WorldWideScience

Sample records for bovine serum albumin

  1. Binding of anandamide to bovine serum albumin

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2003-01-01

    The endocannabinoid anandamide is of lipid nature and may thus bind to albumin in the vascular system, as do fatty acids. The knowledge of the free water-phase concentration of anandamide is essential for the investigations of its transfer from the binding protein to cellular membranes, because a...... in aqueous compartments. - Bojesen, I. N., and H. S. Hansen. Binding of anandamide to bovine serum albumin....

  2. Aggregation and fibrillation of bovine serum albumin

    DEFF Research Database (Denmark)

    Holm, NK; Jespersen, SK; Thomassen, LV

    2007-01-01

    The all-alpha helix multi-domain protein bovine serum albumin (BSA) aggregates at elevated temperatures. Here we show that these thermal aggregates have amyloid properties. They bind the fibril-specific dyes Thioflavin T and Congo Red, show elongated although somewhat worm-like morphology and cha...

  3. Sucrose/bovine serum albumin mediated biomimetic crystallization ...

    Indian Academy of Sciences (India)

    To understand the role of the sucrose/bovine serum albumin system in the biomineralization process, we have tested the influence of different concentration of the sucrose/bovine serum albumin (BSA) on calcium carbonate (CaCO3) precipitation. The CaCO3 crystals were characterized by scanning electron microscope ...

  4. Bovine Serum Albumin: a double allergy risk.

    Science.gov (United States)

    Voltolini, S; Spigno, F; Cioè, A; Cagnati, P; Bignardi, D; Minale, P

    2013-08-01

    We analyse two cases of Bovine Serum Albumin (BSA) allergy. The first regards a female laboratory technician with a history of bronchial asthma due to cat allergy, who developed an exacerbation of bronchial symptoms as a consequence of BSA powder inhalation at work. To date, sensitization to BSA as a cause of occupational asthma has rarely been reported in the scientific literature. The second case concerns a woman with a similar cat sensitivity, who presented an oral allergy syndrome-type clinical reaction, gastric pain and diarrhoea immediately after eating cooked pork meat. Subsequently, she developed the same reaction after eating goat meat and goat cheese, and then also after eating beef. Both patients resulted specifically sensitized to BSA and to other mammalian serum albumins which play a role as panallergens in animals. The two cases show that BSA, a well known cause of food allergy in childhood, may also provoke symptoms of food allergy in adulthood, though in case of powder inhalation, it may provoke respiratory symptoms. Prior animal sensitization appears to represent a risk factor.

  5. Aggregation and fibrillation of bovine serum albumin

    DEFF Research Database (Denmark)

    Holm, NK; Jespersen, SK; Thomassen, LV

    2007-01-01

    The all-alpha helix multi-domain protein bovine serum albumin (BSA) aggregates at elevated temperatures. Here we show that these thermal aggregates have amyloid properties. They bind the fibril-specific dyes Thioflavin T and Congo Red, show elongated although somewhat worm-like morphology...... and characteristic amyloid X-ray fiber diffraction peaks. Fibrillation occurs over minutes to hours without a lag phase, is independent of seeding and shows only moderate concentration dependence, suggesting intramolecular aggregation nuclei. Nevertheless, multi-exponential increases in dye-binding signal...... and changes in morphology suggest the existence of different aggregate species. Although beta-sheet content increases from 0 to ca. 40% upon aggregation, the aggregates retain significant amounts of alpha-helix structure, and lack a protease-resistant core. Thus BSA is able to form well-ordered beta...

  6. Interaction of cyclodextrins with human and bovine serum albumins ...

    Indian Academy of Sciences (India)

    Interaction of cyclodextrins (CDs) with the two most abundant proteins, namely human serum albumin (HSA) and bovine serum albumin (BSA), has been investigated using steady-state and time-resolved fluorometric techniques, circular dichroism measurements and molecular docking simulation. The study reveals that the ...

  7. Structural changes during the unfolding of Bovine serum albumin in ...

    Indian Academy of Sciences (India)

    The native form of serum albumin is the most important soluble protein in the body plasma. In order to investigate the structural changes of Bovine serum albumin (BSA) during its unfolding in the presence of urea, a small-angle neutron scattering (SANS) study was performed. The scattering curves of dilute solutions of BSA ...

  8. On the possible involvement of bovine serum albumin precursor in ...

    Indian Academy of Sciences (India)

    biotin affinity chromatography and mass finger printing analysis technique, herein we report the identification of a 70 kDa size protein (bovine serum albumin precursor, BSAP) which binds strongly with lipoplexes and may play role in lipofection ...

  9. Interaction of Tannin with Bovine Serum Albumin by Fluorescence Spectrometry

    OpenAIRE

    Dong-Il, Kim; Son-Ae, Choe; Kye-Ryong, Sin

    2016-01-01

    Interaction between tannin and bovine serum albumin (BSA) was examined by the fluorescent quenching. The process of elimination between BSA and tannin was the one of a stationary state, and the coupling coefficient was one. The working strength between the tannin and the beef serum was hydrophobic one.

  10. Preparation and characterization of (125)i labeled bovine serum albumin.

    Science.gov (United States)

    Ashwitha Rai, K S; Jyothi; Rasmi, R R; Sarnaik, Jayula; Kadwad, V B; Shenoy, K B; Somashekarappa, H M

    2015-01-01

    Bovine serum albumin is a model protein, which has been conventionally used as protein standard and in many areas of biochemistry, pharmacology and medicine. Radioiodination procedure for bovine serum albumin employing chloramine-T as an oxidant with slight modification was evaluated critically to establish the optimal conditions for the preparation of radiolabeled tracer ((125)I-BSA) with required specific activity without impairing the immune reactivity and biological activity. Optimized radioiodination procedure involving 10 µg of chloramine-T along with 20 µg of sodium metabisulphite with 60 seconds incubation at 2° yielded (125)I-BSA with high integrity.

  11. Preparation and Characterization of 125I Labeled Bovine Serum Albumin

    Science.gov (United States)

    Ashwitha Rai, K. S.; Jyothi; Rasmi, R. R.; Sarnaik, Jayula; Kadwad, V. B.; Shenoy, K. B.; Somashekarappa, H. M.

    2015-01-01

    Bovine serum albumin is a model protein, which has been conventionally used as protein standard and in many areas of biochemistry, pharmacology and medicine. Radioiodination procedure for bovine serum albumin employing chloramine-T as an oxidant with slight modification was evaluated critically to establish the optimal conditions for the preparation of radiolabeled tracer (125I-BSA) with required specific activity without impairing the immune reactivity and biological activity. Optimized radioiodination procedure involving 10 µg of chloramine-T along with 20 µg of sodium metabisulphite with 60 seconds incubation at 2° yielded 125I-BSA with high integrity. PMID:25767326

  12. Bovine Serum Albumin Metal Complexes for Mimic of SOD

    Indian Academy of Sciences (India)

    prospect in antioxidant drug field. Keywords. Bovine serum albumin; biopolymer metal complexes; .... cations, such as neoteric hydrophilic and drug delivery carriers.26 In our previous investigations, it was discov- ... monitor the interaction of metal ions with BSA. BSA has a high percentage of α-helical structure which.

  13. Sucrose/bovine serum albumin mediated biomimetic crystallization ...

    Indian Academy of Sciences (India)

    Administrator

    specific morphology by β-cyclodextrin. Glucan. 14 was used as a template to control synthesis of aragonite calcium carbonate. This paper mainly discusses the cooperative influ- ence of the sucrose/bovine serum albumin system which is close to biological organisms on calcium carbonate precipitation. The aim of these ...

  14. Isolation of bovine serum albumin from whey using affinity chromatography

    NARCIS (Netherlands)

    Besselink, T.; Janssen, A.E.M.; Boom, R.M.

    2015-01-01

    The adsorption of bovine serum albumin (BSA) to a chromatography resin with immobilised llama antibody fragments as affinity ligands was investigated. The maximum adsorption capacity of the affinity resin was 21.6 mg mL-1 with a Langmuir equilibrium constant of 20.4 mg mg-1. Using packed bed

  15. On the possible involvement of bovine serum albumin precursor in ...

    Indian Academy of Sciences (India)

    2014-01-27

    Jan 27, 2014 ... mass finger printing analysis technique, herein we report the identification of a 70 kDa size protein (bovine serum albumin precursor, BSAP) .... Total cytoplasmic proteins from CHO cells were isolated using conventional cell ..... 2002 HIV-1 integration in the human genome favors active genes and local ...

  16. Binding of several benzodiazepines to bovine serum albumin: Fluorescence study

    Science.gov (United States)

    Machicote, Roberta G.; Pacheco, María E.; Bruzzone, Liliana

    2010-10-01

    The interactions of lorazepam, oxazepam and bromazepam with bovine serum albumin (BSA) were studied by fluorescence spectrometry. The Stern-Volmer quenching constants and corresponding thermodynamic parameters Δ H, Δ G and Δ S were calculated. The binding constants and the number of binding sites were also investigated. The distances between the donor (BSA) and the acceptors (benzodiazepines) were obtained according to fluorescence resonance energy transfer and conformational changes of BSA were observed from synchronous fluorescence spectra.

  17. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    Science.gov (United States)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  18. Interaction of aspirin and vitamin C with bovine serum albumin.

    Science.gov (United States)

    Nafisi, Shohreh; Bagheri Sadeghi, Golshan; PanahYab, Ataollah

    2011-12-02

    Vitamin C (L-ascorbic acid) has a major biological role as a natural antioxidant. Aspirin belongs to the nonsteroidal anti-inflammatory drugs and functions as an antioxidant via its ability to scavenge-OH radicals. Bovine serum albumin (BSA) is the major soluble protein constituent of the circulatory system and has many physiological functions including transport of a variety of compounds. In this report, the competitive binding of vitamin C and aspirin to bovine serum albumin has been studied using constant protein concentration and various drug concentrations at pH 7.2. FTIR and UV-Vis spectroscopic methods were used to analyze vitamin C and aspirin binding modes, the binding constants and the effects of drug complexation on BSA stability and conformation. Spectroscopic evidence showed that vitamin C and aspirin bind BSA via hydrophilic interactions (polypeptide and amine polar groups) with overall binding constants of K(vitamin C-BSA)=1.57×10(4)M(-1) and K(aspirin-BSA)=1.15×10(4)M(-1); assuming that there is one drug molecule per protein. The BSA secondary structure was altered with major decrease of α-helix from 64% (free protein) to 57% (BSA-vitamin C) and 54% (BSA-aspirin) and β-sheet from 15% (free protein) to 6-7% upon drug complexation, inducing a partial protein destabilization. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. [Interaction of surface active fluorescence probes and bovine serum albumin].

    Science.gov (United States)

    Xu, Tong-kuan; Li, Na; Shen, Xing-hai; Gao, Hong-cheng

    2005-09-01

    The binding between two surface-active substituted 3H-indole fluorescence probes, i. e., iodo-dihexadecyl methyl-2-(p-dodecyl amino phenyl)-3, 3-dimethyl-5-carboethoxy-3H-indole ammonium and iodo-dimethyloctadecyl-2-(p-dodecyl amino phenyl)-3,3-dimethyl-5-carboethoxy-3H-indole ammonium, and bovine serum albumin (BSA) in aqueous solution was studied using fluorescence. The binding constant and binding site number of molecule 1 and molecule 2 with BSA were obtained. It was confirmed that electrostatic interaction is the primary driving force for the combination of BSA with molecule 1 or molecule 2. According to the Förster resonance energy transfer theory, the distances between molecule 1, molecule 2 and tryptophan of BSA were calculated to be 2.90 nm and 4.02 nm, respectively.

  20. 3-hydroxyflavone-bovine serum albumin interaction in Dextran medium

    Directory of Open Access Journals (Sweden)

    Voicescu Mariana

    2015-01-01

    Full Text Available Spectroscopic analysis of a bioactive flavonol, 3-Hydroxyflavone (3-HF, in systems based on Dextran 70 (Dx70 (an important bio-relevant polysacharide and Bovine Serum Albumin (BSA (a carrier protein, have been studied by fluorescence and circular dichroism. Changes produced by different concentrations of Dx70 on the fluorescent characteristics of 3-HF, and on the excited - state intramolecular proton transfer (ESIPT process were studied. The influence of 3-HF binding and of Dx70 on the secondary structure of BSA were investigated by circular dichroism spectroscopy. The influence of temperature (30-80°C range on the intrinsic Tryptophan fluorescence in 3-HF/BSA/Dx70 systems, was investigated. The results are discussed with relevance to 3-HF as a sensitive fluorescence probe for exploring flavone-protein interaction in plasma expander media and also for its biological evaluation.

  1. Toxic effects of ethanol on bovine serum albumin.

    Science.gov (United States)

    Liu, Rutao; Qin, Pengfei; Wang, Li; Zhao, Xingchen; Liu, Yihong; Hao, Xiaopeng

    2010-01-01

    The toxic effects of ethanol on bovine serum albumin (BSA) were measured by resonance light scattering (RLS), fluorescence spectroscopy, ultraviolet spectrophotometry (UV), circular dichroism (CD), and transmission electron microscopy (TEM). The results indicated that ethanol had toxic effects on BSA, which led to protein denaturation and the effects increased with the ethanol dose. By means of RLS, BSA was found to aggregate in the presence of ethanol and particles smaller than 100 nm were observed from TEM. The fluorescence spectra showed that the intensity of the characteristic peak of BSA decreased and blue shifted, because of changes in the BSA skeleton structure, as well as alteration of the microenvironment of tryptophan (Trp) residues. The conformation changes of BSA were also shown by UV and CD spectrometry.

  2. Structural changes during the unfolding of Bovine serum albumin in ...

    Indian Academy of Sciences (India)

    400Da [9]. Low-angle X-ray scattering [10] and neutron scattering [11] also in- dicated serum albumin to be a prolate ellipsoid. However, studies using 1H NMR indicated that a prolate structure was unlikely; rather a heart-shaped structure was proposed [12]. The shape of albumin reveals a heart-shaped molecule that can.

  3. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid

    Directory of Open Access Journals (Sweden)

    Bronze-Uhle ES

    2016-12-01

    Full Text Available ES Bronze-Uhle,1 BC Costa,1 VF Ximenes,2 PN Lisboa-Filho1 1Department of Physics, São Paulo State University (Unesp, School of Sciences, Bauru, São Paulo, Brazil; 2Department of Chemistry, São Paulo State University (Unesp, School of Sciences, Bauru, São Paulo, Brazil Abstract: Bovine serum albumin (BSA is highly water soluble and binds drugs or inorganic substances noncovalently for their effective delivery to various affected areas of the body. Due to the well-defined structure of the protein, containing charged amino acids, albumin nanoparticles (NPs may allow electrostatic adsorption of negatively or positively charged molecules, such that substantial amounts of drug can be incorporated within the particle, due to different albumin-binding sites. During the synthesis procedure, pH changes significantly. This variation modifies the net charge on the surface of the protein, varying the size and behavior of NPs as the drug delivery system. In this study, the synthesis of BSA NPs, by a desolvation process, was studied with salicylic acid (SA as the active agent. SA and salicylates are components of various plants and have been used for medication with anti-inflammatory, antibacterial, and antifungal properties. However, when administered orally to adults (usual dose provided by the manufacturer, there is 50% decomposition of salicylates. Thus, there has been a search for some time to develop new systems to improve the bioavailability of SA and salicylates in the human body. Taking this into account, during synthesis, the pH was varied (5.4, 7.4, and 9 to evaluate its influence on the size and release of SA of the formed NPs. The samples were analyzed using field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, zeta potential, and dynamic light scattering. Through fluorescence, it was possible to analyze the release of SA in vitro in phosphate-buffered saline solution. The results of

  4. Effects of bovine serum albumin on a single cavitation bubble.

    Science.gov (United States)

    Qi, Shuibao; Assouar, Badreddine; Chen, Weizhong

    2017-09-01

    The dynamics and sonoluminescence (SL) of a single cavitation bubble in bovine serum albumin (BSA) aqueous solutions have been experimentally and theoretically investigated. A phase-locked integral imaging has been used to record the bubble pulsation evolutions. The results show that, under the optimum driving condition, the endurable driving pressure, maximum radius, radius compression ratio and SL intensity of the cavitation bubble increase correspondingly with the increase of BSA concentrations within the critical micelle concentration, which indicates that the addition of BSA increases the power capability of the cavitation bubble. In addition, BSA molecules dampen the interfacial motion, and especially the rebounds of the bubble after its collapse. BSA molecules modify the dilatational viscosity and elasticity of the bubble wall. A viscoelastic interfacial rheological model that mainly emphasizes on the description of the bubble wall has been introduced and modified to theoretically explain the measured bubble dynamics. A good consensus between the experimental observation and model calculation has been achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Adsorption of bovine serum albumin and urease by biochar

    Science.gov (United States)

    Wang, Wenjing; Chen, Lei; Zhang, Yipeng; Liu, Guocheng

    2017-04-01

    The application of biochar to soil improvement inevitably affects free soil enzymes. However, there is little information on the interaction of soil enzymes with biochar to our knowledge. We thus investigated the adsorption of bovine serum albumin (BSA) and urease onto two biochars from giant reed pyrolyzed at 300 and 600 °C (BCF300 and BCF600). The adsorption amount of BSA and urease on BCF300 and BCF600 was up to 45.6-209 mg/g and 75.3-808 mg/g, respectively, suggesting that the test proteins could be adsorbed onto the biochars effectively. The sorption rate of BSA and urease significantly decreased as the protein concentration increased, suggesting that their adsorption was nonlinear. For the same initial concentration (50 or 200 mg/L), the adsorption amount of BSA on the biochars was lower, only 25.9-60.5% of that of urease. The high specific surface area and hydrophobicity of the biochars may play important roles on the immobilization of the proteins by biochars. These findings will be helpful for better understanding the effects of biochar adding on the soil enzymes.

  6. Polyacrylic acids–bovine serum albumin complexation: Structure and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed; Aschi, Adel, E-mail: aschi13@yahoo.fr; Gharbi, Abdelhafidh

    2016-01-01

    The study of the mixture of BSA with polyacrylic acids at different masses versus pH allowed highlighting the existence of two regimes of weak and strong complexation. These complexes were studied in diluted regime concentration, by turbidimetry, dynamic light scattering (DLS), zeta-potential measurements and nuclear magnetic resonance (NMR). We have followed the pH effect on the structure and properties of the complex. This allowed refining the interpretation of the phase diagram and understanding the observed phenomena. The NMR measurements allowed probing the dynamics of the constituents versus the pH. The computational method was used to precisely determine the electrostatic potential of BSA and how the polyelectrolyte binds to it at different pH. - Highlights: • Influence of physico-chemical parameters on the electrostatic interactions in the complex system (polyelectrolyte/protein). • Stabilization and encapsulation of biological macromolecules solution by mean of polyelectrolyte. • Properties and structure of mixture obtained by screening the charges of globular protein and at different masses of polyacrylic acids. • Dynamic of the constituents formed by complexes particles. • Evaluation of the electrostatic properties of bovine serum albumin versus pH through solution of the Poisson-Boltzmann equation.

  7. Development of bovine serum albumin certified reference material.

    Science.gov (United States)

    Wu, Liqing; Yang, Bin; Bi, Jiaming; Wang, Jing

    2011-07-01

    We present the development process for National Institute of Metrology (NIM) bovine serum albumin (BSA) certified reference material (CRM). Each CRM unit contains about 200 mg of purified BSA. The moisture, ignition residue, molecular weight, and high-performance liquid chromatography (HPLC) purity were analyzed and mass spectrometry based protein identification was carried out to ensure the material was BSA. Both amino acid based isotope dilution mass spectrometry (IDMS) and a purity deduction method were selected for value assignment. The certified value was the average of the IDMS and the purity deduction result. HPLC purity analysis was used to examine the homogeneity and stability of solid BSA CRM. Fifteen units were selected for between-bottle homogeneity examination and seven subsamples from the same bottle were selected for within-bottle homogeneity examination. Statistics showed the CRM passed both the between-bottle and the within-bottle homogeneity examination. The CRM stability under storage conditions (-20 °C) was tested for 18 months and no trend was observed. Uncertainties from the balance, amino acid purity, hydrolysis, method reproducibility, homogeneity, and stability were taken into account in uncertainty evaluation. The final certified value of NIM BSA CRM is (0.963±0.038) g/g.

  8. Study of the Interaction of Cefonicid Sodium with Bovine Serum Albumin by Fluorescence Spectroscopy

    Science.gov (United States)

    Duan, Sh.-T.; Liu, B.-Sh.; Li, T.-T.; Cui, M.-M.

    2017-07-01

    The reaction mechanism of cefonicid sodium with bovine serum albumin was investigated by traditional fluorescence spectroscopy and synchronous fluorescence spectroscopy. The results demonstrated that cefonicid sodium caused a strong fluorescence quenching of bovine serum albumin through a static quenching mechanism, during which the electrostatic force played the dominant role in this system, and the number of binding sites in the system was close to 1. It also showed that the primary binding site for cefonicid sodium was closer to tryptophan residues located in sub-hydrophobic domain IIA. Moreover, circular dichroism spectroscopy showed that the secondary structure of bovine serum albumin changed. The donor-to-acceptor distance r bovine serum albumin was a nonradiation energy transfer process. The data obtained from Δλ = 60 nm and λex = 295 nm indicated that synchronous fluorescence spectroscopy had higher sensitivity and accuracy compared to traditional fluorescence spectroscopy.

  9. Binding of a new bisphenol analogue, bisphenol S to bovine serum albumin and calf thymus DNA.

    Science.gov (United States)

    Wang, Yan-Qing; Zhang, Hong-Mei; Cao, Jian; Tang, Bo-Ping

    2014-09-05

    Interactions of bisphenol S, a new bisphenol analogue with bovine serum albumin and calf thymus DNA were investigated using different spectroscopic methods and molecular modeling calculation. According to the analysis of experimental and theoretical data, we concluded that hydrophobic interactions and hydrogen bonding primarily mediated the binding processes of bisphenol S with bovine serum albumin and DNA. In addition, the electrostatic force should not be excluded. Molecular modeling studies indicated that the binding site of bisphenol S to bovine serum albumin located in the subdomain IB, while bisphenol S was a groove binder of DNA. In addition, BPS did not obviously induce second structural changes of bovine serum albumin, but it induced a conformational change of calf thymus DNA. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Adsorption of Bovine Serum Albumin on Carbon-Based Materials

    Directory of Open Access Journals (Sweden)

    Mykola Seredych

    2018-01-01

    Full Text Available The protein adsorption plays a very important role in biotechnology, biomolecular engineering and it is one of the main factors determining bio- and hemocompatibility of biomedical materials in medical applications, such as blood purification and wound healing. Here we report adsorption properties of two carbon-based materials, thermally expanded graphite (EGr and graphene nanoplatelets (GnP, for bovine serum albumin (BSA, the most abundant blood plasma protein. The influence of the surface chemistry of expanded graphite on the mechanism of BSA adsorption was studied by using EGr modified with oxygen or nitrogen functionalities. Having low microporosity and the specific surface area in the range of 5 to 50 m2/g, the expanded graphite exhibits high protein adsorption capacity at high equilibrium concentrations, which makes this material a potential candidate for biomedical applications as a carrier for high molecular weight (HMW drug delivery or adsorption of HMW metabolites. At low equilibrium concentrations, the effect of specific protein-surface functional groups interaction reveals the differences between the adsorption affinity of different surface modified EGr materials to BSA. The adsorption of BSA on GnP with a specific surface area of 286 m2/g and a developed micro-/mesoporous structure did not follow the same mechanism as seen with EGr materials. At low equilibrium concentration of BSA, GnP exhibits high adsorption efficiency. An important finding is that no release of nanoparticles from expanded graphite adsorbents was observed, which makes them potentially suitable for direct contact with blood and other tissues while very small nanoparticles were noticed in the case of graphene nanoplatelets.

  11. Interactions between imazethapyr and bovine serum albumin: Spectrofluorimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Maria E. [Division Quimica Analitica, Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina); Bruzzone, Liliana, E-mail: bruzzone@quimica.unlp.edu.ar [Division Quimica Analitica, Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina)

    2012-10-15

    The interaction between imazethapyr (IMA) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy. The Stern-Volmer quenching constant (K{sub SV}) at three temperatures was evaluated in order to determine the quenching mechanism. The dependence of fluorescence quenching on viscosity was also evaluated for this purpose. The results showed that IMA quenches the fluorescence intensity of BSA through a static quenching process. The values of the binding constant for the formed BSA-IMA complex and the number of binding sites were found to be 1.51 Multiplication-Sign 10{sup 5} M{sup -1} and 0.77, respectively, at room temperature. Based on the calculated thermodynamic parameters, the forces that dominate the binding process are hydrogen bonds and van der Waals forces, and the binding process is spontaneous and exothermic. The quenching of protein fluorescence by iodide ion was used to probe the accessibility of tryptophan residues in BSA and the change in accessibility induced by the presence of IMA. According to the obtained results, the BSA-IMA complex is formed in the site where the Trp-134 is located, causing it to become less exposed to the solvent. - Highlights: Black-Right-Pointing-Pointer Fluorescence spectroscopy helps to understand protein binding mechanisms. Black-Right-Pointing-Pointer Quenching measurements reveal the nature of the binding process involved. Black-Right-Pointing-Pointer Iodine ion can be used to study the change in accessibility of tryptophan residues. Black-Right-Pointing-Pointer Thermodynamic parameters for the binding reaction confirm binding modes.

  12. Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin.

    Directory of Open Access Journals (Sweden)

    Vera A Borzova

    Full Text Available Thermal aggregation of bovine serum albumin (BSA has been studied using dynamic light scattering, asymmetric flow field-flow fractionation and analytical ultracentrifugation. The studies were carried out at fixed temperatures (60°C, 65°C, 70°C and 80°C in 0.1 M phosphate buffer, pH 7.0, at BSA concentration of 1 mg/ml. Thermal denaturation of the protein was studied by differential scanning calorimetry. Analysis of the experimental data shows that at 65°C the stage of protein unfolding and individual stages of protein aggregation are markedly separated in time. This circumstance allowed us to propose the following mechanism of thermal aggregation of BSA. Protein unfolding results in the formation of two forms of the non-native protein with different propensity to aggregation. One of the forms (highly reactive unfolded form, Uhr is characterized by a high rate of aggregation. Aggregation of Uhr leads to the formation of primary aggregates with the hydrodynamic radius (Rh,1 of 10.3 nm. The second form (low reactive unfolded form, Ulr participates in the aggregation process by its attachment to the primary aggregates produced by the Uhr form and possesses ability for self-aggregation with formation of stable small-sized aggregates (Ast. At complete exhaustion of Ulr, secondary aggregates with the hydrodynamic radius (Rh,2 of 12.8 nm are formed. At 60°C the rates of unfolding and aggregation are commensurate, at 70°C the rates of formation of the primary and secondary aggregates are commensurate, at 80°C the registration of the initial stages of aggregation is complicated by formation of large-sized aggregates.

  13. Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin

    Science.gov (United States)

    Borzova, Vera A.; Markossian, Kira A.; Chebotareva, Natalia A.; Kleymenov, Sergey Yu.; Poliansky, Nikolay B.; Muranov, Konstantin O.; Stein-Margolina, Vita A.; Shubin, Vladimir V.; Markov, Denis I.; Kurganov, Boris I.

    2016-01-01

    Thermal aggregation of bovine serum albumin (BSA) has been studied using dynamic light scattering, asymmetric flow field-flow fractionation and analytical ultracentrifugation. The studies were carried out at fixed temperatures (60°C, 65°C, 70°C and 80°C) in 0.1 M phosphate buffer, pH 7.0, at BSA concentration of 1 mg/ml. Thermal denaturation of the protein was studied by differential scanning calorimetry. Analysis of the experimental data shows that at 65°C the stage of protein unfolding and individual stages of protein aggregation are markedly separated in time. This circumstance allowed us to propose the following mechanism of thermal aggregation of BSA. Protein unfolding results in the formation of two forms of the non-native protein with different propensity to aggregation. One of the forms (highly reactive unfolded form, Uhr) is characterized by a high rate of aggregation. Aggregation of Uhr leads to the formation of primary aggregates with the hydrodynamic radius (Rh,1) of 10.3 nm. The second form (low reactive unfolded form, Ulr) participates in the aggregation process by its attachment to the primary aggregates produced by the Uhr form and possesses ability for self-aggregation with formation of stable small-sized aggregates (Ast). At complete exhaustion of Ulr, secondary aggregates with the hydrodynamic radius (Rh,2) of 12.8 nm are formed. At 60°C the rates of unfolding and aggregation are commensurate, at 70°C the rates of formation of the primary and secondary aggregates are commensurate, at 80°C the registration of the initial stages of aggregation is complicated by formation of large-sized aggregates. PMID:27101281

  14. Biophysical influence of isocarbophos on bovine serum albumin: Spectroscopic probing

    Science.gov (United States)

    Zhang, Hua-xin; Zhou, Ying; Liu, E.

    Isocarbophos (ICP) is a phosphorous pesticide with high toxicity. It has been detected in several kinds of food and therefore can enter human body. In this paper, spectroscopic approaches including three-dimensional fluorescence (3D-FL) spectroscopy, UV-visible absorption spectroscopy and circular dichroism (CD) spectroscopy were employed to explore the binding of ICP to bovine serum albumin (BSA) at simulated physiological conditions. It was found that the fluorescence quenching of BSA was caused by the formation of ICP-BSA complex at ground state and belonged to static quenching mechanism. The binding constants, the number of binding sites, enthalpy change (ΔHθ), Gibbs free energy change (ΔGθ) and entropy change (ΔSθ) were calculated at four different temperatures according to Scatchard model and thermodynamic equations. To identify the binding location, fluorescence probe techniques were used. The results showed that warfarin, an acknowledged site marker for BSA, could be partially replaced by ICP when ICP was added to warfarin-BSA systems, which demonstrated that ICP primarily bound on Sudlow's site I in domain IIA of BSA molecule. The distance r (3.06 nm) between donor (Trp-212) and acceptor (ICP) was obtained based on Förster's non-radiation fluorescence resonance energy transfer (FRET) theory. Furthermore, the CD spectral results indicated that the secondary structure of BSA was changed in presence of ICP. The study is helpful to evaluating the toxicology of ICP and understanding its effects on the function of protein during the blood transportation process.

  15. Bovine serum albumin: survival and osmolarity effect in bovine spermatozoa stored above freezing point.

    Science.gov (United States)

    Nang, C F; Osman, K; Budin, S B; Ismail, M I; Jaffar, F H F; Mohamad, S F S; Ibrahim, S F

    2012-05-01

    Liquid nitrogen preservation in remote farms is a limitation. The goal of this study was to determine optimum temperature above freezing point for bovine spermatozoa preservation using bovine serum albumin (BSA) as a supplementation. Pooled semen sample from three ejaculates was subjected to various BSA concentration (1, 4, 8 and 12 mg ml(-1)), before incubation in different above freezing point temperatures (4, 25 and 37 °C). Viability assessment was carried out against time from day 0 (fresh sample) until all spermatozoa become nonviable. Optimal condition for bovine spermatozoa storage was at 4 °C with 1 mg ml(-1) BSA for almost 7 days. BSA improved bovine spermatozoa viability declining rate to 44.28% at day 4 and 57.59% at day 7 compared to control, with 80.54% and 98.57% at day 4 and 7 respectively. Increase in BSA concentration did not improve sperm viability. Our results also confirmed that there was a strong negative correlation between media osmolarity and bovine spermatozoa survival rate with r = 0.885, P freezing point. © 2011 Blackwell Verlag GmbH.

  16. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    Science.gov (United States)

    2011-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633

  17. Influence of myristic acid on furosemide binding to bovine serum albumin. Comparison with furosemide-human serum albumin complex

    Science.gov (United States)

    Bojko, B.; Sułkowska, A.; Maciążek-Jurczyk, M.; Równicka, J.; Sułkowski, W. W.

    2010-06-01

    Fluorescence studies on furosemide (FUR) binding to bovine serum albumin (BSA) showed the existence of three or four binding sites in the tertiary structure of the protein. Two of them are located in subdomain IIA, while the others in subdomains IB and/or IIIA. Furosemide binding in subdomain IB is postulated on the basis of run of Stern-Volmer plot indicating the existence of two populations of tryptophans involved in the interaction with FUR. In turn, the significant participation of tyrosil residues in complex formation leads to the consideration of the subdomain IIIA as furosemide low-affinity binding site. The effect of increasing concentration of fatty acid on FUR binding in all studied binding sites was also investigated and compared with the previous results obtained for human serum albumin (HSA). For BSA the lesser impact of fatty acid on affinity between drug and albumin was observed. This is probably a result of more significant role of tyrosines in the complex formation and different polarity of microenvironment of the fluorophores when compared HSA and BSA. The most distinct differences between FUR-BSA and FUR-HSA binding parameters are observed when third fatty acid molecule is bound with the protein and rotation of domains I and II occurs. However these structural changes mostly affect FUR low affinity binding sites.

  18. Binding of benzodiazepine drugs to bovine serum albumin: A second derivative spectrophotometric study

    Science.gov (United States)

    Omran, Ahmed A.; El-Sayed, Abdel-Aziz; Shehata, Ahmed

    2011-12-01

    The binding constants ( K values) of three benzodiazepine drugs to bovine serum albumin were determined by a second derivative spectrophotometric method. Despite the sample and reference samples were prepared in the same way to maintain the same albumin content in each sample and reference pair, the absorption spectra show that the baseline compensation was incomplete because of the strong background signals caused by bovine serum albumin. Accordingly, further quantitative spectral information could not be obtained from these absorption spectra. On the other hand, the calculated second derivative spectra clearly show isosbestic points indicating the complete removal of the residual background signal effects. Using the derivative intensity differences (Δ D values) of the studied benzodiazepine drugs before and after the addition of albumin, the binding constants were calculated and obtained with R.S.D. of less than 8%. The interactions of drugs with bovine serum albumin were investigated using Scatchard's plot. In addition, the consistency between the fractions of bound benzodiazepine calculated from the obtained K values and the experimental values were established. The results indicate that the second derivative method can be advantageously applicable to the determination of binding constants of drugs to serum albumin without prior separation. Moreover, the validity of the proposed method was confirmed.

  19. Binding of ethyl pyruvate to bovine serum albumin: Calorimetric, spectroscopic and molecular docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Mallika [Department of Chemistry, Miranda House, University of Delhi, Delhi 11007 (India); Mishra, Rashmi; Agarwala, Paban K. [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Ojha, Himanshu, E-mail: himanshu.drdo@gmail.com [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Singh, Bhawna [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Singh, Anju; Kukreti, Shrikant [Nucleic Acid Research Laboratory, Department of Chemistry, University of Delhi, Delhi 11007 (India)

    2016-06-10

    Highlights: • ITC study showed binding of ethyl pyruvate with BSA with high binding affinity. • Ethyl pyruvate binding caused conformation alteration of BSA. • Fluorescence quenching mechanism is static in nature. • Electrostatic, hydrogen bonding and hydrophobic forces involved in binding. • Docking confirmed role of electrostatic, hydrogen bonding and hydrophobic forces. - Abstract: Various in vitro and in vivo studies have shown the anti-inflammatory and anticancer potential role of ethyl pyruvate. Bio-distribution of drugs is significantly influenced by the drug-serum protein binding. Therefore, the binding mechanism of the ethyl pyruvate with bovine serum albumin was investigated using UV–vis absorption, fluorescence, circular dichroism, isothermal titration calorimetry and molecular docking techniques. Absorption and fluorescence quenching studies indicated the binding of ethyl pyruvate with protein. Circular dichroism spectra of bovine serum albumin confirmed significant change in the conformation of protein upon binding. Thermodynamic data confirmed that ethyl pyruvate binds to bovine serum albumin at the two different sites with high affinity. Binding of ethyl pyruvate to bovine serum albumin involves hydrogen bonding, van der Waal and hydrophobic interactions. Further, docking studies indicated that ethyl pyruvate could bind significantly at the three binding sites. The results will definitely contribute to the development of ethyl pyruvate as drug.

  20. [Metabolomics of bovine serum albumin-induced allergic reactions based on UPLC-Q-TOF-MS].

    Science.gov (United States)

    Gu, Yuan-Yuan; Zhang, Dan-Dan; Feng, Cheng; Wang, Yu; Chen, Da-Zhong; Wang, Yan-Hong

    2016-11-01

    The metabonomic techniques were used to study the changes in endogenous metabolites between urines of rats in normal physiological conditions and bovine serum albumin induced allergic reactions, identify potential biomarkers associated with allergic reactions, and then analyze the metabolic pathways and the metabolic mechanisms of allergic reactions. The bovine serum albumin-induced allergic reactions in rats were adopted as a model to detect histamine and tryptase in rat serum and observe the issue morphology of lungs and trachea in rats. UPLC-Q-TOF-MS was applied in metabonomic analysis on urines between control group and allergic reaction model group. Principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA) were applied to observe the differences in metabolic profiling between urines of the two groups and select differential metabolites. There were significant differences in metabolism spectrum between the model group and the control group. Totally 14 differential metabolites and 4 major metabolic pathways were screened out. The metabonomic research method for urines of rats with bovine serum albumin-induced allergic reactions based on UPLC-Q-TOF-MS was established in this study. It was speculated that the mechanism of bovine serum albumin-induced allergic reactions may involve biosynthesis of isoflavone and folic acid and metabolism of tryptophan, nicotinic acid and nicotinamide. It lays a foundation for further exploration of the application of metabolomics in drug allergy reaction studies. Copyright© by the Chinese Pharmaceutical Association.

  1. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy

    NARCIS (Netherlands)

    Liu, Yuelian; Layrolle, Pierre; de Bruijn, Joost Dick; van Blitterswijk, Clemens; de Groot, K.

    2001-01-01

    Titanium alloy implants were precoated biomimetically with a thin and dense layer of calcium phosphate and then incubated either in a supersaturated solution of calcium phosphate or in phosphate-buffered saline, each containing bovine serum albumin (BSA) at various concentrations, under

  2. Peroxidase mediated conjugation of corn fibeer gum and bovine serum albumin to improve emulsifying properties

    Science.gov (United States)

    The emulsifying properties of corn fiber gum (CFG), a naturally-occurring polysaccharide protein complex, were improved by kinetically controlled formation of hetero-covalent linkages with bovine serum albumin (BSA), using horseradish peroxidase. The formation of hetero-crosslinked CFG-BSA conjugate...

  3. Kinetics of the Adsorption of Bovine Serum Albumin of White Wine ...

    African Journals Online (AJOL)

    This study investigates the kinetics of adsorption of bovine serum albumin, BSA, in white wine model solutions onto activated carbon, AC, and alumina, AL. Pseudo-first order and pseudo-second order models were applied to determine the rate and mechanism of adsorption of the white wine protein during the haze removal ...

  4. Kinetics of the Adsorption of Bovine Serum Albumin of White Wine ...

    African Journals Online (AJOL)

    NJD

    2008-11-07

    Nov 7, 2008 ... This study investigates the kinetics of adsorption of bovine serum albumin, BSA, in white wine model solutions onto activated carbon, AC, and alumina, AL. Pseudo-first order and pseudo-second order models were applied to determine the rate and mechanism of adsorption of the white wine protein during ...

  5. Biological Interaction of Molybdenocene Dichloride with Bovine Serum Albumin Using Fluorescence Spectroscopy

    Science.gov (United States)

    Domínguez, Moralba; Cortes-Figueroa, Jose´ E.; Meléndez, Enrique

    2018-01-01

    Bioinorganic topics are ubiquitous in the inorganic chemistry curriculum; however, experiments to enhance understanding of related topics are scarce. In this proposed laboratory, upper undergraduate students assess the biological interaction of molybdenocene dichloride (Cp2MoCl2) with bovine serum albumin (BSA) by fluorescence spectroscopy.…

  6. Quenching of the intrinsic fluorescence of bovine serum albumin by chlorpromazine and hemin

    Directory of Open Access Journals (Sweden)

    Silva D.

    2004-01-01

    Full Text Available The binding of chlorpromazine (CPZ and hemin to bovine serum albumin was studied by the fluorescence quenching technique. CPZ is a widely used anti-psychotic drug that interacts with blood components, influences bioavailability, and affects function of several biomolecules. Hemin is an important ferric residue of hemoglobin that binds within the hydrophobic region of albumin with high specificity. Quenching of the intrinsic fluorescence of bovine serum albumin (BSA was observed by selectively exciting tryptophan residues at 290 nm. Emission spectra were recorded in the range from 300 to 450 nm for each quencher addition. Stern-Volmer graphs were plotted, and the quenching constant estimated for BSA solution titrated with hemin at 25ºC was 1.44 (± 0.05 x 10(5 M-1. Results showed that bovine albumin tryptophans are not equally accessible to CPZ, in agreement with the idea that polar or charged quenchers have more affinity for amino acid residues on the outer wall of the protein. Hemin added to albumin solution at a molar ratio of 1:1 quenched about 25% of their fluorescence. The quenching effect of CPZ on albumin-hemin solution was stronger than on pure BSA. This increase can be the result of combined conformational changes in the structure of albumin caused firstly by hemin and then by CPZ. Our results suggest that the primary binding site for hemin on bovine albumin may be located asymmetrically between the two tryptophans along the sequence formed by subdomains IB and IIA, closer to tryptophan residue 212.

  7. Interaction of phosphatidylcholine with bovine serum albumin. Specificity and properties of the complexes.

    Science.gov (United States)

    Jonas, A

    1976-03-18

    Phosphatidylcholine dispersed on Celite was rapidly solubilized by neutral bovine serum albumin solutions. Stable protein-lipid complexes were isolated by Agrose gel filtration or by ultracentrifugal flotation in high density solvents, and the physicochemical properties of the complexes were investigated in terms of the stoichiometry of binding, effect of fatty acid ligands on phosphatidylcholine binding, effect of high ionic strength on the stability of the complexes, intrinsic fluorescence and circular dichroism spectra, and sedimentation velocity coefficients. Complexes containing from 2 to 30 phosphatidylcholine molecules per protein molecule were observed; however, no saturation of binding sites could be detected in this range of molar ratios. Oleic acid binding by serum albumin prevents interaction of the protein with phosphatidylcholine, indicating possible competition of these ligands at low contents of the phospholipid. For molar ratios of up to 10 phosphatidylcholine molecules per serum albumin, binding is primarily due to hydrophobic interactions that have no effect on the overall shape and secondary structure of the native protein except for local modifications at tryptophan residues, whose fluorescence becomes quenched and blue shifted on phosphatidylcholine binding. Similar phosphatidylcholine uptake experiments performed with a series of globular proteins indicated that the lipid extraction from Celite surfaces is a non-specific process, accelerated by several other proteins (e.g. aldolase, egg albumin, chymotrypsinogen, soybean trypsin inhibitor, and the major apolipoprotein from bovine serum high density lipoprotein). Formation of stable protein-lipid complexes, however, was only observed with bovine serum albumin, which in contrast to the other proteins is known to have affinity binding sites for anions with hydrophobic side chains.

  8. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear

    Science.gov (United States)

    Yu, Zhan; Yu, Min; Zhang, Zhibao; Hong, Ge; Xiong, Qingqing

    2014-07-01

    Nanoparticles have attracted increasing attention for local drug delivery to the inner ear recently. Bovine serum albumin (BSA) nanoparticles were prepared by desolvation method followed by glutaraldehyde fixation or heat denaturation. The nanoparticles were spherical in shape with an average diameter of 492 nm. The heat-denatured nanoparticles had good cytocompatibility. The nanoparticles could adhere on and penetrate through the round window membrane of guinea pigs. The nanoparticles were analyzed as drug carriers to investigate the loading capacity and release behaviors. Rhodamine B was used as a model drug in this paper. Rhodamine B-loaded nanoparticles showed a controlled release profile and could be deposited on the osseous spiral lamina. We considered that the bovine serum albumin nanoparticles may have potential applications in the field of local drug delivery in the treatment of inner ear disorders.

  9. Synthesis and Characterization of Bovine Serum Albumin-Conjugated Copper Sulfide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Peng Huang

    2010-01-01

    Full Text Available A simple biomolecule-assisted solution route was developed to synthesize Bovine Serum Albumin-conjugated copper sulfide (CuS/BSA nanocomposites, directly using copper salts and thioacetamide (TAA as the starting materials with a zwitterionic surfactant Bovine Serum Albumin (BSA as foaming and stabilizing agent. The CuS/BSA nanocomposites have been characterized by UV, TEM, Zeta, DLS, XRD, and FTIR. The results indicate that the as-prepared CuS/BSA nanocomposites are approximate sphere with a size distribution from 10 to 35 nm in diameter and good dispersibility, depending highly on concentration of BSA concentration. These protein-assisted synthesized nanocomposites have a great potential application in biomedical engineering and microelectronics.

  10. Immobilization of Bovine Serum Albumin Upon Multiwall Carbon Nanotube for High Speed Humidity Sensing Application.

    Science.gov (United States)

    Bhattacharya, Sankhya; Sasmal, Milan

    2016-01-01

    We present a high-speed humidity sensor based on immobilization of bovine serum albumin upon multiwall carbon nanotube (IBC). A simple and versatile drop casting technique was employed to make the humidity sensor using novel material IBC at room temperature. IBC was synthesized using easy solution process technique. The working principle of the IBC humidity sensor depends upon the variation of output current or conductance with the exposure of different humidity level. Humidity sensing properties of our device is explained on the basis of charge transfer from water molecules to IBC and bovine serum albumin to multiwall carbon nanotube (MWCNT). Our sensor exhibits faster response time around 1.2 s and recovery time 1.5 s respectively.

  11. Interactions of nanobubbles with bovine serum albumin and papain films on gold surfaces

    Czech Academy of Sciences Publication Activity Database

    Kolivoška, Viliam; Gál, Miroslav; Hromadová, Magdaléna; Lachmanová, Štěpánka; Pospíšil, Lubomír

    2011-01-01

    Roč. 6, č. 4 (2011), s. 164-170 ISSN 1559-4106 R&D Projects: GA ČR GP203/09/P502; GA ČR GA203/09/0705; GA ČR GA203/08/1157; GA AV ČR IAA400400802 Institutional research plan: CEZ:AV0Z40400503 Keywords : nanobubbles * bovine serum albumin * gold surfaces Subject RIV: CG - Electrochemistry Impact factor: 3.118, year: 2010

  12. Improvement of the Shami goat semen quality by adding bovine serum albumin

    Directory of Open Access Journals (Sweden)

    O.I. Azawi

    2014-06-01

    Full Text Available The present study was aimed to improve the quality of Shami goat semen diluted with Tris diluent by adding bovine serum albumin. In the current study, six male goats were used. Semen was collected using artificial vagina of one ejaculate per week of every male included in this study. This study was performed during the breeding season from 1 \\ 10 \\ 2012 to 1 \\ 12 \\ 2012. In this study, two semen diluents were use first; Tris- fructose- egg yolk 2.5% and second Tris - fructose - 2.5% egg yolk with 1% of bovine serum albumin. Diluted semen samples were cooled gradually and stored at 5 ° C. Cooled diluted semen samples were examined every 24 h of storage to 144 h. These tests includes the proportion of live sperm and the percentage of secondary abnormalities of the sperm, the percentage of sperm acrosomal defects and percentage of progressive motility using a computer-aided sperm analysis. These results showed that the addition of bovine serum albumin with egg yolk to semen of male goats led to improved qualities of semen significantly (P<0.05 including the proportion of live sperm and the percentage of secondary abnormalities of the sperm, the percentage of sperm acrosomal defects and percentage of progressive motility. It could be concluded from the results of the current study, the possibility of storing goat semen for more than six days with alive sperm of more than 50% and the percentage of the progressive motility of more than 40% when adding bovine albumin serum to dilute goat semen at 1% level and this result has not reached by any previous study.

  13. Solubilization of pristine fullerene by the unfolding mechanism of bovine serum albumin for cytotoxic application.

    Science.gov (United States)

    Wu, Hai; Lin, Lina; Wang, Po; Jiang, Songshan; Dai, Zong; Zou, Xiaoyong

    2011-10-14

    A method for solubilization of pristine fullerene (C(60)) in water was proposed by directly using bovine serum albumin (BSA) as a "solubilizer" by means of the unfolding mechanism. C(60) aqueous solution with a small distribution size, excellent dispersion stability and high dispersion concentration was obtained without the use of derivatization and organic solvent. This journal is © The Royal Society of Chemistry 2011

  14. Potential-Assisted Adsorption of Bovine Serum Albumin onto Optically-Transparent Carbon Electrodes

    OpenAIRE

    Benavidez, Tomás E.; Garcia, Carlos D.

    2013-01-01

    This manuscript describes the effect of the applied potential on the adsorption of bovine serum albumin (BSA) to optically transparent carbon electrodes (OTCE). To decouple the effect of the applied potential from the high affinity of the protein for the bare surface, the surface of the OTCE was initially saturated with a layer of BSA. Experiments described in the manuscript show that potential values higher than +500 mV induced a secondary adsorption process (not observed at open-circuit pot...

  15. Potentiometric Investigation of Specific Ionic Effects on Interactions between Bovine Serum Albumin and Weak Polyelectrolytes

    OpenAIRE

    Mutka, Saniela; Njegić Džakula, Branka; Kovačević, Davor

    2008-01-01

    The effect of salt on the behaviour of bovine serum albumin (BSA) in solution and on the interactions between BSA and the weakly charged polyelectrolytes poly(allylamine hydrochloride) and poly(dimethylaminoethylmethacrylate) was investigated by potentiometric titrations. Titrations of pure BSA solution and of the BSA solution with the addition of polyelectrolyte were performed in the presence of different salts. Three electrolytes having the same anion and a different cation were used. lithi...

  16. Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei, E-mail: msewei@interchange.ubc.ca [Department of Materials Engineering, University of British Columbia, Vancouver, BC (Canada); Mohammadi, Farzad; Alfantazi, Akram [Department of Materials Engineering, The University of British Columbia, Vancouver, BC (Canada)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Corrosion of Nb was investigated in phosphate buffered saline solutions. Black-Right-Pointing-Pointer Addition of bovine serum albumin lowered the open circuit potential of Nb. Black-Right-Pointing-Pointer Open circuit potential, polarization resistance and impedance increased with time. Black-Right-Pointing-Pointer Bovine serum albumin molecules and PO{sub 4}{sup 3-} competitively adsorbed on Nb surface. Black-Right-Pointing-Pointer A surface distribution of time-constants was proposed. - Abstract: The corrosion behaviour of Nb was studied in phosphate buffered saline (PBS) solutions at a presence of 0-6 g L{sup -1} bovine serum albumin (BSA). Addition of BSA to PBS solutions lowered the open circuit potential (OCP). OCP, polarization resistance and impedance increased over immersion time. The adsorption process of BSA on Nb surface was found to be faster than that of the PO{sub 4}{sup 3-}. According to X-ray Photoelectron Spectroscopy (XPS) a competitive adsorption between PO{sub 4}{sup 3-} and BSA was in effect during the immersion process. Based on the analysis of effective capacitances, a surface distribution of time-constants was proposed.

  17. The morphometry of the glomerular epithelial cell and its foot processes after the injection of bovine serum albumin or egg albumin.

    Science.gov (United States)

    Brewer, D B; Filip, O

    1976-12-01

    The intraperitoneal injection of 1 g of bovine serum albumin daily for 5 days was shown by electron-microscope morphometry to cause swelling of the glomerular epithelial cells and very severe loss of foot processes. However, these changes were found in only 70 per cent. of glomeruli and the other 30 per cent. remained normal. After 7 days' recovery following five daily injections of 1 g of bovine serum albumin, the swelling of the glomerular epithelial cells had subsided and the foot process reappeared. These changes were accompanied by severe proteinuria which resolved only slowly when the injections were stopped. After daily injections of 0-8 g of egg albumin for 5 days there was no swelling of the glomerular epithelial cells and only very slight loss of foot processes detectable only by morphometry. There was a less severe proteinuria than after injections of bovine serum albumin and it resolved more rapidly when injections were stopped. It is suggested that these differences arise from the fact that bovine serum albumin is reabsorbed by the glomerular epithelial cell but egg albumin is not. Two of four rats allowed to recover for 7 days after five daily injections of 1 g of bovine serum albumin had unusual glomerular lesions.

  18. Modification of the free sulphydryl groups of bovine serum albumin to probe conformational transitions in the neutral region

    NARCIS (Netherlands)

    Janssen, L.H.M.; Roomer, Anton C.J.

    1985-01-01

    The free SH group in bovine serum albumin has been modified by covalent coupling with 2-chloromercuri-4-nitrophenol and 2-chloromercuri-2,4-dinitrophenol. The ionization of the phenolic OH group of the former label when bound to albumin can be followed spectrophotometrically. The pK of this group

  19. Effects of bovine oviduct epithelial cells, fetal calf serum and bovine serum albumin on gene expression in single bovine embryos produced in the synthetic oviduct fluid culture system.

    Science.gov (United States)

    Pedersen, Mona E; Øzdas, Øzen Banu; Farstad, Wenche; Tverdal, Aage; Olsaker, Ingrid

    2005-01-01

    In this study the synthetic oviduct fluid (SOF) system with bovine oviduct epithelial cell (BOEC) co-culture is compared with an SOF system with common protein supplements. One thousand six hundred bovine embryos were cultured in SOF media supplemented with BOEC, fetal calf serum (FCS) and bovine serum albumin (BSA). Eight different culture groups were assigned according to the different supplementation factors. Developmental competence and the expression levels of five genes, namely glucose transporter-1 (Glut-1), heat shock protein 70 (HSP), connexin43 (Cx43), (2)-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), analysed as mRNA by using reverse transcription-polymerase chain reaction, were measured on bovine embryos cultured for 9 days. Gene expression of these in vitro-produced embryos was compared with the gene expression of in vivo-produced embryos. There was no significant difference found in embryo developmental competence between the Day 9 embryos in BOEC co-culture, FCS and BSA supplements in SOF media. However, differences in gene expression were observed. With respect to gene expression in in vivo and in vitro embryos, BOEC co-culture affected the same genes as did supplementation with FCS and BSA. HSP was the only gene that differed significantly between in vitro and in vivo embryos. When the different in vitro groups were compared, a significant difference between the BOEC co-culture and the FCS supplementation groups due to Glut-1 expression was observed.

  20. Estimation of the number of enantioselective sites of bovine serum albumin using frontal chromatography.

    Science.gov (United States)

    Jacobson, S C; Andersson, S; Allenmark, S G; Guiochon, G

    1993-01-01

    On a column with bovine serum albumin (BSA) immobilized covalently to silica, the adsorption isotherms of the enantiomers of mandelic acid, tryptophan, 2-phenylbutyric acid, and N-benzoylalanine are measured using a buffered mobile phase. Knowing the amount of BSA immobilized on the column (36 mg), the ratio of the number of enantiomer molecules needed to saturate the enantioselective retention mechanism to the number of BSA molecules is determined. The mean of the set of eight enantiomers is 0.28. These data confirm that at most one enantioselective site exists for each BSA molecule for the kind of enantiomers studied.

  1. Layer-by-layer films from tartrazine dye with bovine serum albumin

    Science.gov (United States)

    de Souza, Nara C.; Flores, Júlio C. Johner; Silva, Josmary R.

    2009-12-01

    We report on the preparation and study of the adsorption process of layer-by-layer films of tartrazine alternated with bovine serum albumin. UV-Vis spectroscopy indicated that the films form J-aggregates of tartrazine. Adsorption kinetics was fitted by the Johnson-Mehl-Avrami equation and surface morphological analyses by atomic force microscopy suggested that the J-aggregates were column-shaped, which was attributed to the column-like symmetry of the tartrazine molecules. The columnar structures that formed probably arose from the juxtaposition of smaller aggregates that were already present at the beginning of film growth.

  2. A facile synthesis of novel three-dimensional magnetic imprinted polymers for rapid extraction of bovine serum albumin in bovine calf serum.

