Aravin, Alexei; Shi, Yang; Park, Peter J; Penninger, Josef M; Zuber, Johannes; Hochedlinger, Konrad

    2015-12-10

    Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPS cell formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 to be a novel regulator of somatic cell identity during transcription-factor-induced cell-fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting. PMID:26659182

  1. Buffalo milk: proteins electrophoretic profile and somatic cell count

    Directory of Open Access Journals (Sweden)

    S. Mattii

    2011-03-01

    Full Text Available Water buffalo milk differs from the cow’s milk for greater fat and protein content, very important features in cheese making. Proteins, casein and whey-proteins in particular, are the most important factors determining cheese yield. Several previous research discussed the rule of SCC in cow milk production (Varisco, 1999 and the close relationship existing between cow’s milk cheese yield and somatic cell count (Barbano, 2000. In particular the inverse correlation between cheese yields and somatic cells’content have been demonstrated. In Italy the regulation in force DPR 54/97 acknowledges what expressed in EEC 46/92 Directive (Tripodi, 1999 without fixing the limit threshold of somatic cells for buffalo’s milk....

  2. Cats cloned from fetal and adult somatic cells by nuclear transfer.

    Science.gov (United States)

    Yin, X J; Lee, H S; Lee, Y H; Seo, Y I; Jeon, S J; Choi, E G; Cho, S J; Cho, S G; Min, W; Kang, S K; Hwang, W S; Kong, I K

    2005-02-01

    This work was undertaken in order to study the developmental competence of nuclear transfer (NT) into cat embryos using fetal fibroblast and adult skin fibroblast cells as donor nuclei. Oocytes were recovered by mincing the ovaries in Hepes-buffered TCM199 and selecting the cumulus oocyte complexes (COCs) with compact cumulus cell mass and dark color. Homogenous ooplasm was cultured for maturation in TCM199+10% fetal bovine serum (FBS) for 12 h and used as a source of recipient cytoplast for exogenous somatic nuclei. In experiment 1, we evaluated the effect of donor cell type on the reconstruction and development of cloned embryos. Fusion, first cleavage and blastocyst developmental rate were not different between fetal fibroblasts and adult skin cells (71.2 vs 66.8; 71.0 vs 57.6; 4.0 vs 6.1% respectively; P < 0.05). In experiment 2, cloned embryos were surgically transferred into the oviducts of recipient queens. One of the seven recipient queens was delivered naturally of 2 healthy cloned cats and 1 stillborn from fetal fibroblast cells of male origin 65 days after embryo transfer. One of three recipient queens was delivered naturally of 1 healthy cloned cat from adult skin cells of female origin 65 days after embryo transfer. The cloned cats showed genotypes identical to the donor cell lines, indicating that adult somatic cells can be used for feline cloning. PMID:15695619

  3. Oocyte-somatic cells interactions, lessons from evolution

    Directory of Open Access Journals (Sweden)

    Charlier Cathy

    2012-10-01

    Full Text Available Abstract Background Despite the known importance of somatic cells for oocyte developmental competence acquisition, the overall mechanisms underlying the acquisition of full developmental competence are far from being understood, especially in non-mammalian species. The present work aimed at identifying key molecular signals from somatic origin that would be shared by vertebrates. Results Using a parallel transcriptomic analysis in 4 vertebrate species - a teleost fish, an amphibian, and two mammals - at similar key steps of developmental competence acquisition, we identified a large number of species-specific differentially expressed genes and a surprisingly high number of orthologous genes exhibiting similar expression profiles in the 3 tetrapods and in the 4 vertebrates. Among the evolutionary conserved players participating in developmental competence acquisition are genes involved in key processes such as cellular energy metabolism, cell-to-cell communications, and meiosis control. In addition, we report many novel molecular actors from somatic origin that have never been studied in the vertebrate ovary. Interestingly, a significant number of these new players actively participate in Drosophila oogenesis. Conclusions Our study provides a comprehensive overview of evolutionary-conserved mechanisms from somatic origin participating in oocyte developmental competence acquisition in 4 vertebrates. Together our results indicate that despite major differences in ovarian follicular structure, some of the key players from somatic origin involved in oocyte developmental competence acquisition would be shared, not only by vertebrates, but also by metazoans. The conservation of these mechanisms during vertebrate evolution further emphasizes the important contribution of the somatic compartment to oocyte quality and paves the way for future investigations aiming at better understanding what makes a good egg.

  4. File list: His.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.20.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  5. Somatic cell count distributions during lactation predict clinical mastitis

    NARCIS (Netherlands)

    Green, M.J.; Green, L.E.; Schukken, Y.H.; Bradley, A.J.; Peeler, E.J.; Barkema, H.W.; Haas, de Y.; Collis, V.J.; Medley, G.F.

    2004-01-01

    This research investigated somatic cell count (SCC) records during lactation, with the purpose of identifying distribution characteristics (mean and measures of variation) that were most closely associated with clinical mastitis. Three separate data sets were used, one containing quarter SCC (n = 14

  6. Mouse cloning and somatic cell reprogramming using electrofused blastomeres

    OpenAIRE

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2010-01-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of “genetically tailored” human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to s...

  7. File list: Unc.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.20.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  8. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    Directory of Open Access Journals (Sweden)

    Masakazu Hamada

    Full Text Available The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.

  9. Mitochondria, cellular stress resistance, somatic cell depletion and lifespan.

    Science.gov (United States)

    Robb, Ellen L; Page, Melissa M; Stuart, Jeffrey A

    2009-03-01

    The causes of aging and determinants of maximum lifespan in animal species are multifaceted and complex. However, a wealth of experimental data suggests that mitochondria are involved both in the aging process and in regulating lifespan. Here we outline a somatic cell depletion (SCD) model to account for correlations between: (1) mitochondrial reactive oxygen species and lifespan; (2) mitochondrial antioxidant enzymes and lifespan; (3) mitochondrial DNA mutation and lifespan and (4) cellular stress resistance and lifespan. We examine the available data from within the framework of the SCD model, in which mitochondrial dysfunction leading to cell death and gradual loss of essential somatic cells eventually contributes to the decline in physiological performance that limits lifespan. This model is useful in explaining many of the mitochondrial manipulations that alter maximum lifespan in a variety of animal species; however, there are a number of caveats and critical experiments outstanding, and these are outlined in this review. PMID:20021396

  10. NUTRIENTS AND EPIGENETICS IN BOVINE CELLS

    Science.gov (United States)

    This is a chapter for a book titled “Livestock Epigenetics” edited by Dr. Hasan Khatib and published by Wiley-Blackwell. This chapter is focused on the research development in our laboratory in the area of interaction of nutrients and genomic phonotype in bovine cells. Briefly, the Research on nutri...

  11. Buffalo milk: proteins electrophoretic profile and somatic cell count

    OpenAIRE

    S. Mattii; B. Tommei; Pasquini, M.

    2011-01-01

    Water buffalo milk differs from the cow’s milk for greater fat and protein content, very important features in cheese making. Proteins, casein and whey-proteins in particular, are the most important factors determining cheese yield. Several previous research discussed the rule of SCC in cow milk production (Varisco, 1999) and the close relationship existing between cow’s milk cheese yield and somatic cell count (Barbano, 2000). In particular the inverse correlation between cheese ...

  12. Cytogenetic effects of irradiation on somatic and germ cells

    OpenAIRE

    Egozcue, Josep; Álvarez Arpal, Ricardo; Barquinero, J. F.; BARRIOS, L; Caballín, M. R.; Genescà i Garrigosa, Anna; Miró, Rosa; Ponsa Arjona, Immaculada; Tusell Padrós, Laura

    1999-01-01

    This paper summarizes the results obtained in two of the research projects carried out in our laboratory within the radiation protection programs of the Consejo de Seguridad Nuclear and the European Union. These two research lines are fundamentally interconnected, since the analysis of the cytogenetic effects of radiation on somatic cells studies the consequences of occupational or accidental exposure to radiation for the individual, especially from the point of view of developing some type o...

  13. Normal somatic cell count and subclinical mastitis in Murrah buffaloes.

    Science.gov (United States)

    Dhakal, I P

    2006-03-01

    This study was conducted to investigate the normal somatic cell count (SCC) and to define subclinical mastitis in Murrah buffaloes. Data were collected from 60 clinically normal buffaloes stationed at five farms of Chitwan Nepal and Buffalo Research Center, Hissar, India. Somatic cell count was measured using the Newman-Lampert staining technique. The upper limit of SCC was determined >or=200 000/ml of milk based on the mean +/- 2SD of a total SCC. Abnormal data of the SCC was repeatedly removed, which lie beyond the values of more than mean + 2SD until all the data come to lie within (mean + 2SD). Averages of SCC of right front and right hind quarters were significantly higher than left front and left hind quarters. Nearly 94% of California mastitis test (CMT) negative quarters were having somatic cells >or=200 000/ml. The mean SCC of CMT positive quarter was significantly higher (P CMT negative quarters. Subclinical mastitis was diagnosed on the basis of samples with SCCs >or=200 000/ml with positive bacterial cultures. Subclinical mastitis was found in 21.7% buffaloes and 8% of the quarter foremilk samples. Neutrophil counts were significantly higher in subclinical mastitis milk. PMID:16626405

  14. Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis.

    Science.gov (United States)

    Voog, Justin; D'Alterio, Cecilia; Jones, D Leanne

    2008-08-28

    Adult stem cells reside in specialized microenvironments, or niches, that have an important role in regulating stem cell behaviour. Therefore, tight control of niche number, size and function is necessary to ensure the proper balance between stem cells and progenitor cells available for tissue homeostasis and wound repair. The stem cell niche in the Drosophila male gonad is located at the tip of the testis where germline and somatic stem cells surround the apical hub, a cluster of approximately 10-15 somatic cells that is required for stem cell self-renewal and maintenance. Here we show that somatic stem cells in the Drosophila testis contribute to both the apical hub and the somatic cyst cell lineage. The Drosophila orthologue of epithelial cadherin (DE-cadherin) is required for somatic stem cell maintenance and, consequently, the apical hub. Furthermore, our data indicate that the transcriptional repressor escargot regulates the ability of somatic cells to assume and/or maintain hub cell identity. These data highlight the dynamic relationship between stem cells and the niche and provide insight into genetic programmes that regulate niche size and function to support normal tissue homeostasis and organ regeneration throughout life. PMID:18641633

  15. Mutation of mitochondria genome: trigger of somatic cell transforming to cancer cell.

    Science.gov (United States)

    Jianping, Du

    2010-01-01

    Nearly 80 years ago, scientist Otto Warburg originated a hypothesis that the cause of cancer is primarily a defect in energy metabolism. Following studies showed that mitochondria impact carcinogenesis to remodel somatic cells to cancer cells through modifying the genome, through maintenance the tumorigenic phenotype, and through apoptosis. And the Endosymbiotic Theory explains the origin of mitochondria and eukaryotes, on the other hands, the mitochondria also can fall back. Compared to chromosome genomes, the mitochondria genomes were not restricted by introns so they were mutated(fall back) easy. The result is that mitochondria lose function and internal environment of somatic cell become acid and evoked chromosome genomes to mutate, in the end somatic cells become cancer cells. It is the trigger of somatic cell transforming to cancer cell that mitochondria genome happen mutation and lose function. PMID:20181100

  16. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming.

    Science.gov (United States)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-05-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. PMID:26971819

  17. The major bovine mastitis pathogens have different cell tropisms in cultures of bovine mammary gland cells

    NARCIS (Netherlands)

    Lammers, A.; Vorstenbosch, van C.J.; Erkens, J.H.F.; Smith, H.E.

    2001-01-01

    We previously showed that Staphylococcus aureus cells adhered mainly to an elongated cell type, present in cultures of bovine mammary gland cells. Moreover. we showed that this adhesion was mediated by binding to fibronectin. The same in vitro model was used here, to study adhesion of other importan

  18. A stochastic model of epigenetic dynamics in somatic cell reprogramming

    Directory of Open Access Journals (Sweden)

    Max eFloettmann

    2012-06-01

    Full Text Available Somatic cell reprogramming has dramatically changed stem cell research inrecent years. The high pace of new findings in the field and an ever increasingamount of data from new high throughput techniques make it challengingto isolate core principles of the process. In order to analyze suchmechanisms, we developed an abstract mechanistic model of a subset of theknown regulatory processes during cell differentiation and production of inducedpluripotent stem cells. This probabilistic Boolean network describesthe interplay between gene expression, chromatin modifications and DNAmethylation. The model incorporates recent findings in epigenetics and reproducesexperimentally observed reprogramming efficiencies and changes inmethylation and chromatin remodeling. It enables us to investigate in detail,how the temporal progression of the process is regulated. It also explicitlyincludes the transduction of factors using viral vectors and their silencing inreprogrammed cells, since this is still a standard procedure in somatic cellreprogramming. Based on the model we calculate an epigenetic landscape.Simulation results show good reproduction of experimental observations duringreprogramming, despite the simple stucture of the model. An extensiveanalysis and introduced variations hint towards possible optimizations of theprocess, that could push the technique closer to clinical applications. Fasterchanges in DNA methylation increase the speed of reprogramming at theexpense of efficiency, while accelerated chromatin modifications moderatelyimprove efficiency.

  19. Somatic cell genotoxicity at the glycophorin A locus in humans

    International Nuclear Information System (INIS)

    We have developed an assay for detecting variant erythrocytes that occur as a result of in vivo allele loss at the glycophorin A (GPA) locus on chromosome 4 in humans. This gene codes for an erythroid- specific cell surface glycoprotein, and with our assay we are able to detect rare variant erythrocytes that have lost expression of one of the two GPA alleles. Two distinctly different variant cell types are detected with this assay. One variant cell type (called N OE) is hemizygous. Our assay also detects homozygous variant erythrocytes that have lost expression of the GPA(M) allele and express the GPA(N) allele at twice the heterozygous level. The results of this assay are an enumeration of the frequency of N OE and NN variant cell types for each individual analyzed. These variant cell frequencies provide a measure of the amount of somatic cell genotoxicity that has occurred at the GPA locus. Such genotoxicity could be the result of (1) reactions of toxic chemicals to which the individual has been exposed, or (2) high energy radiation effects on erythroid precursor cells, or (3) errors in DNA replication or repair in these cells of the bone marrow. Thus, the GPA-based variant cell frequency can serve as a biodosimeter that indicates the amount of genotoxic exposure each individual has received. Because two very different kinds of variant cells are enumerated, different kinds of genotoxicity should be distinguishable. Results of the GPA somatic genotoxicity assay may also provide valuable information for cancer-risk estimation on each individual. 16 refs

  20. Somatic cell count control strategies in dairy ewes

    OpenAIRE

    Spanu, Carlo

    2010-01-01

    The consumption of milk products, especially made from raw milk, have been reported to be associated with food borne diseases. Since most sheep’s milk products are made from raw milk, it is clear how udder health is an important prerequisite to produce hygienic milk. Ewes with mastitis, particularly in their subclinical form, serve as reservoir of pathogens that can be shed into the milk and constitute a potential risk for human health. Milk somatic cell count (SCC) is not a public health con...

  1. Reconstruction of human embryos derived from somatic cells

    Institute of Scientific and Technical Information of China (English)

    LU Changfu; LIN Ge; XIE Changqing; GONG Fei; ZHOU Hong; TAN Yueqiu; LU Guangxiu

    2003-01-01

    Reconstruction of human nuclear transfer embryos is a necessary step of therapeutic cloning. In this study we injected somatic cell nuclei into MⅡ oocytes and activated reconstructed oocytes with calcium ionophore A23187 (CaA) and 6-dimethylaminopurine (6-DMAP). After oocyte activation and 2PN formation, we removed the female PN. By using this method, we avoided the application of DNA fluorescent stain and ultraviolet light for oocyte enucleation, and over elimination of ooplasm was also mitigated. Some reconstructed embryos developed into theblastocyst stage in vitro.

  2. Human somatic cell mutagenesis creates genetically tractable sarcomas.

    Science.gov (United States)

    Molyneux, Sam D; Waterhouse, Paul D; Shelton, Dawne; Shao, Yang W; Watling, Christopher M; Tang, Qing-Lian; Harris, Isaac S; Dickson, Brendan C; Tharmapalan, Pirashaanthy; Sandve, Geir K; Zhang, Xiaoyang; Bailey, Swneke D; Berman, Hal; Wunder, Jay S; Izsvák, Zsuzsanna; Iszvak, Zsuzsanna; Lupien, Mathieu; Mak, Tak W; Khokha, Rama

    2014-09-01

    Creating spontaneous yet genetically tractable human tumors from normal cells presents a fundamental challenge. Here we combined retroviral and transposon insertional mutagenesis to enable cancer gene discovery starting with human primary cells. We used lentiviruses to seed gain- and loss-of-function gene disruption elements, which were further deployed by Sleeping Beauty transposons throughout the genome of human bone explant mesenchymal cells. De novo tumors generated rapidly in this context were high-grade myxofibrosarcomas. Tumor insertion sites were enriched in recurrent somatic copy-number aberration regions from multiple cancer types and could be used to pinpoint new driver genes that sustain somatic alterations in patients. We identified HDLBP, which encodes the RNA-binding protein vigilin, as a candidate tumor suppressor deleted at 2q37.3 in greater than one out of ten tumors across multiple tissues of origin. Hybrid viral-transposon systems may accelerate the functional annotation of cancer genomes by enabling insertional mutagenesis screens in higher eukaryotes that are not amenable to germline transgenesis. PMID:25129143

  3. Evaluation of milk yield in tsigaiewes by somatic cell count

    Directory of Open Access Journals (Sweden)

    Martina Vršková

    2015-08-01

    Full Text Available The objective of our research was to study daily milk production which was affected by somatic cell count (SCC. The study was performed on a selected flock of purebred Tsigai ewes (326 animals. Regular milk yield recording was performed during the evening milking in around the middle of April, May and June. Milk samples were analyzed for basic milk composition (fat, protein and lactose and somatic cells count. SCC were evaluated using decadic logarithm (logSCC.According to animals, the dairy ewes were divided into the four groups on the basis of individual SCC (G1 = SCC <100 × 103 cells.mL-1, G2 = SCC between 100 – 300 × 103 cells.mL-1, G3 = SCC between 300 – 600 × 103 cells.mL-1, G4 = SCC >600 × 103 cells.mL-1 to study the frequency of distribution of animals in selected group of ewes throughout experimental period. The average daily milk production in selected flock of Tsigai was 421.02 mL. We reached the highest daily milk production in April 476.40 ml and the highest content of fat and protein in June, while milk production was the lowest. From this flock of purebred Tsigai 76% of eweswere below SCC 300 × 103 cells.mL-1. This SCC indicated a good health status of experimental ewes, at which 61% sheep were at the first lactation. We found a tendency to lower milk production by a higher SCC. With the increasing SCC decreased lactose content from 4.78% (G1 to 4.32% (G4. Reduced lactose content refers to the occurrence of mastitis and there is a need for performing bacteriological examination in milk.

  4. Somatic cell genetics approach to dissecting mammalian DNA repair

    International Nuclear Information System (INIS)

    This review article examines the application of the methods and concepts of somatic cell genetics to the study of DNA repair. The first steps of this approach involve classical procedures of mutant isolation, complementation analysis, and mapping of genes using hybrid cells. Subsequent steps utilize the techniques of DNA-mediated gene transfer and methodologies of the recombinant DNA field. Several human repair genes have been cloned, but they have not been used to overproduce proteins thus far. This article highlights the more important developments and attempts to review in detail all of the isolated mutant cell lines that may be altered in the repair processes. Faster methods of gene cloning are greatly needed because the procedures for making secondary transformants from total genomic DNA are tedious

  5. Diagnóstico y tipificación del virus de la leucosis bovina mediante una prueba de PCR-RFLP a partir de ADN extraído desde células somáticas de la leche Diagnosis and typing of bovine leukaemia virus using a PCR-RFLP test on DNA extracted from somatic cells in milk

    Directory of Open Access Journals (Sweden)

    R Felmer

    2006-01-01

    Full Text Available Se evaluó la factibilidad de aplicar una prueba de PCR para el diagnóstico y tipificación molecular del virus de la leucosis enzoótica bovina (VLB, directamente desde muestras de leche. Se analizó un total de 40 muestras de estanque predial, 33 de las cuales fueron seropositivas a una prueba de ELISA. El PCR confirmó la presencia del virus en el 100% de los estanques seropositivos, mientras que en las muestras seronegativas no se obtuvo una banda de amplificación. El posterior análisis de estas muestras mediante RFLP permitió identificar la presencia de 2 de los 3 subgrupos conocidos de variantes genéticas del virus. La aplicación de esta prueba en 10 animales de un predio permitió confirmar la presencia de más de una variante genética dentro del mismo predio, sugiriendo la probable reinfección de este predio con otras cepas del virus. Es necesario destacar que este trabajo constituye el primer reporte de la aplicación de una prueba de PCR-RFLP para la detección y tipificación del VLB directamente desde muestras de leche. De esta forma, la técnica de PCR descrita se puede utilizar no sólo como complemento al diagnóstico del VLB, sino también como una forma conveniente de realizar la tipificación del virus en una zona determinada o incluso a nivel de país, lo cual proporciona una forma rápida y conveniente de estudiar la epidemiología y distribución de la infección del VLB en nuestros rebaños.The aim of this study was to assess the suitability of using DNA isolated from milk somatic cells for the diagnosis and molecular typing of bovine leukaemia virus (BLV. A total of 40 bulk milk samples were analysed and thirty three of them resulted seropositive to BLV after being evaluated using an indirect ELISA test. A PCR test confirmed the presence of the virus in all 33 seropositive samples whereas in the remaining seronegative samples it was not possible to detect a specific band for the virus. A RFLP analysis identified 2

  6. Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells

    OpenAIRE

    Chung, H.J.; Hassan, M. M.; Park, J O; Kim, H. J.; S.T. Hong

    2015-01-01

    Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells gene...

  7. Gnotobiotic Miniature Pig Interbreed Somatic Cell Nuclear Transfer for Xenotransplantation.

    Science.gov (United States)

    Hwang, Jeong Ho; Kim, Sang Eun; Gupta, Mukesh Kumar; Lee, HoonTaek

    2016-08-01

    Transgenic animal producing technology has improved consistently over the last couple of decades. Among the available methods, somatic cell nuclear transfer (SCNT) technology was officially the most popular. However, SCNT has low efficiency and requires a highly skilled individual. Additionally, the allo-SCNT nuclear reprogramming mechanism is poorly understood in the gnotobiotic miniature pig, which is a candidate for xenotransplantation, making sampling in oocytes very difficult compared to commercial hybrid pigs. Therefore, interbreed SCNT (ibSCNT), which is a combination of miniature pig and commercial pig (Landrace based), was analyzed and was found to be similar to SCNT in terms of the rate of blastocyst formation (12.6% ± 2.9% vs. 15.5% ± 2.2%; p > 0.05). However, a significantly lower fusion rate was observed in the ibSCNT compared to normal SCNT with Landrace pig somatic cells (29.6% ± 0.8% vs. 65.0% ± 4.9%). Thus, the optimization of fusion parameters was necessary for efficient SCNT. Our results further revealed that ibSCNT by the whole-cell intracytoplasmic injection (WCICI) method had a significantly higher blastocyst forming efficiency than the electrofusion method (31.1 ± 8.5 vs. 15.5% ± 2.2%). The nuclear remodeling and the pattern of changes in acetylation at H3K9 residue were similar in both SCNT and ibSCNT embryos. PMID:27459580

  8. Comparação entre o método de referência e a análise eletrônica na determinação da contagem de células somáticas do leite bovino Comparison between standard method and electronic analyses for measurement of the bovine milk somatic cell count

    Directory of Open Access Journals (Sweden)

    T.M.L. Silveira

    2005-02-01

    Full Text Available Avaliou-se a metodologia eletrônica de determinação da contagem de células somáticas por citometria de fluxo, utilizando-se 48 amostras individuais de leite de vaca da raça Holandesa e cinco amostras de leite de conjunto. A contagem média de células somáticas das amostras individuais foi de 353.000 cel/ml (5,55log cel/ml usando-se metodologia de referência e 328.000 cel/ml (5,52log cel/ml usando-se o contador eletrônico. Para amostras de tanque, as médias foram 382.000 cel/ml (5,58log cel/ml e 329.000 cel/ml (5,52log cel/ml de CCS, respectivamente, para análise feita por microscopia direta e pelo equipamento eletrônico. Não houve diferença (P>0,05 entre os valores obtidos nas análises realizadas pelo método de referência e pelo analisador eletrônico rápido. Foi avaliada a qualidade das amostras-padrão de origem americana e canadense, por meio da contagem de células somáticas, pelo método de microscopia direta. Os resultados foram comparados aos valores declarados no laudo de análise das amostras, emitidos pelo laboratório fornecedor das amostras-padrão.In order to evaluate the electronic counting of somatic cell count by flow citometry, 48 raw milk samples from Holstein cows and 5 bulk tank samples were analyzed for somatic cells counting. The mean of somatic cells counting (SCC for raw milk samples were 353,000 cells/ml (5.55log cells/ml using the standard methods and 328,000 cells/ml (5.52log cells/ml, using electronic equipment. For the bulk tank samples the SCC means were 382.000 cells/ml (5.58log cells/ml using the direct microscopic and 329.000 cells/ml (5.52log cells/ml using the electronic equipment. The differences between values obtained by both analytical methods were not significant (P>0.05. Additionally, the quality of the American and Canadian standard samples was evaluated by determination of the SCC, using the reference methods to compare to the results issued by the supplier laboratory.

  9. Agronomic traits and RAPD analysis of two mutants derived from rice somatic cell culturing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Genetic variation, including agronomic trait variation, often occurs in somatic cell culturing. In this study, we compared the main agronomic traits of two rice mutants, M3 and M14, which were derived from Shenxiangjing 5 somatic cell culturing. Significant differences were found between the two mutants and the wild rice Shenxiangjing 5 (Table 1). Results were as follows:

  10. Somatic cell and factors which affect their count in milk

    Directory of Open Access Journals (Sweden)

    Zrinka Čačić

    2003-01-01

    Full Text Available Milk quality is determined by chemical composition, physical characteristics and hygienic parameters. The main indicators of hygienic quality of milk are total number of microorganisms and somatic cell count (SCC. Environmental factors have the greatest influence on increasing SCC. The most important environmental parameters are status of udder infection, age of cow, stage of lactation, number of lactation, breed, housing, geographicalarea and seasons, herd size, stress, heavy physical activity and, milking. A farmer (milk producer himself can control a great number of environmental factors using good management practise and permanent education. Since SCC participate in creating the price of milk, it is necessary to inform milk producers how to organise their production so that they would produce maximum quantity of good hygienic quality milk.

  11. New Rapid Method of DNA Isolation from Milk Somatic Cells.

    Science.gov (United States)

    Pokorska, Joanna; Kułaj, Dominika; Dusza, Magdalena; Żychlińska-Buczek, Justyna; Makulska, Joanna

    2016-04-01

    Isolation of genomic DNA is one of the basic steps in many different molecular analyses. There are a few reports on methods of DNA isolation from milk, but many of them are time consuming and expensive, and require relatively large volumes of raw milk. In this study a rapid, sensitive, and efficient method of DNA extraction from milk somatic cells of various mammals (cattle, sheep, goats, horses) is presented. It was found that milk is a good source of genomic DNA, and to obtain a sufficient amount and quality of DNA, suitable for molecular analysis such as PCR, 10 mL of raw milk is sufficient. Thanks to this method, stress in animals can be reduced during collection of researched material. Therefore, this method could be widely used in molecular analyses. PMID:26913552

  12. CYTOLOGICAL QUALITY OF GOAT MILK ON THE BASIS OF THE SOMATIC CELL COUNT

    Directory of Open Access Journals (Sweden)

    Henryka BERNACKA

    2007-07-01

    Full Text Available The aim of the present paper was to evaluate the cytological quality of goat milk based on the somatic cell count in respective months of lactation. Besides there was defined the effect of somatic cell on the milk production and chemical composition of milk. The research covered goats of color improved breed in the 2nd and 3rd lactation. Daily milk yield, chemical composition of milk and its somatic cell count were defined based on monthly morning and evening control milkings from both teats, following the A4 method applied in District Animal Evaluation Stations. The research indicated that the greater the somatic cell count in milk, the lower the daily milk yield, however the greater the somatic cell count, the greater the percentage content of fat and dry matter and the lower the content of lactose.

  13. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    OpenAIRE

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors 1,2 . Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote linea...

  14. Factors Affecting the Development of Somatic Cell Nuclear Transfer Embryos in Cattle

    OpenAIRE

    Akagi, Satoshi; Matsukawa, Kazutsugu; TAKAHASHI, Seiya

    2014-01-01

    Nuclear transfer is a complex multistep procedure that includes oocyte maturation, cell cycle synchronization of donor cells, enucleation, cell fusion, oocyte activation and embryo culture. Therefore, many factors are believed to contribute to the success of embryo development following nuclear transfer. Numerous attempts to improve cloning efficiency have been conducted since the birth of the first sheep by somatic cell nuclear transfer. However, the efficiency of somatic cell cloning has re...

  15. File list: InP.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.50.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somati...c cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  16. Fas expression and mediated activation of an apoptosis programme in bovine follicular granulosa cells in vitro.

    Science.gov (United States)

    Yang, R J; Li, J Y; Zhao, Z H; Gao, X; Gao, H J; Xu, S Z

    2012-08-01

    The Fas antigen is a transmembrane receptor that can trigger apoptosis in a variety of somatic cells. Ovarian follicular atresia and luteolysis are thought to occur by apoptosis. To reveal the intracellular signal transduction molecules involved in the process of follicular development in the bovine ovary, Fas gene without the stop codon was amplified in the present study using RT-PCR and directly cloned into the eukaryotic expression vector pAcGFP-N1. The resultant recombinant plasmid pAcGFP-bFas was then transfected into bovine follicular granulosa cells. Expression of AcGFP was observed under fluorescent microscopy, and the transcription and translation of Fas were detected by RT-PCR and western blot analysis. The methyl-tetrazolium (MTT) assay, Hoechst33342 staining and DNA ladder method were performed to determine the growth inhibition and apoptosis of the cells. The results showed that GFP expression was detected as early as 24 h after transfection. The Fas fusion gene was successfully expressed in granulosa cells as evidenced by the detection of a 994-bp fragment corresponding to the Fas mRNA by RT-PCR and a 64.5-kD band corresponding to the Fas fusion protein by western blot. Granulosa cell viability decreased significantly at 72 h after transfection, and the apoptosis rate of the cells transfected with pAcGFP-Fas was significantly higher than that of the control group. Cells in the Fas transfection group showed ladder patterns characteristic of apoptosis, and the nuclei were shrunken and densely hyperchromatic or fragmented, suggesting that Fas is capable of inhibiting the proliferation of bovine follicular granulosa cells and inducing cell apoptosis when over-expressed. This study will aid in further understanding the mechanism of regulation of Fas on bovine oocyte formation and development. PMID:22034848

  17. Propagation of elite rescue dogs by somatic cell nuclear transfer.

    Science.gov (United States)

    Oh, Hyun Ju; Choi, Jin; Kim, Min Jung; Kim, Geon A; Jo, Young Kwang; Choi, Yoo Bin; Lee, Byeong Chun

    2016-01-01

    The objective of the present study was to compare the efficiency of two oocyte activation culture media to produce cloned dogs from an elite rescue dog and to analyze their behavioral tendencies. In somatic cell nuclear transfer procedure, fused couplets were activated by calcium ionophore treatment for 4 min, cultured in two media: modified synthetic oviduct fluid (mSOF) with 1.9 mmol/L 6-dimethylaminopyridine (DMAP) (SOF-DMAP) or porcine zygote medium (PZM-5) with 1.9 mmol/L DMAP (PZM-DMAP) for 4 h, and then were transferred into recipients. After embryo transfer, pregnancy was detected in one out of three surrogate mothers that received cloned embryos from the PZM-DMAP group (33.3%), and one pregnancy (25%) was detected in four surrogate mothers receiving cloned embryos from the SOF-DMAP group. Each pregnant dog gave birth to one healthy cloned puppy by cesarean section. We conducted the puppy aptitude test with two cloned puppies; the two cloned puppies were classified as the same type, accepting humans and leaders easily. The present study indicated that the type of medium used in 6-DMAP culture did not increase in cloning efficiency and dogs cloned using donor cells derived from one elite dog have similar behavioral tendencies. PMID:26387964

  18. Utilization of zinc methionine supplementation in Friesian cows: somatic cell count in milk and mastitis

    International Nuclear Information System (INIS)

    Full text: Two hundreds and forty lactating Friesian cows on the 1st to 8th of lactation and different stages of lactation were used to study some factors affecting on somatic cell count and its effects on milk yield and composition. Also, 12 normal cows, 15 subclinical and 15 clinical mastitis cows were used to study the effect of zinc methionine supplementation on somatic cell count and mastitis. Cows were divided into three similar groups, the first groups was unsupplemented, while the second and third groups were supplemented with 5 and 10 gm zinc methionine / head / day, respectively. Subclinical and clinical mastitis cows were intramammary injected by antibiotic Gentamast (Gentamicin 100 mg) till complete recovery. The obtained results showed that winter season showed significantly (P < 0.05) the highest somatic cell count followed by summer season, while the lowest value was in autumn season. Somatic cell count tended to decrease with the progress of lactation up to the peak period and increased significantly (P < 0.05) thereafter and also with the progress number of lactation. The percentages of normal, subclinical and clinical mastitis cows were 77.71, 15.82 and 6.46%, respectively. Milk yield and composition and its output decreased significantly (P < 0.05) with increasing somatic cell count. Zinc methionine supplementation resulted in significant (P < 0.05) decrease in somatic cell count in milk. Zinc methionine supplementation for subclinical and clinical mastitis cows led to significant decrease (P < 0.05) on somatic cell count, electrical conductivity, recovery time and the cost of therapy compared with unsupplemented group. It could be concluded that increasing somatic cell count decreased milk yield and composition. Zinc methionine supplementation at the level of 5 g per head daily to lactating Friesian cows reduced somatic cell count in milk, recovery time and therapy cost of mastitis. (author)

  19. Association between BoLA-DRB3 and somatic cell count in Holstein cattle from Argentina.

    Science.gov (United States)

    Baltian, L R; Ripoli, M V; Sanfilippo, S; Takeshima, S N; Aida, Y; Giovambattista, G

    2012-07-01

    Different studies have proved that the resistance/susceptibility to mastitis is genetically determined. The major histocompatibility complex in cows is known as bovine lymphocyte antigen (BoLA). Genes from the BoLA have been associated with the occurrence of infectious diseases such as mastitis and leukosis, especially the BoLA-DRB gene. The object of the present study was to detect associations between BoLA-DRB3 alleles and somatic cell count (SCC), as an indicator of resistance/susceptibility to mastitis in Holstein cattle (N = 123) from La Pampa, Argentina. Fisher's exact test and Woolf-Haldane odds ratio were applied to study the association between SCC and BoLA-DRB3 allele frequencies. Significant association was noted between BoLA-DRB3.2*23 and *27 alleles (p < 0.05) and protective or susceptibility effects, respectively. In addition, alleles BoLA-DRB3.2*20 and *25 exhibit suggestive association with high SCC (p < 0.1). These results were partially in agreement with data reported from Japanese Holstein cattle, but differed from those published by other authors. A possible explanation for the contrasting results could be that the mastitis is a multifactor disease caused by different pathogens. Moreover, most of the studies were carried out using PCR-RFLP method, which has less resolution than PCR-SBT because PCR-RFLP defined alleles included more than one sequenced alleles. PMID:22531932

  20. Embryonic Development following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation

    OpenAIRE

    Matoba, Shogo; Liu, Yuting; Lu, Falong; Iwabuchi, Kumiko A.; Inoue, Azusa; Zhang, Yi

    2014-01-01

    Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major epigenetic barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed n...

  1. Privileged Communication Embryonic Development Following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation

    OpenAIRE

    Matoba, Shogo; Liu, Yuting; Lu, Falong; Iwabuchi, Kumiko A.; Shen, Li; Inoue, Azusa; Zhang, Yi

    2014-01-01

    Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major epigenetic barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed n...

  2. An unregulated regulator: Vasa expression in the development of somatic cells and in tumorigenesis.

    Science.gov (United States)

    Poon, Jessica; Wessel, Gary M; Yajima, Mamiko

    2016-07-01

    Growing evidence in diverse organisms shows that genes originally thought to function uniquely in the germ line may also function in somatic cells, and in some cases even contribute to tumorigenesis. Here we review the somatic functions of Vasa, one of the most conserved "germ line" factors among metazoans. Vasa expression in somatic cells is tightly regulated and often transient during normal development, and appears to play essential roles in regulation of embryonic cells and regenerative tissues. Its dysregulation, however, is believed to be an important element of tumorigenic cell regulation. In this perspectives paper, we propose how some conserved functions of Vasa may be selected for somatic cell regulation, including its potential impact on efficient and localized translational activities and in some cases on cellular malfunctioning and tumorigenesis. PMID:27179696

  3. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm

    International Nuclear Information System (INIS)

    The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requires permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells

  4. Detection of Infectious Bovine Rhinotracheitis and Bovine Viral Diarrhea Viruses in the Nasal Epithelial Cells by the Direct Immunofluorescence Technique

    OpenAIRE

    Silim, A.; Elazhary, M. A. S. Y.

    1983-01-01

    Nasal epithelial cells were collected by cotton swabs for the diagnosis in experimental and field cases of infectious bovine rhinotracheitis and field cases of bovine viral diarrhea in calves. A portion of the cells was washed twice in phosphate buffered saline and a 25 µL drop was placed on microscope slides. The cells were dried, fixed and stained according to the direct fluorescent antibody technique. Another portion of the same specimen was inoculated onto primary bovine skin cell culture...

  5. The uranyl influence on a mutation process in germ and somatic cells of mice

    International Nuclear Information System (INIS)

    The mutagenic effect of uranyl was revealed by the chromosome rearrangement test in germ and somatic cells of mice. The effect value depended on duration of substance administration into organism. (authors)

  6. Chinmo is sufficient to induce male fate in somatic cells of the adult Drosophila ovary.

    Science.gov (United States)

    Ma, Qing; de Cuevas, Margaret; Matunis, Erika L

    2016-03-01

    Sexual identity is continuously maintained in specific differentiated cell types long after sex determination occurs during development. In the adult Drosophila testis, the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo) acts with the canonical male sex determinant DoublesexM (Dsx(M)) to maintain the male identity of somatic cyst stem cells and their progeny. Here we find that ectopic expression of chinmo is sufficient to induce a male identity in adult ovarian somatic cells, but it acts through a Dsx(M)-independent mechanism. Conversely, the feminization of the testis somatic stem cell lineage caused by loss of chinmo is enhanced by expression of the canonical female sex determinant Dsx(F), indicating that chinmo acts in parallel with the canonical sex determination pathway to maintain the male identity of testis somatic cells. Consistent with this finding, ectopic expression of female sex determinants in the adult testis disrupts tissue morphology. The miRNA let-7 downregulates chinmo in many contexts, and ectopic expression of let-7 in the adult testis is sufficient to recapitulate the chinmo loss-of-function phenotype, but we find no apparent phenotypes upon removal of let-7 in the adult ovary or testis. Our finding that chinmo is necessary and sufficient to promote a male identity in adult gonadal somatic cells suggests that the sexual identity of somatic cells can be reprogrammed in the adult Drosophila ovary as well as in the testis. PMID:26811385

  7. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, Gat, E-mail: gat.rauner@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel); The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem (Israel); Barash, Itamar, E-mail: itamar.barash@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel)

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.

  8. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    International Nuclear Information System (INIS)

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth

  9. Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis

    OpenAIRE

    Su, Ying Hua; Zhang, Xian Sheng

    2009-01-01

    Single or a group of somatic cells could give rise to the whole plant, which require hormones, or plant growth regulators. Although many studies have been done during past years, how hormones specify cell fate during in vitro organogenesis is still unknown. To uncover this mechanism, Arabidopsis somatic embryogenesis has been recognized as a model for studying in vitro plant organogenesis. In this paper, we showed that establishment of auxin gradients within embryonic callus is essential for ...

  10. Reproductional indicator influence on the somatic cell count of cow's milk

    OpenAIRE

    Jonikaitė, Inga

    2007-01-01

    Research data show that the somatic cell count increases during the transition period when dairy cows are transferred from barns to pastures (month of May) and during the transition period when dairy cows are transferred from pasture to barn (month of October). During these period’s feedstuff composition changes, as does the temperature, microclimate parameters, which also have an influence on cows with Sub-clinical mastitis. Somatic cell counts are lowest in 1st lactation cows. 1st lactat...

  11. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Athanasia D Panopoulos; Margaret Lutz; W Travis Berggren; Kun Zhang; Ronald M Evans; Gary Siuzdak; Juan Carlos Izpisua Belmonte; Oscar Yanes; SergioRuiz; Yasuyuki S Kida; Dinh Diep; Ralf Tautenhahn; Aida Herrerias; Erika M Batchelder; Nongluk Plongthongkum

    2012-01-01

    Metabolism is vital to every aspect of cell function,yet the metabolome of induced pluripotent stem cells (iPSCs)remains largely unexplored.Here we report,using an untargeted metabolomics approach,that human iPSCs share a pluripotent metabolomic signature with embryonic stem cells (ESCs) that is distinct from their parental cells,and that is characterized by changes in metabolites involved in cellular respiration.Examination of cellular bioenergetics corroborated with our metabolomic analysis,and demonstrated that somatic cells convert from an oxidative state to a glycolytic state in pluripotency.Interestingly,the bioenergetics of various somatic cells correlated with their reprogramming efficiencies.We further identified metabolites that differ between iPSCs and ESCs,which revealed novel metabolic pathways that play a critical role in regulating somatic cell reprogramming.Our findings are the first to globally analyze the metabolome of iPSCs,and provide mechanistic insight into a new layer of regulation involved in inducing pluripotency,and in evaluating iPSC and ESC equivalence.

  12. Plant Hormones Increase Efficiency of Reprogramming Mouse Somatic Cells to Induced Pluripotent Stem Cells and Reduce Tumorigenicity

    OpenAIRE

    Alvarez Palomo, Ana Belén; McLenachan, Samuel; Requena Osete, Jordi; Menchón, Cristina; Barrot, Carme; Chen, Fred; Munné-Bosch, Sergi; Michael J. Edel

    2013-01-01

    Reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined pluripotency and self-renewal factors has taken stem cell technology to the forefront of regenerative medicine. However, a number of challenges remain in the field including efficient protocols and the threat of cancer. Reprogramming of plant somatic cells to plant embryonic stem cells using a combination of two plant hormones was discovered in 1957 and has been a routine university laboratory practical for ov...

  13. Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells

    OpenAIRE

    Ruiz, Sergio; Lopez Contreras, Andres J.; Gabut, Mathieu; Marion, Rosa M.; Guti??rrez Mart??nez, Paula; Bua, Sabela; Ram??rez, Oscar; Olalde, I??igo; Rodrigo Perez, Sara; Li, Han; Marqu??s i Bonet, Tom??s, 1975-; Serrano, Manuel; Blasco, Maria A; Batada, Nizar N; Fern??ndez Capetillo, Oscar

    2015-01-01

    The generation of induced pluripotent stem cells (iPSC) from adult somatic cells is one of the most remarkable discoveries in recent decades. However, several works have reported evidence of genomic instability in iPSC, raising concerns on their biomedical use. The reasons behind the genomic instability observed in iPSC remain mostly unknown. Here we show that, similar to the phenomenon of oncogene-induced replication stress, the expression of reprogramming factors induces replication stress....

  14. Mutation of mitochondria genome: trigger of somatic cell transforming to cancer cell

    OpenAIRE

    Jianping Du

    2010-01-01

    Abstract Nearly 80 years ago, scientist Otto Warburg originated a hypothesis that the cause of cancer is primarily a defect in energy metabolism. Following studies showed that mitochondria impact carcinogenesis to remodel somatic cells to cancer cells through modifying the genome, through maintenance the tumorigenic phenotype, and through apoptosis. And the Endosymbiotic Theory explains the origin of mitochondria and eukaryotes, on the other hands, the mitochondria also can fall back. Compare...

  15. Factors affecting somatic cell count in dairy goats: a review

    Directory of Open Access Journals (Sweden)

    Rocío Jiménez-Granado

    2014-02-01

    Full Text Available Somatic cell count (SCC in monitoring udder health has been described in numerous studies as a useful method for the diagnosis of intramammary infection (IMI, and it is considered in standards of quality and hygiene of cow’s milk in many countries. However, several authors have questioned the validity of SCC as a reliable IMI diagnosis tool in dairy goats. This review attempts to reflect the importance of different infectious and non-infectious factors that can modify SCC values in goat milk, and must, therefore, be taken into account when using the SCC as a tool in the improvement of udder health and the quality of milk in this species. In dairy goats, some investigations have shown that mammary bacterial infections are a major cause of increased SCC and loss of production. In goats however, the relationship between bacterial infections and SCC values is not as simple as in dairy cattle, since non-infectious factors also have a big impact on SCC. Intrinsic factors are those that depend directly on the animal: time and number of lactation (higher SCC late in lactation and in aged goats, prolificity (higher SCC in multiple births, milking time (higher SCC in evening compared to morning milking and number of milkings per day, among others. Extrinsic factors include: milking routine (lower SCC in machine than in manual milking, seasonality and food. In addition, milk secretion in goats is mostly apocrine and therefore characterized by the presence of epithelial debris or cytoplasmic particles, which makes the use of DNA specific counters mandatory. All this information is of interest in order to correctly interpret the SCC in goat milk and to establish differential SCC standards.

  16. Factors affecting somatic cell count in dairy goats: a review

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Granda, R.; Sanchez-Rodriguez, M.; Arce, C.; Rodriguez-Estevez, V.

    2014-06-01

    Somatic cell count (SCC) in monitoring udder health has been described in numerous studies as a useful method for the diagnosis of intramammary infection (IMI), and it is considered in standards of quality and hygiene of cows milk in many countries. However, several authors have questioned the validity of SCC as a reliable IMI diagnosis tool in dairy goats. This review attempts to reflect the importance of different infectious and non-infectious factors that can modify SCC values in goat milk, and must, therefore, be taken into account when using the SCC as a tool in the improvement of udder health and the quality of milk in this species. In dairy goats, some investigations have shown that mammary bacterial infections are a major cause of increased SCC and loss of production. In goats however, the relationship between bacterial infections and SCC values is not as simple as in dairy cattle, since non-infectious factors also have a big impact on SCC. Intrinsic factors are those that depend directly on the animal: time and number of lactation (higher SCC late in lactation and in aged goats), prolificity (higher SCC in multiple births), milking time (higher SCC in evening compared to morning milking) and number of milkings per day, among others. Extrinsic factors include: milking routine (lower SCC in machine than in manual milking), seasonality and food. In addition, milk secretion in goats is mostly apocrine and therefore characterized by the presence of epithelial debris or cytoplasmic particles, which makes the use of DNA specific counters mandatory. All this information is of interest in order to correctly interpret the SCC in goat milk and to establish differential SCC standards. (Author)

  17. Regenerative therapy for neuronal diseases with transplantation of somatic stem cells

    OpenAIRE

    Kanno, Hiroshi

    2013-01-01

    Pluripotent stem cells, which are capable of differentiating in various species of cells, are hoped to be donor cells in transplantation in regenerative medicine. Embryonic stem (ES) cells and induced pluripotent stem cells have the potential to differentiate in approximately all species of cells. However, the proliferating ability of these cells is high and the cancer formation ability is also recognized. In addition, ethical problems exist in using ES cells. Somatic stem cells with the abil...

  18. A proteomic perspective on the changes in milk proteins due to high somatic cell count.

    Science.gov (United States)

    Zhang, L; Boeren, S; van Hooijdonk, A C M; Vervoort, J M; Hettinga, K A

    2015-08-01

    Although cows with subclinical mastitis have no difference in the appearance of their milk, milk composition and milk quality are altered because of the inflammation. To know the changes in milk quality with different somatic cell count (SCC) levels, 5 pooled bovine milk samples with SCC from 10(5) to 10(6) cells/mL were analyzed qualitatively and quantitatively using both one-dimension sodium dodecyl sulfate PAGE and filter-aided sample preparation coupled with dimethyl labeling, both followed by liquid chromatography tandem mass spectrometry. Minor differences were found on the qualitative level in the proteome from milk with different SCC levels, whereas the concentration of milk proteins showed remarkable changes. Not only immune-related proteins (cathelicidins, IGK protein, CD59 molecule, complement regulatory protein, lactadherin), but also proteins with other biological functions (e.g., lipid metabolism: platelet glycoprotein 4, butyrophilin subfamily 1 member A1, perilipin-2) were significantly different in milk from cows with high SCC level compared with low SCC level. The increased concentration of protease inhibitors in the milk with higher SCC levels may suggest a protective role in the mammary gland against protease activity. Prostaglandin-H2 D-isomerase showed a linear relation with SCC, which was confirmed with an ELISA. However, the correlation coefficient was lower in individual cows compared with bulk milk. These results indicate that prostaglandin-H2 D-isomerase may be used as an indicator to evaluate bulk milk quality and thereby reduce the economic loss in the dairy industry. The results from this study reflect the biological phenomena occurring during subclinical mastitis and in addition provide a potential indicator for the detection of bulk milk with high SCC. PMID:26094216

  19. Cloned embryos from semen. Part 2: Intergeneric nuclear transfer of semen-derived eland (Taurotragus oryx) epithelial cells into bovine oocytes

    Science.gov (United States)

    Nel-Themaat, L.; Gomez, M.C.; Pope, C.E.; Lopez, M.; Wirtu, G.; Jenkins, J.A.; Cole, A.; Dresser, B.L.; Bondioli, K.R.; Godke, R.A.

    2008-01-01

    The production of cloned offspring by nuclear transfer (NT) of semen-derived somatic cells holds considerable potential for the incorporation of novel genes into endangered species populations. Because oocytes from endangered species are scarce, domestic species oocytes are often used as cytoplasts for interspecies NT. In the present study, epithelial cells isolated from eland semen were used for intergeneric transfer (IgNT) into enucleated bovine oocytes and compared with bovine NT embryos. Cleavage rates of bovine NT and eland IgNT embryos were similar (80 vs. 83%, respectively; p > 0.05); however, development to the morula and blastocyst stage was higher for bovine NT embryos (38 and 21%, respectively; p < 0.0001), than for eland IgNT embryos (0.5 and 0%, respectively). DNA synthesis was not observed in either bovine NT or eland IgNT cybrids before activation, but in 75 and 70% of bovine NT and eland igNT embryos, respectively, cell-cycle resumption was observed at 16 h postactivation (hpa). For eland IgNT embryos, 13% had ???8 cells at 84 hpa, while 32% of the bovine NT embryos had ???8 cells at the same interval. However, 100 and 66% of bovine NT and eland IgNT embryos, respectively, that had ???8 cells synthesized DNA. From these results we concluded that (1) semen-derived epithelial cell nuclei can interact and be transcriptionally controlled by bovine cytoplast, (2) the first cell-cycle occurred in IgNT embryos, (3) a high frequency of developmental arrest occurs before the eight-cell stage in IgNT embryos, and (4) IgNT embryos that progress through the early cleavage stage arrest can (a) synthesize DNA, (b) progress through subsequent cell cycles, and (c) may have the potential to develop further. ?? 2008 Mary Ann Liebert, Inc.

  20. Cell-free translation of bovine viral diarrhea virus RNA.

    OpenAIRE

    Purchio, A F; Larson, R.; Torborg, L L; Collett, M S

    1984-01-01

    Bovine viral diarrhea virus RNA was translated in a reticulocyte cell-free protein synthesizing system. The purified, 8.2-kilobase, virus-specific RNA species was unable to serve an an efficient message unless it was denatured immediately before translation. In this case, several polypeptides, ranging in molecular weight from 50,000 to 150,000 and most of which were immunoprecipitated by bovine viral diarrhea virus-specific antiserum, were synthesized in vitro. When polyribosomes were used to...

  1. Embryonic stem cells and somatic cells differ in mutation frequency and type

    Science.gov (United States)

    Cervantes, Rachel B.; Stringer, James R.; Shao, Changshun; Tischfield, Jay A.; Stambrook, Peter J.

    2002-01-01

    Pluripotent embryonic stem (ES) cells have been used to produce genetically modified mice as experimental models of human genetic diseases. Increasingly, human ES cells are being considered for their potential in the treatment of injury and disease. Here we have shown that mutation in murine ES cells, heterozygous at the selectable Aprt locus, differs from that in embryonic somatic cells. The mutation frequency in ES cells is significantly lower than that in mouse embryonic fibroblasts, which is similar to that in adult cells in vivo. The distribution of spontaneous mutagenic events is remarkably different between the two cell types. Although loss of the functional allele is the predominant mutation type in both cases, representing about 80% of all events, mitotic recombination accounted for all loss of heterozygosity events detected in somatic cells. In contrast, mitotic recombination in ES cells appeared to be suppressed and chromosome loss/reduplication, leading to uniparental disomy (UPD), represented more than half of the loss of heterozygosity events. Extended culture of ES cells led to accumulation of cells with adenine phosphoribosyltransferase deficiency and UPD. Because UPD leads to reduction to homozygosity at multiple recessive disease loci, including tumor suppressor loci, in the affected chromosome, the increased risk of tumor formation after stem cell therapy should be viewed with concern. PMID:11891338

  2. [Antiviral activity of interferon and its inducers in human lymphoblastoid and somatic cells].

    Science.gov (United States)

    Novokhatskiĭ, A S; Labzo, S S; Tsareva, A A

    1979-04-01

    The antiviral effect of interferon inductors, such as poly-I--poly-C, phage f2 RNA replicative form and low molecular inductor GSN and their influence on cellular DNA synthesis were studied in the cultures of lymphoblastoid (inplanting lines Raji Namalva) and somatic human cells. The Semliki forest virus used as the test organism multiplicated well in cells Raji accumulating up to 9 lg BOU/ml. The two-strand RNA was less active in the lymphoid cells than in the somatic ones. GSN was 10 times more active and less toxic in cells Raji as compared to the fibroblasts. The lymphoblastoid interferon had higher antiviral activity as compared to the fibroblast interferon in the system of Raji--Semliki forest virus than in the system of the human embryon fibroblast--Venezuela Horse Encephalytic Virus. Romantadin actively inhibited (100 times) production of the alfavirus in both the somatic and lymphoblastoid cells. PMID:220908

  3. Differentiation of Bovine Spermatogonial Stem Cells into Osteoblasts

    OpenAIRE

    Qasemi-Panahi, Babak; Tajik, Parviz; Movahedin, Mansoureh; Moghaddam, Gholamali; Barzgar, Younes; Heidari-Vala, Hamed

    2011-01-01

    Spermatogonial Stem Cell (SSC) technologies provide multiple opportunities for research in the field of biotechnology and regenerative medicine. The therapeutic use of Embryonic Stem Cells (ESCs) is restricted due to severe ethical and immunological concerns. Therefore, we need a new pluripotent cell type. Despite well-known role of germ cells in the gametogenesis, some facts apparently show their multipotentiality. In the present study, bovine SSCs were co-cultured with Sertoli cell for 7 da...