    Science.gov (United States)

    Yan, Liang; Wang, Jing; Lv, Piaopiao; Xie, Dandan; Zhang, Zhaohui

    2017-05-01

    A novel three-dimensional (3D) magnetic imprinted polymer was prepared with bovine serum albumin as the template molecule, dopamine as the functional monomer, and a graphene oxide and carbon nanotube hybrid 3D nanocomposite as the carrier. The preparation conditions for the 3D magnetic molecularly imprinted polymers were optimized. The 3D magnetic molecularly imprinted polymers were characterized in detail by scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The 3D magnetic molecularly imprinted polymers possessed a fast adsorption rate and excellent adsorption performance toward bovine serum albumin, with a maximum adsorption capacity of 78.12 mg g-1. The extraction conditions, including the washing solvent, the pH of the eluent, and the desorption time, were also optimized. Combined with high-performance liquid chromatography, the 3D magnetic molecularly imprinted polymers were successfully applied to enrich and separate bovine serum albumin from bovine calf serum samples with recoveries of 84.0-94.5%. Graphical Abstract ᅟ.

  3. Investigations of acetaminophen binding to bovine serum albumin in the presence of fatty acid: Fluorescence and 1H NMR studies

    Science.gov (United States)

    Bojko, B.; Sułkowska, A.; Maciążek-Jurczyk, M.; Równicka, J.; Sułkowski, W. W.

    2009-04-01

    The binding of acetaminophen to bovine serum albumin (BSA) was studied by the quenching fluorescence method and the proton nuclear magnetic resonance technique ( 1H NMR). For fluorescence measurements 1-anilino-9-naphthalene sulfonate (ANS) hydrophobic probe was used to verify subdomain IIIA as acetaminophen's likely binding site. Three binding sites of acetaminophen in subdomain IIA of bovine serum albumin were found. Quenching constants calculated by the Stern-Volmer modified method were used to estimate the influence of myristic acid (MYR) on the drug binding to the albumin. The influence of [fatty acid]/[albumin] molar ratios on the affinity of the protein towards acetaminophen was described. Changes of chemical shifts and relaxation times of the drug indicated that the presence of MYR inhibits interaction in the AA-albumin complex. It is suggested that the elevated level of fatty acids does not significantly influence the pharmacokinetics of acetaminophen.

  4. Synthesis and characterization of imprinted sorbent for separation of gramine from bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Luliński, Piotr; Klejn, Dorota; Maciejewska, Dorota, E-mail: dmaciejewska@wum.edu.pl

    2016-08-01

    The aim of this study was to develop an efficient sorbent for separation of N,N-dimethyl-3-aminomethylindole (gramine) from bovine serum albumin. An imprinting technology was involved in the synthesis of polymers from nine different functional monomers in the presence of ethylene glycol dimethacrylate as a cross-linker. The analysis of binding capacities showed that the highest specificity towards gramine was achieved when 4-vinylbenzoic acid was used as the functional monomer in methanol to form the bulk imprinted polymer, MIP1 (imprinting factor equal to 21.3). The Scatchard analysis of MIP1 showed two classes of binding sites with the dissociation constants K{sub d} equal to 0.105 and 6.52 μmol L{sup −1}. The composition and morphology of polymers were defined by {sup 13}C CP/MAS NMR, BET and SEM-EDS analyses. The recognition mechanism of MIP1 was tested using the structurally related bioanalytes, and the dominant role of indole moiety and ethylamine side chain was revealed. A new MISPE protocol was optimized for separation of gramine. The total recoveries on MIP1 were equal to 94 ± 12 % from standard solutions and 85 ± 11 % from bovine serum albumin. - Highlights: • Indole alkaloid (gramine) imprinted polymer was synthesized. • Very high specifity of sorbent towards gramine was achieved. • Physico-chemical characteristics of novel material was presented. • Efficient MISPE protocol was proposed for separation of gramine from model sample.

  5. Binding of the neuroleptic drug, gabapentin, to bovine serum albumin: Insights from experimental and computational studies

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, Fahimeh, E-mail: fahimehjalali@yahoo.com [Department of Chemistry, Razi University, 67346 Kermanshah (Iran, Islamic Republic of); Dorraji, Parisa S. [Department of Chemistry, Razi University, 67346 Kermanshah (Iran, Islamic Republic of); Mahdiuni, Hamid [Department of Biology, Razi University, 67346 Kermanshah (Iran, Islamic Republic of)

    2014-04-15

    The interaction between antiepileptic drug, gabapentin (GP), and bovin serum albumin (BSA) was studied by spectroscopic and computational methods. The native fluorescence of BSA was quenched by GP. Stern–Volmer quenching constant was calculated at different temperatures which suggested a static mechanism. The association constant (K{sub a}) was calculated from fluorescence quenching studies, which increased with temperature rising. GP competed well with warfarine for hydrophobic subdomain IIA (Sudlow's site I) on the protein. Enthalpy and entropy changes during the interaction of GP with BSA were obtained using van't Hoff plot, which showed an entropy-driven process and involvement of hydrophobic forces (ΔH>0 and ΔS>0). Synchronous fluorescence measurements of BSA solution in the presence of GP showed a considerable blue shift when Δλ=15 nm, therefore, GP interacts with tyrosine-rich sites on BSA. Optimized docked model of BSA–GP mixture confirmed the experimental results. -- Highlights: • Interaction of gabapentin and bovine serum albumin (BSA) is investigated by spectroscopic techniques. • Gabapentin can quench the fluorescence of BSA through a static quenching procedure. • The binding of gabapentin to BSA is driven mainly by hydrophobic interactions. • Subdomain IIA (Sudlow's site I) of BSA is found to be the main binding site for gabapentin. • Molecular docking modeling confirmed the experimental results.

  6. Studies on the carotenoids in the muscle of salmon--V. Combination of astaxanthin and canthaxanthin with bovine serum albumin and egg albumin.

    Science.gov (United States)

    Henmi, H; Hata, M; Takeuchi, M

    1991-01-01

    1. Bovine serum albumin (BSA) and/or egg albumin were bound to astaxanthin or canthaxanthin easily and the spectroscopic characteristics of these complexes were similar to those of astaxanthin or canthaxanthin in the salmon muscle. 2. This result indicates that astaxanthin-BSA, -egg albumin, canthaxanthin-BSA and -egg albumin complexes were basically similar to astaxanthin-actomyosin and/or canthaxanthin-actomyosin complex in the salmon muscle. 3. The binding of salmon actomyosin to astaxanthin or canthaxanthin is not specific.

  7. Interaction of Palmitic Acid with Metoprolol Succinate at the Binding Sites of Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Mashiur Rahman

    2014-12-01

    Full Text Available Purpose: The aim of this study was to characterize the binding profile as well as to notify the interaction of palmitic acid with metoprolol succinate at its binding site on albumin. Methods: The binding of metoprolol succinate to bovine serum albumin (BSA was studied by equilibrium dialysis method (ED at 27°C and pH 7.4, in order to have an insight in the binding chemistry of the drug to BSA in presence and absence of palmitic acid. The study was carried out using ranitidine as site-1 and diazepam as site-2 specific probe. Results: Different analysis of binding of metoprolol succinate to bovine serum albumin suggested two sets of association constants: high affinity association constant (k1 = 11.0 x 105 M-1 with low capacity (n1 = 2 and low affinity association (k2 = 4.0×105 M-1 constant with high capacity (n2 = 8 at pH 7.4 and 27°C. During concurrent administration of palmitic acid and metoprolol succinate in presence or absence of ranitidine or diazepam, it was found that palmitic acid displaced metoprolol succinate from its binding site on BSA resulting reduced binding of metoprolol succinate to BSA. The increment in free fraction of metoprolol succinate was from 26.27% to 55.08% upon the addition of increased concentration of palmitic acid at a concentration of 0×10-5 M to 16×10-5 M. In presence of ranitidine and diazepam, palmitic acid further increases the free fraction of metoprolol succinate from 33.05% to 66.95% and 40.68% to 72.88%, respectively. Conclusion: This data provided the evidence of interaction at higher concentration of palmitic acid at the binding sites on BSA, which might change the pharmacokinetic properties of metoprolol succinate.

  8. Gold nanoparticles synthesized by gamma radiation and stabilized by bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Jessica; Silva, Andressa A.; Geraldes, Adriana N.; Lugao, Ademar B., E-mail: jessicaleal@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Grasselli, Mariano, E-mail: mariano.grasselli@gmail.com [Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, Bernal (Argentina)

    2015-07-01

    Gold nanoparticles (AuNPs) are a new option for pharmaceutical and cosmetic industries due to their interesting chemical, electrical and catalytic properties. Research for cancer treatments have been developed using this promising radiotherapy agent. The challenge of gold nanoparticles is to keep them stable, due to metallic behavior. It is know that surface plasma resonance promotes agglomeration of metallic nanoparticles, but they are not stable. Stabilizers have been used to reduce agglomeration. The aim of this work is reduction of HAuCl{sub 4} salt to AuNPs performed by gamma radiation {sup 60}Co source and the stabilization of gold nanoparticles using bovine serum albumin (BSA) fraction V as stabilizer agent. AuNPs were characterized by UV-visible to verify the nanoparticles formation. Samples containing BSA and samples obtained by the conventional method (without stabilizer) were monitored for two weeks and analyzed. Results were compared. (author)

  9. Copper Selenide Nanosnakes: Bovine Serum Albumin-Assisted Room Temperature Controllable Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2010-01-01

    Full Text Available Abstract Herein we firstly reported a simple, environment-friendly, controllable synthetic method of CuSe nanosnakes at room temperature using copper salts and sodium selenosulfate as the reactants, and bovine serum albumin (BSA as foaming agent. As the amounts of selenide ions (Se2− released from Na2SeSO3 in the solution increased, the cubic and snake-like CuSe nanostructures were formed gradually, the cubic nanostructures were captured by the CuSe nanosnakes, the CuSe nanosnakes grew wider and longer as the reaction time increased. Finally, the cubic CuSe nanostructures were completely replaced by BSA–CuSe nanosnakes. The prepared BSA–CuSe nanosnakes exhibited enhanced biocompatibility than the CuSe nanocrystals, which highly suggest that as-prepared BSA–CuSe nanosnakes have great potentials in applications such as biomedical engineering.

  10. A Highly Selective Colorimetric Sensor for Cysteine in Water Solution and Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Xuefang Shang

    2016-01-01

    Full Text Available A simple colorimetric sensor, 2-bromonaphthalene-1,4-dione, has been developed for the Cysteine detection. The sensor showed its best performance in a mixture of ethanol and HEPES (5 : 5, v/v solution at pH of 7.0. The results of UV-vis and fluorescence indicated that 2-bromonaphthalene-1,4-dione was selective and sensitive for Cysteine detection without the interference of other amino acids (Cysteine, Alanine, Arginine, Aspartinie, Glutamine, Glycine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Proline, Serine, Threonine, Phenylalanine, Valine, Tryptophan, and Hydroxyproline. 2-Bromonaphthalene-1,4-dione also showed binding ability for Cysteine in bovine serum albumin and could be used as a potential colorimetric sensor among eighteen kinds of natural amino acids. Importantly, the recognition of CySH could be observed by naked eye.

  11. Studying the denaturation of bovine serum albumin by a novel approach of difference-UV analysis.

    Science.gov (United States)

    Nikolaidis, Athanasios; Moschakis, Thomas

    2017-01-15

    A novel approach in the analysis of difference-UV spectrophotometric data for determining the heat denaturation degree of bovine serum albumin (BSA) was assessed. Five different parameters of difference-UV spectra were obtained by subtracting spectra of unheated and denatured protein solutions at different temperature-time combinations. BSA was found to exhibit a maximum degree of heat denaturation of about 17% compared to the complete unfolding caused by 6M guanidine hydrochloride. This low degree of heat denaturation is probably caused by the aggregation of the initially unfolded protein molecules. The kinetic analysis exhibited discontinuities in the Arrhenius plots, distinguishing the unfolding and aggregation phases of the denaturation process, whereas such a discrimination could not be obtained by differential scanning calorimetry analyses. The proposed method is accurate, fast, simple and sensitive enough to detect changes in the protein heat denaturation even at short temperature-time intervals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Luminescence Studies of the Ligand Exchange Between Two Phenanthroline Complexes and Bovine Serum Albumin

    Science.gov (United States)

    Lin, H.-B.; Shen, Q.-H.

    2017-03-01

    The interactions between bovine serum albumin (BSA) and two Cu(II) phenanthroline complexes were studied by fluorescence and UV-visible absorption spectroscopy. The obtained results confirm that the phen ligand (phen = 1,10-phenanthroline) is dissociated from the two complexes and moves into the hydrophobic cavity of BSA and that the M-L complexes (M = Co2+, Cu2+; L = Hlact, imda; Hlact = lactic acid, H2imda = iminodiacetic acid) coordinate with the amino acids on the surface of the peptide in the solution. This mode of action significantly inhibits the denaturation of BSA. The calculated distance between the BSA and the two complexes suggests that the energy transfer from the excited state of BSA to a complex occurs with high efficiency.

  13. Characterization of the interaction between eupatorin and bovine serum albumin by spectroscopic and molecular modeling methods.

    Science.gov (United States)

    Xu, Hongliang; Yao, Nannan; Xu, Haoran; Wang, Tianshi; Li, Guiying; Li, Zhengqiang

    2013-07-09

    This study investigated the interaction between eupatorin and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence, synchronous fluorescence, circular dichroism (CD) spectroscopies, and molecular modeling at pH 7.4. Results of UV-vis and fluorescence spectroscopies illustrated that BSA fluorescence was quenched by eupatorin via a static quenching mechanism. Thermodynamic parameters revealed that hydrophobic and electrostatic interactions played major roles in the interaction. Moreover, the efficiency of energy transfer, and the distance between BSA and acceptor eupatorin, were calculated. The effects of eupatorin on the BSA conformation were analyzed using UV-vis, CD, and synchronous fluorescence. Finally, the binding of eupatorin to BSA was modeled using the molecular docking method.

  14. Adsorption behavior of oxidized galactomannans onto amino terminated surfaces and their interaction with bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Sierakowski, M.-R; Silva, Maria R.V. da [Universidade Federal do Parana, Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Biopolimeros]. E-mail: mrbiopol@quimica.ufpr.br; Freitas, R.A.; Moreira, Jose S.R. [Universidade Federal do Parana, Curitiba, PR (Brazil). Dept. de Bioquimica; Fujimoto, J.; Petri, D.F.S.; Cordeiro, Paulo R.D. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica]. E-mail: dfsp@quim.iq.usp.br; Andrade, Fabiana D

    2001-07-01

    A galactomannan (CF) extracted from Cassia fastuosa seeds was purified and oxidized with (2,2,6,6- tetramethylpiperidine-1-oxyl) to form a uronic acid-containing polysaccharide (CFOX) with a degree of oxidation (DO) of 0.22. The chemical structures of CF and CFOX were characterized. The adsorption behavior of CF and CFOX onto amino-terminated surfaces was studied by means of ellipsometric measurements. The influence of p H and ionic strength on the adsorption was also investigated. At p H 4, there was a maximum in the adsorbed amount caused by strong electrostatic attraction between the substrate and the oxidized galactomannans. There was no ionic strength effect on the adsorption behavior. The immobilization of bovine serum albumin onto CF and CFOX was studied as a function of p H. At the isoelectric point a maximum in the adsorbed amount was found. (author)

  15. Interaction of the flavonoid hesperidin with bovine serum albumin: A fluorescence quenching study

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yanqing [Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Normal College, Yancheng City, Jiangsu Province 224002 (China) and Institute of Applied Chemistry and Environmental Engineering, Yancheng Normal College, Yancheng City, Jiangsu Province 224002 (China)]. E-mail: wyqing76@126.com; Zhang Hongmei [Institute of Applied Chemistry and Environmental Engineering, Yancheng Normal College, Yancheng City, Jiangsu Province 224002 (China); Zhang Gencheng [Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Normal College, Yancheng City, Jiangsu Province 224002 (China); Institute of Applied Chemistry and Environmental Engineering, Yancheng Normal College, Yancheng City, Jiangsu Province 224002 (China); Tao Weihua [Institute of Applied Chemistry and Environmental Engineering, Yancheng Normal College, Yancheng City, Jiangsu Province 224002 (China); Tang Shuhe [Institute of Applied Chemistry and Environmental Engineering, Yancheng Normal College, Yancheng City, Jiangsu Province 224002 (China)

    2007-09-15

    The interaction between the flavonoid hesperidin and bovine serum albumin (BSA) was investigated by fluorescence and UV/Vis absorption spectroscopy. The results revealed that hesperidin caused the fluorescence quenching of BSA through a static quenching procedure. The hydrophobic and electrostatic interactions play a major role in stabilizing the complex. The binding site number n, and apparent binding constant K {sub A}, corresponding thermodynamic parameters {delta}G {sup o}, {delta}H {sup o}, {delta}S {sup o} at different temperatures were calculated. The distance r between donor (BSA) and acceptor (hesperidin) was obtained according to fluorescence resonance energy transfer. The effect of Cu{sup 2+}, Zn{sup 2+}, Ni{sup 2+}, Co{sup 2+}, and Mn{sup 2+} on the binding constants between hesperidin and BSA were studied. The effect of hesperidin on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy and UV/Vis absorption spectroscopy.

  16. Spectroscopy and docking simulations of the interaction between lochnericine and bovine serum albumin.

    Science.gov (United States)

    Wang, Qing; He, Jiawei; Yan, Jin; Wu, Di; Li, Hui

    2015-03-01

    Lochnericine (LOC) is a component of Voacanga africana, which is a type of traditional medical food in Africa widely used for treating diseases. In this article, the interaction between LOC and bovine serum albumin (BSA) was studied by fluorescence spectroscopy. Furthermore, Fourier transform infrared (FTIR), Raman and circular dichroism (CD) were used to investigate the structural changes of BSA. The experimental results consistently indicated that LOC changed the secondary structure of BSA. Three structure-similar components were used to study the interference experiments. The molecular modeling results showed that LOC could bind within not only sites I and II, but also bind the cavity of subdomain IB. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Structural changes of ultrasonicated bovine serum albumin revealed by hydrogen-deuterium exchange and mass spectrometry.

    Science.gov (United States)

    Zhang, Qiuting; Tu, Zongcai; Wang, Hui; Huang, Xiaoqin; Sha, Xiaomei; Xiao, Hui

    2014-11-01

    The structural changes of bovine serum albumin (BSA) under high-intensity ultrasonication were investigated by fluorescence spectroscopy and mass spectrometry. Evidence for the ultrasonication-induced conformational changes of BSA was provided by the intensity changes and maximum-wavelength shift in fluorescence spectrometry. Matrix-assisted laser desorption-ionization time-of-flight mass spectroscopy (MALDI-TOF MS) revealed the increased intensity of the peak at the charge state +5 and a newly emerged peak at charge state +6, indicating that the protein became unfolded after ultrasonication. Prevalent unfolding of BSA after ultrasonication was revealed by hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS). Increased intensity and duration of ultrasonication further promoted the unfolding of the protein. The unfolding induced by ultrasonication goes through an intermediate state similar to that induced by a low concentration of denaturant.

  18. Influence of ionic strength on the diffusion of polystyrene latex spheres, bovine serum albumin, and polynucleosomesa)

    Science.gov (United States)

    Schmitz, Kenneth S.; Lu, Mei; Gauntt, Jennifer

    1983-04-01

    Quasielastic light scattering methods were used to determine apparent diffusion coefficients (Dapp) for polystyrene latex spheres, bovine serum albumin, and polynucleosomes under conditions of neutral pH and low ionic strength (0.1-50 mM). Data were collected at several time intervals (Δt) at each of several scattering angles (θ) in the range 35balance between attractive forces arising from fluctuations in the small ion and polyion distributions and the disruptive Brownian forces. Under conditions of extremely low ionic strength, direct interactions between polyions tend to dominate as inferred from data in the literature. These observations suggest at least four regimes in the description of the ionic strength dependence of Dapp.

  19. Evaluation of the binding interaction between bovine serum albumin and dimethyl fumarate, an anti-inflammatory drug by multispectroscopic methods

    Science.gov (United States)

    Jattinagoudar, Laxmi; Meti, Manjunath; Nandibewoor, Sharanappa; Chimatadar, Shivamurti

    2016-03-01

    The information of the quenching reaction of bovine serum albumin with dimethyl fumarate is obtained by multi-spectroscopic methods. The number of binding sites, n and binding constants, KA were determined at different temperatures. The effect of increasing temperature on Stern-Volmer quenching constants (KD) indicates that a dynamic quenching mechanism is involved in the interaction. The analysis of thermodynamic quantities namely, ∆H° and ∆S° suggested hydrophobic forces playing a major role in the interaction between dimethyl fumarate and bovine serum albumin. The binding site of dimethyl fumarate on bovine serum albumin was determined by displacement studies, using the site probes viz., warfarin, ibuprofen and digitoxin. The determination of magnitude of the distance of approach for molecular interactions between dimethyl fumarate and bovine serum albumin is calculated according to the theory of Förster energy transfer. The CD, 3D fluorescence spectra, synchronous fluorescence measurements and FT-IR spectral results were indicative of the change in secondary structure of the protein. The influence of some of the metal ions on the binding interaction was also studied.

  20. Investigation of Cu(II) Binding to Bovine Serum Albumin by Potentiometry with an Ion Selective Electrode

    Science.gov (United States)

    Jie Liu

    2004-01-01

    A laboratory project that investigates Cu(II) bind to bovine serum albumin (BSA) in an aqueous solution is developed to assist undergraduate students in gaining better understanding of the interaction of ligands with biological macromolecule. Thus, students are introduced to investigation of Cu(II) binding to BSA by potentiometry with the Cu(II)…

  1. [Spectroscopic study on the effect of crystallization of the hydroxyapatite on the secondary structure of bovine serum albumin].

    Science.gov (United States)

    Ye, Feng; An, Ying-ge; Qin, De-zhi; Yang, Lin; She, Lan; Xing, Rui-min

    2007-02-01

    The effect of crystallization of hydroxyapatite on the secondary structure of bovine serum albumin (BSA) was studied by circular dichroism spectrum, Fourier transform infrared spectroscopy, derivative, deconvolution and curve-fitting techniques in the present paper. The CD results show that pure bovine serum albumin is composed of 56.8% alpha-helices, 5.8% beta-sheets, 14.1% beta-turns and 23.9% random structures, while the bovine serum albumin in the Ca10(PO4)6(OH)2/bovine serum albumin solution is composed of 25.4% alpha-helices, 25.0% beta-sheets, 20.0% beta-turns and 29.7% random structures. The results of Fourier transform infrared spectroscopy are in good agreement with those from the CD spectra. From these results it can be seen that the percentage of alpha-helix decreased, while that of the beta-sheet increased with the formation of the crystal of hydroxyapatite, and with the reaction time increasing, the percentages of alpha-helix obviously dropped and those of beta-sheet markedly rose. These results showed that alpha-helix transformed into beta-sheet. Furthermore the essence of these changes is discussed.

  2. Protein hydroperoxides and carbonyl groups generated by porphyrin-induced photo-oxidation of bovine serum albumin

    DEFF Research Database (Denmark)

    Silvester, J A; Timmins, G S; Davies, Michael Jonathan

    1998-01-01

    Porphyrin-sensitized photo-oxidation of bovine serum albumin results in oxidation at specific sites to produce protein radical species: at the Cys-34 residue (to give a thiyl radical) and at one or both tryptophan residues (Trp-134 and Trp-214) to give tertiary carbon-centered radicals and cause...

  3. Protections of bovine serum albumin protein from damage on functionalized graphene-based electrodes by flavonoids

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bolu [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Yuqiang [Lanzhou Military Command Center for Disease Prevention and Control, Lanzhou 730000 (China); Xue, Zhiyuan; Zheng, Xiaoping; Ma, Yuling [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Zhao, Wanghong, E-mail: wanghongzhao@sina.com [Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 51515 (China)

    2016-05-01

    A sensitive electrochemical sensor based on bovine serum albumin (BSA)/poly (diallyldimethylammonium chloride) (PDDA) functionalized graphene nanosheets (PDDA-G) composite film modified glassy carbon electrode (BSA/PDDA-G/GCE) had been developed to investigate the oxidative protein damage and protections of protein from damage by flavonoids. The performance of this sensor was remarkably improved due to excellent electrical conductivity, strong adsorptive ability, and large effective surface area of PDDA-G. The BSA/PDDA-G/GCE displayed the greatest degree of BSA oxidation damage at 40 min incubation time and in the pH 5.0 Fenton reagent system (12.5 mM FeSO{sub 4}, 50 mM H{sub 2}O{sub 2}). The antioxidant activities of four flavonoids had been compared by fabricated sensor based on the relative peak current ratio of SWV, because flavonoids prevented BSA damage caused by Fenton reagent and affected the BSA signal in a solution containing Co(bpy){sub 3}{sup 3+}. The sensor was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). UV–vis spectrophotometry and FTIR were also used to investigate the generation of hydroxyl radical and BSA damage, respectively. On the basis of results from electrochemical methods, the order of the antioxidant activities of flavonoids is as follows: (+)-catechin > kaempferol > apigenin > naringenin. A novel, direct SWV analytical method for detection of BSA damage and assessment of the antioxidant activities of four flavonoids was developed and this electrochemical method provided a simple, inexpensive and rapid detection of BSA damage and evaluation of the antioxidant activities of samples. - Highlights: • Hydroxyl radicals were produced by Fenton reagents. • An electrochemical bovine serum albumin (BSA) damage sensor was successfully fabricated. • The proposed biosensor can assess the antioxidant capacity of four flavonoids. • The order of antioxidant

  4. Investigating the influence of effective parameters on molecular characteristics of bovine serum albumin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rohiwal, S.S.; Satvekar, R.K.; Tiwari, A.P.; Raut, A.V.; Kumbhar, S.G.; Pawar, S.H., E-mail: pawar_s_h@yahoo.com

    2015-04-15

    Graphical abstract: The physiochemical properties of nanoparticles provide the basic aspects about the conformational transitions which could have a strong bearing on the bioavailability for bioactive molecules such as peptides and hormones. - Highlights: • Synthesis and surface and structural properties of Bovine Serum Albumin nanoparticles (BSANPs). • Study of conformational transitions of BSANPs by spectroscopic techniques. • Studies on the effect of pH and protein concentration on formulation of BSANPs. - Abstract: The protein nanoparticles formulation is a challenging task as they are prone to undergo conformational transitions while processing which may affect bioavailability for bioactive compounds. Herein, a modified desolvation method is employed to prepare Bovine Serum Albumin nanoparticles, with controllable particle size ranging from 100 to 300 nm and low polydispersity index. The factors influencing the size and structure of BSA NPs viz. protein concentration, pH and the conditions for purification are well investigated. The structure of BSA NPs is altered due to processing, and may affect the effective binding ability with drugs and bioactive compounds. With that aims, investigations of molecular characteristics of BSA NPs are carried out in detail by using spectroscopic techniques. UV–visible absorption and Fourier Transform Infrared demonstrate the alteration in protein structure of BSA NPs whereas the FT-Raman spectroscopy investigates changes in the secondary and tertiary structures of the protein. The conformational changes of BSA NPs are observed by change in fluorescence intensity and emission maximum wavelength of tryptophan residue by fluorescence spectroscopy. The field emission scanning electron and atomic force microscopy micrographs confirm the size and semi-spherical morphology of the BSA NPs. The effect of concentration and pH on particle size distribution is studied by particle size analyzer.

  5. Thermodynamic studies on the interaction of folic acid with bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Niki S. [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Kishore, Nand, E-mail: nandk@chem.iitb.ac.i [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2011-05-15

    Research highlights: Thermodynamics of binding of folic acid with bovine serum albumin studied. Effect of co-solutes on binding permitted detailed analysis of interactions. Electrostatic interactions dominate with contribution from hydrogen bonding. No significant conformational change in protein observed upon drug binding. - Abstract: Binding of the vitamin folic acid with bovine serum albumin (BSA) has been studied using isothermal titration calorimetry (ITC) in combination with fluorescence and circular dichroism spectroscopies. The thermodynamic parameters of binding have been evaluated as a function of temperature, ionic strength, in the presence of nonionic surfactants triton X-100, tetrabutylammonium bromide, and sucrose. The values of the van't Hoff enthalpy calculated from the temperature dependence of the binding constant agree with the calorimetric enthalpies indicating that the binding of folic acid to the BSA is a two state process without involving intermediates. These observations are supported by the intrinsic fluorescence and circular dichroism spectroscopic measurements. With increase in the ionic strength, reduction in the binding affinity of folic acid to BSA is observed suggesting predominance of electrostatic interactions in the binding. The contribution of hydrophobic interactions in the binding is also demonstrated by decrease in the binding affinity in the presence of tetrabutylammonium bromide (TBAB). The value of binding affinity in the presence of sucrose indicates that hydrogen bonding also plays a significant contribution in the complexation process. The calorimetric and spectroscopic results provide quantitative information on the binding of folic acid to BSA and suggest that the binding is dominated by electrostatic interactions with contribution from hydrogen bonding.

  6. DETERMINATION OF SERUM ALBUMIN WITH ...

    African Journals Online (AJOL)

    The reaction of tribromoarsenazo(TB-ASA) with serum albumin in the presence of emulgent OP was studied by spectrophotometry. In a Britton-Robinson buffer solution at pH 2.9, tribromoarsenazo and bovine serum albumin can immediately form a red compound in the presence of emulgent OP with a maximum absorption ...

  7. Investigation on the interaction between bovine serum albumin and 2,2-diphenyl-1-picrylhydrazyl

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiangrong [Department of Chemistry, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003 (China); Chen, Dejun; Wang, Gongke [School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, 46 Jian-she Road, Mu Ye District, Xinxiang, Henan 453007 (China); Lu, Yan, E-mail: 1842457577@qq.com [School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, 46 Jian-she Road, Mu Ye District, Xinxiang, Henan 453007 (China)

    2014-12-15

    Albumin represents a very abundant and important circulating antioxidant in plasma. In this paper, the ability of bovine serum albumin (BSA) to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical has been investigated using UV–vis absorption spectra. The result shows that the antioxidant activity of BSA against DPPH radical is similar to glutathione and the value of IC{sub 50} is 5.153×10{sup −5} mol L{sup −1}. The interaction between BSA and DPPH has been investigated without or with the eight popular antioxidants (L-ascorbic acid, α-tocopherol, glutathione, melatonin, (+)-catechin hydrate, procyanidine B3, β-carotene and astaxanthin) by means of fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The fluorescence experiments show that DPPH quenches the fluorescence intensity of BSA through a static mechanism. The quenching process of DPPH with BSA is easily affected by the eight antioxidants, however, they cannot change the quenching mechanism of DPPH with BSA. Additionally, as shown by synchronous fluorescence spectroscopy and CD, DPPH may induce conformational and microenvironmental changes of BSA. - Highlights: • The antioxidant activity of BSA against DPPH is similar to glutathione. • DPPH can quench the fluorescence of BSA through a static quenching. • One molecule of DPPH radical reduced by one molecule of BSA. • The eight antioxidants cannot change the quenching mechanism of DPPH with BSA. • The binding parameters are decreased by the introduction of the eight antioxidants.

  8. Efficient approach to enhance drug solubility by particle engineering of bovine serum albumin.

    Science.gov (United States)

    Khoder, Mouhamad; Abdelkader, Hamdy; ElShaer, Amr; Karam, Ayman; Najlah, Mohammad; Alany, Raid G

    2016-12-30

    The aim of this study was to investigate the use of bovine serum albumin (BSA) as a solubility enhancer for indometacin (IND) as a model drug. IND-BSA solid dispersions were prepared by both spray drying and freeze drying techniques using IND:BSA solution (20:1 Molar Ratio (MR)) and IND:BSA suspension (100:1 MR). The solid state of IND in solid dispersions was characterised by SEM, DSC and XRD. The aqueous solubility of IND in the presence of increased amounts of BSA was evaluated. Additionally, IND dissolution and release profiles were evaluated. IND in solid dispersions with BSA showed significantly higher solubility in water than that of the physical mixture of both. Enhancement factors of 24,000 and 100,000 were obtained for the solid dispersion formulated in 20:1 MR and 100:1 MR, respectively. Dissolution studies in-vitro indicated a significant increase in the dissolution rate of IND from solid dispersions compared to that of the free drug, with almost 95% of the drug dissolved in the first 5min. Furthermore, an immediate release of IND from BSA solid dispersions was shown. The potential use of albumin as solubility enhancer for poorly soluble drugs, particularly, for immediate release volume-limited dosage forms is reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Bovine Serum Albumin-Loaded Chitosan/Dextran Nanoparticles: Preparation and Evaluation of Ex Vivo Colloidal Stability in Serum

    Directory of Open Access Journals (Sweden)

    Haliza Katas

    2013-01-01

    Full Text Available Chitosan (CS nanoparticles have several distinct intrinsic advantages; however, their in vivo colloidal stability in biological fluids was not fully explored especially when carrying proteins. The present study aimed to investigate their colloidal stability using an ex vivo physiological model of fetal bovine serum (FBS and human serum (HS. The stability of bovine-serum-albumin (BSA- loaded nanoparticles was relatively higher in FBS than that in HS. Particle size of unloaded and BSA-loaded nanoparticles was statistically unchanged up to 24 h after incubation in FBS. However in HS, a significant increase in particle size from 144 ± 17 to 711 ± 22 nm was observed for unloaded nanoparticles and by 2.5-fold for BSA-loaded nanoparticle, at 24 h after incubation in HS. Zeta potential of both nanoparticles was less affected by the components in FBS compared to those in HS. A remarkable swelling extent was experienced for unloaded and BSA-loaded nanoparticles in HS, up to 54 ± 4% and 44 ± 5%, respectively. Morphology of unloaded and BSA-loaded nanoparticles was varied from smooth spherical and rod shape to irregular shape when incubated in FBS; however, form agglomerates when incubated in HS. These findings therefore suggest that HS is more reactive to cause colloidal instability to the chitosan nanoparticles compared to FBS.

  10. Formation of complexes between tannic acid with bovine serum albumin, egg ovalbumin and bovine beta-lactoglobulin.

    Science.gov (United States)

    Xie, Liyang; Wehling, Randy L; Ciftci, Ozan; Zhang, Yue

    2017-12-01

    Tannic acid (TA) shows strong interactions with proteins and the resulting complexes can be utilized as delivery systems for oral drugs. The complexation of TA with three proteins including bovine serum albumin (BSA), egg ovalbumin (EA) and bovine beta-lactoglobulin (BLG) at pH 7.4 was studied. The tryptophan (Trp) fluorescence of all three proteins was quenched by TA in a static quenching mechanism. BLG showed the highest binding affinity and a smallest binding distance with TA which may suggest that BLG-TA is the most stable complex. The results of circular dichroism, synchronous and three-dimensional fluorescence spectra suggested that the protein structures have been changed at different levels and helix structure was affected more significant than β-strand. Zeta-potential of all three proteins was more negative after binding with TA, which is favorable for the stabilization of protein based nanoparticles. Information derived from this work could be important to potentially use TA-protein complexes as nanoencapsulation systems for oral drug delivery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Binding of several anti-tumor drugs to bovine serum albumin: Fluorescence study

    Energy Technology Data Exchange (ETDEWEB)

    Bi Shuyun [College of Chemistry, Changchun Normal University, Changchun 130032 (China)], E-mail: sy_bi@sina.com; Sun Yantao [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Jilin Normal University, Siping 136000 (China); Qiao Chunyu; Zhang Hanqi [College of Chemistry, Jilin University, Changchun 130023 (China); Liu Chunming [College of Chemistry, Changchun Normal University, Changchun 130032 (China)

    2009-05-15

    The interactions of mitomycin C (MMC), fluorouracil (FU), mercaptopurine (MP) and doxorubicin hydrochloride (DXR) with bovine serum albumin (BSA) were studied by spectroscopic method. Quenching of fluorescence of serum albumin by these drugs was found to be a static quenching process. The binding constants (K{sub A}) were 9.66x10{sup 3}, 2.08x10{sup 3}, 8.20x10{sup 2} and 7.50x10{sup 3} L mol{sup -1} for MMC-, FU-, MP- and DXR-BSA, respectively, at pH 7.4 Britton-Robinson buffer at 28 deg. C. The thermodynamic functions such as enthalpy change ({delta}H), entropy change ({delta}S) and Gibbs free-energy change ({delta}G) for the reactions were also calculated according to the thermodynamic equations. The main forces in the interactions of these drugs with BSA were evaluated. It was found that the interactions of MMC and FU with BSA were exothermic processes and those of MP and DXR with BSA were endothermic. In addition, the binding sites on BSA for the four drugs were probed by the changes of binding properties of these drugs with BSA in the presence of two important site markers such as ibuprofen and indomethacin. Based on the Foester theory of non-radiation energy transfer, the binding distances between the drugs and tryptophane were calculated and they were 3.00, 1.14, 2.85, and 2.79 nm for MMC, FU, MP and DXR, respectively.

  12. The Process of Separating Bovine Serum Albumin Using Hydroxyapatite and Active Babassu Coal (Orbignya martiana

    Directory of Open Access Journals (Sweden)

    Márcia Regina Ribeiro Alves

    2016-01-01

    Full Text Available Bovine serum albumin is one of the major serum proteins; it plays an important role as a result of its functional and nutritional properties which have bioactive peptides. Adsorption method was used to separate protein, which involves hydroxyapatite, synthetic hydroxyapatite, and active babassu coal. Initially, characterization was carried out using the zeta potential of the adsorbents. Kinetic pseudo-first- and pseudo-second-order models were applied. For isotherms, equilibrium data studies were carried out using the Langmuir and Freundlich models, in addition to determining the efficiency of adsorptive process. The results of the zeta potential showed loads ranging from +6.9 to −42.8 mV. The kinetic data were better represented in the pseudo-second-order model with chemisorption characteristics. The adsorption capacity of the adsorbents decreased as pH increased, indicating that the electrostatic bonds and some functional groups of active babassu coal contributed to the reduction of adsorption, especially oxygen linked to carbon atoms. The value of pH 4.0 showed the best results of adsorption, being obtained as the maximum adsorption capacity (qm and yield (% (where qm=87.95 mg g−1 and 74.2%; 68.26 mg g−1 and 68.6%; and 36.18 mg g−1, 37.4% of hydroxyapatite, synthetic hydroxyapatite, and active babassu coal, respectively.

  13. Capping of Silybin with β-Cyclodextrin Influences its Binding with Bovine Serum Albumin: A Study by Fluorescence Spectroscopy and Molecular Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, Sudha; Sowrirajan, Chandrasekaran; Dhanaraj, Premnath; Enoch, Israel V. M. V. [Karunya Univ., Tamil Nadu (India)

    2014-07-15

    The association of silybin with β-cyclodextrin and its influence on silybin's binding with bovine serum albumin are reported. The stoichiometry, binding constant, and the structure of silybin-β-cyclodextrin inclusion complex are reported. The titrations of silybin with bovine serum albumin in the absence and presence of β-cyclodextrin are carried out and the differences in binding strengths are discussed. Molecular modeling is used to optimize the sites and mode of binding of silybin with bovine serum albumin. Forster resonance energy transfer is calculated and the proximity of interacting molecules is reported in the presence and absence of β-cyclodextrin.

  14. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.

    Science.gov (United States)

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari

    2016-05-01

    A novel CdTe quantum dots (QDs) were prepared in aqueous phase via a facile method. At first, poly (acrylic amide) grafted onto sodium alginate (PAAm-g-SA) were successfully synthesized and then TGA capped CdTe QDs (CdTe-TGA QDs) were embed into it. The prepared CdTe-PAAm-g-SA QDs were optimized and characterized by transmission electron microscopy (TEM), thermo-gravimetric (TG) analysis, Fourier transform infrared (FT-IR), UV-vis and fluorescence spectroscopy. The characterization results indicated that CdTe-TGA QDs, with particles size of 2.90 nm, were uniformly dispersed on the chains of PAAm-g-SA biopolymer. CdTe-PAAm-g-SA QDs also exhibited excellent UV-vis absorption and high fluorescence intensity. To explore biological behavior of CdTe-PAAm-g-SA QDs, the interactions between CdTe-PAAm-g-SA QDs and human serum albumin (HSA) (or bovine serum albumin (BSA)) were investigated by cyclic voltammetry, FT-IR, UV-vis, and fluorescence spectroscopic. The results confirmed the formation of CdTe-PAAm-g-SA QDs-HSA (or BSA) complex with high binding affinities. The thermodynamic parameters (ΔGbody by binding to HSA and BSA, which could be a useful guideline for the estimation of QDs as a drug carrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Interaction studies of resistomycin from Streptomyces aurantiacus AAA5 with calf thymus DNA and bovine serum albumin

    Science.gov (United States)

    Vijayabharathi, R.; Sathyadevi, P.; Krishnamoorthy, P.; Senthilraja, D.; Brunthadevi, P.; Sathyabama, S.; Priyadarisini, V. Brindha

    2012-04-01

    Resistomycin, a secondary metabolite produced by Streptomyces aurantiacus AAA5. The binding interaction of resistomycin with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) was investigated by spectrophotometry, spectrofluorimetry, circular dichroism (CD) and synchronous fluorescence techniques under physiological conditions in vitro. Absorption spectral studies along with the fluorescence competition with ethidium bromide measurements and circular dichroism clearly suggest that the resistomycin bind with CT DNA relatively strong via groove binding. BSA interaction results revealed that the drug was found to quench the fluorescence intensity of the protein through a static quenching mechanism. The number of binding sites 'n' and apparent binding constant 'K' calculated according to the Scatchard equation exhibit a good binding property to bovine serum albumin protein. In addition, the results observed from synchronous fluorescence measurements clearly demonstrate the occurrence of conformational changes of BSA upon addition of the test compound.

  16. Biomimetic synthesis of calcium carbonate with different morphologies and polymorphs in the presence of bovine serum albumin and soluble starch.

    Science.gov (United States)

    Liu, Yuxi; Chen, Yuping; Huang, Xuechen; Wu, Gang

    2017-10-01

    Calcium carbonate has been synthesized by the reaction of Na2CO3 and CaCl2 in the presence of bovine serum albumin (BSA) and soluble starch. Effects of various bovine serum albumin (BSA) and soluble starch on the polymorph and morphology of CaCO3 crystals were investigated. Crystallization of vaterite is favored in the presence of BSA and soluble starch, respectively, while calcite is favored in the presence of a mixture of BSA and soluble starch. The morphologies of CaCO3 particles in the presence of mixture of BSA and soluble starch are mainly rod-like, suggesting that the BSA, soluble and their assemblies play key roles in stabilizing and directing the CaCO3 crystal growth. Copyright © 2017. Published by Elsevier B.V.

  17. On the mechanism of hydrogen evolution catalysis by proteins: A case study with bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Doneux, Th., E-mail: tdoneux@ulb.ac.b [Chimie Analytique et Chimie des Interfaces, Faculte des Sciences, Universite Libre de Bruxelles, Boulevard du Triomphe 2, CP 255, B-1050 Bruxelles (Belgium); Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Ostatna, Veronika [Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Palecek, Emil, E-mail: palecek@ibp.cz [Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic)

    2011-10-30

    Highlights: > Proteins catalyse hydrogen evolution at mercury electrodes. > The adsorbed protein is the mediator and the buffer proton donor is the substrate. > The characteristics of the catalytic peak are connected to the protein properties. - Abstract: The catalysis of the hydrogen evolution reaction (HER) by proteins has been known for decades but was only recently found to be useful for electroanalytical purposes. The mechanism of the catalytic process is investigated at hanging mercury drop electrodes by cyclic voltammetry, with bovine serum albumin as a model system. It is shown that the catalyst is the protein in the adsorbed state. The influence of various parameters such as the accumulation time, scan rate or buffer concentration is studied, and interpreted in the framework of a surface catalytic mechanism. Under the experimental conditions used in the work, a 'total catalysis' phenomenon takes place, the rate of HER being limited by the diffusion of the proton donor. The adequacy of the existing models is discussed, leading to a call for the development of more refined models.

  18. Spectroscopic studies on the interaction between disperse blue SBL and bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yumei, E-mail: qyyue@sdu.edu.c [School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Yue Qinyan; Gao Baoyu; Zhong Qianqian [School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China)

    2010-08-15

    The interaction of disperse blue SBL (DBSBL) with bovine serum albumin (BSA) was investigated using fluorescence, UV-visible and far-UV circular dichroism (CD) spectroscopy. The results showed that the fluorescence of BSA was quenched by DBSBL through static quenching after correcting for the inner filter effects (IFE). The binding constant K{sub b} of DBSBL with BSA at 288, 298 and 303 K were 0.116x10{sup 6}, 3.18x10{sup 6} and 12.3x10{sup 6} L mol{sup -1}, respectively. The thermodynamic parameters, standard enthalpy change ({Delta}H{sup 0}) and standard entropy change ({Delta}S{sup 0}), for the reaction were evaluated to be 227.2 kJ mol{sup -1} and 886 J mol{sup -1} K{sup -1} according to the van't Hoff equation. The above data suggested that the forces acting between DBSBL and BSA were predominantly hydrophobic interactions. The results of UV-visible absorption and far-UV CD spectroscopy also revealed that the conformation and microenvironment of BSA molecule were changed after DBSBL binding to BSA. At 288 K one binding site was present but at higher temperatures a second binding site was detected between DBSBL and the BSA molecule. The lower bound for the distance between the bound dye and the Trp residue is 2.35 nm as calculated from Forster energy transfer.

  19. Molecular Modeling and Spectroscopic Studies on the Interaction of Transresveratrol with Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Xiaoli Liu

    2013-01-01

    Full Text Available The interaction of transresveratrol (TRES with bovine serum albumin (BSA has been investigated by ultraviolet-visible, fluorescence, Fourier transform infrared spectroscopic methods and molecular modeling techniques. The fluorescence results show that the intrinsic fluorescence of BSA is quenched by TRES through a static quenching procedure. The binding constants of TRES with BSA at 292, 297 and 302 K are calculated as 10.22×104, 8.71×104, and 7.59×104 L mol−1, respectively, and corresponding numbers of binding sites are approximately equal to unity. The thermodynamic parameters ΔH and ΔS are estimated to be −21.82 kJ mol−1 and +21.15 J mol−1 K−1, which indicates that the interaction of TRES with BSA is driven mainly by hydrophobic forces and there are also hydrogen bonds and electrostatic interactions. The competitive experiments suggest that the binding site of TRES to BSA is probably located on site II. The results of infrared spectra show that the binding of TRES with BSA leads to conformational changes of BSA, and the binding stabilizes the α-helix and β-sheet at the cost of a corresponding loss in the β-turn structure of BSA. The results of molecular modeling calculation clarify the binding mode and the binding sites which are in good accordance with the experiment results.

  20. Decoration of heparin and bovine serum albumin on polysulfone membrane assisted via polydopamine strategy for hemodialysis.

    Science.gov (United States)

    Xie, Bingwu; Zhang, Ranran; Zhang, Huan; Xu, Anxiu; Deng, Yi; Lv, Yalin; Deng, Feng; Wei, Shicheng

    2016-06-01

    Renal failure brings about abnormality of waste and toxins and deposition in the body. In clinic, the waste and toxins in vitro are eliminated by hemodialysis device with polysulfone (PSF) porous membranes. In the work, decoration of heparin (Hep) and bovine serum albumin (BSA) on PSF membranes would be beneficial to improve the hemocompatibility and reduce the anaphylatoxin formation during hemodialysis. The PSF porous membranes are surface-modified by simply dipping them into dopamine aqueous solution for 8 h. Then, Hep and BSA are immobilized covalently onto the resultant membrane. Attenuated total reflectance Fourier transform infrared spectra (ATR-FTIR) confirms that Hep and BSA are successfully introduced onto the surface of PSF membranes. Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) display the changes of surface morphologies after modification. The result of water contact angle measurement shows that the hydrophilicity of PSF membranes is remarkably improved after coating polydopamine (pDA) and binding Hep and BSA. The experiments of hemocompatibility indicate that Hep and BSA grafted onto membranes suppress the adhesion of platelet and enhance the anticoagulation ability of PSF membranes. Furthermore, the protein adsorption tests reveal that Hep and BSA immobilized onto membranes depress the protein absorption and develop antifouling-protein ability of pristine membrane. This study proves a convenient and simple approach to graft two functional organic polymers which, respectively, play a vital role and then improve the hemocompatibility and biocompatibility of PSF membranes for their biomedical and blood-contacting applications.

  1. Comparison of Membrane Chromatography and Monolith Chromatography for Lactoferrin and Bovine Serum Albumin Separation

    Directory of Open Access Journals (Sweden)

    Chalore Teepakorn

    2016-09-01

    Full Text Available These last few decades, membranes and monoliths have been increasingly used as stationary phases for chromatography. Their fast mass transfer is mainly based on convection, which leads to reduced diffusion, which is usually observed in resins. Nevertheless, poor flow distribution, which causes inefficient binding, remains a major challenge for the development of both membrane and monolith devices. Moreover, the comparison of membranes and monoliths for biomolecule separation has been very poorly investigated. In this paper, the separation of two proteins, bovine serum albumin (BSA and lactoferrin (LF, with similar sizes, but different isoelectric points, was investigated at a pH of 6.0 with a BSA-LF concentration ratio of 2/1 (2.00 mg·mL−1 BSA and 1.00 mg·mL−1 LF solution using strong cation exchange membranes and monoliths packed in the same housing, as well as commercialized devices. The feeding flow rate was operated at 12.0 bed volume (BV/min for all devices. Afterward, bound LF was eluted using a phosphate-buffered saline solution with 2.00 M NaCl. Using membranes in a CIM housing from BIA Separations (Slovenia with porous frits before and after the membrane bed, higher binding capacities, sharper breakthrough curves, as well as sharper and more symmetric elution peaks were obtained. The monolith and commercialized membrane devices showed lower LF binding capacity and broadened and non-symmetric elution peaks.

  2. Binding of carbendazim to bovine serum albumin: Insights from experimental and molecular modeling studies

    Science.gov (United States)

    Li, Jinhua; Zhang, Yulei; Hu, Lin; Kong, Yaling; Jin, Changqing; Xi, Zengzhe

    2017-07-01

    Carbendazim (CBZ) is a widely used benzimidazole fungicide in agriculture to control a wide range of fruit and vegetable pathogens, which may lead to potential health hazards. To evaluate the potential toxicity of CBZ, the binding mechanism of bovine serum albumin (BSA) with CBZ was investigated by the fluorescence quenching technology, UV absorbance spectra, circular dichroism (CD), and molecular modeling. The fluorescence titration and UV absorbance spectra revealed that the fluorescence quenching mechanism of BSA by CBZ was a combined quenching process. In addition, the studies of CD spectra suggested that the binding of CBZ to BSA changed the secondary structure of protein. Furthermore, the thermodynamic functions of enthalpy change (ΔH0) and entropy change (ΔS0) for the reaction were calculated to be 24.87 kJ mol-1 and 162.95 J mol-1 K-1 according to Van't Hoff equation. These data suggested that hydrophobic interaction play a major role in the binding of CBZ to BSA, which was in good agreement with the result of molecular modeling study.

  3. Evidence of bovine serum albumin-viologen herbicide binding interaction and associated structural modifications

    Science.gov (United States)

    Roy, Swarup; Saxena, Shailendra K.; Mishra, Suryakant; Yogi, Priyanka; Sagdeo, P. R.; Kumar, Rajesh

    2017-07-01

    The binding ability of viologen herbicide with bovine serum albumin (BSA) has been investigated to understand viologen associated hazards by investigating ethyl viologen's (EV) binding using various spectroscopies and in-silico molecular docking approaches. Apparent association constant (1.3 × 104 L/mol), calculated using UV-Vis spectra indicating a moderate complex formation between BSA and EV. A static mode of fluorescence quenching has been observed as evident from inverse temperature dependence of Stern-Volmer quenching constant which also confirms an EV-BSA complex formation. Emission and time resolved fluorescence studies reveal that the emission quenching of BSA with EV is initiated by static quenching mechanism. A moderately strong binding affinity between EV and BSA has been observed (binding constant value of 7.58 × 104 L/Mol) using fluorescence quenching titration, obtained at 298 K. Quantitative measurements of thermodynamic parameters like enthalpy and entropy changes clearly indicates hydrophobic force responsible for EV-BSA complex formation. The binding distance between EV and BSA was found to be 4.48 nm are involved in non-radiative energy transfer process. Furthermore, from the circular dichroism spectra it was observed that addition of EV is also found to change the secondary structure of BSA which leads to decrease in α-helix. Above mentioned results are found to be in consonance with molecular docking simulations and supports the EV-BSA binding.

  4. Interaction of DDP with bovine serum albumin facilitates formation of the protein dimers

    Science.gov (United States)

    Belaya, I.; Chikhirzhina, E.; Polyanichko, A.

    2017-07-01

    Interaction of bovine serum albumin (BSA) with cis- and trans- isomers of diamminedichloroplatinum(II) (DDP) was studied using electrophoretic analysis and Fourier transformed infrared spectroscopy (FTIR). The application of FTIR spectroscopy allowed us to study the DDP/BSA complexes in D2O solutions using protein concentrations close to the physiological level (30 mg/ml) with platinum to BSA molar ratios in the range of 1:1 to 150:1. Under these conditions we have observed formation of relatively weak non-covalent intermolecular protein complexes, which dominated over the BSA-Pt-BSA crosslinks. Analysis of the IR spectra in the region of amide I‧ band revealed that the fraction of the α-helical regions in the protein decreases from ∼65% to approximately 55% and 48% in the complexes with cis- and trans-DDP respectively, while the amount of extended β-structures increases from ∼15 to 20% in BSA to 20-30% in its complexes with cis-DDP and up to 35-40% in trans-DDP/BSA complexes. Based on the data obtained we conclude that multiple intermolecular interactions take place in the solution facilitated by the changes in the BSA secondary structure, induced by DDP binding.

  5. Spectroscopic studies on the interaction between chalcone and bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Keerti M.; Nandibewoor, Sharanappa T., E-mail: stnandibewoor@yahoo.com

    2013-11-15

    The interaction between chalcone and bovine serum albumin (BSA) has been studied by spectroscopic techniques under physiological condition. By the analysis of fluorescence spectrum and fluorescence intensity, it was observed that the chalcone has a strong ability to quench the intrinsic fluorescence with BSA through a static quenching procedure and non-radiation energy transfer were the main reasons for the fluorescence quenching. The association constants of chalcone with BSA were determined at different temperatures based on fluorescence quenching results. The positive entropy change and enthalpy change indicated that the interaction of chalcone and BSA was driven mainly by hydrophobic forces. The process of binding was a spontaneous process in which Gibbs free energy change was negative. The distance, r, between donor (BSA) and acceptor (chalcone) was obtained according to the Forster's theory of non-radiation energy transfer. The UV–vis, CD, FT-IR, synchronous and 3-D spectral results revealed the changes in the secondary structure of BSA upon interaction with chalcone. The effects of some common metal ions on binding of BSA–chalcone complex were also investigated. -- Highlights: • We explored the interaction between chalcone and BSA by fluorescence spectroscopy. • The fluorescence quenching mechanism was static quenching. • The binding constants and thermodynamic parameters were calculated. • The interaction is driven mainly by hydrophobic force. • The binding of chalcone to BSA induced changes in the secondary structure of BSA.

  6. Formulation for Oral Delivery of Lactoferrin Based on Bovine Serum Albumin and Tannic Acid Multilayer Microcapsules

    Science.gov (United States)

    Kilic, Ece; Novoselova, Marina V.; Lim, Su Hui; Pyataev, Nikolay A.; Pinyaev, Sergey I.; Kulikov, Oleg A.; Sindeeva, Olga A.; Mayorova, Oksana A.; Murney, Regan; Antipina, Maria N.; Haigh, Brendan; Sukhorukov, Gleb B.; Kiryukhin, Maxim V.

    2017-03-01

    Lactoferrin (Lf) has considerable potential as a functional ingredient in food, cosmetic and pharmaceutical applications. However, the bioavailability of Lf is limited as it is susceptible to digestive enzymes in gastrointestinal tract. The shells comprising alternate layers of bovine serum albumin (BSA) and tannic acid (TA) were tested as Lf encapsulation system for oral administration. Lf absorption by freshly prepared porous 3 μm CaCO3 particles followed by Layer-by-Layer assembly of the BSA-TA shells and dissolution of the CaCO3 cores was suggested as the most efficient and harmless Lf loading method. The microcapsules showed high stability in gastric conditions and effectively protected encapsulated proteins from digestion. Protective efficiency was found to be 76 ± 6% and 85 ± 2%, for (BSA-TA)4 and (BSA-TA)8 shells, respectively. The transit of Lf along the gastrointestinal tract (GIT) of mice was followed in vivo and ex vivo using NIR luminescence. We have demonstrated that microcapsules released Lf in small intestine allowing 6.5 times higher concentration than in control group dosed with the same amount of free Lf. Significant amounts of Lf released from microcapsules were then absorbed into bloodstream and accumulated in liver. Suggested encapsulation system has a great potential for functional foods providing lactoferrin.