  4. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells

    DEFF Research Database (Denmark)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprograming, pluripotency, and differentiation...... capacity. Here we review the epigenetic changes with a focus on histone modification (methylation and acetylation) and DNA modification (methylation) during iPSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules...... influencing the epigenetic reprogramming of somatic cells. Finally, we discuss how to improve iPSC generation and pluripotency through epigenetic manipulations....

  5. Factors Affecting on Somatic Cells Count in Slovak Simmental Dairy Cows

    Directory of Open Access Journals (Sweden)

    Jozef Bujko

    2014-11-01

    Full Text Available The aim this work was to analyse factors affecting on the somatic cells count in Slovak Simmental dairy cows. Data were analysed using the SAS version 9.1.3. and linear model with fixed effects of herd, years and months controls, sire and breeding types. The analyses by the effect on somatic cells count was the highest effect of herd-years-months of control R2 = 0.151316 and effect of sire R2 = 0.054182. These effects were high statistical significant P<0.01. Correlation coefficients between milk in kg, fat, protein, lactose in % with somatic cells count were r= -0.25096, r= 0.02593, r= 0.22321and r=-0.39567.

  6. Hexavalent chromium induces apoptosis in male somatic and spermatogonial stem cells via redox imbalance

    OpenAIRE

    Joydeep Das; Min-Hee Kang; Eunsu Kim; Deug-Nam Kwon; Yun-Jung Choi; Jin-Hoi Kim

    2015-01-01

    Hexavalent chromium [Cr(VI)], an environmental toxicant, causes severe male reproductive abnormalities. However, the actual mechanisms of toxicity are not clearly understood and have not been studied in detail. The present in vitro study aimed to investigate the mechanism of reproductive toxicity of Cr(VI) in male somatic cells (mouse TM3 Leydig cells and TM4 Sertoli cells) and spermatogonial stem cells (SSCs) because damage to or dysfunction of these cells can directly affect spermatogenesis...

  7. Characterization of an epithelial cell line from bovine mammary gland.

    Science.gov (United States)

    German, Tania; Barash, Itamar

    2002-05-01

    Elucidation of the bovine mammary gland's unique characteristics depends on obtaining an authentic cell line that will reproduce its function in vitro. Representative clones from bovine mammary cell populations, differing in their attachment capabilities, were cultured. L-1 cells showed strong attachment to the plate, whereas H-7 cells detached easily. Cultures established from these clones were nontumorigenic upon transplantation to an immunodeficient host; they exhibited the epithelial cell characteristics of positive cytokeratin but not smooth muscle actin staining. Both cell lines depended on fetal calf serum for proliferation. They exhibited distinct levels of differentiation on Matrigel in serum-free, insulin-supplemented medium on the basis of their organization and beta-lactoglobulin (BLG) secretion. H-7 cells organized into mammospheres, whereas L-1 cells arrested in a duct-like morphology. In both cell lines, prolactin activated phosphorylation of the signal transducer and activator of transcription, Stat5-a regulator of milk protein gene transcription, and of PHAS-I-an inhibitor of translation initiation in its nonphosphorylated form. De novo synthesis and secretion of BLG were detected in differentiated cultures: in L-1 cells, BLG was dependent on lactogenic hormones for maximal induction but was less stringently controlled than was beta-casein in the mouse CID-9 cell line. L-1 cells also encompassed a near-diploid chromosomal karyotype and may serve as a tool for studying functional characteristics of the bovine mammary gland. PMID:12418925

  8. Number and importance of somatic cells in goat’s milk

    OpenAIRE

    Lidija Kozačinski; Majić, T.; Željka Cvrtila; Mirza Hadžiosmanović

    2001-01-01

    Goat’s milk samples were examined on mastitis using stable procedure (California-mastitis test). 427 of the examined milk samples (46.82%) had positive reaction from 1 to 3 while other 485 samples (53.18%) had negative reaction on the mastitis test, indicating that no illness of mammary gland occurred. Number of somatic cells, counted using “Fossomatic” counter, was 1.3x106/ml average. By comparing the results of mastitis-test evaluation (CMT) with the number of somatic cells and findings of ...

  9. Somaticell® as a screening method for somatic cell count from bovine milk Avaliação do Somaticell® como método de triagem para contagem de células somáticas do leite de bovinos

    Directory of Open Access Journals (Sweden)

    Hélio Langoni

    2012-06-01

    Full Text Available The objectives of the present study were to evaluate the correlation between electronic somatic cell count (eSCC and Somaticell® under different milk somatic cell count (SCC conditions and to different mastitis pathogens and calculate the, sensitivity, specificity and predictive values of Somaticell® using different SCC limits established by different countries. Three-hundred and forty milk samples were aseptically collected according to the California Mastitis Test (CMT result. The Somaticell® and eSCC were carried out in all milk samples. The correlation between Somaticell® test results and electronic counts was determined according to the CMT, isolated pathogen and eSCC score. According to the SCC scores established, 26.5% milk samples showed score 1 (69-166x10³cells mL-1, 26.8% score 2 (167-418x10³cells mL-1, 27.4% score 3 (419-760x10³cells mL-1 and 19.4% score 4 (761 to 1,970x10³cells mL-1. According to Spearmann correlation test, eSCC and Somaticell® had a positive correlation (POs objetivos do presente estudo foram avaliar a correlação entre a contagem eletrônica de células somáticas (eCCS com o Somaticell® sob diferentes níveis de contagem de células somáticas (CCS do leite e patógenos causadores de mastites, além de calcular a sensibilidade, especificidade e valores preditivos do Somaticell® utilizando diferentes limites de CCS estabelecidos pelos diferentes países. Trezentos e quarenta amostras de leite foram coletadas assepticamente após realização do California Mastitis Test (CMT. O Somaticell® e a eCCS foram realizados em todas as amostras de leite. A correlação entre o Somaticell® e a contagem eletrônica foi determinada de acordo com o CMT, patógeno isolado e escore de eCCS. De acordo com os escores de CCS estabelecidos, 26,5% das amostras de leite apresentaram escore 1 (69-166 x10³células mL-1, 26,8% escore 2 (167-418x10³células mL-1, 27,4% escore 3 (419-760x10³células mL-1 e 19,4% escore 4

  10. The Drosophila BCL6 homolog ken and barbie promotes somatic stem cell self-renewal in the testis niche

    OpenAIRE

    Issigonis, Melanie; Matunis, Erika

    2012-01-01

    Stem cells sustain tissue regeneration by their remarkable ability to replenish the stem cell pool and to generate differentiating progeny. Signals from local microenvironments, or niches, control stem cell behavior. In the Drosophila testis, a group of somatic support cells called the hub creates a stem cell niche by locally activating the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in two adjacent types of stem cells: germline stem cells (GSCs) and somat...

  11. Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse.

    Science.gov (United States)

    Gambini, Andrés; De Stéfano, Adrián; Jarazo, Javier; Buemo, Carla; Karlanian, Florencia; Salamone, Daniel Felipe

    2016-09-01

    The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes

  12. Breaching the kinetic barrier to in vitro somatic stem cell propagation

    OpenAIRE

    Merok, Joshua R.; Sherley, James L.

    2001-01-01

    Abstract Here we have reviewed the conventional definitions and fundamental characteristics of the two basic types of stem cells, embryonic stem cells (ESCs) and somatic stem cells (SSCs). By taking into account the often-overlooked asymmetric cell kinetics of SSCs, we consider the evidence that should SSCs retain these growth kinetics in vitro, a natural kinetic barrier to SSC propagation exists. Recent discoveries showing that the tumor suppressor gene p53 can act as a regulator of asymmetr...

  13. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes

    Institute of Scientific and Technical Information of China (English)

    YING CHEN; QING ZHANG YANG; DA YUAN CHEN; MIN KANG WANG; JIN SONG LI; SHAO LIANG HUANG; XIANG YIN KONG; YAO ZHOU SHI; ZHI QIANG WANG; JIA HUI XIA; ZHI GAO LONG; ZHI XU HE; ZHI GANG XUE; WEN XIANG DING; HUI ZHEN SHENG; AILIAN LIU; KAI WANG; WEN WEI MAO; JIAN XIN CHU; YONG LU; ZHENG FU FANG; YING TANG SHI

    2003-01-01

    To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the transfer of human somatic nuclei into rabbit oocytes. The number of blastocysts that developed from the fused nuclear transfer was comparable among nuclear donors at ages of 5, 42, 52 and 60 years, and nuclear transfer (NT) embryonic stem cells (ntES cells) were subsequently derived from each of the four age groups. These results suggest that human somatic nuclei can form ntES cells independent of the age of the donor. The derived ntES cells are human based on karyotype, isogenicity, in situ hybridization, PGR and immunocytochemistry with probes that distinguish between the various species. The ntES cells maintain the capability of sustained growth in an undifferentiated state, and form embryoid bodies, which, on further induction, give rise to cell types such as neuron and muscle, as well as mixed cell populations that express markers representative of all three germ layers. Thus, ntES cells derived from human somatic cells by NT to rabbit eggs retain phenotypes similar to those of conventional human ES cells, including the ability to undergo multilineage cellular differentiation.

  14. Genetic aspects of somatic cell count and udder health in the Italian Valle del Belice dairy sheep

    NARCIS (Netherlands)

    Riggio, V.

    2012-01-01

    Mastitis is an inflammation of the udder, which leads to economic loss, mainly consisting of discarded milk, reduced milk production and quality, and increased health costs. Somatic cell count (SCC), and therefore somatic cell score (SCS), is widely used as indicator of mastitis. In this thesis, I f

  15. Genetic Parameters For The Somatic Cells Count In The Milk Of Buffaloes Using Ordinary Test Day Models

    Directory of Open Access Journals (Sweden)

    H. Tonhati

    2010-02-01

    Full Text Available The buffaloes dairy milk production (BDMP has increased in the last 20 years, mainly for the manufacturing of mozzarella cheese, which is recognized by its high nutritional quality. However, this quality can be affected by several factors i. e. high somatic cells count (SCC provokes changes in the milk’s constituents. As in bovine dairy milk, the SCC is used as diagnostic tool for milk quality; because it enables the diagnosis of sub-clinic mastitis and also allows the selection of individuals genetically resistant to that disease. Based on it, we collected information about SCC and BDMP along the lactation in Murrah breed buffaloes, during the period between 1997 and 2005. Curves were designed to estimate genetic parameters. These parameters were estimated by ordinary test-day models. There were observed variations in the estimated heritability for both characteristics .The lowest score for somatic cells count (SSCC was seen at first month (0.01 and the highest at sixth months (0.29 The genetic correlation between these traits varied from -1 at the 1 and 9th months to 0.31 and 0.30 in the2 and 4th month of lactation. Phenotypic correlations were all negative (-0.07 in the second month and up to -0.35 in the eighth month of lactation. These results showed that environmental factors are more important than genetics in explain SCC, for this reason, selection for genetic resistance to mastitis in buffalos based in SCC should not be done. In the other hand, negative phenotypic correlations demonstrated that as the SCC increased, the milk production decreased.

  16. Somatic cell banking - An alternative technology for conservation of endangered sheep breeds

    International Nuclear Information System (INIS)

    Full text: Each cell of an animal's body contains full genetic code for the whole animal and nuclear transfer provides a way of converting cells to whole animal. Cells from endangered breeds collected by biopsy or from scrapings of soft skin or ear tissue or from hair follicle can be grown and multiplied in a laboratory and this would then be stored frozen indefinitely at 196 deg. C in liquid nitrogen. Mammary gland cells from sheep, mouse cumulus granulosa cells, bovine mural granulosa cells and fibroblast cells have all generated viable clones. The currently available methods of conservation, deep freezing of sperms (haploid genome) and storage of a large number of embryos are too expensive. In comparison, adult skin fibroblast cells are easy to obtain, hardy in culture and freezing, a good source of donor DNA without the limitations of age, sex and physiological state. Progenies were successfully obtained from nuclear transfer of serum-starved fibroblast cells from cattle, sheep and goat. Several other cell types successfully used for cloning are limited to female donors (cumulus and mammary epithelial, mural granulosa and oviductal cells) and are more difficult for long-term culture. Live progenies using skin fibroblasts have been produced in cattle. Sample collection and development of primary cultures: Samples were collected by biopsy of skin from ear pinna and transported in a complete medium (DMEM + HamsF12 with 10% FBS and penicillin and streptomycin) at 4 deg. C. Tissue samples were processed by removing hair form both sides, cut into small pieces and seeded in petridish containing fibroblast culture medium (DMEM + HamsF12, 10% FBS, penicillin and streptomycin and L-glutamine). The primary skin fibroblast cells started emerging out of tissues within 4-6 days and were allowed to grow up to 12-15 days till nearly 80% confluency was attained. Purification and sub-culturing of skin fibroblast cells: In isolated cases, there were contaminations of epithelial

  17. A Comparative View on Human Somatic Cell Sources for iPSC Generation

    Directory of Open Access Journals (Sweden)

    Stefanie Raab

    2014-01-01

    Full Text Available The breakthrough of reprogramming human somatic cells was achieved in 2006 by the work of Yamanaka and Takahashi. From this point, fibroblasts are the most commonly used primary somatic cell type for the generation of induced pluripotent stem cells (iPSCs. Various characteristics of fibroblasts supported their utilization for the groundbreaking experiments of iPSC generation. One major advantage is the high availability of fibroblasts which can be easily isolated from skin biopsies. Furthermore, their cultivation, propagation, and cryoconservation properties are uncomplicated with respect to nutritional requirements and viability in culture. However, the required skin biopsy remains an invasive approach, representing a major drawback for using fibroblasts as the starting material. More and more studies appeared over the last years, describing the reprogramming of other human somatic cell types. Cells isolated from blood samples or urine, as well as more unexpected cell types, like pancreatic islet beta cells, synovial cells, or mesenchymal stromal cells from wisdom teeth, show promising characteristics for a reprogramming strategy. Here, we want to highlight the advantages of keratinocytes from human plucked hair as a widely usable, noninvasive harvesting method for primary material in comparison with other commonly used cell types.

  18. Longitudinal Analysis of Somatic Cell Count for Joint Genetic Evaluation of Mastitis and Recovery Liability

    DEFF Research Database (Denmark)

    Welderufael, Berihu Gebremedhin; de Koning, D J; Janss, Luc;

    Abstract Text: Better models of genetic evaluation for mastitis can be developed through longitudinal analysis of somatic cell count (SCC) which usually is used as a proxy for mastitis. Mastitis and recovery data with weekly observations of SCC were simulated for daughter groups of 60 and 240 per...

  19. STUDY REGARDING THE CORELATION BETWEEN SOMATIC CELLS COUNT AND MAJOR CHEMICAL COMPOUNDS IN RAW MILK

    Directory of Open Access Journals (Sweden)

    S. ACATINCĂI

    2013-12-01

    Full Text Available This study approaches the dynamic of somatic cells number and chemical composition of milk during 13 months of control. The study also investigates the correlations between the number of somatic cells and some chemical parameters in milk. Studies were carried out on Romanian Black and White cows between March 2005 and March 2006 at the Didactical farm of the Banat University of Agricultural Sciences Timisoara. As quality indicator, the number of somatic cells has different values among the controls. Average values for the 13 months of control, with the exception of three controls, were below maximum limit admitted from 1th of January 2007 (600000 SCC/ml milk. There weren’t any significant differences for SCC between the two seasons. Chemical parameters in milk varied in close limits and the differences were not significant, with one exception for fat percent. Fat percent is higher (p<0.05 in the cold season 3.87% compared with 3.55% during the warm season. Somatic cells number is weak correlated with lactose and strong correlated with proteins.

  20. Genetic correlations between pathogen-specific mastitis and somatic cell count in Danish Holsteins

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Mark, Thomas; Madsen, P.;

    2009-01-01

    The aim of this study was to estimate genetic correlations (r(a)) between 2 lactation average somatic cell count (LASCC) traits and 6 different mastitis traits in 226,482 first-parity Danish Holstein cows that calved between 1998 and 2008. The LASCC traits were defined from 5 to either 170 d (LASCC...

  1. Relationship between somatic cell count status and subsequent clinical mastitis in Dutch dairy cows

    NARCIS (Netherlands)

    Borne, van den B.H.P.; Vernooij, J.C.M.; Lupindu, A.M.; Schaik, van G.; Frankena, K.; Lam, T.J.G.M.; Nielen, M.

    2011-01-01

    High composite somatic cell counts (CSCC) in dairy cows may develop into clinical mastitis (CM), suggesting that prevention or intervention of high CSCC may prevent CM later in lactation. The objective of this study was to quantify the relationship between high CSCC in dairy cows and the first subse

  2. Impact of selection for decreased somatic cell score on productive life and culling for mastitis

    Science.gov (United States)

    Impact of continued selection for decreased somatic cell score (SCS) was examined to determine if such selection resulted in greater mastitis susceptibility and shorter productive life (PL). Holstein artificial-insemination bulls with a predicted transmitting ability (PTA) for SCS based on >=35 daug...

  3. Number and importance of somatic cells in goat’s milk

    Directory of Open Access Journals (Sweden)

    Lidija Kozačinski

    2001-04-01

    Full Text Available Goat’s milk samples were examined on mastitis using stable procedure (California-mastitis test. 427 of the examined milk samples (46.82% had positive reaction from 1 to 3 while other 485 samples (53.18% had negative reaction on the mastitis test, indicating that no illness of mammary gland occurred. Number of somatic cells, counted using “Fossomatic” counter, was 1.3x106/ml average. By comparing the results of mastitis-test evaluation (CMT with the number of somatic cells and findings of mastitis agents in milk showed that higher number of somatic cells is not the only indication of goat’s mammary gland illness. Mastitis-test is method that can exclude inflammation of goat’s mammary gland, but every positive reaction should be confirmed or eliminate with bacteriological examination. Based on the results of this research, it has been shown that the limit for somatic cells number in goat's milk can be over 1 000 000/ml.

  4. The ups and downs of somatic cell nucleus transfer (SCNT) in humans

    OpenAIRE

    Fulka, Josef; Langerova, Alena; Loi, Pasqualino; Ptak, Grazyna; Albertini, David; Fulka, Helena

    2013-01-01

    Achieving successful somatic cell nuclear transfer (SCNT) in the human and subhuman primate relative to other mammals has been questioned for a variety of technical and logistical issues. Here we summarize the gradual evolution of SCNT technology from the perspective of oocyte quality and cell cycle status that has recently led to the demonstration of feasibility in the human for deriving chromosomally normal stem cells lines. With these advances in hand, prospects for therapeutic cloning mus...

  5. A matter of identity — Phenotype and differentiation potential of human somatic stem cells

    Directory of Open Access Journals (Sweden)

    S.E.P. New

    2015-07-01

    Full Text Available Human somatic stem cells with neural differentiation potential can be valuable for developing cell-based therapies, including treatment of birth-related defects, while avoiding issues associated with cell reprogramming. Precisely defining the “identity” and differentiation potential of somatic stem cells from different sources, has proven difficult, given differences in sets of specific markers, protocols used and lack of side-by-side characterization of these cells in different studies. Therefore, we set to compare expression of mesenchymal and neural markers in human umbilical cord-derived mesenchymal stem cells (UC-MSCs, pediatric adipose-derived stem cells (p-ADSCs in parallel with human neural stem cells (NSCs. We show that UC-MSCs at a basal level express mesenchymal and so-called “neural” markers, similar to that we previously reported for the p-ADSCs. All somatic stem cell populations studied, independently from tissue and patient of origin, displayed a remarkably similar expression of surface markers, with the main difference being the restricted expression of CD133 and CD34 to NSCs. Expression of certain surface and neural markers was affected by the expansion medium used. As predicted, UC-MSCs and p-ADSCs demonstrated tri-mesenchymal lineage differentiation potential, though p-ADSCs display superior chondrogenic differentiation capability. UC-MSCs and p-ADSCs responded also to neurogenic induction by up-regulating neuronal markers, but crucially they appeared morphologically immature when compared with differentiated NSCs. This highlights the need for further investigation into the use of these cells for neural therapies. Crucially, this study demonstrates the lack of simple means to distinguish between different cell types and the effect of culture conditions on their phenotype, and indicates that a more extensive set of markers should be used for somatic stem cell characterization, especially when developing therapeutic

  6. Testicular Somatic Cells, not Gonocytes, Are the Major Source of Functional Activin A during Testis Morphogenesis

    OpenAIRE

    Archambeault, Denise R.; Tomaszewski, Jessica; Childs, Andrew J.; Anderson, Richard A.; YAO, HUMPHREY HUNG-CHANG

    2011-01-01

    Proper development of the seminiferous tubules (or testis cords in embryos) is critical for male fertility. Sertoli cells, somatic components of the seminiferous tubules, serve as nurse cells to the male germline, and thus their numbers decide the quantity of sperm output in adulthood. We previously identified activin A, the protein product of the activin βA (Inhba) gene, as a key regulator of murine Sertoli cell proliferation and testis cord expansion during embryogenesis. Although our genet...

  7. Effects of donor cells on in vitro development of cloned bovine embryos

    Institute of Scientific and Technical Information of China (English)

    Jing Fu; Pengfei Guan; Leiwen Zhao; Hua Li; Shuzhen Huang; Fanyi Zeng; Yitao Zeng

    2008-01-01

    The donor cells from different individuals and with different foreign genes introduced were investigated to determine their effects on the efficiency of somatic cell nuclear transfer (SCNT). The bovine ear fibroblast from different individuals was isolated, cultured, and then transfected with foreign genes to establish the stable cell lines, which were used as donor cells for nuclear transfer. The ooeytes were obtained through ovum pick up operation. After in vitro maturation, the M II phase oocytes were selected as receptors for nuclear transfer.The reconstructed embryos were cultured in vitro and observed at 2 h, 48 h, and 7 days after transfer to assess the rate of fusion using cleaved and blastoeyst as the parameters of SCNT efficiency. The donor cells from different individuals (04036, 06081, 06088, and 06129)had no obvious effect on the fusion and cleaved rate, whereas there was significant difference in the blastocyst rate (P0.05). It was concluded that the genetic background of the donor cells could affect the effi-ciency of SCNT, while the introduction of foreign genes into the donor cells had no obvious effect on the efficiency. This study provides useful information for the SCNT and would benefit in promoting the efficiency.

  8. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines

  9. Identification of short hairpin RNA targeting foot-and-mouth disease virus with transgenic bovine fetal epithelium cells.

    Directory of Open Access Journals (Sweden)

    Hongmei Wang

    Full Text Available BACKGROUND: Although it is known that RNA interference (RNAi targeting viral genes protects experimental animals, such as mice, from the challenge of Foot-and-mouth disease virus (FMDV, it has not been previously investigated whether shRNAs targeting FMDV in transgenic dairy cattle or primary transgenic bovine epithelium cells will confer resistance against FMDV challenge. PRINCIPAL FINDING: Here we constructed three recombinant lentiviral vectors containing shRNA against VP2 (RNAi-VP2, VP3 (RNAi-VP3, or VP4 (RNAi-VP4 of FMDV, and found that all of them strongly suppressed the transient expression of a FLAG-tagged viral gene fusion protein in 293T cells. In BHK-21 cells, RNAi-VP4 was found to be more potent in inhibition of viral replication than the others with over 98% inhibition of viral replication. Therefore, recombinant lentiviral vector RNAi-VP4 was transfected into bovine fetal fibroblast cells to generate transgenic nuclear donor cells. With subsequent somatic cell cloning, we generated forty transgenic blastocysts, and then transferred them to 20 synchronized recipient cows. Three transgenic bovine fetuses were obtained after pregnant period of 4 months, and integration into chromosome in cloned fetuses was confirmed by Southern hybridization. The primary tongue epithelium cells of transgenic fetuses were isolated and inoculated with 100 TCID(50 of FMDV, and it was observed that shRNA significantly suppressed viral RNA synthesis and inhibited over 91% of viral replication after inoculation of FMDV for 48 h. CONCLUSION: RNAi-VP4 targeting viral VP4 gene appears to prevent primary epithelium cells of transgenic bovine fetus from FMDV infection, and it could be a candidate shRNA used for cultivation of transgenic cattle against FMDV.

  10. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masahito [Japan Science and Technology Agency (JST), ERATO, Nakauchi Stem Cell and Organ Regeneration Project, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Umeyama, Kazuhiro [Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); International Cluster for Bio-Resource Research, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Matsunari, Hitomi [Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Takayanagi, Shuko [Japan Science and Technology Agency (JST), ERATO, Nakauchi Stem Cell and Organ Regeneration Project, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka [Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Nakauchi, Hiromitsu [Japan Science and Technology Agency (JST), ERATO, Nakauchi Stem Cell and Organ Regeneration Project, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, Tokyo University, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); and others

    2010-11-05

    Research highlights: {yields} EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. {yields} ZFNs induced targeted mutations in porcine primary cultured cells. {yields} Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  11. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  12. Nuclear transfer of goat somatic cells transgenic for human lactoferrin gene

    Institute of Scientific and Technical Information of China (English)

    Lan LI; Wei SHEN; Lingjiang MIN; Qingyu PAN; Yujiang SUN; Jixian DENG; Qingjie PAN

    2008-01-01

    Transgenic animal mammary gland bioreactors are used to produce recombinant proteins with appropri-ate post-translational modifications.The nuclear transfer of transgenic somatic cells is a powerful method to pro-duce mammary gland bioreactors.We established an effi-cient gene transfer and nuclear transfer approach in goat somatic cells.Gene targeting vector pGBC2LF was con-structed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene and the endogenous start codon was replaced by that of human LF gene.Goat fetal fibroblasts were transfected with lin-earized pGBC2LF and 14 cell lines were positive accord-ing to PCR and Southern blot.The transgenic cells were used as donor cells of nuclear transfer and some of recon-structed embryos could develop into blastocyst in vitro.

  13. PGRMC1 participates in late events of bovine granulosa cells mitosis and oocyte meiosis.

    Science.gov (United States)

    Terzaghi, L; Tessaro, I; Raucci, F; Merico, V; Mazzini, G; Garagna, S; Zuccotti, M; Franciosi, F; Lodde, V

    2016-08-01

    Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in both oocyte and ovarian somatic cells, where it is found in multiple cellular sub-compartments including the mitotic spindle apparatus. PGRMC1 localization in the maturing bovine oocytes mirrors its localization in mitotic cells, suggesting a possible common action in mitosis and meiosis. To test the hypothesis that altering PGRMC1 activity leads to similar defects in mitosis and meiosis, PGRMC1 function was perturbed in cultured bovine granulosa cells (bGC) and maturing oocytes and the effect on mitotic and meiotic progression assessed. RNA interference-mediated PGRMC1 silencing in bGC significantly reduced cell proliferation, with a concomitant increase in the percentage of cells arrested at G2/M phase, which is consistent with an arrested or prolonged M-phase. This observation was confirmed by time-lapse imaging that revealed defects in late karyokinesis. In agreement with a role during late mitotic events, a direct interaction between PGRMC1 and Aurora Kinase B (AURKB) was observed in the central spindle at of dividing cells. Similarly, treatment with the PGRMC1 inhibitor AG205 or PGRMC1 silencing in the oocyte impaired completion of meiosis I. Specifically the ability of the oocyte to extrude the first polar body was significantly impaired while meiotic figures aberration and chromatin scattering within the ooplasm increased. Finally, analysis of PGRMC1 and AURKB localization in AG205-treated oocytes confirmed an altered localization of both proteins when meiotic errors occur. The present findings demonstrate that PGRMC1 participates in late events of both mammalian mitosis and oocyte meiosis, consistent with PGRMC1's localization at the mid-zone and mid-body of the mitotic and meiotic spindle. PMID:27260975

  14. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells

    Directory of Open Access Journals (Sweden)

    Zhang XF

    2015-02-01

    Full Text Available Xi-Feng Zhang,* Yun-Jung Choi,* Jae Woong Han, Eunsu Kim, Jung Hyun Park, Sangiliyandi Gurunathan, Jin-Hoi Kim Department of Animal Biotechnology, Konkuk University, Seoul, South Korea *These authors contributed equally to this work Background: Silver nanoparticles (AgNPs possess unique physical, chemical, and biological properties. AgNPs have been increasingly used as anticancer, antiangiogenic, and antibacterial agents for the treatment of bacterial infections in open wounds as well as in ointments, bandages, and wound dressings. The present study aimed to investigate the effects of two different sizes of AgNPs (10 nm and 20 nm in male somatic Leydig (TM3 and Sertoli (TM4 cells and spermatogonial stem cells (SSCs. Methods: Here, we demonstrate a green and simple method for the synthesis of AgNPs using Bacillus cereus culture supernatants. The synthesized AgNPs were characterized using ultraviolet and visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy (TEM. The toxicity of the synthesized AgNPs was evaluated by the effects on cell viability, metabolic activity, oxidative stress, apoptosis, and expression of genes encoding steroidogenic and tight junction proteins. Results: AgNPs inhibited the viability and proliferation of TM3 and TM4 cells in a dose- and size-dependent manner by damaging cell membranes and inducing the generation of reactive oxygen species, which in turn affected SSC growth on TM3 and TM4 as feeder cells. Small AgNPs (10 nm were more cytotoxic than medium-sized nanoparticles (20 nm. TEM revealed the presence of AgNPs in the cell cytoplasm and nucleus, and detected mitochondrial damage and enhanced formation of autosomes and autolysosomes in the AgNP-treated cells. Flow cytometry analysis using Annexin V/propidium iodide staining showed massive cell death by apoptosis or necrosis. Real-time polymerase chain reaction and western blot analyses

  15. Production of transgenic7blastocyst of sheep by somatic cell cloning

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Five samples from primary cultures of five sheep ovarian granulosa cells were transfeeted by pEGFP N1 DNA. Five transgenic positive cell lines, each from one of the five samples above, were used as donor nuclei for somatic nucleus transfer. A total of 352 in vitro matured and enucle ated sheep oocytes were fused electrically with transgenic granulosa cells and 329 reconstructed embryos were ob tained after activation by Ionomycin/6-DMAP, and these embryos were cultured in SOFaaBSA medium for 7 d. The result shows that 312 embryos (94.8%) had gone through cleavage and among them 63 (19.1%) had developed to the blastocyst stage. Expression of GFP gene was detected in various stages of early embryonic development by sampling randomly. Blastocyst rates given by the four cells treated with 0.5% FCS starvation was 19.6% (55/280) and it had not shown difference significantly (P>0.05) with the result ob tained with another cell line that had not gone through se rum starvation (16.3%, 8/49). This experiment indicates that sheep transgenic embryos up to the blastocyst stage can be produced effectively by the combination of gene transfection in somatic cells in culture and somatic cell cloning.

  16. The ultrastructure of the kinetochore and kinetochore fiber in Drosophila somatic cells

    OpenAIRE

    Maiato, Helder; Hergert, Polla J.; Moutinho-Pereira, Sara; Dong, Yimin; VandenBeldt, Kristin J.; Rieder, Conly L.; McEwen, Bruce F.

    2006-01-01

    Drosophila melanogaster is a widely used model organism for the molecular dissection of mitosis in animals. However, despite the popularity of this system, no studies have been published on the ultrastructure of Drosophila kinetochores and kinetochore fibers (K-fibers) in somatic cells. To amend this situation, we used correlative light (LM) and electron microscopy (EM) to study kinetochores in cultured Drosophila S2 cells during metaphase, and after colchicine treatment to depolymerize all m...

  17. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model*

    OpenAIRE

    Tong, Guo-qing; Heng, Boon-chin; Ng, Soon-chye

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 µmol/L strontium chloride for 5 h and sub...

  18. Differential staining of interspecific chromosomes in somatic cell hybrids by alkaline Giemsa stain.

    Science.gov (United States)

    Friend, K K; Chen, S; Ruddle, F H

    1976-03-01

    Staining of chromosome preparations of Chinese hamster-human hybrid cells and mouse-chimpanzee hybrids with alkaline Giemsa has yielded color differentiation of the interspecific chromosomes. Bicolor chromosomes, indicating apparent translocations also are observed for each of these hybrids. The specific color differences observed provide a rapid means of recognizing and aiding in the identification of the interspecific chromosomes and apparent translocations in these somatic cell hybrids. PMID:1028166

  19. Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats

    OpenAIRE

    Olofsson Ida; Persson Ylva

    2011-01-01

    Abstract Background Mastitis is the most important and costly disease in dairy goat production. Subclinical mastitis is common in goats and is mainly caused by contagious bacteria. Several methods to diagnose subclinical mastitis are available. In this study indirect measurement of somatic cell count (SCC) by California Mastitis Test (CMT) and direct measurement of SCC using a portable deLaval cell counter (DCC) are evaluated. Swedish goat farmers would primarily benefit from diagnostic metho...

  20. Effects of Visible Light on Cultured Bovine Trabecular Cells

    Institute of Scientific and Technical Information of China (English)

    姜发纲; 郝风芹; 魏厚仁; 许德胜

    2004-01-01

    To explore the biological effects of light on trabecular cells, cultured bovine trabecular cells were exposed to visible light of different wavelength with different energy. Cellular morphology, structure, proliferation, and phagocytosis were observed. The cells showed no remarkable changes when the energy was low. When the exposure energy reached 1. 12 mW/cm2 , the cytoplasm showed a rough appearance, and cell proliferation and phagocytosis decreased. This phototoxicity was strong with white light (compound chromatic light), moderate with violet light or yellow light, and mild with red light.

  1. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    International Nuclear Information System (INIS)

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  2. Freeze-dried and irradiated tricortical cancellous bovine grafts - a new product for the fusion to the inter somatic cervical

    International Nuclear Information System (INIS)

    Full text: This paper present a new implantable product with the help of bovine bone tissue, in phase of clinical rehearsal, for the ORTOP Tissue Bank. The intersomatic cervical vertebra r fusion requires the interference of a bone implant. The best results are obtained due to the implant antOlogo, but it forces to a second intervention, to the increase of the surgical time, to a bigger infection risk and bigger annoyances for the patients. On the other hand, it not always has allografts front tissue Banking. The difficulties, to obtain allografts in our country, in which Priones does not exist (Illness of the crazy cows), made us think of the possibility of using to bone xenograft, recognized by its antiguenique, osteo conductive and osteo inductive qualities. Bovine bone tissues coming from the branch isqiopuviana of the pelvis of young animals, with certifies of health were used. Grafts of 10 and 12 millimeters of diameter and 4, 5 and 6 mm of thickness were manufactured and then subjected to chemical process of Desproteinizacion and Deslipidacion; later on freezer-drying and then irradiates with Cobalt to 60 at dose of 25 KGy; following strict quality controls during the whole process. The xenografts is presented with double sterile cover, containing three rings whose dimensions are plowed in a visible way in the packaging. The xenografts is accompanied by instructions for its employment and the address of the Tissue Bank to inform eventual adverse reactions. Although it involved a short term of follow up, eight months, not adverse reaction was present

  3. Specific insulin binding in bovine chromaffin cells; demonstration of preferential binding to adrenalin-storing cells

    Energy Technology Data Exchange (ETDEWEB)

    Serck-Hanssen, G.; Soevik, O.

    1987-12-28

    Insulin binding was studied in subpopulations of bovine chromaffin cells enriched in adrenalin-producing cells (A-cells) or noradrenalin-producing cells (NA-cells). Binding of /sup 125/I-insulin was carried out at 15/sup 0/C for 3 hrs in the absence or presence of excess unlabeled hormone. Four fractions of cells were obtained by centrifugation on a stepwise bovine serum albumin gradient. The four fractions were all shown to bind insulin in a specific manner and the highest binding was measured in the cell layers of higher densities, containing mainly A-cells. The difference in binding of insulin to the four subpopulations of chromaffin cells seemed to be related to differences in numbers of receptors as opposed to receptor affinities. The authors conclude that bovine chromaffin cells possess high affinity binding sites for insulin and that these binding sites are mainly confined to A-cells. 24 references, 2 figures, 1 table.

  4. Single nucleotide polymorphisms in candidate genes and their relation with somatic cell scores in Argentinean dairy cattle.

    Science.gov (United States)

    Nani, Juan P; Raschia, Maria A; Carignano, Hugo; Poli, Mario A; Calvinho, Luis F; Amadio, Ariel F

    2015-11-01

    The prevention and control of bovine mastitis by enhancing natural defenses in animals is important to improve the quality of dairy products. Mastitis resistance is a complex trait which depends on genetic components, as well as environmental and physiological factors. The limitations of classical control measures have led to the search for alternative approaches to minimize the use of antibiotics by selecting naturally resistant animals. Polymorphisms in genes associated with the innate immune system are strong candidates to be evaluated as genetic markers. In this work, we evaluated a set of single nucleotide polymorphisms (SNPs) in candidate genes for health and production traits, and determined their association with the somatic cell score (SCS) as an indicator of mastitis in Argentinean dairy cattle. We evaluated 941 cows: Holstein (n = 677) and Holstein × Jersey (n = 264) crossbred, daughters from 22 bulls from 14 dairy farms located in the central dairy area of Argentina. Two of the 21 successfully genotyped markers were found to be significantly associated (p < 0.05) with the SCS: GHR_140 and OPN_8514C-T. The heterozygote genotype for GHR_140 showed a favorable effect in reducing the SCS. On the other hand, heterozygote genotypes for OPN8514C-T caused an increase in the SCS; moreover, combined genotypes for OPN SNPs showed an even larger effect. These findings can contribute to the design of effective marker-assisted selection programs. PMID:25783851

  5. A molecular roadmap of reprogramming somatic cells into iPS cells.

    Science.gov (United States)

    Polo, Jose M; Anderssen, Endre; Walsh, Ryan M; Schwarz, Benjamin A; Nefzger, Christian M; Lim, Sue Mei; Borkent, Marti; Apostolou, Effie; Alaei, Sara; Cloutier, Jennifer; Bar-Nur, Ori; Cheloufi, Sihem; Stadtfeld, Matthias; Figueroa, Maria Eugenia; Robinton, Daisy; Natesan, Sridaran; Melnick, Ari; Zhu, Jinfang; Ramaswamy, Sridhar; Hochedlinger, Konrad

    2012-12-21

    Factor-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is inefficient, complicating mechanistic studies. Here, we examined defined intermediate cell populations poised to becoming iPSCs by genome-wide analyses. We show that induced pluripotency elicits two transcriptional waves, which are driven by c-Myc/Klf4 (first wave) and Oct4/Sox2/Klf4 (second wave). Cells that become refractory to reprogramming activate the first but fail to initiate the second transcriptional wave and can be rescued by elevated expression of all four factors. The establishment of bivalent domains occurs gradually after the first wave, whereas changes in DNA methylation take place after the second wave when cells acquire stable pluripotency. This integrative analysis allowed us to identify genes that act as roadblocks during reprogramming and surface markers that further enrich for cells prone to forming iPSCs. Collectively, our data offer new mechanistic insights into the nature and sequence of molecular events inherent to cellular reprogramming. PMID:23260147

  6. Detection and Characterisation of Lactobacillus spp. in the Bovine Uterus and Their Influence on Bovine Endometrial Epithelial Cells In Vitro

    OpenAIRE

    Gärtner, Martina A.; Bondzio, Angelika; Braun, Nicole; Jung, Markus; Einspanier, Ralf; Gabler, Christoph

    2015-01-01

    Bacterial infections and inflammation of the uterus are common in dairy cattle after parturition. In particular, pathogenic bacteria that cause endometritis have been the focus of research in cattle reproduction in the last ten years. The aim of the present study was to identify commensal lactobacilli in the bovine uterus and to examine their influence on the synthesis of pro-inflammatory factors in bovine endometrial epithelial cells in vitro. Lactobacillus species were isolated from healthy...

  7. Roles of small molecules in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Jian-bin SU; Duan-qing PEI; Bao-ming QIN

    2013-01-01

    The Nobel Prize in Physiology and Medicine 2012 was awarded to Sir John B GURDON and Shinya YAMANAKA for their discovery that mature cells can be reprogrammed to become pluripotent.This event reaffirms the importance of research on cell fate plasticity and the technology progress in the stem cell field and regenerative medicine.Indeed,reprogramming technology has developed at a dazzling speed within the past 6 years,yet we are still at the early stages of understanding the mechanisms of cell fate identity.This is particularly true in the case of human induced pluripotent stem ceils (iPSCs),which lack reliable standards in the evaluation of their fidelity and safety prior to their application.Along with the genetic approaches,small molecules nowadays become convenient tools for modulating endogenous protein functions and regulating key cellular processes,including the mesenchymal-to-epithelial transition,metabolism,signal transduction and epigenetics.Moreover,small molecules may affect not only the efficiency of clone formation but also the quality of the resulting cells.With increasing availability of such chemicals,we can better understand the biology of stems cells and further improve the technology of generation of stem cells.

  8. Somatic mutation and cell differentiation in neoplastic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Huberman, E.; Collart, F.R.

    1987-01-01

    In brief, the authors suggest that tumor formation may result from continuous expression of growth facilitating genes that, as a result of irreversible changes during the initiation step, are placed under the control of genes expressed during normal differentiation. Thus, to understand carcinogenesis, we must decipher the processes that lead to the acquisition of a mature phenotype in both normal and tumor cells and characterize the growth dependency of tumor cells to inducers of cell differentiation. Furthermore, the growth of a variety of tumors may be controlled through the use of inducers of maturation that activate genes located beyond the gene that is altered during tumor initiation. 22 refs., 3 figs.

  9. Somatic mutation and cell differentiation in neoplastic transformation

    International Nuclear Information System (INIS)

    In brief, the authors suggest that tumor formation may result from continuous expression of growth facilitating genes that, as a result of irreversible changes during the initiation step, are placed under the control of genes expressed during normal differentiation. Thus, to understand carcinogenesis, we must decipher the processes that lead to the acquisition of a mature phenotype in both normal and tumor cells and characterize the growth dependency of tumor cells to inducers of cell differentiation. Furthermore, the growth of a variety of tumors may be controlled through the use of inducers of maturation that activate genes located beyond the gene that is altered during tumor initiation. 22 refs., 3 figs

  10. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells.

    Directory of Open Access Journals (Sweden)

    Jakub Cieslak

    Full Text Available Apart from the well-known role of somatic cell count as a parameter reflecting the inflammatory status of the mammary gland, the composition of cells isolated from milk is considered as a valuable material for gene expression studies in mammals. Due to its unique composition, in recent years an increasing interest in mare's milk consumption has been observed. Thus, investigating the genetic background of horse's milk variability presents and interesting study model. Relying on 39 milk samples collected from mares representing three breeds (Polish Primitive Horse, Polish Cold-blooded Horse, Polish Warmblood Horse we aimed to investigate the utility of equine milk somatic cells as a source of mRNA and to screen the best reference genes for RT-qPCR using geNorm and NormFinder algorithms. The results showed that despite relatively low somatic cell counts in mare's milk, the amount and the quality of the extracted RNA are sufficient for gene expression studies. The analysis of the utility of 7 potential reference genes for RT-qPCR experiments for the normalization of equine milk somatic cells revealed some differences between the outcomes of the applied algorithms, although in both cases the KRT8 and TOP2B genes were pointed as the most stable. Analysis by geNorm showed that the combination of 4 reference genes (ACTB, GAPDH, TOP2B and KRT8 is required for apropriate RT-qPCR experiments normalization, whereas NormFinder algorithm pointed the combination of KRT8 and RPS9 genes as the most suitable. The trial study of the relative transcript abundance of the beta-casein gene with the use of various types and numbers of internal control genes confirmed once again that the selection of proper reference gene combinations is crucial for the final results of each real-time PCR experiment.

  11. Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells

    Directory of Open Access Journals (Sweden)

    H.J. Chung

    2015-05-01

    Full Text Available Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells generated their own extracellular matrix. Initially, stromal cells isolated from mice were expanded in vitro in liquid cell culture medium followed by transferring the cells into a hydrogel shell. After incubation for 1 day with mechanical agitation, the encapsulated cell mass was perforated with a thin needle and then incubated for an additional 6 days to form a quasi-natural cell block. Allograft transplantation of the cell block into C57BL/6 mice resulted in perfect adaptation of the allograft and complete integration into the tissue of the recipient. This method could be widely applied for repairing damaged cells or tissues, stem cell transplantation, ex vivo gene therapy, or plastic surgery.

  12. Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells.

    Science.gov (United States)

    Chung, H J; Hassan, M M; Park, J O; Kim, H J; Hong, S T

    2015-05-01

    Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells generated their own extracellular matrix. Initially, stromal cells isolated from mice were expanded in vitro in liquid cell culture medium followed by transferring the cells into a hydrogel shell. After incubation for 1 day with mechanical agitation, the encapsulated cell mass was perforated with a thin needle and then incubated for an additional 6 days to form a quasi-natural cell block. Allograft transplantation of the cell block into C57BL/6 mice resulted in perfect adaptation of the allograft and complete integration into the tissue of the recipient. This method could be widely applied for repairing damaged cells or tissues, stem cell transplantation, ex vivo gene therapy, or plastic surgery. PMID:25742639

  13. Evidence for estrogen receptor expression in germ cell and somatic cell subpopulations in the ovary of the newly hatched chicken.

    Science.gov (United States)

    Méndez, M C; Chávez, B; Echeverría, O; Vilchis, F; Vázquez Nin, G H; Pedernera, E

    1999-10-01

    Estrogens are involved in the gonadal morphogenesis of vertebrates, and almost all hormonal effects of 17beta-estradiol are mediated through specific receptors. At the time of sexual differentiation in the chicken, or even before, there is evidence of the presence of estrogen receptors and the secretion of 17beta-estradiol. However, no information is available regarding the cellular types that express the estrogen receptor in the immature chick ovary. The present study analyzes estrogen receptor expression in germ and somatic cells of the ovary in the newly hatched chicken. Highly purified cell subpopulations of germ and somatic cells were evaluated for specific 17beta-estradiol nuclear binding. In addition, the estrogen receptor was localized at the ultrastructural level by the immunogold technique. Finally, reverse transcription and polymerase chain reaction procedures detected a steady-state level of mRNA for the estrogen receptor. Somatic cells including typical steroidogenic cells showed specific 17beta-estradiol nuclear binding, displayed the estrogen receptor, and possessed estrogen receptor transcripts. The same result was observed in primary oocytes, together with the ultrastructural localization of estrogen receptor in extended chromatin filaments. Our experimental data support the hypothesis that estrogens are involved in the function of somatic and germ cells subpopulations in the immature chicken ovary. PMID:10555548

  14. Telomere Elongation and Naive Pluripotent Stem Cells Achieved from Telomerase Haplo-Insufficient Cells by Somatic Cell Nuclear Transfer

    Directory of Open Access Journals (Sweden)

    Li-Ying Sung

    2014-12-01

    Full Text Available Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs have been efficiently achieved by somatic cell nuclear transfer (SCNT. We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc+/− mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc+/− cells exhibit naive pluripotency as evidenced by generation of Terc+/− ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells.

  15. Aberrant histone H4 acetylation in dead somatic cell-cloned calves

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Shaohua Wang; Qiang Li; Xiangdong Ding; Yunping Dai; Ning Li

    2008-01-01

    In somatic cell-cloned animals, inefficient epigenetic reprogramming can result in an inappropriate gene expression and histone H4 acetylation is one of the key epigenetic modifications regulating gene expression. In this study, we investigated the levels of histone H4 acetylation of 11 development-related genes and expression levels of 19 genes in lungs of three normal control calves and nine aber-rant somatic cell-cloned calves. The results showed that nine studied genes had decreased acetylation levels in aberrant clones (p 0.05). Whereas 13 genes had significantly decreased expression (p 0.05), and only one gene had higher expression level in clones (p < 0.05). Furthermore, FGFR, GHR, HGFR and IGF1 genes showed lowered levels of both histone H4 acetylation and expression in aberrant clones than in controls, and the level of histone H4 acetylation was even more lowered in aberrant clones than those in controls. It was suggested that the lower levels of histone H4 acetylation in aberrant clones caused by the previous memory of cell differentiation might not support enough chromatin reprogramming, thus affecting appropriate gene expressions, and growth and development of the cloned calves. To our knowledge, this is the first study on how histone H4 acetylation affects gene expression in organs of somatic cell-cloned calves.

  16. Heparin Binds Endothelial Cell Growth Factor, the Principal Endothelial Cell Mitogen in Bovine Brain

    Science.gov (United States)

    Maciag, Thomas; Mehlman, Tevie; Friesel, Robert; Schreiber, Alain B.

    1984-08-01

    Endothelial cell growth factor (ECGF), an anionic polypeptide mitogen, binds to immobilized heparin. The interaction between the acidic polypeptide and the anionic carbohydrate suggests a mechanism that is independent of ion exchange. Monoclonal antibodies to purified bovine ECGF inhibited the biological activity of ECGF in crude preparations of bovine brain. These data indicate that ECGF is the principal mitogen for endothelial cells from bovine brain, that heparin affinity chromatography may be used to purify and concentrate ECGF, and that the affinity of ECGF for heparin may have structural and perhaps biological significance.

  17. Flow-cytometric measurements of somatic cell mutations in Thorotrast patients

    International Nuclear Information System (INIS)

    Exposure to ionizing radiation is a well-recognized risk factor for cancer development. Because ionizing radiation can induce mutations, an accurate way of measuring somatic mutation frequencies could be a useful tool for evaluating cancer risk. In the present study, we have examined in vivo somatic mutation frequencies at the erythrocyte glycophorin A and T-cell receptor loci in 18 Thorotrast patients. These persons have been continuously irradiated with alpha particles emitted from the internal deposition of thorium dioxide and thus have increased risks of certain malignant tumors. When compared with controls, the Thorotrast patients showed a significantly higher frequency of mutants at the lymphocyte T-cell receptor loci but not at the erythrocyte glycophorin A loci. (author)

  18. Increased somatic cell mutant frequency in atomic bomb survivors

    International Nuclear Information System (INIS)

    Frequencies of mutant T-cells in peripheral blood, which are deficient in the activity of hypoxanthine guanine phosphoribosyltransferase (HPRT) were determined for atomic bomb survivors by direct clonal assay using a previously reported method. Results from 30 exposed survivors (exposed to more than 1 rad) and 17 age- and sex-matched controls (exposed to less than 1 rad) were analyzed. The mean mutant frequency (Mf) in the exposed (5.2 x 10-6; range 0.8 - 14.4 x 10-6) was significantly higher than in controls (3.4 x 10-6; range 1.3 - 9.3 x 10-6), a fact not attributable to lower nonmutant cell cloning efficiencies in the exposed group since cell cloning efficiencies were virtually identical in both groups. An initial analysis of the data did not reveal a significant correlation between individual Mfs and individual radiation dose estimates when the latter were defined by the original, tentative estimates (T65D), even though there was a significant positive correlation of Mfs with individual frequency of lymphocytes bearing chromosome aberration. However, reanalysis using the newer revised individual dose estimates (DS86) for 27 exposed survivors and 17 controls did reveal a significant but shallow positive correlation between T-cell Mf values and individual exposure doses. These results indicate that HPRT mutation in vivo in human T-cells could be detected in these survivors 40 years after the presumed mutational event. (author)

  19. Rescue of marker phenotypes mediated by somatic cell hybridization

    International Nuclear Information System (INIS)

    The effect of irradiation prior to virus-induced cell fusion on the frequency of hybrid production has been measured as a function of radiation dose. The Chinese hamster line wg3h (HGPRT-) was crossed with the TK- mutants; Chinese hamster A23 or mouse 3T34E, and hybrids were selected in HAT medium. Irradiation of one (marker rescue) or both (mutual rescue) partners before fusion yielded qualitatively different results. After X-irradiation, marker rescue curves were of single-hit type, with D0 values about five-fold greater than the irradiated parent cell. Mutual rescue curves were of the multi-hit type, with zero-dose extrapolation value (n) greater than that of the more resistant partner, but no significant alteration in D0. Qualitatively similar results were obtained after U.V.- irradiation, but the probability of rescue per surviving parent cell was

  20. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    OpenAIRE

    Engelhardt John F; Li Ziyi

    2003-01-01

    Abstract Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF) is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in mice does not...

  1. Production of Cloned Korean Native Pig by Somatic Cell Nuclear Transfer

    OpenAIRE

    Hwang, In-Sul; Kwon, Dae-Jin; Oh, Keun Bong; Ock, Sun-A; Chung, Hak-Jae; Cho, In-Cheol; Lee, Jeong-Woong; Im, Gi-Sun; Hwang, Seongsoo

    2015-01-01

    The Korean native pig (KNP) have been considered as animal models for animal biotechnology research because of their relatively small body size and their presumably highly inbred status due to the closed breeding program. However, little is reported about the use of KNP for animal biotechnology researches. This study was performed to establish the somatic cell nuclear transfer (SCNT) protocol for the production of swine leukocyte antigens (SLA) homotype-defined SCNT KNP. The ear fibroblast ce...

  2. Machine Learning as an aid to management decisions on high somatic cell counts in dairy farms

    OpenAIRE

    Goyache, Félix; Díez, Jorge; López, Secundino; Pajares-Bernaldo, Gerardo; Santos, Begoña; Fernández, Iván; Prieto, Miguel

    2005-01-01

    High somatic cell counts (SCC) is associated with mastitis infection, in dairy herds, worldwide. This work describes Machine Learning (ML) techniques designed to improve the information offered to farmers on animals producing high SCCs according to particular herd profiles. The analysed population included 71 dairy farms in Asturias (Northern Spain) and a total of 2,407 lactating cows. Four sources of information were available: a) a questionnaire survey describing facilities, milking routine...

  3. Mastitis diagnosis in dairy goats through somatic cell counts and Californian Mastitis Test. Preliminary results

    OpenAIRE

    Mendonça, Álvaro; Valentim, Ramiro; Nunes, Manuel; Correia, Teresa Montenegro; Trigo, Margarida; Maurício, Raimundo; Costa, Cristina; Coelho, Alípio

    2004-01-01

    The aim of this work was to evaluate somatic cell count (SCC) and Californian mastitis test (CMT) reliability as methods to survey mastitis in Serrana goats. Microbiological diagnosis, SCC and CTM were performed on 2028 samples, collected from individual glands during a lactation period. According to results CMT (predictive negative value = 69.5%) may be used as a cheap and practical method for sub clinical mastitis survey in Serrana goats. Decision on SCC use will depend on additional resear...

  4. Histocompatibility genes and Somatic Cell Count (SCC) in Italian Holstein Friesian

    OpenAIRE

    Longeri, M.; A. B. Samoré; I. Taboni; Strillacci, M G; Zanotti, M.

    2011-01-01

    Mastitis is a dairy cattle disease leading to great economic losses in milk production, management costs and veterinary treatments. This character generally shows an unfavourable genetic correlation with milk production. However, genetic factors influencing mastitis susceptibility independent from those influencing milk production could exist. Therefore, it should be possible to select at the same time against mastitis and for high milk production. The “somatic cell count” (SCC) c...

  5. Genetic analysis for mastitis resistance and milk somatic cell score in French Lacaune dairy sheep

    OpenAIRE

    Barillet, Francis; Rupp, Rachel; Mignon-Grasteau, S.; Astruc, J.M.; Jacquin, M.

    2001-01-01

    Genetic analysis for mastitis resistance was studied from two data sets. Firstly, risk factors for different mastitis traits, i.e. culling due to clinical or chronic mastitis and subclinical mastitis predicted from somatic cell count (SCC), were explored using data from 957 first lactation Lacaune ewes of an experimental INRA flock composed of two divergent lines for milk yield. Secondly, genetic parameters for SCC were estimated from 5 272 first lactation Lacaune ewes recorded among 38 flock...

  6. Genetic analysis for mastitis resistance and milk somatic cell score in French Lacaune dairy sheep

    OpenAIRE

    Astruc Jean-Michel; Mignon-Grasteau Sandrine; Rupp Rachel; Barillet Francis; Jacquin Michèle

    2001-01-01

    Abstract Genetic analysis for mastitis resistance was studied from two data sets. Firstly, risk factors for different mastitis traits, i.e. culling due to clinical or chronic mastitis and subclinical mastitis predicted from somatic cell count (SCC), were explored using data from 957 first lactation Lacaune ewes of an experimental INRA flock composed of two divergent lines for milk yield. Secondly, genetic parameters for SCC were estimated from 5 272 first lactation Lacaune ewes recorded among...

  7. Use of California mastitis test, somatic cells count and bacteriological findings in diagnostics of subclinical mastitis

    OpenAIRE

    Varatanović N.; Podžo M.; Mutevelić T.; Podžo K.; Čengić B.; Hodžić A.; Hodžić E.

    2010-01-01

    We have performed diagnostics of sub clinical mastitis in three different cow breeds with comparison of California mastitis test results, somatic cells count at quarter level and with bacteriological findings confirmation in order to justify their appliance in mastitis diagnostics. In total, 90 cows or 360 quarters of mammary gland have been examined. In 63.3 % of the examined cows, with different racial origin, positive reaction to California mastitis test have been established. Usually, pos...

  8. Effect of somatic cell count and lactation stage on sheep milk quality

    OpenAIRE

    Emilia Duranti; Arianna Bolla; Anna Caroli; Elena Budelli; Mariano Pauselli; Carmen Casoli; Leonardo Bianchi

    2010-01-01

    In order to evaluate the effects of mammary health status and lactation phase on the qualitative parameters of ovinemilk, 213 individual milk samples were repeatedly collected from 40 primiparous Sarda ewes on a monthly basis. Yield,physico-chemical characteristics, casein fractions quantitative distribution, somatic cell count (SCC), cheese making propertiesand plasmin-plasminogen activity were determined on each sample. Repeated individual milk SCC were used as amarker of udder health statu...

  9. Local IL2 and IL12 treatment of Bovine Ocular Squamous Cell Carcinoma (BOSCC) and Bovine Vulval Papilloma and Carcinoma Complex (BVPCC) in Cattle in Zimbabwe

    NARCIS (Netherlands)

    Stewart, R.J.E.

    2007-01-01

    Effect of local IL-2 application on bovine cancer In tropical countries there is an increased prevalence of two important cancers in cattle: Bovine Ocular Squamous Cell Carcinoma (BOSCC) and Bovine Vulval Papilloma Carcinoma Complex (BVPCC). Both cancers are associated with increased annual hours of

  10. Phenotypes of Aging Postovulatory Oocytes After Somatic Cell Nuclear Transfer in Mice.

    Science.gov (United States)

    Lee, Ah Reum; Shimoike, Takashi; Wakayama, Teruhiko; Kishigami, Satoshi

    2016-06-01

    Oocytes rapidly lose their developmental potential after ovulation, termed postovulatory oocyte aging, and often exhibit characteristic phenotypes, such as cytofragmentation, abnormal spindle shapes, and chromosome misalignments. Here, we reconstructed mouse oocytes using somatic cell nuclear transfer (SCNT) to reveal the effect of somatic cell-derived nuclei on oocyte physiology during aging. Normal oocytes started undergoing cytofragmentation 24 hours after oocyte collection; however, this occurred earlier in SCNT oocytes and was more severe at 48 hours, suggesting that the transferred somatic cell nuclei affected oocyte physiology. We found no difference in the status of acetylated α-tubulin (Ac-Tub) and α-tubulin (Tub) between normal and SCNT aging oocytes, but unlike normal oocytes, aging SCNT oocytes did not have astral microtubules. Interestingly, aging SCNT oocytes displayed more severely scattered chromosomes or irregularly shaped spindles. Observations of the microfilaments showed that, in normal oocytes, there was a clear actin ring beneath the plasma membrane and condensed microfilaments around the spindle (the actin cap) at 0 hours, and the actin filaments started degenerating at 1 hour, becoming completely disrupted and distributed to the cytoplasm at 24 hours. By contrast, in SCNT oocytes, an actin cap formed around the transplanted nuclei within 1 hour of SCNT, which was still present at 24 hours. Thus, SCNT oocytes age in a similar but distinct way, suggesting that they not only contain nuclei with abnormal epigenetics but are also physiologically different. PMID:27253626

  11. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Ki-Eun Park

    2016-05-01

    Full Text Available The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT. By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals.

  12. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins.

    Science.gov (United States)

    Park, Ki-Eun; Park, Chi-Hun; Powell, Anne; Martin, Jessica; Donovan, David M; Telugu, Bhanu P

    2016-01-01

    The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT). By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP) transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals. PMID:27240344

  13. Identification of major cell types in paraffin sections of bovine tissues

    OpenAIRE

    Pessa-Morikawa Tiina; Ekman Anna; Niku Mikael; Iivanainen Antti

    2006-01-01

    Abstract Background Identification of cell types in bovine tissue sections is complicated by the limited availability of anti-bovine antibodies, and by antigen retrieval treatments required for formalin-fixed tissue samples. We have evaluated an antibody and lectin panel for identifying major cell types in paraffin-embedded bovine tissue sections, and report optimized pretreatments for these markers. Results We selected 31 useful antibodies and lectins which can be used to identify cell types...

  14. Genetic aspects of somatic cell count and udder health in the Italian Valle del Belice dairy sheep

    OpenAIRE

    Riggio, V

    2012-01-01

    Mastitis is an inflammation of the udder, which leads to economic loss, mainly consisting of discarded milk, reduced milk production and quality, and increased health costs. Somatic cell count (SCC), and therefore somatic cell score (SCS), is widely used as indicator of mastitis. In this thesis, I focus on the genetic parameters of SCS as indicator of mastitis, and on the possibilities of using this trait for selection for mastitis resistance in the Valle del Belice dairy sheep. In Chapter 1,...

  15. Genetic relationship of lactation persistency with milk yield, somatic cell score, reproductive traits, and longevity in Slovak Holstein cattle

    OpenAIRE

    Strapáková, Eva; Candrák, Juraj; Strapák, Peter

    2016-01-01

    The objective of this study was to estimate the breeding values (BVs) of lactation persistency, the test day of milk yield, the somatic cell score, reproductive traits (calving interval, days open), longevity in Slovak Holstein dairy cattle. BVs were used for the detection of relationships among the persistency of lactation and other selected traits. Data for the estimation of BVs of milk production and somatic cell score were collected from 855 240 cows. BVs for reproductive t...

  16. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig

    Directory of Open Access Journals (Sweden)

    Richter Anne

    2012-11-01

    Full Text Available Abstract Background Somatic cell nuclear transfer (SCNT is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination. Results PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs and porcine ear fibroblasts (PEFs could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the NucleofectorTM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT. Conclusion The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.

  17. The glycophorin A assay for somatic cell mutations in humans

    International Nuclear Information System (INIS)

    In this report we briefly review our past experience and some new developments with the GPA assay. Particular emphasis will be placed on two areas that affect the utility of the GPA assay for human population monitoring. The first is our efforts to simplify the GPA assay to make it more generally available for large population studies. The second is to begin to understand some of the characteristics of human hemopoiesis which affect the accumulation and expression of mutant phenotype cells. 11 refs., 4 figs

  18. Cell fusion of bone marrow cells and somatic cell reprogramming by embryonic stem cells

    OpenAIRE

    Bonde, Sabrina; Pedram, Mehrdad; Stultz, Ryan; Zavazava, Nicholas

    2010-01-01

    Bone marrow transplantation is a curative treatment for many diseases, including leukemia, autoimmune diseases, and a number of immunodeficiencies. Recently, it was claimed that bone marrow cells transdifferentiate, a much desired property as bone marrow cells are abundant and therefore could be used in regenerative medicine to treat incurable chronic diseases. Using a Cre/loxP system, we studied cell fusion after bone marrow transplantation. Fused cells were chiefly Gr-1+, a myeloid cell mar...

  19. Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples.

    Directory of Open Access Journals (Sweden)

    David R Riley

    Full Text Available There are 10× more bacterial cells in our bodies from the microbiome than human cells. Viral DNA is known to integrate in the human genome, but the integration of bacterial DNA has not been described. Using publicly available sequence data from the human genome project, the 1000 Genomes Project, and The Cancer Genome Atlas (TCGA, we examined bacterial DNA integration into the human somatic genome. Here we present evidence that bacterial DNA integrates into the human somatic genome through an RNA intermediate, and that such integrations are detected more frequently in (a tumors than normal samples, (b RNA than DNA samples, and (c the mitochondrial genome than the nuclear genome. Hundreds of thousands of paired reads support random integration of Acinetobacter-like DNA in the human mitochondrial genome in acute myeloid leukemia samples. Numerous read pairs across multiple stomach adenocarcinoma samples support specific integration of Pseudomonas-like DNA in the 5'-UTR and 3'-UTR of four proto-oncogenes that are up-regulated in their transcription, consistent with conversion to an oncogene. These data support our hypothesis that bacterial integrations occur in the human somatic genome and may play a role in carcinogenesis. We anticipate that the application of our approach to additional cancer genome projects will lead to the more frequent detection of bacterial DNA integrations in tumors that are in close proximity to the human microbiome.

  20. Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells.

    Science.gov (United States)

    Kerti-Szigeti, Katalin; Nusser, Zoltan

    2016-01-01

    Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content. PMID:27537197

  1. Refined positioning of a quantitative trait locus affecting somatic cell score on chromosome 18 in the German Holstein using linkage disequilibrium.

    Science.gov (United States)

    Baes, C; Brand, B; Mayer, M; Kühn, C; Liu, Z; Reinhardt, F; Reinsch, N

    2009-08-01

    Combined linkage and linkage disequilibrium analysis (LALD) was conducted to more accurately map a previously reported quantitative trait locus (QTL) affecting somatic cell score on bovine chromosome 18. A grand-daughter design consisting of 6 German Holstein grandsire families with 1,054 progeny-tested genotyped sons was used in this study. Twenty microsatellite markers, 5 single nucleotide polymorphisms, and an erythrocyte antigen marker with an average marker spacing of 1.95 cM were analyzed along a chromosomal segment of 50.80 cM. Variance components were estimated and restricted maximum likelihood test statistics were calculated at the midpoint of each marker interval. The test statistics calculated in single-QTL linkage analysis exceeded the genome-wide significance threshold at several putative QTL positions. Using LALD, we were successful in assigning a genome-wide significant QTL to a confidence interval of 10.8 cM between the markers ILSTS002 and BMS833. The QTL in this marker interval was estimated to be responsible for between 5.89 and 13.86% of the genetic variation in somatic cell score. In contrast to the single-QTL linkage analysis model, LALD analyses with a 2-QTL model confirmed the position of one QTL, but gave no conclusive evidence for the existence or position of a second QTL. Ultimately, the QTL position was narrowed down considerably compared with previous results with a refined confidence interval of less than 11 cM. PMID:19620688

  2. Subcutaneous injection of thymopentin in the area of the supramammary lymph node to reduce milk somatic cell count in subclinically mastitic cows.

    Science.gov (United States)

    Guan, R; Xu, W; Pan, T; Su, X; Hu, S

    2016-02-01

    The objective of this study was to evaluate the therapeutic effects of thymopentin (TP-5) injections on subclinical intramammary infection (IMI) in lactating cows. In Experiment I, 40 cows were randomly divided into four groups. The cows in groups 1, 2, and 3 received subcutaneous injections of TP-5 in the region of the supramammary lymph node at doses of 1, 2, and 4 mg, respectively, for 3 days. In Experiment II, 20 cows were randomly divided into two groups. The cows in group 1 were treated with injections of TP-5 (4 mg) for 3 days in the same area as in Experiment I. Group 4 in Experiment I and group 2 in Experiment II were not treated and served as control groups. Milk samples were collected before and after treatment for bacteriological examination and analysis of the somatic cell count and level of N-acetyl-β-d-glucosaminidase (NAGase). The results showed that treatment with TP-5 significantly reduced the somatic cell count (SCC) and NAGase activity of the milk and numerically reduced IMI. A dose of 4 mg was found to be optimal for the reduction of SCC and NAGase in milk. Therefore, further study of the use of TP-5 in the treatment of bovine mastitis is warranted. PMID:25976252

  3. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    Science.gov (United States)

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H.

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors1,2. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation3–6. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced transdifferentiation pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by different methods. PMID:26098448

  4. The Transcriptional Consequences of Somatic Amplifications, Deletions, and Rearrangements in a Human Lung Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Lucy F Stead

    2012-11-01

    Full Text Available Lung cancer causes more deaths, worldwide, than any other cancer. Several histologic subtypes exist. Currently, there is a dearth of targeted therapies for treating one of the main subtypes: squamous cell carcinoma (SCC. As for many cancers, lung SCC karyotypes are often highly anomalous owing to large somatic structural variants, some of which are seen repeatedly in lung SCC, indicating a potential causal association for genes therein. We chose to characterize a lung SCC genome to unprecedented detail and integrate our findings with the concurrently characterized transcriptome. We aimed to ascertain how somatic structural changes affected gene expression within the cell in ways that could confer a pathogenic phenotype. We sequenced the genomes of a lung SCC cell line (LUDLU-1 and its matched lymphocyte cell line (AGLCL to more than 50x coverage. We also sequenced the transcriptomes of LUDLU-1 and a normal bronchial epithelium cell line (LIMM-NBE1, resulting in more than 600 million aligned reads per sample, including both coding and non-coding RNA (ncRNA, in a strand-directional manner. We also captured small RNA (<30 bp. We discovered significant, but weak, correlations between copy number and expression for protein-coding genes, antisense transcripts, long intergenic ncRNA, and microRNA (miRNA. We found that miRNA undergo the largest change in overall expression pattern between the normal bronchial epithelium and the tumor cell line. We found evidence of transcription across the novel genomic sequence created from six somatic structural variants. For each part of our integrated analysis, we highlight candidate genes that have undergone the largest expression changes.

  5. Barrier Functionality of Porcine and Bovine Brain Capillary Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ailar Nakhlband

    2011-09-01

    Full Text Available Introduction: To date, isolated cell based blood-brain barrier (BBB models have been widely used for brain drug delivery and targeting, due to their relatively proper bioelectrical and permeability properties. However, primary cultures of brain capillary endothelial cells (BCECs isolated from different species vary in terms of bioelectrical and permeability properties. Methods: To pursue this, in the current investigation, primary porcine and bovine BCECs (PBCECs and BBCECs, respectively were isolated and used as an in vitro BBB model. The bioelectrical and permeability properties were assessed in BCECs co-cultured with C6 cells with/without hydrocortisone (550 nM. The bioelectrical properties were further validated by means of the permeability coefficients of transcellular and paracellular markers. Results: The primary PBCECs displayed significantly higher trans-endothelial electrical resistance (~900 W.cm2 than BBCECs (~700 W.cm2 - both co-cultured with C6 cells in presence of hydrocortisone. Permeability coefficients of propranolol/diazepam and mannitol/sucrose in PBCECs were ~21 and ~2 (×10-6 cm.sec-1, where these values for BBCECs were ~25 and ~5 (×10-6 cm.sec-1. Conclusion: Upon our bioelectrical and permeability findings, both models display discriminative barrier functionality but porcine BCECs seem to provide a better platform than bovine BCECs for drug screening and brain targeting.

  6. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  7. Somatically Acquired LINE-1 Insertions in Normal Esophagus Undergo Clonal Expansion in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Doucet-O'Hare, Tara T; Sharma, Reema; Rodić, Nemanja; Anders, Robert A; Burns, Kathleen H; Kazazian, Haig H

    2016-09-01

    Squamous cell carcinoma of the esophagus (SCC) is the most common form of esophageal cancer in the world and is typically diagnosed at an advanced stage when successful treatment is challenging. Understanding the mutational profile of this cancer may identify new treatment strategies. Because somatic retrotransposition has been shown in tumors of the gastrointestinal system, we focused on LINE-1 (L1) mobilization as a source of genetic instability in this cancer. We hypothesized that retrotransposition is ongoing in SCC patients. The expression of L1 encoded proteins is necessary for retrotransposition to occur; therefore, we evaluated the expression of L1 open reading frame 1 protein (ORF1p). Using immunohistochemistry, we detected ORF1p expression in all four SCC cases evaluated. Using L1-seq, we identified and validated 74 somatic insertions in eight tumors of the nine evaluated. Of these, 12 insertions appeared to be somatic, not genetically inherited, and sub-clonal (i.e., present in less than one copy per genome equivalent) in the adjacent normal esophagus (NE), while clonal in the tumor. Our results indicate that L1 retrotransposition is active in SCC of the esophagus and that insertion events are present in histologically NE that expands clonally in the subsequent tumor. PMID:27319353

  8. Detection and characterisation of Lactobacillus spp. in the bovine uterus and their influence on bovine endometrial epithelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Martina A Gärtner

    Full Text Available Bacterial infections and inflammation of the uterus are common in dairy cattle after parturition. In particular, pathogenic bacteria that cause endometritis have been the focus of research in cattle reproduction in the last ten years. The aim of the present study was to identify commensal lactobacilli in the bovine uterus and to examine their influence on the synthesis of pro-inflammatory factors in bovine endometrial epithelial cells in vitro. Lactobacillus species were isolated from healthy bovine uteri and further characterised. Bovine endometrial epithelial cells in the second passage (n = 5 animals were co-cultured with the autochthonous isolates L. buchneri, L. ruminis and L. amylovorus as well as with a commercially available L. vaginalis in different multiplicities of infection (MOI = 1, 5 and 10, respectively. Endometrial epithelial cells cultured without bacteria served as controls. At distinct points in time (2, 4 and 6 h total RNA was extracted from co-cultured epithelial cells and subjected to reverse transcription quantitative PCR of pro-inflammatory factors. Furthermore, the release of such factors by co-cultured epithelial cells was measured by ELISA or EIA after 24 and 48 h. L. ruminis and L. amylovorus induced increased interleukin (IL IL1A, IL6, IL8 and prostaglandin-endoperoxide synthase 2 mRNA levels and the release of IL8 and prostaglandin F(2α in endometrial epithelial cells compared with control cells. In contrast, L. buchneri did not significantly influence the expression and release of these factors. Toll-like receptors 2 and 6 transcripts were found unchanged in co-cultured and untreated epithelial cells in vitro. However, endometrial epithelial cells of each animal showed individual differences in the response to bacterial load. These results suggest that Lactobacillus species are present in the bovine uterus, revealing immunomodulatory properties.

  9. Detection and characterisation of Lactobacillus spp. in the bovine uterus and their influence on bovine endometrial epithelial cells in vitro.

    Science.gov (United States)

    Gärtner, Martina A; Bondzio, Angelika; Braun, Nicole; Jung, Markus; Einspanier, Ralf; Gabler, Christoph

    2015-01-01

    Bacterial infections and inflammation of the uterus are common in dairy cattle after parturition. In particular, pathogenic bacteria that cause endometritis have been the focus of research in cattle reproduction in the last ten years. The aim of the present study was to identify commensal lactobacilli in the bovine uterus and to examine their influence on the synthesis of pro-inflammatory factors in bovine endometrial epithelial cells in vitro. Lactobacillus species were isolated from healthy bovine uteri and further characterised. Bovine endometrial epithelial cells in the second passage (n = 5 animals) were co-cultured with the autochthonous isolates L. buchneri, L. ruminis and L. amylovorus as well as with a commercially available L. vaginalis in different multiplicities of infection (MOI = 1, 5 and 10, respectively). Endometrial epithelial cells cultured without bacteria served as controls. At distinct points in time (2, 4 and 6 h) total RNA was extracted from co-cultured epithelial cells and subjected to reverse transcription quantitative PCR of pro-inflammatory factors. Furthermore, the release of such factors by co-cultured epithelial cells was measured by ELISA or EIA after 24 and 48 h. L. ruminis and L. amylovorus induced increased interleukin (IL) IL1A, IL6, IL8 and prostaglandin-endoperoxide synthase 2 mRNA levels and the release of IL8 and prostaglandin F(2α) in endometrial epithelial cells compared with control cells. In contrast, L. buchneri did not significantly influence the expression and release of these factors. Toll-like receptors 2 and 6 transcripts were found unchanged in co-cultured and untreated epithelial cells in vitro. However, endometrial epithelial cells of each animal showed individual differences in the response to bacterial load. These results suggest that Lactobacillus species are present in the bovine uterus, revealing immunomodulatory properties. PMID:25803719

  10. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    International Nuclear Information System (INIS)

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  11. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yong; Chen, Xinjie; Luo, Yumei; Chen, Xiaolin; Li, Shaoying; Huang, Yulin [Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Duobao Road 63, Guangzhou, Guangdong (China); Sun, Xiaofang, E-mail: xiaofangsun@hotmail.com [Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Duobao Road 63, Guangzhou, Guangdong (China)

    2009-04-24

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  12. Somatic cell nuclear transfer: Infinite reproduction of a unique diploid genome

    International Nuclear Information System (INIS)

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the 'Hayflick limit'. However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to 'passage' a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the 'passage' of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels

  13. Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes

    OpenAIRE

    Astolfi, P.A.; Salamini, F.; Sgaramella, V

    2010-01-01

    Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental...

  14. Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Domenico Iuso

    Full Text Available The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT. Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT.

  15. Polycomb Group Proteins: Multi-Faceted Regulators of Somatic Stem Cells and Cancer

    Science.gov (United States)

    Sauvageau, Martin; Sauvageau, Guy

    2016-01-01

    Polycomb Group (PcG) proteins are transcriptional repressors that epigenetically modify chromatin and participate in the establishment and maintenance of cell fates. These proteins play important roles in both stem cell self-renewal and in cancer development. Our understanding of their mechanism of action has greatly advanced over the past 10 years, but many unanswered questions remain. In this review, we present the currently available experimental data that connect PcG protein function with some of the key processes which govern somatic stem cell activity. We also highlight recent studies suggesting that a delicate balance in PcG gene dosage is crucial for proper stem cell homeostasis and prevention of cancer stem cell development. PMID:20804967

  16. Detection of bluetongue virus by using bovine endothelial cells and embryonated chicken eggs.

    OpenAIRE

    Wechsler, S J; Luedke, A. J.

    1991-01-01

    Two systems, inoculation of bovine endothelial cells and of embryonated chicken eggs, were compared for detection of bluetongue virus (BTV) in blood specimens from experimentally inoculated sheep. For all BTV serotypes tested, embryonated chicken eggs detected longer periods of viremia than did bovine endothelial cells, primarily by detecting BTV in samples containing lower virus concentrations.

  17. Effects of putrescine, cadaverine, spermine, spermidine and beta-phenylethylamine on cultured bovine mammary epithelial cells

    DEFF Research Database (Denmark)

    Fusi, Eleonora; Baldi, Antonella; Cheli, Federica;

    2008-01-01

    A bovine mammary epithelial cell line (BME-UV1) and three-dimensional collagen primary bovine organoids were used to evaluate the effects of cadaverine, putrescine, spermine, spermicline and beta-phenylethylamine on mammary epithelial cells. Each biogenic amine was diluted in several concentratio...

  18. The effects of dry-off therapy on milk somatic cell count in Saanen goats

    OpenAIRE

    BAŞTAN, Ayhan; SALAR, SEÇKİN; ACAR, Duygu BAKİ; DEMİREL, MÜRŞİDE AYŞE; CENGİZ, Mehmet; DARBAZ, İSFENDİYAR; BULUT, GAYE

    2015-01-01

    The aim of this study was to determine the effectiveness of dry-off antibiotic therapy and teat sealant on somatic cell count (SCC) in Saanen goats. The goats were randomly divided into 3 groups. In Groups I (n = 50) and II (n = 50), the goats were treated with intramammary antibiotics and a combination of intramammary antibiotics and internal teat sealant at dry-off, respectively. The animals in Group III (n = 50) were designated as the control group. For the SCC analysis and bacteriological...

  19. Effect of weather conditions on somatic cell score in Sicilian Valle del Belice ewes

    Directory of Open Access Journals (Sweden)

    B. Portolano

    2010-04-01

    Full Text Available Mastitis susceptibility of Valle del Belice ewes from the south of Sicily to temperature, humidity, precipitation, solar radiation, sun hours, air pressure, wind-speed and wind-direction measured by a public weather station was investigated using 65,848 test-day somatic cell score (SCS records of 5,237 ewes. All weather parameters had an effect on SCS in a regression approach. Extreme values of maximum and minimum temperaturehumidity indices resulted in increased SCS. Higher precipitation, solar radiation and sun hours resulted in increased SCS, whereas higher air pressure and wind speed resulted in reduced SCS.

  20. Seasonal and Milking-to-Milking Variations in Cow Milk Fat, Protein and Somatic Cell Counts

    OpenAIRE

    Elena Raluca PAVEL; Constantin GAVAN

    2011-01-01

    The first objective of this study was to examine milking-to-milking variations in milk fat, protein and SCC (somatic cell count). The second objective of this study was to examine variations of milk components (fat, protein and SCC) over a period of six months (April-September 2010) at Agricultural Research Development Station Simnic. A total of 128 milk samples (64 morning milking and 64 evening milking ones) from milk bulk tank commingled from 90�4 Holstein cows, were collected and analyzed...

  1. Bone morphogenetic protein 4 and retinoic acid trigger bovine VASA homolog expression in differentiating bovine induced pluripotent stem cells.

    Science.gov (United States)

    Malaver-Ortega, Luis F; Sumer, Huseyin; Jain, Kanika; Verma, Paul J

    2016-02-01

    Primordial germ cells (PGCs) are the earliest identifiable and completely committed progenitors of female and male gametes. They are obvious targets for genome editing because they assure the transmission of desirable or introduced traits to future generations. PGCs are established at the earliest stages of embryo development and are difficult to propagate in vitro--two characteristics that pose a problem for their practical application. One alternative method to enrich for PGCs in vitro is to differentiate them from pluripotent stem cells derived from adult tissues. Here, we establish a reporter system for germ cell identification in bovine pluripotent stem cells based on green fluorescent protein expression driven by the minimal essential promoter of the bovine Vasa homolog (BVH) gene, whose regulatory elements were identified by orthologous modelling of regulatory units. We then evaluated the potential of bovine induced pluripotent stem cell (biPSC) lines carrying the reporter construct to differentiate toward the germ cell lineage. Our results showed that biPSCs undergo differentiation as embryoid bodies, and a fraction of the differentiating cells expressed BVH. The rate of differentiation towards BVH-positive cells increased up to tenfold in the presence of bone morphogenetic protein 4 or retinoic acid. Finally, we determined that the expression of key PGC genes, such as BVH or SOX2, can be modified by pre-differentiation cell culture conditions, although this increase is not necessarily mirrored by an increase in the rate of differentiation. PMID:26660942

  2. Enrichment for Repopulating Cells and Identification of Differentiation Markers in the Bovine Mammary Gland.

    Science.gov (United States)

    Rauner, Gat; Barash, Itamar

    2016-06-01

    Elucidating cell hierarchy in the mammary gland is fundamental for understanding the mechanisms governing its normal development and malignant transformation. There is relatively little information on cell hierarchy in the bovine mammary gland, despite its agricultural potential and relevance to breast cancer research. Challenges in bovine-to-mouse xenotransplantation and difficulties obtaining bovine-compatible antibodies hinder the study of mammary stem-cell dynamics in this species. In-vitro indications of distinct bovine mammary epithelial cell populations, sorted according to CD24 and CD49f expression, have been provided. Here, we successfully transplanted these bovine populations into the cleared fat pads of immunocompromised mice, providing in-vivo evidence for the multipotency and self-renewal capabilities of cells that are at the top of the cell hierarchy (termed mammary repopulating units). Additional outgrowths from transplantation, composed exclusively of myoepithelial cells, were indicative of unipotent basal stem cells or committed progenitors. Sorting luminal cells according to E-cadherin revealed three distinct populations: luminal progenitors, and early- and late-differentiating cells. Finally, miR-200c expression was negatively correlated with differentiation levels in both the luminal and basal branches of the bovine mammary cell hierarchy. Together, these experiments provide further evidence for the presence of a regenerative entity in the bovine mammary gland and for the multistage differentiation process within the luminal lineage. PMID:26615610

  3. Characterizing somatic hypermutation and gene conversion in the chicken DT40 cell system.

    Science.gov (United States)

    Kothapalli, Nagarama; Fugmann, Sebastian D

    2011-01-01

    The secondary immunoglobulin gene diversification processes, somatic hypermutation (SHM), immunoglobulin gene conversion (GCV), and class switch recombination, are important for efficient humoral immune responses. They require the action of activation-induced cytidine deaminase, an enzyme that deaminates cytosine in the context of single-stranded DNA. The chicken DT40 B-cell line is an important model system for exploring the mechanisms of SHM and GCV, as both processes occur constitutively without the need for stimulation. In addition, standard gene targeting strategies can be used for defined manipulations of the DT40 genome. Thus, these cells represent an excellent model of choice for genetic studies of SHM and GCV. Problems arising from defects in early B-cell development that are of concern when using genetically engineered mice are avoided in this system. Here, we describe how to perform gene targeting in DT40 cells and how to determine the effects of such modifications on SHM and GCV. PMID:21701980

  4. Bovine mammary stem cells: Transcriptome profiling and the stem cell niche

    Science.gov (United States)

    Identification and transcriptome analysis of mammary stem cells (MaSC) are important steps toward understanding the molecular basis of mammary epithelial growth, homeostasis and tissue repair. Our objective was to evaluate the molecular profiles of four categories of cells within the bovine mammary ...

  5. Germline stem cell arrest inhibits the collapse of somatic proteostasis early in Caenorhabditis elegans adulthood.

    Science.gov (United States)

    Shemesh, Netta; Shai, Nadav; Ben-Zvi, Anat

    2013-10-01

    All cells rely on highly conserved protein folding and clearance pathways to detect and resolve protein damage and to maintain protein homeostasis (proteostasis). Because age is associated with an imbalance in proteostasis, there is a need to understand how protein folding is regulated in a multicellular organism that undergoes aging. We have observed that the ability of Caenorhabditis elegans to maintain proteostasis declines sharply following the onset of oocyte biomass production, suggesting that a restricted protein folding capacity may be linked to the onset of reproduction. To test this hypothesis, we monitored the effects of different sterile mutations on the maintenance of proteostasis in the soma of C. elegans. We found that germline stem cell (GSC) arrest rescued protein quality control, resulting in maintenance of robust proteostasis in different somatic tissues of adult animals. We further demonstrated that GSC-dependent modulation of proteostasis requires several different signaling pathways, including hsf-1 and daf-16/kri-1/tcer-1, daf-12, daf-9, daf-36, nhr-80, and pha-4 that differentially modulate somatic quality control functions, such that each signaling pathway affects different aspects of proteostasis and cannot functionally complement the other pathways. We propose that the effect of GSCs on the collapse of proteostasis at the transition to adulthood is due to a switch mechanism that links GSC status with maintenance of somatic proteostasis via regulation of the expression and function of different quality control machineries and cellular stress responses that progressively lead to a decline in the maintenance of proteostasis in adulthood, thereby linking reproduction to the maintenance of the soma. PMID:23734734

  6. Ethanolamine metabolism in cultured bovine aortic endothelial cells

    International Nuclear Information System (INIS)

    The role of extracellular ethanolamine in phospholipid synthesis was examined in cultured bovine aortic endothelial cells. Serine and ethanolamine were both readily accumulated by these cells and incorporated into phospholipid. Exposing cells to extracellular ethanolamine for 4-6 weeks had no effect on cell growth, yet increased the phosphatidylethanolamine content of these cells by 31% as compared to control cells. The intracellular content of ethanolamine was measured by high performance liquid chromatography, and results showed that the ethanolamine-treated cells contained a significantly greater amount of free ethanolamine compared to control cells. Ethanolamine-treated cells also had decreased accumulation and incorporation into lipid of [3H]ethanolamine throughout a 48-h incubation and increased K'm and V'max parameters of ethanolamine transport as compared to control cells. Studies were also done to examine the effect of ethanolamine on the generation of free ethanolamine from phosphatidylserine. In pulse-chase experiments with [3H]serine, a physiological concentration of ethanolamine decreased the amount of 3H-labeled phosphatidylethanolamine produced from 3H-labeled phosphatidylserine by 12 h as compared to the amount of 3H-labeled phosphatidyl-ethanolamine produced in the absence of ethanolamine in the chase incubation. Furthermore, ethanolamine-treated cells accumulated 20% less labeled ethanolamine in the aqueous pool from [3H]serine after 24 h of incubation than did control cells. These results can be explained by isotope dilution with the ethanolamine pool that accumulates in these cells with time when exposed to media supplemented with a physiological concentration of ethanolamine and by an effect of ethanolamine on ethanolamine generation from phosphatidylserine

  7. Driving folliculogenesis by the oocyte-somatic cell dialog: Lessons from genetic models.

    Science.gov (United States)

    Monniaux, Danielle

    2016-07-01

    This review focuses on the role of the dialog between the oocyte and its companion somatic cells in driving folliculogenesis from the primordial to the preovulatory follicle stage. Mouse and sheep genetic models have brought complementary evidence of these cell interactions and their consequences for ovarian function. In mouse, the deletion of genes encoding connexins has shown that functional gap junction channels between oocytes and granulosa cells and between granulosa cells themselves maintain the follicle in a functionally integrated state. Targeted deletions in oocytes or granulosa cells have revealed the cell- and stage-specific role of ubiquist factors belonging to the phosphatidylinositol 3 kinase signaling pathway in primordial follicle activation, oocyte growth and follicle survival. Various models of transgenic mice and sheep carrying natural loss-of-function mutations associated with sterility have established that the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor 9 orchestrate follicle development, support cumulus metabolism and maturation and participate in oocyte meiosis arrest. Unexpectedly in sheep, mutations resulting in the attenuation of BMP signaling lead to enhanced ovulation rate, likely resulting from a lowered follicular atresia rate and the enhancement of FSH-regulated follicular maturation. Both the activation level of BMP signaling and an adequate equilibrium between BMP15 and growth differentiation factor 9 determine follicle survival, maturation, and development toward ovulation. The physiological approaches which were implemented on genetic animal models during the last 20 years have opened up new perspectives for female fertility by identifying the main signaling pathways of the oocyte-somatic cell dialog. PMID:27155734

  8. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  9. Cigarette smoking during early pregnancy reduces the number of embryonic germ and somatic cells

    DEFF Research Database (Denmark)

    Mamsen, Linn; Lutterodt, M C; Andersen, Elisabeth Anne Wreford;

    2010-01-01

    stereological methods were used to estimate gonadal cell numbers in histological sections. Results were also evaluated in the context of previously published data on ovaries from our laboratory. RESULTS: A significant reduction in the number of germ cells by 55% [95% confidence interval (CI) 74-21% reduction, P......BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first......-trimester gonads in relation to maternal smoking. METHODS: The study includes 24 human first-trimester testes, aged 37-68 days post-conception, obtained from women undergoing legal termination of pregnancy. A questionnaire was used to obtain information about smoking and drinking habits during pregnancy. Validated...

  10. Protection of Bovine Mammary Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Cell Damage by Resveratrol

    OpenAIRE

    Xiaolu Jin; Kai Wang; Hongyun Liu; Fuliang Hu; Fengqi Zhao; Jianxin Liu

    2016-01-01

    The mammary epithelial cells (MECs) of high-producing dairy cows are likely to be subject to oxidative stress (OS) due to the intensive cell metabolism. The objectives of this study were to investigate the cytoprotective effects of resveratrol against hydrogen peroxide- (H2O2-) induced OS in cultured bovine MECs (MAC-T). Pretreatment of MAC-T cells with resveratrol could rescue the decrease in cell viability and resulted in lower intracellular reactive oxygen species (ROS) accumulation after ...

  11. Cell contact-mediated regulation of tyrosine hydroxylase synthesis in cultured bovine adrenal chromaffin cells

    OpenAIRE

    1983-01-01

    The specific activity of tyrosine hydroxylase (TH) in bovine adrenal chromaffin cells can be controlled by changing cell density. Chromaffin cells initially plated at low density (2-3 X 10(4) cells/cm2), and subsequently replated at a 10-fold higher density showed a sixfold increase in specific TH activity within 48 h, resulting from enhanced synthesis (increased number of TH molecules as demonstrated by immunotitration and blockade by cycloheximide) rather than activation. The density-mediat...

  12. The influence of somatic cell count on sheep milk composition and cheese-making properties

    Directory of Open Access Journals (Sweden)

    M. Todaro

    2010-01-01

    Full Text Available Somatic cell count (SCC is an important tool for monitoring intramammary infections in dairy cows. However, systematic generalization of this decision rule is not easy in small ruminants. Determination of SCC in sheep milk is important for the processors of milk (indicator of quality, for breeders (mastitis indicator and could be useful for selection as well. SCC value can be affected by some non-infective factors such as breed, stage of lactation, parity, type of lambing, type of milking, etc. (Bergonier et al., 1994, as well the health status of the udder (Fruganti et al., 1985; Ranucci et al., 1988. In addition, EC Directive 92/46, which regulates the production and commercialisation of milk and dairy products, imposes strict limits on SCC from dairy cattle but it does not dispel the uncertainty over recommended SCC levels in small ruminants.With the aim of knowing more about somatic cells count and their effects on milk quality and cheese-making properties an experimental trial was carried out.

  13. Estimation of (covariance components of nematode parasites resistance and somatic cell count in dairy sheep

    Directory of Open Access Journals (Sweden)

    Sara Casu

    2010-01-01

    Full Text Available Nematode parasites and mastitis are the major animal health constraints in sheep. The aim of this study was estimating the genetic (covariances of nematode parasites resistance and somatic cell count in dairy sheep. From 2000 to 2008, Somatic Cell Score (SCS and Faecal Egg Count (FEC records were available on an experimental population consisting of 949 backcross ewes and 806 their daughters. Data were processed independently for each subpopulation in order to adjust for specific environmental effects and to obtain lactation records for both traits to be used in the genetic analysis. Variance components estimation was performed by using the REML method applied to a bi-trait repeatability animal model. Heritabilities of lactation SCS (LSCS and FEC were 0.19 and 0.16. Genetic correlation was 0.21, whereas phenotypic correlation was 0.01. The estimated heritabilities confirm that both traits could be selected by the classical quantitative approach. The genetic correlation estimate between LSCS and FEC suggests that selection for one of the two traits would not have any detrimental effect on the other one.

  14. Genetic parameters for test day somatic cell score in Brazilian Holstein cattle.

    Science.gov (United States)

    Costa, C N; Santos, G G; Cobuci, J A; Thompson, G; Carvalheira, J G V

    2015-01-01

    Selection for lower somatic cell count has been included in the breeding objectives of several countries in order to increase resistance to mastitis. Genetic parameters of somatic cell scores (SCS) were estimated from the first lactation test day records of Brazilian Holstein cows using random-regression models with Legendre polynomials (LP) of the order 3-5. Data consisted of 87,711 TD produced by 10,084 cows, sired by 619 bulls calved from 1993 to 2007. Heritability estimates varied from 0.06 to 0.14 and decreased from the beginning of the lactation up to 60 days in milk (DIM) and increased thereafter to the end of lactation. Genetic correlations between adjacent DIM were very high (>0.83) but decreased to negative values, obtained with LP of order four, between DIM in the extremes of lactation. Despite the favorable trend, genetic changes in SCS were not significant and did not differ among LP. There was little benefit of fitting an LP of an order >3 to model animal genetic and permanent environment effects for SCS. Estimates of variance components found in this study may be used for breeding value estimation for SCS and selection for mastitis resistance in Holstein cattle in Brazil. PMID:26782564

  15. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Engelhardt John F

    2003-11-01

    Full Text Available Abstract Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR gene in mice does not adequately replicate spontaneous bacterial infections observed in the human CF lung. Hence, several laboratories are pursuing alternative animal models of CF in larger species such as the pig, sheep, rabbits, and ferrets. Our laboratory has focused on developing the ferret as a CF animal model. Over the past few years, we have investigated several experimental parameters required for gene targeting and nuclear transfer (NT cloning in the ferret using somatic cells. In this review, we will discuss our progress and the hurdles to NT cloning and gene-targeting that accompany efforts to generate animal models of genetic diseases in species such as the ferret.

  16. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  17. Behavioral observations of adolescent Holstein heifers cloned from adult somatic cells.

    Science.gov (United States)

    Savage, Amy F; Maull, John; Tian, X Cindy; Taneja, Maneesh; Katz, Larry; Darre, Michael; Yang, Xiangzhong

    2003-10-01

    Cloning using somatic cells offers many potential applications in biomedicine and basic research. The objective of this study was to test whether clones from the same genotype can be used as models to study the genetic influences of behavior. Specifically, several aspects of the behavior of four prepubertal heifers cloned from somatic cells of a 13-year-old Holstein cow along with age-matched control heifers were compared to determine whether juvenile clones from an aged adult behave similarly to their age-matched controls, and whether clones with identical genetic makeup exhibit any behavioral trends. Behavioral observations or behavior challenge tests were conducted to compare the following traits: vocalization, play behavior, movement frequencies, grooming, curiosity, and companion preference, as well as dominance and aggressiveness. From play behavior, movements and vocalization, we observed that these four juvenile clones of an aged genetic donor did not show behavioral indications of aging and were similar to their counterparts of comparable chronological age except that they tended to play less than controls. Behavioral trends were also observed in the clones that indicated that they exhibited higher levels of curiosity, more grooming activities and were more aggressive and dominant than controls. Furthermore, these four clones preferred each other or the donor as companions, which may indicate genetic kin recognition. PMID:12935849

  18. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies

  19. Blood count and number of somatic cells in milk of cows infected with Coxiella burnetii

    Directory of Open Access Journals (Sweden)

    Radinović Miodrag

    2011-01-01

    Full Text Available The objective of the work was to examine the intensity of the local immune response of the mammary gland and the changes in the differential blood count of chronically infected cows. An experiment was performed on a group of cows with Q fever serologically proven using the ELISA test (IDEXX. Based on the ELISA test results, an experimental group of ten infected cows was formed. Blood was sampled from the experimental cows, and cumulative milk samples were taken. The number of erythrocytes was determined spectrophotometrically, and the number of leucocytes using the method according to Bürker - Türk. The blood analysis established an increased number of erythrocytes, while the number of leucocytes was within the limits of physiological values. The milk samples were used for the determination of the number of somatic cells using flow cytometric measurements. The processing of the milk samples established an average number of somatic cells of 853.000 /mL milk.

  20. Cell Infectivity in Relation to Bovine Leukemia Virus gp51 and p24 in Bovine Milk Exosomes

    OpenAIRE

    Yamada, Tetsuya; Shigemura, Hiroaki; ISHIGURO, Naotaka; Inoshima, Yasuo

    2013-01-01

    Exosomes are small membranous microvesicles (40–100 nm in diameter) and are extracellularly released from a wide variety of cells. Exosomes contain microRNA, mRNA, and cellular proteins, which are delivered into recipient cells via these exosomes, and play a role in intercellular communication. In bovine leukemia virus (BLV) infection of cattle, although it is thought to be a minor route of infection, BLV can be transmitted to calves via milk. Here, we investigated the association between exo...

  1. Cell Infectivity in Relation to Bovine Leukemia Virus gp51 and p24 in Bovine Milk Exosomes

    OpenAIRE

    Tetsuya Yamada; Hiroaki Shigemura; Naotaka Ishiguro; Yasuo Inoshima

    2013-01-01

    Exosomes are small membranous microvesicles (40-100 nm in diameter) and are extracellularly released from a wide variety of cells. Exosomes contain microRNA, mRNA, and cellular proteins, which are delivered into recipient cells via these exosomes, and play a role in intercellular communication. In bovine leukemia virus (BLV) infection of cattle, although it is thought to be a minor route of infection, BLV can be transmitted to calves via milk. Here, we investigated the association between exo...

  2. Research on Isolation and Clone of Embryonic Stem Cell-Like in Bovine

    Institute of Scientific and Technical Information of China (English)

    AN Li-long; YANG Qi; XIAO Mei; FENG Xiu-Liang; YANG Chun-rong; LEI An-min; GAO Zhi-min; DOU Zhong-ying; QIU Huai

    2002-01-01

    Bovine embryonic stem cell would be invaluable for researching the aspect of animal cloning, production transgenic animal and discussion of gene function in vitro. With the object of establishing an effective culture system for isolation and clone of bovine pluripotent stem cell, we cultured bovine embryos and mouse embryos including morula blastula and hatached blastula and obtained animal ICM on Primary marine embryonic fibroblast (Primary murine embryonic fibroblast, PMEF) feeder layer with tissue medium(DMEM supplemented with 15ml/100ml NBS ,0.1μmol/L Na2SeO3, 0. 1mmol/L β-mercaptoethanol, 1 000ng/ml LIF,10 ng/ml IGF, 1mmol/L necessary amino acid and 1mmol/L L-glutamine), then, we obtained mouse ICM and bovine ICM. Moreover, we isolated and cloned the 6 passage bovine ES like cells(12 cell lines) and 9 passage marine ES like cells (52 cell lines) deriving from bovine ICM and murine ICM respectively on the feeder layer of PMEF by disaggregating ICM and ES cell clones of bovine and murine into smaller clumps through digesting with 0. 125g/100ml trypsin and 0.02g/100ml EDTA and scattering with a glass needle. The pluripotency of both murine and bovine ES like cells was identified with morphological character, histochemistry identification, karyotype analysis and differentiation of ES cells in vitro or in vivo. This result showed that bovine embryonic stem cell and murine embryonic stem cell had developmental pluripotency.

  3. EFFECT OF THE COW AGE GROUP AND LACTATION STAGE ON THE COUNT OF SOMATIC CELLS IN COW MILK

    Directory of Open Access Journals (Sweden)

    Beata SITKOWSKA

    2008-07-01

    Full Text Available The aim of the paper was to evaluate the effect of the cow age group and lactation stage on the count of somatic cells in cow milk. The analysis was made based on the breeding documentation of 11359 test yields from cows representing twelve herds in the Kujawy and Pomorze Province. All the animals researched calved for the first time in 2001. The numerical data were verified statistically with the analysis of variance following GLM procedure, considering the effect of the herd, father, sampling month, cow groups (primiparas, multiparas, lactation stage at which the sample was taken. The effect of these factors on basic milking yield and the content of somatic cells were mostly highly significant. It was observed that depending on the milk use length in cows during lactation, the content of somatic cells in milk increased, and the yield of milk, fat and protein decreased.

  4. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.

  5. PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells.

    Science.gov (United States)

    Juliano, Celina E; Reich, Adrian; Liu, Na; Götzfried, Jessica; Zhong, Mei; Uman, Selen; Reenan, Robert A; Wessel, Gary M; Steele, Robert E; Lin, Haifan

    2014-01-01

    PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) are found in animal germlines and are essential for fertility, but their functions outside of the gonad are not well understood. The cnidarian Hydra is a simple metazoan with well-characterized stem/progenitor cells that provides a unique model for analysis of PIWI function. Here we report that Hydra has two PIWI proteins, Hydra PIWI (Hywi) and Hydra PIWI-like (Hyli), both of which are expressed in all Hydra stem/progenitor cells, but not in terminally differentiated cells. We identified ∼15 million piRNAs associated with Hywi and/or Hyli and found that they exhibit the ping-pong signature of piRNA biogenesis. Hydra PIWI proteins are strictly cytoplasmic and thus likely act as posttranscriptional regulators. To explore this function, we generated a Hydra transcriptome for piRNA mapping. piRNAs map to transposons with a 25- to 35-fold enrichment compared with the abundance of transposon transcripts. By sequencing the small RNAs specific to the interstitial, ectodermal, and endodermal lineages, we found that the targeting of transposons appears to be largely restricted to the interstitial lineage. We also identified putative nontransposon targets of the pathway unique to each lineage. Finally we demonstrate that hywi function is essential in the somatic epithelial lineages. This comprehensive analysis of the PIWI-piRNA pathway in the somatic stem/progenitor cells of a nonbilaterian animal suggests that this pathway originated with broader stem cell functionality. PMID:24367095

  6. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Müller Mathias

    2007-12-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. Results The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88. The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS PCR (i.e. ARMS-qPCR. For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR. We report the first cases (n = 4 fetuses, n = 3 lambs of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6 indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5% was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. Conclusion Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones

  7. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    Science.gov (United States)

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms. PMID:25564763

  8. Cytotoxicity of bovine and porcine collagen membranes in mononuclear cells.

    Science.gov (United States)

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Carneiro, Karine Fernandes; Souza, Maria Aparecida de; Magalhães, Denildo

    2012-01-01

    This study compared the cytotoxicity and the release of nitric oxide induced by collagen membranes in human mononuclear cells. Peripheral blood was collected from each patient and the separation of mononuclear cells was performed by Ficoll. Then, 2x10(5) cells were plated in 48-well culture plates under the membranes in triplicate. The polystyrene surface was used as negative control. Cell viability was assessed by measuring mitochondrial activity (MTT) at 4, 12 and 24 h, with dosage levels of nitrite by the Griess method for the same periods. Data had non-normal distribution and were analyzed by the Kruskal-Wallis test (p<0.05). Statistically significant differences (p<0.05) were observed between the membranes and the control in the experimental period, although there was a significant reduction in viability over time (p<0.01). At 4 and 12 h, the porcine membrane induced a higher release of nitrite compared with the control and bovine membrane, respectively (p<0.01), and this difference was maintained at 24 h (p<0.05). This in vitro study showed that the porcine collagen membrane induces an increased production of proinflammatory mediators by mononuclear cells in the first hours of contact, decreasing with time. PMID:22460313

  9. Bovine aortic endothelial cells are susceptible to Hantaan virus infection

    International Nuclear Information System (INIS)

    Hantavirus serotype Hantaan (HTN) is one of the causative agents of hemorrhagic fever with renal syndrome (HFRS, lethality up to 10%). The natural host of HTN is Apodemus agrarius. Recent studies have shown that domestic animals like cattle are sporadically seropositive for hantaviruses. In the present study, the susceptibility of bovine aortic endothelial cells (BAEC) expressing αVβ3-integrin to a HTN infection was investigated. Viral nucleocapsid protein and genomic RNA segments were detected in infected BAEC by indirect immunofluorescence assay, Western blot analysis, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. The results of this study strongly support our previous observation on Puumala virus (PUU) that has been propagated efficiently in BAEC. These findings open a new window to contemplate the ecology of hantavirus infection and transmission route from animal to man

  10. Effects of Preinfection With Bovine Viral Diarrhea Virus on Immune Cells From the Lungs of Calves Inoculated With Bovine Herpesvirus 1.1.

    Science.gov (United States)

    Risalde, M A; Molina, V; Sánchez-Cordón, P J; Romero-Palomo, F; Pedrera, M; Gómez-Villamandos, J C

    2015-07-01

    The aim of this work was to study the interstitial aggregates of immune cells observed in pulmonary parenchyma of calves preinfected with bovine viral diarrhea virus and challenged later with bovine herpesvirus 1. In addition, the intent of this research was to clarify the role of bovine viral diarrhea virus in local cell-mediated immunity and potentially in predisposing animals to bovine respiratory disease complex. Twelve Friesian calves, aged 8 to 9 months, were inoculated with noncytopathic bovine viral diarrhea virus genotype 1. Ten were subsequently challenged with bovine herpesvirus 1 and euthanized at 1, 2, 4, 7, or 14 days postinoculation. The other 2 calves were euthanized prior to the second inoculation. Another cohort of 10 calves was inoculated only with bovine herpesvirus 1 and then were euthanized at the same time points. Two calves were not inoculated with any agent and were used as negative controls. Pulmonary lesions were evaluated in all animals, while quantitative and biosynthetic changes in immune cells were concurrently examined immunohistochemically to compare coinfected calves and calves challenged only with bovine herpesvirus 1. Calves preinfected with bovine viral diarrhea virus demonstrated moderate respiratory clinical signs and histopathologic evidence of interstitial pneumonia with aggregates of mononuclear cells, which predominated at 4 days postinoculation. Furthermore, this group of animals was noted to have a suppression of interleukin-10 and associated alterations in the Th1-driven cytokine response in the lungs, as well as inhibition of the response of CD8+ and CD4+ T lymphocytes against bovine herpesvirus 1. These findings suggest that bovine viral diarrhea virus preinfection could affect the regulation of the immune response as modulated by regulatory T cells, as well as impair local cell-mediated immunity to secondary respiratory pathogens. PMID:25322747

  11. Influence of somatic cell count on mineral content and salt equilibria of milk

    Directory of Open Access Journals (Sweden)

    Primo Mariani

    2010-01-01

    Full Text Available Aim of this research was to study the effect of somatic cell count on mineral content and salt equilibria at the level of quarter milk samples. Ten Italian Friesian cows, in which two homologous quarters (front quarters in 1 cow, rear quarters in 6 cows and both rear and front quarters in 3 cows were characterised by a milk SCC400,000 cells/mL (HC-milk, respectively, were selected. Cows were milked at quarter level during the morning milking and a single sample was collected from each selected quarter, thus, 26 quarter milk samples were collected. Compared to LC-milk, HC-milk was characterised by a lower content of phosphorus and potassium and by a higher content of both sodium and chloride. The equilibrium of calcium, phosphorus and magnesium between the colloidal and soluble phase of milk and the mineralisation degree of the casein micelles, were not different between HC and LC milk.