  7. Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine

    Directory of Open Access Journals (Sweden)

    Arunkumar T. Buddanavar

    2017-06-01

    Full Text Available The quenching interaction of atomoxetine (ATX with bovine serum albumin (BSA was studied in vitro under optimal physiological condition (pH=7.4 by multi-spectroscopic techniques. The mechanism of ATX-BSA system was a dynamic quenching process and was confirmed by the fluorescence spectra and lifetime measurements. The number of binding sites, binding constants and other binding characteristics were computed. Thermodynamic parameters ∆H° and ∆S° indicated that intermolecular hydrophobic forces predominantly stabilized the drug-protein system. The average binding distance between BSA and ATX was studied by Försters theory. UV-absorption, Fourier transform infrared spectroscopy (FT-IR, circular dichroism (CD, synchronous spectra and three-dimensional (3D fluorescence spectral results revealed the changes in micro-environment of secondary structure of protein upon the interaction with ATX. Displacement of site probes and the effects of some common metal ions on the binding of ATX with BSA interaction were also studied.

  8. Characterization of chemically modified chitosan microspheres as adsorbents using standard Proteins (bovine serum albumin and lysozyme

    Directory of Open Access Journals (Sweden)

    M. A. Torres

    2007-09-01

    Full Text Available Chitosan microspheres with a mean size of 140 ± 119 µm were produced by the spray and coagulation methods. The microspheres were chemically modified using the following routes: a crosslinking with glutaraldehyde b crosslinking with epychlorohydrin and c acetylation. For investigation of their ability as adsorbents, the following standard proteins were chosen as adsorbates: bovine serum albumin - BSA (pI = 4.8 and MW = 66 kDa and lysozyme (pI = 11 and MW = 14 kDa. The adsorption experiments were performed using a static method. The adsorption media and equilibrium concentration of adsorbates were varied in the ranges of pH 4-11 and 0.07-0.70 mg.ml-1, respectively. The maximum adsorption capacities (q m and the constant of the Langmuir model (Ks were shown to be dependent on charge interactions and on the kind of treatment performed on chitosan microspheres. The satisfactory fit of a kinetic model to the experimental data shows that the step that controls the adsorption kinetics is probably the initial adsorbate transport.

  9. Functionalized polypropylene non-woven fabric membrane with bovine serum albumin and its hemocompatibility enhancement.

    Science.gov (United States)

    Zhang, Chang; Jin, Jing; Zhao, Jie; Jiang, Wei; Yin, Jinghua

    2013-02-01

    Bovine serum albumin (BSA) was successfully immobilized onto polypropylene non-woven fabric (PP(NWF)) membranes using poly(acrylic acid) (PAA) as a spacer. Firstly, O(2) plasma treatment and UV-irradiated technique were combined to graft PAA onto the membranes. BSA was then immobilized onto the PAA grafted surface through the coupling of amino groups of BSA to the carboxyl groups of PAA. The immobilization of PAA and BSA onto the membrane was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and water contact angle measurement. The water contact angle measurement results revealed that the membrane hydrophilicity improved after modification with PAA and BSA. After BSA immobilization, the amount of protein adsorption and the number of platelet adhesion on the modified membrane significantly decreased, which indicated that hemocompatibility had been considerably improved compared with neat and PAA grafted PP(NWF). The whole blood clotting time measurement showed that the anticoagulant property of the modified membrane was also significantly enhanced. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  10. Impact of condensed tannin size as individual and mixed polymers on bovine serum albumin precipitation.

    Science.gov (United States)

    Harbertson, James F; Kilmister, Rachel L; Kelm, Mark A; Downey, Mark O

    2014-10-01

    Condensed tannins composed of epicatechin from monomer to octamer were isolated from cacao (Theobroma cacao, L.) seeds and added to bovine serum albumin (BSA) individually and combined as mixtures. When added to excess BSA the amount of tannin precipitated increased with tannin size. The amount of tannin required to precipitate BSA varied among the polymers with the trimer requiring the most to precipitate BSA (1000 μg) and octamer the least (50 μg). The efficacy of condensed tannins for protein precipitation increased with increased degree of polymerisation (or size) from trimers to octamers (monomers and dimers did not precipitate BSA), while mixtures of two sizes primarily had an additive effect. This study demonstrates that astringent perception is likely to increase with increasing polymer size. Further research to expand our understanding of astringent perception and its correlation with protein precipitation would benefit from sensory analysis of condensed tannins across a range of polymer sizes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Peroxidase-mediated conjugation of corn fiber gum and bovine serum albumin to improve emulsifying properties.

    Science.gov (United States)

    Liu, Yan; Qiu, Shuang; Li, Jinlong; Chen, Hao; Tatsumi, Eizo; Yadav, Madhav; Yin, Lijun

    2015-03-15

    The emulsifying properties of corn fiber gum (CFG), a naturally occurring polysaccharide-protein complex, was improved by kinetically controlled formation of hetero-covalent linkages with bovine serum albumin (BSA), using horseradish peroxidase (HRP). The formation of hetero-crosslinked CFG-BSA conjugates was confirmed using ultraviolet-visible and Fourier-transform infrared analyses. The optimum CFG-BSA conjugates were prepared at a CFG:BSA weight ratio of 10:1, and peroxidase:BSA weight ratio of 1:4000. Selected CFG-BSA conjugates were used to prepare oil-in-water emulsions; the emulsifying properties were better than those of emulsions stabilized with only CFG or BSA. Measurements of mean droplet sizes and zeta potentials showed that CFG-BSA-conjugate-stabilized emulsions were less susceptible to environmental stresses, such as pH changes, high K ionic strengths, and freeze-thaw treatments than CFG- or BSA-stabilized emulsions. These conjugates have potential applications as novel emulsifiers in food industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Kinetics of adsorption of bovine serum albumin on magnetic carboxymethyl chitosan nanoparticles.

    Science.gov (United States)

    Wang, Zhouli; Yue, Tianli; Yuan, Yahong; Cai, Rui; Niu, Chen; Guo, Caixia

    2013-07-01

    The magnetic carboxymethyl chitosan nanoparticles (MNPs-CMC) were developed as effective magnetic affinity adsorbent for Bovine serum albumin and the adsorption reactions were investigated. The obtained experimental data were compared with the adsorption kinetics models and equilibrium isotherms. The experimental kinetic data were modeled using Pseudo-first order, Pseudo-second order, Bangham's equation, Intra-particle diffusion model and Elovich equations. It was found that the adsorption reactions followed the Pseudo-second order kinetics equation. The experimental isotherm data were analyzed using Langmuir, Freundlich, Dubinin-Radushkevich and Temkin equations. By comparing the correlation coefficients determined for each linear transformation of isotherm analysis, it was found that the Langmuir equation was the best fit equilibrium model for the adsorption of BSA. Error functions have been used to determine the alternative single component parameters by nonlinear regression due to the inherent bias in using the correlation coefficient resulting from linearization. It showed that the Langmuir equation resulted in the lowest values for the error function and thus fitted the data better than the other isotherm. Various thermodynamic parameters such as enthalpy (ΔH°), entropy (ΔS°) and Gibbs free energy (ΔG°) were evaluated. MNPs-CMC nanoaprticles were shown to be a promising material for adsorption of BSA from aqueous solutions. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  13. Effect of dynamic high pressure on functional and structural properties of bovine serum albumin.

    Science.gov (United States)

    Maresca, Paola; Ferrari, Giovanna; Leite Júnior, Bruno Ricardo de Castro; Zanphorlin, Leticia Maria; Ribeiro, Luma Rossi; Murakami, Mário Tyago; Cristianini, Marcelo

    2017-09-01

    Dynamic high pressure (DHP) has been investigated as an innovative suitable method to induce protein modifications. This work evaluated the effect of DHP (up to three passes at 100, 150 and 200MPa, with an inlet temperature of 20°C) on functional and structural properties of bovine serum albumin (BSA). Results indicated that DHP process applied up to an energy limit of 100MPa increased the protein foaming capacity (FC) (pstructure. DHP did not affect tryptophan microenvironment in BSA; however, this process induced the rearrangement of secondary structure elements. In the first cycle, the pressure increase resulted in a loss of secondary structure, while in the second and third cycles the DHP process resulted in the gain of secondary structure elements. These results indicated that the second and third passes triggered a molecular rearrangement of the protein structure, giving rise to a novel and more stable conformational state. This conclusion was also supported by thermal unfolding studies (melting temperature reduction from 67.5 to 54.6°C after 1 pass at 200MPa), in which the additional cycles of DHP caused the occurrence of an initial denaturation at high temperatures, compared to the first cycle. Copyright © 2017. Published by Elsevier Ltd.

  14. Functionalization of lactose as a biological carrier for bovine serum albumin by electrospraying.

    Science.gov (United States)

    Tavares Cardoso, M A; Talebi, M; Soares, P A M H; Yurteri, C U; van Ommen, J R

    2011-07-29

    Electrohydrodynamic atomization (EHDA) is an attractive technique to make new types of composite particles for pharmaceutical use. The aim of this work is to prove that EHDA can be successfully used to attach nano/micro-particles of protein to lactose, the commonly used excipient for pulmonary delivery, keeping all the biological properties of the protein after dissolution of the complex. Bovine serum albumin (BSA) was used as a model protein. The atomization of BSA was tested with two different solvents, dimethyl sulfoxide (DMSO) and ethanol. The process using DMSO resulted in the formation of a thin layer of protein while the tests using ethanol resulted in the formation of spherical particles with mean diameters around 700 nm. Ethanol as solvent was also used to produce a composite formed by BSA adsorbed at the surface of lactose by electrostatic forces. No denaturation or significant conformational changes of the protein were observed, although an increase in the exposition of the lactose to the jet of the solution decreases the reproducibility of the method. Due to the absence of denaturation in the model protein, this new approach can be tested for the production of new formulations for dry powders for drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Interfacial partitioning behaviour of bovine serum albumin in polymer-salt aqueous two-phase system.

    Science.gov (United States)

    Chow, Yin Hui; Yap, Yee Jiun; Anuar, Mohd Shamsul; Tejo, Bimo Ario; Ariff, Arbakariya; Show, Pau Loke; Ng, Eng-Poh; Ling, Tau Chuan

    2013-09-01

    A relationship is proposed for the interfacial partitioning of protein in poly(ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS). The relationship relates the natural logarithm of interfacial partition coefficient, ln G to the PEG concentration difference between the top and bottom phases, Δ[PEG], with the equation ln G=AΔ[PEG]+B. Results showed that this relationship provides good fits to the partition of bovine serum albumin (BSA) in ATPS which is comprised of phosphate and PEG of four different molecular weight 1450g/mol, 2000g/mol, 3350g/mol and 4000g/mol, with the tie-line length (TLL) in the range of 44-60% (w/w) at pH 7.0. The decrease of A values with the increase of PEG molecular weight indicates that the correlation between ln G and Δ[PEG] decreases with the increase in PEG molecular weight and the presence of protein-polymer hydrophobic interaction. When temperature was increased, a non-linear relationship of ln G inversely proportional to temperature was observed. The amount of proteins adsorbed at the interface increased proportionally with the amount of BSA loaded whereas the partition coefficient, K remained relatively constant. The relationship proposed could be applied to elucidate interfacial partitioning behaviour of other biomolecules in polymer-salt ATPS. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Study on interaction of Ligupurpuroside A with bovine serum albumin by multi-spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Liang-liang [College of Life Sciences, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen 518060 (China); Xu, Hong, E-mail: xuhong@szu.edu.cn [College of Life Sciences, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen 518060 (China); Huang, Feng-wen; Li, Yi; Xiao, Jie; Xiao, Hua-feng; Ying, Ming; Tian, Sheng-li; Yang, Zhen; Liu, Gang; Hu, Zhang-li [College of Life Sciences, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen 518060 (China); He, Zhen-dan, E-mail: hezhendan@126.com [School of Medicine, Shenzhen University, Shenzhen 518060 (China); Zhou, Kai [Shenzhen Marine Environment and Resource Monitoring Center, Shenzhen 518060 (China)

    2014-10-15

    The interaction of Ligupurpuroside A with bovine serum albumin (BSA) has been investigated by fluorescence spectra, UV–vis absorption spectra, three-dimensional (3D) fluorescence spectra, synchronous fluorescence spectra and circular dichroism (CD) spectra along with a molecular docking method. The fluorescence experiments indicate that Ligupurpuroside A can quench the intrinsic fluorescence of BSA through a combined quenching way at the low concentration of Ligupurpuroside A, and a static quenching procedure at the high concentration. The thermodynamic analysis suggests that hydrogen bonds and van der Waals forces are the main forces between BSA and Ligupurpuroside A. According to the theory of Förster's non-radiation energy transfer, the binding distance between BSA and Ligupurpuroside A was calculated to be 2.73 nm, which implies that energy transfer occurs between BSA and Ligupurpuroside A. All these experimental results have been validated by the protein–ligand docking studies which show that Ligupurpuroside A binds to the residues located in the hydrophobic cavity on subdomain IIA of BSA. In addition, conformation change of BSA was observed from three-dimensional fluorescence spectra, synchronous fluorescence spectra and circular dichroism spectra under experimental conditions. - Highlights: • The interaction of Ligupurpuroside A with BSA was investigated. • The fluorescence quenching of BSA induced by Ligupurpuroside A is a combined quenching process. • The main interaction forces were hydrogen bonds and van der Waals forces. • Ligupurpuroside A binding results in a decrease in α-helix.

  17. Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study.

    Science.gov (United States)

    Makarska-Bialokoz, Magdalena

    2017-12-01

    The binding interactions between hemin (Hmi) and bovine serum albumin (BSA) or human hemoglobin (HHb), respectively, have been examined in aqueous solution at pH=7.4, applying UV-vis absorption, as well as steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative results received for both BSA and HHb intrinsic fluorescence proceeding from the interactions with hemin suggest the formation of stacking non-covalent and non-fluorescent complexes in both the Hmi-BSA and Hmi-HHb systems, with highly possible concurrent formation of a coordinate bond between a group on the protein surface and the metal in Hmi molecule. All the values of calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants point to the involvement of static quenching in both the systems studied. The blue shift in the synchronous fluorescence spectra imply the participation of both tryptophan and tyrosine residues in quenching of BSA and HHb intrinsic fluorescence. Depicted outcomes suggest that hemin is supposedly able to influence the physiological functions of BSA and HHb, the most important blood proteins, particularly in case of its overuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin.

    Science.gov (United States)

    Qin, Jinli; Zhong, Zhenyu; Ma, Jun

    2016-05-01

    A biomimetic method was used to prepare hybrid hydroxyapatite (HAP) nanoparticles with chitosan/polyacrylic acid (CS-PAA) nanogel. The morphology, structure, crystallinity, thermal properties and biocompatibility of the obtained hybrid nanogel-HAP nanoparticles have been characterized. In addition, bovine serum albumin (BSA) was used as a model protein to study the loading and release behaviors of the hybrid nanogel-HAP nanoparticles. The results indicated that the obtained HAP nanoparticles were agglomerated and the nanogel could regulate the formation of HAP. When the nanogel concentration decreased, different HAP crystal shapes and agglomerate structures were obtained. The loading amount of BSA reached 67.6 mg/g for the hybrid nanoparticles when the mineral content was 90.4%, which decreased when the nanogel concentration increased. The release profile of BSA was sustained in neutral buffer. Meanwhile, an initial burst release was found at pH 4.5 due to the desorption of BSA from the surface, followed by a slow release. The hemolysis percentage of the hybrid nanoparticles was close to the negative control, and these particles were non-toxic to bone marrow stromal stem cells. The results suggest that these hybrid nanogel-HAP nanoparticles are promising candidate materials for biocompatible drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Potential-assisted adsorption of bovine serum albumin onto optically transparent carbon electrodes.

    Science.gov (United States)

    Benavidez, Tomás E; Garcia, Carlos D

    2013-11-19

    This article describes the effect of the applied potential on the adsorption of bovine serum albumin (BSA) to optically transparent carbon electrodes (OTCE). To decouple the effect of the applied potential from the high affinity of the protein for the bare surface, the surface of the OTCE was initially saturated with a layer of BSA. Experiments described in the article show that potential values higher than +500 mV induced a secondary adsorption process (not observed at open-circuit potential), yielding significant changes in the thickness (and adsorbed amount) of the BSA layer obtained. Although the process showed a significant dependence on the experimental conditions selected, the application of higher potentials, selection of pH values around the isoelectric point (IEP) of the protein, high concentrations of protein, and low ionic strengths yielded faster kinetics and the accumulation of larger amounts of protein on the substrate. These experiments, obtained around the IEP of the protein, contrast with the traditional hypothesis that enhanced electrostatic interactions between the polarized substrate and the (oppositely charged) protein are solely responsible for the enhanced adsorption. These results suggest that the potential applied to the electrode is able to polarize the adsorbed layer and induce dipole-dipole interactions between the adsorbed and the incoming protein. This mechanism could be responsible for the potential-dependent oversaturation of the surface and could bolster to the development of surfaces with enhanced catalytic activity and implants with improved biocompatibility.

  20. Potential-Assisted Adsorption of Bovine Serum Albumin onto Optically-Transparent Carbon Electrodes

    Science.gov (United States)

    Benavidez, Tomás E.; Garcia, Carlos D.

    2013-01-01

    This manuscript describes the effect of the applied potential on the adsorption of bovine serum albumin (BSA) to optically transparent carbon electrodes (OTCE). To decouple the effect of the applied potential from the high affinity of the protein for the bare surface, the surface of the OTCE was initially saturated with a layer of BSA. Experiments described in the manuscript show that potential values higher than +500 mV induced a secondary adsorption process (not observed at open-circuit potentials), yielding significant changes in the thickness (and adsorbed amount) of the BSA layer obtained. Although the process showed a significant dependence on the experimental conditions selected, the application of higher potentials, selection of pH values around the isoelectric point (IEP) of the protein, high concentrations of protein, and low ionic strengths yielded faster kinetics and the accumulation of larger amounts of protein on the substrate. These experiments, obtained around the IEP of the protein, contrast with the traditional hypothesis that enhanced electrostatic interactions between the polarized substrate and the (oppositely charged) protein are solely responsible for the enhanced adsorption. These results suggest that the potential applied to the electrode is able to polarize the adsorbed layer and induce dipole-dipole interactions between the adsorbed and the incoming protein. This mechanism could be responsible for the potential-dependent oversaturation of the surface and could bolster to the development of surfaces with enhanced catalytic activity and implants with improved biocompatibility. PMID:24156567

  1. Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Nicholas [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Topal, Ç. Özge [School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Hikkaduwa Koralege, Rangika S. [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Hartson, Steve [Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 (United States); Ranjan, Ashish; Liu, Jing; Pope, Carey [Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Ramsey, Joshua D., E-mail: josh.ramsey@okstate.edu [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2016-05-01

    The aim of the present study was to evaluate a library of poly-L-lysine (PLL)-graft (g)-polyethylene glycol (PEG) copolymers for the ability to encapsulate effectively a model protein, bovine serum albumin (BSA), and to characterize the stability and protein function of the resulting nanoparticle. A library of nine grafted copolymers was produced by varying PLL molecular weight and PEG grafting ratio. Electrostatic self-assembly of the protein and the grafted copolymer drove encapsulation. The formation of protein/polymer nanoparticles with a core/shell structure was confirmed using PAGE, dynamic light scattering, and electron microscopy. Encapsulation of the BSA into nanoparticles was strongly dependent on the copolymer-to-protein mass ratio, PEG grafting ratio, and PLL molecular weight. A copolymer-to-protein mass ratio of 7:1 and higher was generally required for high levels of encapsulation, and under these conditions, no loss of protein activity was observed. Copolymer characteristics also influenced nanoparticle resistance to polyanions and protease degradation. The results indicate that a copolymer of 15–30 kDa PLL, with a PEG grafting ratio of 10:1, is most promising for protein delivery. - Highlights: • A 4–70 kDa range of PLL-g-PEG copolymers was able to encapsulate BSA into NPs. • Encapsulation of BSA by PLL-g-PEG not only retained but increased esterolytic activity. • NPs were stable against protease degradation and polyanion dissociation.

  2. Antioxidant effects of bovine serum albumin on kinetics, microscopic and oxidative characters of cryopreserved bull spermatozoa

    Directory of Open Access Journals (Sweden)

    I. Ashrafi

    2013-07-01

    Full Text Available The aim of this study was to determine the effects of bovine serum albumin (BSA as an antioxidant on post-thaw characters of bull spermatozoa such as motion variables, viability, plasma membrane integrity, morphology, lipid peroxidation, total antioxidant capacity (TAC, total thiols (TT and the enzymes activities. Ejaculates were collected from six proven bulls and diluted with a citrate-based extender supplemented with various concentrations of BSA (0, 0.5, 1, 1.5 and 2 g/100 mL. The results showed that the semen extender supplemented with various concentrations of BSA increased (p0.05 were detected in progressive motility, sperm track straightness, beat cross frequency, curvilinear velocity and malondialdehyde production between the experimental groups. The highest concentration of BSA (2 g/100 mL in the semen extender reduced (p<0.05 the sperm motion variables. The results indicated that the most effective concentration of BSA is 1 g/100 mL in the semen extender which is associated with an increase in the total motility, antioxidant enzymes activities, TT and TAC.

  3. Increased Yield and Improved Transplantation Outcome of Mouse Islets with Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Suzanne Bertera

    2012-01-01

    Full Text Available Isolation and transplantation of rodent islets are frequently used as a tool for predicting the behavior of new protocols for islet allotransplants in type 1 diabetes patients. Bovine serum albumin (BSA is recognized as a protease inhibitor possibly protecting function and viability in islets. For this study, the addition of 0.2% BSA to the isolation protocol resulted in a 30% increase in islet yields while other parameters, such as viability and function, retained high islet quality. In vivo, a minimal mass of 70 BSA treated islets showed their ability to control glycemia levels in diabetic mice by bringing the average blood glucose to 153±13.2 mg/dL compared to 288±22.6 mg/dL without BSA. Our results show that the simple addition of BSA to the isolation protocol constitutes a reliable and reproducible method for increasing islet yield. Also adding BSA to the transplantation medium improves islet function in vivo. The method outlined here can reduce the overall number of animals needed per experiment and also reduce the time and resources needed for islet preparation.

  4. Interaction and sonodynamic damage activity of acridine red (AD-R) to bovine serum albumin (BSA)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dandan; Xie, Jinhui; Wu, Qiong; Fan, Ping; Wang, Jun, E-mail: wangjun888tg@126.com

    2015-04-15

    The sonodynamic therapy (SDT) has become an attractive antitumor treatment method in recent years, but the selection of sonosensitizer, mechanism of damage biomolecule and kind of reactive oxygen species (ROS) generated during sonodynamic process have not been investigated in detail. In this paper, the acridine red (AD-R), as a sonosensitizer, combining with ultrasonic irradiation to damage bovine serum albumin (BSA) was investigated. At first, the interaction of AD-R to BSA molecules in aqueous solution was studied by fluorescence spectroscopy. As judged from the experimental results, the quenching mechanism of BSA fluorescence belongs to a static process. Synchronous fluorescence spectra demonstrate that the binding and damage sites to BSA molecules are mainly on the tryptophan residues. The generation and kind of generated ROS were also estimated by the method of oxidation and extraction photometry. This paper may offer some valuable references for the study of the sonodynamic activity and application of AD-R in SDT for tumor treatment. - Highlights: ●Acridine red (AD-R) is used to study interaction with BSA. ●Spectroscopy is used to study sonodynamic damage activity of AD-R to BSA. ●Generation of ROS caused by AD-R under ultrasonic irradiation was determined.

  5. Maillard induced complexes of bovine serum albumin--a dilute solution study.

    Science.gov (United States)

    Easa, A M; Armstrong, H J; Mitchell, J R; Hill, S E; Harding, S E; Taylor, A J

    1996-06-01

    Association of bovine serum albumin (BSA) on heating in the presence and absence of 2% xylose has been studied using dynamic light scattering and sedimentation velocity. When 3% solutions of the protein alone are heated at 95 degrees C association products are formed with molar masses of approximately 2 x 10(6) g/mol, a value which is independent of the time of heating. These aggregates can be dissociated in solvents that disrupt non-covalent bonds. When the reducing sugar xylose is present there is a continuous change in the hydrodynamic properties with time. After 80 min a molar mass in excess of 7 x 10(6) g/mol is obtained. This increase in molar mass is attributed to additional non-disulphide linkages resulting from the Maillard reaction. Information about the gross conformation of the Maillard induced association products has been obtained from MHKS (Mark-Houwink-Kuhn-Sakarada) double logarithmic plots of D20,w and S20,w against molar mass. The values of the MHKS coefficients obtained are most consistent with a linear rod: i.e. the association is of an end-to-end type.

  6. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts.

    Science.gov (United States)

    Liu, Xiangning; Zhou, Xiaosong; Li, Shaobing; Lai, Renfa; Zhou, Zhiying; Zhang, Ye; Zhou, Lei

    2014-01-01

    Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs) with or without using bovine serum albumin (BSA) to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE), were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs) was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1) gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because BSA coating actions in vivo are very rapid.

  7. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhao, Junjie; Qian, Yu; Zhang, Xiali; Zhou, Feifei; Zhang, Hong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Yu, Wencong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China)

    2015-05-01

    Four different phase compositions of calcium phosphate (CaP) particles were prepared via a solution combustion method. X-ray diffraction (XRD) and Rietveld analysis results revealed that the variations in the nominal Ca/P (molar) ratios were found to provide a favorable control in the different proportions of CaP materials. Bovine serum albumin (BSA) was used as a model protein to study the loading and release behavior. The release profile indicated that the BSA release rates depended on the phase compositions of the CaP particles, and showed an order of TCP-BSA > BCP-1-BSA > BCP-2-BSA > HA-BSA. The results suggested that the BSA protein release rate can be controlled by varying the phase compositions of CaP carriers. Moreover, the release process involved two stages: firstly surface diffusion via ion exchange and secondly intraparticle diffusion. - Highlights: • Solution combustion method was an efficient way to produced CaP powders. • Ca/P (molar) ratios provided a favorable control in the different proportions of phase composition. • BSA release rate varied depending on the phase composition of the CaP particles. • Two kinetic models were chosen to simulate the release kinetics of the drugs from CaP carriers.

  8. The investigation of the interaction between Tropicamide and bovine serum albumin by spectroscopic methods.

    Science.gov (United States)

    Yu, Xianyong; Liao, Zhixi; Yao, Qing; Liu, Heting; Li, Xiaofang; Yi, Pinggui

    2014-01-24

    The fluorescence and ultraviolet-visible (UV-Vis) spectroscopy were explored to study the interaction between Tropicamide (TA) and bovine serum albumin (BSA) at three different temperatures (292, 301 and 310K) under imitated physiological conditions. The experimental results showed that the fluorescence quenching mechanism between TA and BSA was static quenching procedure. The binding constant (Ka), binding sites (n) were obtained. The corresponding thermodynamic parameters (ΔH, ΔS and ΔG) of the interaction system were calculated at different temperatures. The results revealed that the binding process is spontaneous, hydrogen binds and vander Waals were the main force to stabilize the complex. According to Förster non-radiation energy transfer theory, the binding distance between TA and BSA was calculated to be 4.90 nm. Synchronous fluorescence spectroscopy indicated the conformation of BSA changed in the presence of TA. Furthermore, the effect of some common metal ions (Mg(2+), Ca(2+), Cu(2+), and Ni(2+)) on the binding constants between TA and BSA were examined. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Tuning the solution organization of cationic polymers through interactions with bovine serum albumin.

    Science.gov (United States)

    Papagiannopoulos, Aristeidis; Vlassi, Eleni; Pispas, Stergios; Jafta, Charl J

    2017-07-19

    The interactions of bovine serum albumin (BSA) with aggregates of cationic polymers, i.e. quaternized poly(chloromethyl styrene) chains (QIm-PCMS), in aqueous solutions are investigated using small angle neutron scattering on length scales relevant to the size of BSA. The arrangement of the macromolecular chains within their aggregates is consistent with a blob description of overlapping chains that contain hydrophobic domains. The local conformations depend on the salt content as in typical linear polyelectrolytes. Although the hydrophobic content of the cationic polymers does not cause measurable local morphology differences, the interactions with BSA are enhanced in the case of the not fully quaternized polymer. The secondary structure of BSA is critically compromised by the interaction with the quaternized polymers as the signature of the alpha helix conformation is lost. The complexation with BSA and the resulting enhancement of interchain associations on higher length scales are verified using dynamic light scattering experiments. This study demonstrates the ability to tune the polyelectrolyte/protein interactions and polyelectrolyte chain-chain associations by modifying the hydrophobic content of the polyelectrolytes.

  10. Spectroscopic investigation on the interaction of salidroside with bovine serum albumin

    Science.gov (United States)

    Cheng, Zhengjun; Zhang, Yuntao

    2008-10-01

    This study is designed to examine the interaction of salidroside with bovine serum albumin (BSA) under physiological conditions with drug concentrations in the range of 1.67-20.0 μM. Spectroscopic analysis of the emission quenching at different temperatures has revealed that the quenching mechanism of salidroside with BSA is static quenching mechanism. The calculated distance r between salidroside and the protein is evaluated according to the theory of Forster energy transfer. The results of FTIR, CD, synchronous fluorescence spectra and UV-vis absorption spectra experiment show that the secondary structures of the protein has been changed in the presence of salidroside. The thermodynamic parameters, enthalpy change (Δ H0) and entropy change (Δ S0) are calculated to be -50.50 kJ mol -1 and -59.13 J mol -1 K -1according to van't Hoff equation, which indicate that the hydrogen bonds and van der Waals forces are the intermolecular force stabilizing the complex. The effects of common ions on the binding constants of BSA-salidroside complexes were also investigated.

  11. Urea-induced binding between diclofenac sodium and bovine serum albumin: a spectroscopic insight.

    Science.gov (United States)

    Dohare, Neeraj; Khan, Abbul Bashar; Athar, Fareeda; Thakur, Sonu Chand; Patel, Rajan

    2016-06-01

    We investigated the interaction of diclofenac sodium (Dic.Na) with bovine serum albumin (BSA) in the absence and presence of urea using different spectroscopic techniques. A fluorescence quenching study revealed that the Stern-Volmer quenching constant decreases in the presence of urea, decreasing further at higher urea concentrations. The binding constant and number of binding sites were also evaluated for the BSA-Dic.Na interaction system in the absence and presence of urea using a modified Stern-Volmer equation. The binding constant is greater at high urea concentrations, as shown by the fluorescence results. In addition, for the BSA-Dic.Na interaction system, a static quenching mechanism was observed, which was further confirmed using time-resolved fluorescence spectroscopy. UV-vis spectroscopy provided information about the formation of a complex between BSA and Dic.Na. Circular dichroism was carried out to explain the conformational changes in BSA induced by Dic.Na in the absence and presence of urea. The presence of urea reduced the α-helical content of BSA as the Dic.Na concentration varied. The distance r between the donor (BSA) and acceptor (Dic.Na) was also obtained in the absence and presence of urea, using fluorescence resonance energy transfer. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Analysis of the hydration water around bovine serum albumin using terahertz coherent synchrotron radiation.

    Science.gov (United States)

    Bye, Jordan W; Meliga, Stefano; Ferachou, Denis; Cinque, Gianfelice; Zeitler, J Axel; Falconer, Robert J

    2014-01-09

    Terahertz spectroscopy was used to study the absorption of bovine serum albumin (BSA) in water. The Diamond Light Source operating in a low alpha mode generated coherent synchrotron radiation that covered a useable spectral bandwidth of 0.3-3.3 THz (10-110 cm(-1)). As the BSA concentration was raised, there was a nonlinear change in absorption inconsistent with Beer's law. At low BSA concentrations (0-1 mM), the absorption remained constant or rose slightly. Above a concentration of 1 mM BSA, a steady decrease in absorption was observed, which was followed by a plateau that started at 2.5 mM. Using a overlapping hydration layer model, the hydration layer was estimated to extend 15 Å from the protein. Calculation of the corrected absorption coefficient (αcorr) for the water around BSA by subtracting the excluded volume of the protein provides an alternative approach to studying the hydration layer that provides evidence for complexity in the population of water around BSA.

  13. Luminescence, circular dichroism and in silico studies of binding interaction of synthesized naphthylchalcone derivatives with bovine serum albumin.

    Science.gov (United States)

    Pasricha, Sharda; Sharma, Deepti; Ojha, Himanshu; Gahlot, Pragya; Pathak, Mallika; Basu, Mitra; Chawla, Raman; Singhal, Sugandha; Singh, Anju; Goel, Rajeev; Kukreti, Shrikant; Shukla, Shefali

    2017-11-01

    Chalcones possess various biological properties, for example, antimicrobial, anti-inflammatory, analgesic, antimalarial, anticancer, antiprotozoal and antitubercular activity. In this study, naphthylchalcone derivatives were synthesized and characterized using (1) H NMR (13) C NMR, Fourier transform infrared and mass techniques. Yields for all derivatives were found to be >90%. Protein-drug interactions influence the absorption, distribution, metabolism and excretion (ADME) properties of a drug. Therefore, to establish whether the synthesized naphthylchalcone derivatives can be used as drugs, their binding interaction toward a serum protein (bovine serum albumin) was investigated using fluorescence, circular dichroism and molecular docking techniques under physiological conditions. Fluorescence quenching of the protein in the presence of naphthylchalcone derivatives, and other derived parameters such as association constants, number of binding sites and static quenching involving confirmed non-covalent binding interactions in the protein-ligand complex were observed. Circular dichroism clearly showed changes in the secondary structure of the protein in the presence of naphthylchalcones, indicating binding between the derivatives and the serum protein. Molecular modelling further confirmed the binding mode of naphthylchalcone derivatives in bovine serum albumin. A site-specific molecular docking study of naphthylchalcone derivatives with serum albumin showed that binding took place primarily in the aromatic low helix and then in subdomain II. The dominance of hydrophobic, hydrophilic and hydrogen bonding was clearly visible and was responsible for stabilization of the complex. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Interaction of bovine serum albumin with a psychotropic drug alprazolam: Physicochemical, photophysical and molecular docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Moumita; Paul, Shiv Shankar; Mukherjea, Kalyan K., E-mail: k_mukherjea@yahoo.com

    2013-10-15

    The interaction between alprazolam (Alp) and bovine serum albumin (BSA) has been investigated under physiological conditions by UV–vis, steady state as well as time-resolved fluorescence, circular dichroism (CD) spectroscopic and molecular docking studies. The binding constant K of Alp to BSA was found to be 1.8×10{sup 5} L mol{sup −1} from absorption data. Fluorometric studies suggested the formation of the Alp–BSA complex, while time-resolved fluorescence studies showed that the binding of Alp by BSA was mainly static and the effective rate constant is found to be 2.33×10{sup 13} L mol{sup −1} s{sup −1}. According to the modified Stern–Volmer equation, the Stern–Volmer quenching constants (K{sub SV}) between Alp and BSA at four different temperatures 295, 303, 308, 313 K were obtained to be 1.19×10{sup 5}, 1.05×10{sup 5}, 0.99×10{sup 5} and 0.90×10{sup 5} L mol{sup −1}, respectively. The change in enthalpy (ΔH) and entropy (ΔS) were calculated to be −11.66 and 57.64 J mol{sup −1} K{sup −1}, respectively, indicating that the interaction was hydrophobic in nature. Site marker competitive experiments suggested that the binding of Alp to BSA primarily took place in sub-domain IIA, whereas the binding distance (r) between Alp and the tryptophan residue of BSA was obtained to be 1.87 nm by Förster's theory of non-radiative energy transfer. The conformational studies by CD spectroscopy showed that the presence of Alp decreased the α-helical content of BSA and induced the unfolding of the polypeptide of the protein. The change in conformation was also supported by excitation–emission matrix spectroscopy (EEMS) studies. The molecular docking experiment supports the above results and effectively proves the binding of Alp to BSA. -- Highlights: • Alprazolam: a benzodiazepine drug with anxiolytic and anticonvulsant properties. • Alprazolam induces conformational change on the native as well as urea denatured BSA. • Alprazolam may

  15. Investigation of the interaction of naringin palmitate with bovine serum albumin: spectroscopic analysis and molecular docking.

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    Full Text Available BACKGROUND: Bovine serum albumin (BSA contains high affinity binding sites for several endogenous and exogenous compounds and has been used to replace human serum albumin (HSA, as these two compounds share a similar structure. Naringin palmitate is a modified product of naringin that is produced by an acylation reaction with palmitic acid, which is considered to be an effective substance for enhancing naringin lipophilicity. In this study, the interaction of naringin palmitate with BSA was characterised by spectroscopic and molecular docking techniques. METHODOLOGY/PRINCIPAL FINDINGS: The goal of this study was to investigate the interactions between naringin palmitate and BSA under physiological conditions, and differences in naringin and naringin palmitate affinities for BSA were further compared and analysed. The formation of naringin palmitate-BSA was revealed by fluorescence quenching, and the Stern-Volmer quenching constant (KSV was found to decrease with increasing temperature, suggesting that a static quenching mechanism was involved. The changes in enthalpy (ΔH and entropy (ΔS for the interaction were detected at -4.11 ± 0.18 kJ·mol(-1 and -76.59 ± 0.32 J·mol(-1·K(-1, respectively, which indicated that the naringin palmitate-BSA interaction occurred mainly through van der Waals forces and hydrogen bond formation. The negative free energy change (ΔG values of naringin palmitate at different temperatures suggested a spontaneous interaction. Circular dichroism studies revealed that the α-helical content of BSA decreased after interacting with naringin palmitate. Displacement studies suggested that naringin palmitate was partially bound to site I (subdomain IIA of the BSA, which was also substantiated by the molecular docking studies. CONCLUSIONS/SIGNIFICANCE: In conclusion, naringin palmitate was transported by BSA and was easily removed afterwards. As a consequence, an extension of naringin applications for use in food, cosmetic

  16. Protections of bovine serum albumin protein from damage on functionalized graphene-based electrodes by flavonoids.

    Science.gov (United States)

    Sun, Bolu; Gou, Yuqiang; Xue, Zhiyuan; Zheng, Xiaoping; Ma, Yuling; Hu, Fangdi; Zhao, Wanghong

    2016-05-01

    A sensitive electrochemical sensor based on bovine serum albumin (BSA)/poly (diallyldimethylammonium chloride) (PDDA) functionalized graphene nanosheets (PDDA-G) composite film modified glassy carbon electrode (BSA/PDDA-G/GCE) had been developed to investigate the oxidative protein damage and protections of protein from damage by flavonoids. The performance of this sensor was remarkably improved due to excellent electrical conductivity, strong adsorptive ability, and large effective surface area of PDDA-G. The BSA/PDDA-G/GCE displayed the greatest degree of BSA oxidation damage at 40 min incubation time and in the pH 5.0 Fenton reagent system (12.5 mM FeSO4, 50 mM H2O2). The antioxidant activities of four flavonoids had been compared by fabricated sensor based on the relative peak current ratio of SWV, because flavonoids prevented BSA damage caused by Fenton reagent and affected the BSA signal in a solution containing Co(bpy)3(3+). The sensor was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). UV-vis spectrophotometry and FTIR were also used to investigate the generation of hydroxyl radical and BSA damage, respectively. On the basis of results from electrochemical methods, the order of the antioxidant activities of flavonoids is as follows: (+)-catechin>kaempferol>apigenin>naringenin. A novel, direct SWV analytical method for detection of BSA damage and assessment of the antioxidant activities of four flavonoids was developed and this electrochemical method provided a simple, inexpensive and rapid detection of BSA damage and evaluation of the antioxidant activities of samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterization and antioxidant activity of bovine serum albumin and sulforaphane complex in different solvent systems

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xueyan; Zhou, Rui; Jing, Hao, E-mail: h200521@cau.edu.cn

    2014-02-15

    Modes and influencing factors of bovine serum albumin (BSA) and sulforaphane (SFN) interaction will help us understand the interaction mechanisms and functional changes of bioactive small molecule and biomacromolecule. This study investigated interaction mechanisms of BSA and SFN and associated antioxidant activity in three solvent systems of deionized water (dH{sub 2}O), dimethyl sulfoxide (DMSO) and ethanol (EtOH), using Fourier transform infrared spectroscopy (FT-IR), fluorescence spectroscopy, synchronous fluorescence spectroscopy, DPPH and ABTS radical scavenging assays. The results revealed that SFN had ability to quench BSA's fluorescence in static modes, and to interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues, while the Trp residues were highly sensitive, which was demonstrated by fluorescence at 340 nm. Hydrophobic forces, hydrogen bonds and van der Waals interactions were all involved in BSA and SFN interaction, which were not significantly changed by three solvents. The binding constant values and binding site numbers were in a descending order of dH{sub 2}O>DMSO>EtOH. The values of free energy change were in a descending order of dH{sub 2}O>DMSO>EtOH, which indicated that the binding forces were in a descending order of dH{sub 2}O>DMSO>EtOH. There was no significant difference in antioxidant activity between SFN and BSA–SFN. Moreover, three solvents had not significant influence on antioxidant activity of SFN and BSA–SFN. -- Highlights: • We report interaction mechanisms of BSA and sulforaphane in three solvent systems. • We report antioxidant activity of BSA–sulforaphane complex in three solvent systems. • Decreasing the solvent polarity will decrease the binding of BSA and sulforaphane. • Three solvents had not influence on antioxidant activity of BSA–sulforaphane.

  18. Spectroscopic Study on the Interaction between Naphthalimide-Polyamine Conjugates and Bovine Serum Albumin (BSA

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Tian

    2015-09-01

    Full Text Available The effect of a naphthalimide pharmacophore coupled with diverse substituents on the interaction between naphthalimide-polyamine conjugates 1–4 and bovine serum albumin (BSA was studied by UV absorption, fluorescence and circular dichroism (CD spectroscopy under physiological conditions (pH = 7.4. The observed spectral quenching of BSA by the compounds indicated that they could bind to BSA. Furthermore, caloric fluorescent tests revealed that the quenching mechanisms of compounds 1–3 were basically static type, but that of compound 4 was closer to a classical type. The Ksv values at room temperature for compound-BSA complexes-1-BSA, 2-BSA, 3-BSA and 4-BSA were 1.438 × 104, 3.190 × 104, 5.700 × 104 and 4.745 × 105, respectively, compared with the value of MINS, 2.863 × 104 at Ex = 280 nm. The obtained quenching constant, binding constant and thermodynamic parameter suggested that the binding between compounds 1–4 with BSA protein, significantly affected by the substituted groups on the naphthalene backbone, was formed by hydrogen bonds, and other principle forces mainly consisting of charged and hydrophobic interactions. Based on results from the analysis of synchronous three-dimensional fluorescence and CD spectra, we can conclude that the interaction between compounds 1–4 and BSA protein has little impact on the BSA conformation. Calculated results obtained from in silico molecular simulation showed that compound 1 did not prefer either enzymatic drug sites I or II over the other. However, DSII in BSA was more beneficial than DSI for the binding between compounds 2–4 and BSA protein. The binding between compounds 1–3 and BSA was hydrophobic in nature, compared with the electrostatic interaction between compound 4 and BSA.

  19. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension.

    Science.gov (United States)

    Tantra, Ratna; Tompkins, Jordan; Quincey, Paul

    2010-01-01

    This paper describes the use of nanoparticle characterisation tools to evaluate the interaction between bovine serum albumin (BSA) and dispersed nanoparticles in aqueous media. Dynamic light scattering, zeta-potential measurements and scanning electron microscopy were used to probe the state of zinc oxide (ZnO) and titanium dioxide (TiO(2)) nanoparticles in the presence of various concentrations of BSA, throughout a three-day period. BSA was shown to adhere to ZnO but not to TiO(2). The adsorption of BSA led to subsequent de-agglomeration of the sub-micron ZnO clusters into smaller fragments, even breaking them up into individual isolated nanoparticles. We propose that certain factors, such as adsorption kinetics of BSA on to the surface of ZnO, as well as the initial agglomerated state of the ZnO, prior to BSA addition, are responsible for promoting the de-agglomeration process. Hence, in the case of TiO(2) we see no de-agglomeration because: (a) the nanoparticles are more highly agglomerated to begin with and (b) BSA does not adsorb effectively on the surface of the nanoparticles. The zeta-potential results show that, for either ZnO or TiO(2), the presence of BSA resulted in enhanced stability. In the case of ZnO, the enhanced stability is limited to BSA concentrations below 0.5 wt.%. Steric and electrostatic repulsion are thought to be responsible for improved stability of the dispersion.

  20. Investigation of proton pump inhibitors binding with bovine serum albumin and their relationship to molecular structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuping [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Shi Shuyun, E-mail: shuyshi@gmail.com [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Peng Mijun, E-mail: pengmj163@163.com [Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000 (China)

    2012-08-15

    The interactions of three proton pump inhibitors (PPIs), omeprazole, pantoprazole and ilaprazole with bovine serum albumin (BSA) have been investigated by fluorescence, synchronous fluorescence, ultraviolet-visible (UV-vis) and circular dichroism (CD). Various binding parameters have been calculated at various temperatures. The results indicated that omeprazole, pantoprazole and ilaprazole had a strong ability to quench the intrinsic fluorescence of BSA with static quenching mechanism, and the binding affinities were significantly affected by different substituents and polarities as the order ilaprazole>pantoprazole>omeprazole. The site marker competitive experiments indicated that the binding of omeprazole, pantoprazole and ilaprazole to BSA primarily took place in subdomain IIA. The results of thermodynamic parameters {Delta}G, {Delta}H and {Delta}S indicated that electrostatic interaction played a major role for PPIs-BSA association. The distance r between PPIs and BSA was evaluated according to the theory of Foerster's energy transfer. The quantitative analysis of synchronous fluorescence and CD spectra showed the change in secondary structure of the BSA upon interaction with PPIs by a reduction of {alpha}-helix. All the above results many have relevant insight into the PPIs' availability and distribution. - Highlights: Black-Right-Pointing-Pointer The interactions of three PPIs with BSA have been investigated. Black-Right-Pointing-Pointer The fluorescence quenching mechanism is static quenching. Black-Right-Pointing-Pointer Binding affinities were greatly affected by the substituents and polarities. Black-Right-Pointing-Pointer The binding of three PPIs to BSA primarily took place in subdomain IIA.

  1. Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin

    Directory of Open Access Journals (Sweden)

    Vishwas D. Suryawanshi

    2016-02-01

    Full Text Available A biologically active antibacterial reagent, 2–amino-6-hydroxy–4–(4-N, N-dimethylaminophenyl-pyrimidine-5-carbonitrile (AHDMAPPC, was synthesized. It was employed to investigate the binding interaction with the bovine serum albumin (BSA in detail using different spectroscopic methods. It exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus which are common food poisoning bacteria. The experimental results showed that the fluorescence quenching of model carrier protein BSA by AHDMAPPC was due to static quenching. The site binding constants and number of binding sites (n≈1 were determined at three different temperatures based on fluorescence quenching results. The thermodynamic parameters, enthalpy change (ΔH, free energy (ΔG and entropy change (ΔS for the reaction were calculated to be 15.15 kJ/mol, –36.11 kJ/mol and 51.26 J/mol K according to van't Hoff equation, respectively. The results indicated that the reaction was an endothermic and spontaneous process, and hydrophobic interactions played a major role in the binding between drug and BSA. The distance between donor and acceptor is 2.79 nm according to Förster's theory. The alterations of the BSA secondary structure in the presence of AHDMAPPC were confirmed by UV–visible, synchronous fluorescence, circular dichroism (CD and three-dimensional fluorescence spectra. All these results indicated that AHDMAPPC can bind to BSA and be effectively transported and eliminated in the body. It can be a useful guideline for further drug design.

  2. Investigation of three flavonoids binding to bovine serum albumin using molecular fluorescence technique

    Energy Technology Data Exchange (ETDEWEB)

    Bi Shuyun, E-mail: sy_bi@sina.com [College of Chemistry, Changchun Normal University, Changchun 130032 (China); Yan Lili; Pang Bo; Wang Yu [College of Chemistry, Changchun Normal University, Changchun 130032 (China)

    2012-01-15

    The three flavonoids including naringenin, hesperetin and apigenin binding to bovine serum albumin (BSA) at pH 7.4 was studied by fluorescence quenching, synchronous fluorescence and UV-vis absorption spectroscopic techniques. The results obtained revealed that naringenin, hesperetin and apigenin strongly quenched the intrinsic fluorescence of BSA. The Stern-Volmer curves suggested that these quenching processes were all static quenching processes. At 291 K, the value and the order of the binding constant were K{sub A{sub (naringenin)}}=4.08x10{sup 4} Quenchings of BSA fluorescence by the flavonoids was all static quenchings. > Synchronous fluorescence was applied to study the structural change of BSA. > Binding constant, binding site and binding force were determined. > Competition binding experiments were performed. > One flavonoid had an obvious effect on the binding of another one to BSA.

  3. Characterizing the interaction between oridonin and bovine serum albumin by a hybrid spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen [Department of Chemistry, Shantou University, Shantou 515063 (China); Chen, Junhui, E-mail: chenjupush@126.com [Interventional Oncology and Minimally Invasive Therapies Department, Peking University Shenzhen Hospital, Shenzhen 518036 (China); Wang, Shaobin [The Fourth People' s Hospital of Shenzhen, Shenzhen 518033 (China); Chen, Zhanguang, E-mail: kqlu@stu.edu.cn [Department of Chemistry, Shantou University, Shantou 515063 (China)

    2013-02-15

    Oridonin is an effective anticancer drug which has high potency and low systemic toxicity. In this study, the interaction between oridonin and bovine serum albumin (BSA) was investigated by several spectroscopic approaches for the first time. The binding characteristics of oridonin and BSA were determined by fluorescence emission spectra and resonance light scattering spectra. It is showed that the oridonin quenches the fluorescence of BSA and the static quenching constant K{sub SV} is 1.30 Multiplication-Sign 10{sup 4} L mol{sup -1} at 298 K. Moreover, oridonin and BSA form a 1:1 complex with a binding constant of 0.62 Multiplication-Sign 10{sup 4} L mol{sup -1}. On the other hand, the thermodynamic parameters indicate that the binding process was a spontaneous molecular interaction procedure, in which hydrophobic forces played a major role. The structure analysis indicates that oridonin binding results in an increased hydrophobicity around the tryptophan residues of BSA. Additionally, as shown by the UV-vis absorption, synchronous fluorescence and three-dimensional fluorescence results, oridonin could lead to conformational and some microenvironmental changes of BSA. The work provides accurate and full basic data for clarifying the binding mechanism of oridonin with BSA in vitro and is helpful for understanding its effect on protein function during its transportation and distribution in blood. - Highlights: Black-Right-Pointing-Pointer Interaction between oridonin and BSA was evaluated by multi-spectroscopic methods. Black-Right-Pointing-Pointer Binding constant, number of binding sites and thermodynamic parameters were calculated. Black-Right-Pointing-Pointer Oridonin binds to Subdomain II site in BSA and form a 1:1 complex with it. Black-Right-Pointing-Pointer Oridonin-BSA complex is stabilized mainly by hydrophobic force. Black-Right-Pointing-Pointer Oridonin binding induces conformational and microenvironmental changes in BSA.

  4. Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems.

    Science.gov (United States)

    Chow, Yin Hui; Yap, Yee Jiun; Tan, Chin Ping; Anuar, Mohd Shamsul; Tejo, Bimo Ario; Show, Pau Loke; Ariff, Arbakariya Bin; Ng, Eng-Poh; Ling, Tau Chuan

    2015-07-01

    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Fluorescence quenching study on the interaction of ferroferric oxide nanoparticles with bovine serum albumin.

    Science.gov (United States)

    Hao, Changchun; Xu, Guangkuan; Feng, Ying; Lu, Linhao; Sun, Wenyuan; Sun, Runguang

    2017-09-05

    Fluorescence quenching was used to study the potential interaction mechanism of Bovine serum albumin (BSA) with either hydrophilic ferroferric oxide (Fe3O4) nanoparticles (NPs) or hydrophobic Fe3O4 NPs. The experimental results indicated the mechanism between BSA and hydrophilic Fe3O4 NPs was static quenching and the one between BSA and hydrophobic Fe3O4 NPs was dynamic process that was drove by Förster's resonance energy transfer (FRET). And the binding parameters for the interaction of BSA with either hydrophilic or hydrophobic Fe3O4 NPs were calculated by using the fluorescence quenching measurement. The binding constant (KA) values of hydrophilic Fe3O4 NPs were 8518.73±23.35 (at 298K), 1190.31±15.41 (at 306K) and 321.97±8.57 (at 313K), respectively. The thermodynamic analysis implied that the intermolecular forces between BSA and hydrophilic Fe3O4 NPs were Van der Waals interaction or hydrogen bond, because the values of ΔH and ΔS between them were negative. While the one of BSA and hydrophobic Fe3O4 NPs involved hydrophobic forces, owing to the positive ΔH and ΔS between them. But they were all enthalpy-driven and exothermic, since their ΔG values were all negative. Synchronous fluorescence spectroscopy suggested that the conformation of tryptophan residue of BSA was changed in the presence of hydrophilic Fe3O4 NPs or hydrophobic Fe3O4 NPs, because the position of the maximum emission wavelength had a discernible red shift. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fluorescence quenching study on the interaction of ferroferric oxide nanoparticles with bovine serum albumin

    Science.gov (United States)

    Hao, Changchun; Xu, Guangkuan; Feng, Ying; Lu, Linhao; Sun, Wenyuan; Sun, Runguang

    2017-09-01

    Fluorescence quenching was used to study the potential interaction mechanism of Bovine serum albumin (BSA) with either hydrophilic ferroferric oxide (Fe3O4) nanoparticles (NPs) or hydrophobic Fe3O4 NPs. The experimental results indicated the mechanism between BSA and hydrophilic Fe3O4 NPs was static quenching and the one between BSA and hydrophobic Fe3O4 NPs was dynamic process that was drove by Förster's resonance energy transfer (FRET). And the binding parameters for the interaction of BSA with either hydrophilic or hydrophobic Fe3O4 NPs were calculated by using the fluorescence quenching measurement. The binding constant (KA) values of hydrophilic Fe3O4 NPs were 8518.73 ± 23.35 (at 298 K), 1190.31 ± 15.41 (at 306 K) and 321.97 ± 8.57 (at 313 K), respectively. The thermodynamic analysis implied that the intermolecular forces between BSA and hydrophilic Fe3O4 NPs were Van der Waals interaction or hydrogen bond, because the values of ΔH and ΔS between them were negative. While the one of BSA and hydrophobic Fe3O4 NPs involved hydrophobic forces, owing to the positive ΔH and ΔS between them. But they were all enthalpy-driven and exothermic, since their ΔG values were all negative. Synchronous fluorescence spectroscopy suggested that the conformation of tryptophan residue of BSA was changed in the presence of hydrophilic Fe3O4 NPs or hydrophobic Fe3O4 NPs, because the position of the maximum emission wavelength had a discernible red shift.

  7. Fluorescent fatty acid transfer from bovine serum albumin to phospholipid vesicles: collision or diffusion mediated uptake.