  12. Microprojectile delivery to DNA to leaf cells in Dactylis glomerata and its expression in somatic embryos

    International Nuclear Information System (INIS)

    Development of techniques for gene transfer by bombardment with DNA coated microprojectiles has greatly expanded the potential for obtaining transgenic plants in cereals and grasses and has been successfully used in several species. The leaf culture system in Dactylis glomerata L. (orchardgrass), in which embryos initiate and develop from single mesophyll cells, is especially attractive for gene transfer experiments. Tillers were selected from greenhouse grown plants of Embryogen-P orchardgrass, and leaf segments were plated on SH medium with 30 μM dicamba (SH30). Tungsten particles were coated with DNA plasmids containing the bar gene that encodes for phosphinotricin resistance (the active ingredient of the herbicides bialaphos and Basta), and the uidA gene that encodes the enzyme β-glucuronidase (GUS). Both genes were under control of either the CaMV35S or the maize ubiquitin Ubi1 promoter. Microprojectile bombardment was conducted with a particle inflow gun. Six of these plants showed no reaction when the leaves were treated with 0.01% Basta, indicating resistance to the herbicide. The leaf tissue from these plants produced somatic embryos when cultured on medium containing 1.5% bialaphos. Somatic embryos from the leaf tissue of the regenerated plans also stained blue when treated with X-gluc. Putative transformations for both genes were confirmed by polymerase chain reaction techniques. 5 refs, 2 figs

  13. Condensin II subunit dCAP-D3 restricts retrotransposon mobilization in Drosophila somatic cells.

    Directory of Open Access Journals (Sweden)

    Andrew T Schuster

    2013-10-01

    Full Text Available Retrotransposon sequences are positioned throughout the genome of almost every eukaryote that has been sequenced. As mobilization of these elements can have detrimental effects on the transcriptional regulation and stability of an organism's genome, most organisms have evolved mechanisms to repress their movement. Here, we identify a novel role for the Drosophila melanogaster Condensin II subunit, dCAP-D3 in preventing the mobilization of retrotransposons located in somatic cell euchromatin. dCAP-D3 regulates transcription of euchromatic gene clusters which contain or are proximal to retrotransposon sequence. ChIP experiments demonstrate that dCAP-D3 binds to these loci and is important for maintaining a repressed chromatin structure within the boundaries of the retrotransposon and for repressing retrotransposon transcription. We show that dCAP-D3 prevents accumulation of double stranded DNA breaks within retrotransposon sequence, and decreased dCAP-D3 levels leads to a precise loss of retrotransposon sequence at some dCAP-D3 regulated gene clusters and a gain of sequence elsewhere in the genome. Homologous chromosomes exhibit high levels of pairing in Drosophila somatic cells, and our FISH analyses demonstrate that retrotransposon-containing euchromatic loci are regions which are actually less paired than euchromatic regions devoid of retrotransposon sequences. Decreased dCAP-D3 expression increases pairing of homologous retrotransposon-containing loci in tissue culture cells. We propose that the combined effects of dCAP-D3 deficiency on double strand break levels, chromatin structure, transcription and pairing at retrotransposon-containing loci may lead to 1 higher levels of homologous recombination between repeats flanking retrotransposons in dCAP-D3 deficient cells and 2 increased retrotransposition. These findings identify a novel role for the anti-pairing activities of dCAP-D3/Condensin II and uncover a new way in which dCAP-D3/Condensin

  14. Novel Cell Preservation Technique to Extend Bovine In Vitro White Blood Cell Viability

    OpenAIRE

    Laurin, Emilie L.; McKenna, Shawn L. B.; Sanchez, Javier; Bach, Horacio; Rodriguez-Lecompte, Juan Carlos; Chaffer, Marcelo; Keefe, Greg P

    2015-01-01

    Although cell-mediated immunity based diagnostics can be integral assays for early detection of various diseases of dairy cows, processing of blood samples for these tests is time-sensitive, often within 24 hours of collection, to maintain white blood cell viability. Therefore, to improve utility and practicality of such assays, the objective of this study was to assess the use of a novel white blood cell preservation technology in whole bovine blood. Blood samples from ten healthy cows were ...

  15. Adhesion and invasion of bovine endothelial cells by Neospora caninum.

    Science.gov (United States)

    Hemphill, A; Gottstein, B; Kaufmann, H

    1996-02-01

    Neospora caninum is a recently identified coccidian parasite which was, until 1988, misdiagnosed as Toxoplasma gondii. It causes paralysis and death in dogs and neonatal mortality and abortion in cattle, sheep, goats and horses. The life-cycle of Neospora has not yet been elucidated. The only two stages identified so far are tissue cysts and intracellularly dividing tachyzoites. Very little is known about the biology of this species. We have set up a fluorescence-based adhesion/invasion assay in order to investigate the interaction of N. caninum tachyzoites with bovine aorta endothelial (BAE) cells in vitro. Treatment of both host cells and parasites with metabolic inhibitors determined the metabolic requirements for adhesion and invasion. Chemical and enzymatic modifications of parasite and endothelial cell surfaces were used in order to obtain information on the nature of cell surface components responsible for the interaction between parasite and host. Electron microscopical investigations defined the ultrastructural characteristics of the adhesion and invasion process, and provided information on the intracellular development of the parasites. PMID:8851858

  16. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment

    International Nuclear Information System (INIS)

    Chimeric chloramphenicol acetyltransferase and β-galactosidase marker genes were coated onto fine gold particles and used to bombard a variety of mammalian tissues and cells. Transient expression of the genes was obtained in liver, skin, and muscle tissues of rat and mouse bombarded in vivo. Similar results were obtained with freshly isolated ductal segments of rat and human mammary glands and primary cultures derived from these explants. Gene transfer and transient expression were also observed in eight human cell culture lines, including cells of epithelial, endothelial, fibroblast, and lymphocyte origin. Using CHO and MCF-7 cell cultures as models, we obtained stable gene transfer at frequencies of 1.7 x 10-3 and 6 x 10-4, respectively. The particle bombardment technology thus provides a useful means to transfer foreign genes into a variety of mammalian somatic cell systems. The method is applicable to tissues in vivo as well as to isolated cells in culture and has proven effective with all cell or tissue types tested thus far. This technology may therefore prove to be applicable in various aspects of gene therapy

  17. Simplification of bovine somatic cell nuclear transfer by application of a zona-free manipulation technique

    DEFF Research Database (Denmark)

    Booth, P J; Tan, S J; Reipurth, R;

    2001-01-01

    , and (c) establish any potential embryotoxic effects of PHA-P. The initial data indicated that, of calcium ionophore A23187, ionomycin, and electropulse treatments as primary activation agents, the two former were equally efficient even with reduced exposure times. WOW-culture of zona-free versus zona...

  18. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    Energy Technology Data Exchange (ETDEWEB)

    Ostrup, Olga, E-mail: osvarcova@gmail.com [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway); Hyttel, Poul; Klaerke, Dan A. [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Collas, Philippe, E-mail: philc@medisin.uio.no [Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway)

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  19. Relationship between mastitis causative pathogens and somatic cell counts in milk of dairy cows

    Directory of Open Access Journals (Sweden)

    Sharaf Eldeen Idriss

    2013-12-01

    Full Text Available Milk somatic cell count is a key component of national and international regulation for milk quality and an indicator of udder health and of the prevalence of clinical and subclinical mastitis in dairy herds. The objective of this study was to evaluate the presence of mastitis pathogens in milk samples differed by somatic cell count (SCC in microbiologically positive samples. Also frequency of distribution of samples differed by SCC were studied in non infected samples as well. The milk samples were collected from individual quarters from the dairy farms located in Nitra region with problematic udder health of herd for SCC and bacteriological analysis. Totally, 390 milk samples were examined, and 288 (73.85% positive milk samples were detected. Four SCC groups of samples (400×103 /ml were used to identify presence of microorganisms in positive samples. The most frequently isolated pathogens in samples with high SCC >400×103 /ml according to year were Coagulase-negative Staphylococci (29.11 % in 2012, followed by Staphylococcus aureus (28.0% in 2010, yeasts (24.05% in 2012, Escherichia coli (22.78% in 2012, Bacillus sp. (20% in 2010 and Pseudomonas aerugenosa (11.88% in 2011. Coagulase-negative Staphylococci (66.67% were the predominantly identified in the samples with low SCC <100×103 cells/ml, followed by Bacillus spp (50%, Entrococcus spp. (33.33% and Staphylococcus aureus (16.67% and E. coli (16.67%. The results of this study indicated that the SCC of individual milk samples corresponded with the health status of the udder of dairy cows represented by presence of mastitis microorganisms in milk. However, the contamination of milk samples could be also connected with low SCC. On the ohter side the samples with high SCC were found out without presence of microorganism. The further study is needed to identify the reason of high SCC in milk from negative samples.

  20. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    Science.gov (United States)

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, P<0.05) and in vivo (cloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression. PMID:26604326

  1. Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats

    Directory of Open Access Journals (Sweden)

    Olofsson Ida

    2011-03-01

    Full Text Available Abstract Background Mastitis is the most important and costly disease in dairy goat production. Subclinical mastitis is common in goats and is mainly caused by contagious bacteria. Several methods to diagnose subclinical mastitis are available. In this study indirect measurement of somatic cell count (SCC by California Mastitis Test (CMT and direct measurement of SCC using a portable deLaval cell counter (DCC are evaluated. Swedish goat farmers would primarily benefit from diagnostic methods that can be used at the farm. The purpose of the study was to evaluate SCC measured by CMT and DCC as possible markers for intramammary infection (IMI in goats without clinical symptoms of mastitis. Moreover to see how well indirect measurement of SCC (CMT corresponded to direct measurement of SCC (DCC. Method Udder half milk samples were collected once from dairy goats (n = 111, in five different farms in Northern and Central Sweden. Only clinically healthy animals were included in the study. All goats were in mid to late lactation at sampling. Milk samples were analyzed for SCC by CMT and DCC at the farm, and for bacterial growth at the laboratory. Results Intramammary infection, defined as growth of udder pathogens, was found in 39 (18% of the milk samples. No growth was found in 180 (81% samples while 3 (1% samples were contaminated. The most frequently isolated bacterial species was coagulase negative staphylococci (CNS (72% of all isolates, followed by Staphylococcus aureus (23% of all isolates. Somatic cell count measured by DCC was strongly (p = 0.000 associated with bacterial growth. There was also a very strong association between CMT and bacterial growth. CMT 1 was associated with freedom of IMI while CMT ≥2 was associated with IMI. Indirect measurement of SCC by CMT was well correlated with SCC measured by DCC. Conclusions According to the results, SCC measured with CMT or DCC can predict udder infection in goats, and CMT can be used as a

  2. Generation and characterization of bovine bone marrow-derived macrophage cell line.

    Science.gov (United States)

    Xiao, Jiajia; Xie, Rongxia; Li, Qiaoqiao; Chen, Wuju; Zhang, Yong

    2016-05-01

    Macrophages, as the forefront of innate immune defense, have an important role in the host responses to mycobacterial infection. Therefore, a stable macrophage cell line is needed for future bovine immune system research on the bacterial infection. In this study, we established a bovine macrophage cell line by introducing the human telomerase reverse transcriptase (hTERT) gene into bovine bone marrow-derived macrophages (bBMMs). The TERT-bBMMs cells expressed macrophage surface antigen (CD11b, CD282) and upregulated expression of the cytokines IL-1β, IL-6, IL-10, IL-12, TNF-α in response to bacterial invasion. These results demonstrate that this cell line provide reliable cell model system for future studies on interactions between the bovine macrophages and Mycobacterium tuberculosis. PMID:26936441

  3. Genomic analysis of the major bovine milk protein genes.

    OpenAIRE

    Threadgill, D.W.; Womack, J E

    1990-01-01

    The genomic arrangement of the major bovine milk protein genes has been determined using a combination of physical mapping techniques. The major milk proteins consist of the four caseins, alpha s1 (CASAS1), alpha s2 (CASAS2), beta (CASB), and kappa (CASK), as well as the two major whey proteins, alpha-lactalbumin (LALBA) and beta-lactoglobulin (LGB). A panel of bovine X hamster hybrid somatic cells analyzed for the presence or absence of bovine specific restriction fragments revealed the gene...

  4. Bovine herpesvirus 4 (BoHV-4) is tropic for bovine endometrial cells and modulates endocrine function

    OpenAIRE

    Donofrio, Gaetano; Herath, Shan; Sartori, Chiara; Cavirani, Sandro; Flammini, Cesidio Filippo; Sheldon, Iain Martin

    2007-01-01

    Bovine postpartum uterine disease, metritis, affects about 40% of animals and is widely considered to have a bacterial aetiology. Although the gamma herpesvirus BoHV-4 has been isolated from several outbreaks of metritis or abortion, the role of viruses in endometrial pathology and the mechanisms of viral infection of uterine cells are often ignored. The objectives of the present study were to explore the interaction, tropism and outcomes of BoHV-4 challenge of endometrial stromal and epithel...

  5. Stem Cell Interaction with Somatic Niche May Hold the Key to Fertility Restoration in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Deepa Bhartiya

    2012-01-01

    Full Text Available The spontaneous return of fertility after bone marrow transplantation or heterotopic grafting of cryopreserved ovarian cortical tissue has surprised many, and a possible link with stem cells has been proposed. We have reviewed the available literature on ovarian stem cells in adult mammalian ovaries and presented a model that proposes that the ovary harbors two distinct populations of stem cells, namely, pluripotent, quiescent, very small embryonic-like stem cells (VSELs, and slightly larger “progenitor” ovarian germ stem cells (OGSCs. Besides compromising the somatic niche, oncotherapy destroys OGSCs since, like tumor cells, they are actively dividing; however VSELs persist since they are relatively quiescent. BMT or transplanted ovarian cortical tissue may help rejuvenate the ovarian niche, which possibly supports differentiation of persisting VSELs resulting in neo-oogenesis and follicular development responsible for successful pregnancies. Postnatal oogenesis in mammalian ovary from VSELs may be exploited for fertility restoration in cancer survivors including those who were earlier deprived of gametes and/or gonadal tissue cryopreservation options.

  6. Relationship of Somatic Cell Count with Milk Yield and Composition in Chinese Holstein Population

    Institute of Scientific and Technical Information of China (English)

    GUO Jia-zhong; LIU Xiao-lin; XU A-juan; XIA Zhi

    2010-01-01

    The objective of this study was to analyze the relationship of somatic cell count(SCC)with milk yield,fat and protein percentage,fat and protein yield using analysis of variance and correlation analysis in Chinese Holstein population.The10 524 test-day records of 568 Chinese Holstein Cattle were obtained from 2 commercial herds in Xi'an region of China during February 2002 to March 2009.Milk yield,fat percentage,fat and protein yield initially increased and then dropped down with parity,whereas protein percentage decreased and SCC increased.Analysis of variance showed highly significant effects of different subclasses SCC on milk yield and composition(P0.05).The results of the present study first time provide the relevant base-line data for assessing milk production at Xi'an region of China.

  7. Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans.

    Science.gov (United States)

    Leighton, Daniel H W; Choe, Andrea; Wu, Shannon Y; Sternberg, Paul W

    2014-12-16

    Males of the androdioecious species Caenorhabditis elegans are more likely to attempt to mate with and successfully inseminate C. elegans hermaphrodites that do not concurrently harbor sperm. Although a small number of genes have been implicated in this effect, the mechanism by which it arises remains unknown. In the context of the battle of the sexes, it is also unknown whether this effect is to the benefit of the male, the hermaphrodite, or both. We report that successful contact between mature sperm and oocyte in the C. elegans gonad at the start of fertilization causes the oocyte to release a signal that is transmitted to somatic cells in its mother, with the ultimate effect of reducing her attractiveness to males. Changes in hermaphrodite attractiveness are tied to the production of a volatile pheromone, the first such pheromone described in C. elegans. PMID:25453110

  8. Herd level approach to high bulk milk somatic cell count problems in dairy cattle.

    Science.gov (United States)

    Barkema, Herman W; De Vliegher, Sarne; Piepers, Sofie; Zadoks, Ruth N

    2013-06-01

    Since the introduction of the standard mastitis prevention program in the late 1960s, enormous progress has been made in decreasing the average bulk milk somatic cell count (BMSCC). In many countries, reduction of BMSCC has been encouraged through premium payments or penalty systems. However, the success of the program depends heavily on consistent implementation of management practices. The approach to problem solving in a herd with high BMSCC must include the following elements: (1) problem definition using primary udder health parameters; (2) detection of cows causing the problem; (3) definition of short- and long-term goals; (4) formulation and implementation of a herd management plan; and (5) evaluation of the results. Findings and plans are recorded for use at follow-up visits. Every high BMSCC problem can be solved if farmers are sufficiently motivated, if farm advisors are sufficiently knowledgeable, and if farmer and advisors work together according to a jointly determined plan. PMID:23706026

  9. Genetic Analysis of Somatic Cell Score in Danish Holsteins Using a Liability-Normal Mixture Model

    DEFF Research Database (Denmark)

    Madsen, P; Shariati, M M; Ødegård, J

    2008-01-01

    Mixture models are appealing for identifying hidden structures affecting somatic cell score (SCS) data, such as unrecorded cases of subclinical mastitis. Thus, liability-normal mixture (LNM) models were used for genetic analysis of SCS data, with the aim of predicting breeding values for such cases...... of mastitis. Here, putative mastitis statuses and breeding values for liability to putative mastitis were inferred solely from SCS observations. In total, there were 395,906 test-day records for SCS from 50,607 Danish Holstein cows. Four different statistical models were fitted: A) a classical...... from IMI- udders relative to SCS from IMI+ udders. Further, the genetic correlation between SCS of IMI- and SCS of IMI+ was 0.61, and heritability for liability to putative mastitis was 0.07. Models B2 and C allocated approximately 30% of SCS records to IMI+, but for model B1 this fraction was only 10...

  10. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423 as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05 in high adipogenic cells, while transforming growth factor (TGF-β was higher (156.1±48.7%, P<0.05 in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ and CCAAT/enhancer binding protein α (C/EBPα were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05 in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular

  11. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  12. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Science.gov (United States)

    Wu, Xiaoyun; Shi, Zhen; Cui, Mingxue; Han, Min; Ruvkun, Gary

    2012-01-01

    The retinoblastoma (Rb) tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene. PMID:22412383

  13. Reprogramming resistant genes: in-depth comparison of gene expressions among iPS, ES and somatic cells.

    Directory of Open Access Journals (Sweden)

    Natalia ePolouliakh

    2013-01-01

    Full Text Available Transcription factor based reprogramming reverts adult cells to an embryonic state, yielding potential for generating different tissue types. However, recent reports indicated the substantial differences in pattern of gene expression between induced pluripotent stem (iPS cells and embryonic stem (ES cells. In this study we compare gene expression signatures of different iPS and ES cell lines and relate expression profiles of differently expressed genes to their expression status in somatic cells. As a result, we discovered that genes resistant to reprogramming comprise two major clusters, which are reprogramming dependent ‘Induced Genes’ and somatic origin ‘Inherited Genes’, both exhibiting preferences in methylation marks. Closer look into the Induced Genes by means of the transcription regulation analysis predicted several groups of genes with various roles in reprogramming and transgene DNA binding model. We believe that our results are a helpful source for biologists for further improvement of iPS cell technology.

  14. Somatic cell count and biochemical components of milk related to udder health in buffaloes

    Directory of Open Access Journals (Sweden)

    S.T. Singh

    2010-02-01

    Full Text Available The 399 clinically healthy quarters from 101 Murrah buffaloes were analyzed for somatic cell count (SCC; DCC and microscope methods and biochemical composition of milk in relation to udder health. The udder health revealed specific subclinical mastitis (SSM in 7% and non-specific mastitis (NSM in 49% of quarters. Latent infections comprised 1%. Staphylococci (43%, streptococci (39% and corynebacteria (18% constituted chief etiological agents in SSM. Electrical conductivity increased significantly both in SSM and NSM compared to healthy quarters. Significant effects for SNF and density were seen in SSM only. DCC and microscope depicted similar cell counts with a correlation coefficient of 0.89. The correlations of DCC with CMT and EC were 0.85 and 0.51, respectively. Quarters with negative CMT reactions had DCC values of < 3 × 105 cells/ml. The DCC means for negative, trace, and +1 to 2 CMT scores were 122, 238, and 593 (× 103 cells/ml, respectively. Lactose with discrimination ability of 83.76% was found better indicator of udder inflammation in buffaloes. Buffaloes unlike cows have low numbers of quarter infections, respond similarly as cows to udder inflammation but at different levels, and DCC may be effectively employed for expressing milk cell count in this species.

  15. Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells

    Science.gov (United States)

    Williams, Alan M.; Maman, Yaakov; Alinikula, Jukka; Schatz, David G.

    2016-01-01

    The activation induced cytosine deaminase (AID) mediates diversification of B cell immunoglobulin genes by the three distinct yet related processes of somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion (GCV). SHM occurs in germinal center B cells, and the transcription factor Bcl6 is a key regulator of the germinal center B cell gene expression program, including expression of AID. To test the hypothesis that Bcl6 function is important for the process of SHM, we compared WT chicken DT40 B cells, which constitutively perform SHM/GCV, to their Bcl6-deficient counterparts. We found that Bcl6-deficient DT40 cells were unable to perform SHM and GCV despite enforced high level expression of AID and substantial levels of AID in the nucleus of the cells. To gain mechanistic insight into the GCV/SHM dependency on Bcl6, transcriptional features of a highly expressed SHM target gene were analyzed in Bcl6-sufficient and -deficient DT40 cells. No defect was observed in the accumulation of single stranded DNA in the target gene as a result of Bcl6 deficiency. In contrast, association of Spt5, an RNA polymerase II (Pol II) and AID binding factor, was strongly reduced at the target gene body relative to the transcription start site in Bcl6-deficient cells as compared to WT cells. However, partial reconstitution of Bcl6 function substantially reconstituted Spt5 association with the target gene body but did not restore detectable SHM. Our observations suggest that in the absence of Bcl6, Spt5 fails to associate efficiently with Pol II at SHM targets, perhaps precluding robust AID action on the SHM target DNA. Our data also suggest, however, that Spt5 binding is not sufficient for SHM of a target gene even in DT40 cells with strong expression of AID. PMID:26900682

  16. Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells.

    Science.gov (United States)

    Williams, Alan M; Maman, Yaakov; Alinikula, Jukka; Schatz, David G

    2016-01-01

    The activation induced cytosine deaminase (AID) mediates diversification of B cell immunoglobulin genes by the three distinct yet related processes of somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion (GCV). SHM occurs in germinal center B cells, and the transcription factor Bcl6 is a key regulator of the germinal center B cell gene expression program, including expression of AID. To test the hypothesis that Bcl6 function is important for the process of SHM, we compared WT chicken DT40 B cells, which constitutively perform SHM/GCV, to their Bcl6-deficient counterparts. We found that Bcl6-deficient DT40 cells were unable to perform SHM and GCV despite enforced high level expression of AID and substantial levels of AID in the nucleus of the cells. To gain mechanistic insight into the GCV/SHM dependency on Bcl6, transcriptional features of a highly expressed SHM target gene were analyzed in Bcl6-sufficient and -deficient DT40 cells. No defect was observed in the accumulation of single stranded DNA in the target gene as a result of Bcl6 deficiency. In contrast, association of Spt5, an RNA polymerase II (Pol II) and AID binding factor, was strongly reduced at the target gene body relative to the transcription start site in Bcl6-deficient cells as compared to WT cells. However, partial reconstitution of Bcl6 function substantially reconstituted Spt5 association with the target gene body but did not restore detectable SHM. Our observations suggest that in the absence of Bcl6, Spt5 fails to associate efficiently with Pol II at SHM targets, perhaps precluding robust AID action on the SHM target DNA. Our data also suggest, however, that Spt5 binding is not sufficient for SHM of a target gene even in DT40 cells with strong expression of AID. PMID:26900682

  17. Integration of bovine herpesvirus 4 genome into persistently infected host cell genome

    OpenAIRE

    Donofrio Gaetano; Capocefalo Antonio; Franceschi Valentina; De Lorenzi Lisa; van Santen Vicky; Parma Pietro

    2010-01-01

    Abstract Persistent infection of macrophages with bovine herpesvirus 4 (BoHV-4) has been proposed to play a secondary causal role, along with bacterial infection, in bovine post-partum metritis. Mechanisms of maintenance of BoHV-4 persistent infection are not understood. We previously generated in vitro models of BoHV-4 persistent infection in human rhadomyosarcoma and bovine macrophage cell lines by drug selection of cells infected with BoHV-4 carrying a drug-resistance marker, and demonstra...

  18. GeneticParameters for Milk Somatic Cell Score and Relationships with Production Traits in Primparous Dairy Sheep

    NARCIS (Netherlands)

    Riggio, V.; Finocchiaro, R.; Kaam, van J.B.C.H.M.; Portolano, B.; Bovenhuis, H.

    2007-01-01

    A total of 13,066 first-lactation test-day records of 2,277 Valle del Belice ewes from 17 flocks were used to estimate genetic parameters for somatic cell scores (SCS) and milk production traits, using a repeatability test-day animal model. Heritability estimates were low and ranged from 0.09 to 0.1

  19. Effect of somatic cell count level on functional longevity in Valle del Belice dairy sheep assessed using survival analysis

    NARCIS (Netherlands)

    Riggio, V.; Maizon, D.O.; Portolano, B.; Bovenhuis, H.; Arendonk, van J.A.M.

    2009-01-01

    The objectives of this study were to evaluate the effect of somatic cell count (SCC) on functional longevity and to estimate the heritability of functional longevity using survival analysis in Valle del Belice dairy sheep. A total of 4,880 lactations of 2,190 ewes from 11 flocks were used. In this s

  20. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    NARCIS (Netherlands)

    Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms,

  1. Pathogen-specific effects of quantitative trait loci affecting clinical mastitis and somatic cell count in danish holstein cattle

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Guldbrandtsen, Bernt; Thomasen, J.R.;

    2008-01-01

    The aim of this study was to investigate whether quantitative trait loci (QTL) affecting the risk of clinical mastitis (CM) and QTL affecting somatic cell score (SCS) exhibit pathogen-specific effects on the incidence of mastitis. Bacteriological data on mastitis pathogens were used to investigate...

  2. Receiver-operating characteristic curves for somatic cell scores and California mastitis test in Valle del Be lice dairy sheep

    NARCIS (Netherlands)

    Riggio, V.; Pesce, L.L.; Morreale, S.; Portolano, B.

    2013-01-01

    Using receiver-operating characteristic (ROC) curve methodology this study was designed to assess the diagnostic effectiveness of somatic cell count (SCC) and the California mastitis test (CMT) in Valle del Belice sheep, and to propose and evaluate threshold values for those tests that would optimal

  3. Expression of members of immunoglobulin gene family in somatic cell hybrids between human B and T cells

    Energy Technology Data Exchange (ETDEWEB)

    Kozbor, D.; Burioni, R.; Ar-Rushdi, A.; Zmijewski, C.; Croce, C.M.

    1987-07-01

    Somatic cell hybrids were obtained between human T and B cells and tested for the expression of differentiated traits of both cell lineages. The T-cell parent SUP-T1 is CD3/sup -/, CD4/sup +/, CD1/sup +/, CD8/sup +/, is weakly positive for HLA class I determinants, and has an inversion of chromosome 14 due to a site-specific recombination event between an immunoglobulin heavy-chain variable gene and the joining segment of the T-cell receptor ..cap alpha.. chain. The B-cell parent, the 6-thioguanine- and ouabain-resistant mutant GM1500, is a lymphoblastoid cell line that secretes IgG2, K chains, and expresses B1, B532, and HLA class I and II antigens. All hybrids expressed characteristics of B cells (Ig/sup +/, B1/sup +/, B532/sup +/, EBNA/sup +/, HLA antigens), whereas only CD4 among the T-cell markers was expressed. The level of T-cell receptor ..beta..-chain transcript was greatly reduced and no RNA of the chimeric T-cell receptor ..cap alpha..-chain joining segment-immunoglobulin heavy-chain variable region was detected. Southern blot analysis indicated that absence of T-cell differentiation markers in the hybrids was not due to chromosomal loss. Rather, some B-cell-specific factor present in the hybrids may account for the suppression.

  4. Expression of members of immunoglobulin gene family in somatic cell hybrids between human B and T cells

    International Nuclear Information System (INIS)

    Somatic cell hybrids were obtained between human T and B cells and tested for the expression of differentiated traits of both cell lineages. The T-cell parent SUP-T1 is CD3-, CD4+, CD1+, CD8+, is weakly positive for HLA class I determinants, and has an inversion of chromosome 14 due to a site-specific recombination event between an immunoglobulin heavy-chain variable gene and the joining segment of the T-cell receptor α chain. The B-cell parent, the 6-thioguanine- and ouabain-resistant mutant GM1500, is a lymphoblastoid cell line that secretes IgG2, K chains, and expresses B1, B532, and HLA class I and II antigens. All hybrids expressed characteristics of B cells (Ig+, B1+, B532+, EBNA+, HLA antigens), whereas only CD4 among the T-cell markers was expressed. The level of T-cell receptor β-chain transcript was greatly reduced and no RNA of the chimeric T-cell receptor α-chain joining segment-immunoglobulin heavy-chain variable region was detected. Southern blot analysis indicated that absence of T-cell differentiation markers in the hybrids was not due to chromosomal loss. Rather, some B-cell-specific factor present in the hybrids may account for the suppression

  5. Assessment of imidacloprid-induced mutagenic effects in somatic cells of Swiss albino male mice.

    Science.gov (United States)

    Bagri, Preeti; Kumar, Vinod; Sikka, Anil K

    2016-10-01

    Pesticides are being used for plant protection to increase food protection and to reduce insect-borne diseases worldwide. Exposure to the pesticides may cause genotoxic effects on both the target and nontarget organisms, including man. Therefore, the mutagenicity evaluation of such pesticides has become a priority area of research. Imidacloprid (IMI), a neonicotinoid insecticide, is widely used in agriculture either alone or in combination with other insecticides. A combined approach employing micronucleus test (MNT) and chromosomal aberrations assay (CA) was utilized to assess the mutagenicity of imidacloprid in bone marrow of Swiss albino male mice. IMI suspension was prepared in 3% gum acacia and administered at doses of 5.5, 11 and 22 mg/kg body weight for 7, 14 and 28 days to mice. IMI treatment resulted in a dose and time-dependant increase in the frequencies of micronuclei per cell and chromosomal aberrations in bone marrow cells. A statistically significant increase in chromosomal aberrations and micronuclei/cell was found only after daily treatment of IMI at highest selected dose (22 mg/kg body weight) for longest selected time period (28 days) compared to the control group. Thus, daily exposure of imidacloprid at a dose level of 22 mg/kg body weight for 28 days caused mutagenic effects on the somatic cells of Swiss albino male mice. PMID:26823062

  6. Plasma α-tocopherol content and its relationship with milk somatic cells count in Italian commercial herds.

    Directory of Open Access Journals (Sweden)

    Adriano Pilotto

    2015-07-01

    Full Text Available This work was aimed to investigate relationship between plasma vitamin E concentration and milk somatic cell count in healthy cows in commercial herds. 49 multiparous cows from two commercial dairy herds were monitored from the day of dry off until 90 DIM. BCS was assessed and blood samples were collected at dry off, day 0, 30, 60 and 90 postpartum. Plasma was analyzed for α-tocopherol content. Quantification of NEFA, BOHB, Zn and Se was performed in serum samples. Milk production and composition was obtained from routinely test-day of Italian milk producers association. Somatic Cell Score (SCS was calculated and included in the dataset. Analysis of data was performed using MIXED repeated and CORR procedures of SAS.We did not observe a correlation between plasmatic vitamin E and somatic cell score, and this can be explained by the low level of somatic cell score (averages 1.64 and 1.26. The lowest value of vitamin E was observed at parturition (1.64 µg/ml and 1.95 µg/ml. A significant (P<0.01 negative (-20% correlation was observed between NEFA serum content and α-tocopherol plasma concentration. Serum selenium content was positively correlated (+42%, P<0.0001 to zinc concentration. Grouping cows on the basis of their plasma α-tocopherol content higher or lower than 3 μg/mL at dry off, SCS at 30 and 60 DIM tended to be higher in lactating animals with lower content of α-tocopherol (1.12 vs. 1.72, P=0.18 at 30d; 0.92 vs. 1.72, P=0.07 at 60d. However, plasma α-tocopherol content at dry off could be usefully correlated with somatic cell count in fresh cows.

  7. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    International Nuclear Information System (INIS)

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein

  8. Improved development of somatic cell cloned mouse embryos by vitamin C and latrunculin A.

    Directory of Open Access Journals (Sweden)

    Anna Mallol

    Full Text Available Impaired development of embryos produced by somatic cell nuclear transfer (SCNT is mostly associated with faulty reprogramming of the somatic nucleus to a totipotent state and can be improved by treatment with epigenetic modifiers. Here we report that addition of 100 μM vitamin C (VitC to embryo culture medium for at least 16 h post-activation significantly increases mouse blastocyst formation and, when combined with the use of latrunculin A (LatA during micromanipulation and activation procedures, also development to term. In spite of this, no significant effects on pluripotency (OCT4 and NANOG or nuclear reprogramming markers (H3K14 acetylation, H3K9 methylation and DNA methylation and hydroxymethylation could be detected. The use of LatA alone significantly improved in vitro development, but not full-term development. On the other hand, the simultaneous treatment of cloned embryos with VitC and the histone deacetylase inhibitor psammaplin A (PsA, in combination with the use of LatA, resulted in cloning efficiencies equivalent to those of VitC or PsA treatments alone, and the effects on pluripotency and nuclear reprogramming markers were less evident than when only the PsA treatment was applied. These results suggest that although both epigenetic modifiers improve cloning efficiencies, possibly through different mechanisms, they do not show an additive effect when combined. Improvement of SCNT efficiency is essential for its applications in reproductive and therapeutic cloning, and identification of molecules which increase this efficiency should facilitate studies on the mechanism of nuclear reprogramming and acquisition of totipotency.

  9. Bovine mammary stem cells: Cell biology meets production agriculture

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  10. Green fluorescent protein (GFP) transgenic pig produced by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    LIU ZhongHua; SUN Shuang; LI YuTian; WANG HongBin; R S PRATHER; SONG Jun; WANG ZhenKun; TIAN JiangTian; KONG QingRan; ZHENG Zhong; YIN Zhi; GAO Li; MA HaiKun

    2008-01-01

    Transgenic somatic cell nuclear transfer is a very promising route for producing transgenic farm ani-mals. Research on GFP transgenic pigs can provide useful information for breeding transgenic pigs, human disease models and human organ xenotransplantation. In this study, a liposomal transfection system was screened and transgenic embryos were reconstructed by nuclear transfer of GFP positive cells into enucleated in vitro matured oocytes. The development of reconstructed embryos both in vitro and in vivo was observed, and GFP expression was determined. The results showed that porcine fe-tal-derived fibroblast cells cultured with 4.0 plJmL liposome and 1.6 pg/mL plasmid DNA for 6 h re-sulted in the highest transfection rate (3.6%). The percentage of GFP reconstructed embryos that de-veloped in vitro to the blastocyst stage was 10%. Of those the GFP positive percentage was 48%. Re-constructed transgenic embryos were transferred to 10 recipients. 5 of them were pregnant, and 3 de-livered 6 cloned piglets in which 4 piglets were transgenic for the GFP as verified by both GFP protein expression and GFP DNA sequence analysis. The percentage of reconstructed embryos that resulted in cloned piglets was 1.0%; while the percentage of piglets that were transgenic was 0.7%. This is the first group of transgenic cloned pigs born in China, marking a great progress in Chinese transgenic cloned pig research.

  11. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma.

    Science.gov (United States)

    Jiang, Lu; Gu, Zhao-Hui; Yan, Zi-Xun; Zhao, Xia; Xie, Yin-Yin; Zhang, Zi-Guan; Pan, Chun-Ming; Hu, Yuan; Cai, Chang-Ping; Dong, Ying; Huang, Jin-Yan; Wang, Li; Shen, Yang; Meng, Guoyu; Zhou, Jian-Feng; Hu, Jian-Da; Wang, Jin-Fen; Liu, Yuan-Hua; Yang, Lin-Hua; Zhang, Feng; Wang, Jian-Min; Wang, Zhao; Peng, Zhi-Gang; Chen, Fang-Yuan; Sun, Zi-Min; Ding, Hao; Shi, Ju-Mei; Hou, Jian; Yan, Jin-Song; Shi, Jing-Yi; Xu, Lan; Li, Yang; Lu, Jing; Zheng, Zhong; Xue, Wen; Zhao, Wei-Li; Chen, Zhu; Chen, Sai-Juan

    2015-09-01

    Natural killer/T-cell lymphoma (NKTCL) is a malignant proliferation of CD56(+) and cytoCD3(+) lymphocytes with aggressive clinical course, which is prevalent in Asian and South American populations. The molecular pathogenesis of NKTCL has largely remained elusive. We identified somatic gene mutations in 25 people with NKTCL by whole-exome sequencing and confirmed them in an extended validation group of 80 people by targeted sequencing. Recurrent mutations were most frequently located in the RNA helicase gene DDX3X (21/105 subjects, 20.0%), tumor suppressors (TP53 and MGA), JAK-STAT-pathway molecules (STAT3 and STAT5B) and epigenetic modifiers (MLL2, ARID1A, EP300 and ASXL3). As compared to wild-type protein, DDX3X mutants exhibited decreased RNA-unwinding activity, loss of suppressive effects on cell-cycle progression in NK cells and transcriptional activation of NF-κB and MAPK pathways. Clinically, patients with DDX3X mutations presented a poor prognosis. Our work thus contributes to the understanding of the disease mechanism of NKTCL. PMID:26192917

  12. Use of domestic detergents in the California mastitis test for high somatic cell counts in milk.

    Science.gov (United States)

    Leach, K A; Green, M J; Breen, J E; Huxley, J N; Macaulay, R; Newton, H T; Bradley, A J

    2008-11-01

    The California mastitis test (CMT) is used on farms to identify subclinical mastitis by an indirect estimation of the somatic cell count (SCC) in milk. Four commercially available detergents were compared with a bespoke cmt fluid for their ability to detect milk samples with a scc above 200,000 cells/ml; differences between the interpretation of the results of the tests by eight operators were also investigated. The sensitivity and specificity of the test were affected by the type of detergent, and by the operators' interpretations. When used by the most sensitive operator, suitably diluted Fairy Liquid performed almost identically to cmt fluid in identifying milk samples with more than 200,000 cells/ml. The average sensitivities achieved by the eight operators for detecting this threshold were 82 per cent for Fairy Liquid and 84 per cent for cmt fluid, and the specificities were 93 and 91 per cent respectively. The other detergents contained less anionic surfactants and were less sensitive but similarly specific. PMID:18997186

  13. Determination of methyl methanesulfonate pretreatment effect in Drosophila melanogaster larvaes upon repair mechanisms in somatic cells

    International Nuclear Information System (INIS)

    To make evident the existence of SOS repair mecanism in somatic cells, larvaes of drosophila melanogaster with MWH markers for females and FLR markers for males were used. This larvaes received a pretreatment with MMS at concentrations of 0.0007% and 0.0014% during 24 hours and latter a treatment with gamma rays at different dosis. SMART program was used to make stastistical evaluations. Small spots were observed which can have two origins. First could be damage in the last part of third stage in which cells are in last divisions and second could be the damage to larvaes in early stages in shich pretreatment with MMS cause lesions which prevent the reproduction of the cells. Also big spots were observed which presence is due to recombination. It was detected than the bigger the concentration of MMS and radiation dose, the bigger the induced damage. In some groups such observation was impossible may be to technical problems as relative humidity, out of phase in the growth of larvaes giving place that treatment were given in three stages. For this reasons it was impossible to discriminate if drosophila melanogaster is wheter or not capable to induce a repair mechanism (Author)

  14. Looking into the Black Box: Insights into the Mechanisms of Somatic Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Wrana

    2011-01-01

    Full Text Available The dramatic discovery that somatic cells could be reprogrammed to induced pluripotent stem cells (iPSCs, by the expression of just four factors, has opened new opportunities for regenerative medicine and novel ways of modeling human diseases. Extensive research over the short time since the first iPSCs were generated has yielded the ability to reprogram various cell types using a diverse range of methods. However the duration, efficiency, and safety of induced reprogramming have remained a persistent limitation to achieving a robust experimental and therapeutic system. The field has worked to resolve these issues through technological advances using non-integrative approaches, factor replacement or complementation with microRNA, shRNA and drugs. Despite these advances, the molecular mechanisms underlying the reprogramming process remain poorly understood. Recently, through the use of inducible secondary reprogramming systems, researchers have now accessed more rigorous mechanistic experiments to decipher this complex process. In this review we will discuss some of the major recent findings in reprogramming, pertaining to proliferation and cellular senescence, epigenetic and chromatin remodeling, and other complex cellular processes such as morphological changes and mesenchymal-to-epithelial transition. We will focus on the implications of this work in the construction of a mechanistic understanding of reprogramming and discuss unexplored areas in this rapidly expanding field.

  15. Conditioned medium from irradiated bovine pulmonary artery endothelial cells stimulates increased protein synthesis by irradiated bovine lung fibroblasts in vitro

    International Nuclear Information System (INIS)

    Pulmonary fibrosis, a potentially fatal consequence of radiation exposure, occurs by unknown mechanisms. The hypothesis that endothelial cells, injured by radiation, could alter the biochemical function of lung fibroblasts, was tested by exposing cultures of bovine pulmonary artery endothelial cells to 0 or 5 Gy radiation and then incubating them in fresh medium for 48 h. This endothelial cell conditioned medium (ECCM) was then applied to irradiated or nonirradiated cultures of bovine lung fibroblasts. Forty-eight hours later the fibroblasts were analyzed for their ability to synthesize DNA and protein. The ECCM from injured cells stimulated fibroblast protein synthesis twofold to threefold in irradiated fibroblasts without increasing DNA synthesis. It also stimulated a significant but less marked increase in protein synthesis in nonirradiated fibroblasts. Two-dimensional gel electrophoresis revealed this increased synthesis to be expressed in less than 10% of the 1100 separable fibroblast proteins. This study shows that endothelial cells injured by radiation produce factors that stimulate injured fibroblasts to markedly increase their synthesis of certain intracellular proteins, while not stimulating fibroblast replication

  16. DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben;

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV), i...

  17. Effects of Histone Deacetylase Inhibitor Oxamflatin on In Vitro Porcine Somatic Cell Nuclear Transfer Embryos

    Science.gov (United States)

    Hou, Liming; Ma, Fanhua; Yang, Jinzeng; Riaz, Hasan; Wang, Yongliang; Wu, Wangjun; Xia, Xiaoliang; Ma, Zhiyuan; Zhou, Ying; Zhang, Lin; Ying, Wenqin; Xu, Dequan; Zuo, Bo; Ren, Zhuqing

    2014-01-01

    Abstract Low cloning efficiency is considered to be caused by the incomplete or aberrant epigenetic reprogramming of differentiated donor cells in somatic cell nuclear transfer (SCNT) embryos. Oxamflatin, a novel class of histone deacetylase inhibitor (HDACi), has been found to improve the in vitro and full-term developmental potential of SCNT embryos. In the present study, we studied the effects of oxamflatin treatment on in vitro porcine SCNT embryos. Our results indicated that the rate of in vitro blastocyst formation of SCNT embryos treated with 1 μM oxamflatin for 15 h postactivation was significantly higher than all other treatments. Treatment of oxamflatin decreased the relative histone deacetylase (HDAC) activity in cloned embryos and resulted in hyperacetylation levels of histone H3 at lysine 9 (AcH3K9) and histone H4 at lysine 5 (AcH4K5) at pronuclear, two-cell, and four-cell stages partly through downregulating HDAC1. The suppression of HDAC6 through oxamflatin increased the nonhistone acetylation level of α-tubulin during the mitotic cell cycle of early SCNT embryos. In addition, we demonstrated that oxamflatin downregulated DNA methyltransferase 1 (DNMT1) expression and global DNA methylation level (5-methylcytosine) in two-cell-stage porcine SCNT embryos. The pluripotency-related gene POU5F1 was found to be upregulated in the oxamflatin-treated group with a decreased DNA methylation tendency in its promoter regions. Treatment of oxamflatin did not change the locus-specific DNA methylation levels of Sus scrofa heterochromatic satellite DNA sequences at the blastocyst stage. Meanwhile, our findings suggest that treatment with HDACi may contribute to maintaining the stable status of cytoskeleton-associated elements, such as acetylated α-tubulin, which may be the crucial determinants of donor nuclear reprogramming in early SCNT embryos. In summary, oxamflatin treatment improves the developmental potential of porcine SCNT embryos in vitro. PMID

  18. Outer Hair Cell Somatic Electromotility In Vivo and Power Transfer to the Organ of Corti

    OpenAIRE

    Ramamoorthy, Sripriya; Nuttall, Alfred L.

    2012-01-01

    The active amplification of sound-induced vibrations in the cochlea, known to be crucial for auditory sensitivity and frequency selectivity, is not well understood. The outer hair cell (OHC) somatic electromotility is a potential mechanism for such amplification. Its effectiveness in vivo is putatively limited by the electrical low-pass filtering of the cell's transmembrane potential. However, the transmembrane potential is an incomplete metric. We propose and estimate two metrics to evaluate...

  19. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer

    OpenAIRE

    Kimiko Inoue; Mami Oikawa; Satoshi Kamimura; Narumi Ogonuki; Toshinobu Nakamura; Toru Nakano; Kuniya Abe; Atsuo Ogura

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor t...

  20. Loss of Wild-Type ATRX Expression in Somatic Cell Hybrids Segregates with Activation of Alternative Lengthening of Telomeres

    OpenAIRE

    Kylie Bower; Napier, Christine E.; Cole, Sara L.; Dagg, Rebecca A.; Lau, Loretta M. S.; Duncan, Emma L; Moy, Elsa L.; Reddel, Roger R

    2012-01-01

    Alternative Lengthening of Telomeres (ALT) is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repr...

  1. Proliferation of germ cells and somatic cells in first trimester human embryonic gonads as indicated by S and S+G2+M phase fractions

    DEFF Research Database (Denmark)

    Sørensen, K P; Lutterodt, M C; Mamsen, L S;

    2011-01-01

    The number of germ cells and somatic cells in human embryonic and foetal gonads has previously been estimated by stereological methods, which are time- and labour-consuming with little information concerning cell proliferation. Here, we studied whether flow cytometry could be applied as an easier...... method, also enabling estimation of the fraction of cells in S or S+G(2)+M (SG(2) M) cell-cycle phases as indicators of cell proliferation....

  2. Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Tasca Christian

    2011-04-01

    Full Text Available Abstract Background The existence of a genetic basis for host responses to bacterial intramammary infections has been widely documented, but the underlying mechanisms and the genes are still largely unknown. Previously, two divergent lines of sheep selected for high/low milk somatic cell scores have been shown to be respectively susceptible and resistant to intramammary infections by Staphylococcus spp. Transcriptional profiling with an 15K ovine-specific microarray of the milk somatic cells of susceptible and resistant sheep infected successively by S. epidermidis and S. aureus was performed in order to enhance our understanding of the molecular and cellular events associated with mastitis resistance. Results The bacteriological titre was lower in the resistant than in the susceptible animals in the 48 hours following inoculation, although milk somatic cell concentration was similar. Gene expression was analysed in milk somatic cells, mainly represented by neutrophils, collected 12 hours post-challenge. A high number of differentially expressed genes between the two challenges indicated that more T cells are recruited upon inoculation by S. aureus than S. epidermidis. A total of 52 genes were significantly differentially expressed between the resistant and susceptible animals. Further Gene Ontology analysis indicated that differentially expressed genes were associated with immune and inflammatory responses, leukocyte adhesion, cell migration, and signal transduction. Close biological relationships could be established between most genes using gene network analysis. Furthermore, gene expression suggests that the cell turn-over, as a consequence of apoptosis/granulopoiesis, may be enhanced in the resistant line when compared to the susceptible line. Conclusions Gene profiling in resistant and susceptible lines has provided good candidates for mapping the biological pathways and genes underlying genetically determined resistance and susceptibility

  3. Rex Rabbit Somatic Cell Nuclear Transfer with In Vitro-Matured Oocytes.

    Science.gov (United States)

    Liu, Yong; Wang, Huili; Lu, Jinhua; Miao, Yiliang; Cao, Xinyan; Zhang, Ling; Wu, Xiaoqing; Wu, Fengrui; Ding, Biao; Wang, Rong; Luo, Mingjiu; Li, Wenyong; Tan, Jinghe

    2016-06-01

    Somatic cell nuclear transfer (SCNT) requires large numbers of matured oocytes. In vitro-matured (IVM) oocytes have been used in SCNT in many animals. We investigated the use of IVM oocytes in Rex rabbit SCNT using Rex rabbit ovaries obtained from a local abattoir. The meiotic ability of oocytes isolated from follicles of different diameters was studied. Rex rabbit SCNT was optimized for denucleation, activation, and donor cell synchronization. Rex rabbit oocytes grew to the largest diameter (110 μm) when the follicle diameter was 1.0 mm. Oocytes isolated from 0.7-mm follicles acquired maturation ability. More than 90% of these oocytes matured after IVC for 18 h. The developmental potential of oocytes isolated from >1-mm follicles was greater than that of oocytes isolated from 0.7- to 1.0-mm follicles. The highest activation rates for IVM Rex rabbit oocytes were seen after treatment with 2.5 μM ionomycin for 5 min followed by 2 mM 6-dimethylaminopurine (6-DMAP) and 5 μg/mL cycloheximide (CHX) for 1 h. Ionomycin induced the chromatin of IVM oocytes to protrude from the oocyte surface, promoting denucleation. Fetal fibroblast cells (FFCs) and cumulus cells (CCs) were more suitable for Rex rabbit SCNT than skin fibroblast cells (SFCs) (blastocyst rate was 35.6 ± 2.2% and 38.0 ± 6.0% vs. 19.7 ± 3.1%). The best fusion condition was a 2DC interval for 1 sec, 1.6 kV/cm voltages, and 40 μsec duration in 0.28 M mannitol. In conclusion, the in vitro maturation of Rex rabbit oocytes and SCNT procedures were studied systematically and optimized in this study. PMID:27159389

  4. Cytogenetic effects of leachates from tannery solid waste on the somatic cells of Vicia faba.

    Science.gov (United States)

    Chandra, Saurabh; Chauhan, L K S; Pande, P N; Gupta, S K

    2004-04-01

    The contamination of surface- and groundwater by the leaching of solid wastes generated by industrial activities as a result of water runoff and rainfall is a matter of great concern. The leachates from tannery solid waste (TSW), a major environmental pollutant, were examined for their possible genotoxic effects on the somatic cells of Vicia faba. Leachates were prepared from solid wastes procured from leather-tanning industrial sites, and V. faba seedlings were exposed to three test concentrations, 2.5%, 5%, and 10%, through soil and aqueous media for 5 days. The root tips examined for cytogenetic damage revealed that leachate of TSW significantly inhibited the mitotic index and induced significantly frequent chromosomal and mitotic aberrations (CA/MA) in a dose-dependent manner. The chemical analysis of TSW samples revealed that the chief constituents were chromium and nickel, which may cause genetic abnormalities. The frequency of aberrations was found to be higher in the root meristematic cells of Vicia faba exposed through the aqueous medium than those exposed through the soil medium. The results of the present study indicated that contamination of potable water bodies by leachates of TSW may cause genotoxicity. For the biomonitoring of complex mixtures of toxicants with the V. faba bioassay, the use of the aqueous medium seems to be a more promising method than the use of the soil medium. PMID:15037999

  5. Dairy Herd Mastitis Program in Argentina: Farm Clusters and Effects on Bulk Milk Somatic Cell Counts

    Directory of Open Access Journals (Sweden)

    C Vissio1*, SA Dieser2, CG Raspanti2, JA Giraudo1, CI Bogni2, LM Odierno2 and AJ Larriestra1

    2013-01-01

    Full Text Available This research has been conducted to characterize dairy farm clusters according to mastitis control program practiced among small and medium dairy producer from Argentina, and also to evaluate the effect of such farm cluster patterns on bulk milk somatic cell count (BMSCC. Two samples of 51 (cross-sectional and 38 (longitudinal herds were selected to identify farm clusters and study the influence of management on monthly BMSCC, respectively. The cross-sectional sample involved the milking routine and facilities assessment of each herd visited. Hierarchical cluster analysis was used to find the most discriminating farm attributes in the cross sectional sample. Afterward, the herd cluster typologies were identified in the longitudinal sample. Herd monthly BMSCC average was evaluated during 12 months fitting a linear mixed model. Two clusters were identified, the farms in the Cluster I applied a comprehensive mastitis program in opposite to Cluster II. Post-dipping, dry cow therapy and milking machine test were routinely applied in Cluster I. In the longitudinal study, 14 out of 38 dairy herds were labeled as Cluster I and the rest were assigned to Cluster II. Significant difference in BMSCC was found between cluster I and II (60,000 cells/mL. The present study showed the relevance and potential impact of promoting mastitis control practices among small and medium sized dairy producers in Argentina.

  6. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells.

    Science.gov (United States)

    Chandrakanthan, Vashe; Yeola, Avani; Kwan, Jair C; Oliver, Rema A; Qiao, Qiao; Kang, Young Chan; Zarzour, Peter; Beck, Dominik; Boelen, Lies; Unnikrishnan, Ashwin; Villanueva, Jeanette E; Nunez, Andrea C; Knezevic, Kathy; Palu, Cintia; Nasrallah, Rabab; Carnell, Michael; Macmillan, Alex; Whan, Renee; Yu, Yan; Hardy, Philip; Grey, Shane T; Gladbach, Amadeus; Delerue, Fabien; Ittner, Lars; Mobbs, Ralph; Walkley, Carl R; Purton, Louise E; Ward, Robyn L; Wong, Jason W H; Hesson, Luke B; Walsh, William; Pimanda, John E

    2016-04-19

    Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor-AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration. PMID:27044077

  7. An Epigenetic Modifier Results in Improved In Vitro Blastocyst production after Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Zhang, Yunhai; Li, Juan; Villemoes, Klaus; Pedersen, Anette Møjbæk; Purup, Stig; Vajta, Gabor

    2007-01-01

    significantly improve blastocyst yield compared to the control (46.4 ± 4.6% vs 17.7 ± 4.9% for treated and untreated embryos, respectively; p < 0.05), whereas similar cleavage rate and total cell number per blastocyst were observed. In order to assess if the improvement is cell line specific, three cell lines...... were tested, and for all cell lines an enhancement in blastocyst development compared to their corresponding control was observed. Our data demonstrate that TSA treatment after somatic cell nuclear transfer in the pig can significantly improve the in vitro blastocyst production...