    Science.gov (United States)

    Elmadhoun, Bassam M; Swairjo, Manal A; Burczynski, Frank J

    2012-01-01

    The extent of palmitate uptake by hepatocytes is dependent upon the surface charge of the extracellular binding protein. Specifically, hepatocyte uptake is greater when palmitate is bound to cationic binding proteins than when it is bound to anionic proteins. To further understand the role of protein surface charge on the uptake process of protein-bound ligands, we examined the rate of transfer of fluorescent anthroyloxy palmitic acid (AOPA) in the presence of anionic and cationic extracellular proteins to model membranes containing different surface charged groups. AOPA transfer rate in the presence of bovine serum albumin (ALB; isoelectric point pI = 4.8-5.0) or modified ALB (ALBe; pI = 7.0-7.5) to negative, positive and neutral lipid vesicles was investigated using a fluorescence resonance energy transfer assay. The rate of AOPA transfer from both proteins was decreased when ionic strength was increased; directly dependent on the concentration of acceptor lipid vesicles; and was affected by both the lipid membrane surface charge and protein-bound concentration. The data support the notion that AOPA transfer from binding proteins to lipid membranes occurred through two concomitant processes, aqueous diffusion of the unbound ligand (diffusion-mediated process) and a collisional interaction between the protein-ligand complex and acceptor membrane. The contribution of diffusional mediated transfer to the overall uptake process was determined to be 3 to 4 times less than the contribution of a collisional interaction. This study strengthened the hypothesis that charged amino acid residues on proteins are important for effective collisional interaction between protein-ligand complexes and cell membranes through which more free ligand could be supplied for the uptake process.

  8. Effects of urea, metal ions and surfactants on the binding of baicalein with bovine serum albumin

    Directory of Open Access Journals (Sweden)

    Atanu Singha Roy

    2016-08-01

    Full Text Available The interaction of baicalein with bovine serum albumin (BSA was investigated with the help of spectroscopic and molecular docking studies. The binding affinity of baicalein towards BSA was estimated to be in order of 105 M−1 from fluorescence quenching studies. Negative ΔH° (−5.66±0.14 kJ/mol and positive (ΔS° (+79.96±0.65 J/mol K indicate the presence of electrostatic interactions along with the hydrophobic forces that result in a positive ΔS°. The hydrophobic association of baicalein with BSA diminishes in the presence of sodium dodecyl sulfate (SDS due to probable hydrophobic association of baicalein with SDS, resulting in a negative ΔS° (−40.65±0.87 J/mol K. Matrix-assisted laser desorption ionization/time of flight (MALDI--TOF experiments indicate a 1:1 complexation between baicalein and BSA. The unfolding and refolding phenomena of BSA were investigated in the absence and presence of baicalein using steady-state and fluorescence lifetime measurements. It was observed that the presence of urea ruptured the non-covalent interaction between baicalein and BSA. The presence of metal ions (Ag+, Mg2+, Ni2+, Mn2+, Co2+and Zn2+ increased the binding affinity of ligand towards BSA. The changes in conformational aspects of BSA after ligand binding were also investigated using circular dichroism (CD and Fourier transform infrared (FT-IR spectroscopic techniques. Site selectivity studies following molecular docking analyses indicated the binding of baicalein to site 1 (subdomain IIA of BSA.

  9. Study on the interaction between amphiphilic drug and bovine serum albumin: A thermodynamic and spectroscopic description

    Energy Technology Data Exchange (ETDEWEB)

    Rub, Malik Abdul, E-mail: malikrub@gmail.com [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Khan, Javed Masood [Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India); Asiri, Abdullah M. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Khan, Rizwan Hasan, E-mail: rizwanhkhan1@gmail.com [Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India); Kabir-ud-Din [Department of Applied Chemistry, Aligarh Muslim University, Aligarh-202002 (India)

    2014-11-15

    Herein we report the interaction of amphiphilic drug clomipramine hydrochloride (CLP—a tricyclic antidepressant) with bovine serum albumin (BSA) studied by fluorescence, UV–vis, and circular dichroism (CD) spectroscopic techniques. Clomipramine hydrochloride is used to treat a variety of mental health problems. The quenching rate constant (k{sub q}) values, calculated according to the fluorescence data, decrease with increase in temperature indicating the static quenching procedure for the CLP–BSA interaction. The association binding constants (K{sub A}), evaluated at different conditions, and the thermodynamic parameters (free energy, enthalpy and entropy changes) indicate that the hydrophobic forces play a major role in the binding interaction of drug. The interaction of BSA with CLP was further confirmed by UV absorption spectra. Blue shift of position was detected due to the complex formation between the BSA–CLP. The molecular distance, r{sub 0}, between donor (BSA) and acceptor (CLP) was estimated by fluorescence resonance energy transfer (FRET) whose value (4.47 nm) suggests high probability of static quenching interaction. The CD results prove the conformational changes in the BSA on binding with the drug. Thus, the results supply qualitative and quantitative understanding of the binding of BSA to CLP, which is important in understanding their effect as therapeutic agents. - Highlights: • BSA can be considered as a good carrier for transportation of CLP in vivo. • The fluorescence results indicated the presence of static quenching mechanism in the binding process. • CD spectra showed the change in molecular conformation of BSA in the presence of CLP. • The results have applicability in model drug delivery.

  10. Effect of high hydrostatic pressure on the enzymatic hydrolysis of bovine serum albumin.

    Science.gov (United States)

    De Maria, Serena; Ferrari, Giovanna; Maresca, Paola

    2017-08-01

    The extent of enzymatic proteolysis mainly depends on accessibility of the peptide bonds, which stabilize the protein structure. The high hydrostatic pressure (HHP) process is able to induce, at certain operating conditions, protein displacement, thus suggesting that this technology can be used to modify protein resistance to the enzymatic attack. This work aims at investigating the mechanism of enzymatic hydrolysis assisted by HHP performed under different processing conditions (pressure level, treatment time). Bovine serum albumin was selected for the experiments, solubilized in sodium phosphate buffer (25 mg mL-1 , pH 7.5) with α-chymotrypsin or trypsin (E/S ratio = 1/10) and HPP treatment (100-500 MPa, 15-25 min). HHP treatment enhanced the extent of the hydrolysis reaction of globular proteins, being more effective than conventional hydrolysis. At HHP treatment conditions maximizing the protein unfolding, the hydrolysis degree of proteins was increased as a consequence of the increased exposure of peptide bonds to the attack of proteolytic enzymes. The maximum hydrolysis degree (10% and 7% respectively for the samples hydrolyzed with α-chymotrypsin and trypsin) was observed for the samples processed at 400 MPa for 25 min. At pressure levels higher than 400 MPa the formation of aggregates was likely to occur; thus the degree of hydrolysis decreased. Protein unfolding represents the key factor controlling the efficiency of HHP-assisted hydrolysis treatments. The peptide produced under high pressure showed lower dimensions and a different structure with respect to those of the hydrolysates obtained when the hydrolysis was carried out at atmospheric pressure, thus opening new frontiers of application in food science and nutrition. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Sodium dodecyl sulfate promoting a cooperative association process of sodium cholate with bovine serum albumin.

    Science.gov (United States)

    Schweitzer, Bianca; Felippe, Arlindo C; Dal Bó, Alexandre; Minatti, Edson; Zanette, Dino; Lopes, Antonio

    2006-06-01

    Sodium cholate (NaC) was used as a representative bile salt in the process of cooperative binding to bovine serum albumin (BSA) in a mixture with sodium dodecyl sulfate (SDS). The experiments were performed in 0.02 M Tris-HCl buffer solution (pH 7.50), in the presence of 0.1% BSA and at 25 degrees C. The aim of this study is to provide information on the performance of the BSA in the promotion of cooperative binding of sodium cholate promoted by the presence of SDS. The method used to monitor the binding was based on the analysis of the effect of SDS and NaC concentrations and their mixtures upon the fluorescence intensity of the BSA tryptophan residues. Plots of the fluorescence emission bands in terms of the A0/A ratio vs surfactant concentrations, where A0 and A represent the areas of emission bands in the presence and absence of the surfactants, respectively, were drawn in order to investigate the surfactant interaction with the protein. An alternative methodology, the specific conductivity vs surfactant concentration plots, was used, which involves mixtures of SDS and NaC to investigate the association processes, through the determination of the critical aggregation concentration (cac, when in the presence of protein) and the critical micellar concentration (cmc). The results led to a general conclusion that as the mixed micellar aggregates become richer in the bile salt monomer, the tendency to lose the reactivity with the protein increases. According to our results, a clear evidence of the predomination of BSA-SDS-NaC complexes is found only for the SDS molar fraction above approximately 0.6, and below this fraction a tendency toward free mixed micelles starts to predominate.

  12. Induction of axial chirality in divanillin by interaction with bovine serum albumin.

    Directory of Open Access Journals (Sweden)

    Diego Venturini

    Full Text Available Vanillin is a plant secondary metabolite and has numerous beneficial health applications. Divanillin is the homodimer of vanillin and used as a taste enhancer compound and also a promissory anticancer drug. Here, divanillin was synthesized and studied in the context of its interaction with bovine serum albumin (BSA. We found that divanillin acquires axial chirality when complexed with BSA. This chiroptical property was demonstrated by a strong induced circular dichroism (ICD signal. In agreement with this finding, the association constant between BSA and divanillin (3.3 x 105 mol-1L was higher compared to its precursor vanillin (7.3 x 104 mol-1L. The ICD signal was used for evaluation of the association constant, demonstration of the reversibility of the interaction and determination of the binding site, revealing that divanillin has preference for Sudlow's site I in BSA. This property was confirmed by displacement of the fluorescent markers warfarin (site I and dansyl-L-proline (site II. Molecular docking simulation confirmed the higher affinity of divanillin to site I. The highest scored conformation obtained by docking (dihedral angle 242° was used for calculation of the circular dichroism spectrum of divanillin using Time-Dependent Density Functional Theory (TDDFT. The theoretical spectrum showed good similarity with the experimental ICD. In summary, we have demonstrated that by interacting with the chiral cavities in BSA, divanillin became a atropos biphenyl, i.e., the free rotation around the single bound that links the aromatic rings was impeded. This phenomenon can be explained considering the interactions of divanillin with amino acid residues in the binding site of the protein. This chiroptical property can be very useful for studying the effects of divanillin in biological systems. Considering the potential pharmacological application of divanillin, these findings will be helpful for researchers interested in the pharmacological

  13. Bovine serum albumin adsorbed PGA-co-PDL nanocarriers for vaccine delivery via dry powder inhalation.

    Science.gov (United States)

    Kunda, Nitesh K; Alfagih, Iman M; Dennison, Sarah Rachel; Tawfeek, Hesham M; Somavarapu, Satyanarayana; Hutcheon, Gillian A; Saleem, Imran Y

    2015-04-01

    Dry powder vaccine delivery via the pulmonary route has gained significant attention as an alternate route to parenteral delivery. In this study, we investigated bovine serum albumin (BSA) adsorbed poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL polymeric nanoparticles (NPs) within L-leucine (L-leu) microcarriers for dry powder inhalation. NPs were prepared by oil-in-water single emulsion-solvent evaporation and particle size optimised using Taguchi's design of experiment. BSA was adsorbed onto NPs at different ratios at room temperature. The NPs were spray-dried in aqueous suspension of L-leu (1:1.5) using a Büchi-290 mini-spray dryer. The resultant nanocomposite microparticles (NCMPs) were characterised for toxicity (MTT assay), aerosolization (Next Generation Impactor), in vitro release study and BSA was characterized using SDS-PAGE and CD respectively. NPs of size 128.50 ± 6.57 nm, PDI 0.07 ± 0.03 suitable for targeting lung dendritic cells were produced. BSA adsorption for 1 h resulted in 10.23 ± 1.87 μg of protein per mg of NPs. Spray-drying with L-leu resulted in NCMPs with 42.35 ± 3.17% yield. In vitro release study at 37°C showed an initial burst release of 30.15 ± 2.33% with 95.15 ± 1.08% over 48 h. Aerosolization studies indicated fine particle fraction (FPF%) dae < 4.46 μm as 76.95 ± 5.61% and mass median aerodynamic diameter (MMAD) of 1.21 ± 0.67 μm. The cell viability was 87.01 ± 14.11% (A549 cell line) and 106.04 ± 21.14% (16HBE14o- cell line) with L-leu based NCMPs at 1.25 mg/ml concentration after 24 h treatment. The SDS-PAGE and CD confirmed the primary and secondary structure of the released BSA. The results suggest that PGA-co-PDL/L-leu NCMPs may be a promising carrier for pulmonary vaccine delivery due to excellent BSA adsorption and aerosolization behaviour.

  14. Interaction mode and nanoparticle formation of bovine serum albumin and anthocyanin in three buffer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Rui; Dong, Xueyan; Song, Lanlan; Jing, Hao, E-mail: hao.haojing@gmail.com

    2014-11-15

    Investigation of interaction mode of bovine serum albumin (BSA) and anthocyanin (ACN) in different solutions will help us understand the interaction mechanism and functional change of bioactive small molecule and biomacromolecule. This study investigated the binding mode, including binding constant, number of binding sites, binding force of BSA and ACN interaction in three buffer solutions of phosphate (PBS), sodium chloride (NaCl), and PBS-NaCl, using fluorescence spectroscopy and synchronous fluorescence spectroscopy. Formation and characteristics of BSA–ACN complex were also investigated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that ACN could interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues through both hydrogen bonds and van der Waals force, and the same binding mode was seen in dH{sub 2}O and three buffer solutions. The value of binding constant K was decreased as the temperature increased from 298 K to 308 K, and the decreasing degree was in the order of dH{sub 2}O (9.0×10{sup 4})>NaCl (2.64×10{sup 4})/PBS (2.37×10{sup 4})>PBS-NaCl (0.88×10{sup 4}), which was inversely correlated with the ionic strength of the buffer solutions of PBS-NaCl>NaCl>PBS. It indicated that stability of BSA–ACN complex was affected most in dH{sub 2}O than in three buffer solutions. The BSA and ACN interaction led to formation of BSA–ACN nanoparticles. The sizes of BSA–ACN nanoparticles in dH{sub 2}O were smaller than that in three buffer solutions, which correlated with stronger binding force between BSA and ACN in dH{sub 2}O than in three buffer solutions at room temperature (25 °C, 298 K). - Highlights: • We report the influences of four solutions on the BSA–ACN interaction. • We report the relationship between BSA–ACN interaction and particle size of complex. • The stability of BSA–ACN complex was affected most in dH{sub 2}O than in buffer solutions.

  15. Thermal-Induced Denaturation and Aggregation Behavior of Lysozyme and Bovine Serum Albumin: a Thermodynamic and Structural Study

    Science.gov (United States)

    Perez, Aline Sanches; Oliveira, Cristiano Luis Pinto

    2017-10-01

    Solution studies permit a direct investigation of the particles on a well-defined environment. Fluorescence, circular dichroism, scattering, and calorimetry provide, individually, very important information among the protein structure, overall shape, and thermodynamic equilibrium. In this work, a combination of these techniques is presented for the study of denaturation induced by temperature of two well-known proteins, Henn Egg lysozyme and bovine serum albumin. A detailed thermodynamic and structural investigation is shown for these proteins, providing interesting information on the thermal-induced changes in the protein structure and aggregation behavior.

  16. [Synchronous fluorescence and raman spectroscopy study on the interaction of pulsed electric field (PEF) and bovine serum albumin (BSA)].

    Science.gov (United States)

    Li, Le-jun; Chen, Shu-de; Qiao, Deng-jiang

    2006-01-01

    The interaction of pulsed electric field (PEF) and bovine serum albumin (BSA) was studied by synchronous fluorescence and Raman spectroscopy. The results of synchronous fluorescence showed that pulsed electric field exerted its effects on the emission fluorescence spectrum and reduced the fluorescence intensities of the tyrosine and tryptophan side chains. The results of Raman spectroscopy verified this. These two experiments indicated that PEF exposure changed the microenvironments of the two aromatic amino adds, which were located in the active parts of BSA, and further indicated the conformational changes of the proteins, and the change in its biological functions.

  17. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz

    Science.gov (United States)

    Markelz, A. G.; Roitberg, A.; Heilweil, E. J.

    2000-03-01

    We report the first use of pulsed terahertz spectroscopy to examine low-frequency collective vibrational modes of biomolecules. Broadband absorption increasing with frequency was observed for lyophilized powder samples of calf thymus DNA, bovine serum albumin and collagen in the 0.06-2.00 THz (2-67 cm -1) frequency range, suggesting that a large number of the low-frequency collective modes for these systems are IR active. Transmission measurements at room temperature showed increasing FIR absorption with hydration and denaturing.

  18. Modulated photophysics of a cationic DNA-staining dye inside protein bovine serum albumin: Study of binding interaction and structural changes of protein

    Science.gov (United States)

    Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil

    2014-03-01

    The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin.

  19. Intermolecular interaction of nickel (ii) phthalocyanine tetrasulfonic acid tetrasodium salt with bovine serum albumin: A multi-technique study.

    Science.gov (United States)

    Dezhampanah, Hamid; Firouzi, Roghaye; Hasani, Leila

    2017-02-01

    The interaction of nickel (II) phthalocyanine tetrasulfonic acid tetrasodium salt with bovine serum albumin (BSA) has been investigated by combination of fluorescence, UV-vis absorption, Fourier transform infrared (FT-IR), and circular dichorism (CD) spectroscopies as well as through molecular docking. Fluorescence quenching and absorption spectra were investigated as a mean for estimating the binding parameters. Analysis of fluorescence quenching data at different temperatures was performed in order to specify the thermodynamics parameters for interactions of phthalocyanine complex with BSA. According to experimental data it was suggested that phthalocyanine had a significant binding affinity to BSA and the process was entropy driven. Based on the results of molecular docking it was indicated that the main active binding site for this phthalocyanine complex is site I in subdomain IIA of BSA. The results provide useful information for understanding the binding mechanism of anticancer drug-albumin and gives insight into the biological activity and metabolism of the drug in blood.

  20. Unveiling the stimulatory effects of tartrazine on human and bovine serum albumin fibrillogenesis: Spectroscopic and microscopic study.

    Science.gov (United States)

    Al-Shabib, Nasser Abdulatif; Khan, Javed Masood; Alsenaidy, Mohammad A; Alsenaidy, Abdulrahman M; Khan, Mohd Shahnawaz; Husain, Fohad Mabood; Khan, Mohammad Rashid; Naseem, Mohammad; Sen, Priyankar; Alam, Parvez; Khan, Rizwan Hasan

    2017-09-22

    Amyloid fibrils are playing key role in the pathogenesis of various neurodegenerative diseases. Generally anionic molecules are known to induce amyloid fibril in several proteins. In this work, we have studied the effect of anionic food additive dye i.e., tartrazine (TZ) on the amyloid fibril formation of human serum albumins (HSA) and bovine serum albumin (BSA) at pHs7.4 and 3.5. We have employed various biophysical methods like, turbidity measurements, Rayleigh Light Scattering (RLS), Dynamic Light Scattering (DLS), intrinsic fluorescence, Congo red assay, far-UV CD, transmission electron microscopy (TEM) and atomic force microscopy (AFM) to decipher the mechanism of TZ-induce amyloid fibril formation in both the serum albumins at pHs7.4 and 3.5. The obtained results suggest that both the albumins forms amyloid-like aggregates in the presence of 1.0 to 15.0mM of TZ at pH3.5, but no amyloid fibril were seen at pH7.4. The possible cause of TZ-induced amyloid fibril formation is electrostatic and hydrophobic interaction because sulfate group of TZ may have interacted electrostatically with positively charged amino acids of the albumins at pH3.5 and increased protein-protein and protein-TZ interactions leading to amyloid fibril formation. The TEM, RLS and DLS results are suggesting that BSA forms bigger size amyloids compared to HSA, may be due to high surface hydrophobicity of BSA. Copyright © 2017. Published by Elsevier B.V.

  1. Unveiling the stimulatory effects of tartrazine on human and bovine serum albumin fibrillogenesis: Spectroscopic and microscopic study

    Science.gov (United States)

    Al-Shabib, Nasser Abdulatif; Khan, Javed Masood; Alsenaidy, Mohammad A.; Alsenaidy, Abdulrahman M.; Khan, Mohd Shahnawaz; Husain, Fohad Mabood; Khan, Mohammad Rashid; Naseem, Mohammad; Sen, Priyankar; Alam, Parvez; Khan, Rizwan Hasan

    2018-02-01

    Amyloid fibrils are playing key role in the pathogenesis of various neurodegenerative diseases. Generally anionic molecules are known to induce amyloid fibril in several proteins. In this work, we have studied the effect of anionic food additive dye i.e., tartrazine (TZ) on the amyloid fibril formation of human serum albumins (HSA) and bovine serum albumin (BSA) at pHs 7.4 and 3.5. We have employed various biophysical methods like, turbidity measurements, Rayleigh Light Scattering (RLS), Dynamic Light Scattering (DLS), intrinsic fluorescence, Congo red assay, far-UV CD, transmission electron microscopy (TEM) and atomic force microscopy (AFM) to decipher the mechanism of TZ-induce amyloid fibril formation in both the serum albumins at pHs 7.4 and 3.5. The obtained results suggest that both the albumins forms amyloid-like aggregates in the presence of 1.0 to 15.0 mM of TZ at pH 3.5, but no amyloid fibril were seen at pH 7.4. The possible cause of TZ-induced amyloid fibril formation is electrostatic and hydrophobic interaction because sulfate group of TZ may have interacted electrostatically with positively charged amino acids of the albumins at pH 3.5 and increased protein-protein and protein-TZ interactions leading to amyloid fibril formation. The TEM, RLS and DLS results are suggesting that BSA forms bigger size amyloids compared to HSA, may be due to high surface hydrophobicity of BSA.

  2. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Bardajee, Ghasem Rezanejade, E-mail: rezanejad@pnu.ac.ir; Hooshyar, Zari

    2016-05-01

    A novel CdTe quantum dots (QDs) were prepared in aqueous phase via a facile method. At first, poly (acrylic amide) grafted onto sodium alginate (PAAm-g-SA) were successfully synthesized and then TGA capped CdTe QDs (CdTe-TGA QDs) were embed into it. The prepared CdTe-PAAm-g-SA QDs were optimized and characterized by transmission electron microscopy (TEM), thermo-gravimetric (TG) analysis, Fourier transform infrared (FT-IR), UV–vis and fluorescence spectroscopy. The characterization results indicated that CdTe-TGA QDs, with particles size of 2.90 nm, were uniformly dispersed on the chains of PAAm-g-SA biopolymer. CdTe-PAAm-g-SA QDs also exhibited excellent UV–vis absorption and high fluorescence intensity. To explore biological behavior of CdTe-PAAm-g-SA QDs, the interactions between CdTe-PAAm-g-SA QDs and human serum albumin (HSA) (or bovine serum albumin (BSA)) were investigated by cyclic voltammetry, FT-IR, UV–vis, and fluorescence spectroscopic. The results confirmed the formation of CdTe-PAAm-g-SA QDs-HSA (or BSA) complex with high binding affinities. The thermodynamic parameters (ΔG < 0, ΔH < 0 and ΔS < 0) were indicated that binding reaction was spontaneous and van der Waals interactions and hydrogen-bond interactions played a major role in stabilizing the CdTe-PAAm-g-SA QDs-HSA (or BSA) complexes. The binding distance between CdTe-PAAm-g-SA QDs and HSA (or BSA)) was calculated about 1.37 nm and 1.27 nm, respectively, according to Forster non-radiative energy transfer theory (FRET). Analyzing FT-IR spectra showed that the formation of QDs-HSA and QDs-BSA complexes led to conformational changes of the HSA and BSA proteins. All these experimental results clarified the effective transportation and elimination of CdTe-PAAm-g-SA QDs in the body by binding to HSA and BSA, which could be a useful guideline for the estimation of QDs as a drug carrier. - Highlights: • The CdTe quantum dots coated with polyacrylamide grafted onto sodium alginate. • The

  3. Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin

    Energy Technology Data Exchange (ETDEWEB)

    Ehteshami, Mehdi [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rasoulzadeh, Farzaneh [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Mahboob, Soltanali [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rashidi, Mohammad-Reza, E-mail: rashidi@tbzmed.ac.ir [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of)

    2013-03-15

    Binding of a drug to the serum albumins as major serum transport proteins can be influenced by other ligands leading to alteration of its pharmacological properties. In the present study, binding characteristics of 6-mercaptopurine (6-MP) with bovine serum albumin (BSA) together with its displacement from its binding site by quercetin and rutin have been investigated by the spectroscopic method. According to the binding parameters, a static quenching component in overall dynamic quenching process is operative in the interaction between 6-MP and BSA. The binding of 6-MP to BSA occurred spontaneously due to entropy-driven hydrophobic interactions. The synchronous fluorescence spectroscopy study revealed that the secondary structure of BSA is changed in the presence of 6-MP and both Tyr and Trp residues participate in the interaction between 6-MP and BSA with the later one being more dominant. The binding constant value of 6-MP-BSA in the presence of quercetin and rutin increased. 6-MP was displaced by ibuprofen indicating that the binding site of 6-MP on albumin is site II. Therefore, the change of the pharmacokinetic and pharmacodynamic properties of 6-MP by quercetin and rutin through alteration of binding capacity of 6-MP to the serum albumin cannot be ruled out. In addition, the displacement study showed that 6-MP is located in site II of BSA. - Highlights: Black-Right-Pointing-Pointer Participation of both Tyr and particularly Trp residues in the interaction between 6-MP and BSA. Black-Right-Pointing-Pointer Involvement of a static quenching component in an overall dynamic quenching process. Black-Right-Pointing-Pointer Ability of quercetin and rutin to change the binding constants of 6-MP-BSA complex. Black-Right-Pointing-Pointer Binding of 6-MP to BSA through entropy-driven hydrophobic interactions.

  4. Investigation of interaction between alkoxy substituted phthalocyanines with different lengths of alkyl residue and bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Lebedeva, Natalya Sh., E-mail: nsl@isc-ras.ru [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo (Russian Federation); Gubarev, Yury A.; Vyugin, Anatoly I. [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo (Russian Federation); Koifman, Oscar I. [Research Institute of Macroheterocycles of Ivanovo State University of Chemistry and Technology, 153000 Ivanovo (Russian Federation)

    2015-10-15

    Interaction between bovine serum albumin and alkoxy substituted phthalocyanines was studied by means of electron absorption spectroscopy, fluorescence spectroscopy and viscosimetry. The binding constants and binding distance were calculated. It was found that ZnPc(4-NH-CO-C{sub 6}H{sub 4}-OC{sub 10}H{sub 21}){sub 4} prevents twisting of BSA molecule and localizes between subdomains IB and IIA in protein globule. ZnPc(4-NH-CO-C{sub 6}H{sub 4}-OC{sub 6}H{sub 13}){sub 4} and ZnPc(4-NH-CO-C{sub 6}H{sub 4}-OC{sub 8}H{sub 17}){sub 4} are located on the outer surface of the protein globule. In the case of ZnPc(4-NH-CO-C{sub 6}H{sub 4}-OC{sub 3}H{sub 7}){sub 4} it can be assumed that the phthalocyanine molecule is in the immediate vicinity of the subdomains IB and IIA. - Highlights: • Interaction between bovine serum albumin and alkoxy substituted phthalocyanines was studied by means of electron absorption spectroscopy, fluorescence spectroscopy and viscosimetry. • The binding constants and binding distance were calculated by using the Scatchard method. • Photochemical characteristics of phthalocyanines of studied phthalocyanines are defined. • Localization of phthalocyanines on the protein globule is defined.

  5. Chiral recognition of naproxen enantiomers based on fluorescence quenching of bovine serum albumin-stabilized gold nanoclusters

    Science.gov (United States)

    Jafari, Marzieh; Tashkhourian, Javad; Absalan, Ghodratollah

    2017-10-01

    A simple, fast and green method for chiral recognition of S- and R-naproxen has been introduced. The method was based on quenching of the fluorescence intensity of bovine serum albumin-stabilized gold nanoclusters in the presence of naproxen enantiomers. The quenching intensity in the presence of S-naproxen was higher than R-naproxen when phosphate buffer solution at pH 7.0 was used. The chiral recognition occurred due to steric effect between bovine serum albumin conformation and naproxen enantiomers. Two linear determination range were established as 7.4 × 10-7-9.1 × 10-6 and 9.1 × 10-6-3.1 × 10-5 mol L-1 for both enantiomers and detection limits of 7.4 × 10-8 mol L- 1 and 9.5 × 10-8 mol L-1 were obtained for S- and R-naproxen, respectively. The developed method showed good repeatability and reproducibility for the analysis of a synthetic sample. To make the procedure applicable to biological samples, the removal of heavy metals from the sample is suggested before any analytical attempt.

  6. Investigation of the binding affinity in vitamin B12-Bovine serum albumin system using various spectroscopic methods

    Science.gov (United States)

    Makarska-Bialokoz, Magdalena

    2017-09-01

    The binding affinity between vitamin B12 (VitB12) and bovine serum albumin (BSA) has been investigated in aqueous solution at pH = 7.4, employing UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative effects noted for BSA intrinsic fluorescence resulting from the interactions with VitB12 confirm the formation of π-π stacked non-covalent and non-fluorescent complexes in the system VitB12-BSA. All the determined parameters, the binding, fluorescence quenching and bimolecular quenching rate constants (of the order of 104 L mol- 1, 103 L mol- 1 and 1011 L mol- 1 s- 1, respectively), as well as Förster resonance energy transfer parameters validate the mechanism of static quenching. The interaction with VitB12 induces folding of the polypeptide chains around Trp residues of BSA, resulting in a more hydrophobic surrounding. Presented outcomes suggest that the addition of VitB12 can lead to the more organized BSA conformation and its more folded tertiary structure, what could influence the physiological functions of bovine serum albumin, notably in case of its overuse or abnormal metabolism.

  7. Spectroscopic Investigations of the Binding Interaction of a New Indanedione Derivative with Human and Bovine Serum Albumins

    Directory of Open Access Journals (Sweden)

    Mihaela Hillebrand

    2009-04-01

    Full Text Available Binding of a newly synthesized indanedione derivative, 2-(2-hydroxy-3-ethoxybenzylidene-1,3-indanedione (HEBID, to human and bovine serum albumins (HSA and BSA, under simulated physiological conditions was monitored by fluorescence spectroscopy. The binding parameters (binding constants and number of binding sites and quenching constants were determined according to literature models. The quenching mechanism was assigned to a Förster non-radiative energy transfer due to the HEBID-SA complex formation. A slightly increased affinity of HEBID for HSA was found, while the number of binding sites is approximately one for both albumins. The molecular distance between donor (albumin and acceptor (HEBID and the energy transfer efficiency were estimated, in the view of Förster’s theory. The effect of HEBID on the protein conformation was investigated using circular dichroism and synchronous fluorescence spectroscopies. The results revealed partial unfolding in the albumins upon interaction, as well as changes in the local polarity around the tryptophan residues

  8. Interaction of norfloxacin with bovine serum albumin studied by different spectrometric methods; displacement studies, molecular modeling and chemometrics approaches

    Energy Technology Data Exchange (ETDEWEB)

    Naseri, Abdolhossein, E-mail: a_naseri@tabrizu.ac.ir [Departments of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Hosseini, Soheila [Departments of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Rasoulzadeh, Farzaneh [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rashidi, Mohammad-Reza [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Zakery, Maryam; Khayamian, Taghi [Department of Chemistry, College of Chemistry, Isfahan University of Technology, Isfahan 84154 (Iran, Islamic Republic of)

    2015-01-15

    Serum albumins as major target proteins can bind to other ligands leading to alteration of their pharmacological properties. The mechanism of interaction between norfloxacin (NFLX) with bovine serum albumin (BSA) was investigated. Fuorescence quenching of serum albumin by this drug was found to be a static quenching process. The binding sites number, n, apparent binding constant, K, and thermodynamic parameters were calculated at different temperatures. The distance, r, between donor, BSA, and acceptor, NFLX, was calculated according to the Forster theory of non-radiation energy transfer. Also binding characteristics of NFLX with BSA together with its displacement from its binding site by kanamycin and effect of common metal ions on binding constant were investigated by the spectroscopic methods. The conformational change in the secondary structure of BSA upon interaction with NFLX was investigated qualitatively from synchronous fluorescence spectra, Fourier Transform Infrared (FTIR) and circular dichroism (CD) spectrometric methods. Molecular docking studies were performed to obtain information on the possible residues involved in the interaction process and changes in accessible surface area of the interacting residues. The results showed that the conformation of BSA changed in the presence of NFLX. For the first time, displacement studies were used for this interaction; displacement studies showed that NFLX was displaced by phenylbutazon and ketoprofen but was not displaced by ibuprofen indicating that the binding site of NFLX on albumin was site I. In addition a powerful chemometrics method, multivariate curve resolution-alternating least square, was used for resolution of spectroscopic augmented data obtained in two different titration modes in order to extract spectral information regardless of spectral overlapping of components. - Highlights: • Interaction between norfloxacin and BSA is studied by spectral methods. • Chemometrics methods are used to

  9. Preparation of Bovine Serum Albumin (BSA) nanoparticles by desolvation using a membrane contactor: a new tool for large scale production.

    Science.gov (United States)

    Yedomon, B; Fessi, H; Charcosset, C

    2013-11-01

    Albumin nanoparticles are attractive drug delivery systems as they can be prepared under soft conditions and incorporate several kinds of molecules. The aim of this study was to upscale the desolvation process for preparing Bovine Serum Albumin (BSA) nanoparticles using a membrane contactor. At a first step, the BSA nanoparticles were prepared at small scale using a syringe pump. BSA nanoparticles of 139 nm in size, with a polydispersity index of 0.046, were obtained at the optimal conditions: pH 8.2, 100 mg mL(-1) BSA albumin solution (2 mL), and 1 mL min(-1) flow rate of ethanol addition (8 mL). The upscaling with a membrane contactor was achieved by permeating ethanol through the pores of a Shirasu Porous Glass (SPG Technology Co., Japan) membrane and circulating the aqueous phase tangentially to the membrane surface. By increasing the pressure of the ethanol from 1 to 2.7 bars, a progressive decrease in nanoparticle size was obtained with a high nanoparticles yield (around 94-96%). In addition, the flow rate of the circulating phase did not affect the BSA nanoparticle characteristics. At the optimal conditions (pH 8.2, 100 mg mL(-1) BSA albumin solution, pressure of ethanol 2.7 bars, flow rate of the circulating phase 30.7 mL s(-1)), the BSA nanoparticles showed similar characteristics to those obtained with the syringe pump. Large batches of BSA nanoparticles were prepared up to 10 g BSA. The BSA nanoparticles were stable at least during 2 months at 4 °C, and their characteristics were reproducible. It was then concluded that the membrane contactor technique could be a suitable method for the preparation of albumin nanoparticles at large scale with properties similar to that obtained at small scale. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Insight into the interaction between α-lapachone and bovine serum albumin employing a spectroscopic and computational approach

    Directory of Open Access Journals (Sweden)

    Otávio Augusto Chaves

    2016-01-01

    Full Text Available Serum albumin is the most abundant protein in blood plasma; among its functions is the transport of a high variety of drugs in the body. Quinones show several biological and pharmacological activities, such as anti-malarial, antitumor, anti-microbial, anti-inflammatory and anti-parasitic. We report fluorescence and circular dichroism (CD spectroscopic studies to try to understand the interaction process between α-lapachone (α-LAP and bovine serum albumin (BSA. Studies using computational methods, such as molecular docking, were performed to identify the main cavity in which this interaction occurs as well as the type of intermolecular interactions between the amino acid residues from albumin and the ligand. The BSA fluorescence quenching by added α-LAP is a static process, indicating an initial association BSA: α-LAP. The Ka and Kb values for the interaction BSA: α-LAP are in the range 105-104 L∙mol-1, indicating a strong binding between these two species. CD data show that there is no significant perturbation on the secondary structure of the protein with binding. The negative ΔGo values are consistent with spontaneous binding occurring endothermically (ΔHo = 127 kJ∙mol-1, and possibly driven by hydrophobic factors (ΔSo = 0.526 kJ∙mol-1∙s-1. The number of binding sites (n indicates the existence of just one main binding site in BSA for α-LAP, with molecular docking results showing that it binds preferentially to the albumin in the domain IIA, where the Trp-212 residue is located. The ligand interacts via hydrogen bond with Arg-259 and Tyr-149 residues and via T-stacking with the fluorophore Trp-212 residue.

  11. Multi-spectroscopic and molecular modeling studies of bovine serum albumin interaction with sodium acetate food additive.

    Science.gov (United States)

    Mohammadzadeh-Aghdash, Hossein; Ezzati Nazhad Dolatabadi, Jafar; Dehghan, Parvin; Panahi-Azar, Vahid; Barzegar, Abolfazl

    2017-08-01

    Sodium acetate (SA) has been used as a highly effective protectant in food industry and the possible effect of this additive on the binding to albumin should be taken into consideration. Therefore, for the first time, the mechanism of SA interaction with bovine serum albumin (BSA) has been investigated by multi-spectroscopic and molecular modeling methods under physiological conditions. Stern-Volmer fluorescence quenching analysis showed an increase in the fluorescence intensity of BSA upon increasing the amounts of SA. The high affinity of SA to BSA was demonstrated by a binding constant value (1.09×103 at 310°K). The thermodynamic parameters indicated that hydrophobic binding plays a main role in the binding of SA to Albumin. Furthermore, the results of UV-vis spectra confirmed the interaction of this additive to BSA. In addition, molecular modeling study demonstrated that A binding sites of BSA play the main role in the interaction with acetate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterization of erythrosine B binding to bovine serum albumin and bilirubin displacement.

    Science.gov (United States)

    Mathavan, Vinodaran M K; Boh, Boon Kim; Tayyab, Saad

    2009-08-01

    The interaction of crythrosine B (ErB), a commonly used dye for coloring foods and drinks, with bovine scrum albumin (BSA) was investigated both in the absence and presence of bilirubin (BR) using absorption and absorption difference spectroscopy. ErB binding to BSA was reflected from a significant red shift of 11 nm in the absorption maximum of ErB (527 nm) with the change in absorbance at lamdamax. Analysis of absorption difference spectroscopic titration results of BSA with increasing concentrations of ErB3 using Benesi-Hildebrand equation gave the association constant, K as 6.9 x 10(4) M(-1). BR displacing action of ErB was revealed by a significant blue shift in the absorption maximum, accompanied by a decrease in absorbance difference at lamdamax in the difference spectrum of BR-BSA complex upon addition of increasing concentrations of ErB. This was further substantiated by fluorescence spectroscopy, as addition of increasing concentrations of ErB to BR-BSA complex caused a significant decrease in fluoresccnce at 510 nm. The results suggest that ErB binds to a site in the vicinity of BR binding site on BSA. Therefore, intake of ErB may increase the risk of hyperbilirubinemia in the healthy subjects.

  13. Effect of Human and Bovine Serum Albumin on kinetic Chemiluminescence of Mn (III-Tetrakis (4-Sulfonatophenyl Porphyrin-Luminol-Hydrogen Peroxide System

    Directory of Open Access Journals (Sweden)

    Sayed Yahya Kazemi

    2012-01-01

    Full Text Available The present work deals with an attempt to study the effect of human and bovine serum albumin on kinetic parameters of chemiluminescence of luminol-hydrogen peroxide system catalyzed by manganese tetrasulfonatophenyl porphyrin (MnTSPP. The investigated parameters involved pseudo-first-order rise and fall rate constant for the chemiluminescence burst, maximum level intensity, time to reach maximum intensity, total light yield, and values of the intensity at maximum CL which were evaluated by nonlinear least square program KINFIT. Because of interaction of metalloporphyrin with proteins, the CL parameters are drastically affected. The systems resulted in Stern-Volmer plots with values of 3.17×105 and 3.7×105M−1 in the quencher concentration range of 1.5×10−6 to 1.5×10−5 M for human serum albumin (HSA and bovine serum albumin (BSA, respectively.

  14. Influence of galloyl moiety in interaction of epicatechin with bovine serum albumin: a spectroscopic and thermodynamic characterization.

    Directory of Open Access Journals (Sweden)

    Sandip Pal

    Full Text Available The health benefits stemming from green tea are well known, but the exact mechanism of its biological activity is not elucidated. Epicatechin (EC and epicatechin gallate (ECG are two dietary catechins ubiquitously present in green tea. Serum albumins functionally carry these catechins through the circulatory system and eliminate reactive oxygen species (ROS induced injury. In the present study ECG is observed to have higher antioxidant activity; which is attributed to the presence of galloyl moiety. The binding affinity of these catechins to bovine serum albumin (BSA will govern the efficacy of their biological activity. EC and ECG bind with BSA with binding constants 1.0 × 10(6 M(-1 and 6.6 × 10(7 M(-1, respectively. Changes in secondary structure of BSA on interaction with EC and ECG have been identified by circular dichroism (CD and Fourier transform infrared (FT-IR spectroscopy. Thermodynamic characterization reveals the binding process to be exothermic, spontaneous and entropy driven. Mixed binding forces (hydrophobic, electrostatic and hydrogen bonding exist between ECG and BSA. Binding site for EC is primarily site-II in sub-domain IIIA of BSA and for ECG; it is site-I in sub-domain IIA. ECG with its high antioxidant activity accompanied by high affinity for BSA could be a model in drug designing.

  15. Influence of galloyl moiety in interaction of epicatechin with bovine serum albumin: a spectroscopic and thermodynamic characterization.

    Science.gov (United States)

    Pal, Sandip; Saha, Chabita; Hossain, Maidul; Dey, Subrata Kumar; Kumar, Gopinatha Suresh

    2012-01-01

    The health benefits stemming from green tea are well known, but the exact mechanism of its biological activity is not elucidated. Epicatechin (EC) and epicatechin gallate (ECG) are two dietary catechins ubiquitously present in green tea. Serum albumins functionally carry these catechins through the circulatory system and eliminate reactive oxygen species (ROS) induced injury. In the present study ECG is observed to have higher antioxidant activity; which is attributed to the presence of galloyl moiety. The binding affinity of these catechins to bovine serum albumin (BSA) will govern the efficacy of their biological activity. EC and ECG bind with BSA with binding constants 1.0 × 10(6) M(-1) and 6.6 × 10(7) M(-1), respectively. Changes in secondary structure of BSA on interaction with EC and ECG have been identified by circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. Thermodynamic characterization reveals the binding process to be exothermic, spontaneous and entropy driven. Mixed binding forces (hydrophobic, electrostatic and hydrogen bonding) exist between ECG and BSA. Binding site for EC is primarily site-II in sub-domain IIIA of BSA and for ECG; it is site-I in sub-domain IIA. ECG with its high antioxidant activity accompanied by high affinity for BSA could be a model in drug designing.

  16. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuo-Hao [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Lai, Sheng-Feng [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Yan-Cheng; Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Ong, Edwin B.L. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Tan, Hui-Ru [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Tok, Eng Soon [Physics Department, National University of Singapore, 117542 (Singapore); Yang, C.S. [Center for Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan (China); Margaritondo, G. [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Hwu, Y., E-mail: phhwu@sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-01-15

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue.

  17. Bovine Serum Albumin and Chitosan Coated Silver Nanoparticles and Its Antimicrobial Activity against Oral and Nonoral Bacteria

    Directory of Open Access Journals (Sweden)

    León Francisco Espinosa-Cristóbal

    2015-01-01

    Full Text Available Antimicrobial agents have been developed for drug-resistance infections, which have been rapidly increasing; however, the control of involved microorganisms is still a challenge. In this work, SNP with bovine serum albumin (BSA and chitosan (CS coatings were prepared with an aqueous reduction method, characterized using dispersion light scattering, transmission electron microscopy, and thermal analysis. Antibacterial activity was tested on seven oral and nonoral bacteria by microdilution test and scanning electron microscopy. Six different sizes and shapes of coated SNP were prepared and used. Characterization revealed narrow size and good distribution of particles, spherical and pseudospherical shapes, and the presence of coatings on the SNP surfaces. All samples showed antimicrobial activity, although smaller sizes and CS samples had the best inhibition effects. The highest microbial resistance was shown by Gram-positive bacteria. Although coated SNP action depends on particular bacterium, BSA and CS coated SNP could be used for drug-resistance infections.

  18. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: equilibrium, kinetic and thermodynamic study.

    Science.gov (United States)

    Rathinam, Aravindhan; Zou, Linda

    2010-12-15

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of ΔH° and the negative value of ΔG° show that the sorption process is endothermic and spontaneous. The positive value of change in entropy ΔS° shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Spectroscopic analyses and studies on respective interaction of cyanuric acid and uric acid with bovine serum albumin and melamine

    Science.gov (United States)

    Chen, Dandan; Wu, Qiong; Wang, Jun; Wang, Qi; Qiao, Heng

    2015-01-01

    In this work, the fluorescence quenching was used to study the interaction of cyanuric acid (CYA) and uric acid (UA) with bovine serum albumin (BSA) at two different temperatures (283 K and 310 K). The bimolecular quenching constant (Kq), apparent quenching constant (Ksv), effective binding constant (KA) and corresponding dissociation constant (KD), binding site number (n) and binding distance (r) were calculated by adopting Stern-Volmer, Lineweaver-Burk, Double logarithm and overlap integral equations. The results show that CYA and UA are both able to obviously bind to BSA, but the binding strength order is BSA + CYA < BSA + UA. And then, the interactions of CYA and UA with melamine (MEL) under the same conditions were also studied by using similar methods. The results indicates that both CYA and UA can bind together closely with melamine (MEL). It is wished that these research results would facilitate the understanding the formation of kidney stones and gout in the body after ingesting excess MEL.

  20. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: Equilibrium, kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Rathinam, Aravindhan [Chemical Laboratory, Central Leather Research Institute, Adyar, Chennai 600020 (India); Zou, Linda, E-mail: linda.zou@unisa.edu.au [SA Water Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia)

    2010-12-15

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of {Delta}H{sup o} and the negative value of {Delta}G{sup o} show that the sorption process is endothermic and spontaneous. The positive value of change in entropy {Delta}S{sup o} shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed.

  1. Investigation on the Competition Interaction of Synthetic Food Colorants and Ciprofloxacin Hydrochloride with Bovine Serum Albumin by Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Baosheng Liu

    2011-01-01

    Full Text Available The effects of synthetic food colorants like tartrazine (TTZ, sunset yellow (SY, and erythrosine (ETS on the binding reaction between ciprofloxacin hydrochloride (CPFX and bovine serum albumin (BSA were investigated by fluorescence spectroscopy in the aqueous solution of pH = 7.40. Results showed that CPFX caused the fluorescence quenching of BSA through a static quenching procedure and the primary binding site was located at subdomain IIA of BSA (site I. According to the calculated thermodynamic parameters, it confirmed that CPFX bound to BSA by electrostatic interaction. In addition, the colorants affected the formation of BSA-CPFX complex. This resulted in an increase of the free, biological active fraction of CPFX. The binding distance of BSA-CPFX systems was evaluated according to Förster's theory. Results suggested that the binding distance were increased in the presence of synthetic food colorants.

  2. Kinetics of Glycoxidation of Bovine Serum Albumin by Methylglyoxal and Glyoxal and its Prevention by Various Compounds

    Directory of Open Access Journals (Sweden)

    Izabela Sadowska-Bartosz

    2014-04-01

    Full Text Available The aim of this study was to compare several methods for measurement of bovine serum albumin (BSA modification by glycoxidation with reactive dicarbonyl compounds (methylglyoxal ‒ MGO and glyoxal ‒ GO, for studies of the kinetics of this process and to compare the effects of 19 selected compounds on BSA glycation by the aldehydes. The results confirm the higher reactivity of MGO with respect to GO and point to the usefulness of AGE, dityrosine and N′-formylkynurenine fluorescence for monitoring glycation and evaluation of protection against glycation. Different extent of protection against glycation induced by MGO and GO was found for many compounds, probably reflecting effects on various stages of the glycation process. Polyphenols (genistein, naringin and ellagic acid were found to protect against aldehyde-induced glycation; 1-cyano-4-hydroxycinnamic acid was also an effective protector.

  3. Determination of aqueous two-phase system phase-forming components in the presence of bovine serum albumin.

    Science.gov (United States)

    Glyk, Anna; Scheper, Thomas; Beutel, Sascha

    2014-06-15

    In the current work, the quantification of different poly(ethylene glycol) (PEG)-potassium phosphate/sodium citrate aqueous two-phase system (ATPS) phase-forming components was investigated by using conductivity and refractive index measurements. For this purpose, refractive index and conductivity calibration curves were obtained for ATPS at different pH values in the presence of different bovine serum albumin (BSA) concentrations. Whereas BSA had no effect on the conductivity, it had a considerable effect on the refractive index. Finally, a convenient dilution of the samples prior to the ATPS constituent determination is needed to ensure no significant influence from BSA. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Biomimetic synthesis of hollow calcium carbonate with the existence of the agar matrix and bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jianhua, E-mail: fjh2008@126.com; Wu, Gang; Qing, Chengsong

    2016-01-01

    Proteins play important roles in the process of biomineralization. Vaterite and calcite have been synthesized by the reaction of Na{sub 2}CO{sub 3} and CaCl{sub 2} in the bovine serum albumin (BSA) and agar system. The samples have been characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The shape of CaCO{sub 3} crystal has been analyzed by scanning electronic microscopy (SEM). The results show that calcite is a single product in the absence of BSA, but the product is a mixture of calcite and vaterite in the presence of BSA. The spheral shell of CaCO{sub 3} crystal was obtained when the concentration of BSA increased to 9.0 mg/mL. - Highlights: • Biomimetic synthesis of hollow calcium carbonate • Calcification mechanisms in the presence of both protein and polysaccharides • Biomineralization under the action of protein and polysaccharides.

  5. In-vitro displacement interaction of atenolol and amlodipine on binding with bovine serum albumin when co-administered

    Directory of Open Access Journals (Sweden)

    Md. Ashraful Alam, Md. Abdul Awal, Mahbub Mostofa, Md. Kamrul Islam and Nusrat Subhan

    2007-06-01

    Full Text Available The binding of atenolol (selective β1-blocker and amlodipine (calcium channel blocker to bovine serum albumin (BSA was studied by equilibrium dialysis method in order to have an insight into the binding chemistry of these two to BSA. Free atenolol concentration was increased due to addition of amlodipine which reduced the binding of the compounds to BSA. However, the free fraction was increased to a level as it was expected from direct competitive displacement while the free atenolol concentration was increased according to increasing the amlodipine concentration when only the BSA was present. The result obtained when the binding site was blocked by sufficient amount of amlodipine was that the increment of free concentration of atenolol was prominent. When no amlodipine was added the free concentration of atenolol was only 28% whereas this release was 93 % to 98.01% when amlodipine was added with increasing concentration.

  6. Interaction study on bovine serum albumin physically binding to silver nanoparticles: Evolution from discrete conjugates to protein coronas

    Science.gov (United States)

    Guo, Jun; Zhong, Ruibo; Li, Wanrong; Liu, Yushuang; Bai, Zhijun; Yin, Jun; Liu, Jingran; Gong, Pei; Zhao, Xinmin; Zhang, Feng

    2015-12-01

    The nanostructures formed by inorganic nanoparticles together with organic molecules especially biomolecules have attracted increasing attention from both industries and researching fields due to their unique hybrid properties. In this paper, we systemically studied the interactions between amphiphilic polymer coated silver nanoparticles and bovine serum albumins by employing the fluorescence quenching approach in combination with the Stern-Volmer and Hill equations. The binding affinity was determined to 1.30 × 107 M-1 and the interaction was spontaneously driven by mainly the van der Waals force and hydrogen-bond mediated interactions, and negatively cooperative from the point of view of thermodynamics. With the non-uniform coating of amphiphilic polymer, the silver nanoparticles can form protein coronas which can become discrete protein-nanoparticle conjugates when controlling their molar ratios of mixing. The protein's conformational changes upon binding nanoparticles was also studied by using the three-dimensional fluorescence spectroscopy.

  7. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging

    DEFF Research Database (Denmark)

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan

    2011-01-01

    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring...

  8. A comparison of an enzyme-linked immunosorbent assay and counter current electrophoresis for the detection of bovine serum albumin in virus vaccines.

    NARCIS (Netherlands)

    A.R. ter Avest (Anja); A.D.M.E. Osterhaus (Albert); G. van Steenis (Bert)

    1987-01-01

    textabstractA monoclonal antibody directed against bovine serum albumin (BSA) has been developed and used in an enzyme-linked immunosorbent assay (ELISA) system for the detection of BSA in virus vaccines. The results correlated well with those obtained with a counter current electrophoresis system

  9. Design of an anti-aggregated SERS sensing platform for metal ion detection based on bovine serum albumin-mediated metal nanoparticles.

    Science.gov (United States)

    Ji, Wei; Chen, Lei; Xue, Xiangxin; Guo, Zhinan; Yu, Zhi; Zhao, Bing; Ozaki, Yukihiro

    2013-08-25

    Based on bovine serum albumin (BSA)-modified Au NPs, a simple and cost-effective approach was proposed to fabricate an anti-aggregated Au NP sensing platform for the detection of metal ions. It exhibits excellent stability even under highly ionic conditions due to its electrostatic stabilization, as well as the steric stabilization.

  10. Interaction of bovine serum albumin and human blood plasma with PEO-tethered surfaces : influence of PEO chain length, grafting density and temperature

    NARCIS (Netherlands)

    Norde, W.; Gage, R.A.

    2004-01-01

    Solid surfaces are modified by grafting poly(ethylene oxide), PEO, to influence their interaction with indwelling particles, in particular molecules of bovine serum albumin and human plasma proteins. As a rule, the grafted PEO layers suppress protein adsorption. The suppression is most effective

  11. Synthesis and biological evaluation of radiolabeled photosensitizer linked bovine serum albumin nanoparticles as a tumor imaging agent.

    Science.gov (United States)

    Ozgur, Aykut; Lambrecht, Fatma Yurt; Ocakoglu, Kasim; Gunduz, Cumhur; Yucebas, Musteyde

    2012-01-17

    In this study, we reported on the synthesis and biological evaluation of radiolabeled fluorescent dye conjugated bovine serum albumin nanoparticles within the size range 190-210 nm. The bovine serum albumin nanoparticles (BSANPs) were prepared using a desolvation method, and chemical cross-linking was performed using gluteraldehyde. Furthermore, pheophorbide-a (PH-A) was loaded on the BSANPs. The results obtained from dynamic light scattering and electron microscopy have proved that nanoparticles are highly monodisperse and near-spherical shaped. The photo-physical properties of the PH-A-BSANPs were obtained using the spectrophotometric techniques. According to the results, PH-A and BSANPs show high non-covalent interaction. PH-A loaded nanoparticles were labeled with (99m)Tc and the radio-labeling efficiency was determined as 90 ± 1.2%. Biodistribution studies of (99m)Tc labeled PH-A-BSANPs and PH-A were carried out using female Albino Wistar rats, and (99m)Tc-PH-A-BSANPs showed a significantly higher uptake in the breast and uterus than (99m)Tc-PH-A. Cell culture study was carried out in MCF-7 cell line (human breast adenocarcinoma cell line). According to the cell culture studies, (99m)Tc-PH-A-BSANPs showed a higher uptake than (99m)Tc-PH-A. Moreover, PH-A-BSANPs demonstrated good photo-physical properties and BSANPs increased the uptake of PH-A on to the MCF-7 cell line. These results confirm that (99m)Tc labeled PH-A-BSANPs could be utilized for radioimaging. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The effect of glycation on bovine serum albumin conformation and ligand binding properties with regard to gliclazide

    Science.gov (United States)

    Żurawska-Płaksej, Ewa; Rorbach-Dolata, Anna; Wiglusz, Katarzyna; Piwowar, Agnieszka

    2018-01-01

    Albumin, the major serum protein, plays a variety of functions, including binding and transporting endogenous and exogenous ligands. Its molecular structure is sensitive to different environmental modifiers, among which glucose is one of the most significant. In vivo albumin glycation occurs under physiological conditions, but it is increased in diabetes. Since bovine serum albumin (BSA) may serve as a model protein in in vitro experiments, we aimed to investigate the impact of glucose-mediated BSA glycation on the binding capacity towards gliclazide, as well as the ability of this drug to prevent glycation of the BSA molecule. To reflect normo- and hyperglycemia, the conditions of the glycation process were established. Structural changes of albumin after interaction with gliclazide (0-14 μM) were determined using fluorescence quenching and circular dichroism spectroscopy. Moreover, thermodynamic parameters as well as energy transfer parameters were determined. Calculated Stern-Volmer quenching constants, as well as binding constants for the BSA-gliclazide complex, were lower for the glycated form of albumin than for the unmodified protein. The largest, over 2-fold, decrease in values of binding parameters was observed for the sample with 30 mM of glucose, reflecting the poorly controlled diabetic state, which indicates that the degree of glycation had a critical influence on binding with gliclazide. In contrast to significant changes in the tertiary structure of BSA upon binding with gliclazide, only slight changes in the secondary structure were observed, which was reflected by about a 3% decrease of the α-helix content of glycated BSA (regardless of glucose concentration) in comparison to unmodified BSA. The presence of gliclazide during glycation did not affect its progress. The results of this study indicate that glycation significantly changed the binding ability of BSA towards gliclazide and the scale of these changes depended on glucose concentration. It

  13. Continuous recording of long-chain acyl-coenzyme A synthetase activity using fluorescently labeled bovine serum albumin

    DEFF Research Database (Denmark)

    Demant, Erland J.F.; Nystrøm, Birthe T.

    2001-01-01

    acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes......acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes...

  14. Affinity to bovine serum albumin and anticancer activity of some new water-soluble metal Schiff base complexes.

    Science.gov (United States)

    Asadi, Mozaffar; Asadi, Zahra; Zarei, Leila; Sadi, Somaye Barzegar; Amirghofran, Zahra

    2014-12-10

    Metal Schiff-base complexes show biological activity but they are usually insoluble in water so four new water-soluble metal Schiff base complexes of Na2[M(5-SO3-1,2-salben]; (5-SO3-1,2-salben denoted N,N'-bis(5-sulphosalicyliden)-1,2-diaminobenzylamine and M=Mg, Mn, Cu, Zn) were synthesized and characterized. The formation constants of the metal complexes were determined by UV-Vis absorption spectroscopy. The interaction of these complexes with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. Type of quenching, binding constants, number of binding sites and binding stoichiometries were determined by fluorescence quenching method. The results showed that the mentioned complexes strongly bound to BSA. Thermodynamic parameters indicated that hydrophobic association was the major binding force and that the interaction was entropy driven and enthalpically disfavoured. The displacement experiment showed that these complexes could bind to the subdomain IIA (site I) of albumin. Furthermore the synchronous fluorescence spectra showed that the microenvironment of the tryptophan residues was not apparently changed. Based on the Förster theory of non-radiation energy transfer, the distance between the donor (Trp residues) and the acceptor metal complexes was obtained. The growth inhibitory effect of complexes toward the K562 cancer cell line was measured. Published by Elsevier B.V.

  15. Biophysical and molecular docking approaches for the investigation of biomolecular interactions between amphotericin B and bovine serum albumin.

    Science.gov (United States)

    Raza, Muslim; Ahmad, Aftab; Yue, Feng; Khan, Zahid; Jiang, Yang; Wei, Yun; Raza, Saleem; He, Wang Wen; Khan, Faheem Ullah; Qipeng, Yuan

    2017-05-01

    Exogenous drug as an antidote to treat various infections get absorbed in the blood circulatory system of a human can directly contact with transporter proteins such as serum albumin. Therefore, for rational drug discovery, understanding the biomolecular interaction between drugs and protein is highly important. In this contribution, we describe the possible interactions between an antifungal drug Amphotericin B (AmB) and Bovine Serum Albumin (BSA) using multi-spectroscopic techniques and further confirmed through in-silico approaches. Binding effects of AmB on BSA conformation, surface morphology, topology, and stability were determined by Ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT-IR), Circular Dichroism (CD), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Fluorescence Spectroscopy and Molecular dynamic simulations. The Stern-Volmer equation was used to determine the binding site (0.4) and binding constant (8.16×105M-1). The intrinsic intensity of the native BSA was quenched by AmB through static quenching mechanism. The calculated Gibbs free energy value (-8.70kcal/mol) indicated the involvement of hydrogen bonding and hydrophobic contacts in BSA-AmB interaction. The hydrodynamic radii and surface contact area of BSA-AmB molecules are decreasing which can strongly support the stabilizing action of complex particles. Moreover, the finding of this work will provide information for the drug designers to further study the AmB binding mechanism and their pharmacodynamics and pharmacokinetics features in order to achieve better therapeutic efficacy. Copyright © 2017. Published by Elsevier B.V.

  16. Probing Temperature- and pH-Dependent Binding between Quantum Dots and Bovine Serum Albumin by Fluorescence Correlation Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zonghua Wang

    2017-04-01

    Full Text Available Luminescent quantum dots (QDs with unique optical properties have potential applications in bio-imaging. The interaction between QDs and bio-molecules is important to the biological effect of QDs in vivo. In this paper, we have employed fluorescence correlation spectroscopy (FCS to probe the temperature- and pH-dependent interactions between CdSe QDs with carboxyl (QDs-COOH and bovine serum albumin (BSA in buffer solutions. The results have shown that microscopic dissociation constant K′D is in the range of (1.5 ± 0.2 × 10−5 to (8.6 ± 0.1 × 10−7 M, the Hill coefficient n is from 0.4 to 2.3, and the protein corona thickness is from 3.0 to 9.4 nm. Variable-temperature measurements have shown both negative values of ∆H and ∆S for BSA adsorption on QDs-COOH, while pH has a profound effect on the adsorption. Additional, FCS measurement QDs-COOH and proteins in whole mice serum and plasma samples has also been conducted. Finally, simulation results have shown four favored QD binding sites in BSA.

  17. Novel magnetic bovine serum albumin imprinted polymers with a matrix of carbon nanotubes, and their application to protein separation.

    Science.gov (United States)

    Zhang, Zhaohui; Yang, Xiao; Chen, Xing; Zhang, Minlei; Luo, Lijuan; Peng, Mijun; Yao, Shouzhuo

    2011-11-01

    Novel magnetic multi-walled carbon nanotubes@Fe(3)O(4) molecularly imprinted polymers (MWNTs@Fe(3)O(4)-MIPs) intended for bovine serum albumin (BSA) recognition were successfully developed. The MWNTs@Fe(3)O(4)-MIPs were characterized with scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy images showed that the Fe(3)O(4) nanoparticles (diameter: 50-60 nm) were coated with a layer of MIPs with an average thickness of 25-30 nm. The magnetic material was easily dispersed and retrieved through the application of an external magnetic field. Adsorption experiments showed that the estimated maximum amount of BSA that could be adsorbed onto the MWNTs@Fe(3)O(4)-MIPs was 52.8 mg/g, and the time taken to reach equilibrium was about 40 min. Meanwhile, the MWNTs@Fe(3)O(4)-MIPs exhibited excellent selectivity towards (i.e., recognition of) BSA. The feasibility of the use of the MWNTs@Fe(3)O(4)-MIPs as a solid-phase extraction (SPE) sorbent was evaluated, and the results showed that the MWNTs@Fe(3)O(4)-MIPs were able to separate the template protein BSA from a binary protein solution. The proposed sorbent based on MWNTs@Fe(3)O(4)-MIPs for BSA separation exhibited satisfactory recoveries ranging from 92.0% to 97.3% in real samples. It was also successfully used for the purification of BSA from bovine calf serum.

  18. Elucidating the influence of gold nanoparticles on the binding of salvianolic acid B and rosmarinic acid to bovine serum albumin.

    Directory of Open Access Journals (Sweden)

    Xin Peng

    Full Text Available Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid and bovine serum albumin (BSA in the presence and absence of gold nanoparticles (Au NPs with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs.

  19. Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin

    Science.gov (United States)

    Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-01-01

    Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs. PMID:25861047

  20. A combined binding mechanism of nonionic ethoxylated surfactants to bovine serum albumin revealed by fluorescence and circular dichroism.

    Science.gov (United States)

    Iovescu, Alina; Băran, Adriana; Stîngă, Gabriela; Cantemir-Leontieş, Anca Ruxandra; Maxim, Monica Elisabeta; Anghel, Dan Florin

    2015-12-01

    The study systematically investigates aqueous mixtures of fixed bovine serum albumin (BSA) and various ethoxylated nonionic surfactants belonging to a homologous series or not. Mono-disperse tetra-(C12E4), hexa-(C12E6) and octa-ethyleneglycol mono-n-dodecyl ether (C12E8), and poly-disperse eicosa-ethyleneglycol mono-n-tetradecyl ether (C14EO20) are respectively employed. Fluorescence and circular dichroism measurements are performed at surfactant/protein molar ratios (rm)s lower and higher than one. We aim to get new insights into the binding mechanism of these species and to differentiate among the interaction abilities of these surfactants. The relative magnitude of the binding thermodynamic parameters by fluorescence, and the increase of α-helix prove that hydrogen bonding drives the interaction next to the hydrophobic attraction. C12En (n=4,6,8) develop more H bonds with the albumin than C14EO20 owing to a zigzag conformation of their short ethyleneoxide chains. Among the homologous surfactants, C12E6 has a slightly stronger interaction with BSA due to a maximal number of H bonds at a minimal hindering. Static fluorescence and dynamic fluorescence indicate an inter-conversion between the tryptophan (Trp) rotamers which happens around the surfactants critical micellar concentration. For C14EO20, the meander conformation of the polar group determines a less evident conversion of the Trp rotamers and smaller α-helix rise. Binding isotherms of the homologous surfactants and the fluorescence quenching mechanism by C12E6 are also provided. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Kinetic and thermodynamic study of bovine serum albumin interaction with rifampicin using surface plasmon resonance and molecular docking methods

    Science.gov (United States)

    Sharifi, Maryam; Dolatabadi, Jafar Ezzati Nazhad; Fathi, Farzaneh; Rashidi, Mohammad; Jafari, Behzad; Tajalli, Habib; Rashidi, Mohammad-Reza

    2017-03-01

    The interaction of bovine serum albumin (BSA) with various drugs, such as antibiotics, due to the importance of BSA in drug delivery has attracted increasing research attention at present. Therefore, the aim of this study was investigation of BSA interaction with rifampicin using surface plasmon resonance (SPR) and molecular docking methods under the imitated physiological conditions (pH=7.4). BSA immobilization on carboxymethyl dextran hydrogel chip has been carried out after activation with N-hydroxysuccinimide/N-ethyl-N-(3-diethylaminopropyl) carbodiimide. The dose-response sensorgrams of BSA upon increasing concentration of refampicin were attained in SPR analysis. The high affinity of rifampicin to BSA was demonstrated by a low equilibrium constants (KD) value (3.46×10-5 at 40°C). The process of kinetic values changing shows that affinity of BSA to rifampicin decreased with rising temperature. The positive value of both enthalpy change (ΔH) and entropy change (ΔS) showed that hydrophobic force plays major role in the BSA interaction with rifampicin. The positive value of ΔG was indicative of nonspontaneous and enthalpy-driven binding process. In addition, according to the molecular docking study, hydrogen binding has some contributions in the interaction of rifampicin with BSA.

  2. CdSe/ZnS quantum dots based electrochemical immunoassay for the detection of phosphorylated bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Pinwattana, Kulwadee; Wang, Jun; Lin, Chiann Tso; Wu, Hong; Du, Dan; Lin, Yuehe; Chailapakul, Orawon

    2010-11-15

    A CdSe/ZnS quantum dot (QD) based electrochemical immunoassay of phosphorylated bovine serum albumin as a protein biomarker is presented. The QDs were used as labels and were conjugated with the secondary anti-phosphoserine antibody in a heterogeneous sandwich immunoassay. First, the primary BSA antibody was immobilized on polystyrene microwells, followed by the addition of BSA-OP. After that, the QD-labeled anti-phosphoserine antibody was added into microwells for immunorecognition. Finally, the bound QD was dissolved in an acid-dissolution step and was detected by electrochemical stripping analysis. The measured current responses were proportional to the concentration of BSA-OP. Under optimal conditions, the voltammetric response was linear over the range of 0.5 - 500 ng mL-1 of BSA-OP, with a detection limit of 0.5 ng mL-1 at a deposition potential of -1.2 V for 120 s. It also shows good reproducibility with a relative standard deviation of 8.6% of six times determination of 25 ng mL-1 of BSA-OP. This QD-based electrochemical immunoassay offers great promise for simple and cost-effective analysis of protein biomarkers.

  3. Microplasma jet treatment of bovine serum albumin coatings for controlling enzyme and cell attachmenttype="fn" rid="FN1">

    Science.gov (United States)

    Szili, Endre J.; Becker, Stefanie; Short, Robert D.; Al-Bataineh, Sameer A.

    2017-08-01

    We investigated a new approach to control protein and cell attachment inside 96-well polystyrene plates. The wells were first coated with bovine serum albumin (BSA) to inhibit cell and protein attachment. The BSA-coated wells were then treated with a helium microplasma jet for increasing times that resulted in gradual removal of BSA from the surface. It was found that the amount of enzyme and cell attachment could be controlled in the wells where BSA was only partially removed by the microplasma jet. In addition to the surface coverage of BSA, the new surface chemistry induced by the microplasma jet treatment also had an important role in the control of enzyme and cell attachment. In summary, microplasma jet treatment of BSA-coated polystyrene wells is a simple and effective method for controlling enzyme and cell attachment. This might find use for high-throughput screening of new cell culture platforms where control over the level protein, enzyme or cell adherence is needed in order to maintain a specific cell function.

  4. Fabrication and Assessment of ZnO Modified Polyethersulfone Membranes for Fouling Reduction of Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Tshepo Duncan Dipheko

    2017-01-01

    Full Text Available ZnO/PES composite membranes were fabricated by phase inversion method using DMAc as a solvent. The structure of ZnO was investigated using TEM, SEM, XRD, and TGA. TEM images of ZnO nanoparticles were well-defined, small, and spherically shaped with agglomerated nanoparticles particles of 50 nm. The SEM and XRD results were an indication that ZnO nanoparticles were present in the prepared ZnO/PES composites membranes. Contact angle measurements were used to investigate surface structures of the composite membranes. The amount of ZnO nanoparticles on PES membranes was varied to obtain the optimal performance of the composite membranes in terms of pure water flux, flux recovery, and fouling resistance using the protein bovine serum albumin (BSA as a model organic foulant. The results showed that addition of ZnO to PES membranes improved the hydrophilicity, permeation, and fouling resistance properties of the membranes. Pure water flux increased from a low of 250 L/m2h for the neat membrane to a high of 410 L/m2h for the composite membranes. A high flux recovery of 80–94% was obtained for the composite membranes. The optimal performance of the composite membranes was obtained at 1.5 wt% of ZnO.

  5. Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good’s buffers ionic liquids

    Science.gov (United States)

    Taha, Mohamed; Quental, Maria V.; Correia, Isabel; Freire, Mara G.; Coutinho, João A. P.

    2017-01-01

    Good’s buffers ionic liquids (GB-ILs), composed of cholinium-based cations and Good’s buffers anions, display self-buffering characteristics in the biological pH range, and their polarity and hydrophobicity can be easily tuned by a proper manipulation of their ions chemical structures. In this work, the extraction ability for bovine serum albumin (BSA) of aqueous biphasic systems (ABS) formed by polypropylene glycol 400 (PPG 400) and several GB-ILs was evaluated. ABS formed by PPG 400 and cholinium chloride ([Ch]Cl), GBs, and sucrose were also investigated for comparison purposes. It is shown that BSA preferentially migrates for the GB-IL-rich phase, with extraction efficiencies of 100%, achieved in a single-step. Dynamic light scattering, and circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopies were employed to evaluate the effect of the investigated cholinium-based GB-ILs on the BSA stability, and compared with results obtained for the respective GBs precursors, [Ch]Cl and sucrose, a well-known protein stabilizer. Molecular docking studies were also carried out to investigate on the binding sites of GB-IL ions to BSA. The experimental results confirm that BSA has a higher stability in GB-ILs than in any of the other compounds investigated. PMID:28239260

  6. Preparation and adsorption of bovine serum albumin-imprinted polyacrylamide hydrogel membrane grafted on non-woven polypropylene.

    Science.gov (United States)

    Zhao, Kongyin; Lin, Beibei; Cui, Wenkui; Feng, Lingzhi; Chen, Tian; Wei, Junfu

    2014-04-01

    Bovine serum albumin (BSA) imprinted polypropylene (PP) fiber-grafted polyacrylamide (PAM) hydrogel membrane (PP-g-PAM MIP) was prepared using non-woven PP fiber as matrix, BSA as template molecule, and acrylamide (AM) as functional monomer via UV radiation-reduced polymerization in an aqueous phase. SEM, FT-IR, DSC and TG were used to characterize the PP grafted PAM hydrogel. Influence factors on the adsorption capacity of PP-g-PAM MIP were investigated, such as monomer concentration, cross-linker concentration, template molecule amount and pH values in BSA solution. The adsorption and recognition properties of PP-g-PAM MIP were evaluated and the results showed that the PP-g-PAM MIP exhibited an obvious improvement in terms of adsorption capacity for BSA as compared with non-imprinted ones. PP-g-PAM MIPs could recognize the template protein using Lys, Ova, BHb, and Glo as control proteins, and the selectivity factor (β) was above 2.0. The imprinting efficiency of PP-g-PAM MIP tended to be stable after three cycles and maintained 76% of the initial value of the imprinting efficiency even after five repetitions, which was more excellent than that of PAM microsphere. The PP-g-PAM MIP is low cost and easy to be prepared, which would show its potential applications in the fields of extracting and testing required proteins from cells or particulate samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Influence of bovine serum albumin in Hanks' solution on the corrosion and stress corrosion cracking of a magnesium alloy.

    Science.gov (United States)

    Harandi, Shervin Eslami; Banerjee, Parama Chakraborty; Easton, Christopher D; Singh Raman, R K

    2017-11-01

    It is essential for any temporary implant to possess adequate strength to maintain their mechanical integrity under the synergistic effects of mechanical loading characteristics of human body and the corrosive physiological environment. Such synergistic effects can cause stress corrosion cracking (SCC). The aim of the present study is to investigate the effect of the addition of bovine serum albumin (BSA) to Hanks' solution in corrosion and SCC susceptibility of AZ91D magnesium alloy. The electrochemical impedance spectroscopy (EIS) results indicated that the addition of BSA increased corrosion resistance of the alloy during the first 48h of immersion and then decreased it rapidly. The energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analyses indicated adsorption of BSA on the alloy surface during initial hours of immersion. However, with the increasing immersion time, BSA chelated with the corrosion products causing disruption of the protective film; thus, it accelerated the corrosion of the alloy. Both the mechanical data and fractographic evidence have confirmed susceptibility of the alloy to SCC. However, in the presence of BSA, the alloy suffered greater SCC which was attributed to its increased susceptibility towards localized corrosion. Copyright © 2017. Published by Elsevier B.V.

  8. Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite.

    Science.gov (United States)

    Tripathi, Vijay Shyam; Kandimalla, Vivek Babu; Ju, Huangxian

    2006-02-15

    A novel amperometric biosensor for hydrogen peroxide (H(2)O(2)) was developed by entrapping horseradish peroxidase (HRP) in a new ormosil composite doped with ferrocene monocarboxylic acid-bovine serum albumin conjugate and multiwall carbon nanotubes (MWNTs). The ormosil was prepared using 3-(aminopropyl)triethoxysilane and 2-(3,4 epoxycyclohexyl)-ethyltrimethoxy silane as monomers. The encapsulated conjugate showed excellent electrochemistry and acted as an electron transfer mediator. The presence of MWNTs improved the conductivity of the composite film. This matrix showed a biocompatible microenvironment for retaining the native activity of the entrapped HRP and a very low mass transport barrier to the substrate, which provided a fast amperometric response to H(2)O(2). The proposed H(2)O(2) biosensor exhibited a linear range of 0.02-4.0 mM with a detection limit of 5.0 microM (S/N = 3) and a K(M)(app) value of 2.0 mM. It could be used for flow injection analysis of hydrogen peroxide with a liner range from 0.02 to 4.5 mM, sensitivity of 0.042 microA/mM and analytical time of 20 s per sample. This biosensor possessed good analytical performance and storage stability.

  9. Peroxidase-mediated formation of corn fiber gum-bovine serum albumin conjugates: Molecular and structural characterization.

    Science.gov (United States)

    Liu, Yan; Yadav, Madhav P; Chau, Hoa K; Qiu, Shuang; Zhang, Hui; Yin, Lijun

    2017-06-15

    Corn fiber gum (CFG) was previously conjugated with bovine serum albumin (BSA) via peroxidase treatment to improve its emulsifying properties. The current study was undertaken to evaluate the molecular characteristics of CFG-BSA conjugates prepared at different CFG/BSA weight ratios of 10:1, 4:1, 1:1, and 1:4. After the peroxidase treatment, CFG-BSA mixtures at weight ratios of 10:1 and 4:1 showed an increase in molecular weight from 200 and 193kDa to 218 and 223kDa respectively. But for CFG-BSA mixtures at weight ratio of 1:4, their molecular weight decreased. Peroxidase treated CFG-BSA mixtures had a more compact but rougher surface morphology as compared with the untreated as revealed by scanning electron microscopy. At lower CFG to BSA weight ratio (1:4), particles of CFG-BSA conjugates appeared to be elongated while at higher CFG to BSA weight ratio (10:1), they were approximately spherical in transmission electron micrographs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Spectroscopic analysis on structure-affinity relationship in the interactions of different oleanane-type triterpenoids with bovine serum albumin.

    Science.gov (United States)

    Hou, Jia; Wang, Zhenzhong; Yue, Ying; Li, Qian; Shao, Shijun

    2015-09-01

    Oleanane-type triterpenoids serve as an important group of plant secondary metabolites with a variety of biological activities and the C-3 position substitution pattern is a significant structural feature for their biological activities. Three selected oleanane-type triterpenoids (glycyrrhizin, glycyrrhetinic acid, and carbenoxolone) bearing different substituents (glucuronic acid dimer, hydroxyl, and succinyl groups) at the C-3 position were studied for their affinities to bind bovine serum albumin (BSA) by steady-state fluorescence, synchronous, three-dimensional fluorescence and ultraviolet-visible (UV-vis) absorption spectra. The binding mechanism of the triterpenoids to BSA is due to the formation of the triterpenoids-BSA complex and the binding affinity is strongest for carbenoxolone and ranked in the order carbenoxolone > glycyrrhetinic acid > glycyrrhizin. The thermodynamic parameters calculated at different temperatures showed that triterpenoids binding to BSA primarily depended on hydrophobic interaction and hydrogen bonding. The distance between the bound triterpenoid and BSA was determined on the basis of the Förster's energy transfer theory. Displacement experiments using phenylbutazone and ibuprofen showed the binding site of triterpenoids on BSA at subdomain IIA (Sudlow's site I). The effect of triterpenoids on BSA conformation was analyzed by UV-vis absorption, and synchronous and three-dimensional fluorescence spectra. These results revealed that the C-3 position substitution pattern significantly affects the structure-affinity relationships of oleanane-type triterpenoid binding to BSA and further affects the bioavailability of triterpenoids in the blood circulatory system. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Direct measurement of interaction forces between bovine serum albumin and poly(ethylene oxide in water and electrolyte solutions.

    Directory of Open Access Journals (Sweden)

    Sergio M Acuña

    Full Text Available The net interaction between a probe tip coated with bovine serum albumin (BSA protein and a flat substrate coated with poly(ethylene oxide (PEO polymer was measured directly on approach in water and electrolyte solutions using AFM. The approach force curve between the two surfaces was monotonically repulsive in water and in electrolyte solutions. At pH ~5, slightly above the isoelectric point (pI of BSA, and at large distances, the force was dominated by electrostatic repulsion between the oxygen atoms of the incoming protein with those belonging to the ether groups of PEO. Such repulsive force and range decreased in NaCl. Under physiological conditions, pH 6, BSA is definitely charged and the electrostatic repulsion with ether groups in PEO appears at larger separation distances. Interestingly, at pH 4, below the pI of BSA, the repulsion decreased because of an attractive, although weak, electrostatic force that appeared between the ether groups in PEO and the positively charged amino groups of BSA. However, for all solution conditions, once compression of PEO begun, the net repulsion was always dominated by short-range polymeric steric repulsion and repulsive enthalpy penalties for breaking PEO-water bonds. Results suggest that PEO in mushroom conformation may also be effective in reducing biofouling.

  12. Direct measurement of interaction forces between bovine serum albumin and poly(ethylene oxide) in water and electrolyte solutions

    Science.gov (United States)

    Bastías, José M.; Toledo, Pedro G.

    2017-01-01

    The net interaction between a probe tip coated with bovine serum albumin (BSA) protein and a flat substrate coated with poly(ethylene oxide) (PEO) polymer was measured directly on approach in water and electrolyte solutions using AFM. The approach force curve between the two surfaces was monotonically repulsive in water and in electrolyte solutions. At pH ~5, slightly above the isoelectric point (pI) of BSA, and at large distances, the force was dominated by electrostatic repulsion between the oxygen atoms of the incoming protein with those belonging to the ether groups of PEO. Such repulsive force and range decreased in NaCl. Under physiological conditions, pH 6, BSA is definitely charged and the electrostatic repulsion with ether groups in PEO appears at larger separation distances. Interestingly, at pH 4, below the pI of BSA, the repulsion decreased because of an attractive, although weak, electrostatic force that appeared between the ether groups in PEO and the positively charged amino groups of BSA. However, for all solution conditions, once compression of PEO begun, the net repulsion was always dominated by short-range polymeric steric repulsion and repulsive enthalpy penalties for breaking PEO-water bonds. Results suggest that PEO in mushroom conformation may also be effective in reducing biofouling. PMID:28296940

  13. Effect of pH on the interaction of vitamin B12 with bovine serum albumin by spectroscopic approaches

    Science.gov (United States)

    Li, Daojin; Zhang, Tian; Xu, Chen; Ji, Baoming

    2011-12-01

    The interaction mechanism between vitamin B12 (B12, cyanocobalamin) and bovine serum albumin (BSA) has been investigated by fluorescence, synchronous fluorescence, ultraviolet-vis (UV) absorbance, and three-dimensional fluorescence. The intrinsic fluorescence of BSA was strongly quenched by the addition of B12 in different pH buffer solutions (pH 2.5, 3.5, 5.0, 7.4, and 9.0) and spectroscopic observations are mainly rationalized in terms of a static quenching process at lower concentration of B12 ( CB12/ CBSA B12 ( CB12/ CBSA > 5). The structural characteristics of B12 and BSA were probed, and their binding affinities were determined under different pH conditions. The results indicated that the binding abilities of B12 to BSA in the acidic and basic pH regions (pH 2.5, 3.5, 5.0, and 9.0) were lower than that at simulating physiological condition (pH 7.4). In addition, the efficiency of energy transfer from tryptophan fluorescence to B12 was found to depend on the binding distance r between the donor and acceptor calculated using Förster's theory. The effect of B12 on the conformation of BSA was analyzed using UV, synchronous fluorescence and three-dimensional fluorescence under different pH conditions. These results showed that the binding of B12 to BSA causes apparent change in the secondary and tertiary structures of BSA.

  14. Spectroscopic studies on the interaction of bovine serum albumin with Ginkgol C15:1 from Ginkgo biloba L

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yang-Yang [School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yang, Xiao-Ming, E-mail: XM_Yang1963@126.com [School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, Yue-Ying [School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013 (China); Feng, Chun-Lai [School of Pharmacy, Jiangsu University, Zhenjiang 212013 (China)

    2015-06-15

    The interaction between Ginkgol C15:1 (Ginkgol), a natural bioactive compound from Ginkgo biloba, and bovine serum albumin (BSA) was studied by fluorescence, UV–vis absorption, Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopy under simulative physiological conditions. The results showed that the fluorescence quenching of BSA by Ginkgol was a static quenching procedure through forming a 1:1 ground-state Ginkgol–BSA complex with a binding constant of about 2.6×10{sup 3} L mol{sup −1}. The values of the thermodynamic parameters indicated that electrostatic and hydrophobic forces played important roles in the interaction of BSA with Ginkgol. The binding distance between BSA and Ginkgol was 3.37 nm, based on Föster’s non-radiative energy transfer theory, and subdomain IIA (Sudlow site I) was the primary binding site which was consistent with that results of molecular docking modeling. The results of UV–vis, CD, three-dimensional fluorescence and FT-IR spectra indicated that binding of Ginkgol to BSA induced conformational changes of BSA. - Highlights: • This is the first time to report the interaction between Ginkgol C15:1 and BSA. • Researching the binding properties of Ginkgol C15:1 and BSA in-depth. • From the aspect of BSA structure change, verified the anticancer activity of Ginkgol. • Molecular docking study explored the interaction of Ginkgol on BSA.

  15. Folic acid-grafted bovine serum albumin decorated graphene oxide: An efficient drug carrier for targeted cancer therapy.

    Science.gov (United States)

    Ma, Naxin; Liu, Jing; He, Wenxiu; Li, Zhonghao; Luan, Yuxia; Song, Yunmei; Garg, Sanjay

    2017-03-15

    Targeting drug carrier systems based on graphene oxide (GO) are of great interest, since it can selectively deliver anticancer drugs to tumor cells, and enhance therapeutic activities with minimized side effects. However, direct grafting target molecules on GO usually results in aggregation of physiological fluid, limiting its biomedical applications. Here, we propose a new strategy to construct targeting GO drug carrier using folic acid grafted bovine serum albumin (FA-BSA) as both the stabilizer and targeting agent. FA-BSA decorated graphene oxide-based nanocomposite (FA-BSA/GO) was fabricated by the physical adsorption of FA-BSA on GO, which was developed as a targeting drug delivery carrier. FA-BSA/GO as the drug carrier was associated with anticancer drug doxorubicin (DOX) through π-π and hydrogen-bond interactions, resulting in high drug loading (up to 437.43μgDOX/mgFA-BSA/GO). FA-BSA/GO/DOX systems demonstrated pH responsive and sustained drug release. The hemolysis ratio of FA-BSA/GO was less than 5%, demonstrating its safety as drug carrier for intravenous injection. Moreover, in vitro cell cytotoxicity and cellular uptake analysis suggested that the constructed FA-BSA/GO/DOX nanohybrids could significantly enhance the anticancer activity. The present work has confirmed the potential for fabrication of highly stable and dispersible GO-based targeting delivery systems for efficient cancer therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: Effect of head-group hydrophobicity.

    Science.gov (United States)

    Ghosh, Subhajit; Dey, Joykrishna

    2015-11-15

    The function of a protein depends upon its structure and surfactant molecules are known to alter protein structure. For this reason protein-surfactant interaction is important in biological, pharmaceutical, and cosmetic industries. In the present work, interactions of a series of anionic surfactants having the same hydrocarbon chain length, but different amino acid head group, such as l-alanine, l-valine, l-leucine, and l-phenylalanine with the transport protein, bovine serum albumin (BSA), were studied at low surfactant concentrations using fluorescence and circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). The results of fluorescence measurements suggest that the surfactant molecules bind simultaneously to the drug binding site I and II of the protein subdomain IIA and IIIA, respectively. The fluorescence as well as CD spectra suggest that the conformation of BSA goes to a more structured state upon surfactant binding at low concentrations. The binding constants of the surfactants were determined by the use of fluorescence as well as ITC measurements and were compared with that of the corresponding glycine-derived surfactant. The binding constant values clearly indicate a significant head-group effect on the BSA-surfactant interaction and the interaction is mainly hydrophobic in nature. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Adsorption of bovine serum albumin on previously formed PAH/PSS multilayer: a stagnation point optical reflectometry study.

    Science.gov (United States)

    Primorac, Elena; Dapić, Irena; Strbe, Nina; Kovacević, Davor

    2010-03-01

    The method of stagnation point optical reflectometry was applied for investigation of adsorption of bovine serum albumin (BSA) on previously formed poly(allylamine hydrochloride)/poly(sodium 4-styrenesulphonate) (PAH/PSS) multilayer with PAH being a terminal layer. The solid substrate was silica in the form of silicon wafers carrying an oxide layer. In order to interpret the adsorption of BSA, the build-up mechanism of PAH/PSS multilayers was examined with special emphasis on the effect of electrolyte concentration, pH of solution, and the anchoring (precursor) layer on that process. Additionally, the effect of BSA concentration and of the anchoring layer on BSA adsorption was investigated. It was shown that in all investigated systems the adsorption of BSA depends on conditions under which the multilayer was formed (ionic strength, pH and presence of an anchoring layer), as well as on BSA concentration. It follows that adsorption of BSA could be controlled not only by choosing suitable BSA concentration, but also by modifying the preformed multilayer.

  18. Bovine serum albumin conformational changes upon adsorption on titania and on hydroxyapatite and their relation with biomineralization.

    Science.gov (United States)

    Serro, A P; Bastos, M; Pessoa, J Costa; Saramago, B

    2004-09-01

    The biocompatibility of implant materials used for substitution of bone tissue depends on its ability to induce the deposition of a hydroxyapatite layer when in contact with body fluids. In previous work, some of the authors found that bovine serum albumin (BSA) promotes calcium phosphate deposition if preadsorbed on hydroxyapatite and retards precipitation if preadsorbed on titania. In the present study, we investigated the adsorption of BSA upon particles of titania and hydroxyapatite in order to understand the different role played by the protein on the mineralization of both biomaterials. The adsorption isotherms were determined and the structural changes induced by adsorption at different surface coverages were investigated by circular dichroism spectroscopy and differential scanning microcalorimetry. At low surface coverages, the adsorbed BSA molecules lost part of their alpha-helix content. However, at high surface coverages, corresponding to the plateau values of the adsorption isotherms, the BSA molecules did not undergo structural rearrangements upon adsorption. In the latter circumstances, the availability of BSA calcium binding sites, which should be responsible for inducing mineralization, depends on the electrostatic interactions between BSA and the sorbent surface. A possible explanation for the different mineralization behavior of hydroxyapatite and titania is advanced. Copyright 2004 Wiley Periodicals, Inc.

  19. Effects of Multiwalled Carbon Nanotube Surface Modification and Purification on Bovine Serum Albumin Binding and Biological Responses

    Directory of Open Access Journals (Sweden)

    Wei Bai

    2016-01-01

    Full Text Available Carboxylation of multiwalled carbon nanotubes (MWCNTs has been used to improve solubility in aqueous systems and for further functionalization with biologically active moieties for biomedical uses. An important consideration is that oxidation debris is generated during the process of carboxylation, which can be removed by base washing. We hypothesized that surface modification as well as purification by debris removal may alter physicochemical properties of MWCNTs and their ability to bind proteins. We utilized pristine MWCNT, carboxylated MWCNTs (F-MWCNTs, and base-washed carboxylated MWCNTs (BW-F-MWCNTs to examine formation of a bovine serum albumin (BSA protein corona and impact on biological responses. We found that carboxylation increased the capability of F-MWCNTs to bind BSA, and base washing further increased this binding. Functionalization increased cellular uptake by rat aortic endothelial cells (RAEC and mouse macrophages (RAW264.7, while base washing showed results similar to the functionalized analog. Interestingly, BSA binding downregulated mRNA levels of interleukin-6 (IL-6 and heme oxygenase 1 (Hmox1 in RAEC cells but upregulated the expression of IL-6 and Hmox1 in RAW264.7 cells. Overall, our study demonstrated that surface modification as well as further purification impacted the interaction of MWCNTs with proteins and subsequent cellular responses.

  20. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces.

    Science.gov (United States)

    Jeyachandran, Y L; Mielczarski, E; Rai, B; Mielczarski, J A

    2009-10-06

    We studied the adsorption of bovine serum albumin (BSA) from phosphate-buffered saline (pH 7.4) to hydrophilic and hydrophobic surfaces. Attenuated total reflection Fourier transform infrared spectroscopy, supported by spectral simulation, allowed us to determine with high precision the amount of BSA adsorbed (surface coverage) and its structural composition. The adsorbed BSA molecules had an alpha-helical structure on both hydrophobic and hydrophilic surfaces but had different molecular conformations and adsorption strengths on the two types of surface. Adsorption of BSA was saturated at around 50% surface coverage on the hydrophobic surface, whereas on the hydrophilic surface the adsorption reached 95%. The BSA molecules adsorbed to the hydrophilic surface with a higher interaction strength than to the hydrophobic surface. Very little adsorbed BSA could be desorbed from the hydrophilic surface, even using 0.1 M sodium dodecyl sulfate, a strong detergent solution. The formation of BSA-phosphate surface complexes was observed under different BSA adsorption conditions on hydrophobic and hydrophilic surfaces. The formation of these complexes correlated with the more efficient blocking of nonspecific interactions by the adsorbed BSA layer. Results from the molecular modeling of BSA interactions with hydrophobic and hydrophilic surfaces support the spectroscopic findings.

  1. [Investigation on binding interaction of berberine chloride with bovine serum albumin immobilized onto chromatographic supports by frontal chromatography].

    Science.gov (United States)

    Zeng, Xiaolei; Lei, Genhu; Wei, Yinmao

    2007-05-01

    Berberine chloride (BC) is a major active constituent of coptis and can be used as an antipyrotic and antibacterial medicine. Frontal analysis was used to investigate the changes in the binding constant (K), retention factor (k), binding ratio (PPB) and mole of binding sites (m(L)) for the binding of BC on an immobilized bovine serum albumin (BSA) column at several temperatures and to obtain the thermodynamic parameters in the binding process. At 30 degrees C, the binding constant was 4.79 x 10(4) L/mol. K, k and m(L) all decreased as the temperature was increased. Among these three parameters, the change magnitude in m(L) was the most significant. It could be concluded that the decrease in the retention of BC was caused by the decrease of both K and m(L), and the change in the configuration of BSA was considered to be the main reason for the decrease of binding site. The thermodynamic analysis indicated that the main driving force for the interaction between BC and BSA is electrostatic force.

  2. Deciphering the complexation process of a fluoroquinolone antibiotic, levofloxacin, with bovine serum albumin in the presence of additives

    Science.gov (United States)

    Kaur, Amandeep; Khan, Imran Ahmd; Banipal, Parampaul Kaur; Banipal, Tarlok Singh

    2018-02-01

    The current work aims to explore the thermodynamic and conformational aspects for the binding of fluoroquinolone antibacterial drug, levofloxacin (LFC), with bovine serum albumin (BSA) using calorimetric, spectroscopic (UV-visible, fluorescence, circular dichroism, and 1H NMR), dynamic light scattering (DLS) and computational methods (molecular docking). The binding of LFC with BSA at two sequential sites with higher affinity ( 103 M- 1) at the first site has been explored by calorimetry whereas the binding at a single site with affinity of the order of 104 M- 1 has been observed from fluorescence spectroscopy. The calorimetric study in the presence of additives along with docking analysis reveals the significant role of electrostatic, hydrogen bonding, and hydrophobic interactions in the association process. The slight conformational changes in protein as well as the changes in the water network structure around the binding cavity of protein have been observed from spectroscopic and DLS measurements. The LFC induced quenching of BSA fluorescence was observed to be initiated mainly through the static quenching process and this suggests the formation of ground state LFC-BSA association complex. The stronger interactions of LFC in the cavity of Sudlow site I (subdomain IIA) of protein have been explored from site marker calorimetric and molecular docking study.

  3. Binding of teicoplanin and vancomycin to bovine serum albumin in vitro: a multispectroscopic approach and molecular modeling.

    Science.gov (United States)

    Lin, Yongxin; Jiao, Genlong; Sun, Guodong; Zhang, Lili; Wang, Shilong; Liu, Hanchao; Li, Zhizhong

    2014-03-01

    In this paper, the binding properties of teicoplanin and vancomycin to bovine serum albumin (BSA) were investigated using fluorescence quenching, synchronous fluorescence, Fourier transform infrared (FTIR), circular dichroism (CD) and UV-vis spectroscopic techniques and molecular docking under simulative physiological conditions. The results obtained from fluorescence quenching data revealed that the drug-BSA interaction altered the conformational structure of BSA. Meanwhile, the 3D fluorescence, CD, FTIR and UV-vis data demonstrated that the conformation of BSA was slightly altered in the presence of teicoplanin and vancomycin, with different reduced α-helical contents. The binding distances for the drug-BSA system were provided by the efficiency of fluorescence resonance energy transfer (FRET). Furthermore, the thermodynamic analysis implied that hydrogen bond and van der Waals' forces were the main interaction for the drug-BSA systems, which agreed well with the results from the molecular modeling study. The results obtained herein will be of biological significance in future toxicological and pharmacological investigation. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Affinity study on bovine serum albumin's peptides to amphiphilic gold nanoparticles: A test of epitopes and non-epitopes

    Science.gov (United States)

    Yuan, Ming; Li, Wanrong; Yang, Mingming; Huang, Xiufeng; Bai, Zhijun; Liu, Yushuang; Cai, Weijun; Wang, Yuqin; Zhang, Feng

    2017-09-01

    It is an inevitable event that nanoparticles (NPs) will encounter proteins/peptides in nano-medicine, so it has been significant to know their interaction mechanism before in vivo applications. Previously, a 105-amino-acid sequence had been reported as the binding site between bovine serum albumin (BSA) and amphiphilic polymer coated gold nanoparticles (AP-AuNPs) along with a mortise-tenon joint hypothesis. This article tested the affinity difference between two epitope peptide sequences such as: LGEYGFQNALIVR (S1), DAFLGSFLYEYSR (S2) and one non-epitope peptide sequence as: FDEHVKLVNELTEF (S3). With the photoluminescent amino acid residues, the fluorescence quenching method based on the nanometal surface energy transfer (NSET) principle was able to study the thermodynamics of the current binding system. The binding constants (Ka) were determined and followed the order as: Ka-S1 > Ka-S2 >> Ka-S3. Moreover, Hill constants indicated that cooperativity only presented in the interactions of AP-AuNP with either S1 or S2, but not for S3. Moreover, gel electrophoresis, surface plasmon resonance, atomic force microscopy and three dimensional fluorescence microscopy were all also used to comprehensively analyse the binding interaction mechanism. These results further provided useful information to better understand the mortise-tenon joint, which might find applications to nanofabrication and biomedicine.

  5. Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-03-01

    Full Text Available For reducing protein aggregation in foam fractionation, the role of pH-induced structural change in the interface-induced protein aggregation was analyzed using bovine serum albumin (BSA as a model protein. The results show that the decrease in pH from 7.0 to 3.0 gradually unfolded the BSA structure to increase the molecular size and the relative content of β-sheet and thus reduced the stability of BSA in the aqueous solution. At the isoelectric point (pH 4.7, BSA suffered the lowest level in protein aggregation induced by the gas–liquid interface. In the pH range from 7.0 to 4.7, most BSA aggregates were formed in the defoaming process while in the pH range from 4.7 to 3.0, the BSA aggregates were formed at the gas–liquid interface due to the unfolded BSA structure and they further aggregated to form insoluble ones in the desorption process.

  6. Interactions between bovine serum albumin and Langmuir films composed of charged and uncharged poly(N-isopropylacrylamide) block copolymers.

    Science.gov (United States)

    Volden, Sondre; Ese, Marit-Helen G; Zhu, Kaizheng; Yasuda, Masahiro; Nyström, Bo; Glomm, Wilhelm R

    2012-10-01

    The thermoresponsive poly(N-isopropylacrylamide) (PNIPAAM) and NIPAAM block copolymer derivatives are attractive for drug delivery applications as they contract reversibly at lower critical solution temperatures (LCST) close to physiological conditions. In order to investigate biomaterial-protein compatibility, we have studied the interaction between PNIPAAM copolymer films spread at the air-water surface and bovine serum albumin (BSA) injected below the precompressed polymer films, using the Langmuir technique coupled with Brewster angle microscopy (BAM). A PNIPAAM homopolymer was applied together with a number of PNIPAAM-based di- and triblock copolymers, to assess effects of e.g., charge and hydrophobicity on protein-polymer interactions. The nature and strength of protein-polymer interaction was found to be tunable, ranging from complex formation (PNIPAAM homopolymer) to mixed monolayers and electrostatic cross-linking, according to the nature of the co-monomer. Results show that intercalation versus adsorption can be controlled through polymer composition. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Characterization of Silver/Bovine Serum Albumin (Ag/BSA) nanoparticles structure: morphological, compositional, and interaction studies.

    Science.gov (United States)

    Gebregeorgis, A; Bhan, C; Wilson, O; Raghavan, D

    2013-01-01

    The primary objective of this study was to elucidate the structure of protein conjugated silver nanoparticles prepared by chemical reduction of AgNO(3) and bovine serum albumin (BSA) mixture. The role of BSA in the formation of Ag/BSA nanoparticles was established by UV-Vis Spectroscopy. The association of silver with BSA in Ag/BSA nanoparticles was studied by the decrease in the intensity of absorbance peak at 278 nm in UV-Vis spectra and shift in cathodic peak potential in cyclic voltammogram. The molar ratio of silver to BSA in the Ag/BSA nanoparticles is 27:1, as ascertained by thermogravimetric analysis and atomic absorption spectrometry. Based on atomic force microscopy, dynamic light scattering and transmission electron microscopy (TEM) measurements, the average particle size of nanoparticles was found to be range of 11-15 nm. TEM image showed that the nanoparticle has two distinct phases and selected area electron diffraction pattern of nanoparticles indicated that the silver phase in Ag/BSA is fcc. X-ray photo electron spectroscopy measurements of freshly prepared and argon sputtered nanoparticles provided evidence that the outer and inner region of nanoparticles are mainly composed of BSA and silver respectively. The structural and compositional findings of nanoparticles could have a strong bearing on the bioavailability and antimicrobial activity of nanoparticles. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Fluorescent copper(II complexes: The electron transfer mechanism, interaction with bovine serum albumin (BSA and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Madhumita Hazra

    2017-01-01

    Full Text Available Dinuclear copper(II complexes with formula [Cu2(L2(N32] (1 and [Cu2(L2(NCS2] (2 HL = (1-[(3-methyl-pyridine-2-ylimino-methyl]-naphthalen-2-ol were synthesized by controlling the molar ratio of Cu(OAC2·6H2O, HL, sodium azide (1 and ammonium thiocyanate (2. The end on bridges appear exclusively in azide and thiocyanate to copper complexes. The electron transfer mechanism of copper(II complexes is examined by cyclic voltammetry indicating copper(II complexes are Cu(II/Cu(I couple. The interactions of copper(II complexes towards bovine serum albumin (BSA were examined with the help of absorption and fluorescence spectroscopic tools. We report a superficial solution-based route for the synthesis of micro crystals of copper complexes with BSA. The antibacterial activity of the Schiff base and its copper complexes were investigated by the agar disc diffusion method against some species of pathogenic bacteria (Escherichia coli, Vibrio cholerae, Streptococcus pneumonia and Bacillus cereus. It has been observed that the antibacterial activity of all complexes is higher than the ligand.

  9. In-situ monitoring of etching of bovine serum albumin using low-temperature atmospheric plasma jet

    Science.gov (United States)

    Kousal, J.; Shelemin, A.; Kylián, O.; Slavínská, D.; Biederman, H.

    2017-01-01

    Bio-decontamination of surfaces by means of atmospheric pressure plasma is nowadays extensively studied as it represents promising alternative to commonly used sterilization/decontamination techniques. The non-equilibrium atmospheric pressure plasmas were already reported to be highly effective in removal of a wide range of biological residual from surfaces. Nevertheless the kinetics of removal of biological contamination from surfaces is still not well understood as the majority of performed studies were based on ex-situ evaluation of etching rates, which did not allow investigating details of plasma action on biomolecules. This study therefore presents a real-time, in-situ ellipsometric characterization of removal of bovine serum albumin (BSA) from surfaces by low-temperature atmospheric plasma jet operated in argon. Non-linear and at shorter distances between treated samples and nozzle of the plasma jet also non-monotonic dependence of the removal rate on the treatment duration was observed. According to additional measurements focused on the determination of chemical changes of treated BSA as well as temperature measurements, the observed behavior is most likely connected with two opposing effects: the formation of a thin layer on the top of BSA deposit enriched in inorganic compounds, whose presence causes a gradual decrease of removal efficiency, and slight heating of BSA that facilitates its degradation and volatilization induced by chemically active radicals produced by the plasma.

  10. Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins

    Science.gov (United States)

    Yang, Qingxiu; Wei, Lin; Zheng, Xuanfang; Xiao, Lehui

    2015-01-01

    In this work, we demonstrated a convenient and green strategy for the synthesis of highly luminescent and water-soluble carbon dots (Cdots) by carbonizing carbon precursors, i.e., Bovine serum albumin (BSA) nanoparticles, in water solution. Without post surface modification, the as-synthesized Cdots exhibit fluorescence quantum yield (Q.Y.) as high as 34.8% and display superior colloidal stability not only in concentrated salt solutions (e.g. 2 M KCl) but also in a wide range of pH solutions. According to the FT-IR measurements, the Cdots contain many carboxyl groups, providing a versatile route for further chemical and biological functionalization. Through conjugation of Cdots with the transacting activator of transcription (TAT) peptide (a kind of cell penetration peptide (CPP)) derived from human immunodeficiency virus (HIV), it is possible to directly monitor the dynamic interactions of CPP with living cell membrane at single particle level. Furthermore, these Cdots also exhibit a dosage-dependent selectivity toward Fe3+ among other metal ions, including K+, Na+, Mg2+, Hg2+, Co2+, Cu2+, Pb2+ and Al3+. We believed that the Cdots prepared by this strategy would display promising applications in various areas, including analytical chemistry, nanomedicine, biochemistry and so on. PMID:26634992

  11. Interactions of cephalexin with bovine serum albumin: displacement reaction and molecular docking

    Directory of Open Access Journals (Sweden)

    Hamed Hamishehkar

    2016-09-01

    Conclusion: The outcomes of spectroscopic methods revealed that the conformation of BSA changed during drug-BSA interaction. The results of FRET propose that CPL quenches the fluorescence of BSA by static quenching and FRET. The displacement study showed that phenylbutazon and ketoprofen displaced CPL, indicating that its binding site on albumin is site I and Gentamicin cannot be displaced from the binding site of CPL. All results of molecular docking method agreed with the results of experimental data.

  12. Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin.

    Science.gov (United States)

    Yang, Ya-Qiong; He, Xi-Wen; Wang, Yi-Zhi; Li, Wen-You; Zhang, Yu-Kui

    2014-04-15

    A novel epitope molecularly imprinted polymer (EMIP) for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin (BSA) was demonstrated where polymerization was performed on the surface of silica nanospheres embedded CdTe quantum dots (QDs). The synthetic peptide derived from the surface-exposed C-terminus of bovine serum albumin (BSA, residues 599-607) was selected as the template molecule. The resulting EMIP film was able to selectively capture the template peptide and the corresponding target protein BSA via the recognition cavities. Based on the fluorescence quenching, the EMIP-coated QDs (molecular imprinted polymer coating CdTe QDs using epitope as the template) nanospheres were successfully applied to the direct fluorescence quantification of BSA. Compared with BMIP-coated QDs (molecular imprinted polymer coating CdTe QDs using BSA as the template), the imprinting factor and adsorption capacity of EMIP-coated QDs were greatly increased. The prepared EMIP-coated QDs can also discriminate even one mismatched sequences from the original sequences of the epitope of the BSA. The practical analytical performance of the EMIP-coated QDs was examined by evaluating the detection of BSA in the bovine calf serum sample with satisfactory results. In addition, the resulting EMIP-coated QDs nanospheres were also successfully applied to separating BSA from the bovine blood sample. © 2013 Published by Elsevier B.V.

  13. Combined computational and experimental studies of molecular interactions of albuterol sulfate with bovine serum albumin for pulmonary drug nanoparticles

    Directory of Open Access Journals (Sweden)

    Lin SH

    2016-09-01

    Full Text Available Shao-Hui Lin,1 Wei Cui,2 Gui-Ling Wang,1 Shuai Meng,1 Ying-Chun Liu,3 Hong-Wei Jin,4 Liang-Ren Zhang,4 Ying Xie1,4 1Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, 2School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 3Soft Matter Research Center, Department of Chemistry, Zhejiang University, Hangzhou, 4State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People’s Republic of China Abstract: Albumin-based nanoparticles (NPs are a promising technology for developing drug-carrier systems, with improved deposition and retention profiles in lungs. Improved understanding of these drug–carrier interactions could lead to better drug-delivery systems. The present study combines computational and experimental methods to gain insights into the mechanism of binding of albuterol sulfate (AS to bovine serum albumin (BSA on the molecular level. Molecular dynamics simulation and surface plasmon resonance spectroscopy were used to determine that there are two binding sites on BSA for AS: the first of which is a high-affinity site corresponding to AS1 and the second of which appears to represent the integrated functions of several low-affinity sites corresponding to AS2, AS3, and AS8. AS1 was the strongest binding site, established via electrostatic interaction with Glu243 and Asp255 residues in a hydrophobic pocket. Hydrogen bonds and salt bridges played a main role in the critical binding of AS1 to BSA, and water bridges served a supporting role. Based upon the interaction mechanism, BSA NPs loaded with AS were prepared, and their drug-loading efficiency, morphology, and -release profiles were evaluated. Successful clinical development of AS-BSA-NPs may improve therapy and prevention of bronchospasm in patients with reversible obstructive airway disease, and thus

  14. Bovine Serum Albumin Adsorption on TiO2 Colloids: The Effect of Particle Agglomeration and Surface Composition.

    Science.gov (United States)

    Márquez, Augusto; Berger, Thomas; Feinle, Andrea; Hüsing, Nicola; Himly, Martin; Duschl, Albert; Diwald, Oliver

    2017-03-14

    Protein adsorption at nanostructured oxides strongly depends on the synthesis conditions and sample history of the material investigated. We measured the adsorption of bovine serum albumin (BSA) to commercial Aeroxide TiO2 P25 nanoparticles in aqueous dispersions. Significant changes in the adsorption capacity were induced by mild sample washing procedures and attributed to the structural modification of adsorbed water and surface hydroxyls. Motivated by the lack of information about the sample history of commercial TiO2 nanoparticle samples, we used vapor-phase-grown TiO2 nanoparticles, a well-established model system for adsorption and photocatalysis studies, and performed on this material for the first time a systematic and quantitative BSA adsorption study. After alternating vacuum and oxygen treatment of the nanoparticle powders at elevated temperatures for surface purification, we determined size distributions covering both the size of the individualized nanoparticles and nanoparticle agglomerates using transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) in an aqueous dispersion. Quantitative BSA adsorption measurements at different pH values and thus variable combinations of surface-charged proteins and TiO2 nanoparticles revealed a consistent picture: BSA adsorbs only at the outer agglomerate surfaces without penetrating the interior of the agglomerates. This process levels at coverages of single monolayers, which resist consecutive simple washing procedures. A detailed analysis of the protein-specific IR amide bands reveals that the adsorption-induced protein conformational change is associated with a decrease in the helical content. This study underlines that robust qualitative and quantitative statements about protein adsorption and corona formation require well-documented and controllable surface properties of the nanomaterials involved.

  15. Conformation change of bovine serum albumin induced by bioactive titanium metals and its effects on cell behaviors.

    Science.gov (United States)

    Hu, X N; Yang, B C

    2014-04-01

    The conformation change of bovine serum albumin (BSA) induced by bioactive titanium surfaces, including acid-alkali-treated titanium (AA-Ti) and alkali-heat-treated titanium (AH-Ti), was studied, and its effects on the activity of MC3T3-E1 cell were evaluated. Pure titanium metal (P-Ti) was used as control. The AA-Ti could adsorb more BSA on its surface than AH-Ti and P-Ti. The α-helix part of the protein adsorbed on P-Ti has weakly decreased compared with native BSA, and it dramatically decreased on AA-Ti and AH-Ti. The β-sheet segment of proteins adsorbed on P-Ti and AH-Ti had obviously increased. Much more tryptophan residues were exposed after the protein conformation changed when it interacted with AH-Ti, and some tryptophan residues were enveloped after it interacted with AA-Ti and P-Ti. AA-Ti has more tryptophan residues enveloped than P-Ti. All titanium surfaces induced tyrosine residues exposed, especially for the P-Ti. The higher ratio of COO(-)/NH3(+) for the proteins on P-Ti and AA-Ti indicated an orientation of proteins on P-Ti and AA-Ti, which makes more COO(-) exposed. The lower ratio of COO(-)/NH3(+) on AH-Ti indicates that more NH3(+) is exposed on its surface. The cell proliferation ability on different treated titanium surfaces coated with BSA followed by the order: P-Ti > AA-Ti > AH-Ti, which indicated that the protein conformation change on different bioactive titanium surfaces has great effect on the cell activity. Our results showed that the different biological response of bioactive titanium metals might depend on the protein conformation change induced by the surface structure. Copyright © 2013 Wiley Periodicals, Inc.