  8. Resistance to penicillin of Staphylococcus aureus isolates from cows with high somatic cell counts in organic and conventional dairy herds in Denmark

    Directory of Open Access Journals (Sweden)

    Vaarst Mette

    2006-11-01

    Full Text Available Abstract Background Quarter milk samples from cows with high risk of intramammary infection were examined to determine the prevalence of Staphylococcus aureus (SA and penicillin resistant SA (SAr in conventional and organic dairy herds and herds converting to organic farming in a combined longitudinal and cross-sectional study. Methods 20 conventional herds, 18 organic herds that converted before 1995, and 19 herds converting to organic farming in 1999 or 2000 were included in the study. Herds converting to organic farming were sampled three times one year apart; the other herds were sampled once. Risk of infection was estimated based on somatic cell count, milk production, breed, age and lactation stage. Results The high-risk cows represented about 49 % of the cows in the herds. The overall prevalence of SA and SAr among these cows was 29% (95% confidence interval: 24%–34% and 4% (95% confidence interval: 2%–5% respectively. The prevalence of penicillin resistance among SA infected cows was 12% (95% confidence interval: 6%–19% when calculated from the first herd visits. No statistically significant differences were observed in the prevalence of SAr or the proportion of isolates resistant to penicillin between herd groups. Conclusion The proportion of isolates resistant to penicillin was low compared to studies in other countries except Norway and Sweden. Based on the low prevalence of penicillin resistance of SA, penicillin should still be the first choice of antimicrobial agent for treatment of bovine intramammary infection in Denmark.

  9. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells.

    OpenAIRE

    Oprian, D D; Molday, R S; Kaufman, R. J.; Khorana, H G

    1987-01-01

    We report here the high-level expression of a synthetic gene for bovine rhodopsin in transfected monkey kidney COS-1 cells. Rhodopsin is produced in these cells to a level of 0.3% of the cell protein, and it binds exogenously added 11-cis-retinal to generate the characteristic rhodopsin absorption spectrum. We describe a one-step immunoaffinity procedure for purification of the rhodopsin essentially to homogeneity. The COS-1 cell rhodopsin activates the GTPase activity of bovine transducin in...

  10. Species distribution and resistance profiles of coagulase-negative staphylococci isolated from bovine mastitis in Switzerland

    OpenAIRE

    Moser, A.; Stephan, R.; DE ZIEGLER, D.; Johler, S.

    2013-01-01

    Coagulase-negative staphylococci (CNS) are the predominant cause of bovine intra-mammary infections. They can lead to chronic infections and were reported to significantly increase milk somatic cell counts. The goal of our study was to determine the species distribution and antimicrobial susceptibility profiles of CNS in bovine mastitis milk samples in Switzerland. Between March 2011 and February 2012, a total of 120 CNS were isolated from mastitis milk samples from 117 different animals at 7...

  11. A novel somatic MAPK1 mutation in primary ovarian mixed germ cell tumors.

    Science.gov (United States)

    Zou, Yang; Deng, Wei; Wang, Feng; Yu, Xiao-Hong; Liu, Fa-Ying; Yang, Bi-Cheng; Huang, Mei-Zhen; Guo, Jiu-Bai; Xie, Qiu-Hua; He, Ming; Huang, Ou-Ping

    2016-02-01

    A recent exome-sequencing study revealed prevalent mitogen-activated protein kinase 1 (MAPK1) p.E322K mutation in cervical carcinoma. It remains largely unknown whether ovarian carcinomas also harbor MAPK1 mutations. As paralogous gene mutations co‑occur frequently in human malignancies, we analyzed here a total of 263 ovarian carcinomas for the presence of MAPK1 and paralogous MAPK3 mutations by DNA sequencing. A previously unreported MAPK1 p.D321N somatic mutation was identified in 2 out of 18 (11.1%) ovarian mixed germ cell tumors, while no other MAPK1 or MAPK3 mutation was detected in our samples. Of note, OCC‑115, the MAPK1‑mutated sample with bilateral cancerous ovaries affected, harbored MAPK1 mutation in the right ovary while retained the left ovary intact, implicating that the genetic alterations underlying ovarian mixed germ cell tumor may be different, even in patients with similar genetic backgrounds and tumor microenvironments. The results of evolutionary conservation and protein structure modeling analysis implicated that MAPK1 p.D321N mutation may be pathogenic. Additionally, mutations in protein phosphatase 2 regulatory subunit α (PPP2R1A), ring finger protein 43 (RNF43), DNA directed polymerase ε (POLE1), ribonuclease type III (DICER1), CCCTC‑binding factor (CTCF), ribosomal protein L22 (RPL22), DNA methyltransferase 3α (DNMT3A), transformation/transcription domain‑associated protein (TRRAP), isocitrate dehydrogenase (IDH)1 and IDH2 were not detected in ovarian mixed germ cell tumors, implicating these genetic alterations may be not associated with MAPK1 mutation in the development of this malignancy. The present study identified a previously unreported MAPK1 mutation in ovarian mixed germ cell tumors for the first time, and this mutation may be actively involved in the tumorigenesis of this disease. PMID:26548627

  12. Cell-Specific mRNA Profiling of the Caenorhabditis elegans Somatic Gonadal Precursor Cells Identifies Suites of Sex-Biased and Gonad-Enriched Transcripts.

    Science.gov (United States)

    Kroetz, Mary B; Zarkower, David

    2015-12-01

    The Caenorhabditis elegans somatic gonad differs greatly between the two sexes in its pattern of cell divisions, migration, and differentiation. Despite decades of study, the genetic pathways directing early gonadal development and establishing sexual dimorphism in the gonad remain largely unknown. To help define the genetic networks that regulate gonadal development, we employed cell-specific RNA-seq. We identified transcripts present in the somatic gonadal precursor cells and their daughter cells of each sex at the onset of sexual differentiation. We identified several hundred gonad-enriched transcripts, including the majority of known regulators of early gonadal development, and transgenic reporter analysis confirmed the effectiveness of this approach. Before the division of the somatic gonad precursors, few sex-biased gonadal transcripts were detectable; less than 6 hr later, after their division, we identified more than 250 sex-biased transcripts, of which about a third were enriched in the somatic gonad compared to the whole animal. This indicates that a robust sex-biased developmental program, some of it gonad-specific, initiates in the somatic gonadal precursor cells around the time of their first division. About 10% of male-biased transcripts had orthologs with male-biased expression in the early mouse gonad, suggesting possible conservation of gonad sex differentiation. Cell-specific analysis also identified approximately 70 previously unannotated mRNA isoforms that are enriched in the somatic gonad. Our data illustrate the power of cell-specific transcriptome analysis and suggest that early sex differentiation in the gonad is controlled by a relatively small suite of differentially expressed genes, even after dimorphism has become apparent. PMID:26497144

  13. Regulatory Effect of Dexamethasone on Aquaporin-1 Expression in Cultured Bovine Trabecular Meshwork Cells

    Institute of Scientific and Technical Information of China (English)

    XIONG Xinchun; MIAO Juan; XI Zulian; ZHANG Haijiang; HAN Bo; HU Yizhen

    2005-01-01

    To evaluate the effect of dexamethasone on the expression of aquaporin-1 (AQP-1) in cultured bovine trabecular meshwork cells, bovine trabecular meshwork cells were cultured in vitro and reproduced to the third and the fourth generation, then treated with dexamethasone at the concentrations of 5, 25, 50, 250 μg/L respectively for 7 days. Immunohistochemical technique-supervision method was employed to measure, and image analysis system to analyze the expression of AQP-1 in normal cultured bovine trabecular meshwork cells and those treated with dexamethasone.In normal bovine trabecular meshwork cells, the grayscale of AQP-1 positive staining was 167.94±1.18, while it was 168.92±0.91, 176.72±1.80, 180.64±1.31, 185.64±1.58 in cells treated with 5, 25, 50, 250 tg/L concentrations of dexamethasone. When the concentration of dexamethasone was higher than 25 μg/L, the expression of AQP-1 was significantly inhibited (P<0.05).The regulation of AQP-1 expression by dexamethasone in cultured bovine trabecular meshwork cells in vitro may be one of causes that retard the aqueous outflow in glucocorticoid induced glaucoma.

  14. The Drosophila BCL6 homolog Ken and Barbie promotes somatic stem cell self-renewal in the testis niche.

    Science.gov (United States)

    Issigonis, Melanie; Matunis, Erika

    2012-08-15

    Stem cells sustain tissue regeneration by their remarkable ability to replenish the stem cell pool and to generate differentiating progeny. Signals from local microenvironments, or niches, control stem cell behavior. In the Drosophila testis, a group of somatic support cells called the hub creates a stem cell niche by locally activating the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in two adjacent types of stem cells: germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Here, we find that ken and barbie (ken) is autonomously required for the self-renewal of CySCs but not GSCs. Furthermore, Ken misexpression in the CySC lineage induces the cell-autonomous self-renewal of somatic cells as well as the nonautonomous self-renewal of germ cells outside the niche. Thus, Ken, like Stat92E and its targets ZFH1 (Leatherman and Dinardo, 2008) and Chinmo (Flaherty et al., 2010), is necessary and sufficient for CySC renewal. However, ken is not a JAK-STAT target in the testis, but instead acts in parallel to Stat92E to ensure CySC self-renewal. Ken represses a subset of Stat92E targets in the embryo (Arbouzova et al., 2006) suggesting that Ken maintains CySCs by repressing differentiation factors. In support of this hypothesis, we find that the global JAK-STAT inhibitor Protein tyrosine phosphatase 61F (Ptp61F) is a JAK-STAT target in the testis that is repressed by Ken. Together, our work demonstrates that Ken has an important role in the inhibition of CySC differentiation. Studies of ken may inform our understanding of its vertebrate orthologue B-Cell Lymphoma 6 (BCL6) and how misregulation of this oncogene leads to human lymphomas. PMID:22580161

  15. Meiotic Recombination in Somatic Cell Nuclear Transfer Bulls and Their Offspring

    Science.gov (United States)

    In mammals, homologous chromosome pairing and recombination are essential events for meiosis. The generation of reciprocal exchanges of genetic material ensure both genetic diversity and the proper segregation of homologous chromosomes. With the advent of reproductive biotechnologies such as somat...

  16. TCPs, WUSs, and WINDs: Families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation

    Directory of Open Access Journals (Sweden)

    Miho eIkeda

    2014-09-01

    Full Text Available In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP, WUSCHEL (WUS, and WOUND INDUCED DEDIFFERENTIATION (WIND1 families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.

  17. A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics.

    Science.gov (United States)

    Yerle, M; Echard, G; Robic, A; Mairal, A; Dubut-Fontana, C; Riquet, J; Pinton, P; Milan, D; Lahbib-Mansais, Y; Gellin, J

    1996-01-01

    A panel of 27 pig x rodent somatic cell hybrids was produced and characterized cytogenetically. The first step of this study consisted of hybridizing a SINE probe to GTG-banded metaphases of each hybrid clone in order to count and identify the normal pig chromosomes and to detect rearranged ones. The second step consisted of using the DNA of each clone as a probe after pIRS-PCR (porcine interspersed repetitive sequence-polymerase chain reaction) amplification to highly enrich it in pig sequences. These probes, hybridized to normal pig metaphase chromosomes, enabled the identification of the complete porcine complement in the hybrid lines. Whole chromosomes and fragments were characterized quickly and precisely, and results were compared. In addition to this cytogenetic characterization, molecular verification was also carried out by using primers specific to six microsatellites and to one gene previously mapped to pig chromosomes. The results obtained allow us to conclude that we have produced a panel that is informative for all porcine chromosomes. This panel constitutes a highly efficient tool to establish not only assignments of genes and markers but also regional localizations on pig chromosomes. PMID:8697807

  18. Comparing milk yield, chemical properties and somatic cell count from organic and conventional mountain farming systems

    Directory of Open Access Journals (Sweden)

    Marcello Bianchi

    2010-01-01

    Full Text Available A study was undertaken to investigate the effects of farming systems (organic vs. conventional, diet (hay/concentrate vs. pasture and their interaction on milk yield, gross composition and fatty acid (FA profile of dairy cows bred in mountainous areas. For this purpose four dairy farms (two organic and two conventional were chosen in the alpine territory of Aosta Valley (NW Italy; individual milk yield was recorded daily and bulk milk samples were collected monthly from February to September 2007 to cover dietary variations. Higher levels of milk production (P<0.05 and lower milk protein amounts (P<0.01 were observed in the organic farms with respect to the conventional ones, while no significant differences were noticed in milk fat and lactose contents and in somatic cell count. Concerning fatty acids, only small differences were detected between organic and conventional milk and such differences seemed to be related mainly to the stabled period. Diet affected almost all variables studied: pasture feeding provided a significant improvement in the fatty acid composition in both organic and conventional systems leading to lower hypercholesterolemic saturated fatty acids, higher mono- and polyunsaturated fatty acids and conjugated linoleic acid amounts (P<0.001.

  19. Effect of somatic cell count and lactation stage on sheep milk quality

    Directory of Open Access Journals (Sweden)

    Emilia Duranti

    2010-01-01

    Full Text Available In order to evaluate the effects of mammary health status and lactation phase on the qualitative parameters of ovinemilk, 213 individual milk samples were repeatedly collected from 40 primiparous Sarda ewes on a monthly basis. Yield,physico-chemical characteristics, casein fractions quantitative distribution, somatic cell count (SCC, cheese making propertiesand plasmin-plasminogen activity were determined on each sample. Repeated individual milk SCC were used as amarker of udder health status, allowing the definition of three classes: “Healthy” (H, “Infected” (I or “Doubtful” (D.Samples were grouped into 4 classes of days in milk (DIM. To evaluate the influence of mammary health status andphase of lactation, a mixed model was performed using the ewe as random effect. Milk physico-chemical parameters wereinfluenced both by the udder health status and by lactation phase. In particular, the udder health status adversely affectedαs1 and β1-casein fractions (Pand 64.60% in “H”, “D” and “I,” respectively. Lactation phase influenced the overall milk composition and technologicalcharacteristics. Plasmin activity was higher in the “I” group than in the others (16.1 vs 11.8 and 11.2 U/ml; Pit significantly (Pexert a detrimental effect on milk quality since they enhance its endogenous proteolytic activity.

  20. Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT)

    International Nuclear Information System (INIS)

    Highlights: ► We success serial SCNT through the third generation using pig fibroblasts. ► Donor-specific mtDNA in the recloned pigs was detected. ► SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A→T), 16062 (T→C), and 16135 (G→A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor’s mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.

  1. Cloned pigs derived from somatic cell nuclear transfer embryos cultured in vitro at low oxygen tension

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Pig cloning has great potential to human xenotransplantation. The present study was designed to establish a more efficient system for producing cloned pigs by somatic cell nuclear transfer (SCNT). Our approach was as follows: SCNT embryos were reconstructed by using fetal fibroblasts of Chinese miniature pig as donors and in vitro matured oocytes of prepubertal gilts as recipients. Reconstructed embryos were induced by electrical fusion/activation and cultured in BSA-containing North Carolina State University 23 medium (NCSU-23) or Porcine Zygote Medium (PZM-3) at the gas condition of 5% CO2, 7% O2, 88% N2. A total of 230 cloned embryos were transferred to three surrogate sows, producing three piglets. One of them is apparently healthy. The clonal provenance of the piglet was indicated by its coat color and confirmed by DNA microsatellite analysis. These results indicate that the use of in vitro matured oocytes from prepubertal gilts as recipient, combined with cloned embryos cultured at low oxygen tension is an effective way to produce cloned pigs.

  2. Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minhwa; Jang, Won-Gu; Hwang, Jeong Hee; Jang, Hoon; Kim, Eun-Jung; Jeong, Eun-Jeong [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of); Shim, Hosup [Department of Physiology, Dankook University School of Medicine, Cheonan 330 714 (Korea, Republic of); Hwang, Sung Soo; Oh, Keon Bong; Byun, Sung June [Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon (Korea, Republic of); Kim, Jin-Hoi [Department of Animal Biotechnology, Konkuk University, Seoul 143 701 (Korea, Republic of); Lee, Jeong Woong, E-mail: jwlee@kribb.re.kr [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer We success serial SCNT through the third generation using pig fibroblasts. Black-Right-Pointing-Pointer Donor-specific mtDNA in the recloned pigs was detected. Black-Right-Pointing-Pointer SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A{yields}T), 16062 (T{yields}C), and 16135 (G{yields}A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.

  3. Post-milking teat dip use in dairy herds with high or low somatic cell counts.

    Science.gov (United States)

    Erskine, R J; Eberhart, R J

    1991-12-15

    Milk samples for bacteriologic culture were submitted from 71 dairy herds, 24 with low somatic cell count (SCC) and 47 with high SCC and high prevalence of subclinical mastitis. At the time of sample submission to the Mastitis Diagnostic Laboratory of Pennsylvania State University, information regarding the herd mastitis control practices was collected. A combined program of post-milking teat dipping (PMTD) and antibiotic treatment of all cows at the start of the nonlactating period was practiced more frequently for herds with low SCC, (P less than 0.001) than for herds with high SCC. Among all herds for which PMTD was practiced, a higher proportion (P less than 0.001) of those for which chlorhexidine-based products were used had low SCC than high SCC. Conversely, a higher proportion of herds for which a dip with an acrylic latex barrier was used had high SCC rather than low SCC (P = 0.002). For herds with high prevalence of subclinical mastitis, and despite a program of PMTD and treatment of all cows at the start of the nonlactating period, a change to a different germicidal teat dip product may be indicated to help reduce prevalence of infection. PMID:1813466

  4. Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells.

    Science.gov (United States)

    Chen, Shaopeng; Qiu, Junkang; Chen, Chuan; Liu, Chunchun; Liu, Yuheng; An, Lili; Jia, Junying; Tang, Jie; Wu, Lijun; Hang, Haiying

    2012-06-01

    Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-α scFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient. PMID:22467272

  5. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Pang, Daxin, E-mail: pdx@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Ouyang, Hongsheng, E-mail: ouyh@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China)

    2011-07-29

    Highlights: {yields} Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. {yields} The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. {yields} A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 {mu}g/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  6. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Highlights: → Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. → The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. → A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 μg/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  7. Rapamycin treatment during in vitro maturation of oocytes improves embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs

    OpenAIRE

    Lee, Joohyeong; Park, Jong-Im; Yun, Jung Im; LEE, YONGJIN; Yong, Hwanyul; Lee, Seung Tae; Park, Choon-Keun; Hyun, Sang-Hwan; Lee, Geun-Shik; Lee, Eunsong

    2015-01-01

    This study was conducted to investigate the effects of rapamycin treatment during in vitro maturation (IVM) on oocyte maturation and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Morphologically good (MGCOCs) and poor oocytes (MPCOCs) were untreated or treated with 1 nM rapamycin during 0-22 h, 22-42 h, or 0-42 h of IVM. Rapamycin had no significant effects on nuclear maturation and blastocyst formation after PA of MGCOCs. Blasto...

  8. Efficiency of somatic cell count and california mastitis test in the diagnosis of subclinical mastitis in terrincha ewes

    OpenAIRE

    Mendonça, Álvaro; Machado, M.; Tavares, A.; Quintas, Hélder; Valentim, Ramiro; Maurício, Raimundo; Cardoso, Manuel

    2012-01-01

    This study aimed to compare the efficiency of microbiological test with Californian Mastitis Test and somatic cell count in the diagnosis of Subclinical Mastitis (SM) in Terrincha sheep. Twenty-seven of a flock of about 200 Terrincha ewes (local breed) were studied for a period of 9 weeks (n > 497 samples). Milk samples were aseptically collected from each half udder once a week. At the same time, another sampled was collected from the bulk tank. After being transported to Lab under refrigera...

  9. STUDY REGARDING THE INFLUENCE OF SEASON AND LACTATION ORDER ON MILK YIELD, MAJOR COMPONENTS AND SOMATIC CELL COUNT OF MILK

    OpenAIRE

    S. ACATINCĂI; ADELA MARCU; L.T. CZISZTER; SIMONA BAUL; ANDREEA FERENCZ; D. GĂVOJDEAN

    2013-01-01

    The effects of lactation order and season on the milk production, chemical compositionand somatic cell number during a normal lactation (305 days) were studied. Researcheswere carried out on Romanian Black and White cows from the Didactical StationTimişoara. Cows calved in autumn and finished their lactation by the end of the nextyear. Milk production increased progressively in the second and third lactation, thusfat, protein and lactose yields increased, too. During the warm season (April-Se...

  10. Effect of fetal bovine serum in culture media on MS analysis of mesenchymal stromal cells secretome

    Directory of Open Access Journals (Sweden)

    Simona Nonnis

    2016-03-01

    Full Text Available The analysis of mesenchymal stromal cells secretome is fundamental to identify key players of processes involving these cells. Truly secreted proteins may be difficult to detect in MS based analysis of conditioned media (CM due to proteins supplemented with fetal bovine serum (FBS. We compared different growth conditions to determine the effect of varying FBS concentration on the number and quantity of truly secreted human proteins vs contaminating bovine proteins. The results suggest that to minimize interference cells should be grown in presence of FBS until confluence and transferred into a serum-free medium prior to secretome collection.

  11. Alternative splicing regulated by butyrate in bovine epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sitao Wu

    Full Text Available As a signaling molecule and an inhibitor of histone deacetylases (HDACs, butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT and control (CT groups. 201,326 potential splicing junctions detected were supported by ≥ 3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG while ~3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001 at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor and Exon#11 (Acceptor in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC

  12. A conditional Orco requirement in the somatic cyst cells for maintaining spermatids in a tight bundle in Drosophila testis

    Indian Academy of Sciences (India)

    Pankaj Dubey; Prakash Joti; Krishanu Ray

    2016-06-01

    Odorant receptors (OR) heterodimerizes with the OR co-receptor (Orco), forming specific odorant-gated cation channels, which are key to odor reception at the olfactory sensory neurons (OSN). Mammalian ORs are expressed in many other tissues, including testis. However, their biological implications are yet to be fully ascertained. In the mosquito, Orco is localized along the sperm tail and is indicated to maintain fidelity. Here, we show that orco expresses in Drosophila testis. The levels are higher in the somatic cyst cells. The orco-null mutants are perfectly fertile at 25°C. At 28°C, the coiled spermatid bundles are severely disrupted. The loss of Orco also disrupts the actin cap, which forms inside the head cyst cell at the rostral ends of the spermatid nuclei after coiling, and plays a key role in preventing the abnormal release of spermatids from the cyst enclosure. Both the defects are rescued by the somatic cyst cell-specific expression of the UAS-orco transgene. These results highlight a novel role of Orco in the somatic tissue during sperm release.

  13. Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes.

    Science.gov (United States)

    Astolfi, P A; Salamini, F; Sgaramella, V

    2010-09-01

    Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans', could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the "nature vs nurture" dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes "completed" so far. They may compound the variations associated to our epigenomes and make of each of us an "(epi)genomic" mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments. PMID:21358981

  14. A role for XLF in DNA repair and recombination in human somatic cells.

    Science.gov (United States)

    Fattah, Farjana Jahan; Kweon, Junghun; Wang, Yongbao; Lee, Eu Han; Kan, Yinan; Lichter, Natalie; Weisensel, Natalie; Hendrickson, Eric A

    2014-03-01

    Classic non-homologous end-joining (C-NHEJ) is required for the repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian cells and plays a critical role in lymphoid V(D)J recombination. A core C-NHEJ component is the DNA ligase IV co-factor, Cernunnos/XLF (hereafter XLF). In patients, mutations in XLF cause predicted increases in radiosensitivity and deficits in immune function, but also cause other less well-understood pathologies including neural disorders. To characterize XLF function(s) in a defined genetic system, we used a recombinant adeno-associated virus-mediated gene targeting strategy to inactivate both copies of the XLF locus in the human HCT116 cell line. Analyses of XLF-null cells (which were viable) showed that they were highly sensitive to ionizing radiation and a radiomimetic DNA damaging agent, etoposide. XLF-null cells had profound DNA DSB repair defects as measured by in vivo plasmid end-joining assays and were also dramatically impaired in their ability to form either V(D)J coding or signal joints on extrachromosomal substrates. Thus, our somatic XLF-null cell line recapitulates many of the phenotypes expected from XLF patient cell lines. Subsequent structure:function experiments utilizing the expression of wild-type and mutant XLF cDNAs demonstrated that all of the phenotypes of an XLF deficiency could be rescued by the overexpression of a wild-type XLF cDNA. Unexpectedly, mutant forms of XLF bearing point mutations at amino acid positions L115 and L179, also completely complemented the null phenotype suggesting, in contrast to predictions to the contrary, that these mutations do not abrogate XLF function. Finally, we demonstrate that the absence of XLF causes a small, but significant, increase in homologous recombination, implicating XLF in DSB pathway choice regulation. We conclude that human XLF is a non-essential, but critical, C-NHEJ-repair factor. PMID:24461734

  15. Persistent chromosome aberrations in the somatic cells of A-bomb survivors, Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Current status of knowledge on the radiation-induced chromosome aberrations persisting since their induction in 1945 to date in the somatic cells of A-bomb survivors in Hiroshima and Nagasaki is reviewed. Dose-response relationship for chromosome aberration frequencies observed with the use of the old A-bomb dosimetry system (T65D) is also demonstrable based on the new dosimetry system (DS86). Despite the fact that the remarkable decrease in the amount of neutron component relative to the total dose in Hiroshima, there still exist inter-city differences in aberration frequency per unit dose both for kerma and bone marrow dose; the dose-square term is smaller in Hiroshima than in Nagasaki. The differential contribution of neutron radiation may be responsible in some part for the observed difference between Hiroshima and Nagasaki, although proof still remains to be obtained. There is a wide variability of the frequency of cells with chromosome aberrations between survivors within a given dose range. Random errors in the dose estimates assigned to individual survivors seem responsible, to a large extent, for the observed overdispersions in aberration frequencies in both cities. New molecular biology-oriented techniques to differentially stain specific chromosomes using fluorescence in situ hybridization with chromosome-specific composite DNA probes seem extremely promising for future rapid, accurate and extensive screening of reciprocal translocations observed predominantly in A-bomb survivors. Such data may be utilized to establish a better biological dosimetry system, especially for those persons who are irradiated in vivo many years before cytogenetic examinations. (author)

  16. Economic consequences of mastitis and withdrawal of milk with high somatic cell count in Swedish dairy herds

    DEFF Research Database (Denmark)

    Nielsen, C; Østergaard, Søren; Emanuelson, U;

    2010-01-01

    The main aim was to assess the impact of mastitis on technical and economic results of a dairy herd under current Swedish farming conditions. The second aim was to investigate the effects obtained by withdrawing milk with high somatic cell count (SCC). A dynamic and stochastic simulation model, Sim...... the predicted bulk tank SCC exceeded 220 000, 200 000 or 180 000 cells/ml, and on cow-level information in three scenarios: withdrawal was initiated when the predicted SCC in an individual cow's milk exceeded 1 000 000, 750 000 or 500 000 cells/ml. The accuracy with which SCC was measured and...

  17. Contagem de células somáticas e isolamento de agentes causadores de mastite em búfalas (Bubalus bubalis Somatic cell count and mastitis causing pathogens isolation in water buffaloes (Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    L.B. Carvalho

    2007-02-01

    Full Text Available The research was accomplished in eight dairy water buffalo herds, randomically choosen in Região do Alto São Francisco, State of Minas Gerais, Brazil. Information was collected from March to November, 2003 during 270 days of observation. In order to determine the somatic cell count (SCC in presence or absence of microbial isolation, 1,393 samples were collected from 285 lactating females and microbiological exams and SCC were done. Samples obtained from udders without evidence of clinical or subclinical inflammation showed infection for a great variety of microbial mastitis pathogens. The low SCC did not necessarily indicate the absence of intramammary infection, suggesting that SCC patterns used for bovine cannot be appropriate in order to control mastitis in buffalo herds.

  18. Integration of bovine herpesvirus 4 genome into cultured persistently infected host cell genome

    Directory of Open Access Journals (Sweden)

    Donofrio Gaetano

    2010-09-01

    Full Text Available Abstract Persistent infection of macrophages with bovine herpesvirus 4 (BoHV-4 has been proposed to play a secondary causal role, along with bacterial infection, in bovine post-partum metritis. Mechanisms of maintenance of BoHV-4 persistent infection are not understood. We previously generated in vitro models of BoHV-4 persistent infection in human rhadomyosarcoma and bovine macrophage cell lines by drug selection of cells infected with BoHV-4 carrying a drug-resistance marker, and demonstrated circular episomal BoHV-4 genomes. In the present study, we used fluorescent in situ hybridization (FISH to demonstrate BoHV-4 genomes also integrated into the genomes of these persistently infected cells.

  19. Diethylnitrosamine-induced expression of germline-specific genes and pluripotency factors, including vasa and oct4, in medaka somatic cells.

    Science.gov (United States)

    Shen, Jialing; Yokota, Shinpei; Yokoi, Hayato; Suzuki, Tohru

    2016-09-16

    Various methods have been developed to reprogram mammalian somatic cells into pluripotent cells as well as to directly reprogram somatic cells into other cell lineages. We are interested in applying these methods to fish, and here, we examined whether mRNA expression of germline-specific genes (vasa, nanos2, -3) and pluripotency factors (oct4, sox2, c-myc, nanog) is inducible in somatic cells of Japanese medaka (Oryzias latipes). We found that the expression of vasa is induced in the gut and regenerating fin by exposure to a carcinogen, diethylnitrosamine (DEN). Induction of vasa in the gut started on the 5th day of treatment with >50 ppm DEN. In addition, nanos2, -3, oct4, sox2, klf4, c-myc, and nanog were also expressed simultaneously in some vasa-positive gut and regenerating fin samples. Vasa-positive cells were detected by immunohistochemistry (IHC) in the muscle surrounding the gut and in the wound epidermis, blastema, and fibroblast-like cells in regenerating fin. In vasa:GFP transgenic medaka, green fluorescent protein (GFP) fluorescence appeared in the wound epidermis and fibroblast-like cells in the regenerating fin following DEN exposure, in agreement with the IHC data. Our data show that mRNA expression of genes relevant to germ cell specification and pluripotency can be induced in fish somatic cells by exposure to DEN, suggesting the possibility of efficient and rapid cell reprogramming of fish somatic cells. PMID:27514449

  20. Immunohistochemistry studies on bovine squamous cell carcinoma morphological characterization of epidermal cell proliferation and differentiation markers and characterization of cytokeratins

    OpenAIRE

    Vala, Helena; Fondevila, D.; Carvalho, T.; Pinto, C.; Peleteiro, C.; Pinho, M.; Ferrer, L

    2001-01-01

    Bovine Ocular Squamous Cell Carcinoma (OSCC) is a general designation for a group of primary neoplasias of keratinocytes arising from ocular tissues, especially the lids and particularly the third eye lid. OSCC has been diagnosed all over the world with high prevalence, being the most common bovine tumour and the one causing the most significant economic losses (Hamir & Parry, 1980; Dennis et al., 1985, Heeney & Valli, 1985; Wilcock, 1993). In Portugal, the frequency of these tumours...

  1. Testicular germ cell tumours in dogs are predominantly of spermatocytic seminoma type and are frequently associated with somatic cell tumours

    DEFF Research Database (Denmark)

    Bush, J M; Gardiner, D W; Palmer, J S; Rajpert-De Meyts, E; Veeramachaneni, D N R

    Unlike seminomas in humans, seminomas in animals are not typically sub-classified as classical or spermatocytic types. To compare testicular germ cell tumours (TGCT) in dogs with those of men, archived tissues from 347 cases of canine testicular tumours were morphologically evaluated and characte......Unlike seminomas in humans, seminomas in animals are not typically sub-classified as classical or spermatocytic types. To compare testicular germ cell tumours (TGCT) in dogs with those of men, archived tissues from 347 cases of canine testicular tumours were morphologically evaluated and...... characterized using human classification criteria. Histopathological and immunohistological analysis of PLAP, KIT, DAZ and DMRT1 expression revealed that canine seminomas closely resemble human spermatocytic seminomas. In addition, a relatively frequent concomitant presence of somatic cell tumours was noted in...... canine TGCT. None of the canine TGCT evaluated demonstrated the presence of carcinoma in situ cells, a standard feature of human classical seminomas, suggesting that classical seminomas either do not occur in dogs or are rare in occurrence. Canine spermatocytic seminomas may provide a useful model for...

  2. Effects of interferon-tau and steroids on cytochrome P450 activity in bovine endometrial epithelial cells

    Science.gov (United States)

    The objective of the current study was to examine cyclooxygenase (COX), cytochrome P450 1A (CYP1A) and 2C (CYP2C) activity in bovine endometrial cell cultures following exposure to oxytocin (OT), interferon-t (IFN), estradiol (E2) and/or progesterone (P4). Bovine endometrial epithelial cells were tr...

  3. Cells with Stem Cell Characteristics in Somatic Compartments of the Ovary

    Directory of Open Access Journals (Sweden)

    Katarzyna Kossowska-Tomaszczuk

    2013-01-01

    Full Text Available Antral follicular growth in the ovary is characterized by rapid expansion of granulosa cells accompanied by a rising complexity of their functionality. Within two weeks the number of human granulosa cells increases from less than 500,000 to more than 50 millions cells per follicle and differentiates into groups of cells with a variety of specialized functions involved in steroidogenesis, nursing the oocyte, and forming a functional syncitium. Both the rapid proliferation and different specialized functions of the granulosa cells can only be explained through the involvement of stem cells. However, luteinizing granulosa cells were believed to be terminally differentiated cells. Only recently, stem and progenitor cells with FSH-receptor activity were identified in populations of luteinizing granulosa cells obtained during oocyte collected for assisted reproduction. In the presence of the leukaemia-inhibiting factor (LIF, it was possible to culture a subpopulation of the luteinizing granulosa cells over prolonged time periods. Furthermore, when embedded in a matrix consisting of collagen type I, these cells continued to express the FSH receptor over prolonged time periods, developed globular formations that surrogated as follicle-like structures, providing a promising tool for reproductive biology.

  4. A Study of the Somatic Cell Count of Kosovo Bulk Milk Farm Management and Perspective

    Directory of Open Access Journals (Sweden)

    HYSEN BYTYQI

    2014-06-01

    Full Text Available The aim of this study was to determine the effects of the somatic cell count (SCC in bulk milk farm management and its commercial perspective according to the milk quality standards in Kosovo. A 2069 raw bulk milk samples were taken from a milk collection points in four regions of Kosovo, with two months visits throughout a year. All samples were analyzed by using “FossomaticMinor” equipment, while for the results obtained and identification of different variables effect of SCC on raw bulk milk a general linear model was used. The effect of all variables was considered as a fixed. The overall results show that herd, region, and month of the year (P smaller than 0.0001, respectively, had a significant effect on the presence of SCC. Based on the country existing milk standards for raw milk, the results gained show about 29.6 % belong to extra class milk (SCC/mL less than 300.000, followed by milk quality class IIId, Ist and IId, 24.3%, 8.5%, 8.2%. Of concern is the fact that about 29.5% of total bulk milk analyzed tend to be out of milk quality standards, poor quality ((SCC/mL more than 600.000. The overall mean of SCC on milk was high 772.475 per mL milk, indicating negative farm profit correlation, poor animal health and food safety. The result obtained can be used for assessing raw milk quality and controlling herd management programs.

  5. Genetic analysis for mastitis resistance and milk somatic cell score in French Lacaune dairy sheep

    Directory of Open Access Journals (Sweden)

    Astruc Jean-Michel

    2001-07-01

    Full Text Available Abstract Genetic analysis for mastitis resistance was studied from two data sets. Firstly, risk factors for different mastitis traits, i.e. culling due to clinical or chronic mastitis and subclinical mastitis predicted from somatic cell count (SCC, were explored using data from 957 first lactation Lacaune ewes of an experimental INRA flock composed of two divergent lines for milk yield. Secondly, genetic parameters for SCC were estimated from 5 272 first lactation Lacaune ewes recorded among 38 flocks, using an animal model. In the experimental flock, the frequency of culling due to clinical mastitis (5% was lower than that of subclinical mastitis (10% predicted from SCC. Predicted subclinical mastitis was unfavourably associated with the milk yield level. Such an antagonism was not detected for clinical mastitis, which could result, to some extent, from its low frequency or from the limited amount of data. In practice, however, selection for mastitis resistance could be limited in a first approach to selection against subclinical mastitis using SCC. The heritability estimate of SCC was 0.15 for the lactation mean trait and varied from 0.04 to 0.12 from the first to the fifth test-day. The genetic correlation between lactation SCC and milk yield was slightly positive (0.15 but showed a strong evolution during lactation, i.e. from favourable (-0.48 to antagonistic (0.27. On a lactation basis, our results suggest that selection for mastitis resistance based on SCC is feasible. Patterns for genetic parameters within first lactation, however, require further confirmation and investigation.

  6. Heritability estimates associated with alternative definitions of mastitis and correlations with somatic cell score and yield.

    Science.gov (United States)

    Vallimont, J E; Dechow, C D; Sattler, C G; Clay, J S

    2009-07-01

    The objectives of this study were to compare alternative mastitis definitions and to estimate genetic correlations of producer-recorded mastitis with somatic cell score (SCS) and yield. Cow health events and lactation records from June 2002 through October 2007 were provided by Dairy Records Management Systems (Raleigh, NC). First- through fifth-lactation records from cows calving between 20 and 120 mo of age and that calved in a herd-year with at least 1% of cows with a clinical mastitis event were retained. The edited data contained 118,516 lactation records and 1,072,741 test-day records of 64,893 cows. Mastitis occurrence (1 = at least one mastitis event during lactation or test-day interval, 0 = no mastitis events), number of mastitis events during lactation, SCS, and yield were analyzed with animal models (single trait) or sire-maternal grandsire models (multiple trait) in ASREML. Comparisons were made among models assuming a normal distribution, a binary distribution, or Poisson distribution (for total episodes). The overall incidence of clinical mastitis was 15.4%; and heritability estimates ranged from 0.73% (test-day interval mastitis with a linear model) to 11.07% (number of mastitis episodes with a Poisson model). Increased mastitis incidence was genetically correlated with higher SCS (range 0.66 to 0.88) and was generally correlated with higher yield (range -0.03 to 0.40), particularly during first lactation (0.04 to 0.40). Significant genetic variation exists for clinical mastitis; and health events recorded by producers could be used to generate genetic evaluations for cow health. Sires ranked similarly for daughter mastitis susceptibility regardless of how mastitis was defined; however, test-day interval mastitis and a total count of mastitis episodes per lactation allow a higher proportion of mastitis treatments to be included in the genetic analysis. PMID:19528618

  7. Longitudinal study of reproductive performance of female cattle produced by somatic cell nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Irina A Polejaeva

    Full Text Available The objective of this study was to determine whether or not reproductive performance in cattle produced by somatic cell nuclear transfer (SCNT is significantly different from that of their genetic donors. To address this question, we directed two longitudinal studies using different embryo production procedures: (1 superovulation followed by artificial insemination (AI and embryo collection and (2 ultrasound-guided ovum pick-up followed by in vitro fertilization (OPU-IVF. Collectively, these two studies represent the largest data set available for any species on the reproductive performance of female clones and their genetic donors as measured by their embryo production outcomes in commercial embryo production program. The large-scale study described herein was conducted over a six-year period of time and provides a unique comparison of 96 clones to the 40 corresponding genetic donors. To our knowledge, this is the first longitudinal study on the reproductive performance of cattle clones using OPU-IVF. With nearly 2,000 reproductive procedures performed and more than 9,200 transferable embryos produced, our observations show that the reproductive performance of cattle produced by SCNT is not different compared to their genetic donors for the production of transferable embryos after either AI followed by embryo collection (P = 0.77 or OPU-IVF (P = 0.97. These data are in agreement with previous reports showing that the reproductive capabilities of cloned cattle are equal to that of conventionally produced cattle. In conclusion, results of this longitudinal study once again demonstrate that cloning technology, in combination with superovulation, AI and embryo collection or OPU-IVF, provides a valuable tool for faster dissemination of superior maternal genetics.

  8. Research on Growth Behavior of Embryos for Bovine and Murine on Primary Murine Embryos Fibroblast Cell Feeder Layer

    Institute of Scientific and Technical Information of China (English)

    AN Li-long; XIAO Mei; FENG Xiu-Liang; DOU Zhong-ying; QIU Huai; YANG Qi; LEI An-min; YANG Chun-rong; GAO Zhi-min

    2002-01-01

    The difference in growth behavior between bovine embryos and murine embryos was studied on PMEF(primary murine embryos fibroblast)feeder layer. The results showed as follows: With embryos having attached, bovine embryonic trophoblast formed a transparent membranous structure covering on inner cell mass (ICM), however, murine embryonic trophoblast formed disc structure. Bovine embryos formed four kinds of ICM colonies with different morphology including the mass-like, the net-like, the stream-like and the mixture-like colonies. Compared with Murine ICM, the bovine ICM grew more fast. So, the bovine ICM was passaged at first after a culture of approximately 5 - 6 days in vitro, but murine ICM was passaged at first after an attachment of 3 - 4 days on PMEF feeder layer. The mixture colonies of bovine ICM differentiated very early, while the others differentiated very late. Most ICM-like mass of Bovine grew in a defined spot, but bovine ICMs like stream and ICMs like net proliferated fast and dispersed quickly. We found that the single blastomeres derived from late bovine morula and late murine morula formed sub-blastophere; moreover, the bovine ICM cell would differentiate rapidly if the trophoblast was removed.

  9. Analgesia induced by isolated bovine chromaffin cells implanted in rat spinal cord.

    OpenAIRE

    Sagen, J.; Pappas, G. D.; Pollard, H B

    1986-01-01

    Chromaffin cells synthesize and secrete several neuroactive substances, including catecholamines and opioid peptides, that, when injected into the spinal cord, induce analgesia. Moreover, the release of these substances from the cells can be stimulated by nicotine. Since chromaffin cells from one species have been shown to survive when transplanted to the central nervous system of another species, these cells are ideal candidates for transplantation to alter pain sensitivity. Bovine chromaffi...

  10. Somatic-cell mutation induced by short exposures to cigarette smoke in urate-null, oxidative stress-sensitive Drosophila.

    Science.gov (United States)

    Uchiyama, Tomoyo; Koike, Ryota; Yuma, Yoko; Okamoto, Keinosuke; Arimoto-Kobayashi, Sakae; Suzuki, Toshinori; Negishi, Tomoe

    2016-01-01

    We previously reported that a urate-null strain of Drosophila is hypersensitive to cigarette smoke (CS), and we suggested that CS induces oxidative stress in Drosophila because uric acid is a potent antioxidant. Although the carcinogenic risk of CS exposure is widely recognized; documentation of in vivo genotoxic activity of environmental CS, especially gaseous-phase CS, remains inconclusive. To date, somatic-cell mutations in Drosophila resulting from exposure to CS have not been detected via the somatic mutation and recombination test (wing spot test) with wild-type flies, a widely used Drosophila assay for the detection of somatic-cell mutation; moreover, genotoxicity has not been documented via a DNA repair test that involves DNA repair-deficient Drosophila. In this study, we used a new Drosophila strain (y v ma-l; mwh) to examine the mutagenicity induced by gaseous-phase CS; these flies are urate-null due to a mutation in ma-l, and they are heterozygous for multiple wing hair (mwh), a mutation that functions as a marker for somatic-cell mutation. In an assay with this newly developed strain, a superoxide anion-producing weed-killer, paraquat, exhibited significant mutagenicity; in contrast, paraquat was hardly mutagenic with a wild-type strain. Drosophila larvae were exposed to CS for 2, 4 or 6h, and then kept at 25°C on instant medium until adulthood. After eclosion, mutant spots, which consisted of mutant hairs on wings, were scored. The number of mutant spots increased significantly in an exposure time-dependent manner in the urate-null females (ma-l (-/-)), but not in the urate-positive females (ma-l (+/-)). In this study, we showed that short-term exposure to CS was mutagenic in this in vivo system. In addition, we obtained suggestive data regarding reactive oxygen species production in larva after CS exposure using the fluorescence probe H2DCFDA. These results suggest that oxidative damage, which might be countered by uric acid, was partly responsible

  11. Nuclear transfer of synchronized African wild cat somatic cells into enucleated domestic cat oocytes

    Science.gov (United States)

    Gomez, M.C.; Jenkins, J.A.; Giraldo, A.; Harris, R.F.; King, A.; Dresser, B.L.; Pope, C.E.

    2003-01-01

    The African wild cat is one of the smallest wild cats and its future is threatened by hybridization with domestic cats. Nuclear transfer, a valuable tool for retaining genetic variability, offers the possibility of species continuation rather than extinction. The aim of this study was to investigate the ability of somatic cell nuclei of the African wild cat (AWC) to dedifferentiate within domestic cat (DSH) cytoplasts and to support early development after nuclear transplantation. In experiment 1, distributions of AWC and DSH fibroblasts in each cell-cycle phase were assessed by flow cytometry using cells cultured to confluency and disaggregated with pronase, trypsin, or mechanical separation. Trypsin (89.0%) and pronase (93.0%) yielded higher proportions of AWC nuclei in the G0/G1 phase than mechanical separation (82.0%). In contrast, mechanical separation yielded higher percentages of DSH nuclei in the G0/G1 phase (86.6%) than pronase (79.7%) or trypsin (74.2%) treatments. In both species, pronase induced less DNA damage than trypsin. In experiment 2, the effects of serum starvation, culture to confluency, and exposure to roscovitine on the distribution of AWC and DSH fibroblasts in various phases of the cell cycle were determined. Flow cytometry analyses revealed that the dynamics of the cell cycle varied as culture conditions were modified. Specifically, a higher percentage of AWC and DSH nuclei were in the G0/G1 phase after cells were serum starved (83% vs. 96%) than were present in cycling cells (50% vs. 64%), after contact inhibition (61% vs. 88%), or after roscovitine (56% vs. 84%) treatment, respectively. In experiment 3, we evaluated the effects of cell synchronization and oocyte maturation (in vivo vs. in vitro) on the reconstruction and development of AWC-DSH- and DSH-DSH-cloned embryos. The method of cell synchronization did not affect the fusion and cleavage rate because only a slightly higher percentage of fused couplets cleaved when donor nuclei

  12. Ultrastructural comparison of porcine putative embryonic stem cells derived by in vitro fertilization and somatic cell nuclear transfer

    Science.gov (United States)

    YOO, Hyunju; KIM, Eunhye; HWANG, Seon-Ung; YOON, Junchul David; JEON, Yubyeol; PARK, Kyu-Mi; KIM, Kyu-Jun; JIN, Minghui; LEE, Chang-Kyu; LEE, Eunsong; KIM, Hyunggee; KIM, Gonhyung; HYUN, Sang-Hwan

    2016-01-01

    The ultrastructure of porcine putative embryonic stem cells and porcine fetal fibroblasts (PFFs) was analyzed by transmission electron microscopy. The aim of this study was to compare the features of organelles in in vitro fertilization (IVF) derived porcine embryonic stem cells (IVF-pESCs) and somatic cell nuclear transfer (SCNT) derived pESCs (SCNT-pESCs). Also, the features of organelles in high-passage IVF-pESCs were compared with those in low-passage cells. The ultrastructure of PFFs showed rare microvilli on the cell surfaces, polygonal or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, elongated mitochondria, rich lysosomes and rich phagocytic vacuoles. IVF-pESCs showed rare microvilli on the cell surfaces, round or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rich ribosomes, long stacks of rough endoplasmic reticulum, elongated mitochondria, rare lysosomes and rare autophagic vacuoles. By contrast, SCNT-pESCs showed rich microvilli with various lengths and frequencies on the cell surfaces, polygonal nuclei with one reticular shaped nucleoli and heterochromatin, high cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, round mitochondria, rich lysosomes and rich phagocytic vacuoles with clear intercellular junctions. Furthermore, high-passage IVF-pESCs showed irregularly shaped colonies, pyknosis and numerous lysosomes associated with autophagic vacuoles showing signs of apoptosis. In conclusion, this study confirms that the ultrastructural characteristics of pESCs differ depending on their origin. These ultrastructural characteristics might be useful in biomedical research using pESCs, leading to new insights regarding regenerative medicine and tissue repair. PMID:26821870

  13. The effect of bovine viral diarrhea virus (BVDV) strains on bovine monocyte-derived dendritic cells (Mo-DC) phenotype and capacity to produce BVDV

    OpenAIRE

    Rajput, Mrigendra KS; Darweesh, Mahmoud F; Park, Kaci; Braun, Lyle J; Mwangi, Waithaka; Young, Alan J; Chase, Christopher CL

    2014-01-01

    Background Dendritic cells (DC) are important antigen presentation cells that monitor, process, and present antigen to T cells. Viruses that infect DC can have a devastating impact on the immune system. In this study, the ability of bovine viral diarrhea virus (BVDV) to replicate and produce infectious virus in monocyte-derived dendritic cells (Mo-DC) and monocytes was studied. The study also examined the effect of BVDV infection on Mo-DC expression of cell surface markers, including MHCI, MH...

  14. Rapid and Efficient Direct Conversion of Human Adult Somatic Cells into Neural Stem Cells by HMGA2/let-7b

    Directory of Open Access Journals (Sweden)

    Kyung-Rok Yu

    2015-01-01

    Full Text Available A recent study has suggested that fibroblasts can be converted into mouse-induced neural stem cells (miNSCs through the expression of defined factors. However, successful generation of human iNSCs (hiNSCs has proven challenging to achieve. Here, using microRNA (miRNA expression profile analyses, we showed that let-7 microRNA has critical roles for the formation of PAX6/NESTIN-positive colonies from human adult fibroblasts and the proliferation and self-renewal of hiNSCs. HMGA2, a let-7-targeting gene, enables induction of hiNSCs that displayed morphological/molecular features and in vitro/in vivo differentiation potential similar to H9-derived NSCs. Interestingly, HMGA2 facilitated the efficient conversion of senescent somatic cells or blood CD34+ cells into hiNSCs through an interaction with SOX2, whereas other combinations or SOX2 alone showed a limited conversion ability. Taken together, these findings suggest that HMGA2/let-7 facilitates direct reprogramming toward hiNSCs in minimal conditions and maintains hiNSC self-renewal, providing a strategy for the clinical treatment of neurological diseases.

  15. Live imaging of Drosophila gonad formation reveals roles for Six4 in regulating germline and somatic cell migration

    Directory of Open Access Journals (Sweden)

    Jarman Andrew P

    2007-05-01

    Full Text Available Abstract Background Movement of cells, either as amoeboid individuals or in organised groups, is a key feature of organ formation. Both modes of migration occur during Drosophila embryonic gonad development, which therefore provides a paradigm for understanding the contribution of these processes to organ morphogenesis. Gonads of Drosophila are formed from three distinct cell types: primordial germ cells (PGCs, somatic gonadal precursors (SGPs, and in males, male-specific somatic gonadal precursors (msSGPs. These originate in distinct locations and migrate to associate in two intermingled clusters which then compact to form the spherical primitive gonads. PGC movements are well studied, but much less is known of the migratory events and other interactions undergone by their somatic partners. These appear to move in organised groups like, for example, lateral line cells in zebra fish or Drosophila ovarian border cells. Results We have used time-lapse fluorescence imaging to characterise gonadal cell behaviour in wild type and mutant embryos. We show that the homeodomain transcription factor Six4 is required for the migration of the PGCs and the msSGPs towards the SGPs. We have identified a likely cause of this in the case of PGCs as we have found that Six4 is required for expression of Hmgcr which codes for HMGCoA reductase and is necessary for attraction of PGCs by SGPs. Six4 affects msSGP migration by a different pathway as these move normally in Hmgcr mutant embryos. Additionally, embryos lacking fully functional Six4 show a novel phenotype in which the SGPs, which originate in distinct clusters, fail to coalesce to form unified gonads. Conclusion Our work establishes the Drosophila gonad as a model system for the analysis of coordinated cell migrations and morphogenesis using live imaging and demonstrates that Six4 is a key regulator of somatic cell function during gonadogenesis. Our data suggest that the initial association of SGP clusters

  16. Development capacity of pre- and postpubertal pig oocytes evaluated by somatic cell nuclear transfer and parthenogenetic activation

    DEFF Research Database (Denmark)

    Skovsgaard, Hanne; Li, Rong; Liu, Ying;

    2013-01-01

    Most of the porcine oocytes used for in vitro studies are collected from gilts. Our aims were to study development capacity of gilt v. sow oocytes (pre- and postpubertal respectively) using 2 techniques illustrating development competence [parthenogenetic activation (PA) and somatic cell nuclear...... transfer (SCNT)], and to describe a simple method to select the most competent oocytes. Inside-ZP diameter of in vitro-matured gilt oocytes was measured (µm; small ≤110; medium >110; large ≥120). Gilt and sow oocytes were morphologically grouped as good (even cytoplasm, smooth cell membrane, visible...

  17. Somatically Hypermutated Plasmodium-Specific IgM(+) Memory B Cells Are Rapid, Plastic, Early Responders upon Malaria Rechallenge.

    Science.gov (United States)

    Krishnamurty, Akshay T; Thouvenel, Christopher D; Portugal, Silvia; Keitany, Gladys J; Kim, Karen S; Holder, Anthony; Crompton, Peter D; Rawlings, David J; Pepper, Marion

    2016-08-16

    Humoral immunity consists of pre-existing antibodies expressed by long-lived plasma cells and rapidly reactive memory B cells (MBC). Recent studies of MBC development and function after protein immunization have uncovered significant MBC heterogeneity. To clarify functional roles for distinct MBC subsets during malaria infection, we generated tetramers that identify Plasmodium-specific MBCs in both humans and mice. Long-lived murine Plasmodium-specific MBCs consisted of three populations: somatically hypermutated immunoglobulin M(+) (IgM(+)) and IgG(+) MBC subsets and an unmutated IgD(+) MBC population. Rechallenge experiments revealed that high affinity, somatically hypermutated Plasmodium-specific IgM(+) MBCs proliferated and gave rise to antibody-secreting cells that dominated the early secondary response to parasite rechallenge. IgM(+) MBCs also gave rise to T cell-dependent IgM(+) and IgG(+)B220(+)CD138(+) plasmablasts or T cell-independent B220(-)CD138(+) IgM(+) plasma cells. Thus, even in competition with IgG(+) MBCs, IgM(+) MBCs are rapid, plastic, early responders to a secondary Plasmodium rechallenge and should be targeted by vaccine strategies. PMID:27473412

  18. Polymorphisms in the 5' upstream region of the CXCR1 chemokine receptor gene, and their association with somatic cell score in Holstein cattle in Canada.