  16. Direct binding of ethanol to bovine serum albumin: a fluorescent and 13C NMR multiplet relaxation study.

    Science.gov (United States)

    Avdulov, N A; Chochina, S V; Daragan, V A; Schroeder, F; Mayo, K H; Wood, W G

    1996-01-09

    Molecular mechanisms of ethanol interaction with proteins are not well-understood. In the present study, direct interaction of ethanol with hydrophobic binding sites on fatty acid free bovine serum albumin (BSA) was determined using the fluorescent probe 1-anilinonaphthalene-8-sulfonic acid (1,8-ANS), cis-parinaric acid, and 13C NMR. The affinity of ethanol for BSA (Kd) was (5.21 +/- 0.31) x 10(-2) mol. Ethanol (25-200 mmol) competitively inhibited 1,8-ANS binding to BSA in a concentration-dependent manner with a Ki (concentration of ethanol that decreased 1,8-ANS binding by 50%) of 658 mmol. Preincubation of BSA with ethanol significantly decreased cis-parinaric acid binding to BSA, indicating interaction of ethanol with hydrophobic fatty acid-binding site(s) on BSA. Furthermore, ethanol was found to act on three of the five fatty acid-binding sites on BSA. These data indicated selectivity in the interaction of ethanol with hydrophobic sites on BSA. 13C NMR multiplet relaxation was used to characterize the interaction of ethanol with binding sites on BSA. Detailed analysis of [13C]ethanol relaxation data obtained in the presence of increasing BSA concentrations (25-200 mg/mL) led to the conclusion that the ethanol methyl group, as opposed to its hydroxyl group, binds in a hydrophobic pocket(s) on the protein. Ethanol-induced changes in activity of certain proteins may result from direct binding of ethanol to specific hydrophobic binding sites and/or displacement of endogenous ligands from those sites.

  17. Drying and denaturation characteristics of α-lactalbumin, β-lactoglobulin, and bovine serum albumin in a convective drying process.

    Science.gov (United States)

    Haque, M Amdadul; Aldred, Peter; Chen, Jie; Barrow, Colin; Adhikari, Benu

    2014-05-21

    Drying and denaturation kinetics of aqueous droplets of α-lactalbumin (α-lac), β-lactoglobulin (β-lg), and bovine serum albumin (BSA) were measured in a convective drying environment. Single droplets having an initial droplet diameter of 2 ± 0.1 mm and containing 10% (w/v) protein concentration were dried using conditioned air (65 and 80 °C, 2-3% RH, 0.5 m/s velocity) for 600 s. The denaturation of these proteins was measured by using reversed-phase HPLC. At the end of 600 s of drying 13.3 and 19.4% α-lac was found to be lost due to denaturation at 65 and 80 °C, respectively. Up to 31.0% of β-lg was found to be denatured, whereas BSA was not found to be significantly (p > 0.05) denatured in these drying conditions. The formation and strength of skin and the associated morphological features were found to be linked with the degree of denaturation of these proteins. The secondary structure of these proteins was significantly (p < 0.05) affected and altered by the drying stresses. The β-sheet and random coil contents were increased in α-lac by 6.5 and 4.0%, respectively, whereas the α-helix and β-turn contents decreased by 5.5 and 5.0%, respectively. The β-sheet and random coil contents in β-lg were increased by 7.5 and 2.0%, respectively, whereas the α-helix and β-turn contents decreased by 3.5 and 6.0%, respectively. In the case of BSA the β-sheet, α-helix, and random coil contents were found to increase, whereas the β-turn content decreased.

  18. Reducing of salivary α-amylase inhibition by using bovine serum albumin and calcium chloride for forensic saliva screening.

    Science.gov (United States)

    Ohta, Jun; Ohmura, Masako

    2017-09-01

    Inhibiting salivary α-amylase is a critical issue of forensic saliva identification using the catalytic method. This study aims to identify human α-amylase inhibitors in forensic saliva screening by using a blue starch amylase test and to measure the extent of enzyme inhibition. Thus, in order to demonstrate the presence of inhibitors, we prepared positively charged metal ion sources or chelators that were mixed into the saliva stains. The results of this study show that ferric chloride (FeCl3), magnesium chloride, ethylenediaminetetraacetic acid, and citric acid significantly decrease the α-amylase activity of saliva stains. We also verified this approach using blood, a magnesium-containing liquid supplement, and two citric acid-containing soft drinks that were contaminated with saliva stains as forensic mock samples; these samples also showed a significant reduction in salivary α-amylase activity. To establish an inhibitor-resistant blue starch amylase test, we applied bovine serum albumin (BSA) and calcium chloride (CaCl2) to the reaction system. The results show that salivary α-amylase inhibition of the forensic mock samples occurred under normal test conditions (i.e., 300ng/µL BSA, 0mM CaCl2), and that inhibition was significantly relieved under the BSA+CaCl2 conditions (i.e., 1000ng/µL BSA, 5mM CaCl2). Therefore, the results of this study demonstrate that both BSA and CaCl2 can be utilized as reaction stabilizers in forensic saliva screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Influence of mixed electrolytes and pH on adsorption of bovine serum albumin in hydrophobic interaction chromatography.

    Science.gov (United States)

    Hackemann, Eva; Hasse, Hans

    2017-10-27

    Using salt mixtures instead of single salts can be beneficial for hydrophobic interaction chromatography (HIC). The effect of electrolytes on the adsorption of proteins, however, depends on the pH. Little is known on that dependence for mixed electrolytes. Therefore, the effect of the pH on protein adsorption from aqueous solutions containing mixed salts is systematically studied in the present work for a model system: the adsorption of bovine serum albumin (BSA) on the mildly hydrophobic resin Toyopearl PPG-600M. The pH is adjusted to 4.0, 4.7 or 7.0 using 25mM sodium phosphate or sodium citrate buffer. Binary and ternary salt mixtures of sodium chloride, ammonium chloride, sodium sulfate and ammonium sulfate as well as the pure salts are used at overall ionic strengths between 1500 and 4200mM. The temperature is always 25°C. The influence of the mixed electrolytes on the adsorption behavior of BSA changes completely with varying pH. Positive as well as negative cooperative effects of the mixed electrolytes are observed. The results are analyzed using a mathematical model which was recently introduced by our group. In that model the influence of the electrolytes is described by a Taylor series expansion in the individual ion molarities. After suitable parametrization using a subset of the data determined in the present work, the model successfully predicts the influence of mixed electrolytes on the protein adsorption. Furthermore, results for BSA from the present study are compared to literature data for lysozyme, which are available for the same adsorbent, temperature and salts. By calculating the ratio of the loading of the adsorbent for both proteins particularly favorable separation conditions can be selected. Hence, a model-based optimization of solvents for protein separation is possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Spectroscopic studies on the interaction between Pr(III) complex of an ofloxacin derivative and bovine serum albumin or DNA

    Science.gov (United States)

    Xu, Min; Ma, Zhao-Rong; Huang, Liang; Chen, Feng-Juan; Zeng, Zheng-zhi

    2011-01-01

    The binding properties on [PrL 2(NO 3)](NO 3) 2 (L = 9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperaziny)-7-oxo-7Hpyrido[1,2,3-de]-1,4-benzoxazine-6-carbaldehyde benzoyl hydrazone) to bovine serum albumin (BSA) have been studied for the first time using fluorescence spectroscopy in combination with UV-Vis absorbance spectroscopy. The results showed that [PrL 2(NO 3)](NO 3) 2 strongly quenched the intrinsic fluorescence of BSA through a static quenching procedure, and non-radiation energy transfer happened within molecules. The number of binding site was about 1, and the efficiency of Förster energy transfer provided a distance of 4.26 nm between tryptophan and [PrL 2(NO 3)](NO 3) 2 binding site. At 288, 298, 310 K, the quenching constants of BSA-[PrL 2(NO 3)](NO 3) 2 system were 5.11 × 10 4, 4.33 × 10 4 and 3.71 × 10 4 l M -1. Δ H, Δ S and Δ G were obtained based on the quenching constants and thermodynamic theory (Δ H 0 and Δ G calf thymus DNA (CT DNA) was studied by spectroscopy and viscosity measurements, which showed that the binding mode of the [PrL 2(NO 3)](NO 3) 2 with DNA is intercalation. The DNA cleavage results show that in the absence of any reducing agent, the [PrL 2(NO 3)](NO 3) 2 can cleave plasmid pBR322 DNA and its hydrolytic mechanism was demonstrated with hydroxyl radical scavengers and singlet oxygen quenchers.

  1. Polystyrene latex particles containing europium complexes prepared by miniemulsion polymerization using bovine serum albumin as a surfactant for biochemical diagnosis.

    Science.gov (United States)

    Aikawa, Tatsuo; Mizuno, Akihiro; Kohri, Michinari; Taniguchi, Tatsuo; Kishikawa, Keiki; Nakahira, Takayuki

    2016-09-01

    Luminescent particles have been attracting significant attention because they can be used in biochemical applications, such as detecting and imaging biomolecules. In this study, luminescent polystyrene latex particles were prepared through miniemulsion polymerization of styrene with dissolved europium complexes in the presence of bovine serum albumin (BSA) and poly(ethylene glycol) monomethoxy methacrylate as surfactants. The solubility of the europium complex in styrene has a strong effect on the yield of the particle. Europium tris(2-thenoyl trifluoroacetonate) di(tri-n-octyl phosphine oxide), which has a high solubility in styrene, was sufficiently incorporated into the polystyrene particles compared to europium tris(2-thenoyl trifluoroacetonate), which has a low solubility in styrene. The luminescence property of the europium complex could remain intact even after its incorporation through the miniemulsion polymerization. In the aqueous dispersion, the resulting particles could emit strong luminescence, which is a characteristic of the europium complex. The antibody fragments were covalently attached to BSA-covered particles after a reaction with a bifunctional linker, N-(6-maleimidocaproyloxy)succinimide. The time-resolved fluoroimmunoassay technique showed that 3.3pg/mL of human α-fetoproteins (AFP) can be detected by using the resulting luminescent particles. An immunochromatographic assay using the resulting particles was also performed as a convenient method to qualitatively detect biomolecules. The detection limit of AFP measured by the immunochromatographic assay was determined to be 2000pg/mL. These results revealed that the luminescent particles obtained in this study can be utilized for the highly sensitive detection of biomolecules and in vitro biochemical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Surface functionalization of zirconium dioxide nano-adsorbents with 3-aminopropyl triethoxysilane and promoted adsorption activity for bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gen; Wu, Chaochao [Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819 (China); Zhang, Xia, E-mail: xzhang@mail.neu.edu.cn [Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819 (China); Liu, Yufeng, E-mail: liuyufeng@bjmu.edu.cn [College of Pharmacy, Liaoning University, Shenyang 110036 (China); Meng, Hao; Xu, Junli; Han, Yide; Xu, Xinxin; Xu, Yan [Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819 (China)

    2016-06-15

    Surface functionalization of zirconium dioxide (ZrO{sub 2}) nano-adsorbents was carried out by using 3-aminopropyl triethoxysilane (APTES) as the modifier. The addition amount of APTES was varied to determine the optimum modification extent, and the bulk ZrO{sub 2} microparticles were also modified by APTES for comparison. Some means, such as TEM, XRD, FT-IR, XPS and TG-DSC were used to character these ZrO{sub 2} particles. The results showed that the APTES molecules were chemically immobilized on the surface of ZrO{sub 2} nanoparticles via Zr−O−Si bonds, and the nano-ZrO{sub 2} samples showed larger special surface area. In the adsorption of bovine serum albumin (BSA), nano-ZrO{sub 2} samples exhibited enhanced adsorption activity, and APTES modified nano-ZrO{sub 2} with proper APTES content presented the best adsorption property. Under the same adsorption conditions, the equilibrium adsorption capacity of BSA on APTES-ZrO{sub 2}-2 was almost 2.3 times as that on pristine nano-ZrO{sub 2} and 3.0 times as on bulk ZrO{sub 2} microparticles. The increased adsorption capacity of APTES-ZrO{sub 2} nano-adsorbents can be attributed to the chemical interaction between amino and carboxyl groups at APTES-ZrO{sub 2}/BSA interface. The pH-dependent experiments showed that the optimum pH value for the adsorption and desorption was 5.0 and 9.0, respectively, which suggested that the adsorption and release of BSA could be controlled simply by adjusting the solution pH condition. - Highlights: • APTES chemically immobilized on ZrO{sub 2} nanoparticles via Zr−O−Si bond. • Enhanced adsorption capacity of BSA was observed on APTES-ZrO{sub 2}. • Chemical adsorption character of BSA on APTES-ZrO{sub 2}. • Adsorption/release of BSA on APTES-ZrO{sub 2} accomplished by adjusting pH value.

  3. Interaction study on bovine serum albumin physically binding to silver nanoparticles: Evolution from discrete conjugates to protein coronas

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jun; Zhong, Ruibo; Li, Wanrong; Liu, Yushuang; Bai, Zhijun; Yin, Jun; Liu, Jingran; Gong, Pei [Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018 (China); Zhao, Xinmin, E-mail: zhao.xinmin@hotmail.com [School of Foreign Language, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018 (China); Zhang, Feng, E-mail: fengzhang1978@hotmail.com [Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018 (China)

    2015-12-30

    Graphical abstract: With the non-uniform coating of amphiphilic polymer, the silver nanoparticles (AgNPs) can form protein coronas which can become discrete protein–nanoparticle conjugates when controlling the protein–nanoparticle molar ratios. The protein's conformational changes upon binding NPs was also studied by both circular dichroism and three-dimensional fluorescence spectroscopy. - Highlights: • The amphiphilic polymer coating can not only transfer hydrophobic NPs into water soluble, but also providing a thick shell responsible for the strong physisorption to proteins without significantly changing their spatial conformations. • NP with discrete proteins can be simply obtained by a simple mixing procedure followed by a gel electrophoresis separation, and the resulting conjugates are robust enough to resist common separation techniques like gel electrophoresis. • In combination with the universal amphiphilic polymer coating strategy and the physisorption mediated protein–NP conjugation, proteins like BSA can be effectively conjugated to different materials such as noble metal, semiconductor and magnetic NPs. • In contrast to chemical coupling methods, the physisorption mediated protein–NP conjugation holds facile, robust and reversible advantages, which may find wide applications in nano-biomedicine field. - Abstract: The nanostructures formed by inorganic nanoparticles together with organic molecules especially biomolecules have attracted increasing attention from both industries and researching fields due to their unique hybrid properties. In this paper, we systemically studied the interactions between amphiphilic polymer coated silver nanoparticles and bovine serum albumins by employing the fluorescence quenching approach in combination with the Stern-Volmer and Hill equations. The binding affinity was determined to 1.30 × 10{sup 7} M{sup −1} and the interaction was spontaneously driven by mainly the van der Waals force and

  4. The binding of flavopiridol to blood serum albumin.

    Science.gov (United States)

    Myatt, Daniel; Johnson, Louise; Baumli, Sonja; Siligardi, Giuliano

    2010-01-01

    Flavopiridol is a potent cyclin-dependant kinase (CDK) inhibitor and is in clinical trials for anticancer treatment. A limiting factor in its drug development has been the high dosage required in human clinical trials. The high dosage is suggested to be necessary because of significant flavopiridol binding to human blood serum. Albumin is the major protein component of blood serum and has been suggested as a likely high affinity binding target. We characterized the binding of human serum albumin to flavopiridol using circular dichroism (hereafter CD). Flavopiridol bound to human serum albumin has a diagnostic CD binding peak at 284 nm. The diagnostic CD binding peak was unobservable for flavopiridol with bovine serum albumin, using the same experimental conditions. However, under higher albumin concentrations a small CD signal is observed confirming, flavopiridol binds to bovine serum albumin as well. © 2010 Wiley-Liss, Inc.

  5. The effects of hydroxyapatite/calcium phosphate glass scaffold and its surface modification with bovine serum albumin on 1-wall intrabony defects of beagle dogs: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Um, Yoo-Jung; Jung, Ui-Won; Chae, Gyung-Joon; Kim, Chang-Sung; Cho, Kyoo-Sung; Kim, Chong-Kwan; Choi, Seong-Ho [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752 l (Korea, Republic of); Lee, Yong-Keun [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-750 (Korea, Republic of)], E-mail: shchoi726@yuhs.ac

    2008-12-15

    The purpose of this study was to evaluate the effects of biphasic hydroxyapatite/calcium phosphate glass (HA/CPG) scaffold and its surface modification with bovine serum albumin (BSA) on periodontal regeneration. 1-wall intrabony defects were surgically created on five beagle dogs. HA/CPG scaffolds, with a hydroxyapatite (HA)/calcium phosphate glass (CPG) ratio of 95:5 by weight (%) and surface modification done by 2% bovine serum albumin, were used. The control group received surgical flap operation, and the experimental groups were filled with HA/CPG scaffolds and HA/CPG(BSA) scaffolds. The animals were sacrificed eight weeks after surgery. Histological findings revealed better space maintenance in the experimental groups than the control group, and showed new bone formation intermittently in between the residual material particles. The newly formed bone was mostly woven bone and the residual particles were undergoing resorption. Cementum regeneration was observed with limited root resorption in all the groups. Histometric analysis also revealed greater mean values in new bone formation, cementum regeneration and bone area than the control group in both experimental groups. However, similar findings were presented between HA/CPG and HA/CPG(BSA). The result of the present study revealed the newly fabricated HA/CPG scaffold to have a potential use as a bone substitute material.

  6. A novel electrochemiluminescence ethanol biosensor based on tris(2,2'-bipyridine) ruthenium (II) and alcohol dehydrogenase immobilized in graphene/bovine serum albumin composite film.

    Science.gov (United States)

    Gao, Wenhua; Chen, Yunsheng; Xi, Jing; Lin, Shaoyu; Chen, Yaowen; Lin, Yuejuan; Chen, Zhanguang

    2013-03-15

    We developed a novel electrochemiluminescence (ECL) ethanol biosensor based on Ru(bpy)(3)(2+) and alcohol dehydrogenase (ADH) immobilized by graphene/bovine serum albumin composite film. The graphene film was directly formed on a glassy carbon electrode surface via an in situ reduction of graphene oxide (GO) and Ru(bpy)(3)(2+) was immobilized during its formation. The graphene film acted as both a decorating agent for immobilization of Ru(bpy)(3)(2+) and a matrix to immobilize bovine serum albumin (BSA), meanwhile BSA not only acted as a reductant to reduce GO, but also provided a friendly environment for ADH immobilization. Furthermore, ADH was separated from Ru(bpy)(3)(2+) by the electron-conductive graphene/BSA composite film to retain its enzymatic activity. The experimental results indicated that the biosensor had excellent electrochemical activity, ECL response to ethanol and stability. Such a design of Ru(bpy)(3)(2+)-graphene/BSA film to modify electrode holds a great promise as a new biocompatible platform for the development of enzyme-based ECL biosensors. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Quantitation of species differences in albumin–ligand interactions for bovine, human and rat serum albumins using fluorescence spectroscopy: A test case with some Sudlow's site I ligands

    Energy Technology Data Exchange (ETDEWEB)

    Poór, Miklós [Institute of Laboratory Medicine, University of Pécs, Ifjúság u. 13, Pécs H-7624 (Hungary); Li, Yin; Matisz, Gergely [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); János Szentágothai Research Center, Pécs H-7624 (Hungary); Kiss, László [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); Kunsági-Máté, Sándor [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); János Szentágothai Research Center, Pécs H-7624 (Hungary); Kőszegi, Tamás, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pécs, Ifjúság u. 13, Pécs H-7624 (Hungary)

    2014-01-15

    Albumin, the most abundant plasma protein is an approximately 67 kDa sized water-soluble macromolecule. Since several drugs and xenobiotics circulate in the blood at least partially in albumin-bound form, albumin plays a key role in the pharmacokinetics/toxicokinetics of these chemicals. Most of the drugs and xenobiotics are Sudlow's site I ligands. In numerous studies, bovine serum albumin (BSA) is used for modeling albumin–ligand interactions and the results are extrapolated to human serum albumin (HSA). Furthermore, only limited information is available related to albumin–ligand interactions of different albumin species. Therefore, in our study, we have focused on the quantification of differences between bovine, human and rat serum albumin (RSA) using four Sudlow's site I ligands (luteolin, ochratoxin A, phenylbutazone and warfarin). Interactions were analyzed by fluorescence spectroscopy. Stability constants as well as competing capacities of the ligands were determined, and thermodynamic study was also performed. Our results highlight that there could be major differences between BSA, HSA and RSA in their ligand binding properties. Based on our observations we emphasize that in molecular aspects BSA behaves considerably differently from HSA or from albumins of other species therefore, it is strongly recommended to apply at least some confirmatory measurements when data obtained from other species are attempted to be extrapolated to HSA. -- Highlights: • Albumin–ligand interactions of human, bovine and rat albumins were studied. • Four Sudlow's site I ligands were tested by fluorescence spectroscopy. • Substantial differences were found in stability constants among albumin complexes. • Competing capacity of ligands showed major differences in the studied species. • Data obtained for BSA cannot be directly extrapolated to human albumin.

  8. The effect of bovine serum albumin and fetal calf serum on sperm quality, DNA fragmentation and lipid peroxidation of the liquid stored rabbit semen.

    Science.gov (United States)

    Sarıözkan, Serpil; Türk, Gaffari; Cantürk, Fazile; Yay, Arzu; Eken, Ayşe; Akçay, Aytaç

    2013-08-01

    The aim of the present study was to determine the effects of the bovine serum albumin (BSA) and fetal calf serum (FCS) on sperm quality, DNA fragmentation and lipid peroxidation of liquid stored rabbit semen stored up to 72 h at 5 °C. Ejaculates were collected from five New Zealand male rabbits by artificial vagina and pooled at 37 °C following evaluation. Each pooled ejaculate was split into three equal experimental groups and diluted to a final concentration of approximately 40 × 10(6)sperm/ml (single step dilution), in an Eppendorf tube, with the Tris based extender containing BSA (5mg/ml), FCS (10%) or no additive (control) at 37 °C, cooled to 5 °C and stored for up to 72 h. The extender supplemented with BSA and FCS did not improve the percentages of motility and acrosomal abnormality during 48 h compared to the control. The additives BSA and FCS had a significant effect in the maintaining of plasma membrane integrity between 48 and 72 h storage period, compared to the control (P<0.01). The supplementation of BSA and FCS had a protective effect on motility (P<0.05), plasma membrane integrity (P<0.01) and acrosomal integrity (P<0.01) at 72 h compared to the control. The supplementations with BSA and FCS led to a reduction in DNA damage of rabbit sperm at 48 and 72 h during storage period, compared to the control (P<0.001). Although supplementation of BSA and FCS caused significant (P<0.01) decreases in malondialdehyde (MDA) level at 48 h and 72 h, they significantly (P<0.01) increased the glutathione peroxidase (GPx) antioxidant activity up to 72 h when compared to the control group. In conclusion, BSA and FCS supplementation to liquid stored rabbit semen provide a protection for spermatozoa against cool storage-induced DNA damage and plasma membrane integrity by their antioxidative properties. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumin on the Synthesis and Stability of Gold Nanostructures

    Directory of Open Access Journals (Sweden)

    Érica G. A. Miranda

    2016-03-01

    Full Text Available The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs. The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12 to solutions of human and bovine serum albumins (HSA and BSA at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR bands became detectable from fifteen days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After two months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol

  10. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumin on the Synthesis and Stability of Gold Nanostructures

    Science.gov (United States)

    Miranda, Érica; Tofanello, Aryane; Brito, Adrianne; Lopes, David; Giacomelli, Fernando; Albuquerque, Lindomar; Costa, Fanny; Ferreira, Fabio; Araujo-Chaves, Juliana; de Castro, Carlos; Nantes, Iseli

    2016-03-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from fifteen days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After two months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination

  11. The studies of density, apparent molar volume, and viscosity of bovine serum albumin, egg albumin, and lysozyme in aqueous and RbI, CsI, and DTAB aqueous solutions at 303.15 K.

    Science.gov (United States)

    Singh, Man; Chand, Hema; Gupta, K C

    2005-06-01

    Density (rho), apparent molar volume (V(phi)), and viscosity (eta) of 0.0010 to 0.0018% (w/v) of bovine serum albumin (BSA), egg albumin, and lysozyme in 0.0002, 0.0004, and 0.0008 M aqueous RbI and CsI, and (dodecyl)(trimethyl)ammonium bromide (DTAB) solutions were obtained. The experimental data were regressed against composition, and constants are used to elucidate the conformational changes in protein molecules. With salt concentration, the density of proteins is found to decrease, and the order of the effect of additives on density is observed as CsI > RbI > DTAB. The trend of apparent molar volume of proteins is found as BSA > egg-albumin > lysozyme for three additives. In general, eta values of BSA remain higher for all compositions of RbI than that of egg-albumin for CsI and DTAB. These orders of the data indicate the strength of intermolecular forces between proteins and salts, and are helpful for understanding the denaturation of proteins.

  12. Recognition and binding of β-lactam antibiotics to bovine serum albumin by frontal affinity chromatography in combination with spectroscopy and molecular docking.

    Science.gov (United States)

    Li, Qian; Zhang, Tianlong; Bian, Liujiao

    2016-03-01

    Serum albumins are the most abundant carrier proteins in blood plasma and participate in the binding and transportation of various exogenous and endogenous compounds in the body. This work was designed to investigate the recognition and binding of three typical β-lactam antibiotics including penicillin G (Pen G), penicillin V (Pen V) and cefalexin (Cef) with bovine serum albumin (BSA) by frontal affinity chromatography in combination with UV-vis absorption spectra, fluorescence emission spectra, binding site marker competitive experiment and molecular docking under simulated physiological conditions. The results showed that a BSA only bound with one antibiotic molecule in the binding process, and the binding constants for Pen G-BSA, Pen V-BSA and Cef-BSA complexes were 4.22×10(1), 4.86×10(2) and 3.32×10(3) (L/mol), respectively. All the three β-lactam antibiotics were mainly inserted into the subdomain IIA (binding site 1) of BSA by hydrogen bonds and Van der Waals forces. The binding capacity between the antibiotics and BSA was closely related to the functional groups and flexibility of side chains in antibiotics. This study provided an important insight into the molecular recognition and binding interaction of BSA with β-lactam antibiotics, which may be a useful guideline for the innovative clinical medications and new antibiotic designs with effective pharmacological properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. In Vitro Enhancement of Carvedilol Glucuronidation by Amiodarone-Mediated Altered Protein Binding in Incubation Mixture of Human Liver Microsomes with Bovine Serum Albumin.

    Science.gov (United States)

    Sekimoto, Makoto; Takamori, Toru; Nakamura, Saki; Taguchi, Masato

    2016-01-01

    Carvedilol is mainly metabolized in the liver to O-glucuronide (O-Glu). We previously found that the glucuronidation activity of racemic carvedilol in pooled human liver microsomes (HLM) was increased, R-selectively, in the presence of amiodarone. The aim of this study was to clarify the mechanisms for the enhancing effect of amiodarone on R- and S-carvedilol glucuronidation. We evaluated O-Glu formation of R- and S-carvedilol enantiomers in a reaction mixture of HLM including 0.2% bovine serum albumin (BSA). In the absence of amiodarone, glucuronidation activity of R- and S-carvedilol for 25 min was 0.026, and 0.51 pmol/min/mg protein, and that was increased by 6.15 and 1.60-fold in the presence of 50 µM amiodarone, respectively. On the other hand, in the absence of BSA, or when BSA was replaced with human serum albumin, no enhancing effect of amiodarone on glucuronidation activity was observed, suggesting that BSA played a role in the mechanisms for the enhancement of glucuronidation activity. Unbound fraction of S-carvedilol in the reaction mixture was greater than that of R-carvedilol in the absence of amiodarone. Also, the addition of amiodarone caused a greater increase of unbound fraction of R-carvedilol than that of S-carvedilol. These results suggest that the altered protein binding by amiodarone is a key mechanism for R-selective stimulation of carvedilol glucuronidation.

  14. Effects of fatty acid-free bovine serum albumin and fetal calf serum supplementing repair cultures on pre- and post-warm viability of biopsied bovine embryos produced in vitro.

    Science.gov (United States)

    Yotsushima, Kenji; Sakaguchi, Minoru; Shimizu, Manabu; Okimura, Tomoko; Izaike, Yoshiaki

    2004-08-01

    The objective of this study was to investigate the influence of fatty acid-free bovine serum albumin (BSA) or fetal calf serum (FCS) on the re-expansion of biopsied blastocysts and post-warm viability of subsequently vitrified embryos. Firstly, blastocysts produced in vitro were biopsied at Day 7 and cultured to allow repair in TCM199 with 0.3% BSA or 5% FCS for 24 h. The re-expansion rates and mean total numbers of cells of the re-expanded embryos after the repair culture with BSA were almost the same as that with FCS. Secondly, after biopsied embryos were similarly cultured for repair with BSA or FCS, re-expanded embryos were selected for vitrification. After warming and exposure to 0.5 M sucrose with 20% FCS in mPBS, the embryos were cultured in TCM199 with 5% FCS for 24 h. The re-expansion rate and mean total number of cells in re-expanded blastocysts in the BSA treatment group (97.4 +/- 2.9% and 106 +/- 42) was significantly higher than that in the FCS treatment group (51.6 +/- 9.1% and 61 +/- 38), respectively (Pbovine biopsied blastocysts; but, compared with BSA supplementation, FCS supplementation during repair culture reduces the post-warm viability of biopsied and subsequently vitrified embryos.

  15. Osmotically unresponsive water fraction on proteins: non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration.

    Science.gov (United States)

    Fullerton, Gary D; Kanal, Kalpana M; Cameron, Ivan L

    2006-01-01

    How much does protein-associated water differ in colligative properties (freezing point, boiling point, vapor pressure and osmotic behavior) from pure bulk water? This question was approached by studying the globular protein bovine serum albumin (BSA), using changes in pH and salt concentration to alter its native structural conformation and state of aggregation. BSA osmotic pressure was investigated experimentally and analyzed using the molecular model of Fullerton et al. [Biochem Cell Biol 1992;70(12):1325]. Analysis yielded both the extent of osmotically unresponsive water (OUW) and the effective molecular weight values of the membrane-impermeable BSA solute. Manipulation of BSA conformation and aggregation by membrane-penetrating cosolutes show that alterations in pH and salt concentration change the amount of bulk water that escapes into BSA from a minimum of 1.4 to a maximum of 11.7 g water per g dry mass BSA.

  16. Study of the interaction between fluoxetine hydrochloride and bovine serum albumin in the imitated physiological conditions by multi-spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Katrahalli, Umesha [Department of Chemistry, Karnatak University, Dharwad 580 003 (India); Jaldappagari, Seetharamappa, E-mail: j_seetharam@rediffmail.co [Department of Chemistry, Karnatak University, Dharwad 580 003 (India); Kalanur, Shankara S. [Department of Chemistry, Karnatak University, Dharwad 580 003 (India)

    2010-02-15

    The mechanism of interaction of an antidepressant, fluoxetine hydrochloride (FLX) with bovine serum albumin (BSA) has been studied by different spectroscopic techniques under physiological conditions. FLX was found to quench the intrinsic fluorescence of protein by static quenching mechanism. The binding constant 'K' was found to be 7.06x10{sup 3} M{sup -1} at 296 K. The value of 'n' close to unity revealed that the BSA has a single class of binding site for FLX. Based on thermodynamic parameters, hydrogen bonding and van der Waals forces were proposed to operate between BSA and FLX. The change in conformation of protein was noticed upon its interaction with the drug. From displacement studies it was concluded that the FLX bound to protein at site I. The effects of various common metals ions on the binding were also investigated.

  17. Spectroscopic, electrochemical, docking and molecular dynamics studies on the interaction of three oxovanadium (IV) Schiff base complexes with bovine serum albumin and their cytotoxicity against cancer.

    Science.gov (United States)

    Amiri, Majid; Ajloo, Davood; Fazli, Mostafa; Mokhtarieh, Amir; Grivani, Gholamhossein; Saboury, A A

    2017-11-07

    This study was designed to investigate the interaction of three oxovanadium (IV) Schiff base complexes with bovine serum albumin (BSA) by means of various spectroscopic and electrochemical methods along with molecular docking study and molecular dynamics (MD) simulations. Binding constants were estimated by fluorescence and UV-Vis spectroscopy. The results indicated a good affinity of the complexes for BSA in which furyl derivative had more activity. Molecular docking study showed that these complexes have the similar binding modes and located within subdomain IB in site III of BSA. The supporting of molecular docking and molecular dynamics results by experimental data, confirms the validity of the interactions data obtained by these methods. Biological activity against cancer cell showed that furyl derivative has higher activity than other complexes. Pharmaceutical analysis also showed that, these complexes potentially can be used as cancer daisies.

  18. The Formation of Polycomplexes of Poly(Methyl Vinyl Ether-Co-Maleic Anhydride and Bovine Serum Albumin in the Presence of Copper Ions

    Directory of Open Access Journals (Sweden)

    Karahan Mesut

    2014-09-01

    Full Text Available The binary and ternary complex formations of poly(methyl vinyl ether-co-maleic anhydride (PMVEMA with copper ions and with bovine serum albumin (BSA in the presence of copper ions in phosphate buffer solution at pH = 7 were examined by the techniques of UV-visible, fluorescence, dynamic light scattering, atomic force microscopy measurements. In the formation of binary complexes of PMVEMA-Cu(II, the addition of copper ions to the solution of PMVEMA in phosphate buffer solution at pH = 7 forms homogeneous solutions when the molar ratio of Cu(II/MVEMA is 0.5. Then the formations of ternary complexes of PMVEMA-Cu(II-BSA were examined. Study analysis revealed that the toxicities of polymer-metal and polymer-metal-protein mixture solutions depend on the nature and ratio of components in mixtures.

  19. Synthesis and characterization of mononuclear copper(II complex of tetradentate N2S2 donor set and the study of DNA and bovine serum albumin binding

    Directory of Open Access Journals (Sweden)

    Sandipan Sarkar

    2014-12-01

    Full Text Available One mononuclear copper(II complex, containing neutral tetradentate NSSN-type ligands, of formulation [Cu II(L 1Cl]ClO 4 (1, was synthesized and isolated in pure form [where L 1˭ 1,3-bis(3-pyridylmethylthiopropane]. Green-colored copper(II complex was characterized by physicochemical, spectroscopic methods and conductivity measurement. These experimental data matched well with the proposed structure of the complex. Biological activity of the complex (1 toward calf thymus DNA and bovine serum albumin has been examined systematically and groove-binding behavior of the Copper(II complex 1 with calf thymus DNA has been observed from the spectral study.

  20. Interactions of tannic acid and its derivatives (ellagic and gallic acid) with calf thymus DNA and bovine serum albumin using spectroscopic method.

    Science.gov (United States)

    Labieniec, Magdalena; Gabryelak, Teresa

    2006-01-02

    In the present investigation, an attempt has been made to study the interaction of chosen polyphenols (tannic, ellagic and gallic acids) with calf thymus DNA and bovine serum albumin (BSA) employing spectrofluorimetric technique. The fluorescence quenching of DNA-bound ethidium bromide (EB) and BSA-bound 1-anilinonaphthalene-8-sulfonic acid (ANS) by phenolic acids has been examined. As BSA contains two tryptophan residues, the polyphenols influence on protein by measuring the changes in the fluorescence of BSA in the presence of phenolic acids was also evaluated. Our experiments prove that there is a direct interaction between phenols and DNA or BSA. The obtained data suggest that used acids can intercalate to DNA and interact strongly with BSA. The strongest interactions were observed between DNA and ellagic acid and between BSA and tannic acid. The conformational changes were revealed in DNA and BSA after incubation with tested phenolic acids and the extent depended on the phenol structure and the used concentration.

  1. Interaction of bovine serum albumin and human blood plasma with PEO-tethered surfaces: Influence of PEO chain length, grafting density, and temperature : Influence of PEO chain length, grafting density, and temperature

    NARCIS (Netherlands)

    Norde, Willem; Gage, D.

    2004-01-01

    Solid surfaces are modified by grafting poly(ethylene oxide), PEO, to influence their interaction with indwelling particles, in particular molecules of bovine serum albumin and human plasma proteins. As a rule, the grafted PEO layers suppress protein adsorption. The suppression is most effective

  2. From guest to ligand - A study on the competing interactions of antitumor drug resveratrol with {beta}-cyclodextrin and bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xudong [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059 (China); Department of Clinical Laboratory, Liaocheng People' s Hospital, Liaocheng, Shandong Province 252000 (China); Li, Hui [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059 (China); Liu, Min, E-mail: liumin_panpan@163.com [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059 (China); Li, Guangqian; Li, Linwei [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059 (China); Sun, Dezhi, E-mail: sundezhisdz@163.com [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong Province 252059 (China)

    2011-07-10

    Graphical abstract: Thermodynamic behavior of the interaction between bovine serum albumin and antitumor drug resveratrol delivered by {beta}-cyclodextrin in buffer solutions (pH 7.40) have been investigated by ITC combined with UV, FS and circular dichroism at 298.15 K. The results indicated that the affinity of resveratrol with the host ({beta}-cyclodextrin) was evidently weaker than that of the drug with the both classes of binding sites on the protein molecule. Highlights: {yields} Supramolecular complex of a drug with BSA could form in aqueous medium. {yields} A set of thermodynamic parameters were determined. {yields} Affinity of the drug to {beta}-CD is weaker than that of it to the protein. {yields} The molecular conformation of BSA was (slightly) changed by the drug. - Abstract: Interaction between bovine serum albumin (BSA) and resveratrol (RES) included by {beta}-cyclodextrin ({beta}-CD) in Tris-HCl aqueous buffer solutions (pH 7.4) has been investigated by isothermal titration calorimetry (ITC) combined with ultraviolet, fluorescence and circular dichroism spectra analyses. The results indicate that there are two classes of ligand binding sites. The first class of binding is mainly driven by enthalpy, while the second one is driven by both enthalpy and entropy. The secondary structure of BSA in the aqueous system was slightly changed with addition of the drug. Thermodynamic parameters, i.e., equilibrium constants, standard enthalpy changes and the entropy effects for the binding process of RES with BSA were calculated based on the calorimetric data. In fact, due to the poor solubility of RES in aqueous buffer medium, these parameters could not be determined by the employed experimental method without the existence of the CD.

  3. Restricted access molecularly imprinted polymers obtained by bovine serum albumin and/or hydrophilic monomers' external layers: a comparison related to physical and chemical properties.

    Science.gov (United States)

    Santos, Mariane Gonçalves; Moraes, Gabriel de Oliveira Isac; Nakamura, Maurício Gustavo; dos Santos-Neto, Álvaro José; Figueiredo, Eduardo Costa

    2015-11-21

    Molecularly imprinting polymers (MIPs) can be modified with external layers in order to obtain restricted access molecularly imprinted polymers (RAMIPs) able to exclude macromolecules and retain low weight compounds. These modifications have been frequently achieved using hydrophilic monomers, chemically bound on the MIP surface. Recently, our group proposed a new biocompatible RAMIP based on the formation of a bovine serum albumin coating on the surface of MIP particles. This material has been used to extract drugs directly from untreated human plasma samples, but its physicochemical evaluation has not been carried out yet, mainly in comparison with RAMIPs obtained by hydrophilic monomers. Thus, we proposed in this paper a comparative study involving the surface composition, microscopic aspect, selectivity, binding kinetics, adsorption and macromolecule elimination ability of these different materials. We concluded that the synthesis procedure influences the size and shape of particles and that hydrophilic co-monomer addition as well as coating with BSA do not alter the chemical recognition ability of the material. The difference between imprinted and non-imprinted polymers' adsorption was evident (suggesting that imprinted polymers have a better capacity to bind the template than the non-imprinted ones). The Langmuir model presents the best fit to describe the materials' adsorption profile. The polymer covered with hydrophilic monomers presented the best adsorption for the template in an aqueous medium, probably due to a hydrophilic layer on its surface. We also concluded that an association of the hydrophilic monomers with the bovine serum albumin coating is important to obtain materials with higher capacity of macromolecule exclusion.

  4. Preparation and sonodynamic activities of water-soluble tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine and its bovine serum albumin conjugate.

    Science.gov (United States)

    Xu, He-Nan; Chen, Hai-Jun; Zheng, Bi-Yuan; Zheng, Yun-Quan; Ke, Mei-Rong; Huang, Jian-Dong

    2015-01-01

    Sonodynamic therapy (SDT) is a new approach for cancer treatment, involving the synergistic effect of ultrasound and certain chemical compounds termed as sonosensitizers. A water-soluble phthalocyanine, namely tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine (ZnPcC4), has been prepared and characterized. The interactions between ZnPcC4 and bovine serum albumin (BSA) were also investigated by absorption and fluorescence spectroscopy. It was found that there were strong interactions between ZnPcC4 and BSA with a binding constant of 6.83×10(7)M(-1). A non-covalent BSA conjugate of ZnPcC4 (ZnPcC4-BSA) was prepared. Both ZnPcC4 and ZnPcC4-BSA exhibited efficient sonodynamic activities against HepG2 human hepatocarcinoma cells. Compared with ZnPcC4, conjugate ZnPcC4-BSA showed a higher sonodynamic activity with an IC50 value of 7.5μM. Upon illumination with ultrasound, ZnPcC4-BSA can induce an increase of intracellular reactive oxygen species (ROS) level, resulting in cellular apoptosis. The results suggest that the albumin conjugates of zinc(II) phthalocyanines functionalized with carboxyls can serve as promising sonosensitizers for sonodynamic therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Immune responses induced in rabbits after oral administration of bovine serum albumin in combination with different adjuvants (herb extracts, aluminium hydroxide and platinum nanoparticles

    Directory of Open Access Journals (Sweden)

    G. Bižanov

    2016-12-01

    Full Text Available The aim of the current study was to evaluate the immunostimulatory activity of 10 different herbal extracts from Vitex agnus-castus, Vinca major, Aloe arborescens and the polyherbal product containing extracts from Sambucus nigra, Primula versis, Pinus alba, Gentiana lutea, Cetraria islandica, Eucaliptus globulus, Citrus limon and aluminium hydroxide, as well as platinum nanoparticles. Rabbits were immunized three times orally with bovine serum albumin (BSA in combination with the components mentioned above. BSA-specific IgA antibodies in saliva and IgG antibodies in serum were examined by ELISA. It was found that the rabbits immunized with BSA in combination with either platinum nanoparticles or aluminium hydroxide had higher titres of BSA-specific IgA antibodies in their saliva at day 56 of observation. Likewise, rabbits treated with BSA and Vinca major or Aloe arborescens extracts showed higher levels of BSA-specific IgG antibodies in the serum at the end of observation. These results suggest that some plant extracts, aluminium hydroxide and platinum nanoparticles components could be used as oral adjuvants or as immunomodulators for rabbits.

  6. Synthesis of F16 conjugated with 5-fluorouracil and biophysical investigation of its interaction with bovine serum albumin by a spectroscopic and molecular modeling approach.

    Science.gov (United States)

    Xiang, Chen; Li, Dong-Wei; Qi, Zu-De; Jiang, Feng-Lei; Ge, Yu-Shu; Liu, Yi

    2013-01-01

    5-Fluorouracil (5-FU) has been widely used as a chemotherapy agent in the treatment of many types of solid tumors. Investigation of its antimetabolites led to the development of an entire class of fluorinated pyrimidines. However, the toxicity profile associated with 5-FU is significant and includes diarrhea, mucositis, hand-foot syndrome and myelosuppression. In aiming at reducing of the side effects of 5-FU, we have designed and synthesized delocalized lipophilic cations (DLCs) as a vehicle for the delivery of 5-FU. DLCs accumulate selectively in the mitochondria of cancer cells because of the high mitochondrial transmembrane potential (ΔΨm). Many DLCs exhibited anti-cancer efficacy and were explored as potential anti-cancer drugs based on their selective accumulation in the mitochondria of cancer cells. F16, the DLC we used as a vehicle, is a small molecule that selectively inhibits tumor cell growth and dissipates mitochondrial membrane potential. The binding of the conjugate F16-5-FU to bovine serum albumin (BSA) was investigated using spectroscopic and molecular modeling approaches. Fluorescence quenching constants were determined using the Stern-Volmer equation to provide a measure of the binding affinity between F16-5-FU and BSA. The activation energy of the interaction between F16-5-FU and BSA was calculated and the unusually high value was discussed in terms of the special structural block indicated by the molecular modeling approach. Molecular modeling showed that F16-5-FU binds to human serum albumin in site II, which is consistent with the results of site-competitive replacement experiments. It is suggested that hydrophobic and polar forces played important roles in the binding reaction, in accordance with the results of thermodynamic experiments. Copyright © 2012 John Wiley & Sons, Ltd.

  7. A sol-gel derived pH-responsive bovine serum albumin molecularly imprinted poly(ionic liquids) on the surface of multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mingming, E-mail: liumm@mail.hzau.edu.cn [Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Pi, Jiangyan; Wang, Xiaojie; Huang, Rong; Du, Yamei; Yu, Xiaoyang; Tan, Wenfeng; Liu, Fan [Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Shea, Kenneth J., E-mail: kjshea@uci.edu [Department of Chemistry, University of California-Irvine, Irvine, CA 92697 (United States)

    2016-08-17

    A pH-responsive surface molecularly imprinted poly(ionic liquids) (MIPILs) was prepared on the surface of multiwall carbon nanotubes (MWCNTs) by a sol-gel technique. The material was synthesized using a 3-aminopropyl triethoxysilane modified multiwall carbon nanotube (MWCNT-APTES) as the substrate, bovine serum albumin (BSA) as the template molecule, an alkoxy-functionalized IL 1-(3-trimethoxysilyl propyl)-3-methyl imidazolium chloride ([TMSPMIM]Cl) as both the functional monomer and the sol-gel catalyst, and tetraethoxysilane (TEOS) as the crosslinking agent. The molecular interaction between BSA and [TMSPMIM]Cl was quantitatively evaluated by UV–vis spectroscopy prior to polymerization so as to identify an optimal template/monomer ratio and the most suitable pH value for the preparation of the MWCNTs@BSA-MIPILs. This strategy was found to be effective to overcome the problems of trial-and-error protocol in molecular imprinting. The optimum synthesis conditions were as follows: template/monomer ratio 7:20, crosslinking agent content 2.0–2.5 mL, temperature 4 °C and pH 8.9 Tris–HCl buffer. The influence of incubation pH on adsorption was also studied. The result showed that the imprinting effect and selectivity improved significantly with increasing incubation pH from 7.7 to 9.9. This is mainly because the non-specific binding from electrostatic and hydrogen bonding interactions decreased greatly with the increase of pH value, which made the specific binding affinity from shape selectivity strengthened instead. The polymers synthesized under the optimal conditions were then characterized by BET surface area measurement, FTIR, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The adsorption capacity, imprinting effect, selective recognition and reusability were also evaluated. The as-prepared MWCNTs@BSA-MIPILs were also found to have a number of advantages including high surface area (134.2 m{sup 2} g{sup −1}), high adsorption

  8. Interaction of Citrinin with Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Miklós Poór

    2015-12-01

    Full Text Available Citrinin (CIT is a mycotoxin produced by several Aspergillus, Penicillium, and Monascus species. CIT occurs worldwide in different foods and drinks and causes health problems for humans and animals. Human serum albumin (HSA is the most abundant plasma protein in human circulation. Albumin forms stable complexes with many drugs and xenobiotics; therefore, HSA commonly plays important role in the pharmacokinetics or toxicokinetics of numerous compounds. However, the interaction of CIT with HSA is poorly characterized yet. In this study, the complex formation of CIT with HSA was investigated using fluorescence spectroscopy and ultrafiltration techniques. For the deeper understanding of the interaction, thermodynamic, and molecular modeling studies were performed as well. Our results suggest that CIT forms stable complex with HSA (logK ~ 5.3 and its primary binding site is located in subdomain IIA (Sudlow’s Site I. In vitro cell experiments also recommend that CIT-HSA interaction may have biological relevance. Finally, the complex formations of CIT with bovine, porcine, and rat serum albumin were investigated, in order to test the potential species differences of CIT-albumin interactions.

  9. Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin.

    Science.gov (United States)

    Wang, Yanying; Han, Miao; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Wu, Kangbing; Li, Chunya

    2015-12-15

    A molecularly imprinted polymer film was in situ polymerized on a carboxyl functionalized multi-walled carbon nanotubes modified glassy carbon electrode surface under room temperature. This technique provides a promising imprinting approach for protein in an aqueous solution using 3-(3-aminopropyl)-1-vinylimidazolium tetrafluoroborate ionic liquid as functional monomer, N, N'-methylenebisacrylamide as crossing linker, ammonium persulfate and N,N,N',N'-tetramethylethylenediamine as initiator, and bovine serum albumin (BSA) as template. The molecularly imprinted polymerized ionic liquid film shows enhanced accessibility, high specificity and sensitivity towards BSA. Electrochemical sensing performance of the imprinted sensor was thoroughly investigated using K3Fe[CN]6/K4Fe[CN]6 as electroactive probes. Under optimal conditions, the current difference before and after specific recognition of BSA was found linearly related to its concentration in the range from 1.50×10(-9) to 1.50×10(-6) mol L(-1). The detection limit was calculated to be 3.91×10(-10) mol L(-1) (S/N=3). The practical application of the imprinted sensor was demonstrated by determining BSA in liquid milk samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography.

    Science.gov (United States)

    Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo

    2016-01-01

    In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions.

  11. Effect of Cu{sup 2+} and Fe{sup 3+} for drug delivery: Decreased binding affinity of ilaprazole to bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuping [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Shi Shuyun, E-mail: shuyshi@gmail.com [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha 410083 (China); Huang Kelong, E-mail: hunagkelong@yahoo.com.cn [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen Xiaoqin [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Peng Mijun, E-mail: Pengmj163@163.com [Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000 (China)

    2011-09-15

    The interaction between ilaprazole and bovine serum albumin (BSA) has been investigated in the absence and presence of Cu{sup 2+} or Fe{sup 3+} by means of fluorescence spectroscopy. The fluorescence intensity of BSA decreased remarkably with no obvious BSA maximum emission wavelength shift by adding ilaprazole. Similar fluorescence shape with larger quenching extent of BSA was observed with increasing concentrations of ilaprazole in the presence of Cu{sup 2+} or Fe{sup 3+}. The quenching constants and affinities of ilaprazole with BSA in the presence of Cu{sup 2+} and Fe{sup 3+} decreased. The decreased affinity and unchangeable binding distance in the presence of metal ions may result from a competitive binding between ilaprazole and metal ions. The results indicated that the presence of Cu{sup 2+} or Fe{sup 3+} could improve ilaprazole's maximum effects, which may have relevant consequence in rationalizing dosage for patients with gastric and duodenal ulcers. - Highlights: > Ilaprazole affinity for BSA has been investigated with or without Cu{sup 2+} or Fe{sup 3+}. > Cu{sup 2+} and Fe{sup 3+} decreased the affinities of ilaprazole to BSA. > Cu{sup 2+} and Fe{sup 3+} had competitive binding site with ilaprazole.

  12. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    Science.gov (United States)

    Wang, Hua-Jie; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying

    2013-11-01

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug.

  13. Investigation on the interaction between ilaprazole and bovine serum albumin without or with different C-ring flavonoids from the viewpoint of food-drug interference.

    Science.gov (United States)

    Zhang, Yuping; Shi, Shuyun; Chen, Xiaoqin; Zhang, Wei; Huang, Kelong; Peng, Mijun

    2011-08-10

    The interaction between ilaprazole and bovine serum albumin (BSA) has been investigated in the absence and presence of four popular flavonoids with different C-ring structures, quercetin, luteolin, taxifolin, and (+)-catechin, by means of fluorescence spectroscopy. The results indicated that ilaprazole had a strong ability to quench the intrinsic fluorescence of BSA, and site marker competitive experiments indicated that the binding of ilaprazole to BSA primarily took place in subdomain IIA. The quenching process of ilaprazole with BSA was easily affected by flavonoids,; however, they did not change the quchenching mechanism of ilaprazole with BSA, whereas all of the fluorescence quenching was initiated by a static quenching procedure combining with nonradiative energy transfer. The presence of flavonoids decreased the quenching constants of ilaprazole with BSA from 2.2 to 23.7% and decreased the binding constants from 73.7 to 98.3%, which depended on the different flavonoids' structures. The decreased binding constants and unchangeable spatial distance of ilaprazole with BSA by the introduction of quercetin, luteolin, and taxifolin may result from the competition of flavonoids and ilaprazole binding to BSA, whereas in the presence of (+)-catichin, decreased binding constants and increased spatial distance possibly resulted from the formation of a ternary ilaprazole-BSA-(+)-catechin complex. All of these results may have relevant consequences in rationalizing the interferences of common food to gastric ulcer treatments.

  14. Removal of bovine serum albumin from wastewater using fouling resistant ultrafiltration membranes based on the blends of cellulose acetate, and PVP-TiO2 nanoparticles.

    Science.gov (United States)

    Gebru, Kibrom Alebel; Das, Chandan

    2017-09-15

    Fouling resistant ultrafiltration membranes based on the blends of polyvinylpyrrolidone (PVP), TiO2 nanoparticles and cellulose acetate, CA-PVP-TiO2 (CATP), for removal of bovine serum albumin (BSA) were prepared by using phase inversion process. The influences of PVP and TiO2 on the preparation of phase inverted cellulose acetate (CA) ultrafiltration membrane were explored in terms of morphology study, equilibrium water content (EWC), hydraulic resistance, permeability performance, hydrophilicity, and thermal stability. After the introduction of PVP and TiO2 to the ternary (polymer-solvent-non-solvent) system, the formations of finger-like structures and macro-voids were reduced significantly. An improvement in porosity, average pore size, and hydrophilic nature of the CA membranes were detected after the introduction of PVP and TiO2 into the polymer matrix. The interaction between TiO2 and CA was confirmed and the degradation temperature of the CA membrane was significantly improved. BSA protein removal efficiency, anti-fouling performance, and recycling potential of the UF membranes were investigated. The CATP membrane (10.5 wt % CA: 4 wt % PVP: 2 wt % TiO2) has displayed high BSA removal efficiency and flux recovery ratios (NFR) with enhanced anti-fouling performances for the three fouling/rinsing cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Zinc Phthalocyanine Labelled Polyethylene Glycol: Preparation, Characterization, Interaction with Bovine Serum Albumin and Near Infrared Fluorescence Imaging in Vivo

    Directory of Open Access Journals (Sweden)

    Tianjun Liu

    2012-05-01

    Full Text Available Zinc phthalocyanine labelled polyethylene glycol was prepared to track and monitor the in vivo fate of polyethylene glycol. The chemical structures were characterized by nuclear magnetic resonance and infrared spectroscopy. Their light stability and fluorescence quantum yield were evaluated by UV-Visible and fluorescence spectroscopy methods. The interaction of zinc phthalocyanine labelled polyethylene glycol with bovine serum albumin was evaluated by fluorescence titration and isothermal titration calorimetry methods. Optical imaging in vivo, organ aggregation as well as distribution of fluorescence experiments for tracking polyethylene glycol were performed with zinc phthalocyanine labelled polyethylene glycol as fluorescent agent. Results show that zinc phthalocyanine labelled polyethylene glycol has good optical stability and high emission ability in the near infrared region. Imaging results demonstrate that zinc phthalocyanine labelled polyethylene glycol can track and monitor the in vivo process by near infrared fluorescence imaging, which implies its potential in biomaterials evaluation in vivo by a real-time noninvasive method.

  16. The influence of bovine serum albumin-modified silica on the physicochemical properties of poly(vinyl alcohol) nanocomposites synthesized by ultrasonication technique.