    Science.gov (United States)

    Leyva-Baca, I; Schenkel, F; Martin, J; Karrow, N A

    2008-01-01

    Identification of regulatory elements in 5' regions of chemokine genes is fundamental for understanding chemokine gene expression in response to infection diseases. The CXCR1 receptor is expressed on the surface of neutrophils and interacts primarily with CXCL8 (IL-8), the most potent chemoattractant for neutrophils. The aim of this study was to characterize the 5' upstream region (2.1 kb) of the bovine CXCR1 chemokine receptor gene for polymorphism content and to identify in silico potential transcription-factor binding sites. The 5' flanking region was found by mining the NCBI GenBank (www.ncbi.nlm.nih.gov/). A DNA sequence from the whole genome shotgun sequence project with reference number AC150887.4 contained the CXCR1 5' flanking sequence. Computer analysis revealed potential binding sites for the transcription factors nuclear factor kappaB (NF-kappaB), binding factor GATA-1, barbiturate inducible element (Barbie), nuclear factor of activated T-cells, and activator protein 1. Polymorphism discovery in this region was conducted by constructing an inclusive DNA pool including 2 phenotypic extreme groups, 20 bulls with high estimated breeding values (EBV) for somatic cell score (SCS), and 20 bulls with low EBV for SCS. Independent amplicons along the 5' flanking region of bovine CXCR1 were generated for polymorphism discovery by sequencing. Three novel single nucleotide polymorphisms (SNP), CXCR1c.-344T>C, CXCR1c.-1768T>A, and CXCR1c.-1830A>G, and a previously identified SNP in the coding region, CXCR1c.777G>C, were identified. The 4 SNP were genotyped in Canadian Holstein bulls (n = 338) using tetra-primer amplification refractory mutation system (ARMS)-PCR. Average allele substitution effects were estimated to investigate associations between the 4 SNP and EBV for SCS in first, second, and third and later lactations. Multiple trait analysis revealed that the SNP CXCR1c.-1768T>A was associated with EBV for SCS in the first and second lactations and over all 3

  19. Whole-exome sequencing identifies a somatic missense mutation of NBN in clear cell sarcoma of the salivary gland.

    Science.gov (United States)

    Zhang, Lei; Jia, Zhen; Mao, Fengbiao; Shi, Yueyi; Bu, Rong Fa; Zhang, Baorong

    2016-06-01

    Clear cell sarcoma (CCS) is a rare, low-grade carcinoma commonly located in the distal extremities of young adults involving tendons and aponeuroses. CCS is characterized by its poor prognosis due to late diagnosis, multiple local recurrence, propensity to late metastases, and a high rate of tumor-related mortality. The genetic cause for CCS is thought to be EWSR1 gene translocation. However, CCS lacking a translocation may have other, as yet uncharacterized, genetic mutations that can cause the same pathological effect. A combination of whole‑exome sequencing and Sanger sequencing of cancer tissue and venous blood from a patient diagnosed with CCS of the salivary gland revealed a somatic missense mutation, c.1061C>T (p.P354L), in exon 9 of the Nibrin gene (NBN). This somatic missense mutation led to the conversion of proline to leucine (p.P354L), resulting in deleterious effects for the NBN protein. Multiple-sequence alignments showed that codon 354, where the mutation (c.1061C>T) occurs, is located within a phylogenetically conserved region. In conclusion, we here report a somatic missense mutation c.1061C>T (p.P354L) in the NBN gene in a patient with CCS lacking an EWSR1-ATF1 fusion. Our findings broaden the genotypic spectrum of CCS and provide new molecular insight that should prove useful in the future clinical genetic diagnosis of CCS. PMID:27109316

  20. Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Pedersen, Hanne Gervi; Jakobsen, Anne Sørig;

    2007-01-01

    The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell...... were equal proportions of transcriptionally active and inactive embryos and essentially all embryos that developed to the 16-cell stage (n = 21) and further to the blastocyst stage (n = 19) contained only transcriptionally active cells. In conclusion, porcine embryos produced in vitro had an......-cell stage (n = 45), 38% of the embryos contained 1-3 nuclei with signs of rRNA transcription, indicating an asynchronous transcription initiation. This pattern continued in the following stages, as 78% (n = 47), 47% (n = 42) and 83% (n = 37) of the embryos revealed a mixture of transcriptionally inactive...

  1. Effects of injectable trace mineral supplementation in lactating dairy cows with elevated somatic cell counts.

    Science.gov (United States)

    Ganda, E K; Bisinotto, R S; Vasquez, A K; Teixeira, A G V; Machado, V S; Foditsch, C; Bicalho, M; Lima, F S; Stephens, L; Gomes, M S; Dias, J M; Bicalho, R C

    2016-09-01

    Objectives of this clinical trial were to evaluate the effects of injectable trace mineral supplementation (ITMS) on somatic cell count (SCC), linear score (LS), milk yield, milk fat and protein contents, subclinical mastitis cure, and incidence of clinical mastitis in cows with elevated SCC. Holstein cows from a commercial dairy farm in New York were evaluated for subclinical mastitis, defined as SCC ≥200×10(3) cells/mL on the test day preceding enrollment. Cows with a history of treatment for clinical mastitis in the current lactation and those pregnant for more than 150d were not eligible for enrollment. Cows fitting inclusion criteria were randomly allocated to 1 of 2 treatment groups. Cows assigned to ITMS (n=306) received 1 subcutaneous injection containing zinc (300mg), manganese (50mg), selenium (25mg), and copper (75mg) at enrollment (d 0). Control cows (CTRL; n=314) received 1 subcutaneous injection of sterile saline solution. Following treatment, visual assessment of milk was performed daily, and cows with abnormal milk (i.e., presence of flakes, clots, or serous milk) were diagnosed with clinical mastitis (CM). Chronic clinical mastitis was defined as cows with 3 or more cases of CM. Milk yield, milk fat and protein contents, SCC, and LS were evaluated once monthly. Additionally, randomly selected animals were sampled to test serum concentrations of selected minerals on d0 and 30 (n=30 cows/treatment). Treatment did not affect serum concentrations of calcium, magnesium, phosphorus, potassium, copper, iron, manganese, selenium, and zinc on d30. Injectable supplementation with trace minerals did not improve overall cure of subclinical mastitis (CTRL=42.8 vs. ITMS=46.5%), although a tendency was observed in cows with 3 or more lactations (CTRL=27.1 vs. ITMS=40.0%). Supplementation did not reduce treatment incidence of CM (CTRL=48.2 vs. ITMS=41.7%); however, it tended to reduce the proportion of cows diagnosed with chronic CM (CTRL=16.9 vs. ITMS=12

  2. Characterization of bovine A20 gene: Expression mediated by NF-κB pathway in MDBK cells infected with bovine viral diarrhea virus-1.

    Science.gov (United States)

    Fredericksen, Fernanda; Villalba, Melina; Olavarría, Víctor H

    2016-05-01

    Cytokine production for immunological process is tightly regulated at the transcriptional and posttranscriptional levels. The NF-κB signaling pathway maintains immune homeostasis in the cell through the participation of molecules such as A20 (TNFAIP3), which is a key regulatory factor in the immune response, hematopoietic differentiation, and immunomodulation. Although A20 has been identified in mammals, and despite recent efforts to identify A20 members in other higher vertebrates, relatively little is known about the composition of this regulator in other classes of vertebrates, particularly for bovines. In this study, the genetic context of bovine A20 was explored and compared against homologous genes in the human, mouse, chicken, dog, and zebrafish chromosomes. Through in silico analysis, several regions of interest were found conserved between even phylogenetically distant species. Additionally, a protein-deduced sequence of bovine A20 evidenced many conserved domains in humans and mice. Furthermore, all potential amino acid residues implicated in the active site of A20 were conserved. Finally, bovine A20 mRNA expression as mediated by the bovine viral diarrhea virus and poly (I:C) was evaluated. These analyses evidenced a strong fold increase in A20 expression following virus exposure, a phenomenon blocked by a pharmacological NF-κB inhibitor (BAY 117085). Interestingly, A20 mRNA had a half-life of only 32min, likely due to adenylate- and uridylate-rich elements in the 3'-untranslated region. Collectively, these data identify bovine A20 as a regulator of immune marker expression. Finally, this is the first report to find the bovine viral diarrhea virus modulating bovine A20 activation through the NF-κB pathway. PMID:26809100

  3. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    C Lin

    Full Text Available Our previous studies showed that bovine respiratory syncytial virus (BRSV followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2 epithelial cells with H. somni concentrated culture supernatant (CCS stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2--RSAD2 and ISG15 (IFN-stimulated gene 15--ubiquitin-like modifier were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo.

  4. Comparison of the efficiency of Banna miniature inbred pig somatic cell nuclear transfer among different donor cells.

    Directory of Open Access Journals (Sweden)

    Hongjiang Wei

    Full Text Available Somatic cell nuclear transfer (SCNT is an important method of breeding quality varieties, expanding groups, and preserving endangered species. However, the viability of SCNT embryos is poor, and the cloned rate of animal production is low in pig. This study aims to investigate the gene function and establish a disease model of Banna miniature inbred pig. SCNT with donor cells derived from fetal, newborn, and adult fibroblasts was performed, and the cloning efficiencies among the donor cells were compared. The results showed that the cleavage and blastocyst formation rates did not significantly differ between the reconstructed embryos derived from the fetal (74.3% and 27.4% and newborn (76.4% and 21.8% fibroblasts of the Banna miniature inbred pig (P>0.05. However, both fetal and newborn fibroblast groups showed significantly higher rates than the adult fibroblast group (61.9% and 13.0%; P<0.05. The pregnancy rates of the recipients in the fetal and newborn fibroblast groups (60% and 80%, respectively were higher than those in the adult fibroblast group. Eight, three, and one cloned piglet were obtained from reconstructed embryos of the fetal, newborn, and adult fibroblasts, respectively. Microsatellite analyses results indicated that the genotypes of all cloning piglets were identical to their donor cells and that the genetic homozygosity of the Banna miniature inbred pig was higher than those of the recipients. Therefore, the offspring was successfully cloned using the fetal, newborn, and adult fibroblasts of Banna miniature inbred pig as donor cells.

  5. A protocol for embryonic stem cell derivation by somatic cell nuclear transfer into human oocytes

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Dieter Egli & Gloryn Chia ### Abstract Here we describe detailed methods that allowed us to derive embryonic stem cell lines by nuclear transfer of fibroblasts from a newborn and from a type 1 diabetic adult. The protocol is based on the insight that 1) agents for cell fusion can act as potent mediators of oocyte activation by compromising maintaining plasma membrane integrity; minimizing the concentration at which they are used, and at least transiently remove calcium f...

  6. Modulation of sulfated proteoglycan synthesis by bovine aortic endothelial cells during migration

    OpenAIRE

    1986-01-01

    The rates of 35S-sulfate incorporation into proteoglycan were compared in multi-scratch wounded and confluent cultures of bovine aortic endothelial cells to determine whether proteoglycan synthesis is altered as cells are stimulated to migrate and proliferate. Incorporation was found to be stimulated in a time-dependent manner, reaching maximal levels 44-50 h after wounding, as cells migrated into wounded areas of the culture dish. Quantitative autoradiography of 35S- sulfate-labeled single-s...

  7. Apoptosis is induced in bovine satellite muscle cells after removal of available oxygen

    OpenAIRE

    Andersen, Petter Vejle

    2013-01-01

    Abstract Post-mortem tenderisation of meat is a complex process, of which all the details are far from understood. Cell death by apoptosis is recently proposed as a novel mechanism in this process. The main aim of this study was to investigate if bovine satellite muscle cells, cultivated in vitro, would induce apoptosis when oxygen was removed from the incubation medium. Satellite muscle cells was seeded out in Entactin-Collagen IV-Laminin (ECL) coated culture wells and allowed to diffe...

  8. Effect of Somatic Cell Types and Culture Medium on in vitro Maturation, Fertilization and Early Development Capability of Buffalo Oocytes

    Directory of Open Access Journals (Sweden)

    H. Jamil*, H. A. Samad, N. Rehman, Z. I. Qureshi and L. A. Lodhi

    2011-04-01

    Full Text Available This study was designed to evaluate the efficacy of different somatic cell types and media in supporting in vitro maturation (IVM, in vitro fertilization (IVF and early embryonic development competence of buffalo follicular oocytes. Cumulus oocyte complexes were collected for maturation from follicles (>6mm of buffalo ovaries collected at the local abattoir. Oocytes were co-cultured in tissue culture medium (TCM-199 with either granulosa cells, cumulus cells, or buffalo oviductal epithelial cells (BOEC @ 3x106 cells/ml or in TCM-199 without helper cells (control at 39°C and 5%CO2 in humidified air. Fresh semen was prepared in modified Ca++ free Tyrode medium. Fertilization was carried out in four types of media: i Tyrode lactate albumin pyruvate (TALP, ii TALP+BOEC, iii modified Ca++ free Tyrode and iv modified Ca++ free Tyrode+BOEC. Fertilized oocytes were cultured for early embryonic development in TCM-199 with and without BOEC. Higher maturation rates were observed in the granulosa (84.24% and cumulus cells (83.44% than BOEC co culture system (73.37%. Highest fertilization rate was obtained in modified Ca++ free Tyrode with BOEC co culture (70.42%, followed by modified Ca++ free Tyrode alone (63.77%, TALP with BOEC (36.92% and TALP alone (10.94%. Development of early embryos (8-cell stage improved in TCM-199 with BOEC co culture than TCM-199 alone. From the results of this study, it can be concluded that addition of somatic cells (granulosa cells, cumulus cells results in higher maturation rates of buffalo follicular oocytes than BOEC co culture system, while fertilization rate improved in modified Ca++ free Tyrode with and without BOEC. Addition of BOEC to TCM-199 improved the developmental capacity of early embryo.

  9. Effects of Scriptaid on Cell Cycle and Histone Acetylation of Ovine Nuclear Donor Cumulus Cells and their Ability to Support the Development of Somatic Cell Nuclear Transfer Embryos

    Directory of Open Access Journals (Sweden)

    Hui Cao

    2015-10-01

    Full Text Available Compelling evidence suggests that histone deacetylase inhibitor (HDACi influences the development of somatic cell nuclear transfer (SCNT embryos. The current study was conducted to determine the effect of pretreatment of donor cumulus cells with Scriptaid (a novel HDACi on cell cycle, histone acetylation and cloning embryos development in ovine. First, we optimized the efficiency of Scriptaid in a dose (0, 0.1, 0.2, 0.4 and 0.8 μmol/L and time-dependent (0, 12, 24, 36, and 48 h manner on the developmental capacity of these embryos. Then, we quantitatively assessed the alterations of acetylation levels in histone H3 lysine 9 (acH3K9 and histone H4 lysine 12 (acH4K12 of cumulus cells and SCNT embryos by immunofluorescence staining. Furthermore, we detected the proportion of G0/G1 phase cells in cumulus cells. We found a significantly improved blastocyst development rates of cloning embryos derived from donor cumulus cells pretreated with a mild dose (0.2 μmol/L of Scriptaid for 24 hours (21/86 [24.39%] vs. 11/85 [12.91%]; P<0.05. Meanwhile, the levels of acH3K9 and acH4K12 were also improved significantly in cumulus cells and SCNT embryos (P<0.05. Moreover, more cumulus cells pretreated with Scriptaid were in G0/G1 phase compared with control group (84.22% vs. 75.96%, P<0.05. In conclusion, donor cumulus cells treated with Scriptaid is beneficial to early development of SCNT embryos, ascending acH3K9/ acH4K12 and G0/G1 phase cells proportion of cumulus cell. Scriptaid can be used to improve the efficiency of somatic cell nuclear transfer in ovine.

  10. Virus-host interactions in persistently FMDV-infected cells derived from bovine pharynx

    Science.gov (United States)

    Foot-and-mouth disease virus (FMDV) produces a disease in cattle characterized by vesicular lesions and a persistent infection with asymptomatic low-level production of virus. Here we describe the establishment of a persistently infected primary cell culture derived from bovine pharynx tissue (PBPT)...

  11. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    Science.gov (United States)

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  12. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    -brain barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  13. INSULIN INDUCES NITRIC OXIDE PRODUCTION IN BOVINE AORTIC ENDOTHELIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    李慧丽; 黄定九

    2000-01-01

    ffeStun6. ObjeCtif Dens cette dtude nons avons ewilue l' effet de l' insuline sur ba Proliferation cellulaire, liberationd' oxide nitrique et l' expression gdrktique de synthase d' oxide nitrique dens la cellule endotheliale aortique bovine. methIn mitogdthe est evalude per la ndthae M7T. In Production de NO dans ie alga en culture est determine per la reactionGness. In technique quantitative RT/PCR est utility pour quantifier ie niveau de sWthase d' oxide nitrique mRNA dens la cellule endotheliale aortique...

  14. Mesenchymal stromal cells from bone marrow treated with bovine tendon extract acquire the phenotype of mature tenocytes

    OpenAIRE

    Lívia Maria Mendonça Augusto; Diego Pinheiro Aguiar; Danielle Cabral Bonfim; Amanda dos Santos Cavalcanti; Priscila Ladeira Casado; Maria Eugênia Leite Duarte

    2016-01-01

    ABSTRACT OBJECTIVE: This study evaluated in vitro differentiation of mesenchymal stromal cells isolated from bone marrow, in tenocytes after treatment with bovine tendon extract. METHODS: Bovine tendons were used for preparation of the extract and were stored at -80 °C. Mesenchymal stromal cells from the bone marrow of three donors were used for cytotoxicity tests by means of MTT and cell differentiation by means of qPCR. RESULTS: The data showed that mesenchymal stromal cells from bone...

  15. Mannheimia haemolytica Leukotoxin Induces Apoptosis of Bovine Lymphoblastoid Cells (BL-3) via a Caspase-9-Dependent Mitochondrial Pathway

    OpenAIRE

    Atapattu, Dhammika N.; Czuprynski, Charles J.

    2005-01-01

    Mannheimia haemolytica is a key pathogen in the bovine respiratory disease complex. It produces a leukotoxin (LKT) that is an important virulence factor, causing cell death in bovine leukocytes. The LKT binds to the β2 integrin CD11a/CD18, which usually activates signaling pathways that facilitate cell survival. In this study, we investigated mechanisms by which LKT induces death in bovine lymphoblastoid cells (BL-3). Incubation of BL-3 cells with a low concentration of LKT results in the act...

  16. An integrated inspection of the somatic mutations in a lung squamous cell carcinoma using next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Lucy F Stead

    Full Text Available Squamous cell carcinoma (SCC of the lung kills over 350,000 people annually worldwide, and is the main lung cancer histotype with no targeted treatments. High-coverage whole-genome sequencing of the other main subtypes, small-cell and adenocarcinoma, gave insights into carcinogenic mechanisms and disease etiology. The genomic complexity within the lung SCC subtype, as revealed by The Cancer Genome Atlas, means this subtype is likely to benefit from a more integrated approach in which the transcriptional consequences of somatic mutations are simultaneously inspected. Here we present such an approach: the integrated analysis of deep sequencing data from both the whole genome and whole transcriptome (coding and non-coding of LUDLU-1, a SCC lung cell line. Our results show that LUDLU-1 lacks the mutational signature that has been previously associated with tobacco exposure in other lung cancer subtypes, and suggests that DNA-repair efficiency is adversely affected; LUDLU-1 contains somatic mutations in TP53 and BRCA2, allelic imbalance in the expression of two cancer-associated BRCA1 germline polymorphisms and reduced transcription of a potentially endogenous PARP2 inhibitor. Functional assays were performed and compared with a control lung cancer cell line. LUDLU-1 did not exhibit radiosensitisation or an increase in sensitivity to PARP inhibitors. However, LUDLU-1 did exhibit small but significant differences with respect to cisplatin sensitivity. Our research shows how integrated analyses of high-throughput data can generate hypotheses to be tested in the lab.

  17. Retroperitoneal teratoma with somatic malignant transformation: A papillary renal cell carcinoma in a testicular germ cell tumour metastasis following platinum-based chemotherapy

    OpenAIRE

    Zeh Nina; Wild Peter J; Bode Peter K; Kristiansen Glen; Moch Holger; Sulser Tullio; Hermanns Thomas

    2013-01-01

    Abstract Background Malignant transformation describes the phenomenon in which a somatic component of a germ cell teratoma undergoes malignant differentiation. A variety of different types of sarcoma and carcinoma, all non-germ cell, have been described as a result of malignant transformation. Case presentation A 33-year-old man presented with a left testicular mass and elevated tumour markers. Staging investigations revealed retroperitoneal lymphadenopathy with obstruction of the left ureter...

  18. Evaluation of the recombination in somatic cells induced by radiation in different stages of Drosophila larval development

    International Nuclear Information System (INIS)

    The mitotic recombination can happen spontaneously and its frequency is very low, however the recombination rate of a cell can be increased by the exposure to agents which cause damage to DNA. This type of agents are knew commonly as recombinogens. The ionizing radiation and a numerous chemical agents can be mentioned (Vogel, 1992). The objective of this work is to determine if the mutation/recombination rate induced by gamma rays varies with the development stage. In order to realize this investigation it was used the mutation and somatic recombination test of Drosophila wing (Graf and col. 1984). The mwh/ mwh and flr3/TM3, Ser stocks were used. (Author)

  19. Body-weight and chromosome aberrations induced by X-rays in somatic cells of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Body-weight has been shown to influence the final expression of genetic damage by X-rays in Drosophila melanogaster. If larvae of Drosophila were raised up to the third instar in media containing different amounts of the same nutrient and in different conditions of crowding a positive correlation was observed between body-weight and frequency of chromosome aberrations induced by a given dose of X-rays in the somatic cells of their nerve ganglia. This effect, present in both sexes, is most plausibly attributed to a different capacity of big and small larvae for repairing radiation damage. (orig.)

  20. The chromosome content and genotype of two wheat cell lines and of their somatic fusion product with oat

    OpenAIRE

    Xiang, Fengning; Wang, Junfeng; Xu, Chunhui; Xia, Guangmin

    2010-01-01

    Somatic hybridization seeks to genetically combine phylogenetically distant parents. An effective system has been established in bread wheat (Triticum aestivum L.) involving protoplasts from a non-totipotent cell line adapted to in vitro culture (T1) in combination with totipotent protoplasts harvested from embryogenic calli (T2). Here, we report the karyotype and genotype of T1 and T2. Line T1 carries nine A (A-genome of wheat), seven B (B-genome of wheat) and eight D (D-genome of wheat) gen...

  1. Somatic Cells Count and Its Genetic Association with Milk Yield in Dairy Cattle Raised under Thai Tropical Environmental Conditions

    OpenAIRE

    Jattawa, D.; Koonawootrittriron, S.; Elzo, M. A.; Suwanasopee, T.

    2012-01-01

    Somatic cells count (SCC), milk yield (MY) and pedigree information of 2,791 first lactation cows that calved between 1990 and 2010 on 259 Thai farms were used to estimate genetic parameters and trends for SCC and its genetic association with MY. The SCC were log-transformed (lnSCC) to make them normally distributed. An average information-restricted maximum likelihood procedure was used to estimate variance components. A bivariate animal model that considered herd-yr-season, calving age, and...

  2. Cyclophilin A is a new M cell marker of bovine intestinal epithelium.

    Science.gov (United States)

    Hondo, Tetsuya; Someya, Shunsuke; Nagasawa, Yuya; Terada, Shunsuke; Watanabe, Hitoshi; Chen, Xiangning; Watanabe, Kouichi; Ohwada, Shyuichi; Kitazawa, Haruki; Rose, Michael T; Nochi, Tomonori; Aso, Hisashi

    2016-06-01

    Microfold (M) cells in the follicle-associated epithelium (FAE) of Peyer's patches contribute to the mucosal immune response by the transcytosis of microorganisms. The mechanism by which M cells take up microorganisms, and the functional proteins by which they do this, are not clear. In order to explore one such protein, we developed a 2H5-F3 monoclonal antibody (2H5-F3 mAb) through its binding to bovine M cells, and identified the antibody reactive molecule as cyclophilin A (Cyp-A). The localization patterns of Cyp-A were very similar to the localization pattern of cytokeratin (CK) 18-positive M cells. Cyp-A was identified at the luminal surface of CK18-positive M cells in bovine jejunal and ileal FAE. The membranous localization of Cyp-A in the bovine intestinal cell line (BIE cells) increased as cells differentiated toward M cells, as determined by flow cytometry analysis. Additionally, BIE cells released Cyp-A to the extracellular space and the differentiation of BIE cells to M cells increased the secretion of Cyp-A, as determined by western blotting. Accordingly, Cyp-A may be localized in M cells in the small intestinal epithelium of cattle. The rise of the membranous localization and secretion of Cyp-A by differentiation toward M cells indicates that Cyp-A has an important role in the function of M cells. While Cyp-A of the M cell membrane may contribute to the uptake of viruses with peptidyl-prolyl cis-trans isomerase activity, in the extracellular space Cyp-A may work as a chemokine and contribute to the distribution of immuno-competent cells. PMID:26899250

  3. Electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/hydroxyapatite scaffold with unrestricted somatic stem cells for bone regeneration.

    Science.gov (United States)

    Biazar, Esmaeil; Heidari Keshel, Saeed

    2015-01-01

    The combination of scaffolds and cells can be useful in tissue reconstruction. In this study, nanofibrous poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/nanohydroxyapatite (nano-HAp) scaffolds, filled with unrestricted somatic stem cells (USSCs), were used for healing calvarial bone in rat model. The healing effects of these scaffolds, with and without stem cells, in bone regeneration were investigated by computed tomography (CT) analysis and pathology assays after 28 days of grafting. The results of CT analysis showed that bone regeneration on the scaffolds, and the amounts of regenerated new bone for polymer/nano-HAp scaffold with USSC, was significantly greater than the scaffold without cell and untreated control samples. Therefore, the combination of scaffold especially with USSC could be considered as a useful method for bone regeneration. PMID:25710767

  4. Neuronal generation from somatic stem cells: current knowledge and perspectives on the treatment of acquired and degenerative central nervous system disorders.

    Science.gov (United States)

    Corti, S; Locatelli, F; Strazzer, S; Guglieri, M; Comi, G P

    2003-06-01

    Stem cell transplantation through cell replacement or as vector for gene delivery is a potential strategy for the treatment of neurodegenerative diseases. Several studies have reported the transdifferentiation of different somatic stem cells into neurons in vitro or after transplantation into animal models. This observation has pointed out the perspective of using an ethical and accessible cell source to "replace" damaged neurons or provide support to brain tissue. However, recent findings such as the cell fusion phenomenon have raised some doubts about the real existence of somatic stem cell plasticity. In this review, we will discuss current evidence and controversial issues about the neuroneogenesis from various sources of somatic cells focusing on the techniques of isolation, expansion in vitro as well as the inductive factors that lead to transdifferentiation in order to identify the factors peculiar to this process. The morphological, immunochemical, and physiological criteria to correctly judge whether the neuronal transdifferentation occurred are critically presented. We will also discuss the transplantation experiments that were done in view of a possible clinical therapeutic application. Animal models of stroke, spinal cord and brain trauma have improved with Mesenchymal Stem Cells or Bone Marrow transplantation. This improvement does not seem to depend on the replacement of the lost neurons but may be due to increased expression levels of neurotrophic factors, thus suggesting a beneficial effect of somatic cells regardless of transdifferentiation. Critical understanding of available data on the mechanisms governing the cell fate reprogramming is a necessary achievement toward an effective cell therapy. PMID:12762483

  5. Regulation of Major Histocompatibility Complex Class I Genes in Bovine Trophoblast Cells

    OpenAIRE

    Shi, Bi

    2014-01-01

    Somatic cell nuclear transfer (SCNT), or cloning, is a form of artificial reproductive technology that can be used to improve economic traits of domestic animals. However, extreme inefficiency of producing viable offspring via this method is a major limitation. An aggressive immune response at the maternal-fetal interface is an important reason for SCNT pregnancy loss. The goal of this project was to investigate the molecular mechanisms of immune-mediated miscarriage in cloned cattle pregnanc...

  6. The Effect of Deproteinized Bovine Bone Mineral on Saos-2 Cell Proliferation

    OpenAIRE

    Khojasteh, Arash; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Eslami, Mohammad; Motahhary, Pourya; Morad, Golnaz; Shidfar, Shireen

    2013-01-01

    Introduction Deproteinized bovine bone mineral (Bio-Oss) is a xenogenic bone substitute, widely used in maxillofacial bone regeneration. The aim of this in vitro study was to investigate its influence on the growth behavior of human osteosarcoma cell line, Saos-2 culture, and compare it with the physiologic dose of Dexamethasone, an inductive factor for osteoblasts. Materials and Methods Human osteosarcoma cells, Saos-2, were cultured on Bio-Oss and their growth rate was compared to Saos-2 cu...

  7. Maitotoxin-induced cell death cascade in bovine aortic endothelial cells: divalent cation specificity and selectivity.

    Science.gov (United States)

    Wisnoskey, Brian J; Estacion, Mark; Schilling, William P

    2004-08-01

    The maitotoxin (MTX)-induced cell death cascade in bovine aortic endothelial cells (BAECs), a model for Ca(2+) overload-induced toxicity, reflects three sequential changes in plasmalemmal permeability. MTX initially activates Ca(2+)-permeable, nonselective cation channels (CaNSC) and causes a massive increase in cytosolic free Ca(2+) concentration ([Ca(2+)](i)). This is followed by the opening of large endogenous cytolytic/oncotic pores (COP) that allow molecules ionomycin and were significantly delayed in BAPTA-loaded cells. Experiments at the single-cell level revealed that Ba(2+) not only delayed the time to cell lysis but also caused desynchronization of the lytic phase. Last, membrane blebs, which were numerous and spherical in Ca(2+)-containing solutions, were poorly defined and greatly reduced in number in the presence of Ba(2+). Taken together, these results suggest that intracellular high-affinity Ca(2+)-binding proteins are involved in the MTX-induced changes in plasmalemmal permeability that are responsible for cell demise. PMID:15044153

  8. Characterization of putative receptors specific for quercetin on bovine aortic smooth-muscle cells

    International Nuclear Information System (INIS)

    The authors have reported that tobacco glycoprotein (TGP), rutin-bovine serum albumin conjugates (R-BSA), quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells (SMC). To investigate whether there are binding sites or receptors for these polyphenol-containing molecules on SMC, the authors have synthesized 125I-labeled rutin-bovine serum albumin ([125I]R-BSA) of high specific activity (20 Ci/mmol). SMC were isolated from a bovine thoracic aorta and maintained in Eagle's minimum essential medium with 10% calf serum in culture. These SMC at early subpassages were suspended (3-5 x 107 cells/ml) in phosphate-buffered saline and incubated with [125I]R-BSA (10 pmol) in the presence or absence of 200-fold unlabeled R-BSA, TGP, BSA, rutin, quercetin or related polyphenols, and catecholamines. Binding of [125I]R-BSA to SMC was found to be reproducible and the radioligand was displaced by R-BSA, and also by TGP, rutin, quercetin, and chlorogenic acid, but not by BSA, ellagic acid, naringin, hesperetin, dopamine, epinephrine, or isoproterenol. The binding was saturable, reversible, and pH-dependent. These results demonstrate the presence of specific binding sites for quercetinon arterial SMC

  9. Characterization of putative receptors specific for quercetin on bovine aortic smooth-muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.C.; Becker, C.G.

    1986-03-01

    The authors have reported that tobacco glycoprotein (TGP), rutin-bovine serum albumin conjugates (R-BSA), quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells (SMC). To investigate whether there are binding sites or receptors for these polyphenol-containing molecules on SMC, the authors have synthesized /sup 125/I-labeled rutin-bovine serum albumin ((/sup 125/I)R-BSA) of high specific activity (20 Ci/mmol). SMC were isolated from a bovine thoracic aorta and maintained in Eagle's minimum essential medium with 10% calf serum in culture. These SMC at early subpassages were suspended (3-5 x 10/sup 7/ cells/ml) in phosphate-buffered saline and incubated with (/sup 125/I)R-BSA (10 pmol) in the presence or absence of 200-fold unlabeled R-BSA, TGP, BSA, rutin, quercetin or related polyphenols, and catecholamines. Binding of (/sup 125/I)R-BSA to SMC was found to be reproducible and the radioligand was displaced by R-BSA, and also by TGP, rutin, quercetin, and chlorogenic acid, but not by BSA, ellagic acid, naringin, hesperetin, dopamine, epinephrine, or isoproterenol. The binding was saturable, reversible, and pH-dependent. These results demonstrate the presence of specific binding sites for quercetinon arterial SMC.

  10. Innate immune response to a bovine mastitis pathogen profiled in milk and blood monocytes using a systems biology approach

    Science.gov (United States)

    Bovine mastitis is an inflammatory condition of the mammary gland which leads to reduced milk yield and increased milk somatic cell counts (SCC) resulting in an estimated annual cost to the dairy industry worldwide of ~ 2 billion euros. Mastitis has a complex etiology, with pathogenic, host and envi...

  11. DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define Similar Evolutionary Histories in Brain Tumors.

    Science.gov (United States)

    Mazor, Tali; Pankov, Aleksandr; Johnson, Brett E; Hong, Chibo; Hamilton, Emily G; Bell, Robert J A; Smirnov, Ivan V; Reis, Gerald F; Phillips, Joanna J; Barnes, Michael J; Idbaih, Ahmed; Alentorn, Agusti; Kloezeman, Jenneke J; Lamfers, Martine L M; Bollen, Andrew W; Taylor, Barry S; Molinaro, Annette M; Olshen, Adam B; Chang, Susan M; Song, Jun S; Costello, Joseph F

    2015-09-14

    The evolutionary history of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast to stable genetic events, epigenetic states are reversible and sensitive to the microenvironment, prompting the question whether epigenetic information can similarly be used to discover tumor phylogeny. We examined the spatial and temporal dynamics of DNA methylation in a cohort of low-grade gliomas and their patient-matched recurrences. Genes transcriptionally upregulated through promoter hypomethylation during malignant progression to high-grade glioblastoma were enriched in cell cycle function, evolving in parallel with genetic alterations that deregulate the G1/S cell cycle checkpoint. Moreover, phyloepigenetic relationships robustly recapitulated phylogenetic patterns inferred from somatic mutations. These findings highlight widespread co-dependency of genetic and epigenetic events throughout brain tumor evolution. PMID:26373278

  12. Genotoxic effects of bisphenol A on somatic cells of female mice, alone and in combination with X-rays.

    Science.gov (United States)

    Gajowik, Aneta; Radzikowska, Joanna; Dobrzyńska, Małgorzata M

    2013-10-01

    Bisphenol A (BPA), a monomer used in the manufacture of epoxy, polycarbonate, and polystyrene resins, is a xenoestrogen present in many consumer products. We investigated the effects of 2-week exposure to BPA, either alone or in combination with X-rays, on the induction of DNA damage in somatic cells of female mice in vivo. The micronucleus and alkaline comet assays were used to evaluate genotoxicity. BPA induced DNA strand breaks in lung cells but not in bone marrow lymphocytes, liver, kidney, or spleen cells. Induction of micronuclei was observed only in polychromatic reticulocytes of peripheral blood. Levels of damage following combination exposure to ionizing radiation plus BPA depended on tissue, assay, and time. PMID:23954285

  13. Loss of l(3)mbt leads to acquisition of the ping-pong cycle in Drosophila ovarian somatic cells.

    Science.gov (United States)

    Sumiyoshi, Tetsutaro; Sato, Kaoru; Yamamoto, Hitomi; Iwasaki, Yuka W; Siomi, Haruhiko; Siomi, Mikiko C

    2016-07-15

    In Drosophila germ cells, PIWI-interacting RNAs (piRNAs) are amplified through a PIWI slicer-dependent feed-forward loop termed the ping-pong cycle, yielding secondary piRNAs. However, the detailed mechanism remains poorly understood, largely because an ex vivo model system amenable to biochemical analyses has not been available. Here, we show that CRISPR-mediated loss of function of lethal (3) malignant brain tumor [l(3)mbt] leads to ectopic activation of the germ-specific ping-pong cycle in ovarian somatic cells. Perinuclear foci resembling nuage, the ping-pong center, appeared following l(3)mbt mutation. This activation of the ping-pong machinery in cultured cells will greatly facilitate elucidation of the mechanism underlying secondary piRNA biogenesis in Drosophila. PMID:27474440

  14. Mesenchymal stromal cells from bone marrow treated with bovine tendon extract acquire the phenotype of mature tenocytes☆

    Science.gov (United States)

    Augusto, Lívia Maria Mendonça; Aguiar, Diego Pinheiro; Bonfim, Danielle Cabral; dos Santos Cavalcanti, Amanda; Casado, Priscila Ladeira; Duarte, Maria Eugênia Leite

    2016-01-01

    Objective This study evaluated in vitro differentiation of mesenchymal stromal cells isolated from bone marrow, in tenocytes after treatment with bovine tendon extract. Methods Bovine tendons were used for preparation of the extract and were stored at −80 °C. Mesenchymal stromal cells from the bone marrow of three donors were used for cytotoxicity tests by means of MTT and cell differentiation by means of qPCR. Results The data showed that mesenchymal stromal cells from bone marrow treated for up to 21 days in the presence of bovine tendon extract diluted at diminishing concentrations (1:10, 1:50 and 1:250) promoted activation of biglycan, collagen type I and fibromodulin expression. Conclusion Our results show that bovine tendon extract is capable of promoting differentiation of bone marrow stromal cells in tenocytes. PMID:26962503

  15. Embryonic stem-like cells derived from in vitro produced bovine blastocysts

    Directory of Open Access Journals (Sweden)

    Erika Regina Leal de Freitas

    2011-06-01

    Full Text Available The aim of this work was to study the derivation of bovine embryonic stem-like (ES-like cells from the inner cell mass (ICM of in vitro produced blastocysts. The ICMs were mechanically isolated and six out of seventeen (35% ICMs could attach to a monolayer of murine embryonic fibroblasts (MEF. Ten days after, primary outgrowths were mechanically dissected into several small clumps and transferred to a new MEF layer. Cells were further propagated and passaged by physical dissociation over a 60 days period. The pluripotency of the bovine ES-like cells was confirmed by RT-PCR of Oct-4 and STAT-3 gene markers. The colonies were weakly stained for alkaline phosphatase and the mesoderm and endoderm differentiation gene markers such as GATA-4 and Flk-1, respectively, were not expressed. Embryoid bodies were spontaneously formed at the seventh passage. Results showed that bovine ES-like cells could be obtained and passaged by mechanical procedures from the fresh in vitro produced blastocysts.

  16. Analyses of genetic relationships between linear type traits, fat-to-protein ratio, milk production traits, and somatic cell count in first-parity Czech Holstein cows

    DEFF Research Database (Denmark)

    Zink, V; Zavadilová, L; Lassen, Jan;

    2014-01-01

    Genetic and phenotypic correlations between production traits, selected linear type traits, and somatic cell score were estimated. The results could be useful for breeding programs involving Czech Holstein dairy cows or other populations. A series of bivariate analyses was applied whereby (co......)variance components were estimated using average information (AI-REML) implemented via the DMU statistical package. Chosen phenotypic data included average somatic cell score per a 305-day standard first lactation as well as the production traits milk yield, fat yield, protein yield, fat percentage, and protein...... and protein yield. In total, 27 098 somatic cell score records were available. The strongest positive genetic correlation between production traits and linear type traits was estimated between udder width and fat yield (0.51 ± 0.04), while the strongest negative correlation estimated was between body...

  17. Comparative expression profiling of E. coli and S. aureus inoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score

    OpenAIRE

    Ponsuksili Siriluck; Kühn Christa; Wellnitz Olga; Griesbeck-Zilch Bettina; Repsilber Dirk; Hartmann Anja; Brand Bodo; Meyer Heinrich HD; Schwerin Manfred

    2011-01-01

    Abstract Background During the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility tha...

  18. A bovine cell line that can be infected by natural sheep scrapie prions.

    Directory of Open Access Journals (Sweden)

    Anja M Oelschlegel

    Full Text Available Cell culture systems represent a crucial part in basic prion research; yet, cell lines that are susceptible to prions, especially to field isolated prions that were not adapted to rodents, are very rare. The purpose of this study was to identify and characterize a cell line that was susceptible to ruminant-derived prions and to establish a stable prion infection within it. Based on species and tissue of origin as well as PrP expression rate, we pre-selected a total of 33 cell lines that were then challenged with natural and with mouse propagated BSE or scrapie inocula. Here, we report the successful infection of a non-transgenic bovine cell line, a sub-line of the bovine kidney cell line MDBK, with natural sheep scrapie prions. This cell line retained the scrapie infection for more than 200 passages. Selective cloning resulted in cell populations with increased accumulation of PrPres, although this treatment was not mandatory for retaining the infection. The infection remained stable, even under suboptimal culture conditions. The resulting infectivity of the cells was confirmed by mouse bioassay (Tgbov mice, Tgshp mice. We believe that PES cells used together with other prion permissive cell lines will prove a valuable tool for ongoing efforts to understand and defeat prions and prion diseases.

  19. Muscarinic Receptor Agonists Protect Cultured Bovine Trabecular Meshwork Cells against Apoptosis Induced by Dexamethasone

    Institute of Scientific and Technical Information of China (English)

    Yajuan Gu; Shujun Zeng; PengXin Qiu; Yuping Wu; Dawei Peng; Guangmei Yan1

    2004-01-01

    Purpose:To study whether muscarinic receptor agonists can protect cultured bovine trabecular meshwork cells against apoptosis induced by dexamethasone.Methods:The third to fifth passags of bovine trabecular meshwork cells were grown to confluence and incubated for 1~14 days in growth media with dexamethasone or pretreatment of pilocarpine or carbachol.The cultures were evaluated for apoptosis by phase-contrast microscopy, fluorescence microscopy, DNA laddering and flow cytometric analysis.Results :Dexamethasone (0.24~0.96 mmol·L-1) induced apoptosis of trabecular meshwork cells in a dose and time-dependent manner. Before 0.48 mmol·L-1 dexamethasone-treatment, 1.84 mmol· L-1 of pilocarpine or 2.74 mmol· L-1 of carbachol added could significantly reduce apoptotic percentage. Conclusion: Muscarinie receptor agonists can protect cultured bovine trabecular meshwork cells against apoptosis induced by dexamethasone. Eye Science 2004;20:42-47.

  20. Transient acid treatment cannot induce neonatal somatic cells to become pluripotent stem cells [v1; ref status: indexed, http://f1000r.es/3dq

    Directory of Open Access Journals (Sweden)

    Mei Kuen Tang

    2014-05-01

    Full Text Available Currently, there are genetic- and chemical-based methods for producing pluripotent stem cells from somatic cells, but all of them are extremely inefficient.  However, a simple and efficient technique has recently been reported by Obokata et al (2014a, b that creates pluripotent stem cells through acid-based treatment of somatic cells.  These cells were named stimulus-triggered acquisition of pluripotency (STAP stem cells. This would be a major game changer in regenerative medicine if the results could be independently replicated. Hence, we isolated CD45+ splenocytes from five-day-old Oct4-GFP mice and treated the cells with acidified (pH 5.7 Hank’s Balanced Salt Solution (HBSS for 25 min, using the methods described by Obokata et al 2014c. However, we found that this method did not induce the splenocytes to express the stem cell marker Oct4-GFP when observed under a confocal microscope three to six days after acid treatment. qPCR analysis also confirmed that acid treatment did not induce the splenocytes to express the stemness markers Oct4, Sox2 and Nanog.  In addition, we obtained similar results from acid-treated Oct4-GFP lung fibroblasts. In summary, we have not been able to produce STAP stem cells from neonatal splenocytes or lung fibroblasts using the acid-based treatment reported by Obokata et al (2014a, b, c.

  1. A correlative study on the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mammals

    International Nuclear Information System (INIS)

    A series of investigations on the correlation between the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mouse and rhesus monkey is described. In the mouse the induction of reciprocal translocations in bone-marrow cells was compared with that in spermatogonia (as scored in the descending spermatocytes). In the rhesus monkey frequencies of radiation-induced chromosome aberrations in spermatogonia and peripheral blood lymphocytes were studied. Furthermore the effect of multigeneration irradiation (69 generations with 200 rads X-rays) on the sensitivity for translocation induction in spermatogonia of male mice was studied. Frequencies of dicentric chromosomes and chromosomal deletions in cultured peripheral blood lymphocytes of 5 different types of mice were determined following in vitro irradiation with doses of 100 and/or 200 rad X-rays. To obtain more insight into the processes underlying translocation induction in spermatogonia of the mouse, fractionation experiments were conducted

  2. Loss of wild-type ATRX expression in somatic cell hybrids segregates with activation of Alternative Lengthening of Telomeres.

    Directory of Open Access Journals (Sweden)

    Kylie Bower

    Full Text Available Alternative Lengthening of Telomeres (ALT is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repressors. More recently, ATRX or DAXX was shown to be mutated both in tumors with telomere lengths suggestive of ALT activity and in ALT cell lines. Here, an ALT cell line was separately fused to each of four telomerase-positive cell lines, and four or five independent hybrid lines from each fusion were examined for expression of ATRX and DAXX and for telomere lengthening mechanism. The hybrid lines expressed either telomerase or ALT, with the other mechanism being repressed. DAXX was expressed normally in all parental cell lines and in all of the hybrids. ATRX was expressed normally in each of the four telomerase-positive parental cell lines and in every telomerase-positive hybrid line, and was abnormal in the ALT parental cells and in all but one of the ALT hybrids. This correlation between ALT activity and loss of ATRX expression is consistent with ATRX being a repressor of ALT.

  3. The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells.

    Science.gov (United States)

    Qi, Hongying; Watanabe, Toshiaki; Ku, Hsueh-Yen; Liu, Na; Zhong, Mei; Lin, Haifan

    2011-02-01

    Despite exciting progress in understanding the Piwi-interacting RNA (piRNA) pathway in the germ line, less is known about this pathway in somatic cells. We showed previously that Piwi, a key component of the piRNA pathway in Drosophila, is regulated in somatic cells by Yb, a novel protein containing an RNA helicase-like motif and a Tudor-like domain. Yb is specifically expressed in gonadal somatic cells and regulates piwi in somatic niche cells to control germ line and somatic stem cell self-renewal. However, the molecular basis of the regulation remains elusive. Here, we report that Yb recruits Armitage (Armi), a putative RNA helicase involved in the piRNA pathway, to the Yb body, a cytoplasmic sphere to which Yb is exclusively localized. Moreover, co-immunoprecipitation experiments show that Yb forms a complex with Armi. In Yb mutants, Armi is dispersed throughout the cytoplasm, and Piwi fails to enter the nucleus and is rarely detectable in the cytoplasm. Furthermore, somatic piRNAs are drastically diminished, and soma-expressing transposons are desilenced. These observations indicate a crucial role of Yb and the Yb body in piRNA biogenesis, possibly by regulating the activity of Armi that controls the entry of Piwi into the nucleus for its function. Finally, we discovered putative endo-siRNAs in the flamenco locus and the Yb dependence of their expression. These observations further implicate a role for Yb in transposon silencing via both the piRNA and endo-siRNA pathways. PMID:21106531

  4. NP04634 prevents cell damage caused by calcium overload and mitochondrial disruption in bovine chromaffin cells.

    Science.gov (United States)

    Valero, Teresa; del Barrio, Laura; Egea, Javier; Cañas, Noelia; Martínez, Ana; García, Antonio G; Villarroya, Mercedes; López, Manuela G

    2009-04-01

    Marine sponges are becoming a rich source of potential new medicines. NP04634 is a synthetic derivative of 11,19 dideoxyfistularin, a natural product of the Mediterranean sponge Aplysina cavernicola. We report the cytoprotective effects of this new compound in isolated bovine chromaffin cells exposed to cytotoxic stimuli that have been related to neuronal cell death, i.e. Ca(2+) overload and mitochondrial dysfunction. Cell death was achieved by: (i) causing Ca(2+) overload through voltage-dependent calcium channels by exposing the cells to 30 mM K(+), 5 mM Ca(2+) plus 0.3 microM FPL64176 (an L-type Ca(2+)-channel activator); (ii) incubating the cells with veratridine, causing cytosolic Ca(2+) concentration ([Ca(2+)](c)) oscillations and mitochondrial disruption; and (iii) blocking mitochondrial complexes I and V using a combination of 30 microM rotenone and 10 microM oligomycin. At 10 microM, NP04634 caused significant protection against 30K(+)/5Ca(2+)/FPL-induced toxicity. NP04634 caused a concentration-dependent reduction in [Ca(2+)](c) induced by 70 mM K(+) in cells loaded with Fluo-4; maximum blockade was 67% at 30 microM. Veratridine caused continuous [Ca(2+)](c) oscillations that translated into 43.4+/-2% cell death. In this model, NP04634 caused 42% and 67% protection at 3 and 10 microM, respectively. NP04634 reduced [Ca(2+)](c) oscillations and mitochondrial depolarization caused by veratridine. NP04634 at 10 microM also protected against mitochondrial disruption caused by rotenone plus oligomycin. In conclusion, NP04634 is a novel compound of marine origin with cytoprotective properties that might have potential therapeutic implications under pathological circumstances involving Ca(2+) overload and mitochondrial disruption, such as in certain neurodegenerative diseases and/or stroke. PMID:19233161

  5. Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold

    Institute of Scientific and Technical Information of China (English)

    Yuping Feng; Jiao Wang; Shixin Ling; Zhuo Li; Mingsheng Li; Qiongyi Li; Zongren Ma; Sijiu Yu

    2014-01-01

    The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined speciifc neu-ronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuro-nal-speciifc proteins, includingβIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differen-tiation medium differentiated into a multilayered neural network-like structure with long nerve ifbers that was composed of several parallel microifbers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sec-tioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve.

  6. Immunofluorescence of bovine virus diarrhea viral antigen in white blood cells from experimentally infected immunocompetent calves.

    OpenAIRE

    Bezek, D M; Baker, J. C.; Kaneene, J B

    1988-01-01

    A study to evaluate the detection of bovine virus diarrhea viral antigen using immunofluorescence testing of white blood cells was conducted. Five colostrum-deprived calves were inoculated intravenously with a cytopathic strain of the virus. Lymphocyte and buffy coat smears were prepared daily for direct immunofluorescent staining for detection of antigen. Lymphocytes were separated from heparinized blood using a Ficoll density procedure. Buffy coat smears were prepared from centrifuged blood...

  7. Pasteurella haemolytica leukotoxin induces histamine release from bovine pulmonary mast cells.

    OpenAIRE

    Adusu, T E; Conlon, P D; Shewen, P.E.; Black, W D

    1994-01-01

    Pasteurella haemolytica A1 leukotoxic culture supernatant was evaluated for its ability to induce histamine release from bovine pulmonary mast cells isolated by enzymatic dispersion of lung tissue. Histamine was measured by a radioimmunoassay technique. Leukotoxic culture supernatant of P. haemolytica significantly released histamine in a time and concentration-related manner. This effect was lost when culture supernatant was heat-inactivated or preincubated with leukotoxin neutralizing rabbi...

  8. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    Directory of Open Access Journals (Sweden)

    Sharma Shikhar

    2012-01-01

    Full Text Available Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a is not essential for maintenance of DNA methylation in somatic cells. Knockdown of G9a has no measurable effect on DNA methylation levels at G9a-target loci. DNMT3A/3B remain stably anchored to nucleosomes containing methylated DNA even in the absence of G9a, ensuring faithful propagation of methylated states in cooperation with DNMT1 through somatic divisions. Moreover, G9a also associates with nucleosomes in a DNMT3A/3B and DNA methylation-independent manner. However, G9a knockdown synergizes with pharmacologic inhibition of DNMTs resulting in increased hypomethylation and inhibition of cell proliferation. Conclusions Taken together, these data suggest that G9a is not involved in maintenance of DNA methylation in somatic cells but might play a role in re-initiation of de novo methylation after treatment with hypomethylating drugs, thus serving as a potential target for combinatorial treatments strategies involving DNMTs inhibitors.

  9. Adenosine-5'-triphosphate release by Mannheimia haemolytica, lipopolysaccharide, and interleukin-1 stimulated bovine pulmonary epithelial cells.

    Science.gov (United States)

    Craddick, Michael; Patel, Rakhi; Lower, Amanda; Highlander, Sarah; Ackermann, Mark; McClenahan, David

    2012-09-15

    Mannheimia haemolytica, one of the agents associated with bovine respiratory disease complex, can cause severe lung pathology including the leakage of vascular products into the airways and alveoli. Previous work by this laboratory has demonstrated that bovine lung endothelial and epithelial cells undergo dramatic permeability increases when exposed to adenosine-5'-triphosphate (ATP). Therefore, we wanted to determine if ATP levels were elevated in bronchoalveolar lavage (BAL) samples from calves experimentally infected with M. haemolytica. In addition, cultured bovine pulmonary epithelial (BPE) cells were stimulated with heat-killed and live M. haemolytica bacteria, lipopolysaccharide (LPS), lipoteichoic acid (LTA), interleukin-1 (IL-1), and zymosan activated plasma (ZAP) to determine whether they might release extracellular ATP during in vitro infection. Calves experimentally exposed to M. haemolytica had an approximately 2-fold higher level of ATP in their BAL samples compared to control. BPE cells exposed to increasing numbers of heat-killed or live M. haemolytica had significantly increased levels of ATP release as compared to time-matched controls. Finally, BPE cells treated with several concentrations of LPS and IL-1 had increases in ATP release as compared to time-matched controls. This increase appeared to be a result of active ATP secretion by the cells, as cell viability was similar between treated and non-treated cells. Neither ZAP nor LTA induced any ATP release by the cells. In conclusion, ATP levels are elevated in lung secretions from calves infected with M. haemolytica. In addition, lung epithelial cells can actively release ATP when exposed to heat-killed or live M. haemolytica, LPS or IL-1. PMID:22771196

  10. Animal models of melanoma: a somatic cell gene delivery mouse model allows rapid evaluation of genesimplicated in human melanoma%Animal models of melanoma: a somatic cell gene delivery mouse model allows rapid evaluation of genes implicated in human melanoma

    Institute of Scientific and Technical Information of China (English)

    Andrea J. McKinney; Sheri L. Holmen

    2011-01-01

    The increasing incidence and mortality associated with advanced stages of melanoma are cause for concern. Few treatment options are available for advanced melanoma and the 5-year survival rate is less than 15%. Targeted therapies may revolutionize melanoma treatment by providing less toxic and more effective strategies. However, maximizing effectiveness requires further understanding of the molecular alterations that drive tumor formation, progression, and maintenance, as well as elucidating the mechanisms of resistance. Several different genetic alterations identified in human melanoma have been recapitulated in mice. This review outlines recent progress made in the development of mouse models of melanoma and summarizes what these findings reveal about the human disease. We begin with a discussion of traditional models and conclude with the recently developed RCAS/TVA somatic cell gene delivery mouse model of melanoma.

  11. Detection and analysis of bovine foamy virus infection by an indicator cell line

    Institute of Scientific and Technical Information of China (English)

    Zhe MA; Wen-tao QIAO; Cheng-hao XUAN; Jin-hui XIE; Qi-min CHEN; Yun-qi GENG

    2007-01-01

    Aim: To determine the infectivity and replication strategy of bovine foamy virus (BFV) in different cultured cells using the BFV indicator cell line (BICL) system. Methods: BFV infection was induced by the co-culture method or the transient transfection of the infectious BFV plasmid [Pcmv (cytomegalovirus) - BFV] clone. The infectivity of BFV was monitored by the percentage of green fluorescent protein-positive cells in the BICL. The effect of reverse transcriptase inhibitor zidovudine (AZT) on BFV replication was also evaluated in the BICL. Results-The titer of BFV in fetal bovine lung cells was 4-5-folds more than that in either 293T or HeLa (Cells from Henrietta lacks) cells using the co-culture method, and in the meantime was significantly higher than that produced by the infectious clone Pcmv-BFV in the same cells. AZT had only a minor effect on viral titers when added to cells prior to the virus infection. In contrast, viral titers reduced sharply to the level of the negative control when the virus was produced from cells in the presence of AZT. Conclusions: BICL can be used for the titration of the BFV viral infection in non-cytopathic condition. In addition, we provide important evi-dence to show that reverse transcription is essential for BFV replication at a late step of viral infection.