    Science.gov (United States)

    Mallakpour, Shadpour; Nazari, Hossein Yazdan

    2018-03-01

    In this study, for the first time polymeric nanocomposite (NC) films of poly(vinyl alcohol)/SiO2@bovine serum albumin (PVA/SiO2@BSA) were synthesized by solution casting method under facile and fast method of sonication. In this regard, SiO2 nanoparticles (NPs) were modified by BSA, at room temperature by using phosphate buffer and ultrasonic-assisted method. Then, PVA/SiO2@BSA NCs were prepared by insertion of variant amount (3, 6 and 9wt%) of SiO2@BSA into the PVA matrix, under ultrasonic irradiation. The morphological traits of the NCs were surveyed by Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction and field emission scanning electron microscopy. It was detected that NPs incorporation didn't remarkably affect the crystallinity and morphology of the NCs. TEM images indicated that the inserted NPs have good diffusions in the PVA matrix, and their embedment in the matrix significantly upgraded its thermal, optical and mechanical behaviors. The tensile strength showed more than 2-fold increase and the thermal stability exhibited about 37% enhancement that was higher, in comparison with those of the similar NCs. This showed that the prepared NCs can have potential application in food packaging.∗∗∗. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Facile synthesis of nano-sized agarose based amino acid-Its pH-dependent protein-like behavior and interactions with bovine serum albumin.

    Science.gov (United States)

    Chudasama, Nishith A; Siddhanta, A K

    2015-11-19

    In a facile synthesis agarose was amphoterically functionalized to afford nano-sized agarose amino acids, aminoagarose succinate half-esters (AAE) containing one pendant carboxyl group. Nano-sized AAEs (<10 nm; DLS) were characterized and they had three various degrees of substitution [overall DSs 0.88, 0.89 and 0.96], both the amino and half-ester groups were placed on C-6 positions of the 1,3 beta-d-galactopyranose moieties of agarose backbone ((13)C NMR). AAEs performed like large protein molecules exhibiting pH-responsive structural variations (optical rotatory dispersion), presenting a mixed solubility pattern like random coil (soluble) and aggregate (precipitation) formations. Circular dichroism studies showed their pH-dependent associative interactions with bovine serum albumin, which indicated complexation at acidic and basic pHs, and decomplexation at pH 6.8 with AAE (DS 0.96). Thus, these nano-sized AAE based systems may be of potential utility in the domains demanding the merits of preferential protein bindings e.g. pH-responsive cationic/anionic drug carrier, separations or chiral sensing applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Spectroscopic analyses on interaction of Amantadine-Salicylaldehyde, Amantadine-5-Chloro-Salicylaldehyde and Amantadine-o-Vanillin Schiff-Bases with bovine serum albumin (BSA)

    Science.gov (United States)

    Wang, Zhiqiu; Gao, Jingqun; Wang, Jun; Jin, Xudong; Zou, Mingming; Li, Kai; Kang, Pingli

    2011-12-01

    In this work, three Tricyclo [3.3.1.1(3,7)] decane-1-amine (Amantadine) Schiff-Bases, Amantadine-Salicylaldehyde (AS), Amantadine-5-Chloro-Salicylaldehyde (AS-5-C) and Amantadine-o-Vanillin (AS-o-V), were synthesized by direct heating reflux method in ethanol solution and characterized by infrared spectrum and elementary analysis. Fluorescence quenching was used to study the interaction of these Amantadine Schiff-Bases (AS, AS-5-C and AS-o-V) with bovine serum albumin (BSA). According to fluorescence quenching calculations the bimolecular quenching constant ( Kq), apparent quenching constant ( KSV), effective binding constant ( KA) and corresponding dissociation constant ( KD), binding site number ( n) and binding distance ( r) were obtained. The results show that these Amantadine Schiff-Bases can obviously bind to BSA molecules and the binding strength order is AS Amantadine Schiff-Bases adopt different way to bind with BSA molecules. That is, the AS and AS-5-C are accessibility to tryptophan (Trp) residues more than the tyrosine (Tyr) residues, while the AS-o-V is equally close to the Tyr and Trp residues.

  19. Characterization of the interaction of glycyrrhizin and glycyrrhetinic acid with bovine serum albumin by spectrophotometric-gradient flow injection titration technique and molecular modeling simulations.

    Science.gov (United States)

    Manouchehri, Firouzeh; Izadmanesh, Yahya; Ghasemi, Jahan B

    2017-09-01

    In this research, the interactions of glycyrrhizin (GL) and glycyrrhetinic acid (GA) with bovine serum albumin (BSA) have been investigated by the novel method of spectrophotometric- gradient flow injection titration technique. The hard-modeling multivariate approach to binding was used for calculation of binding constants and estimation of concentration-spectral profiles of equilibrium species. The stoichiometric ratio of binding was estimated using eigenvalue analysis. Results showed that GL and GA bind BSA with overall binding constants of KGL-BSA=3.85 (±0.09)×104Lmol-1, KGA-BSA=3.08 (±0.08)×104Lmol-1. Ligand-BSA complexes were further analyzed by combined docking and molecular dynamics (MD) simulations. Docking simulations were performed to obtain a first guess on the binding structure of the GL/GA-BSA complex, and subsequently analyzed by 20 ns MD simulations in order to evaluate interactions of GL/GA with BSA in detail. Results of MD simulations indicated that GL-BSA complex forms mainly on the basis of hydrogen bonds, while, GA-BSA complex forms on the basis of hydrophobic interactions. Also, water molecules can bridge between the ligand and protein by hydrogen bonds, which are stable during the entire simulation and play an important role in stabilization of the GL/GA-BSA complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A Novel Active Targeting Preparation, Vinorelbine Tartrate (VLBT Encapsulated by Folate-Conjugated Bovine Serum Albumin (BSA Nanoparticles: Preparation, Characterization and in Vitro Release Study

    Directory of Open Access Journals (Sweden)

    Xinyang Yu

    2012-11-01

    Full Text Available Vinorelbine tartrate (VLBT, as a kind of high hydrophilic and temperature-induced degradation drug, was prepared into nanoparticles by a desolvation procedure. Bovine serum albumin (BSA, as a drug carrier, was stabilized by chemical cross-linking with glutaraldehyde. Firstly, the optimization process of preparing VLBT-loaded BSA nanoparticles (VLBT-BSANPs was accomplished using response surface methodology (RSM by desolvation. Then VLBT-BSANPs were conjugated with folate, namely Fa-BSANPs-VLBT. Hence targeting drug carrier delivery system loading VLBT was produced. In this study, the characteristics of the nanoparticles, such as the amount of folate conjugation, surface morphology, surface chemistry, physical status of VLBT in Fa-BSANPs-VLBT, stability of Fa-BSANPs-VLBT with mannitol and in vitro drug release behavior were all investigated. The VLBT-BSANPs were obtained under optimum conditions, with a mean particle size (MPS of 155.4 nm and a zeta potential (ZP of −32.97 mV at a pH value of 5.4. Drug loading efficiency (DLE and drug entrapment efficiency (DEE of this obtained drug were approximately 45.6% and 90.6%, respectively.

  1. The Binding of Four Licorice Flavonoids to Bovine Serum Albumin by Multi-Spectroscopic and Molecular Docking Methods: Structure-Affinity Relationship

    Science.gov (United States)

    Hou, J.; Liang, Q.; Shao, S.

    2017-03-01

    Flavanones are the main compound of licorice, and the C'-4 position substitution is a significant structural feature for their biological activity. The ability of three selected flavanones (liquiritigenin, liquiritin, and liquiritin apioside) bearing different substituents (hydroxyl groups, glucose, and glucose-apiose sugar moiety) at the C'-4 position and a chalcone ( isoliquiritigenin, an isomer of liquiritigenin) to bind bovine serum albumin (BSA) was studied by multispectroscopic and molecular docking methods under physiological conditions. The binding mechanism of fl avonoids to BSA can be explained by the formation of a flavonoids-BSA complex, and the binding affinity is the strongest for isoliquiritigenin, followed by liquiritin apioside, liquiritin, and liquiritigenin. The thermodynamic analysis and the molecular docking indicated that the interaction between flavonoids and BSA was dominated by the hydrophobic force and hydrogen bonds. The competitive experiments as well as the molecular docking results suggested the most possible binding site of licorice flavonoids on BSA at subdomain IIA. These results revealed that the basic skeleton structure and the substituents at the C'-4 position of flavanones significantly affect the structure-affinity relationships of the licorice flavonoid binding to BSA.

  2. Exploring the affinity binding of alkylmaltoside surfactants to bovine serum albumin and their effect on the protein stability: A spectroscopic approach.

    Science.gov (United States)

    Hierrezuelo, J M; Carnero Ruiz, C

    2015-08-01

    Steady-state and time-resolved fluorescence together with circular dichroism (CD) spectroscopic studies was performed to examine the interactions between bovine serum albumin (BSA) and two alkylmaltoside surfactants, i.e. n-decyl-β-D-maltoside (β-C10G2) and n-dodecyl-β-D-maltoside (β-C12G2), having identical structures but different tail lengths. Changes in the intrinsic fluorescence of BSA from static as well as dynamic measurements revealed a weak protein-surfactant interaction and gave the corresponding binding curves, suggesting that the binding mechanism of surfactants to protein is essentially cooperative in nature. The behavior of both surfactants is similar, so that the differences detected were attributed to the more hydrophobic nature of β-C12G2, which favors the adsorption of micelle-like aggregates onto the protein surface. These observations were substantially demonstrated by data derived from synchronous, three-dimensional and anisotropy fluorescence experiments. Changes in the secondary structure of the protein induced by the interaction with surfactants were analyzed by CD to determine the contents of α-helix and β-strand. It was noted that whereas the addition of β-C10G2 appears to stabilize the secondary structure of the protein, β-C12G2 causes a marginal denaturation of BSA for a protein:surfactant molar ratio as high as 1 to 100. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Lack of a synergistic effect of arginine-glutamic acid on the physical stability of spray-dried bovine serum albumin.

    Science.gov (United States)

    Reslan, Mouhamad; Demir, Yusuf K; Trout, Bernhardt L; Chan, Hak-Kim; Kayser, Veysel

    2017-09-01

    Improving the physical stability of spray-dried proteins is essential for enabling pulmonary delivery of biotherapeutics as a noninvasive alternative to injections. Recently, a novel combination of two amino acids - l-arginine (l-Arg) and l-glutamic acid (l-Glu), has been reported to have synergistic protein-stabilizing effects on various protein solutions. Using spray-dried bovine serum albumin (BSA) reconstituted in solution as a model protein, we investigated the synergistic effect of these amino acids on the physical stability of proteins. Five BSA solutions were prepared: (1) BSA with no amino acids (control); (2) with 50 mM l-Arg; (3) with 200 mM l-Arg, (4) with 50 mM l-Glu and (5) with 25:25 mM of Arg:Glu. All solutions were spray-dried and accelerated studies at high temperatures were performed. Following accelerated studies, monomer BSA loss was measured using SE-HPLC. We found that l-Arg significantly improved the physical stability of spray-dried BSA even at low concentrations, however, when combined with l-Glu, was ineffective at reducing monomer BSA loss. Our findings demonstrate the limitations in using Arg-Glu for the stabilization of spray-dried BSA. Furthermore, we found that a low concentration of l-Glu enhanced monomer BSA loss. These findings may have significant implications on the design of future biotherapeutic formulations.

  4. Multi-spectroscopic and molecular modeling approaches to elucidate the binding interaction between bovine serum albumin and darunavir, a HIV protease inhibitor

    Science.gov (United States)

    Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi

    2018-01-01

    Darunavir (DRV), a second-generation HIV protease inhibitor, is widely used across the world as an important component of HIV therapy. The interaction of DRV with bovine serum albumin (BSA), a major carrier protein, has been studied under simulated physiological conditions (pH 7.4) by multi-spectroscopic techniques in combination with molecular modeling. Fluorescence data revealed that the intrinsic fluorescence of BSA was quenched by DRV in terms of a static quenching procedure due to the formation of the DRV-BSA complex. The results indicated the presence of single weak affinity binding site ( 103 M- 1, 310 K) on protein. The thermodynamic parameters, namely enthalpy change (ΔH0), entropy change (ΔS0) and Gibbs free energy change (ΔG0) were calculated, which signified that the binding reaction was spontaneous, the main binding forces were hydrogen bonding and van der Waals forces. Importantly, competitive binding experiments with three site probes, phenylbutazone (in sub-domain IIA, site I), ibuprofen (in sub-domain IIIA, site II) and artemether (in the interface between sub-domain IIA and IIB, site II'), suggested that DRV was preferentially bound to the hydrophobic cavity in site II' of BSA, and this finding was validated by the docking results. Additionally, synchronous fluorescence, three-dimensional fluorescence and Resonance Rayleigh Scattering (RRS) spectroscopy gave qualitative information on the conformational changes of BSA upon adding DRV, while quantitative data were obtained with Fourier transform infrared spectroscopy (FT-IR).

  5. Effect of urea on heat-induced gelation of bovine serum albumin (BSA) studied by rheology and small angle neutron scattering (SANS)

    Science.gov (United States)

    Nnyigide, Osita Sunday; Oh, Yuna; Song, Hyeong Yong; Park, Eun-kyoung; Choi, Soo-Hyung; Hyun, Kyu

    2017-05-01

    This paper reports the effects of urea on the heat-induced gelation of bovine serum albumin (BSA), which was studied by the tube inversion method, rheological measurements, and small-angle neutron scattering (SANS). An increase in the urea concentration accelerated the rate of gelation because the protein molecules have already been unfolded to some extent during sample preparation in the urea solution. In addition, the BSA solution in the presence of urea underwent a sol-gel-sol transition during the time sweep test at a constant temperature of 80oC. On the other hand, the BSA solution without urea turned into a hard and brittle gel that did not return to the solution state during isothermal heating at a constant temperature of 80oC. Aggregation and re-bonding of the denatured and unfolded protein chains led to gel formation. Urea added to the protein denatures its tertiary and secondary structures by simultaneously disrupting the hydrogen bonds, hydrophobic interactions, and altering the solvent properties. Furthermore, urea induces thermoreversible chemical interactions in BSA solutions leading to the formation of a gel with dynamic properties under these experimental conditions.

  6. Serum Albumin Binding and Esterase Activity: Mechanistic Interactions with Organophosphates

    Directory of Open Access Journals (Sweden)

    Nikolay V. Goncharov

    2017-07-01

    Full Text Available The albumin molecule, in contrast to many other plasma proteins, is not covered with a carbohydrate moiety and can bind and transport various molecules of endogenous and exogenous origin. The enzymatic activity of albumin, the existence of which many scientists perceive skeptically, is much less studied. In toxicology, understanding the mechanistic interactions of organophosphates with albumin is a special problem, and its solution could help in the development of new types of antidotes. In the present work, the history of the issue is briefly examined, then our in silico data on the interaction of human serum albumin with soman, as well as comparative in silico data of human and bovine serum albumin activities in relation to paraoxon, are presented. Information is given on the substrate specificity of albumin and we consider the possibility of its affiliation to certain classes in the nomenclature of enzymes.

  7. Determination of serum albumin with tribromoarsenazo by spectrophotometry

    Directory of Open Access Journals (Sweden)

    Qing-Zhou Zhai

    2007-08-01

    Full Text Available The reaction of tribromoarsenazo(TB-ASA with serum albumin in the presence of emulgent OP was studied by spectrophotometry. In a Britton-Robinson buffer solution at pH 2.9, tribromoarsenazo and bovine serum albumin can immediately form a red compound in the presence of emulgent OP with a maximum absorption wavelength at 354 nm. The presence of emulgent OP can increase the reaction sensitivity and the compound stability. The molar absorptivity of the compound is ε354 nm = 6.13 x 105 M-1•cm-1. Beer's law is obeyed over the range of 5.0-75.0 mg•L-1 for bovine serum albumin. The present method was applied to the determination of the total proteins in human serums with satisfactory results.

  8. Studies on the interaction between triptolide and Bovine Serum ...

    African Journals Online (AJOL)

    Studies on the interaction between triptolide and Bovine Serum Albumin (BSA) by spectroscopic and molecular modeling methods. Haidong Wang, Hailang Shi, Jie Pang, Xingfa Song, Caiyun Xu, Zengxian Sun ...

  9. Binding of antioxidant flavonol morin to the native state of bovine serum albumin: Effects of urea and metal ions on the binding

    Energy Technology Data Exchange (ETDEWEB)

    Singha Roy, Atanu; Dinda, Amit Kumar; Chaudhury, Susmitnarayan; Dasgupta, Swagata, E-mail: swagata@chem.iitkgp.ernet.in

    2014-01-15

    In consideration of the various medicinal aspects of the flavonoid polyphenols, the interaction of morin with bovine serum albumin (BSA) has been investigated using multi-spectroscopic approaches. The pKa{sub 1} of morin being 5.09, which is below physiological pH, binding studies provide important insights into its potential use as a biotherapeutic. The binding was performed under different pH (5, 7 and 9) conditions and in absence and presence of Cu(II) and Fe(III) ions. It is observed that the presence of metal ions affect the binding of morin towards BSA. The binding with BSA results in a motional restriction of morin in solution that causes an increase in anisotropy (r), rotational correlation time (t{sub r}) and steady-state lifetime (t{sub av}) of the ligand. Urea causes denaturation of BSA resulting in the release of morin from the protein core as determined from both the steady-state fluorescence and anisotropy (r) measurements. The possibility of non-radiative energy transfer from the donor tryptophan to the acceptor morin is detected following the Förster's theory. The site marker displacement studies along with the molecular docking results indicated that morin binds to the hydrophobic pocket of site 1 (subdomain IIA) near Trp 213 of BSA. -- Highlights: • Binding mainly occurs through the electrostatic forces with partial hydrophobic association. • Negative ΔG° indicates the spontaneity of the complexation between morin and BSA. • Morin binds near Trp 213 (site 1, subdomain IIA) of BSA only in its native state. • Lifetime of morin increases as a function of BSA. • Motional restriction of morin occurs in the presence of BSA.

  10. Study on the Effect of Adding Bovine Serum Albumin to Semen Diluent on the Viability of Awassi Ram Semen Preserved at 5oC

    Directory of Open Access Journals (Sweden)

    Osama Ibrahim Azawi

    2011-10-01

    Full Text Available This study was aimed to test the effect of adding bovine serum albumin (BSA to Tris-fructose-egg yolk diluent to increase the ram sperm storage period at 5ºC. Semen samples from six mature Awassi rams used in this study. Semen samples were diluted by Tris-glucose-egg yolk. Diluted semen sample was divided into two parts. The first part BSA was added 10 mg ml-1 and the second part considered as a control group without any addition. The diluted semen samples were cooled and preserved at 5oC for 5 days. Cooled diluted semen samples were examined for individual motility, percent of live sperm, sperm abnormalities and acrosomal defects every 24 h until 5 days. Results of the present study showed an increased viability of spermatozoa diluted in the Tris diluent containing BSA stored at 5oC for 120 h of preservation compared with the control group. Spermatozoa motility and viability declined gradually in BSA Tris containing diluent when preserved at 5oC from 0 h to 120 h to 54.0±0.9% and 59.0±0.9 %, respectively compared to control of Tris diluent without BSA which was declined markedly to 35.9±1.9 %, 40.9±1.8 %, respectively. In conclusion, this study demonstrated that supplementation with BSA of ram semen diluents during semen preservation at 5oC, may exert beneficial effects on the quality of the Awassi ram semen.

  11. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    Science.gov (United States)

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  12. Exploring the binding of two potent anticancer drugs bosutinib and imatinib mesylate with bovine serum albumin: spectroscopic and molecular dynamic simulation studies.

    Science.gov (United States)

    Pawar, Suma K; Naik, Roopa S; Seetharamappa, J

    2017-11-01

    Bosutinib (BST) and imatinib mesylate (IMT) are tyrosine kinase inhibitors (TKIs). In view of the importance of these inhibitors in cancer treatment, we investigated the mechanism of interaction between BST/IMT and bovine serum albumin (BSA) using various spectroscopic and molecular docking methods. Fluorescence studies indicated that BST/IMT interacted with BSA without affecting the microenvironment around the residue Trp213 of BSA. The quenching mechanism associated with the BST-BSA and IMT-BSA interactions was determined by performing fluorescence measurements at different temperatures. These results suggested that BST and IMT quenched the fluorescence intensity of BSA through static and dynamic processes, respectively, which was confirmed by time-resolved fluorescence measurements. Evaluation of the thermodynamic parameters ∆H°, ∆S°, and ∆G° suggested that hydrophobic and electrostatic interactions played significant roles in the BST-BSA interaction, while IMT-BSA was stabilized by hydrophobic forces. Competitive experimental results revealed that the primary binding sites for BST and IMT on BSA were sites II and I, respectively. This was supported by the results of molecular docking and dynamic simulation studies. The change in the secondary structure of BSA upon binding with BST/IMT was investigated by 3D fluorescence, absorption, and CD spectroscopic studies. In addition, the influences of β-cyclodextrin and metal ions (Cu2+ and Zn2+) on the binding affinities of BST and IMT to BSA were examined. Graphical abstract Binding of BST and IMT in BSA at site II and site I respectively.

  13. Study on the conjugation mechanism of colistin sulfate with bovine serum albumin and effect of the metal ions on the reaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu Baosheng, E-mail: lbs@hbu.edu.cn [Key Laboratory of Medical Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002 (China); Yang Chao; Yan Xiaona; Wang Jing; Lv Yunkai [Key Laboratory of Medical Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002 (China)

    2012-05-15

    Colistin sulfate (CS) can quench the fluorescence of bovine serum albumin (BSA) in an aqueous solution at pH 7.40. The static fluorescence-quenching process between BSA and CS was confirmed and the binding constant, the number of binding sites and thermodynamic data for the interaction between BSA and CS were also obtained. Results showed that the order of magnitude of binding constant (K{sub a}) was 10{sup 4}, and the number of binding site (n) in the binary system was approximately equal to 1; electrostatic force played an important role on the conjugation reaction between BSA and CS. On the basis of the Foerster theory of the resonance energy transfer, the binding distance (r) between CS and BSA was less than 7 nm. Comparing the quenching of protein fluorescence excited at 280 nm and 295 nm and from the site marker replacement experiments, it was shown that the primary CS binding site was located in the sub-domain IIA (site I) of BSA. Synchronous fluorescence spectra clearly revealed that the binding of CS with BSA can induce conformation changes in BSA. In addition, the effects of common metal ions on the binding constants of CS-BSA complex were also discussed. It was shown that, except Cu{sup 2+}, the high metal ion concentrations improved the CS efficacy. - Highlights: Black-Right-Pointing-Pointer Complex formation is dominant for the reduction of BSA fluorescence. Black-Right-Pointing-Pointer Primary binding site for drug is located in the sub-domain IIA of BSA. Black-Right-Pointing-Pointer Electrostatic force played a main role between the drug and the BSA. Black-Right-Pointing-Pointer The BSA structure changes upon drug complexation. Black-Right-Pointing-Pointer Higher concentrations of metal ions have good effects to improve efficacy of drug except Cu{sup 2+}.

  14. Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates

    Directory of Open Access Journals (Sweden)

    Farell Eric M

    2012-05-01

    Full Text Available Abstract Background While being a standard powerful molecular biology technique, applications of the PCR to the amplification of high GC-rich DNA samples still present challenges which include limited yield and poor specificity of the reaction. Organic solvents, including DMSO and formamide, have been often employed as additives to increase the efficiency of amplification of high GC content (GC > 60% DNA sequences. Bovine serum albumin (BSA has been used as an additive in several applications, including restriction enzyme digestions as well as in PCR amplification of templates from environmental samples that contain potential inhibitors such as phenolic compounds. Findings Significant increase in PCR amplification yields of GC-rich DNA targets ranging in sizes from 0.4 kb to 7.1 kb were achieved by using BSA as a co-additive along with DMSO and formamide. Notably, enhancing effects of BSA occurs in the initial PCR cycles with BSA additions having no detrimental impact on PCR yield or specificity. When a PCR was set up such that the cycling parameters paused after every ten cycles to allow for supplementation of BSA, combining BSA and organic solvent produced significantly higher yields relative to conditions using the solvent alone. The co-enhancing effects of BSA in presence of organic solvents were also obtained in other PCR applications, including site-directed mutagenesis and overlap extension PCR. Conclusions BSA significantly enhances PCR amplification yield when used in combination with organic solvents, DMSO or formamide. BSA enhancing effects were obtained in several PCR applications, with DNA templates of high GC content and spanning a broad size range. When added to the reaction buffer, promoting effects of BSA were seen in the first cycles of the PCR, regardless of the size of the DNA to amplify. The strategy outlined here provides a cost-effective alternative for increasing the efficiency of PCR amplification of GC-rich DNA

  15. Role of bovine serum albumin and humic acid in the interaction between SiO2 nanoparticles and model cell membranes.

    Science.gov (United States)

    Wei, Xiaoran; Qu, Xiaolei; Ding, Lei; Hu, Jingtian; Jiang, Wei

    2016-12-01

    Silica nanoparticles (SiO2 NPs) can cause health hazard after their release into the environment. Adsorption of natural organic matter and biomolecules on SiO2 NPs alters their surface properties and cytotoxicity. In this study, SiO2 NPs were treated by bovine serum albumin (BSA) and humic acid (HA) to study their effects on the integrity and fluidity of model cell membranes. Giant and small unilamellar vesicles (GUVs and SUVs) were prepared as model cell membranes in order to avoid the interference of cellular activities. The microscopic observation revealed that the BSA/HA treated (BSA-/HA-) SiO2 NPs took more time to disrupt membrane than untreated-SiO2 NPs, because BSA/HA adsorption covered the surface SiOH/SiO- groups and weakened the interaction between NPs and phospholipids. The deposition of SiO2 NPs on membrane was monitored by a quartz crystal microbalance with dissipation (QCM-D). Untreated- and HA-SiO2 NPs quickly disrupted the SUV layer on QCM-D sensor; BSA-SiO2 NPs attached on the membranes but only caused slow vesicle disruption. Untreated-, BSA- and HA-SiO2 NPs all caused the gelation of the positively-charged membrane, which was evaluated by the generalized polarity values. HA-SiO2 NPs caused most serious gelation, and BSA-SiO2 NPs caused the least. Our results demonstrate that the protein adsorption on SiO2 NPs decreases the NP-induced membrane damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Bovine serum albumin-catalyzed deprotonation of [1-(13)C]glycolaldehyde: protein reactivity toward deprotonation of the alpha-hydroxy alpha-carbonyl carbon.

    Science.gov (United States)

    Go, Maybelle K; Malabanan, M Merced; Amyes, Tina L; Richard, John P

    2010-09-07

    Bovine serum albumin (BSA) in D(2)O at 25 degrees C and pD 7.0 was found to catalyze the deuterium exchange reactions of [1-(13)C]glycolaldehyde ([1-(13)C]GA) to form [1-(13)C,2-(2)H]GA and [1-(13)C,2,2-di-(2)H]GA. The formation of [1-(13)C,2-(2)H]GA and [1-(13)C,2,2-di-(2)H]GA in a total yield of 51 +/- 3% was observed at early reaction times, and at later times, [1-(13)C,2-(2)H]GA was found to undergo BSA-catalyzed conversion to [1-(13)C,2,2-di-(2)H]GA. The overall second-order rate constant for these deuterium exchange reactions [(k(E))(P)] equals 0.25 M(-1) s(-1). By comparison, (k(E))(P) values of 0.04 M(-1) s(-1) [Go, M. K., Amyes, T. L., and Richard, J. P. (2009) Biochemistry 48, 5769-5778] and 0.06 M(-1) s(-1) [Go, M. K., Koudelka, A., Amyes, T. L., and Richard, J. P. (2010) Biochemistry 49, 5377-5389] have been determined for the wild-type- and K12G mutant TIM-catalyzed deuterium exchange reactions of [1-(13)C]GA, respectively, to form [1-(13)C,2,2-di-(2)H]GA. These data show that TIM and BSA exhibit a modest catalytic activity toward deprotonation of the alpha-hydroxy alpha-carbonyl carbon. We suggest that this activity is intrinsic to many globular proteins, and that it must be enhanced to demonstrate meaningful de novo design of protein catalysts of proton transfer at alpha-carbonyl carbon.

  17. Antioxidative effects of magnetized extender containing bovine serum albumin on sperm oxidative stress during long-term liquid preservation of boar semen

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hee; Park, Choon-Keun, E-mail: parkck@kangwon.ac.kr

    2015-08-21

    Magnetized water is defined as water that has passed through a magnet and shows increased permeability into cells and electron-donating characteristics. These attributes can protect against membrane damage and remove reactive oxygen species (ROS) in mammalian cells. We explored the effects of improved magnetized semen extenders containing bovine serum albumin (BSA) as antioxidants on apoptosis in boar sperm. Ejaculated semen was diluted in magnetized extender (0G and 6000G) with or without BSA (0G + BSA and 6000G + BSA), and sperm were analyzed based on viability, acrosome reaction, and H{sub 2}O{sub 2} level of live sperm using flow cytometry. Sperm were then preserved for 11 days at 18 °C. We found that viability was significantly higher in 6000G + BSA than under the other treatments (P < 0.05). The acrosome reaction was significantly lower in the 6000G + BSA group compared with the other treatments (P < 0.05). Live sperm with high intracellular H{sub 2}O{sub 2} level were significantly lower in the 6000G + BSA group than under other treatments (P < 0.05). Based on our results, magnetized extenders have antioxidative effects on the liquid preservation of boar sperm. - Highlights: • Magnetized water is water that has been passed through a magnetic field. • Magnetized extender improve viability and decrease oxidative stress of boar sperm for preservation. • Ejaculated semen diluted with magnetized extender can improve liquid preservation period.

  18. In situ ATR-IR spectroscopy study of adsorbed protein: Visible light denaturation of bovine serum albumin on TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bouhekka, A., E-mail: Ahmed.Bouhekka@unige.ch [Departement de Chimie Physique, 30 Quai Ernest-Ansermet, CH-1211 Geneve 4 (Switzerland); Laboratoire de Physique des Couches Minces et Materiaux pour l' Electronique, Universite d' Oran Es-Senia, 31100 Oran (Algeria); Departement de Physique, Universite Hassiba Ben Bouali, 02000 Chlef (Algeria); Buergi, T., E-mail: Thomas.Buergi@unige.ch [Departement de Chimie Physique, 30 Quai Ernest-Ansermet, CH-1211 Geneve 4 (Switzerland)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We study the behavior of BSA protein adsorbed on TiO{sub 2} using in situ IR spectroscopy. Black-Right-Pointing-Pointer We examine the secondary structure changes during light exposure. Black-Right-Pointing-Pointer Visible light illumination creates random coil in the secondary structure of BSA. Black-Right-Pointing-Pointer The denaturation of BSA adsorbed on TiO{sub 2} under visible light irradiation is irreversible. - Abstract: In this work in situ Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy in a flow-through cell was used to study the effect of visible light irradiation on bovine serum albumin (BSA) adsorbed on porous TiO{sub 2} films. The experiments were performed in water at concentrations of 10{sup -6} mol/l at room temperature. The curve fitting method of the second derivative spectra allowed us to explore details of the secondary structure of pure BSA in water and conformation changes upon adsorption as well as during and after illumination by visible light. The results clearly show that visible light influences the conformation of adsorbed BSA. The appearance of a shift of the amide I band, in the original spectra, from 1653 cm{sup -1} to 1648 cm{sup -1}, is interpreted by the creation of random coil in the secondary structure of adsorbed BSA. The second derivative analysis of infrared spectra permits direct quantitative analysis of the secondary structural components of BSA, which show that the percentage of {alpha}-helix decreases during visible light illumination whereas the percentage of random coil increases.

  19. The use of bovine serum albumin-glutaraldehyde tissue adhesive (BioGlue®) for tumor bed closure following open partial nephrectomy.

    Science.gov (United States)

    Bahouth, Z; Halachmi, S; Shprits, S; Burbara, Y; Avitan, O; Masarwa, I; Moskovitz, B; Nativ, O

    2017-10-01

    To report the results of the use of Bovine Serum Albumin-Glutaraldehyde tissue adhesive (BioGlue®) for tumor bed closure in open nephron-sparing surgery (NSS). The cohort included 255 patients with enhancing renal mass who underwent open NSS. We used open flank approach, with in-situ hypothermia and enucleation of the tumor. For tumor bed closure, we used the BioGlue ® sealant for tumor bed filling, without suturing the edges. Mean patients' age was 65.4 years. 5.1% of patients had pre-operative chronic renal failure. Mean renal mass diameter was 4.2±1.6cm and mean R.E.N.A.L nephrometry score was 8.0±1.6. Mean ischemia time was 21.8±7.6. Mean estimated blood loss was 42±82ml and only two patients required blood transfusion. Urine leak and pseudo-aneurysm were recorded in two and one patient, respectively. None of the operations were converted to radical nephrectomy. The average change between post-operative and pre-operative eGFR (Δ=-1.7ml/min) was insignificant in a mean follow-up of 30.1±29.6 months. The 10-year recurrence-free survival rate was 99% and the 10-year overall survival rate was 85%. The use of BioGlue ® alone for hemostasis after NSS is a feasible and safe alternative to classical suturing. Its use enables satisfactory functional outcome and could potentially reduce ischemia time. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Comparison of whole body and tissue blood volumes in rainbow trout (Salmo gairdneri) with 125I bovine serum albumin and 51Cr-erythrocyte tracers

    Science.gov (United States)

    Gingerich, W.H.; Pityer, R.A.

    1989-01-01

    Total, packed cell and, plasma volume estimates were made for the whole body and selected tissues of rainbow trout by the simultaneous injection of radiolabelled trout erythrocyte (51Cr-RBC) and radioiodinated bovine serum albumin (125I-BSA) tracers. Blood volumes were estimated with both markers separately by the tracer-hematocrit method and as the combination of the 51Cr-RBC packed cell and 125I-BSA plasma volumes. Mean whole body blood volume was significantly less when calculated from the 51Cr-RBC tracer data (3.52±0.78 ml/100 g; ±SD) than when calculated with the 125I-BSA tracer (5.06±0.86 ml/100 g) or as the sum of the two volumes combined (4.49±0.60 ml/100 g). The whole body hematocrit (28±5%), estimated as the quotient of the 51Cr-RBC volume divided by the sum of the 125I-BSA and the 51Cr-RBC volumes, also was significantly less than the dorsal aortic microhematocrit (36±4%). Estimates of total blood volumes in most tissues were significantly smaller when calculated from the51Cr-RBC data than when calculated by the other two methods. Tissue blood volumes were greatest in highly vascularized and well perfused tissues and least in poorly vascularized tissues. The relative degree of vascularization among tissues generally remained the same regardless of whether the red cell or the plasma tracer was used to calculated blood volume. It is not clear whether the expanded plasma volume is the result of the distribution of erythrocyte-poor blood into the secondary circulation or the result of extravascular exchange of plasma proteins.

  1. Synthesis of 5-Fluorouracil conjugated LaF{sub 3}:Tb{sup 3+}/PEG-COOH nanoparticles and its studies on the interaction with bovine serum albumin: spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Mangaiyarkarasi, Rajendiran; Chinnathambi, Shanmugavel; Aruna, Prakasarao; Ganesan, Singaravelu, E-mail: sganesan@annauniv.edu, E-mail: ganesansingaravelu@gmail.com [Anna University, Department of Medical Physics (India)

    2015-03-15

    The luminescent lanthanide-doped nanoparticles have gathered considerable attention in many fields especially in biomedicine. In this work, the lanthanum fluoride-doped terbium nanoparticles (LaF{sub 3}:Tb{sup 3+} NPs) via simple chemical precipitation method has been synthesized and functionalized with polyethylene glycol. The size and the shape of the nanoparticles are confirmed using X-ray diffraction and transmission electron microscopy. The conjugation of 5-Fluorouracil (5-FU) and thus synthesized nanoparticles (NPs) were confirmed using various spectroscopic methods such as UV–Visible spectroscopy, fluorescence steady state, and excited state spectroscopy studies. The enhancement in fluorescence emission (λ = 543 nm) of drug-conjugated nanoparticles confirms the Vander Waals force of attraction due to F–F bonding between the drug and the nanoparticles. Further, the effects of 5FU-NPs in carrier protein were investigated using bovine serum albumin as a protein model. The 5FU–LaF{sub 3}:Tb{sup 3+} nanoparticles binding is illustrated with binding constant and number of binding sites. The structural change of bovine serum albumin has been studied using circular dichroism and Fourier transform infrared spectroscopy analysis.

  2. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Erkan [Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039 (Turkey); Ocsoy, Ismail [Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039 (Turkey); Nanotechnology Research Center (ERNAM), Erciyes University, Kayseri 38039 (Turkey); Ozdemir, Nalan [Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039 (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039 (Turkey)

    2016-02-04

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L{sup −1} and 8.8 μg L{sup −1}, respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. - Highlights: • The synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers is reported. • The nanoflowers were utilized for solid phase microextraction of

  3. Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan.

    Science.gov (United States)

    Lane, Michelle; Maybach, Jeffrey M; Hooper, Kathy; Hasler, John F; Gardner, David K

    2003-01-01

    Recombinant albumin can be used to supplement culture medium for the maturation and fertilization of bovine oocytes and subsequent embryo development to the blastocyst stage. Recombinant albumin was able to support blastocyst development at rates equivalent to that of bovine serum albumin (BSA) supplemented media. Supplementation of media containing recombinant albumin and citrate stimulated blastocyst expansion. Culture with recombinant albumin and citrate significantly increased the ability of the resultant blastocysts to re-expand and hatch following cryopreservation. The further addition of the glycosaminoglycan hyaluronan to the culture medium containing either BSA or recombinant albumin also increased the ability of blastocysts to survive cryopreservation. Inclusion of recombinant albumin and hyaluronan in culture media facilitates the development of physiological defined culture conditions. For bovine embryos this has implications for both research and commercial applications where defined reproducible conditions are desirable. Copyright 2003 Wiley-Liss, Inc.

  4. Fraction V of bovine albumin improves the adherence and survival ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-04

    2,3. , Y. Yong ... Key words: Adult, neocortex, primary culture, fraction V of bovine albumin. INTRODUCTION. Alzheimer's disease ... models to study development, aging and death (Lesuisse et al., 2002; Akasofu et al., 2006).

  5. Spectrofluorimetric Determination of Human Serum Albumin Using Terbium-Danofloxacin Probe

    OpenAIRE

    Ramezani, Amir M.; Manzoori, Jamshid L.; Amjadi, Mohammad; Jouyban, Abolghasem

    2012-01-01

    A spectrofluorimetric method is proposed for the determination of human serum albumin (HSA) and bovine serum albumin (BSA) using terbium-danofloxacin (Tb3+-Dano) as a fluorescent probe. These proteins remarkably enhance the fluorescence intensity of the Tb3+-Dano complex at 545 nm, and the enhanced fluorescence intensity of Tb3+-Dano is proportional to the concentration of proteins (HSA and BSA). Optimum conditions for the determination of HSA were investigated and found that the maximum resp...

  6. Fluorescent investigation of the interactions between N-(p-chlorophenyl)-N'-(1-naphthyl) thiourea and serum albumin: Synchronous fluorescence determination of serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Cui Fengling [School of Chemistry and Environmental Science, Key Laboratory for Environmental Pollution Control Technology of Henan Province, Henan Normal University, Xinxiang, Hennan 453007 (China)]. E-mail: fenglingcui@hotmail.com; Wang Junli [School of Chemistry and Environmental Science, Key Laboratory for Environmental Pollution Control Technology of Henan Province, Henan Normal University, Xinxiang, Hennan 453007 (China); Cui Yanrui [School of Chemistry and Environmental Science, Key Laboratory for Environmental Pollution Control Technology of Henan Province, Henan Normal University, Xinxiang, Hennan 453007 (China); Li Jianping [School of Chemistry and Environmental Science, Key Laboratory for Environmental Pollution Control Technology of Henan Province, Henan Normal University, Xinxiang, Hennan 453007 (China)

    2006-07-07

    The interactions between N-(p-chlorophenyl)-N'-(1-naphthyl) thiourea and serum albumin were investigated by fluorescence spectroscopy and UV absorption spectrum under physiological conditions. The results of spectroscopic measurements suggested that N-(p-chlorophenyl)-N'-(1-naphthyl) thiourea should have a strong ability to quench the intrinsic fluorescence of both bovine serum albumin and human serum albumin through static quenching procedure, and the hydrophobic interaction was the predominant intermolecular force stabilizing the complex. Thermodynamic parameter enthalpy changes ({delta}H) and entropy changes ({delta}S) were calculated according to the Vant'Hoff equation. The binding distances between N-(p-chlorophenyl)-N'-(1-naphthyl) thiourea and the proteins were evaluated on the basis of the theory of Foester energy transfer. In addition, the effects of other ions on the binding constants of complexes were also discussed. Synchronous fluorescence technology was successfully applied to the determination of serum albumins added to the CPNT solution.

  7. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.

    Science.gov (United States)

    Yilmaz, Erkan; Ocsoy, Ismail; Ozdemir, Nalan; Soylak, Mustafa

    2016-02-04

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L(-)(1) and 8.8 μg L(-)(1), respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Novel pyrazolo[3,4-d]pyrimidine with 4-(1H-benzimidazol-2-yl)-phenylamine as broad spectrum anticancer agents: Synthesis, cell based assay, topoisomerase inhibition, DNA intercalation and bovine serum albumin studies.

    Science.gov (United States)

    Singla, Prinka; Luxami, Vijay; Singh, Raja; Tandon, Vibha; Paul, Kamaldeep

    2017-01-27

    A series of new pyrazolo[3,4-d]pyrimidine possessing 4-(1H-benzimidazol-2-yl)-phenylamine moiety at C4 position and primary as well as secondary amines at C6 position has been designed and synthesized. Their antitumor activities were evaluated against a panel of 60 human cancer cell lines at National Cancer Institute (NCI). Six compounds displayed potent and broad spectrum anticancer activities at 10 μM. Compounds 8, 12, 14 and 17 proved to be the most active and efficacious candidate in this series, with mean GI50 values of 1.30 μM, 1.43 μM, 2.38 μM and 2.18 μM, respectively against several cancer cell lines. Further biological evaluation of these compounds suggested that these compounds induce apoptosis and inhibit human topoisomerase (Topo) IIα as a possible intracellular target. UV-visible and fluorescence studies of these compounds revealed strong interaction with ct-DNA and bovine serum albumin (BSA). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Nanocomposite materials based on poly(vinyl chloride) and bovine serum albumin modified ZnO through ultrasonic irradiation as a green technique: Optical, thermal, mechanical and morphological properties.

    Science.gov (United States)

    Mallakpour, Shadpour; Darvishzadeh, Marzieh

    2018-03-01

    In this project, physicochemical properties of poly(vinyl chloride) (PVC) reinforced by ZnO nanoparticles (NPs) were studied. Firstly, ZnO NPs were modified with bovine serum albumin (BSA) as an organo-modifier and biocompatible substance through ultrasound irradiation as environmental friendly, low cost and rapid means. Nanocomposite (NC) films were prepared by loadings of various ratios of ZnO/BSA NPs (3, 6 and 9wt%) inside the PVC. Structural morphology and physical properties of the ZnO-BSA NPs and NC films were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), transmission electron microscopy and field emission scanning electron microscopy. According to the obtained information from the TGA, an increase in the thermal stability can be clearly observed. Also the results of contact angle analysis indicated with increasing percent of ZnO/BSA NPs into PVC the hydrophilic behaviors of NCs were increased. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions.

    Science.gov (United States)

    Givens, Brittany E; Xu, Zhenzhu; Fiegel, Jennifer; Grassian, Vicki H

    2017-05-01

    The interaction of a model protein, bovine serum albumin (BSA) with two different metal oxide nanoparticles, TiO2 (∼22nm) and SiO2 (∼14nm), was studied at both physiological and acidic pH. The pH- and nanoparticle-dependent differences in protein structure and protein adsorption were determined using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and thermogravimetric analysis (TGA). The results indicated that the surface coverage of BSA decreases with decreasing pH on both TiO2 and SiO2 surfaces, and BSA coverage is higher by a factor of ca. 3-10times more on TiO2 compared to SiO2. The secondary structure of BSA changes upon adsorption to either nanoparticle surface at both pH 7.4 and 2. At acidic pH, BSA appears to completely unfold on TiO2 nanoparticles whereas it assumes an extended conformation on SiO2. These differences highlight for the first time the extent to which the protein corona structure is significantly impacted by protein-nanoparticle interactions which depend on the interplay between pH and specific nanoparticle surface chemistry. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Domain specific association of small fluorescent probe trans-3-(4-monomethylaminophenyl)-acrylonitrile (MMAPA) with bovine serum albumin (BSA) and its dissociation from protein binding sites by Ag nanoparticles: spectroscopic and molecular docking study.

    Science.gov (United States)

    Ghosh, Shalini; Jana, Sankar; Guchhait, Nikhil

    2012-01-26

    Photoinduced intramolecular charge transfer produced a polar excited state in trans-3-(4-monomethylaminophenyl)acrylonitrile (MMAPA), rendering the resulting emission sensitive to the medium polarity. Strong binding interaction of silver nanoparticles with the probe was observed, causing fluorescence quenching through the static quenching process. The probe MMAPA was found to bind to the less polar hydrophobic, restricted proteinous environment of bovine serum albumin (BSA) resulting in the blue shift of the emission maximum with an increase in emission intensity and fluorescence anisotropy. Studies using site markers of flufenamic acid and phenylbutazone coupled with molecular docking results predicted that the binding site of the probe is in between subdomains IIIA and IB of BSA and is different from the conventional Sudlow sites. The denaturation of the probe-bound BSA by urea or heat released the probe from this proteinous environment to water marked by exactly reverse spectral changes. On the interaction of silver nanoparticles with the probe bound protein, the probe was observed to move from its binding site in the protein to the Ag(0) nanoparticle surface involving conformational changes of the protein near the probe binding site.

  12. Effects of oral contraceptives on total serum proteins, albumin ...

    African Journals Online (AJOL)

    Total serum, albumin, globulin, albumin/globulin ratio and cholesterol levels were determined in 25 subjects on oral contraceptives and 25 controls. The mean serum total protein, globulin and cholesterol levels were significantly increased in oral contraceptive and their control counterparts. The albumin/globulin ratio in ...

  13. Synthesis and characterization of mononuclear copper(II) complex of tetradentate N2S2 donor set and the study of DNA and bovine serum albumin binding

    OpenAIRE

    Sandipan Sarkar; Biswajit Das

    2014-01-01

    One mononuclear copper(II) complex, containing neutral tetradentate NSSN-type ligands, of formulation [Cu II(L 1)Cl]ClO 4 (1), was synthesized and isolated in pure form [where L 1˭ 1,3-bis(3-pyridylmethylthio)propane]. Green-colored copper(II) complex was characterized by physicochemical, spectroscopic methods and conductivity measurement. These experimental data matched well with the proposed structure of the complex. Biological activity of the complex (1) toward calf thymus DNA and bovine s...

  14. Albumin-based or albumin-linked calibrators cause a positive bias in serum proteins assayed by the biuret method.

    Science.gov (United States)

    Chromý, Vratislav; Sváchová, Lenka; Novosád, Lukás; Jarkovský, Jirí; Sedlák, Pavel; Horák, Petr; Dobrovolná, Hana; Hlavácová, Barbora

    2009-01-01

    Assay of total serum protein by the biuret method calibrated with albumin standards according to the reference method provides results with a positive bias approximately 3%-5% exceeding the total error of 3.4% allowable for total protein in serum analysis made by analysers using two-part reagents and short-term procedures. We used two types of two-part biuret reagents utilised in a short-term measurement in analysers with albumin or serum calibrators, in which protein was attested by the Kjeldahl method. Tests with potentially interfering substances proved that serum blanking used in a short-term biuret procedure is not capable of sufficiently eliminating effects of serum interferents. A short-term blanking is evidently capable of suppressing only an absorbance caused by serum-present coloured and turbid interferents, but its capacity to transform them (oxidise, hydrolyse, saponify, etc.) to some other not-interfering substances is very low compared with a long-term blanking. Lipids and bilirubin are responsible for significant positive bias of total protein in normal serum samples (approximately 3%) and even a greater positive offset in lipaemic and icteric sera (approximately 5%). We verified that interference tests based on a normal serum spiked with endogenous lipids and bilirubin give quite false and misleading results in the biuret reaction. A pure albumin, not depending on its bovine/human origin, gives absorbance responding only to its copper complexes with protein with a biuret regent, while its absorbance with a serum also includes the absorbance of interferents present in serum. The simplest way to improve current short-term biuret procedures is the use of a human serum calibrator with total protein attested by the Kjeldahl method. A serum calibrator, behaving analogously to serum samples, compensates for a positive bias in most normal sera. Reagents with a greater concentration of active biuret components (copper and alkali, reference method included

  15. Interaction of carbon nanoparticles to serum albumin: elucidation of the extent of perturbation of serum albumin conformations and thermodynamical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Samir [Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India); Hossain, Maidul [Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India); Devi, P. Sujatha [Nano-Structured Materials Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Kumar, Gopinatha Suresh [Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India); Chaudhuri, Keya, E-mail: keya.chaudhuri@gmail.com [Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India)

    2013-03-15

    Highlights: ► Strong interaction of serum albumins to CNPs and potential toxicity. ► Partial unfolding and alteration of BSA and HSA secondary structure by CNP. ► Significant insight into design of nanoparticles in biomedical applications. -- Abstract: Carbon nanoparticles continuously generated from industries and vehicles due to incomplete combustion of fuels is one of the potent causes of air pollution. The exposure of this polluted air with carbon nanoparticles, introduced into the bloodstream of animals in the course of respiration, motivated us to study their interaction with plasma proteins, bovine serum albumin and human serum albumin. Carbon nanoparticles with very small size and high purity were synthesized by dehydration of D-glucose using concentrated sulphuric acid as dehydrating agent. These were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction, Raman spectroscopy, FTIR spectroscopy and UV–visible spectroscopy. Carbon nanoparticles-protein interactions were studied by fluorescence spectroscopy, circular dichroism spectroscopy and isothermal titration calorimetry. The fluorescence quenching constants and thermodynamic parameters such as enthalpy change (ΔH°), entropy change (ΔS°) and free energy change (ΔG°) were calculated, which indicated a strong static quenching and primary electrostatic interaction between the carbon nanoparticles and blood proteins. Circular dichroism spectra provided the information about the secondary structure alteration of the proteins in presence of carbon nanoparticles. These findings have shed light towards an understanding of the interactions between carbon nanoparticles and serum proteins which may clarify the potential risks and undesirable health effects of carbon nanoparticles, as well as the related cellular trafficking and systemic translocation.

  16. Low admission serum albumin as prognostic determinant of 30-day ...

    African Journals Online (AJOL)

    Receiver operating characteristics curve for optimal cut off point of serum albumin to predict survival or death within 30 days revealed area under the cure (AUC) of 0.870, p-value 0.0001, 95% C/I=0.759-0.982. Serum albumin of 1.55g /dL has sensitivity of 100% and specificity of 61.5%. NIHSS and serum albumin were ...

  17. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein

    Science.gov (United States)

    Satheshkumar, Angupillai; Elango, Kuppanagounder P.

    2014-09-01

    The spectral techniques such as UV-Vis, 1H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3 × 108 L mol-1. Based on the Forster’s theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol-1, which is comparable to our experimental free energy of binding (-49 kJ mol-1) obtained from fluorescence study.

  18. LPS from bovine serum albumin drives TNF-α release during ex-vivo placenta perfusion experiments, contaminates the perfusion system but can be effectively removed by oxidative cleaning.

    Science.gov (United States)

    Vasanthan, T; Rochow, N; Mian, F; Codini, T; DeFrance, B; Fusch, G; Samiee-Zafarghandy, S; Fusch, C

    2014-12-01

    The dual ex-vivo perfusion of human placental tissue is useful to study inflammatory pathways. We found significant TNF-α release in negative controls similar in concentration to lipopolysaccharide (LPS) stimulated placentas. The aim of the current study was to (i) identify sources driving TNF-α release and (ii) develop an approach to control for it. (i) To determine sources leading to TNF-α release, solutions frequently circulated through the perfusion system and perfusion media with different bovine serum albumin (BSA) quality were exposed to mouse macrophage cell lines (RAW264.7) and subsequently measured for TNF-α expression. (ii) To assess memory effects and validate cleaning procedures, sham perfusion experiments were conducted either in the presence or absence of exogenous LPS, in new tubing that was contaminated, cleaned and analyzed for the effectiveness of LPS removal. Oxidative and acid-base cleaning were tested for their effectiveness to reduce LPS contamination. TNF-α release, observed in negative control experiments, was attributed to the use of LPS-contaminated BSA as well as inadequate cleaning of the perfusion system. Once introduced in the perfusion system, LPS accumulated and created a memory effect. Oxidative but not acid-base depyrogenation effectively reduced LPS levels to concentrations that were in accordance with FDA guidelines (contamination of the placenta perfusion model could have confounding effects on experimental outcomes leading to misinterpretation of data. To circumvent LPS contamination LPS-free BSA and oxidative depyrogenation cleaning techniques should be implemented in future placental perfusion studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Bovine serum albumin as the dominant form of dietary protein reduces subcutaneous fat mass, plasma leptin and plasma corticosterone in high fat-fed C57/BL6J mice.

    Science.gov (United States)

    McManus, Bettina L; Korpela, Riitta; Speakman, John R; Cryan, John F; Cotter, Paul D; Nilaweera, Kanishka N

    2015-08-28

    Increasing evidence suggests that the source of dietary protein can have an impact on weight gain and fat mass during high-fat feeding in both humans and rodents. The present study examined whether dietary bovine serum albumin (BSA) as the dominant source of protein alters energy balance and adiposity associated with high-fat feeding. C57/BL6J mice were given a diet with 10 % of energy from fat and 20 % of energy from casein or a diet with 45 % of energy from fat and either 20 % of energy from casein (HFD) or BSA (HFD+BSA) for 13 weeks. The HFD+BSA diet did not significantly alter daily energy expenditure, locomotor activity and RER, but did increase cumulative energy intake and percentage of lean mass while reducing feed efficiency and percentage of fat mass when compared with the HFD (Pprotein 3 (UCP3), but reduced the mRNA level of leptin when compared with the HFD (P< 0·05). The SAT mRNA levels of PPARA, CPT1b and UCP3 were negatively correlated (P< 0·05) with SAT mass, which was reduced in HFD+BSA mice compared with HFD controls (P< 0·01). No differences in epididymal fat mass existed between the groups. The HFD+BSA diet normalised plasma leptin and corticosterone levels compared with the HFD (P< 0·05). While differences in leptin levels were associated with the percentage of fat mass (P< 0·01), changes in corticosterone concentrations were independent of the percentage of fat mass (P< 0·05). The data suggest that the HFD+BSA diet influences plasma leptin levels via SAT mass reduction where mRNA levels of genes linked to β-oxidation were increased, whereas differences in plasma corticosterone levels were not related to fat mass reduction.

  20. Solvent-dependent binding interactions of the organophosphate pesticide, chlorpyrifos (CPF), and its metabolite, 3,5,6-trichloro-2-pyridinol (TCPy), with Bovine Serum Albumin (BSA): A comparative fluorescence quenching analysis.

    Science.gov (United States)

    Dahiya, Vandana; Chaubey, Bhawna; Dhaharwal, Ashok K; Pal, Samanwita

    2017-06-01

    Analysis of the interaction of pesticides and their metabolites with the cellular proteins has drawn considerable attention in past several years to understand the effect of pesticides on environment and mankind. In this study, we have investigated the binding interaction of Bovine Serum Albumin (BSA) with a widely used organophosphorous insecticide chlorpyrifos (CPF), and its stable metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) to provide a comparative analysis of the two molecules by employing various spectroscopic techniques viz., UV-vis absorption, Circular Dichroism (CD), and Fluorescence spectroscopy. The fluorescence quenching studies of BSA emission in two different solvents viz., water and methanol in presence of CPF and TCPy have led to the revelation of several interesting facts about the pesticide-protein interaction. It has been found that both the molecules cause static quenching of BSA emission as seen from the Stern-Volmer constant (Ksv) irrespective of the solvent used for the analysis. While TCPy is a stronger quencher in water, it exhibits comparable quenching capacity with CPF in methanol. The solvent dependent differential binding interaction of the two molecules finally indicates possibility of diverse bio-distribution of the pesticides within human body. The UV-vis and CD spectra of BSA in presence of the test molecules have unravelled that the molecules formed ground state complex that are highly reversible in nature and have minimal effect on the protein secondary structure. Furthermore it is also understood that structural changes of BSA in presence of CPF is significantly higher compared to that in presence of TCPY. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein.