  12. Comparative Analysis of KnockOut™ Serum with Fetal Bovine Serum for the In Vitro Long-Term Culture of Human Limbal Epithelial Cells

    OpenAIRE

    Shaokun Zhang; Zaoxia Liu; Guanfang Su; Hong Wu

    2016-01-01

    The limbal epithelial cells can be maintained on 3T3 feeder layer with fetal bovine serum supplemented culture medium, and these cells have been used to successfully treat limbal stem cell deficiency. However, fetal bovine serum contains unknown components and displays quantitative and qualitative lot-to-lot variations. To improve the culture condition, the defined KnockOut serum replacement was investigated to replace fetal bovine serum for culturing human limbal epithelial cell. Human prima...

  13. Milk Yield Traits, Somatic Cell Score, Milking Time and Age at Calving of Pure Holstein Versus Crossbred Cow

    Directory of Open Access Journals (Sweden)

    Francesca Malchiodi

    2011-09-01

    Full Text Available Pure Holstein (HO, n=430, crosses between Swedish Red and HO (SRxHO, n=41, Montbeliarde and HO (MOxHO, n=18, and MO and SRxHO (MOxSH, n=53 were compared for milk, fat and protein yield, fat and protein percentage, somatic cell count (SCC, milking time (MT, and age at first and second calving. A total of 180,933 test-day information for milk yield and MT, and 5,249 for fat and protein percentage and SCC were recorded on first and second parity cows milked in one herd of Cremona province (northern Italy. Somatic cell count and MT were log-transformed to somatic cells score (SCS and LnMT, respectively, before statistical investigation. Production traits, LnMT and SCS were analyzed through a mixed model that included fixed effects of test-day, parity, days in milk (DIM, genotype and interaction between parity and genotype, and the random effects of cow nested within genotype and residual, whereas the model for age at calving included year and month of calving and genotype as fixed effects, and residual as random. MOxHO and pure HO cows differed only for age at second calving (70 d higher for purebreds; P<0.05. Holsteins produced more milk (+2.86 kg/d; P<0.01 and protein yield (+0.05 kg/d; P<0.05 than SRxHO crossbreds, but lower protein percentage (-0.09%; P<0.01, and age at second calving was 44 d (P<0.01 higher than SRxHO. Also, HO produced more milk and fat than MOxSH cows (+1.61 and +0.08 kg/d, respectively; P<0.05, but lower protein percentage (-0.11%; P<0.001, and calved later, both at first and second calving (+24 and +43 d, respectively; P<0.05. Results indicated that crossbred cows can compete with the cosmopolitan breed for several traits.

  14. Establishment of bovine embryonic stem cells after knockdown of CDX2.

    Science.gov (United States)

    Wu, Xia; Song, Miao; Yang, Xi; Liu, Xin; Liu, Kun; Jiao, Cuihua; Wang, Jinze; Bai, Chunling; Su, Guanghua; Liu, Xuefei; Li, Guangpeng

    2016-01-01

    Bovine embryonic stem cells (bESCs) have not been successfully established yet. One reason could be that CDX2, as the trophectoderm regulator, expresses in bovine inner cell mass (ICM), which probably becomes a technical barrier for maintaining the pluripotency of bESCs in vitro. We hypothesized that CDX2 knockdown (CDX2-KD) could remove such negative effort, which will be helpful for capturing complete and permanent capacity of pluripotency. Expression and localization of pluripotent genes were not affected in CDX2-KD blastocysts. The CDX2-KD bESCs grew into monolayers on feeder layer. Pluripotent genes expressed at an improved levels and lasted longer time in CDX2-KD bESCs, along with down-regulation of DNA methylation on promoters of both OCT4 and SOX2. The cystic structure typical for trophoblast cells did not show during culturing CDX2-KD bESCs. CDX2-KD bESC-derived Embryoid bodies showed with compact morphology and with the improved levels of differentiations in three germ layers. CDX2-KD bESCs still carried the capacity of forming teratomas with three germ layers after long-term culture. In summary, CDX2 in bovine ICM was inducer of trophoblast lineage with negative effect on maintenance of pluripotency of bESCs. Precise regulation CDX2 expression to switch on/off will be studied next for application on establishment of bESCs. PMID:27320776

  15. Identification of murine B cell lines that undergo somatic hypermutation focused to A:T and G:C residues

    Science.gov (United States)

    Bhattacharya, Palash; Grigera, Fernando; Rogozin, Igor B.; McCarty, Thomas; Morse, Herbert C.; Kenter, Amy L.

    2016-01-01

    Activation-induced deaminase (AID) is the master regulator of class switch recombination (CSR) and somatic hypermutation (SHM), but the mechanisms regulating AID function are obscure. The differential pattern of switch plasmid activity in three IgM+/AID+ and two IgG+/AID+ B cell lines prompted an analysis of global gene expression to discover the origin of these cells. Gene profiling suggested that the IgG+/AID+ B cell lines derived from germinal center B cells. Analysis of SHM potential demonstrates that the IgVκ domains are inducibly diversified at high rate during in vitro culture. The mutation spectra focused to A:T base pairs, revealing a component of the hypermutation program that occurs preferentially during phase 2 of SHM. The A:T error spectra were analyzed and were not characteristic of polymerase η activity. A differential pattern of three consensus motifs used for A:T base substitutions was observed in WT and Polη-, Msh2- and Msh6-deficient B cells. Strikingly, mutations in our B cell lines recapitulated the mutable motif profile for Polη and Msh2 deficiency, respectively, and suggest that an additional pathway for the generation of A:T mutations in SHM is conserved in mouse and human. PMID:18081040

  16. CDX2 regulates multiple trophoblast genes in bovine trophectoderm CT-1 cells.

    Science.gov (United States)

    Schiffmacher, Andrew T; Keefer, Carol L

    2013-10-01

    The bovine trophectoderm (TE) undergoes a dramatic morphogenetic transition prior to uterine endometrial attachment. Many studies have documented trophoblast-specific gene expression profiles at various pre-attachment stages, yet genetic interactions within the transitioning TE gene regulatory network are not well characterized. During bovine embryogenesis, transcription factors OCT4 and CDX2 are co-expressed during early trophoblast elongation. In this study, the bovine trophectoderm-derived CT-1 cell line was utilized as a genetic model to examine the roles of CDX2 and OCT4 within the bovine trophoblast gene regulatory network. An RT-PCR screen for TE-lineage transcription factors identified expression of CDX2, ERRB, ID2, SOX15, ELF5, HAND1, and ASCL2. CT-1 cells also express a nuclear-localized, 360 amino acid OCT4 ortholog of the pluripotency-specific human OCT4A. To delineate the roles of CDX2 and OCT4 within the CT-1 gene network, CDX2 and OCT4 levels were manipulated via overexpression and siRNA-mediated knockdown. An increase in CDX2 negatively regulated OCT4 expression, but increased expression of IFNT, HAND1, ASCL2, SOX15, and ELF5. A reduction of CDX2 levels exhibited a reciprocal effect, resulting in decreased expression of IFNT, HAND1, ASCL2, and SOX15. Both overexpression and knockdown of CDX2 increased ETS2 transcription. In contrast to CDX2, manipulation of OCT4 levels only revealed a positive autoregulatory mechanism and upregulation of ASCL2. Together, these results suggest that CDX2 is a core regulator of multiple trophoblast genes within CT-1 cells. PMID:23836438

  17. Whole Exome Sequencing Identifies Frequent Somatic Mutations in Cell-Cell Adhesion Genes in Chinese Patients with Lung Squamous Cell Carcinoma.

    Science.gov (United States)

    Li, Chenguang; Gao, Zhibo; Li, Fei; Li, Xiangchun; Sun, Yihua; Wang, Mengyun; Li, Dan; Wang, Rui; Li, Fuming; Fang, Rong; Pan, Yunjian; Luo, Xiaoyang; He, Jing; Zheng, Liangtao; Xia, Jufeng; Qiu, Lixin; He, Jun; Ye, Ting; Zhang, Ruoxin; He, Minghui; Zhu, Meiling; Hu, Haichuan; Shi, Tingyan; Zhou, Xiaoyan; Sun, Menghong; Tian, Shilin; Zhou, Yong; Wang, Qiaoxiu; Chen, Longyun; Yin, Guangliang; Lu, Jingya; Wu, Renhua; Guo, Guangwu; Li, Yingrui; Hu, Xueda; Li, Lin; Asan; Wang, Qin; Yin, Ye; Feng, Qiang; Wang, Bin; Wang, Hang; Wang, Mingbang; Yang, Xiaonan; Zhang, Xiuqing; Yang, Huanming; Jin, Li; Wang, Cun-Yu; Ji, Hongbin; Chen, Haiquan; Wang, Jun; Wei, Qingyi

    2015-01-01

    Lung squamous cell carcinoma (SQCC) accounts for about 30% of all lung cancer cases. Understanding of mutational landscape for this subtype of lung cancer in Chinese patients is currently limited. We performed whole exome sequencing in samples from 100 patients with lung SQCCs to search for somatic mutations and the subsequent target capture sequencing in another 98 samples for validation. We identified 20 significantly mutated genes, including TP53, CDH10, NFE2L2 and PTEN. Pathways with frequently mutated genes included those of cell-cell adhesion/Wnt/Hippo in 76%, oxidative stress response in 21%, and phosphatidylinositol-3-OH kinase in 36% of the tested tumor samples. Mutations of Chromatin regulatory factor genes were identified at a lower frequency. In functional assays, we observed that knockdown of CDH10 promoted cell proliferation, soft-agar colony formation, cell migration and cell invasion, and overexpression of CDH10 inhibited cell proliferation. This mutational landscape of lung SQCC in Chinese patients improves our current understanding of lung carcinogenesis, early diagnosis and personalized therapy. PMID:26503331

  18. Immune competence of the mammary gland as affected by somatic cell and pathogenic bacteria in ewes with subclinical mastitis.

    Science.gov (United States)

    Albenzio, M; Santillo, A; Caroprese, M; Ruggieri, D; Ciliberti, M; Sevi, A

    2012-07-01

    Immune competence of the ewe mammary gland was investigated by monitoring the leukocyte differential count, cytokine pattern, and endogenous proteolytic enzymes in milk samples with different somatic cell counts (SCC) and pathogenic bacteria. Furthermore, the leukocyte differential count and T-lymphocyte populations were evaluated in ewe blood. A total of 1,500 individual milk samples were randomly selected from the pool of the samples collected during sampling and grouped into 5 classes of 300 samples each, on the basis of SCC. Classes were 2,000,000 cells/mL. Microbiological analyses of ewe milk were conducted to detect mastitis-related pathogens. Sheep whose udders were without clinical abnormalities, and whose milk was apparently normal but with at least 10(3)cfu/mL of the same pathogen were considered to have subclinical mastitis and therefore defined as infected. Polymorphonuclear neutrophilic leukocytes (PMNL) and macrophages increased with SCC, whereas lymphocytes decreased. Milk samples with SCC >1,000,000 cells/mL showed differences in leukocyte populations between uninfected and infected ewes, with higher percentages of PMNL and macrophages and lower percentages of lymphocytes in infected animals. Nonviable PMNL levels were the highest in ewe milk samples with SCC 500,000 cells/mL, nonviable PMNL were higher in uninfected ewes than in infected ones. In infected animals giving milk with SCC >1,000,000 cells/mL, a higher CD4(+)/CD8(+) ratio was observed, suggesting that the presence of pathogens induced an activation of both CD4(+) and CD8(+). The levels of tumor necrosis factor-α and IL-12 were higher in infected than uninfected ewes, irrespective of SCC. Plasmin activity increased along with SCC and was always higher in infected than uninfected animals; cathepsin D increased starting from 1,001,000 cells/mL in milk samples from noninfected ewes and starting from 301,000 cells/mL in milk samples from infected animals. The associations between somatic

  19. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further

  20. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  1. Bovine Mammary Epithelial Cell Lineages and Parenchymal Development

    Science.gov (United States)

    Mammary development proceeds from an aggregation of cells in the ventral ectoderm to the establishment of an elaborate tree of alveoli, ducts, and cisternae. However, despite abundant data on endocrine regulation of ruminant mammary growth, we know comparatively little about cell lineages, express...

  2. Cytogenetic sequelae in sex and somatic cells at mice subjected to chronic irradiation simulating occupational conditions of radiation effect

    International Nuclear Information System (INIS)

    Cytogenetic effect of chronic irradiation in low doses to study chronic radiation effect upon man under professional conditions has been investigated. The experiments have been carried out on white mice, subjected to chronic effect of 60Co gamma irradiation (during 15 - 19 months in doses of 6, 17 and 50 mrad for 6 - 7 hrs a day). It is shown, that under effect of chronic irradiation, modelling the conditions of professional irradiation effect, in sex and somatic cells of the mice chromosomal aberrations appear, which depend on the age of animals and magnitude of every day dose. However direct dependence of these changes on the magnitude of the total dose has not been established

  3. Somatic cell mutations at the glycophorin A locus in erythrocytes of atomic bomb survivors: Implications for radiation carcinogenesis

    International Nuclear Information System (INIS)

    To clarify the relationship between somatic cell mutations and radiation exposure, the frequency of hemizygous mutant erythrocytes at the glycophorin A (GPA) locus was measured by flow cytometry for 1,226 heterozygous atomic bomb (A-bomb) survivors in HIroshima and Nagasaki. For statistical analysis, both GPA mutant frequency and radiation dose were log-transformed to normalize skewed distributions of these variables. The GPA mutant frequency increased slightly but significantly with age at testing and with the number of cigarettes smoked. Also, mutant frequency was significantly higher in males than in females even with adjustment for smoking and was higher to Hiroshima than in Nagasaki. These characteristics of background GPA mutant frequency are qualitatively similar to those of background solid cancer incidence or mortality obtained from previous epidemiological studies of survivors. An analysis of the mutant frequency dose response using a descriptive model showed that the doubling dose is about 1.20 Sv [95% confidence interval (CI): 0.95-1.56], whereas the minimum dose for detecting a significant increase in mutant frequency is about 0.24 Sv (95% CI: 0.041-0.51). No significant effects of sex, city or age at the time of exposure on the dose response were detected. Interestingly, the doubling dose of the GPA mutant frequency was similar to that of solid cancer incidence in A-bomb survivors. This observation is in line with the hypothesis that radiation-induced somatic cell mutations are the major cause of excess cancer risk after radiation. 49 refs., 6 figs., 2 tabs

  4. Analgesia Induced by Isolated Bovine Chromaffin Cells Implanted in Rat Spinal Cord

    Science.gov (United States)

    Sagen, Jacqueline; Pappas, George D.; Pollard, Harvey B.

    1986-10-01

    Chromaffin cells synthesize and secrete several neuroactive substances, including catecholamines and opioid peptides, that, when injected into the spinal cord, induce analgesia. Moreover, the release of these substances from the cells can be stimulated by nicotine. Since chromaffin cells from one species have been shown to survive when transplanted to the central nervous system of another species, these cells are ideal candidates for transplantation to alter pain sensitivity. Bovine chromaffin cells were implanted into the subarachnoid space of the lumbar spinal region in adult rats. Pain sensitivity and response to nicotine stimulation was determined at various intervals following cell implantation. Low doses of nicotine were able to induce potent analgesia in implanted animals as early as one day following their introduction into the host spinal cord. This response could be elicited at least through the 4 months the animals were tested. The induction of analgesia by nicotine in implanted animals was dose related. This analgesia was blocked by the opiate antagonist naloxone and partially attenuated by the adrenergic antagonist phentolamine. These results suggest that the analgesia is due to the stimulated release of opioid peptides and catecholamines from the implanted bovine chromaffin cells and may provide a new therapeutic approach for the relief of pain.

  5. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer.

    Science.gov (United States)

    Liu, Guoqian; Liu, Kai; Wei, Hengxi; Li, Li; Zhang, Shouquan

    2016-09-01

    Cas9 endonuclease, from so-called clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems of Streptococcus pyogenes, type II functions as an RNA-guided endonuclease and edits the genomes of prokaryotic and eukaryotic organisms, including deletion and insertion by DNA double‑stranded break repair mechanisms. In previous studies, it was observed that Cas9, with a genome‑scale lentiviral single‑guide RNA library, could be applied to a loss‑of‑function genetic screen, although the loss‑of‑function genes have yet to be verified in vitro and this approach has not been used in porcine cells. Based on these observations, lentiviral Cas9 was used to infect porcine primary fibroblasts to achieve cell colonies carrying Cas9 endonuclease. Subsequently, porcine fetal fibroblasts expressing the tetracycline‑inducible Cas9 gene were generated by somatic cell nuclear transfer, and three 30 day transgenic porcine fetal fibroblasts (PFFs) were obtained. Polymerase chain reaction (PCR), reverse transcription‑PCR and western blot analysis indicated that the PFFs were Cas9‑positive. In addition, one of the three integrations was located near to known functional genes in the PFF1 cell line, whereas neither of the integrations was located in the PFF1 or PFF2 cell lines. It was hypothesized that these transgenic PFFs may be useful for conditional genomic editing in pigs, and for generating ideal modified porcine models. PMID:27430306

  6. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer

    Science.gov (United States)

    Liu, Guoqian; Liu, Kai; Wei, Hengxi; Li, Li; Zhang, Shouquan

    2016-01-01

    Cas9 endonuclease, from so-called clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems of Streptococcus pyogenes, type II functions as an RNA-guided endonuclease and edits the genomes of prokaryotic and eukaryotic organisms, including deletion and insertion by DNA double-stranded break repair mechanisms. In previous studies, it was observed that Cas9, with a genome-scale lentiviral single-guide RNA library, could be applied to a loss-of-function genetic screen, although the loss-of-function genes have yet to be verified in vitro and this approach has not been used in porcine cells. Based on these observations, lentiviral Cas9 was used to infect porcine primary fibroblasts to achieve cell colonies carrying Cas9 endonuclease. Subsequently, porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene were generated by somatic cell nuclear transfer, and three 30 day transgenic porcine fetal fibroblasts (PFFs) were obtained. Polymerase chain reaction (PCR), reverse transcription-PCR and western blot analysis indicated that the PFFs were Cas9-positive. In addition, one of the three integrations was located near to known functional genes in the PFF1 cell line, whereas neither of the integrations was located in the PFF1 or PFF2 cell lines. It was hypothesized that these transgenic PFFs may be useful for conditional genomic editing in pigs, and for generating ideal modified porcine models. PMID:27430306

  7. Genotoxic and biochemical effects of Yohimbe after short-term treatment in somatic and germ cells of Swiss Albino Mice

    International Nuclear Information System (INIS)

    Yohimbe was evaluated for its effects on cytological and biochemical toxicity in male Swiss albino mice. Adult male mice were mice were treated with different doses (750, 1500 and 3000 mg yohombe/kg., body weight/day) in form of an aqueous suspension for 7 consecutive days by gavage. The following parameters were evaluated: (i) cytological studies on micronucleus test, (ii) cytological analysis of spermatozoa abnormalities, (iii) Cytogentic analysis of meiotic chromosomes in the tests, (iv) quantification of proteins, ribose nucleic acid (RNA) and deoxyribose nucleic acid (DNA) in hepatic and testicular cells and (v) estimation of malondialdehyde (MDA) and nonprotein sulfhydryl (NP-SH) in hepatic and testicular cells. The treatment caused significant changes in the frequency of micronuclei in the femoral cells and induced spermatozoal abnormalities and testicular chromosomal aberrations. The study on biochemical parameters showed an increase of MDA and depletion of NP-SH, proteins, RNA and DNA in both hepatic and testicular cells. The data elucidated the role of free radical species in cytological and biochemical changes in both somatic and germ cells of Swiss albino mice. The exact mechanism of the genesis of lipid peroxides is not known, however, this might be related to the influence of yohimbine (the principal constituent of yohimbe) to enhance some catecholamines, including norepineprine which possess destructive stimuli on biological systems. It is suggested that, in view of the observed cytological and biochemical effects of yohimbe, it may be subjected to a thorough evaluation of toxicity before making it available for human use. (author)

  8. Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells.

    Science.gov (United States)

    Bai, Chunyu; Li, Xiangchen; Gao, Yuhua; Yuan, Ziao; Hu, Pengfei; Wang, Hui; Liu, Changqing; Guan, Weijun; Ma, Yuehui

    2016-09-01

    Melatonin can modulate neural stem cell (NSC) functions such as proliferation and differentiation into NSC-derived pluripotent stem cells (N-iPS) in brain tissue, but the effect and mechanism underlying this are unclear. Thus, we studied how primary cultured bovine NSCs isolated from the retinal neural layer could transform into N-iPS cell. NSCs were exposed to 0.01, 0.1, 1, 10, or 100 μm melatonin, and cell viability studies indicated that 10 μm melatonin can significantly increase cell viability and promote cell proliferation in NSCs in vitro. Thus, 10 μm melatonin was used to study miR-302/367-mediated cell reprogramming of NSCs. We noted that this concentration of melatonin increased reprogramming efficiency of N-iPS cell generation from primary cultured bovine NSCs and that this was mediated by downregulation of apoptosis-related genes p53 and p21. Then, N-iPS cells were treated with 1, 10, 100, or 500 μm melatonin, and N-iPS (M-N-iPS) cell proliferation was measured. We noted that 100 μm melatonin increased proliferation of N-iPS cells via increased phosphorylation of intracellular ERK1/2 via activation of its pathway in M-N-iPS via melatonin receptors 1 (MT1). Finally, we verified that N-iPS cells and M-N-iPS cells are similar to typical embryonic stem cells including the expression of pluripotency markers (Oct4 and Nanog), the ability to form teratomas in vivo, and the capacity to differentiate into all three embryonic germ layers. PMID:27090494

  9. Genetic parameters for somatic cell score according to udder infection status in Valle del Belice dairy sheep and impact of imperfect diagnosis of infection.

    NARCIS (Netherlands)

    Riggio, V.; Portolano, B.; Bovenhuis, H.; Scatassa, S.; Bishop, S.C.

    2010-01-01

    Background Somatic cell score (SCS) has been promoted as a selection criterion to improve mastitis resistance. However, SCS from healthy and infected animals may be considered as separate traits. Moreover, imperfect sensitivity and specificity could influence animals' classification and impact on es

  10. Genetic parameters for somatic cell score according to udder infection status in Valle del Belice dairy sheep and impact of imperfect diagnosis of infection

    NARCIS (Netherlands)

    Riggio, V.; Portolano, B.; Bovenhuis, H.; Scatassa, S.; Caracappa, S.; Bishop, S.C.

    2011-01-01

    BACKGROUND: Somatic cell score (SCS) has been promoted as a selection criterion to improve mastitis resistance. However, SCS from healthy and infected animals may be considered as separate traits. Moreover, imperfect sensitivity and specificity could influence animals' classification and impact on e

  11. Resistance to penicillin of Staphylococcus aureus isolates from cows with high somatic cell counts in organic and conventional dairy herds in Denmark

    DEFF Research Database (Denmark)

    Bennedsgaard, Torben W.; Thamsborg, Stig M.; Aarestrup, Frank Møller;

    2006-01-01

    . Risk of infection was estimated based on somatic cell count, milk production, breed, age and lactation stage. Results: The high-risk cows represented about 49% of the cows in the herds. The overall prevalence of SA and SAr among these cows was 29% (95% confidence interval: 24%-34%) and 4% (95...

  12. A precise, low-cost milk sampler to enable the analysis of fat, protein, lactose and somatic cells in milk from individual cows

    NARCIS (Netherlands)

    Clarke, T.; Hannah, M.C.; Wientjes, H.A.

    2007-01-01

    Less than half of Australian dairy farmers undertake production recording that normally requires the collection of milk samples for the measurements of fat, protein and lactose percentages and somatic cell count. Usually the milk samples are collected from individual animals on a `one-day-per-month¿

  13. Stimulation of Activin A/Nodal signaling is insufficient to induce definitive endoderm formation of cord blood-derived unrestricted somatic stem cells

    OpenAIRE

    Filby, Caitlin E.; Williamson, Robert; van Kooy, Peter; Pébay, Alice; Dottori, Mirella; Elwood, Ngaire J.; Zaibak, Faten

    2011-01-01

    Introduction Unrestricted somatic stem cells (USSC) derived from umbilical cord blood are an attractive alternative to human embryonic stem cells (hESC) for cellular therapy. USSC are capable of forming cells representative of all three germ line layers. The aim of this study was to determine the potential of USSC to form definitive endoderm following induction with Activin A, a protein known to specify definitive endoderm formation of hESC. Methods USSC were cultured for (1) three days with ...

  14. Endotoxin induction of an inhibitor of plasminogen activator in bovine pulmonary artery endothelial cells

    International Nuclear Information System (INIS)

    The effects of bacterial lipopolysaccharide (endotoxin) on the fibrinolytic activity of bovine pulmonary artery endothelial cells were examined. Endotoxin suppressed the net fibrinolytic activity of cell extracts and conditioned media in a dose-dependent manner. The effects of endotoxin required at least 6 h for expression. Cell extracts and conditioned media contained a 44-kDa urokinase-like plasminogen activator. Media also contained multiple plasminogen activators with molecular masses of 65-75 and 80-100 kDa. Plasminogen activators in extracts and media were unchanged by treatment of cells with endotoxin. Diisopropyl fluorophosphate (DFP)-abolished fibrinolytic activity of extracts and conditioned media. DFP-treated samples from endotoxin-treated but not untreated cells inhibited urokinase and tissue plasminogen activator, but not plasmin. Inhibitory activity was lost by incubation at pH 3 or heating to 560C for 10 min. These treatments did not affect inhibitory activity of fetal bovine serum. Incubation of 125I-urokinase with DFP-treated medium from endotoxin-treated cells produced an inactive complex with an apparent molecular mass of 80-85 kDa

  15. Sulfated glycosaminoglycans in cultured endothelial cells from capillaries and large vessels of human and bovine origin

    International Nuclear Information System (INIS)

    The (35S)glycosaminoglycans ((35S)GAG) synthesized by capillary endothelial cells were analyzed and compared to GAG synthesized by endothelial cells cultured from 4 larger vessels. Two separate cultures of endothelial cells were established from bovine fat capillaries and from 4 larger vessels of human origin (umbilical vein) and bovine origin (pulmonary artery, pulmonary vein and aorta). After incubation with 35SO4 for 72 h, the (35S)glycosaminoglycans (GAG) composition of the media, pericellular and cellular fractions of each culture were determined by selective degradation with nitrous acid, chondroitinase ABC and chondroitinase AC. All endothelial cells produced large amounts of (35S)GAG with increased proportions of heparinoids (heparan sulfate and heparin) in the cellular and pericellular fractions. Each culture showed a distinct distribution of (35S)GAG in the media, pericellular and cellular fractions with several specific differences found among the 5 cultures. The differences in GAG content were confirmed in a second group of separate cultures from each of the 5 vessels indicating that, although having several features of GAG metabolism in common, each endothelial cell culture demonstrated a characteristic complement of synthesized, secreted and cell surface-sulfated glycosaminoglycans. (author)

  16. Role of endothelial cells in bovine mammary gland health and disease.

    Science.gov (United States)

    Ryman, Valerie E; Packiriswamy, Nandakumar; Sordillo, Lorraine M

    2015-12-01

    The bovine mammary gland is a dynamic and complex organ composed of various cell types that work together for the purpose of milk synthesis and secretion. A layer of endothelial cells establishes the blood-milk barrier, which exists to facilitate the exchange of solutes and macromolecules necessary for optimal milk production. During bacterial challenge, however, endothelial cells divert some of their lactation function to protect the underlying tissue from damage by initiating inflammation. At the onset of inflammation, endothelial cells tightly regulate the movement of plasma components and leukocytes into affected tissue. Unfortunately, endothelial dysfunction as a result of exacerbated or sustained inflammation can negatively affect both barrier integrity and the health of surrounding extravascular tissue. The objective of this review is to highlight the role of endothelial cells in supporting milk production and regulating optimal inflammatory responses. The consequences of endothelial dysfunction and sustained inflammation on milk synthesis and secretion are discussed. Given the important role of endothelial cells in orchestrating the inflammatory response, a better understanding of endothelial function during mastitis may support development of targeted therapies to protect bovine mammary tissue and mammary endothelium. PMID:26303748

  17. Influence of somatic cell donor breed on reproductive performance and comparison of prenatal growth in cloned canines.

    Science.gov (United States)

    Jeong, Yeon Woo; Kim, Joung Joo; Hossein, Mohammad Shamim; Hwang, Kyu Chan; Hwang, In-sung; Hyun, Sang Hwan; Kim, Nam-Hyung; Han, Ho Jae; Hwang, Woo Suk

    2014-06-01

    Using in vivo-flushed oocytes from a homogenous dog population and subsequent embryo transfer after nuclear transfer, we studied the effects of donor cells collected from 10 different breeds on cloning efficiency and perinatal development of resulted cloned puppies. The breeds were categorized into four groups according to their body weight: small (≤9 kg), medium (>9-20 kg), large (>20-40 kg), and ultra large (>40 kg). A total of 1611 cloned embryos were transferred into 454 surrogate bitches for production of cloned puppies. No statistically significant differences were observed for initial pregnancy rates at Day 30 of embryo transfer for the donor cells originated from different breeds. However, full-term pregnancy rates were 16.5%, 11.0%, 10.0%, and 7.1% for the donor cells originated from ultra-large breed, large, medium, and small breeds, respectively, where pregnancy rate in the ultra-large group was significantly higher compared with the small breeds (P pups significantly increased proportional to breed size. The highest litter size was examined in ultra-large breeds. There was no correlation between the number of embryo transferred and litter size. Taken together, the efficiency of somatic cell cloning and fetal survival after embryo transfer may be affected significantly by selecting the appropriate genotype. PMID:24613602

  18. Correlation between somatic cell count and chemical composition of cooled raw milk in properties of Rio Grande do Norte, Brazil

    Directory of Open Access Journals (Sweden)

    Adriano Henrique do Nascimento Rangel

    2014-06-01

    Full Text Available Due to the damage caused by subclinical mastitis in loss of production and quality of milk, the present study aimed to verify the correlation between somatic cell count (SCC and the chemical composition of cooled raw milk collected in the Agreste region of Rio Grande do Norte, Brazil, in drought and rain seasons. Samples were collected in seven dairy farms during morning time, between January 2010 and March 2012, and sent to the Brazilian et of Milk Quality Laboratory (ESALQ/USP. The contents of protein, fat, lactose, casein, total solids, nonfat dry extract and urea nitrogen, besides of SCC and total bacterial count were performed. Data were submitted to analysis of variance, correlation analysis and comparison of means by Tuckey test , 5%. The average SCC was 604,000 cells/mL and had significant variation in the dry period (558 000 cells/mL and rainy (650 000 cells/mL. The SCC was positively correlated with fat and total solids but negatively with the lactose cow’s milk of bulk tank, regardless of the season in the Agreste of Rio Grande do Norte.

  19. Local Genome Topology Can Exhibit an Incompletely Rewired 3D-Folding State during Somatic Cell Reprogramming.

    Science.gov (United States)

    Beagan, Jonathan A; Gilgenast, Thomas G; Kim, Jesi; Plona, Zachary; Norton, Heidi K; Hu, Gui; Hsu, Sarah C; Shields, Emily J; Lyu, Xiaowen; Apostolou, Effie; Hochedlinger, Konrad; Corces, Victor G; Dekker, Job; Phillips-Cremins, Jennifer E

    2016-05-01

    Pluripotent genomes are folded in a topological hierarchy that reorganizes during differentiation. The extent to which chromatin architecture is reconfigured during somatic cell reprogramming is poorly understood. Here we integrate fine-resolution architecture maps with epigenetic marks and gene expression in embryonic stem cells (ESCs), neural progenitor cells (NPCs), and NPC-derived induced pluripotent stem cells (iPSCs). We find that most pluripotency genes reconnect to target enhancers during reprogramming. Unexpectedly, some NPC interactions around pluripotency genes persist in our iPSC clone. Pluripotency genes engaged in both "fully-reprogrammed" and "persistent-NPC" interactions exhibit over/undershooting of target expression levels in iPSCs. Additionally, we identify a subset of "poorly reprogrammed" interactions that do not reconnect in iPSCs and display only partially recovered, ESC-specific CTCF occupancy. 2i/LIF can abrogate persistent-NPC interactions, recover poorly reprogrammed interactions, reinstate CTCF occupancy, and restore expression levels. Our results demonstrate that iPSC genomes can exhibit imperfectly rewired 3D-folding linked to inaccurately reprogrammed gene expression. PMID:27152443

  20. Fanca deficiency reduces A/T transitions in somatic hypermutation and alters class switch recombination junctions in mouse B cells.

    Science.gov (United States)

    Nguyen, Thuy Vy; Riou, Lydia; Aoufouchi, Saïd; Rosselli, Filippo

    2014-06-01

    Fanconi anemia is a rare genetic disorder that can lead to bone marrow failure, congenital abnormalities, and increased risk for leukemia and cancer. Cells with loss-of-function mutations in the FANC pathway are characterized by chromosome fragility, altered mutability, and abnormal regulation of the nonhomologous end-joining (NHEJ) pathway. Somatic hypermutation (SHM) and immunoglobulin (Ig) class switch recombination (CSR) enable B cells to produce high-affinity antibodies of various isotypes. Both processes are initiated after the generation of dG:dU mismatches by activation-induced cytidine deaminase. Whereas SHM involves an error-prone repair process that introduces novel point mutations into the Ig gene, the mismatches generated during CSR are processed to create double-stranded breaks (DSBs) in DNA, which are then repaired by the NHEJ pathway. As several lines of evidence suggest a possible role for the FANC pathway in SHM and CSR, we analyzed both processes in B cells derived from Fanca(-/-) mice. Here we show that Fanca is required for the induction of transition mutations at A/T residues during SHM and that despite globally normal CSR function in splenic B cells, Fanca is required during CSR to stabilize duplexes between pairs of short microhomology regions, thereby impeding short-range recombination downstream of DSB formation. PMID:24799500

  1. Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation

    International Nuclear Information System (INIS)

    T-cell large granular lymphocytic (T-LGL) leukemia is a clonal disease characterized by the expansion of mature CD3+CD8+ cytotoxic T cells. It is often associated with autoimmune disorders and immune-mediated cytopenias. Our recent findings suggest that up to 40% of T-LGL patients harbor mutations in the STAT3 gene, whereas STAT5 mutations are present in 2% of patients. In order to identify putative disease-causing genetic alterations in the remaining T-LGL patients, we performed exome sequencing from three STAT mutation-negative patients and validated the findings in 113 large granular lymphocytic (LGL) leukemia patients. On average, 11 CD8+ LGL leukemia cell-specific high-confidence nonsynonymous somatic mutations were discovered in each patient. Interestingly, all patients had at least one mutation that affects either directly the STAT3-pathway (such as PTPRT) or T-cell activation (BCL11B, SLIT2 and NRP1). In all three patients, the STAT3 pathway was activated when studied by RNA expression or pSTAT3 analysis. Screening of the remaining 113 LGL leukemia patients did not reveal additional patients with same mutations. These novel mutations are potentially biologically relevant and represent rare genetic triggers for T-LGL leukemia, and are associated with similar disease phenotype as observed in patients with mutations in the STAT3 gene

  2. Genotoxic damage induced by isopropanol in germinal and somatic cells of Drosophila melanogaster.

    Science.gov (United States)

    Palermo, Ana María; Mudry, Marta Dolores

    2011-12-24

    Isopropanol (isopropyl alcohol, 2-propanol, IPA) is a volatile solvent widely used in domestic or industrial environments and reported as innocuous in various test systems. The aim of this work was to search for in vivo genotoxic effects of IPA in Drosophila melanogaster, studying its ability to induce nondisjunction (ND) in females, sex linked recessive lethals (SLRL) in males, and somatic mutation and/or recombination (SMART) in larvae. Treatments were acute (60min) and were administered via inhalation. IPA had low toxicity in adult flies (75% IPA mortality index, MI=12.7% (females) and 2.6% (males)) and larvae (MI=14.3%, 75% IPA). Female fertility was severely affected during the first 24h (brood I, BI) after treatment, but, afterwards, control values were recovered. IPA induced a 50-fold increase of ND (%) in 24h old females, and a six-fold rise in 4-5 d old BI offspring. Nondisjunction frequencies (%) in the offspring of broods II to V (24h in each case) were similar to control values. IPA doses of 25% and 50% (v/v), tested in 24h old females, showed a significant dose-dependent increase of ND(%)in BI only, with control values in subsequent broods. Flies gave normal offspring when kept in regular media for 24h before mating. The eye spot test (SMART) showed a significant increase at 50% IPA (pDNA directly, but perturbations of the nuclear membrane may be responsible for induction of ND. PMID:22001194

  3. Antimutagenic and antirecombinagenic activities of noni fruit juice in somatic cells of Drosophila melanogaster.

    Science.gov (United States)

    Franchi, Leonardo P; Guimarães, Nilza N; De Andrade, Laise R; De Andrade, Heloísa H R; Lehmann, Maurício; Dihl, Rafael R; Cunha, Kênya S

    2013-01-01

    Noni, a Hawaiian name for the fruit of Morinda citrifolia L., is a traditional medicinal plant from Polynesia widely used for the treatment of many diseases including arthritis, diabetes, asthma, hypertension and cancer. Here, a commercial noni juice (TNJ) was evaluated for its protective activities against the lesions induced by mitomycin C (MMC) and doxorrubicin (DXR) using the Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster. Three-day-old larvae, trans-heterozygous for two genetic markers (mwh and flr3 ), were co-treated with TNJ plus MMC or DXR. We have observed a reduction in genotoxic effects of MMC and DXR caused by the juice. TNJ provoked a marked decrease in all kinds of MMC- and DXR-induced mutant spots, mainly due to its antirecombinagenic activity. The TNJ protective effects were concentration-dependent, indicating a dose-response correlation, that can be attributed to a powerful antioxidant and/or free radical scavenger ability of TNJ. PMID:23828338

  4. Recombinagenic activity of integerrimine, a pyrrolizidine alkaloid from Senecio brasiliensis, in somatic cells of Drosophila melanogaster.

    Science.gov (United States)

    Campesato, V R; Graf, U; Reguly, M L; de Andrade, H H

    1997-01-01

    Integerrimine (ITR), a pyrrolizidine alkaloid from Senecio brasiliensis, was tested for genotoxicity using the wing somatic mutation and recombination test (SMART) in Drosophila melanogaster. The compound was administered by chronic feeding (48 hours) of 3-day-old larvae. Two different crosses involving the markers flare (flr) and multiple wing hairs (mwh) were used, that is, the standard (ST) cross and the high bioactivation (HB) cross, which has a high cytochrome P450-dependent bioactivation capacity. In both crosses, the wings of two types of progeny were analyzed, that is, inversion-free marker heterozygotes and balancer heterozygotes carrying multiple inversions. ITR was found to be equally potent in inducing spots in a dose-related manner in the marker heterozygotes of both crosses. This indicates that the bioactivation capacity present in larvae of the ST cross is sufficient to reveal the genotoxic activity of ITR. In the balancer heterozygotes of both crosses, where all recombinational events are eliminated due to the inversions, the frequencies of induced spots were considerably reduced which documents the recombinagenic activity of ITR. Linear regression analysis of the dose response relationships for both genotypes shows that 85% to 90% of the wing spots are due to mitotic recombination. PMID:9020312

  5. Are there two functionally distinguished Neu5Gc pools with respect to rouleau formation on the bovine red blood cell?

    Science.gov (United States)

    Musielak, Malgorzata

    2004-01-01

    Bovine red blood cells (RBCs) do not exhibit any aggregation tendency in autologous plasma and, therefore, all bovine rouleaux obtained in vitro are regarded as artificial. The present study reports the bovine RBC rouleau formation by either bovine or human fibrinogen and Ca2+ ions. The phenomenon was induced through two-step cell incubation: in 0.9% NaCl and 1% bovine albumin at 37 degrees C for 30 min followed by 20 hrs incubation at 30 degrees C in the fresh solution supplemented with 10 mM glucose. Its mechanism is unknown. During the incubation the number of N-glycolylneuraminic acid molecules per cell decreased from 48.1 to 44.9 amoles, which accounted for 7%. The treatment of RBCs with V. cholerae sialidase under the same conditions resulted in a 94% drop in the Neu5Gc quantity and did not induce the rouleau formation in the same fibrinogen preparation. The preliminary results rise a question whether the bulk of sialic acid is required in the aggregation of bovine erythrocytes under static conditions. Only a minor pool of Neu5Gc seems to be responsible for suppression of the phenomenon. PMID:15258381

  6. Comparison of Diverse Differential Plating Methods to Enrich Bovine Spermatogonial Cells.

    Science.gov (United States)

    Giassetti, M I; Goissis, M D; de Barros, Fro; Bruno, A H; Assumpção, Meoa; Visintin, J A

    2016-02-01

    Spermatogonial stem cells (SSC) have important applications in domestic animal reproduction and advanced biotechnologies. Because differential plating is one of the most common methods used for SSC enrichment, the goal of this study was to compare three differential plating methods for the enrichment of bovine SSC. To achieve this goal, testicular parenchyma from pre-pubertal calves was minced and single cells were obtained after two enzymatic digestions. We compared three coating methods for differential plating: laminin (20 ng/ml), BSA (0.05 mg/ml) and PBS. Cells were incubated at 37°C, 5% CO2 in air for 15 min onto laminin-coated dishes or 2 h onto BSA- or PBS-coated dishes. Cell viability was assessed by trypan blue exclusion method. Recovered cells were analysed for the expression of SSC molecular markers by quantitative RT-PCR (GFRA1, CXCR4, ITGA6, THY1) and flow cytometry (GFRA1, CXCR4 and ITGA6). Cells at time 0, adherent cells on laminin and non-adherent cells from BSA and PBS groups had the same cell viability (p = 0.0655). GFRA1, CXCR4 and THY1 relative gene expression was higher (p = 0.0402, p = 0.0007, p = 0.0117, respectively) for non-adherent cells selected in PBS group. Flow cytometry analysis revealed that the presence of GFRA-positive (GFRA+) cells was higher in non-adherent cells from BSA and PBS groups (p method for the enrichment of bovine undifferentiated spermatogonia and higher expression of SSC markers is obtained without laminin or BSA coating. PMID:26576932

  7. Comparative study on influence of fetal bovine serum and serum of adult rat on cultivation of newborn rat neural cells

    Directory of Open Access Journals (Sweden)

    Sukach A. N.

    2014-09-01

    Full Text Available Aim. To study the influence of fetal bovine serum and serum of adult rats on behavior of newborn rat isolated neural cells during their cultivation in vitro. Methods. The isolation of neural cells from neonatal rat brain. The determination of the dynamics of cellular monolayer formation. Immunocytochemical staining of cells for β-tubulin III, nestin and vimentin. Results. It has been determined that the addition of serum of adult rats to the cultivation medium creates more favorable conditions for survival, attachment and spread of differentiated, and proliferation of the stem/progenitor neural cells of newborn rats during cultivation in vitro compared with the fetal bovine serum. Conclusions. Using the serum of adult rats is preferable for the cultivation of isolated neural cells of newborn rats compared with the fetal bovine serum.

  8. Designing bovine T cell vaccines via reverse immunology

    DEFF Research Database (Denmark)

    Nene, Vishvanath; Svitek, Nicholas; Toye, Philip;

    2012-01-01

    T cell responses contribute to immunity against many intracellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymph...

  9. Designing bovine T-cell vaccines via reverse immunology

    Science.gov (United States)

    T-cell responses contribute to immunity against many intra-cellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymphop...

  10. Bovine lactoferrin regulates cell survival, apoptosis and inflammation in intestinal epithelial cells and preterm pig intestine

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh; Jiang, Pingping; Stensballe, Allan; Bendixen, Emøke; Sangild, Per T.; Chatterton, Dereck E. W.

    2016-01-01

    Bovine lactoferrin (bLF) may modulate neonatal intestinal inflammation. Previous studies in intestinal epithelial cells (IECs) indicated that moderate bLF doses enhance proliferation whereas high doses trigger inflammation. To further elucidate cellular mechanisms, we profiled the porcine IEC...... proteome after stimulation with bLF at 0, 0.1, 1 and 10g/L by LC-MS-based proteomics. Key pathways were analyzed in the intestine of formula-fed preterm pigs with and without supplementation of 10g/L bLF. Levels of 123 IEC proteins were altered by bLF. Low bLF doses (0.1-1g/L) up-regulated 11 proteins...... acid metabolism, and altered three proteins enhancing the hypoxia inducible factor-1 (HIF-1) pathway. In the preterm pig intestine, bLF at 10g/L decreased villus height/crypt depth ratio and up-regulated the Bax/Bcl-2 ratio and HIF-1α, indicating elevated intestinal apoptosis and inflammation. In...

  11. Spontaneously immortalised bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li Qianqian

    2010-10-01

    Full Text Available Abstract Background Spontaneous immortalisation of cultured mammary epithelial cells (MECs is an extremely rare event, and the molecular mechanism behind spontaneous immortalisation of MECs is unclear. Here, we report the establishment of a spontaneously immortalised bovine mammary epithelial cell line (BME65Cs and the changes in gene expression associated with BME65Cs cells. Results BME65Cs cells maintain the general characteristics of normal mammary epithelial cells in morphology, karyotype and immunohistochemistry, and are accompanied by the activation of endogenous bTERT (bovine Telomerase Reverse Transcriptase and stabilisation of the telomere. Currently, BME65Cs cells have been passed for more than 220 generations, and these cells exhibit non-malignant transformation. The expression of multiple genes was investigated in BME65Cs cells, senescent BMECs (bovine MECs cells, early passage BMECs cells and MCF-7 cells (a human breast cancer cell line. In comparison with early passage BMECs cells, the expression of senescence-relevant apoptosis-related gene were significantly changed in BME65Cs cells. P16INK4a was downregulated, p53 was low expressed and Bax/Bcl-2 ratio was reversed. Moreover, a slight upregulation of the oncogene c-Myc, along with an undetectable level of breast tumor-related gene Bag-1 and TRPS-1, was observed in BME65Cs cells while these genes are all highly expressed in MCF-7. In addition, DNMT1 is upregulated in BME65Cs. These results suggest that the inhibition of both senescence and mitochondrial apoptosis signalling pathways contribute to the immortality of BME65Cs cells. The expression of p53 and p16INK4a in BME65Cs was altered in the pattern of down-regulation but not "loss", suggesting that this spontaneous immortalization is possibly initiated by other mechanism rather than gene mutation of p53 or p16INK4a. Conclusions Spontaneously immortalised BME65Cs cells maintain many characteristics of normal BMEC cells and

  12. Characteristics of the somatic hypermutation in the Camelus dromedarius T cell receptor gamma (TRG) and delta (TRD) variable domains.

    Science.gov (United States)

    Ciccarese, Salvatrice; Vaccarelli, Giovanna; Lefranc, Marie-Paule; Tasco, Gianluca; Consiglio, Arianna; Casadio, Rita; Linguiti, Giovanna; Antonacci, Rachele

    2014-10-01

    In previous reports, we had shown in Camelus dromedarius that diversity in T cell receptor gamma (TRG) and delta (TRD) variable domains can be generated by somatic hypermutation (SHM). In the present paper, we further the previous finding by analyzing 85 unique spleen cDNA sequences encoding a total of 331 mutations from a single animal, and comparing the properties of the mutation profiles of dromedary TRG and TRD variable domains. The transition preference and the significant mutation frequency in the AID motifs (dgyw/wrch and wa/tw) demonstrate a strong dependence of the enzymes mediating SHM in TRG and TRD genes of dromedary similar to that of immunoglobulin genes in mammals. Overall, results reveal no asymmetry in the motifs targeting, i.e. mutations are equally distributed among g:c and a:t base pairs and replacement mutations are favored at the AID motifs, whereas neutral mutations appear to be more prone to accumulate in bases outside of the motifs. A detailed analysis of clonal lineages in TRG and TRD cDNA sequences also suggests that clonal expansion of mutated productive rearrangements may be crucial in shaping the somatic diversification in the dromedary. This is confirmed by the fact that our structural models, computed by adopting a comparative procedure, are consistent with the possibility that, irrespective of where (in the CDR-IMGT or in FR-IMGT) the diversity was generated by mutations, both clonal expansion and selection seem to be strictly related to an enhanced structural stability of the γδ subunits. PMID:24836674

  13. Somatic Embryogenesis in Peach Palm Using the Thin Cell Layer Technique: Induction, Morpho-histological Aspects and AFLP Analysis of Somaclonal Variation

    Science.gov (United States)

    Steinmacher, D. A.; Krohn, N. G.; Dantas, A. C. M.; Stefenon, V. M.; Clement, C. R.; Guerra, M. P.

    2007-01-01

    Background and Aims The thin cell layer (TCL) technique is based on the use of very small explants and has allowed enhanced in vitro morphogenesis in several plant species. The present study evaluated the TCL technique as a procedure for somatic embryo production and plantlet regeneration of peach palm. Methods TCL explants from different positions in the shoot apex and leaf sheath of peach palm were cultivated in MS culture medium supplemented with 0–600 µm Picloram in the presence of activated charcoal. The production of primary calli and embryogenic calli was evaluated in these different conditions. Histological and amplified fragment length polymorphism (AFLP) analyses were conducted to study in vitro morphogenetic responses and genetic stability, respectively, of the regenerated plantlets. Key Results Abundant primary callus induction was observed from TCLs of the shoot meristem in culture media supplemented with 150–600 µm Picloram (83–97 %, respectively). The production of embryogenic calli depends on Picloram concentration and explant position. The best response observed was 43 % embryogenic callus production from shoot meristem TCL on 300 µm Picloram. In maturation conditions, 34 ± 4 somatic embryos per embryogenic callus were obtained, and 45·0 ± 3·4 % of these fully developed somatic embryos were converted, resulting in plantlets ready for acclimatization, of which 80 % survived. Histological studies revealed that the first cellular division events occurred in cells adjacent to vascular tissue, resulting in primary calli, whose growth was ensured by a meristematic zone. A multicellular origin of the resulting somatic embryos arising from the meristematic zone is suggested. During maturation, histological analyses revealed bipolarization of the somatic embryos, as well as the development of new somatic embryos. AFLP analyses revealed that 92 % of the regenerated plantlets were true to type. The use of TCL explants considerably improves the

  14. Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Omega-3(ω-3) fatty acid desaturase transgenic pigs may improve carcass fatty acid composition. The use of transgenic pigs is also an excellent large animal model for studying the role of ω-3 fatty acids in the prevention and treatment of coronary heart disease and cancer. Transgenic pigs carrying synthesized fatty acid desaturase-1 gene (sFat-1) from Caenorhabditis briggsae by somatic cell nuclear transfer (SCNT) were produced for the first time in China. Porcine fetal fibroblast cells were transfected with a sFat-1 expression cassette by the liposome-mediated method. Transgenic embryos were reconstructed by nuclear transfer of positive cells into enucleated in vitro matured oocytes. A total of 1889 reconstructed embryos were transferred into 10 naturally cycling gilts. Nine early pregnancies were established, 7 of which went to term. Twenty-one piglets were born. The cloning efficiency was 1.1% (born piglets/transferred embryos). The integration of the sFat-1 gene was confirmed in 15 live cloned piglets by PCR and Southern blot except for 2 piglets. Expression of the sFat-1 gene in 12 of 13 piglets was detected with RT-PCR. The data demonstrates that an efficient system for sFat-1 transgenic cloned pigs was developed, which led to the successful production of piglets expressing the sFat-1 gene.

  15. Epstein-Barr virus nuclear protein EBNA3C directly induces expression of AID and somatic mutations in B cells.

    Science.gov (United States)

    Kalchschmidt, Jens S; Bashford-Rogers, Rachael; Paschos, Kostas; Gillman, Adam C T; Styles, Christine T; Kellam, Paul; Allday, Martin J

    2016-05-30

    Activation-induced cytidine deaminase (AID), the enzyme responsible for induction of sequence variation in immunoglobulins (Igs) during the process of somatic hypermutation (SHM) and also Ig class switching, can have a potent mutator phenotype in the development of lymphoma. Using various Epstein-Barr virus (EBV) recombinants, we provide definitive evidence that the viral nuclear protein EBNA3C is essential in EBV-infected primary B cells for the induction of AID mRNA and protein. Using lymphoblastoid cell lines (LCLs) established with EBV recombinants conditional for EBNA3C function, this was confirmed, and it was shown that transactivation of the AID gene (AICDA) is associated with EBNA3C binding to highly conserved regulatory elements located proximal to and upstream of the AICDA transcription start site. EBNA3C binding initiated epigenetic changes to chromatin at specific sites across the AICDA locus. Deep sequencing of cDNA corresponding to the IgH V-D-J region from the conditional LCL was used to formally show that SHM is activated by functional EBNA3C and induction of AID. These data, showing the direct targeting and induction of functional AID by EBNA3C, suggest a novel role for EBV in the etiology of B cell cancers, including endemic Burkitt lymphoma. PMID:27217538

  16. Relationships of survival time, productivity and cause of death with telomere lengths of cows produced by somatic cell nuclear transfer.

    Science.gov (United States)

    Konishi, Kazuyuki; Yonai, Miharu; Kaneyama, Kanako; Ito, Satoshi; Matsuda, Hideo; Yoshioka, Hajime; Nagai, Takashi; Imai, Kei

    2011-10-01

    The reproductive ability, milk-producing capacity, survival time and relationships of these parameters with telomere length were investigated in 4 groups of cows produced by somatic cell nuclear transfer (SCNT). Each group was produced using the same donor cells (6 Holstein (1H), 3 Holstein (2H), 4 Jersey (1J) and 5 Japanese Black (1B) cows). As controls, 47 Holstein cows produced by artificial insemination were used. The SCNT cows were artificially inseminated, and multiple deliveries were performed after successive rounds of breeding and conception. No correlation was observed between the telomere length and survival time in the SCNT cows. Causes of death of SCNT cows included accidents, accident-associated infections, inappropriate management, acute mastitis and hypocalcemia. The lifetime productivity of SCNT cows was superior to those of the controls and cell donor cows. All SCNT beef cows with a relatively light burden of lactation remained alive and showed significantly prolonged survival time compared with the cows in the SCNT dairy breeds. These results suggest that the lifetime productivity of SCNT cows was favorable, and their survival time was more strongly influenced by environmental burdens, such as pregnancy, delivery, lactation and feeding management, than by the telomere length. PMID:21666348

  17. Effects of different nuclear transfer and activation methods on the development of mouse somatic cell cloned embryos

    Institute of Scientific and Technical Information of China (English)

    Wang ErYao; YU Yang; Li XueMei; JIAO LiHong; Wang Liu

    2007-01-01

    A group of adult somatic cell cloned mice were obtained by using cumulus cells as nuclei donor cells. To study the effect of different nuclear transfer (NT) and activation methods on the development of mouse cloned embryos, embryos were reconstructed using two traditional NT methods (electrofusion and direct injection) and four activation treatments (electric pulse, ethanol, SrCl2 and electric pulse combined with SrCl2). The data showed that the efficiency of reconstruction using the direct injection method is significantly higher (90.7%) than that of the electrofusion method (49.7%). Parthenogenetic embryos can develop to blastocyst stage with three activation conditions, including ethanol, electric pulse and SrCl2; however, the rates of development to blastocyst after ethanol and electric pulse activation (52.4%, 54.2%) are significantly lower than after SrCl2 activation (76.9%). Treatment of embryos for 6 h with 10 mmol/L SrCl2 was found to be the best condition for activation of parthenogenetic as well as reconstructed embryos. By contrast, reconstructed embryos failed to develop to blastocyst stage after being activated by ethanol. The use of either injection or electrofusion for embryo reconstruction affected the pre-implantation development. However, after transfer in pseudopregnant mice, cloned mice were obtained from both methods.

  18. The effects of storage temperature on goat milk somatic cell count using the DeLaval counter.

    Science.gov (United States)

    Sanchez-Macias, Davinia; Castro, Noemi; Moreno-Indias, Isabel; Morales-delaNuez, Antonio; Briggs, Heather; Capote, Juan; Argüello, Anastasio

    2010-10-01

    This study investigated the influence of storage temperature and storage time on goat milk somatic cell counts (SCCs) determined using the DeLaval cell counter (DCC). SCCs were measured in 40 Majorera goat milk samples using the DCC device. Samples were grouped from high score (>2,750 x 10(3) cells/mL) to low score (milk sample was divided into four aliquots and stored at four different temperatures (4 degrees C, 21 degrees C, 36 degrees C or 45 degrees C). The SCC was recorded every hour for 12 hours. Storage of goat milk with a high SCC for 5, 5, 2 or 1 hour at 4 degrees C, 21 degrees C, 36 degrees C or 45 degrees C, respectively, decreased the SCC value compared to fresh milk. The goat milk SCC was lower after 1 hour of storage than that determined for fresh milk at any tested temperature in low-SCC samples. The data presented herein suggest that regardless of storage temperature, goat milk samples should not be stored for more than 1 hour before measurement of SCC with a DCC device. PMID:20419471

  19. An investigation on somatic cell count in milk samples collected from dairy farms at Tabriz region of Iran

    Directory of Open Access Journals (Sweden)

    Rahim Beheshti,

    2011-08-01

    Full Text Available The aim of present study was somatic cell count in milk samples collected from dairy farms at Tabriz region, Northwest of Iran. Three flocks selected based on high productivity and similar characteristics (use of family labour, Holstein herds and average production between upper than 11 kg/cow/day. Milk samples obtained from three parity classes were collect individually from the cows in the second and fifth month of lactation in two seasons: autumn-winter and spring-summer. Results show higher SCC for dairy cattle with second or upper milking. Cows at fifth or upper lactation period had 1000- 5000 ×103 cells/ml commonly but at first lactation there was no any cow with 1000-2500 ×103 cells/ml. In conclusion, incidence of high SCC rate (1000-5000×103 is considerably high during fifth or upper parity but 250 to 750 ×103 SCC cows are considerably low in number compared with first parity cows. Cows at first lactation commonly had 250-500×103 SCC at Tabriz regional farms.

  20. Interaction between bovine-associated coagulase-negative staphylococci species and strains and bovine mammary epithelial cells reflects differences in ecology and epidemiological behavior.

    Science.gov (United States)

    Souza, F N; Piepers, S; Della Libera, A M M P; Heinemann, M B; Cerqueira, M M O P; De Vliegher, S

    2016-04-01

    Bacteria adherence seems to be an essential first stage for the internalization of bacteria into the cytoplasm of the host cell, which is considered an important virulence strategy enabling bacteria to occupy a microenvironment separated from host defense mechanisms. Thus, this study aimed to explore the difference in the capacity of 4 bovine-associated staphylococci species or strains to adhere to and internalize into bovine mammary epithelial cells (MEC). Three different isolates of coagulase-negative staphylococci (CNS) were used: one strain of Staphylococcus fleurettii isolated from sawdust and considered an environmental opportunistic bacterium, and 2 dissimilar Staphylococcus chromogenes isolates, one cultured from a heifer's teat apex (Staph. chromogenes TA) and the other originating from a chronic intramammary infection (Staph. chromogenes IM). Also, one well-characterized strain of Staphylococcus aureus (Newbould 305) was used for comparison with a major mastitis pathogen. The CNS species and strains adhered to and internalized into MEC slower than did Staph. aureus. Still, we observed high variation in adhesion and internalization capacity among the different CNS, with Staph. chromogenes IM showing a greater ability to adhere to and internalize into MEC than the 2 CNS strains isolated from extramammary habitats. In conclusion, the 3 well-characterized bovine-associated CNS species and strains originating from distinct habitats showed clear differences in their capacity to adhere to and internalize into MEC. The observed differences might be related to their diversity in ecology and epidemiological behavior. PMID:26830736

  1. Effect of age on expression of spermatogonial markers in bovine testis and isolated cells.

    Science.gov (United States)

    Giassetti, Mariana Ianello; Goissis, Marcelo Demarchi; Moreira, Pedro Vale; de Barros, Flavia Regina Oliveira; Assumpção, Mayra Elena Ortiz D'Ávila; Visintin, José Antônio

    2016-07-01

    Spermatogonial stem cells (SSC) are the most undifferentiated germ cell present in adult male testes and, it is responsible to maintain the spermatogenesis. Age has a negative effect over stem cell, but the aging effect on SSC is not elucidated for bovine. The present study aim to evaluate the effect of age on the expression of undifferentiated spermatogonial markers in testis and in enriched testicular cells from prepubertal calves and adult bulls. In this matter, testicular parenchyma from calves (3-5 months) (n=5) and bulls with 3 years of age (n=5) were minced and, isolated cells were obtained after two enzymatic digestions. Differential platting was performed for two hours onto BSA coated dish. Cell viability was assessed by Trypan Blue solution exclusion method and testicular cells enriched for SSC was evaluated by expression of specific molecular markers by qRT-PCR (POU5F1, GDNF, CXCR4, UCHL1, ST3GAL, SELP, ICAM1 and ITGA6) and flow cytometry (GFRA1, CXCR4 and ITGA6). CXCR4 and UCHL1 expression was evaluated in fixated testes by immunohistochemistry. We observed that age just affected the expression of selective genes [SELP (Fold Change=5.61; p=0.0023) and UCHL1 (Fold Change=4.98; p=0.0127)]. By flow cytometry, age affected only the proportion of ITGA6+ cells (P<0.001), which was higher in prepubertal calves when compared to adult bulls. In situ, we observed an effect of age on the number of UCHL1+ (p=0.0006) and CXCR4+ (p=0.0139) cells per seminiferous tubule. At conclusion, age affects gene expression and the population of cells expressing specific spermatogonial markers in the bovine testis. PMID:27180120

  2. Comparison of the effect of recombinant bovine wild and mutant lipopolysaccharide-binding protein in lipopolysaccharide-challenged bovine mammary epithelial cells.

    Science.gov (United States)

    Li, Xiaojuan; Li, Lian; Sun, Yu; Wu, Jie; Wang, Genlin

    2016-05-01

    Lipopolysaccharide (LPS)-binding protein (LBP) plays a crucial role in the recognition of bacterial components, such as LPS that causes an immune response. The aim of this study was to compare the different effects of recombinant bovine wild LBP and mutant LBP (67 Ala → Thr) on the LPS-induced inflammatory response of bovine mammary epithelial cells (BMECs). When BMECs were treated with various concentrations of recombinant bovine lipopolysaccharide-binding protein (RBLBP) (1, 5, 10, and 15 μg/mL) for 12 h, RBLBP of 5 μg/mL increased the apoptosis of BMECs induced by LPS without cytotoxicity, and mutant LBP resulted in a higher cell apoptosis than wild LBP did. By gene-chip microarray and bioinformatics, the data identified 2306 differentially expressed genes that were changed significantly between the LPS-induced inflamed BMECs treated with 5 μg/mL of mutant LBP and the BMECs only treated with 10 μg/mL of LPS (fold change ≥2). Meanwhile, 1585 genes were differently expressed between the inflamed BMECs treated with 5 μg/mL of wild LBP and 10 μg/mL of LPS-treated BMECs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that these differentially expressed genes were involved in different pathways that regulate the inflammation response. It predicted that carriers of this mutation increase the risk for a more severe inflammatory response. Our study provides an overview of the gene expression profile between wild LBP and mutant LBP on the LPS-induced inflammatory response of BMECs, which will lead to further understanding of the potential effects of LBP mutations on bovine mammary glands. PMID:26813383

  3. Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells

    DEFF Research Database (Denmark)

    Cheek, T R; Thastrup, Ole

    1989-01-01

    Since secretion from intact bovine adrenal chromaffin cells in response to depolarization by nicotine is triggered by a rise in the concentration of intracellular Ca2+ ([Ca2+]i) to about 200-300 nM above basal, it has been assumed that the failure of the inositol 1,4,5-trisphosphate (InsP3......+ store. The role of this Ca2+ store in secretion from bovine adrenal chromaffin cells is therefore unclear. In order to investigate in more detail the role of the InsP3-sensitive Ca2+ store in secretion from these cells, we have used a combination of an InsP3-mobilizing muscarinic agonist and the...... sesquiterpene lactone thapsigargin (TG), which releases internal Ca2+ without concomitant breakdown of inositol lipids or protein kinase C activation, to examine the events which follow depletion of the releasable Ca2+ store in these cells. Monitoring [Ca2+]i using Fura-2 demonstrated that TG released Ca2+ from...

  4. Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis

    OpenAIRE

    She, Wenjing; Baroux, Célia

    2015-01-01

    Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMC) committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition toward the male reproductive lineage. Here we show that Arabidopsis PMC differentiation is accompanied by large-scale changes in chromatin organ...

  5. Mapping of Microsatellite SW943 to Porcine Chromosome 12p11-(2/3p13) Using Primed in situ Synthesis and Somatic Cell Hybrid Panel

    Institute of Scientific and Technical Information of China (English)

    LIU Bang; WANG Yong-qiang; ZHANG Qing-de; YU Mei; ZHAO Shu-hong; XIONG Tong-an; LI Kui

    2002-01-01

    The porcine microsatellite SW943 was regionally localized on 12p11-(2/3p13) by the two methods: the Primed in situ (PRINS) labelling on the pachytene bivalents of pigs using the Dig-11-dUTP as the report molecule and pig × rodent Somatic Cell Hybrid PaneI(SCHP) which contains 27 cell lines through PCR amplification. Advantages and disadvantages of the two methods for physical mapping of microsatellites were also discussed.

  6. Cellular heredity in haploid cultures of somatic cells, March 1968-April 1981. Final report

    International Nuclear Information System (INIS)

    An account is given of the development and application to cell-culture genetics of unique haploid cell lines from frog embryo developed in this laboratory. Since 1968, the main aim of this project has been to develop the haploid cell system for studies of mutagenesis in culture, particularly by ultraviolet radiation. In the course of this work we isolated chromosomally stable cell lines, derived and characterized a number of variants, and adapted cell hybridization and other methods to this material. Particular emphasis was placed on ultraviolet photobiology, including studies of cell survival, mutagenesis, and pathways of repair of uv-damaged DNA. Although at present less widely used for genetic experiments than mammalian cell lines, the frog cells offer the advantages of authentic haploidy and a favorable repertory of DNA repair pathways for study of uv mutagenesis

  7. Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage

    Science.gov (United States)

    Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin

    2016-01-01

    Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis. PMID:27433029

  8. Stem Cell Interaction with Somatic Niche May Hold the Key to Fertility Restoration in Cancer Patients

    OpenAIRE

    Deepa Bhartiya; Kalpana Sriraman; Seema Parte

    2012-01-01

    The spontaneous return of fertility after bone marrow transplantation or heterotopic grafting of cryopreserved ovarian cortical tissue has surprised many, and a possible link with stem cells has been proposed. We have reviewed the available literature on ovarian stem cells in adult mammalian ovaries and presented a model that proposes that the ovary harbors two distinct populations of stem cells, namely, pluripotent, quiescent, very small embryonic-like stem cells (VSELs), and slightly larger...

  9. Triennial Lactation Symposium: Bovine mammary epithelial cell lineages and parenchymal development.

    Science.gov (United States)

    Ellis, S; Akers, R M; Capuco, A V; Safayi, S

    2012-05-01

    Mammary development proceeds from an aggregation of cells in the ventral ectoderm to the establishment of an elaborate tree of alveoli, ducts, and cisternae. However, despite abundant data on endocrine regulation of ruminant mammary growth, we know comparatively little about cell lineages, expression of differentiation markers, and plasticity in mammary cell phenotype. Histologic analyses have revealed cell populations with distinct histochemical profiles, but functional assessment of cell populations during development has been limited to analysis of proliferation and frequency estimations of morphotypes. The lack of transplantation models, limited availability of validated antibodies with reactivity to bovine antigens, and similar technical challenges have generally hindered the pace of discovery, but the application of new technologies such as laser microdissection, transcriptional profiling, and multispectral image analysis are yielding important clues into bovine mammary cell ontogeny and developmental regulation. Our analyses have shown that prepubertal ovariectomy affects epithelial architecture, increases the proportion of cells expressing the estrogen receptor, and increases myoepithelial cell development, all concomitant with a dramatic reduction in the mass of parenchymal tissue. Our observations point to a dual role for ovarian secretions in the control of not only the rate of epithelial development, but also the nature of the parenchymal development. The balance of stimulus and inhibition pathways cooperatively regulates mammary growth. The increased reliance on objective staining analyses and quantitative approaches will ensure broader repeatability, application, and extension of the findings regarding the impact of the ovary and other regulatory entities and factors. Advances in understanding the ontogeny of mammary epithelial cells, coupled with established and increasing knowledge of endocrine factors affecting mammary development, may yield

  10. Somatic cell banking - An alternative technology for the conservation of endangered sheep breeds

    International Nuclear Information System (INIS)

    Skin samples from ear pinna of 10 male and 10 female sheep were collected and cultured in DMEM+Ham's F12 nutrient medium. Cell viability was 95 to 100% in different cultures. Mean cell proliferation rates were 0.94-0.67 and 1.15-0.56 for males and females in different passages, respectively. Cell proliferation rates were highest in first passage and then showed an age-related decline. Average cell doubling time was 30 h in males and 29.6 h in females. Skin fibroblast cell growth curves were in lag phase for the first 2 days, entered log phase (3rd to 7th days) and plateaued on day 8. Diploid chromosomal counts in proliferating cells up to the 5th passage were normal (2N=54), with no gross chromosomal aberrations recorded. Cells frozen from cycling cells at 80-90% confluency showed superior post-thaw growth compared with cells from overconfluent cultures. DMSO at 10% (v/v) in freezing media was optimal. Controlled-rate freezing at -1 deg. C/min showed better post-thaw cell viability and growth potential. Direct plating of thawed cells without removing DMSO and other contents of the freezing medium gave better post-thaw survival and proliferation rates. (author)

  11. FDC-B1: a new monoclonal antibody directed against bovine follicular dendritic cells.

    Science.gov (United States)

    Mélot, F; Defaweux, V; Jolois, O; Collard, A; Robert, B; Heinen, E; Antoine, N

    2004-01-01

    Follicular dendritic cells (FDCs) are a unique population of accessory cells located in the light zone of the germinal centres of lymphoid follicles. Their involvement in the generation of humoral immune responses implies a potential role for these cells in many disorders. Indeed, in prion diseases, FDCs seem to be the major sites of extraneuronal cellular prion protein expression and the principal sites of the infectious agent accumulation in lymphoid organs. The identification of FDC is useful for the analysis of their distribution in reactive lymphoid tissue as well as in pathological conditions. The production and characterisation of a new mouse monoclonal antibody directed against bovine follicular dendritic cells (FDC-B1) is reported. The antigen detected by FDC-B1 is expressed exclusively on the surface of FDCs in ruminant lymphoid organs. The antigen has an approximate molecular weight of 28 kDa. PMID:14700533

  12. Bovine colostrum modulates immune activation cascades in human peripheral blood mononuclear cells in vitro

    DEFF Research Database (Denmark)

    Jenny, Marcel; Pedersen, Ninfa R; Hidayat, Budi J; Schennach, Harald; Fuchs, Dietmar

    2010-01-01

    factors and has a long history of use in traditional medicine. In an approach to evaluate the effects of bovine colostrum (BC) on the T-cell/macrophage interplay, we investigated and compared the capacity of BC containing low and high amounts of lactose and lactoferrin to modulate tryptophan degradation...... amount of lactose present in BC seems to diminish the activity of BC in our test system, since BC with higher amounts of lactose attenuated the stimulatory as well as the suppressive activity of BC....

  13. Genetic assignment of multiple E2 gene products in bovine papillomavirus-transformed cells.

    OpenAIRE

    Lambert, P F; Hubbert, N L; Howley, P M; Schiller, J T

    1989-01-01

    The E2 open reading frame of bovine papillomavirus type 1 has been shown genetically to encode at least three transcriptional regulatory factors, and three E2 specific proteins have been recently identified in virally transformed rodent cells. In this study, the genes encoding these E2 specific proteins have been determined. The 48-kilodalton (kDa) protein was identified as the product of a full-length E2 open reading frame cDNA, which confirmed that this polypeptide is the E2 transactivator....

  14. Evaluation of genotoxic potential of Hypericum triquetrifolium extract in somatic and germ cells of male albino mice

    Directory of Open Access Journals (Sweden)

    Bushra M. A. Mohammed,

    2011-04-01

    Full Text Available Hypericum triquetrifolium aqueous extract were studied for the first time for its toxic and the possible clastogenic effects in vivo on the bone marrow and spermatozoa cells of Swiss albino mice. The lethal dose of the aqueous extract was considered to be 10.33 g/kg of the body weight, injected subcutaneously. The doses which were chosen for treatments were 2, 1, and 0.25 g/kg. H. triquetrifolium extract induce statistically significant increases in the average numbers of micronucleus(MN at the dose 2 g/kg and chromosome aberrations at the doses 2 and 1 g/kg ,the majority of aberrations observed were chromatid breaks, centromeric breaks, acentric fragments. The extract was found to inhibit mitotic index (MI in a dose-dependent manner. Moreover the plant extract showed a significant induction of sperm abnormalities in all concentrations used comparing with the untreated animals. The most frequent types of sperm abnormalities of the treated groups were; amorphous, pseudo-droplet defect, bent mid piece defect and corkscrew mid piece defect. However, the lowest dose 0.25 g/kg body weight was the most effective one which markedly increased the corkscrew midpiece defect. The results indicated that the mixture of the compounds found in the aqueous extract caused cytotoxicity and induced different cytogenetic effects in both somatic and germ cells of male albino mice.

  15. Human unrestricted somatic stem cells loaded in nanofibrous PCL scaffold and their healing effect on skin defects.

    Science.gov (United States)

    Bahrami, Hoda; Keshel, Saeed Heidari; Chari, Aliakbar Jafari; Biazar, Esmaeil

    2016-09-01

    Unrestricted somatic stem cells (USSCs) loaded in nanofibrous polycaprolactone (PCL) scaffolds can be used for skin regeneration when grafted onto full-thickness skin defects of rats. Nanofibrous PCL scaffolds were designed by the electrospinning method and crosslinked with laminin protein. Afterwards, the scaffolds were evaluated by scanning electron microscopy, and physical and mechanical assays. In this study, nanofibrous PCL scaffolds loaded with USSCs were grafted onto the skin defects. The wounds were subsequently investigated 21 days after grafting. Results of mechanical and physical analyses showed good resilience and compliance to movement as a skin graft. In animal models; study samples exhibited the most pronounced effect on wound closure, with statistically significant improvement in wound healing being seen at 21 days post-operatively. Histological examinations of healed wounds from all samples showed a thin epidermis plus recovered skin appendages in the dermal layer for samples with cell. Thus, the graft of nanofibrous PCL scaffolds loaded with USSC showed better results during the healing process of skin defects in rat models. PMID:26140614

  16. Modulatory effects of the antioxidant ascorbic acid on the direct genotoxicity of doxorubicin in somatic cells of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Edson José Fragiorge

    2007-03-01

    Full Text Available In this study two different crosses involving the wing cell markers mwh and flr³ (standard (ST cross and high bioactivation (HB cross, the latter being characterized by a high constitutive level of cytochrome P450 which leads to an increased sensitivity to a number of promutagens and procarcinogens were used to investigate the modulatory effects of ascorbic acid (AA combined with the antitumor agent doxorubicin (DXR in Drosophila melanogaster. We observed that the two different concentrations of AA (50 or 100 mM had no effect on spots frequencies, while DXR treatments (0.2 or 0.4 mM gave positive results for all types of spots, when compared to negative control. For marker-heterozygous (MH flies, a protective effect was observed with the lower concentration of AA (50 mM that was able to statistically decrease the frequency of spots induced by DXR (0.2 mM, while an enhanced frequency of spots induced by DXR was observed with the higher concentration of AA (100 mM, when compared to DXR treatment (p < 0.05. These results suggest that AA may interfere with free radicals generated by DXR and with other possible reactive metabolites. The efficiency of AA in protecting the somatic cells of D. melanogaster against mutation and recombination induced by DXR is dependent on the dose used and the protection is directly related to the activity of cytochrome P450 enzymes.

  17. Biodosimetry of Chernobyl cleanup workers from Estonia and Latvia using the glycophorin A in vivo somatic cell mutation assay

    International Nuclear Information System (INIS)

    The reactor accident at Chernobyl in 1986 necessitated a massive environmental cleanup that involved over 600,000 workers from all 15 Republics of the former Soviet Union. To determine whether the whole-body radiation received by workers in the course of these decontamination activities resulted in a detectable biological response, over 1,500 blood samples were obtained from cleanup workers sent from two Baltic countries, Estonia and Latvia. Here we report the results of studies of biodosimetry using the glycophorin A (GPA) locus in vivo somatic cell mutation assay applied to 734 blood samples from these workers, to 51 control samples from unexposed Baltic populations and to 94 samples from historical U.S. controls. The data reveal inconsistent evidence that the protracted radiation exposures received by these workers resulted in a significant dose-associated increase in GPA locus mutations compared with the controls. Taken together, these data suggest that the average radiation exposure to these workers does not greatly exceed 10 cGy, the minimum levels at which radiation effects might be detectable by the assay. Although the protracted nature of the exposure may have reduced the efficiency of induction of GPA locus mutations, it is likely that the estimated physical doses for these cleanup worker populations (median reported dose 9.5 cGy) were too low to result in radiation damage to erythroid stem cells that can be detected reliably by this method. 25 refs., 2 figs., 3 tabs

  18. Bovine mammary dendritic cells: a heterogeneous population, distinct from macrophages and similar in phenotype to afferent lymph veiled cells.

    Science.gov (United States)

    Maxymiv, Nicolas G; Bharathan, Mini; Mullarky, Isis K

    2012-01-01

    Dendritic cells (DC) are a heterogeneous population of professional antigen presenting cells and are potent stimulators of naïve T-cells. However, there is little previous research describing DC in bovine mammary tissue, primarily because of the difficulty distinguishing these cells from macrophages, which possess a similar phenotype. Using immunohistofluorescence and a combination of markers (MHC-II, CD205, CD11c), DC were localized in the bovine mammary gland and supramammary lymph node. In mammary tissue DC were found within the alveolar epithelium and within the intralobular connective tissue. In the lymph node DC were found on the periphery of B-cell areas, in the cortex, and among T-cells in the paracortex and medulla. DC in mammary parenchyma and supramammary lymph nodes were quantified and further characterized using flow cytometry. DC were CD11c(hi), CD14(lo) cells that expressed MHC-II and CD205. DC could be distinguished from macrophages based on their low CD14 expression. This research provides a better understanding of mammary gland immunology, while potentially aiding in the targeting of antigens to mucosal DC for vaccine development. PMID:22019401

  19. Cellular heredity in haploid cultures of somatic cells. Progress report, August 1978-September 1979

    International Nuclear Information System (INIS)

    During the past year we have continued our studies of the relation of ultraviolet mutagenesis to DNA repair in cultures of the haploid frog cell line ICR 2A. Our method of irradiation of cells in suspension was improved by construction of an improved detector with major sensitivity to the 254 nm Hg resonance line, to give better estimates of actual exposure of the cells. Using this method, dose-response and dose-fractionation studies on irradiation of ouabain resistance were carried out. The uv induction of this phenotype in the ICR 2A cell line was found to be less than that necessary for adequate analysis of dose-response curves. Cell fusion experiments using frog and mouse cells revealed an enhancement of mutagenesis in the mouse parent that will be explored in further work

  20. Cellular heredity in haploid cultures of somatic cells. Progress report, August 1978-September 1979

    International Nuclear Information System (INIS)

    During the past year, studies were continued on the relation of ultraviolet mutagenesis to DNA repair in cultures of the haploid frog cell line ICR 2A. The method of irradiation of cells in suspension was improved by construction of an improved detector with major sensitivity to the 254 nm Hg resonance line, to give better estimates of actual exposure of the cells. Using this method, dose-response and dose-fractionation studies on irradiation of ouabain resistance were carried out. The uv induction of this phenotype in the ICR 2A cell line was found to be less than that necessary for adequate analysis of dose-response curves. Cell fusion experiments using frog and mouse cells revealed an enhancement of mutagenesis in the mouse parent that will be explored in further work

  1. Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst

    Directory of Open Access Journals (Sweden)

    Ozawa Manabu

    2012-11-01

    Full Text Available Abstract Background The first distinct differentiation event in mammals occurs at the blastocyst stage when totipotent blastomeres differentiate into either pluripotent inner cell mass (ICM or multipotent trophectoderm (TE. Here we determined, for the first time, global gene expression patterns in the ICM and TE isolated from bovine blastocysts. The ICM and TE were isolated from blastocysts harvested at day 8 after insemination by magnetic activated cell sorting, and cDNA sequenced using the SOLiD 4.0 system. Results A total of 870 genes were differentially expressed between ICM and TE. Several genes characteristic of ICM (for example, NANOG, SOX2, and STAT3 and TE (ELF5, GATA3, and KRT18 in mouse and human showed similar patterns in bovine. Other genes, however, showed differences in expression between ICM and TE that deviates from the expected based on mouse and human. Conclusion Analysis of gene expression indicated that differentiation of blastomeres of the morula-stage embryo into the ICM and TE of the blastocyst is accompanied by differences between the two cell lineages in expression of genes controlling metabolic processes, endocytosis, hatching from the zona pellucida, paracrine and endocrine signaling with the mother, and genes supporting the changes in cellular architecture, stemness, and hematopoiesis necessary for development of the trophoblast.

  2. The Determination of Somatic Cell Count and Some Components of Raw Milk Evaluated By a Private Company in Trakya

    Directory of Open Access Journals (Sweden)

    A. R. Onal

    2007-05-01

    Full Text Available The aim of this study was to determine the amount of bulk tank somatic cell counts. Chemical and microbiological compositions of raw milk produced in Trakya were also reached in order to evaluate the structure of milk production. For this purpose 36 raw milk samples were collected from bulk milk tank within three different location of Trakya (18 samples from Edirne, 10 from Tekirdağ and 8 from Kırklareli. The arithmetic means and standard errors of fat percentages, non-fat dry matter, protein percentages, BTSCC (Bulk Tank Milk Somatic Cell Count and TB (Total Bacteria for Edirne, Tekirdağ and Kırklareli provinces were; 3.70 0.052, 3.60 0.098, 3.76 0.064; 8.34 0.025, 8.50 0.035, 8.39 0.038; 3.05 0.012, 3.09 0.019, 3.05 0.016; 308.555 26.510 SCC/ml (log 5.459 0.04 SCC/ml, 350.200 53.627 SCC/ml (Log 5.500 0.06 SCC/ml, 254.500 37.645 SCC/ml (Log 5.370 0.06 SCC/ml; 479.481 51.777 cfu/ml (Log 5.630 0.05 cfu/ml, 435.716 91.194 cfu/ml (Log 5.5230.12 cfu/ml, 446.958 81.515 cfu/ml (Log 5.602 0.075 cfu/ml respectively. Consequentially, the correlation coefficient for LogBTSCC and fat percentage, non-fat dry matter, protein percentage and LogTB were found to be 0.036, 0.251, 0.421 and 0.219 respectively. A significant (p<0.05 correlation coefficient was obtained between LogBTSCC and protein percentage.

  3. Systematic evaluation of sericin protein as a substitute for fetal bovine serum in cell culture.

    Science.gov (United States)

    Liu, Liyuan; Wang, Jinhuan; Duan, Shengchang; Chen, Lei; Xiang, Hui; Dong, Yang; Wang, Wen

    2016-01-01

    Fetal bovine serum (FBS) shows obvious deficiencies in cell culture, such as low batch to batch consistency, adventitious biological contaminant risk, and high cost, which severely limit the development of the cell culture industry. Sericin protein derived from the silkworm cocoon has become increasingly popular due to its diverse and beneficial cell culture characteristics. However, systematic evaluation of sericin as a substitute for FBS in cell culture medium remains limited. In this study, we conducted cellular morphological, physiological, and transcriptomic evaluation on three widely used mammalian cells. Compared with cells cultured in the control, those cultured in sericin-substitute medium showed similar cellular morphology, similar or higher cellular overall survival, lower population doubling time (PDT), and a higher percentage of S-phase with similar G2/G1 ratio, indicating comparable or better cell growth and proliferation. At the transcriptomic level, differentially expressed genes between cells in the two media were mainly enriched in function and biological processes related to cell growth and proliferation, reflecting that genes were activated to facilitate cell growth and proliferation. The results of this study suggest that cells cultured in sericin-substituted medium perform as well as, or even better than, those cultured in FBS-containing medium. PMID:27531556

  4. Cytotoxicity Testing of Temporary Luting Cements with Two- and Three-Dimensional Cultures of Bovine Dental Pulp-Derived Cells

    Directory of Open Access Journals (Sweden)

    Hayriye Esra Ülker

    2013-01-01

    Full Text Available This study evaluated the cytotoxicity of eugenol-containing and eugenol-free temporary luting cements. For cytotoxicity testing, bovine pulp-derived cells transfected with Simian virus 40 Large T antigen were exposed to extracts of eugenol-containing (Rely X Temp E and eugenol-free (Provicol, PreVISION CEM, and Rely X Temp NE temporary luting cements for 24 h. The cytotoxicity of the same materials was also evaluated in a dentin barrier test device using three-dimensional cell cultures of bovine pulp-derived cells. The results of the cytotoxicity studies with two-dimensional cultures of bovine dental pulp-derived cells revealed that cell survival with the extracts of Rely X Temp E, Provicol, PreVISION CEM, and Rely X Temp NE was 89.1%, 84.9%, 92.3%, and 66.8%, respectively. Rely X Temp NE and Provicol showed cytotoxic effects on bovine dental pulp-derived cells (. The results of the dentin barrier test revealed that cell survival with the above-mentioned temporary cement was 101.5%, 91.9%, 93.5%, and 90.6%, respectively. None of the temporary luting cements significantly reduced cell survival compared with the negative control in the dentin barrier test (. Biologically active materials released from temporary luting cements may not influence the dentine-pulp complex if the residual dentine layer is at least 0.5 mm thick.

  5. Complete Genome Sequence of Noncytopathic Bovine Viral Diarrhea Virus 1 Contaminating a High-Passage RK-13 Cell Line

    OpenAIRE

    Nam, Bora; Li, Ganwu; Zheng, Ying; Zhang, Jianqiang; Shuck, Kathleen M.; Timoney, Peter J.; Balasuriya, Udeni B. R.

    2015-01-01

    A high-passage rabbit kidney RK-13 cell line (HP-RK-13[KY], originally derived from the ATCC CCL-37 cell line) used in certain laboratories worldwide is contaminated with noncytopathic bovine viral diarrhea virus (ncpBVDV). On complete genome sequence analysis, the virus strain was found to belong to BVDV group 1b.

  6. Isolation and adaptation of bovine herpes virus Type 1 in embryonated chicken eggs and in Madin–Darby bovine kidney cell line

    Directory of Open Access Journals (Sweden)

    Devprabha Samrath

    2016-02-01

    Full Text Available Aim: Objective of the present study was to isolate bovine herpes virus Type 1 (BHV-1 from semen of infected bull and to adapt it onto embryonated eggs and Madin–Darby bovine kidney (MDBK cell line. Further, the virus was identified by agar gel immunodiffusion (AGID test. Materials and Methods: Semen samples were collected from five BHV-1 positive bulls previously confirmed for the presence of antibodies against BHV-1 using avidin-biotin enzyme linked immunosorbent assay test. The virus from semen samples was adapted in chorioallantoic membrane (CAM of 11-day-old embryonated chickens eggs and in MDBK cell line. The presence of BHV-1 in infected CAM and cell culture fluid was confirmed by AGID test. Results: Virus infected CAM showed edema, congestion and thickening at first passage level. Small foci ranged from 1 to 2 mm in diameter, scattered all over the membrane were observed at first passage. More severe changes were observed in CAM after serial passaging. The large pock lesions, round in shape with opaque raised edge and depressed gray central area of necrosis ranged from 3 to 5 mm in diameter were developed at fourth passage. Blind passages in MDBK cell culture were made. The MDBK cell line at second passage level showed characteristic cytopathic effect viz. rounding of cells with shrinkage, followed by aggregation or clumping of cells which progressed rapidly and appeared as “bunch of grapes” at 72 h post inoculation. Few cells become elongated when compared with uninfected controls. A homogenate of CAM with distinct pock lesions and infected cell culture fluid developed precipitation line within 48 h against specific anti-BHV-1 immune serum by AGID test. Conclusion: BHV-1 was easily adapted in CAM of chicken embryos and in MDBK cell line. Virus infected CAM and cell culture fluid showed precipitin band by AGID test.

  7. Isolation and adaptation of bovine herpes virus Type 1 in embryonated chicken eggs and in Madin–Darby bovine kidney cell line

    Science.gov (United States)

    Samrath, Devprabha; Shakya, Sanjay; Rawat, Nidhi; Gilhare, Varsha Rani; Singh, Fateh

    2016-01-01

    Aim: Objective of the present study was to isolate bovine herpes virus Type 1 (BHV-1) from semen of infected bull and to adapt it onto embryonated eggs and Madin–Darby bovine kidney (MDBK) cell line. Further, the virus was identified by agar gel immunodiffusion (AGID) test. Materials and Methods: Semen samples were collected from five BHV-1 positive bulls previously confirmed for the presence of antibodies against BHV-1 using avidin-biotin enzyme linked immunosorbent assay test. The virus from semen samples was adapted in chorioallantoic membrane (CAM) of 11-day-old embryonated chickens eggs and in MDBK cell line. The presence of BHV-1 in infected CAM and cell culture fluid was confirmed by AGID test. Results: Virus infected CAM showed edema, congestion and thickening at first passage level. Small foci ranged from 1 to 2 mm in diameter, scattered all over the membrane were observed at first passage. More severe changes were observed in CAM after serial passaging. The large pock lesions, round in shape with opaque raised edge and depressed gray central area of necrosis ranged from 3 to 5 mm in diameter were developed at fourth passage. Blind passages in MDBK cell culture were made. The MDBK cell line at second passage level showed characteristic cytopathic effect viz. rounding of cells with shrinkage, followed by aggregation or clumping of cells which progressed rapidly and appeared as “bunch of grapes” at 72 h post inoculation. Few cells become elongated when compared with uninfected controls. A homogenate of CAM with distinct pock lesions and infected cell culture fluid developed precipitation line within 48 h against specific anti-BHV-1 immune serum by AGID test. Conclusion: BHV-1 was easily adapted in CAM of chicken embryos and in MDBK cell line. Virus infected CAM and cell culture fluid showed precipitin band by AGID test. PMID:27051213

  8. Chromatin dynamics in Pollen Mother Cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Wenjing eShe

    2015-04-01

    Full Text Available Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMCs committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition towards the male reproductive lineage. Here we show that Arabidopsis PMCs differentiation is accompanied by large-scale changes in chromatin organization. This is characterized by significant increase in nuclear volume, chromatin decondensation, reduction in heterochromatin, eviction of linker histones and the H2AZ histone variant. These structural alterations are accompanied by dramatic, quantitative changes in histone modifications levels compared to that of surrounding somatic cells that do not share a sporogenic fate. All these changes are highly reminiscent of those we have formerly described in female megaspore mother cells (MMCs. This indicates that chromatin reprogramming is a common underlying scenario in the somatic-to-reproductive cell fate transition in both male and female lineages.

  9. Intranuclear Localization of EGFP-mouse PPARγ1 in Bovine Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Sorayya Ghasemi

    2010-01-01

    Full Text Available Objective: The aim of this study was to clone PPARγ1 cDNA in an appropriate mammalianexpression vector, with a chimeric cDNA form, encompassing PPARγ with enhanced greenfluorescent protein (EGFP cDNA. This recombinant plasmid will be used for further analysesto investigate the molecular mechanism of PPARγ1 for neural differentiation process.Moreover, the nuclear localization of the PPARγ1 protein linked to EGFP marker was chasedby using transient transfection of a constructed plasmid into bovine fibroblast cells.Materials and Methods: Total RNA was extracted from the fatty tissue of an adult mouse.Using specific pair primers, PPARγ1 cDNA was synthesized and amplified to producethe entire length of ORF. RT-PCR products containing PPARγ1 cDNA were treated byenzymatic digestion and inserted into the pEGFP-C1 downstream from EGFP cDNA. Theconstructed vector was used for transformation into bacterial competent cells. Positivecolonies which showed inserted PPARγ1 cDNA were selected for plasmid preparationsand additional analysis was performed to ensure that PPARγ1 cDNA was inserted properly.Finally, to confirm the intracellular localization of EGFP-PPARγ1, bovine fibroblastcells were transfected with the recombinant plasmid.Results: Our results from enzymatic digestion and sequencing confirmed, as expected, thatPPARγ1 cDNA was amplified and cloned correctly. This cDNA gene encompassed 1428 bp.The related product was entered into the nucleus of bovine fibroblasts after transfection ofits cDNA.

  10. Ozone-induced augmentation of eicosanoid metabolism in epithelial cells from bovine trachea

    International Nuclear Information System (INIS)

    Epithelial injury and inflammation have been implicated in ozone-induced airway hyperresponsiveness. Because ozone is relatively insoluble and highly reactive, toxicologic effects of this compound may be limited to the plasma membranes of airway epithelium. We hypothesize that oxidant damage to epithelium may result in elaboration of various eicosanoids, which are known to alter airway smooth muscle responsiveness and epithelial cell functions (including ion transport). To examine eicosanoid metabolism after exposure to 0.1 to 10.0 ppm ozone, epithelial cells derived from bovine trachea were isolated and grown to confluency. Bovine tracheal cells in culture expressed differentiated features characteristic of epithelial cells, including a plasma membrane with a specialized polar morphology, an extensive network of filaments that were connected through intercellular junctional complexes, and keratin-containing monofilaments as determined by indirect immunofluorescent localization. Monolayers were alternately exposed to ozone and culture medium for 2 h in a specially designed in vitro chamber using a rotating inclined platform. Eicosanoid products were measured by the release of [3H]-labeled products from cells incubated with [3H]-arachidonic acid for 24 h before exposure and by the release of immunoreactive products into the cell supernatant. Both methods revealed ozone-induced increases in cyclooxygenase and lipoxygenase product formation with significant increases in prostaglandins E2, F2 alpha, 6-keto F1 alpha, and leukotriene B4. Release rates of immunoreactive products were dose-dependent, and ozone concentrations as low as 0.1 ppm produced an increase in prostaglandin F2 alpha. These findings are consistent with the hypothesis that ozone can augment eicosanoid metabolism in airway epithelial cells

  11. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Filosa, S.; Giacometti, N.; Wangwei, C.; Martini, G. [Istituto Internazionale di Genetica e Biofisica, Naples (Italy)] [and others

    1996-10-01

    X-chromosome inactivation in mammals is regarded as an essentially random process, but the resulting somatic-cell mosaicism creates the opportunity for cell selection. In most people with red-blood-cell glucose-6-phosphate dehydrogenase (G6PD) deficiency, the enzyme-deficient phenotype is only moderately expressed in nucleated cells. However, in a small subset of hemizygous males who suffer from chronic nonspherocytic hemolytic anemia, the underlying mutations (designated class I) cause more-severe G6PD deficiency, and this might provide an opportunity for selection in heterozygous females during development. In order to test this possibility we have analyzed four heterozygotes for class I G6PD mutations: two with G6PD Portici (1178G{r_arrow}A) and two with G6PD Bari (1187C{r_arrow}T). We found that in fractionated blood cell types (including erythroid, myeloid, and lymphoid cell lineages) there was a significant excess of G6PD-normal cells. The significant concordance that we have observed in the degree of imbalance in the different blood-cell lineages indicates that a selective mechanism is likely to operate at the level of pluripotent blood stem cells. Thus, it appears that severe G6PD deficiency affects adversely the proliferation or the survival of nucleated blood cells and that this phenotypic characteristic is critical during hematopoiesis. 65 refs., 6 figs., 3 tabs.

  12. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2015-01-01

    Full Text Available The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs, are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases.

  13. Bovine Gamma Delta T Cells Contribute to Exacerbated IL-17 Production in Response to Co-Infection with Bovine RSV and Mannheimia haemolytica.

    Directory of Open Access Journals (Sweden)

    Jodi L McGill

    Full Text Available Human respiratory syncytial virus (HRSV is a leading cause of severe lower respiratory tract infection in children under five years of age. IL-17 and Th17 responses are increased in children infected with HRSV and have been implicated in both protective and pathogenic roles during infection. Bovine RSV (BRSV is genetically closely related to HRSV and is a leading cause of severe respiratory infections in young cattle. While BRSV infection in the calf parallels many aspects of human infection with HRSV, IL-17 and Th17 responses have not been studied in the bovine. Here we demonstrate that calves infected with BRSV express significant levels of IL-17, IL-21 and IL-22; and both CD4 T cells and γδ T cells contribute to this response. In addition to causing significant morbidity from uncomplicated infections, BRSV infection also contributes to the development of bovine respiratory disease complex (BRDC, a leading cause of morbidity in both beef and dairy cattle. BRDC is caused by a primary viral infection, followed by secondary bacterial pneumonia by pathogens such as Mannheimia haemolytica. Here, we demonstrate that in vivo infection with M. haemolytica results in increased expression of IL-17, IL-21 and IL-22. We have also developed an in vitro model of BRDC and show that co-infection of PBMC with BRSV followed by M. haemolytica leads to significantly exacerbated IL-17 production, which is primarily mediated by IL-17-producing γδ T cells. Together, our results demonstrate that calves, like humans, mount a robust IL-17 response during RSV infection; and suggest a previously unrecognized role for IL-17 and γδ T cells in the pathogenesis of BRDC.

  14. Bovine Gamma Delta T Cells Contribute to Exacerbated IL-17 Production in Response to Co-Infection with Bovine RSV and Mannheimia haemolytica.

    Science.gov (United States)

    McGill, Jodi L; Rusk, Rachel A; Guerra-Maupome, Mariana; Briggs, Robert E; Sacco, Randy E

    2016-01-01

    Human respiratory syncytial virus (HRSV) is a leading cause of severe lower respiratory tract infection in children under five years of age. IL-17 and Th17 responses are increased in children infected with HRSV and have been implicated in both protective and pathogenic roles during infection. Bovine RSV (BRSV) is genetically closely related to HRSV and is a leading cause of severe respiratory infections in young cattle. While BRSV infection in the calf parallels many aspects of human infection with HRSV, IL-17 and Th17 responses have not been studied in the bovine. Here we demonstrate that calves infected with BRSV express significant levels of IL-17, IL-21 and IL-22; and both CD4 T cells and γδ T cells contribute to this response. In addition to causing significant morbidity from uncomplicated infections, BRSV infection also contributes to the development of bovine respiratory disease complex (BRDC), a leading cause of morbidity in both beef and dairy cattle. BRDC is caused by a primary viral infection, followed by secondary bacterial pneumonia by pathogens such as Mannheimia haemolytica. Here, we demonstrate that in vivo infection with M. haemolytica results in increased expression of IL-17, IL-21 and IL-22. We have also developed an in vitro model of BRDC and show that co-infection of PBMC with BRSV followed by M. haemolytica leads to significantly exacerbated IL-17 production, which is primarily mediated by IL-17-producing γδ T cells. Together, our results demonstrate that calves, like humans, mount a robust IL-17 response during RSV infection; and suggest a previously unrecognized role for IL-17 and γδ T cells in the pathogenesis of BRDC. PMID:26942409

  15. Bovine Gamma Delta T Cells Contribute to Exacerbated IL-17 Production in Response to Co-Infection with Bovine RSV and Mannheimia haemolytica

    Science.gov (United States)

    McGill, Jodi L.; Rusk, Rachel A.; Guerra-Maupome, Mariana; Briggs, Robert E.; Sacco, Randy E.

    2016-01-01

    Human respiratory syncytial virus (HRSV) is a leading cause of severe lower respiratory tract infection in children under five years of age. IL-17 and Th17 responses are increased in children infected with HRSV and have been implicated in both protective and pathogenic roles during infection. Bovine RSV (BRSV) is genetically closely related to HRSV and is a leading cause of severe respiratory infections in young cattle. While BRSV infection in the calf parallels many aspects of human infection with HRSV, IL-17 and Th17 responses have not been studied in the bovine. Here we demonstrate that calves infected with BRSV express significant levels of IL-17, IL-21 and IL-22; and both CD4 T cells and γδ T cells contribute to this response. In addition to causing significant morbidity from uncomplicated infections, BRSV infection also contributes to the development of bovine respiratory disease complex (BRDC), a leading cause of morbidity in both beef and dairy cattle. BRDC is caused by a primary viral infection, followed by secondary bacterial pneumonia by pathogens such as Mannheimia haemolytica. Here, we demonstrate that in vivo infection with M. haemolytica results in increased expression of IL-17, IL-21 and IL-22. We have also developed an in vitro model of BRDC and show that co-infection of PBMC with BRSV followed by M. haemolytica leads to significantly exacerbated IL-17 production, which is primarily mediated by IL-17-producing γδ T cells. Together, our results demonstrate that calves, like humans, mount a robust IL-17 response during RSV infection; and suggest a previously unrecognized role for IL-17 and γδ T cells in the pathogenesis of BRDC. PMID:26942409

  16. [Prevalence of subclinical udder infections and individual somatic cell counts in three dairy goat herds during a full lactation].

    Science.gov (United States)

    Schaeren, W; Maurer, J

    2006-12-01

    For dairy goats, both the determination of the somatic cell counts (SCC) and the interpretation of these values may be a problem. Several investigations have shown that SCC for goat's milk, even from not infected mammary halves, are often higher than for cows milk. In the three herds examined about 40% of mammary halves and 30% of the goats were infected. However large differences between the three herds could be observed. In most cases, infections were caused by coagulase negative staphylococci (CNS) or corynebacteria. The SCC of individual milk samples from goats without any udder infection hardly differed from those of goats with at least one udder half infected with CNS. In 20% and 30% of the cases the SCC was higher than 750'000 cells/ml, respectively. The relation between California Mastitis Test (CMT) reactions and udder infections was not very close. Over 20% of mammary halves infected with CNS showed negative CMT reactions. On the other hand, 25% of samples from mammary halves without a proven infection reacted positively. The large differences in individual cell counts on herd and animal level indicate that production and breeding systems might be important reasons for the higher SCC. As a consequence, the most common methods for or the control of udder health and udder infections (SCC, California Mastitis Test) are of limited value for goats. Since there was only a weak relation between milk quality properties and SCC, any arguments for the introduction of legal limits below 1 million cells per ml can hardly be found. PMID:17263081

  17. Effect of growth factors on oocyte maturation and allocations of inner cell mass and trophectoderm cells of cloned bovine embryos.

    Science.gov (United States)

    Arat, Sezen; Caputcu, Arzu Tas; Cevik, Mesut; Akkoc, Tolga; Cetinkaya, Gaye; Bagis, Haydar

    2016-08-01

    This study was conducted to determine the additive effects of exogenous growth factors during in vitro oocyte maturation (IVM) and the sequential culture of nuclear transfer (NT) embryos. Oocyte maturation and culture of reconstructed embryos derived from bovine granulosa cells were performed in culture medium supplemented with either epidermal growth factor (EGF) alone or a combination of EGF with insulin-like growth factor-I (IGF-I). The maturation rates of oocytes matured in the presence of EGF or the EGF + IGF-I combination were significantly higher than those of oocytes matured in the presence of only fetal calf serum (FCS) (P 0.05). IGF-I alone or in combination with EGF in sequential embryo culture medium significantly increased the ratio of inner cell mass (ICM) to total blastocyst cells (P media of cloned bovine embryos increased the ICM without changing the total cell number. These unknown and uncontrolled effects of growth factors can alter the allocation of ICM and trophectoderm cells (TE) in NT embryos. A decrease in TE cell numbers could be a reason for developmental abnormalities in embryos in the cloning system. PMID:26444069

  18. Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    BOU; ShorGan

    2009-01-01

    In the present study, cashmere goat fetal fibroblasts were transfected with pCDsR-KI, a hair-follicle-cell specific expression vector for insulin-like growth factor 1 (IGF1) that contains two markers for selection (red fluorescent protein gene and neomycin resistant gene). The transgenic fibroblasts cell lines were obtained after G418 selection. Prior to the somatic cell nuclear transfer (SCNT), the maturation rate of caprine cumulus oocytes complexes (COCs) was optimized to an in vitro maturation time of 18 h. Parthenogenetic ooctyes were used as a model to investigate the effect of two activation methods, one with calcium ionophore IA23187 plus 6-DMAP and the other with ethanol plus 6-DMAP. The cleavage rates after 48 h were respectively 88.7% and 86.4%, with no significant difference (P>0.05). There was no significant difference between the cleavage rate and the blastocyst rate in two different media (SO- Faa and CR1aa; 86.3% vs 83.9%, P>0.05 and 23.1% vs 17.2%,P>0.05). The fusion rate of a 190 V/mm group (62.4%) was significantly higher than 130 V/mm (32.8%) and 200 V/mm (42.9%), groups (P<0.05). After transgenic somatic cell nuclear transfer (TSCNT) manipulation, 203 reconstructed embryos were obtained in which the cleavage rate after in vitro development (IVD) for 48 h was 79.3% (161/203). The blastocyst rate after IVD for 7 to 9 d was 15.3% (31/203). There were 17 embryos out of 31 strongly ex- pressing red fluorescence. Two of the red fluorescent blastocysts were randomly selected to identify transgene by polymerase chain reaction. Both were positive. These results showed that: (i) RFP and Neor genes were correctly expressed indicating that transgenic somatic cell lines and positive trans- genic embryos were obtained; (ii) one more selection at the blastocyst stage was necessary although the donor cells were transgenic positive, because only partially transgenic embryos expressing red fluorescence were obtained; and (iii) through TSCNT manipulation and

  19. Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    GUO XuDong; YANG DongShan; Ao XuDong; WU Xia; LI GuangPeng; WANG LingLing; BAO MingTao; XUE Lian; BOU ShorGan

    2009-01-01

    In the present study, cashmere goat fetal flbroblasta were transfected with pCDsR-KI, a hair-follicle-cell specific expression vector for insulin-like growth factor 1(IGF1) that contains two markers for selection (red fluorescent protein gene and neomycin resistant gene). The transgenic fibroblasta cell lines were obtained after G418 selection. Prior to the somatic cell nuclear transfer (SCNT), the maturation rate of caprine cumulus oocytes complexes (COCs) was optimized to an in vitro maturation time of 18 h.Parthenogenetic ooctyes were used as a model to Investigate the effect of two activation methods, one with calcium ionophore IA23187 plus 6-DMAP and the other with ethanol plus 6-DMAP. The cleavage rates after 48 h were respectively 88.7% and 86.4%, with no significant difference (P>0.05). There was no significant difference between the cleavage rate and the blastocyst rate in two different media (SO-Faa and CR1aa; 86.3% va 83.9%, P>0.05 and 23.1% vs 17.2%, P>0.05). The fusion rate of a 190 V/mm group (62.4%) was significantly higher than 130 V/mm (32.8%) and 200 V/mm (42.9%), groups (P<0.05).After transgenic somatic cell nuclear transfer (TSCNT) manipulation, 203 reconstructed embryos were obtained in which the cleavage rate after in vitro development (IVD) for 48 h was 79.3% (161/203). The blastocyst rate after IVD for 7 to 9 d was 15.3% (31/203). There were 17 embryos out of 31 strongly ex-pressing red fluorescence. Two of the red fluorescent blastocysta were randomly selected to identify transgene by polymeraee chain reaction. Both were positive. These results showed that: (i) RFP and Neo genes were correctly expressed indicating that transgenlc somatic cell lines and positive trans-genic embryos were obtained; (ii) one more selection at the blastocyst stage was necessary although the donor cells were transgenic positive, because only partially transgenic embryos expressing red fluorescence were obtained; and (iii) through TSCNT manipulation and

  20. Radiation-induced changes to mammalian cells as a precipitating factor in somatic radiation injuries

    International Nuclear Information System (INIS)

    Radiation-induced inhibitions of proliferation were assessed in cell cultures examined for their colony-forming abilities as well as from changes of growth curves. The results of those measurements, along with simulating calculations, underlined the fact that the colony-forming capacity of a cell can by no means be equated with cell survival, unless due attention is given to the size of the colony formed. It is the size of the colony that provides a measure of the damage done to the irradiated cell. Cells counts are the most reliable method to ascertain the course of proliferation following radiation exposure. The difference between the two methods mentioned became particularly evident in studies with radiation protection substances. Dithiothreitol (DTT) and mercaptopropionyl glycine (MPG) were on the basis of colony formation clearly shown to offer protection against radiation. The growth curves, however, revealed that the proliferation of cells irradiated in the presence of radiation protection substances was even more strongly inhibited than that of cells influenced by irradiation alone. The neutral elution method failed to provide irrefutable evidence that the rate of double strand breaks was reduced by those two substances. Cysteamine and DTT were, however, able to inhibit radiation-induced changes to the proteins of human erythrocyte membranes. (orig./MG)