    Science.gov (United States)

    Satheshkumar, Angupillai; Elango, Kuppanagounder P

    2014-09-15

    The spectral techniques such as UV-Vis, (1)H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3×10(8) L mol(-1). Based on the Forster's theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol(-1), which is comparable to our experimental free energy of binding (-49 kJ mol(-1)) obtained from fluorescence study. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Comparison of Behaviour in Different Liquids and in Cells of Gold Nanorods and Spherical Nanoparticles Modified by Linear Polyethyleneimine and Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Inna A. Pyshnaya

    2014-01-01

    Full Text Available Gold nanorods (GNRs are considered one of the most promising forms of nanoparticles for nanobiotechnology; however, the problem of their toxicity is currently not resolved. We synthesised GNRs, modified with linear polyethyleneimine (PEI-GNRs, and examined their physicochemical and some biological properties in comparison with GNRs modified with BSA and spherical gold nanoparticles (sGNPs modified with the same agents. The influence of the buffer, cell culture media, and serum on hydrodynamic diameter and zeta potential of all GNPs was studied. Simultaneously, the size, shape, and formation of a corona were examined by transmission electron microscopy (TEM. PEI-GNRs and GNPs were nontoxic for BHK-21 and HeLa cells (MTT test. Penetration of all GNPs into BHK-21, melanoma B16, and HeLa cells was examined after 30 min, 3 h, and 24 h of incubation using TEM ultrathin sections. PEI-GNRs and PEI-sGNPs demonstrated fast and active penetration into cells by caveolin-dependent and lipid raft-mediated endocytosis and accumulated in endosomes and lysosomes. BSA-modified GNPs showed prolonged flotation and a significant delay in cell penetration. The results show that the charge of initial NPs determines penetration into cells. Thus, the designed PEI-GNRs were nontoxic and stable in cell culture media and could efficiently penetrate cells.

  3. The relative role of serum albumin and urinary creatinine as ...

    African Journals Online (AJOL)

    Their weight, Body mass index, serum albumin and 24-hour urinary creatinine were determined before treatment, at the end of the 1st, 2nd, 4th and 6th month of treatment. Using ANOVA, the mean values of the weight, BIM and serum albumin were analysed with further analysis paired student T- test of the pre-treatment ...

  4. Serum albumin--a non-saturable carrier

    DEFF Research Database (Denmark)

    Brodersen, R; Honoré, B; Larsen, F G

    1984-01-01

    The shape of binding isotherms for sixteen ligands to human serum albumin showed no signs of approaching saturation at high ligand concentrations. It is suggested that ligand binding to serum albumin is essentially different from saturable binding of substrates to enzymes, of oxygen to haemoglobi...

  5. Spectroscopic analysis of the interaction between tetra-(p-sulfoazophenyl-4-aminosulfonyl)-substituted aluminum (III) phthalocyanines and serum albumins

    OpenAIRE

    Liqin Zheng; Yipeng He; Pingping Lin; Lina Liu; Hongqin Yang; Yiru Peng; Shusen Xie

    2017-01-01

    The binding interaction between tetra-(p-sulfoazophenyl-4-aminosulfonyl)-substituted aluminum (III) phthalocyanine (AlPc), and two-serum albumins (bovine serum albumin (BSA) and human serum albumin (HSA)) has been investigated. AlPc could quench the intrinsic fluorescence of BSA and HSA through a static quenching process. The primary and secondary binding sites of AlPc on BSA were domain I and III of BSA. The primary binding site of AlPc on HSA was domain I, and the secondary binding sites of...

  6. Anion exchange fractionation of serum proteins versus albumin elimination.

    Science.gov (United States)

    Sahab, Ziad J; Iczkowski, Kenneth A; Sang, Qing-Xiang Amy

    2007-09-01

    Elimination of albumin, constituting more than 50% of total serum proteins, allows increased protein loads on immobilized pH gradient (IPG) gels and better visualization of low-abundance proteins; however, it may result in the loss of albumin-bound low-abundance proteins. In this study, we report the prefractionation of serum proteins by batch anion exchange chromatography into three fractions: one containing proteins with isoelectric points (pI values) higher than the pI of albumin, a second fraction containing proteins with pI values in the same range as the pI of albumin, and a third fraction containing proteins with pI values lower than the pI of albumin. This procedure uses common instrumentation, is carried out under denaturing conditions, and takes less than 30min. We also report the loss of a clinically established prostate cancer serum biomarker, prostate-specific antigen (PSA), after albumin is eliminated using two commercially available albumin elimination kits: one that uses Cibacron Blue F3GA, which achieves albumin depletion through dye-ligand binding, and one that uses specific albumin antibody. The loss of PSA secondary to albumin elimination exceeded that after batch anion exchange serum sample prefractionation.

  7. Characterizing the Interaction between tartrazine and two serum albumins by a hybrid spectroscopic approach.

    Science.gov (United States)

    Pan, Xingren; Qin, Pengfei; Liu, Rutao; Wang, Jing

    2011-06-22

    Tartrazine is an artificial azo dye commonly used in food products. The present study evaluated the interaction of tartrazine with two serum albumins (SAs), human serum albumin (HSA) and bovine serum albumin (BSA), under physiological conditions by means of fluorescence, three-dimensional fluorescence, UV-vis absorption, and circular dichroism (CD) techniques. The fluorescence data showed that tartrazine could bind to the two SAs to form a complex. The binding process was a spontaneous molecular interaction procedure, in which van der Waals and hydrogen bond interactions played a major role. Additionally, as shown by the UV-vis absorption, three-dimensional fluorescence, and CD results, tartrazine could lead to conformational and some microenvironmental changes of both SAs, which may affect the physiological functions of SAs. The work provides important insight into the mechanism of toxicity of tartrazine in vivo.

  8. Optical spectroscopic exploration of binding of Cochineal Red A with two homologous serum albumins.

    Science.gov (United States)

    Bolel, Priyanka; Mahapatra, Niharendu; Halder, Mintu

    2012-04-11

    Cochineal Red A is a negatively charged synthetic azo food colorant and a potential carcinogen. We present here the study of binding of Cochineal Red A with two homologous serum albumins, human (HSA) and bovine (BSA), in aqueous pH 7.4 buffer by optical spectroscopic techniques. Protein intrinsic fluorescence quenching by Cochineal Red A occurs through ground-state static interaction and its binding with BSA is stronger than with HSA. The magnitudes of thermodynamic parameters suggest that dye binding occurs principally via electrostatic complexation. Site-marker competitive binding shows that Cochineal Red A binds primarily to site I of serum albumins. Circular dichroic spectra indicate that dye binding results in some conformational modification of serum albumins. Increased ionic strength of the medium results in lowering of binding. This study provides an important insight into possible means of removal of dye toxicity.

  9. Isolation of bovine plasma albumin by liquid chromatography and its polymerization for use in immunohematology

    Directory of Open Access Journals (Sweden)

    K. Tanaka

    2001-08-01

    Full Text Available The aim of the method described here is to remove hemoglobin, the major contaminant in the bovine plasma obtained from slaughterhouses, by adding a mixture of 19% cold ethanol and 0.6% chloroform, followed by fibrinogen and globulin precipitation by the Cohn method and nonspecific hemagglutinin by thermocoagulation. The experimental volume of bovine plasma was 2,000 ml per batch. Final purification was performed by liquid chromatography using the ion-exchange gel DEAE-Sepharose FF. The bovine albumin thus obtained presented > or = 99% purity, a yield of 25.0 ± 1.2 g/l plasma and >71.5% recovery. N-acetyl-DL-tryptophan (0.04 mmol/g protein and sodium caprylate (0.04 mmol/g protein were used as stabilizers and the final concentration of albumin was adjusted to 22.0% (w/v, pH 7.2 to 7.3. Viral inactivation was performed by pasteurization for 10 h at 60°C. The bovine albumin for the hemagglutination tests used in immunohematology was submitted to chemical treatment with 0.06% (w/v glutaraldehyde and 0.1% (w/v formaldehyde at 37°C for 12 h to obtain polymerization. A change in molecular distribution was observed after this treatment, with average contents of 56.0% monomers, 23.6% dimers, 12.2% trimers and 8.2% polymers. The tests performed demonstrated that this polymerized albumin enhances the agglutination of Rho(D-positive red cells by anti-Rho(D serum, permitting and improving visualization of the results.

  10. Photodynamically generated bovine serum albumin radicals

    DEFF Research Database (Denmark)

    Silvester, J A; Timmins, G S; Davies, Michael Jonathan

    1998-01-01

    of the preferred loci of radical formation. The formation of these thiyl and tryptophan-derived radicals does not lead to significant aggregation or fragmentation of the protein, though it does result in a dramatic enhancement in the susceptibility of the oxidised protein to proteolytic degradation by a range...

  11. Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins

    Science.gov (United States)

    Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi

    2005-11-01

    The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.

  12. Serum proteins and aqueous outflow resistance in bovine eyes.

    Science.gov (United States)

    Johnson, M; Gong, H; Freddo, T F; Ritter, N; Kamm, R

    1993-12-01

    Recent evidence shows that much of the protein in the anterior chamber aqueous humor enters diffusively through the root of the iris. The proximity of the protein entry point to the trabecular meshwork suggests that the protein content of the aqueous humor in the trabecular meshwork might be much higher than previously suggested. The authors were interested in investigating the possible hydrodynamic implications of these proteins. Bovine eyes were perfused with concentrations of bovine serum in buffer ranging from 0% to 15% to determine the effect on outflow resistance. Immunohistochemical methods were used on these eyes and unperfused eyes to determine the distribution of albumin in the anterior segment. Preliminary perfusion studies suggested that increasing the concentration of serum in buffer from 0% to 15% decreased the rate of "wash-out" in bovine eyes, with a 15% solution essentially eliminating the wash-out phenomenon. Perfusion of a series of bovine eyes with a total of 5 ml of 15% serum in buffer showed a "wash-out" rate of 0.0498 +/- 0.0428 ([microliters/min/mm Hg]/[ml perfusate]), whereas control eyes perfused with buffer washed-out at a rate of 0.1677 +/- 0.0271 (P buffer eliminated this protein; perfusion with 10% to 15% serum in buffer maintained the level of albumin in the outflow pathway similar to that found in unperfused eyes. Use of cuprolinic blue in a critical electrolyte concentration confirmed previous findings that sulfated proteoglycans are not eliminated from the trabecular meshwork during wash-out. Wash-out in nonhuman species may result from progressive depletion of an anterior segment depot of plasma-derived proteins entering the trabecular meshwork. Modeling studies confirm that plasma-derived proteins in the aqueous humor of the trabecular meshwork can generate a significant fraction of aqueous outflow resistance. The lack of wash-out in human eyes suggests that this system may maintain flow resistance in a fashion fundamentally

  13. KADAR ALBUMIN SERUM DAN FAAL GINJAL ANAK

    Directory of Open Access Journals (Sweden)

    Lydia Kosnadi

    2012-09-01

    Full Text Available Serum albumin concentration (Sa is one of the determinants of single nephron glomerular filtration rate. Hypoalbuminemia is frequently encountered in our country due to protein calory malnutrition, liver function disorders and others. The renal function or glomerular filtration rate (GFR measurement in children suffering from renal diseases would be able to provide information regarding the extent of the renal damage. The aim of this study was to know the interaction between Sa and GFR in children. GFR was measured by standard inulin clearance (Cin and conventional endogenous creatinine clearance (Ccr in 112 children hospitalized with renal diseases. Standard renal function status test, namely IKA-1984 was utilized for the renal function measurement. Result of this study showed a positive correlation between : Sa, Cin and Ccr in pediatric patients with decreased renal function : Cin = 5,23 + 12,14 Sa (r = 0,50; p = 0,007; n = 26 and Cr = 7,10 + 14,47 Sa (r = 0,53; p = 0,005; n = 26, so that the lower Sa level, usually will indicate the lower renal function and the more severe the renal failure.

  14. Human serum albumin nanotubes with esterase activity.

    Science.gov (United States)

    Komatsu, Teruyuki; Sato, Takaaki; Boettcher, Christoph

    2012-01-02

    A nanocylindrical wall structure was obtained by layer-by-layer (LbL) assembly of poly-L-arginine (PLA) and human serum albumin (HSA) and characterized by scanning electron microscopy (SEM), scanning force microscopy (SFM), and cryogenic transmission electron microscopy (cryo-TEM). SEM and SFM measurements of a lyophilized powder of (PLA/HSA)(3) nanotubes yielded images of round, chimney-like architectures with approximately 100 nm wall thickness. Cryo-TEM images of the hydrated sample revealed that the tube walls are composed of densely packed HSA molecules. Moreover, when small-angle X-ray scattering was used to characterize the individual PLA and HSA components in aqueous solutions, maximum diameters of approximately 28 nm and 8 nm were obtained, respectively. These values indicate the minimum thickness of wall layers consisting of PLA and HSA. It can also be concluded from SEM as well as from cryo-TEM images that the protein cylinders are considerably swollen in the presence of water. Furthermore, HSA retains esterase activity if assembled in nanotubes, as indicated by measurements of para-nitrophenyl acetate hydrolysis under semi-physiological conditions (pH 7.4, 22 °C). The enzyme activity parameters (Michaelis constant, K(m), and catalytic constant, k(cat)) were comparable to those of free HSA. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Virus trap in human serum albumin nanotube.

    Science.gov (United States)

    Komatsu, Teruyuki; Qu, Xue; Ihara, Hiromi; Fujihara, Mitsuhiro; Azuma, Hiroshi; Ikeda, Hisami

    2011-03-16

    Infectious hepatitis B virus (HBV), namely Dane particles (DPs), consists of a core nucleocapsid including genome DNA covered with an envelope of hepatitis B surface antigen (HBsAg). We report the synthesis, structure, and HBV-trapping capability of multilayered protein nanotubes having an anti-HBsAg antibody (HBsAb) layer as an internal wall. The nanotubes were prepared using an alternating layer-by-layer assembly of human serum albumin (HSA) and oppositely charged poly-L-arginine (PLA) into a nanoporous polycarbonate (PC) membrane (pore size, 400 nm), followed by depositions of poly-L-glutamic acid (PLG) and HBsAb. Subsequent dissolution of the PC template yielded (PLA/HSA)(2)PLA/PLG/HBsAb nanotubes (AbNTs). The SEM measurements revealed the formation of uniform hollow cylinders with a 414 ± 16 nm outer diameter and 59 ± 4 nm wall thickness. In an aqueous medium, the swelled nanotubes captured noninfectious spherical small particles of HBsAg (SPs); the binding constant was 3.5 × 10(7) M(-1). Surprisingly, the amount of genome DNA in the HBV solution (HBsAg-positive plasma or DP-rich solution) decreased dramatically after incubation with the AbNTs (-3.9 log order), which implies that the infectious DPs were completely entrapped into the one-dimensional pore space of the AbNTs.

  16. Human serum albumin binding of certain antimalarials

    Science.gov (United States)

    Marković, Olivera S.; Cvijetić, Ilija N.; Zlatović, Mario V.; Opsenica, Igor M.; Konstantinović, Jelena M.; Terzić Jovanović, Nataša V.; Šolaja, Bogdan A.; Verbić, Tatjana Ž.

    2018-03-01

    Interactions between eight in-house synthesized aminoquinolines, along with well-known chloroquine, and human serum albumin (HSA) have been studied by fluorescence spectroscopy. The synthesized aminoquinolines, despite being structurally diverse, were found to be very potent antimalarials. Fluorescence measurements indicate that three compounds having additional thiophene or benzothiophene substructure bind more strongly to HSA than other studied compounds. Competitive binding experiments indicate that these three compounds bind significantly stronger to warfarin compared to diazepam binding site. Fluorescence quenching at three temperatures (20, 25, and 37 °C) was analyzed using classical Stern-Volmer equation, and a static quenching mechanism was proposed. The enthalpy and entropy changes upon sulphur-containing compound-HSA interactions were calculated using Van't Hoff equation. Positive values of enthalpy and entropy changes indicate that non-specific, hydrophobic interactions are the main contributors to HSA-compound interaction. Molecular docking and calculated lipophilicity descriptors indicate the same, pointing out that the increased lipophilicity of sulphur-containing compounds might be a reason for their better binding to HSA. Obtained results might contribute to design of novel derivatives with improved pharmacokinetic properties and drug efficacy.

  17. Virome of US bovine calf serum.

    Science.gov (United States)

    Sadeghi, Mohammadreza; Kapusinszky, Beatrix; Yugo, Danielle M; Phan, Tung Gia; Deng, Xutao; Kanevsky, Isis; Opriessnig, Tanja; Woolums, Amelia R; Hurley, David J; Meng, Xiang-Jin; Delwart, Eric

    2017-03-01

    Using viral metagenomics we analyzed four bovine serum pools assembled from 715 calves in the United States. Two parvoviruses, bovine parvovirus 2 (BPV2) and a previously uncharacterized parvovirus designated as bosavirus (BosaV), were detected in 3 and 4 pools respectively and their complete coding sequences generated. Based on NS1 protein identity, bosavirus qualifies as a member of a new species in the copiparvovirus genus. Also detected were low number of reads matching ungulate tetraparvovirus 2, bovine hepacivirus, and several papillomaviruses. This study further characterizes the diversity of viruses in calf serum with the potential to infect fetuses and through fetal bovine serum contaminate cell cultures. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  18. Experimental investigation of the serum albumin fascia microstructure

    Science.gov (United States)

    Buzoverya, M. E.; Shcherbak, Yu. P.; Shishpor, I. V.

    2012-09-01

    The results of theoretical and experimental investigation of biological liquids are reported. Structural effects observed in fascias are considered with account of the molecular features of albumin and the concept of supramolecular organization of polymers. It is revealed that the morphology of human serum albumin fascias depends on the concentration and quality of the solvent. It is shown that the water-salt fascias of albumin are more structured than water solutions with the same concentration.

  19. The role of albumin conformation in the binding of diazepam to human serum albumin

    NARCIS (Netherlands)

    Wilting, J.; Hart, B.J. 't; Gier, J.J. de

    2006-01-01

    The effect of hydrogen, chloride and calcium ions on the binding of diazepare to human serum albumin has been studied by circular dichroism and equilibrium dialysis. In all cases the molar ellipticity of the diazepam-albumin complex increases with pH over the pH range 5 to 9. Under these

  20. Verifying the competition between haloperidol and biperiden in serum albumin through a model based on spectrofluorimetry

    Science.gov (United States)

    Muniz da Silva Fragoso, Viviane; Patrícia de Morais e Coura, Carla; Paulino, Erica Tex; Valdez, Ethel Celene Narvaez; Silva, Dilson; Cortez, Celia Martins

    2017-11-01

    The aim of this work was to apply mathematical-computational modeling to study the interactions of haloperidol (HLP) and biperiden (BPD) with human (HSA) and bovine (BSA) serum albumin in order to verify the competition of these drugs for binding sites in HSA, using intrinsic tryptophan fluorescence quenching data. The association constants estimated for HPD-HSA was 2.17(±0.05) × 107 M-1, BPD-HSA was 2.01(±0.03) × 108 M-1 at 37 °C. Results have shown that drugs do not compete for the same binding sites in albumin.

  1. Effects of Vitamin C Treatment on Serum Protein, Albumin, Beta ...

    African Journals Online (AJOL)

    Effects of Vitamin C Treatment on Serum Protein, Albumin, Beta-Globulin Profiles and Body Weight of Trypanosoma Brucei -Infected Rattus Noregicus. ... changes in serum protein and body weight of T. brucei – infected rats. Keywords: Trypanosoma brucei, Rattus norvegicus, Ascorbic acid, Body weight, Serum protein ...

  2. 99M-technetium labeled macroaggregated human serum albumin pharmaceutical

    Science.gov (United States)

    Winchell, Harry S.; Barak, Morton; Van Fleet, III, Parmer

    1977-05-17

    A reagent comprising macroaggregated human serum albumin having dispersed therein particles of stannous tin and a method for instantly making a labeled pharmaceutical therefrom, are disclosed. The labeled pharmaceutical is utilized in organ imaging.

  3. Serum albumin binding of structurally diverse neutral organic compounds: data and models.

    Science.gov (United States)

    Endo, Satoshi; Goss, Kai-Uwe

    2011-12-19

    Binding to serum albumin has a strong influence on freely dissolved, unbound concentrations of chemicals in vivo and in vitro. For neutral organic solutes, previous studies have suggested a log-log correlation between the albumin-water partition coefficient and the octanol-water partition coefficient (K(ow)) and postulated highly nonspecific binding that is mechanistically analogous to dissolution into solvents. These relationships and concepts were further explored in this study. Bovine serum albumin (BSA)-water partition coefficients (K(BSA/w)) were measured for 83 structurally diverse neutral organic chemicals in consistent experimental conditions. The correlation between log K(BSA/w) and log K(ow) was moderate, with R(2) = 0.76 and SD = 0.43. The log K(BSA/w) of low-polarity compounds including a series of chlorobenzenes and polycyclic aromatic hydrocarbons increased with log K(ow) linearly up to log K(ow) = 4-5, but then the linear relationship apparently broke off, and the increase became gradual. The fitting of polyparameter linear free energy relationship models with five solute descriptors was just comparable to that of the log K(ow) model (R(2) = 0.78-0.79, SD = 0.41-0.42); the relatively high SD obtained suggests that solvent dissolution models are not capable of modeling albumin binding accurately. A size limitation of the binding site(s) of albumin is suggested as a possible reason for the high SD. An equilibrium distribution model indicates that serum albumin generally has high contributions to the binding in the serum of polar compounds and relatively small low-polarity compounds, whereas albumin binding for large low-polarity compounds is outcompeted by the strong partitioning into lipids due to low relative affinity of albumin for these compounds. © 2011 American Chemical Society

  4. Circular dichroism study of the interaction between mutagens and bilirubin bound to different binding sites of serum albumins.

    Science.gov (United States)

    Orlov, Sergey; Goncharova, Iryna; Urbanová, Marie

    2014-05-21

    Although recent investigations have shown that bilirubin not only has a negative role in the organism but also exhibits significant antimutagenic properties, the mechanisms of interactions between bilirubin and mutagens are not clear. In this study, interaction between bilirubin bound to different binding sites of mammalian serum albumins with structural analogues of the mutagens 2-aminofluorene, 2,7-diaminofluorene and mutagen 2,4,7-trinitrofluorenone were investigated by circular dichroism and absorption spectroscopy. Homological human and bovine serum albumins were used as chiral matrices, which preferentially bind different conformers of bilirubin in the primary binding sites and make it observable by circular dichroism. These molecular systems approximated a real system for the study of mutagens in blood serum. Differences between the interaction of bilirubin bound to primary and to secondary binding sites of serum albumins with mutagens were shown. For bilirubin bound to secondary binding sites with low affinity, partial displacement and the formation of self-associates were observed in all studied mutagens. The associates of bilirubin bound to primary binding sites of serum albumins are formed with 2-aminofluorene and 2,4,7-trinitrofluorenone. It was proposed that 2,7-diaminofluorene does not interact with bilirubin bound to primary sites of human and bovine serum albumins due to the spatial hindrance of the albumins binding domains. The spatial arrangement of the bilirubin bound to serum albumin along with the studied mutagens was modelled using ligand docking, which revealed a possibility of an arrangement of the both bilirubin and 2-aminofluorene and 2,4,7-trinitrofluorenone in the primary binding site of human serum albumin. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Water-phase palmitate concentrations in equilibrium with albumin-bound palmitate in a biological system

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1992-01-01

    Biokemi, erythrocyte ghosts, pamitate, bovine serum albumin, long-chain fatty acids, equilibrium constants......Biokemi, erythrocyte ghosts, pamitate, bovine serum albumin, long-chain fatty acids, equilibrium constants...

  6. Competitive binding of phenylbutazone and colchicine to serum albumin in multidrug therapy: A spectroscopic study

    Science.gov (United States)

    Sułkowska, A.; Maciążek-Jurczyk, M.; Bojko, B.; Równicka, J.; Zubik-Skupień, I.; Temba, E.; Pentak, D.; Sułkowski, W. W.

    2008-06-01

    The binding sites for phenylbutazone and colchicine were identified in tertiary structure of bovine and human serum albumin with the use of spectrofluorescence analysis. It was found that phenylbutazone has two binding sites in both sera albumins (HSA and BSA), while colchicine has one binding site in BSA as well as in HSA. The comparison of the quenching effect of BSA and HSA fluorescence by phenylbutazone and colchicine allows us to identify subdomain IIA in protein as the binding site for these two drugs. In this subdomain tryptophan 214 is located. The participation of tyrosyl and tryptophanyl residues of protein was also estimated in the drug-albumin complex. The comparison of quenching of fluorescence of HSA and BSA excited at 280 nm with that at 295 nm allowed us to state that the participation of tyrosyl residues of albumin in the phenylbutazone-serum albumin interaction is significant. The analysis of quenching of fluorescence of BSA in the binary and ternary systems showed that phenylbutazone does not affect the complex formed between colchicine and BSA. Similarly, colchicine has no effect on the Phe-BSA complex. However marked differences were observed for the complex with HSA. On the basis of Ka and KQ values it was concluded that colchicine may probably cause displacement of phenylbutazone from its complex with serum albumin (SA). Static and dynamic quenching for the binary and ternary systems is also discussed. The competition of phenylbutazone and colchicine in binding to serum albumin should be taken into account in the multi-drug therapy.

  7. A spectroscopic study of phenylbutazone and aspirin bound to serum albumin in rheumatoid diseases

    Science.gov (United States)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Sułkowski, W. W.

    2011-11-01

    Interaction of phenylbutazone (PBZ) and aspirin (ASA), two drugs recommended in rheumatoid diseases (RDs), when binding to human (HSA) and bovine (BSA) serum albumins, has been studied by quenching of fluorescence and proton nuclear magnetic resonance ( 1HNMR) techniques. On the basis of spectrofluorescence measurements high affinity binding sites of PBZ and ASA on albumin as well as their interaction within the binding sites were described. A low affinity binding site has been studied by proton nuclear magnetic resonance spectroscopy. Using fluorescence spectroscopy the location of binding site in serum albumin (SA) for PBZ and ASA was found. Association constants Ka were determined for binary (i.e. PBZ-SA and ASA-SA) and ternary complexes (i.e. PBZ-[ASA]-SA and ASA-[PBZ]-SA). PBZ and ASA change the affinity of each other to the binding site in serum albumin (SA). The presence of ASA causes the increase of association constants KaI of PBZ-SA complex. Similarly, PBZ influences KaI of ASA-SA complex. This phenomenon shows that the strength of binding and the stability of the complexes increase in the presence of the second drug. The decrease of KaII values suggests that the competition between PBZ and ASA in binding to serum albumin in the second class of binding sites occurs. The analysis of 1HNMR spectral parameters i.e. changes of chemical shifts and relaxation times of the drug indicate that the presence of ASA weakens the interaction of PBZ with albumin. Similarly PBZ weakens the interaction of ASA with albumin. This conclusion points to the necessity of using a monitoring therapy owning to the possible increase of uncontrolled toxic effects.

  8. serum albumin, creatinine, uric acid and hypertensive disorders of ...

    African Journals Online (AJOL)

    hi-tech

    2003-08-08

    Aug 8, 2003 ... Conclusion: Single estimation of serum uric acid and creatinine levels early in pregnancy are of little value in the ... define the value of serum albumin levels in pregnancy in the prediction of pre-eclampsia in the light of the ... and the isometric handgrip exercise test (8), and mean arterial pressure (9). Most of ...

  9. Characterization of the interaction between 3-Oxotabersonine and two serum albumins by using spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qing; Yan, Jin; He, Jiawei; Bai, Keke [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Li, Hui, E-mail: lihuilab@sina.com [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2013-06-15

    3-Oxotabersonine (OTAB) is a component of Voacanga africana, which is a type of traditional drug in Africa widely used for treating diseases. This study examines the interaction of OTAB with bovine serum albumin (BSA) and human serum albumin (HSA) under physiological conditions. The interaction between OTAB and BSA/HSA was investigated using fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy, and molecular modeling under simulated physiological conditions. The experimental results confirm that the quenching mechanism is a static quenching process. The binding site number (n) and the apparent binding constant (K) were measured at various temperatures. The thermodynamic parameters, namely, enthalpy change (ΔH) and entropy change (ΔS), were calculated. Furthermore, the structural changes in the serum albumin that affected the OTAB binding were determined using FT-IR. The binding site was assumed to be located in site I of the BSA/HSA (subdomain IIA). -- Highlights: ► Make use of the 3-Oxotabersonine firstly extracted from seeds of Voacanga africana Stapf to study the drug–protein system. ► Use two kinds of similar structure serum albumins to do a comparative study. ► FT-IR was used to study the conformational change of BSA and HSA. ► Use the BSA and HSA structure obtained from the Brookhaven Protein Data Bank for molecular docking.

  10. Serum Albumin Levels and Economic Status in Japanese Older Adults.

    Directory of Open Access Journals (Sweden)

    Asami Ota

    Full Text Available Low serum albumin levels are associated with aging and medical conditions such as cancer, liver dysfunction, inflammation, and malnutrition and might be an independent predictor of long-term mortality in healthy older populations. We tested the hypothesis that economic status is associated with serum albumin levels and explained by nutritional and health status in Japanese older adults.We performed a cross-sectional analysis using data from the Japan Gerontological Evaluation study (JAGES. The study participants were 6528 functionally independent residents (3189 men and 3339 women aged ≥65 years living in four municipalities in Aichi prefecture. We used household income as an indicator of economic status. Multiple linear regression was used to compare serum albumin levels in relation to household income, which was classified as low, middle, and high. Additionally, mediation by nutritional and health-related factors was analyzed in multivariable models.With the middle-income group as reference, participants with low incomes had a significantly lower serum albumin level, even after adjustment for sex, age, residential area, education, marital status, and household structure. The estimated mean difference was -0.17 g/L (95% confidence interval, -0.33 to -0.01 g/L. The relation between serum albumin level and low income became statistically insignificant when "body mass index", "consumption of meat or fish", "self-rated health", "presence of medical conditions", "hyperlipidemia", or "respiratory disease "was included in the model.Serum albumin levels were lower in Japanese older adults with low economic status. The decrease in albumin levels appears to be mediated by nutrition and health-related factors with low household incomes. Future studies are needed to reveal the existence of other pathways.

  11. EVALUATION OF SERUM ALBUMIN LEVELS IN ACUTE MYOCARDIAL INFARCTION

    Directory of Open Access Journals (Sweden)

    Shilpa

    2015-10-01

    Full Text Available BACKGROUND : Acute myocardial infarction (AMI is one of the major causes of mortality and morbidity in the world. Serum albumin levels are inversely related with age, smoking, blood pressure and obesity. It is not clear whether low serum albumin level is a nonspecific , prognostic variable, a marker of subclinical disease, or whether it is a part of causal mechanism leading to death due to cardiovascular disease. Some studies have reported an inverse association between serum albumin and cardiovascular mortality but oth ers have not . 1 The association between serum albumin and cardiovascular mortality remains controversial. This study was done to evaluate the serum albumin levels in patients with ST segment elevation Myocardial infarction (STEMI over a period of three days from the date of admission and whether the changes had any relationship with the prognosis of the patient. AIM: to associate changes in serum albumin levels in AMI patients over a period of three days i.e., day zero - at the time of admission, day+1 - the following day(12 to 30hrs after collecting first sample, day +2(32 to 54 hrs after collecting first sample with the clinical prognosis of the patient. SETTINGS AND DESIGN : Prospective follow up study in patents admitted with AMI in a tertiary care hospital. METHODS: 30 pati ents admitted with STEMI were included in the study and serum albumin levels were estimated in them on admission and for two days thereafter. Statistical analysis used. The data was analysed using SPSS 15.0, STATA 8.0, MEDLAC 9.0.1, And SYSTAT 11 softwares. Repeated measures analysis of variance and student t test was used to find the significance in changes of serum albumin levels and prognosis of the patient on different days. RESULTS AND CONCLUSION: This study found that there was fall in serum albumin le vels in patients with AMI in the course of three days compared with the day of admission and it was significantly associated with bad prognosis.

  12. Quantitative determination of albumin in microlitre amounts of rat serum: With a short note on serum albumin levels in ageing rats

    NARCIS (Netherlands)

    Leeuw-Israel, F.R. de; Arp-Neefjes, J.M.; Hollander, C.F.

    1967-01-01

    A simple dye binding method for determining rat serum albumin, which employs the anionic dye 2-(4′-hydroxybenzneeazo) benzoic acid (HBABA) is described. Albumin in 5μ1 of serum is determined colorimetrically. Purified rat albumin is used as a primary standard and rat serum as a reference sample.

  13. Effects of resin or charcoal treatment on fetal bovine serum and bovine calf serum.

    Science.gov (United States)

    Cao, Zhimin; West, Clint; Norton-Wenzel, Carol S; Rej, Robert; Davis, Faith B; Davis, Paul J; Rej, Robert

    2009-01-01

    Charcoal- or resin-stripping of fetal bovine serum (FBS) or bovine calf serum (BCS) intended for supplementation of cell culture media is widely practiced to remove a variety of endogenous compounds, including steroid, peptide, and thyroid hormones. The possibility that stripping removes other biologically relevant factors from serum may not be appreciated. In this report, standardized clinical laboratory testing methods were used to assess the effects of resin- and charcoal-stripping on content in FBS and BCS of more than 25 analytes in the sera. In addition to hormones, the serum constituents affected by stripping are certain vitamins, electrolytes, enzyme activities, and metabolites.

  14. Effects of glycation on meloxicam binding to human serum albumin

    Science.gov (United States)

    Trynda-Lemiesz, Lilianna; Wiglusz, Katarzyna

    2011-05-01

    The current study reports a binding of meloxicam a pharmacologically important new generation, non-steroidal anti-inflammatory drug to glycated form of the human serum albumin (HSA). The interaction of the meloxicam with nonglycated and glycated albumin has been studied at pH 7.4 in 0.05 M sodium phosphate buffer with 0.1 M NaCl, using fluorescence quenching technique and circular dichroism spectroscopy. Results of the present study have shown that the meloxicam could bind both forms of albumin glycated and nonglycated at a site, which was close to the tryptophan residues. Similarly, how for native albumin glycated form has had one high affinity site for the drug with association constants of the order of 10 5 M -1. The glycation process of the HSA significantly has affected the impact of the meloxicam on the binding of other ligands such as warfarin and bilirubin. The affinity of the glycated albumin for bilirubin as for native albumin has been reduced by meloxicam but observed effect was weaker by half (about 20%) compared with nonglycated albumin. In contrast to the native albumin meloxicam binding to glycated form of the protein only slightly affected the binding of warfarin. It seemed possible that the effects on warfarin binding might be entirely attributable to the Lys 199 modification which was in site I.

  15. Human serum albumin and oxidative stress in preeclamptic women and the mechanism of albumin for stress reduction

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kinoshita

    2017-08-01

    Significance: Serum albumin relates to oxidative stress inversely, but to the endothelial function positively, in pregnant women. Human serum albumin appears to reduce oxidative stress via NADPH oxidase inhibition in the human vascular smooth muscle, indicating that the serum level may be a critical determinant of vascular oxidative stress in some human diseases.

  16. Zn2+ chelation by serum albumin improves hexameric Zn2+-insulin dissociation into monomers after exocytosis.

    Directory of Open Access Journals (Sweden)

    José A G Pertusa

    Full Text Available β-cells release hexameric Zn2+-insulin into the extracellular space, but monomeric Zn2+-free insulin appears to be the only biologically active form. The mechanisms implicated in dissociation of the hexamer remain unclear, but they seem to be Zn2+ concentration-dependent. In this study, we investigate the influence of albumin binding to Zn2+ on Zn2+-insulin dissociation into Zn2+-free insulin and its physiological, methodological and therapeutic relevance. Glucose and K+-induced insulin release were analyzed in isolated mouse islets by static incubation and perifusion experiments in the presence and absence of albumin and Zn2+ chelators. Insulin tolerance tests were performed in rats using different insulin solutions with and without Zn2+ and/or albumin. Albumin-free buffer does not alter quantification by RIA of Zn2+-free insulin but strongly affects RIA measurements of Zn2+-insulin. In contrast, accurate determination of Zn2+-insulin was obtained only when bovine serum albumin or Zn2+ chelators were present in the assay buffer solution. Albumin and Zn2+ chelators do not modify insulin release but do affect insulin determination. Preincubation with albumin or Zn2+ chelators promotes the conversion of "slow" Zn2+-insulin into "fast" insulin. Consequently, insulin diffusion from large islets is ameliorated in the presence of Zn2+ chelators. These observations support the notion that the Zn2+-binding properties of albumin improve the dissociation of Zn2+-insulin into subunits after exocytosis, which may be useful in insulin determination, insulin pharmacokinetic assays and islet transplantation.

  17. Serum total protein, albumin and globulin levels in Trypanosoma ...

    African Journals Online (AJOL)

    The effect of orally administered Scoparia dulcis on Trypanosoma brucei-induced changes in serum total protein, albumin and globulin were investigated in rabbits over a period of twenty eight days. Results obtained show that infection resulted in hyperproteinaemia, hyperglobulinaemia and hypoalbuminaemia. However ...

  18. Microdetermination of human serum albumin by differential pulse ...

    Indian Academy of Sciences (India)

    A simple and highly sensitive electrochemical method for the determination of human serum albumin (HSA) using differential pulse voltammetry (DPV), based on a silver electrode modified with a self-assembled monolayer of L-cysteine, was developed. L-cysteine can be modified onto a silver electrode by covalent bonding ...

  19. Microdetermination of human serum albumin by differential pulse ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. A simple and highly sensitive electrochemical method for the determination of human serum albumin (HSA) using differential pulse voltammetry (DPV), based on a silver electrode modified with a self-assembled monolayer of L-cysteine, was developed. L-cysteine can be modified onto a silver elec- trode by ...

  20. Superior serum half life of albumin tagged TNF ligands

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Nicole [Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg (Germany); Schneider, Britta; Pfizenmaier, Klaus [Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart (Germany); Wajant, Harald, E-mail: harald.wajant@mail.uni-wuerzburg.de [Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg (Germany)

    2010-06-11

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.

  1. Ghrelin binding to serum albumin and its biological impact.

    Science.gov (United States)

    Lufrano, Daniela; Trejo, Sebastián A; Llovera, Ramiro E; Salgueiro, Mariano; Fernandez, Gimena; Martínez Damonte, Valentina; González Flecha, F Luis; Raingo, Jesica; Ermácora, Mario R; Perelló, Mario

    2016-11-15

    Ghrelin is an octanoylated peptide hormone that plays a key role in the regulation of the body weight and glucose homeostasis. In plasma, ghrelin circulates bound to larger proteins whose identities are partially established. Here, we used size exclusion chromatography, mass spectrometry and isothermal titration microcalorimetry to show that ghrelin interacts with serum albumin. Furthermore, we found that such interaction displays an estimated dissociation constant (KD) in the micromolar range and involves albumin fatty-acid binding sites as well as the octanoyl moiety of ghrelin. Notably, albumin-ghrelin interaction reduces the spontaneous deacylation of the hormone. Both in vitro experiments-assessing ghrelin ability to inhibit calcium channels-and in vivo studies-evaluating ghrelin orexigenic effects-indicate that the binding to albumin affects the bioactivity of the hormone. In conclusion, our results suggest that ghrelin binds to serum albumin and that this interaction impacts on the biological activity of the hormone. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Spectroscopic analysis of the interaction between tetra-(p-sulfoazophenyl-4-aminosulfonyl-substituted aluminum (III phthalocyanines and serum albumins

    Directory of Open Access Journals (Sweden)

    Liqin Zheng

    2017-03-01

    Full Text Available The binding interaction between tetra-(p-sulfoazophenyl-4-aminosulfonyl-substituted aluminum (III phthalocyanine (AlPc, and two-serum albumins (bovine serum albumin (BSA and human serum albumin (HSA has been investigated. AlPc could quench the intrinsic fluorescence of BSA and HSA through a static quenching process. The primary and secondary binding sites of AlPc on BSA were domain I and III of BSA. The primary binding site of AlPc on HSA was domain I, and the secondary binding sites of AlPc on HSA were found at domains I and II. Our results suggest that AlPc readily interact with BSA and HSA implying that the amphiphilic substituents AlPc may contribute to their transportation in the blood.

  3. Inverse correlation between serum albumin and serum lactate in adults with dengue

    Directory of Open Access Journals (Sweden)

    Ifael Yerosias Mauleti

    2016-08-01

    This study demonstrated a significant inverse correlation between albumin and serum lactate levels in dengue patients aged > 30 years. This can aid in the early recognition and prompt management of at-risk patients to reduce morbidity and mortality.

  4. Molecular basis of indomethacin-human serum albumin interaction

    DEFF Research Database (Denmark)

    Trivedi, V D; Vorum, H; Honoré, B

    1999-01-01

    Studies on the strength and extent of binding of the non-steroidal anti-inflammatory drug indomethacin to human serum albumin (HSA) have provided conflicting results. In the present work, the serum-binding of indomethacin was studied in 55 mM sodium phosphate buffer (pH 7.0) at 28 degrees C......, by using a fluorescence quench titration technique. The interaction of indomethacin with human serum albumin has been studied as a function of temperature, ionic strength and pH. The results suggest that electrostatic interaction plays a major role in the binding. The possible role of lysine residues...... in this interaction was studied by modifying exposed and buried lysine residues of HSA with potassium cyanate and studying indomethacin binding with the modified HSA. The data suggest that the interaction takes place via a salt bridge formation between the carboxylate group of indomethacin and a buried lysine residue...

  5. Fluorescence quenching of serum albumin by rifamycin antibiotics and their analytical application.

    Science.gov (United States)

    Yang, Ji-Dong; Deng, Shi-Xing; Liu, Zhong-Fang; Kong, Ling; Liu, Shao-Pu

    2007-01-01

    In neutral medium, rifamycin antibiotics such as rifapentin (RFPT), rifampicin (RFP), rifandin (RFD) and rifamycin SV (RFSV) can bind with human serum albumin (HSA) and bovine serum albumin (BSA) to form complexes, resulting in the quenching of the intrinsic fluorescence (lambda(ex)/lambda(em) = 285/355 nm) of the BSA and HSA. The quenching intensity (DeltaF) is directly proportional to the concentration of the rifamycin antibiotics. Therefore, a new analytical method was established to determine trace rifamycin antibiotics. The method had fairly high sensitivity and the detecting limits (3sigma) for RFPT, RFP, RFD and RFSV were 0.85, 0.98, 1.83, 1.89 ng/mL, respectively, for the HSA system and 0.76, 0.89, 1.55, 1.77 ng/mL, respectively, for the BSA system. All relative standard deviations (RSDs) were <3.8%. In this work, the characteristics of the fluorescence spectra were studied and the optimum reaction conditions and influencing factors were investigated. The influence of coexisting substances was tested and the results showed that the method had good selectivity and could be applied to determine trace rifamycin antibiotics in medicine capsules and urine samples. Taking the RFSV-serum albumin system as an example, the reaction mechanisms, such as binding constants, binding sites, binding distance and the type of fluorescence quenching, were investigated. Copyright (c) 2007 John Wiley & Sons, Ltd.

  6. Fetal Bovine Serum (FBS): Past - Present - Future.

    Science.gov (United States)

    van der Valk, Jan; Bieback, Karen; Buta, Christiane; Cochrane, Brett; Dirks, Wilhelm G; Fu, Jianan; Hickman, James J; Hohensee, Christiane; Kolar, Roman; Liebsch, Manfred; Pistollato, Francesca; Schulz, Markus; Thieme, Daniel; Weber, Tilo; Wiest, Joachim; Winkler, Stefan; Gstraunthaler, Gerhard

    2017-08-09

    The supplementation of culture medium with fetal bovine serum (FBS, also referred to as 'fetal calf serum') is still common practice in cell culture applications. Due to a number of disadvantages in terms of quality and reproducibility of in vitro data, animal welfare concerns, and in light of recent cases of fraudulent marketing, the search for alternatives and the development of serum-free medium formulations gained global attention. Here, we report on the 3rd Workshop on FBS, Serum Alternatives and Serum-free Media, where (a) regulatory aspects, (b) the serum dilemma, (c) alternatives to FBS, (d) case-studies of serum-free in vitro applications, and (e) the establishment of serum-free databases, were discussed. The whole process of obtaining blood from a living calf fetus to using the FBS produced from it for scientific purposes is de facto not yet legally regulated, despite the existing EU-Directive 2010/63/EU on the use of animals for scientific purposes. Together with above mentioned challenges, several strategies have been developed to reduce or replace FBS in cell culture media in terms of the 3Rs (Refinement, Reduction, Replacement). Most recently, releasates of activated human donor thrombocytes (human platelet lysates) have been shown to be one of the most promising serum alternatives when chemically defined media are not yet an option. Additionally, new developments in cell-based assay techniques, advanced organ-on-chip and microphysiological systems are covered in this report. Chemically-defined serum-free media are shown to be the ultimate goal for the majority of culture systems, and examples are discussed.

  7. Interactive association of drugs binding to human serum albumin.

    Science.gov (United States)

    Yang, Feng; Zhang, Yao; Liang, Hong

    2014-02-27

    Human serum albumin (HSA) is an abundant plasma protein, which attracts great interest in the pharmaceutical industry since it can bind a remarkable variety of drugs impacting their delivery and efficacy and ultimately altering the drug's pharmacokinetic and pharmacodynamic properties. Additionally, HSA is widely used in clinical settings as a drug delivery system due to its potential for improving targeting while decreasing the side effects of drugs. It is thus of great importance from the viewpoint of pharmaceutical sciences to clarify the structure, function, and properties of HSA-drug complexes. This review will succinctly outline the properties of binding site of drugs in IIA subdomain within the structure of HSA. We will also give an overview on the binding characterization of interactive association of drugs to human serum albumin that may potentially lead to significant clinical applications.

  8. Self-Assembly of Human Serum Albumin: A Simplex Phenomenon

    Science.gov (United States)

    Thakur, Garima; Prashanthi, Kovur; Jiang, Keren; Thundat, Thomas

    2017-01-01

    Spontaneous self-assemblies of biomolecules can generate geometrical patterns. Our findings provide an insight into the mechanism of self-assembled ring pattern generation by human serum albumin (HSA). The self-assembly is a process guided by kinetic and thermodynamic parameters. The generated protein ring patterns display a behavior which is geometrically related to a n-simplex model and is explained through thermodynamics and chemical kinetics. PMID:28930179

  9. Polypharmacotherapy in rheumatology: 1H NMR analysis of binding of phenylbutazone and methotrexate to serum albumin

    Science.gov (United States)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.; Bojko, B.; Szkudlarek-Haśnik, A.; Knopik, M.; Sułkowski, W. W.

    2011-05-01

    The influence of phenylbutazone (Phe) and methotrexate (MTX) on binding of MTX and Phe to human (HSA) and bovine (BSA) serum albumin in the low-affinity binding sites is investigated. The strength and kind of interactions between serum albumin (SA) and drugs used in combination therapy were found using 1H NMR spectroscopy. A stoichiometric molar ratios for Phe-SA and MTX-SA complexes are 36:1 and 31:1, respectively. It appeared these molar ratios are higher for the ternary systems than it were in the binary ones. The presence of the additional drug (MTX or Phe) causes the increase of an affinity of albumin towards Phe and MTX. It was found that the aliphatic groups of MTX are more resistant to the influence of Phe on the MTX-SA complex than the aromatic rings. The results showed the important impact of another drug (MTX or Phe) on the affinity of SA towards Phe and MTX in the low-affinity binding sites. This work is a subsequent part of the spectroscopic study on Phe-MTX-SA interactions (Maciążek-Jurczyk, 2009 [1]).

  10. Detecção de soroalbuminas e imunoglobulinas no leite bovino como indicadores de mastite subclínica Evaluation of serum albumin and immunoglobulins in bovine milk as an indicator of subclinical mastitis

    Directory of Open Access Journals (Sweden)

    Jackson Barros do Amaral

    1995-01-01

    Full Text Available Com o objetivo de verificar a utilidade da detecção de soroalbumina (BSA e imunoglobulinas (Ig no leite como diagnóstico da mastite subclínica, avaliou-se a relação entre a concentração dessas proteínas, o exame microbiológico e o teste "California Mastitis Test" (CMT. Amostras de leite de 172 quartos mamários previamente examinadas pelo CMT foram colhidas e levadas imediatamente ao laboratório para exames bacteriológicos. Uma alíquota de cada amostra foi congelada a -20°C e posteriomente testada para a presença de BSA e Ig, por meio da técnica de imunodifusão radial simples. Das amostras testadas, 111 apresentaram níveis fisiológicos de BSA (This work aimed to evaluate the feasibility of milk serum albumin (BSA and immunoglobulin (Ig detection for the diagnosis of subclinical mastitis. Bacteriological examinations and concentrations of BSA and Ig were determined in 172 milk samples. The samples were also examined by the California Mastitis Test (CMT. Immediately after collection, the samples were taken to the laboratory and bacteriologically examined. An aliquot of each sample was kept at -20°C and later, concentrations of BSA and Ig were determined by radial immunodiffusion. A total of 111 milk samples had physiological levels of BSA (< 0.2 mg/ml and Ig (< 0.5mg/ml. Twenty-two samples had higher levels of both proteins and 39 samples had higher levels of Ig and physiological levels of BSA. Concentrations of BSA and Ig above the physiological levels were more frequently observed in quarters samples with severo (+++ CMT reaction and udder infection caused by Streptococcus spp and Staphylococcus aureus. In bacteriologically positive quarters (88 out of 172, increased levels of BSA and Ig were found in 10 and 35 samples, respectively. In the bacteriologically negativo quartors (84 out of 172, physiological levels of BSA and Ig were found in 72 and 58 samples, respectively. Although BSA and Ig measurements in milk samples gave

  11. Influência da taxa de congelamento no comportamento físico-químico e estrutural durante a liofilização da albumina bovina Influence of cooling rate on the structural and phase changes during lyophilization of bovine serum albumin

    Directory of Open Access Journals (Sweden)

    Virgilio Tattini Jr

    2006-03-01

    Full Text Available A liofilização é o método mais comumente utilizado para a preparação de proteínas desidratadas, as quais devem apresentar estabilidade adequada por longo período de armazenagem em temperaturas ambientes. Entretanto, estudos recentes com espectroscopia no infravermelho têm documentado que os problemas relacionados com o congelamento e a desidratação induzidos pela liofilização podem levar ao desdobramento molecular da proteína. Através de análises por espectroscopia Raman, associadas com análise térmica por calorimetria exploratória diferencial (DSC, estudou-se a influência da taxa de congelamento no comportamento físico-químico e estrutural da albumina sérica bovina submetida ao processo de liofilização. Observou-se que a albumina liofilizada com taxa de congelamento de 2,5 °C/min apresentou maior alteração estrutural quando comparada à albumina liofilizada com taxa de congelamento de 30 °C/min, a qual apresentou menores oscilações espectrais nas regiões da amida I, III e pontes de dissulfeto, favorecendo a manutenção da conformação estrutural da proteína.Lyophilization (freeze-drying is the most commonly method used to prepare dehydrated proteins, which should have the desired long-term stability at ambient temperatures. However, recent infrared spectroscopic studies have documented that the acute freezing and dehydration stresses of lyophilization can induce protein unfolding. Through Raman spectroscopy associated with thermal analysis using differential scanning calorimetry (DSC, it was studied the influence of cooling rate on the structural and phase changes during lyophilization of bovine serum albumin. It was observed that bovine serum albumin (BSA lyophilized under slow freezing (2.5 ºC/min presented higher structure damage than the BSA lyophilized under fast freezing (30 ºC/min However, the lyophilization process using cooling rate of 30 ºC/min presented fewer spectra alterations on the Amide I

  12. Pharmacokinetics and anti-HIV-1 efficacy of negatively charged human serum albumins in mice

    NARCIS (Netherlands)

    Kuipers, M E; Swart, P J; Schutten, Martin; Smit, C; Proost, J H; Osterhaus, A D; Meijer, D K

    Negatively charged albumins (NCAs, with the prototypes succinylated human serum albumin (Suc-HSA) and aconitylated human serum albumin (Aco-HSA)), modified proteins with a potent anti-human immunodeficiency virus type 1 (anti-HIV-1) activity in vitro, were studied for their pharmacokinetic behaviour

  13. (99m) Tc-labelled human serum albumin cannot replace (125) I-labelled human serum albumin to determine plasma volume in patients with liver disease

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Lütken; Henriksen, Jens H; Bendtsen, Flemming

    2013-01-01

    -labelled human serum albumin (99mTc-HSA) and iodine-labelled human serum albumin (125I-HSA), as the former may have advantages at repeated measurements and the latter is the classical gold standard. Study population and methods In 88 patients, (64 with liver disease, mainly cirrhosis, and 24 patients without...

  14. Tamoxifen and curcumin binding to serum albumin. Spectroscopic study

    Science.gov (United States)

    Maciążek-Jurczyk, M.; Maliszewska, M.; Pożycka, J.; Równicka-Zubik, J.; Góra, A.; Sułkowska, A.

    2013-07-01

    Tamoxifen (TMX) is widely used for the breast cancer treatment and is known as chemopreventive agent. Curcumin (CUR) is natural phenolic compound with broad spectrum of biological activity e.g. anti-inflammatory, antimicrobial, antiviral, antifungal and chemopreventive. Combination of tamoxifen and curcumin could be more effective with lower toxicity than each agent alone in use for the treatment or chemoprevention of breast cancer. Binding of drugs to serum albumin is an important factor, which determines toxicity and therapeutic dosage of the drugs. When two drugs are administered together the competition between them for the binding site on albumin can result in a decrease in bound fraction and an increase in the concentration of free biologically active fraction of drug.

  15. Evaluation of non-covalent interactions between serum albumin and green tea catechins by affinity capillary electrophoresis.

    Science.gov (United States)

    Zinellu, Angelo; Sotgia, Salvatore; Scanu, Bastianina; Pisanu, Elisabetta; Giordo, Roberta; Cossu, Annalisa; Posadino, Anna Maria; Carru, Ciriaco; Pintus, Gianfranco

    2014-11-07

    The natural antioxidant-associated biological responses appear contradictory since biologically active dosages registered in vitro experiments are considerably higher if compared to concentrations found in vivo. The recent research indicates that natural antioxidants, including the major catechins of green tea epicatechin (EC), epigallocatechin (EGC), epicatechingallate (ECG) and epigallocatechingallate (EGCG) form non-covalent complexes with albumin, a crucial aspect that may modulate their plasma concentration, tissue delivery and biological activity. Affinity capillary electrophoresis (ACE) was used to characterize the binding of the four catechins to human serum albumin (HSA) and bovine serum albumin (BSA) at near-physiological conditions: 10 mmol/L phosphate buffer, HEPES 50 mmol/L (pH 7.5), temperature 37°C. The studied flavonoids displayed affinities toward the albumin with binding constants in the range 10(3)-10(5)M(-1), with a greater affinity of catechins toward HSA than BSA (between 3 and 3.5 fold higher). We also confirmed that catechins having a galloyl moiety (ECG and EGCG) have a higher binding affinity toward albumin than the catechins lacking the galloyl moiety (EC and EGC), and that for both albumins the order of affinity is EC

  16. Study on the interaction of the toxic food additive carmoisine with serum albumins: A microcalorimetric investigation

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Anirban; Kumar, Gopinatha Suresh, E-mail: gskumar@iicb.res.in

    2014-05-01

    Highlights: • Carmoisine binds to both the serum albumins with affinity of the order of 10{sup 6} M{sup −1}. • The binding was favored by negative enthalpy and positive entropy changes. • The binding was dominated by hydrophobic forces. • Carmoisine enhanced the thermal stability of both the proteins remarkably. - Abstract: The interaction of the synthetic azo dye and food colorant carmoisine with human and bovine serum albumins was studied by microcalorimetric techniques. A complete thermodynamic profile of the interaction was obtained from isothermal titration calorimetry studies. The equilibrium constant of the complexation process was of the order of 10{sup 6} M{sup −1} and the binding stoichiometry was found to be 1:1 with both the serum albumins. The binding was driven by negative standard molar enthalpy and positive standard molar entropy contributions. The binding affinity was lower at higher salt concentrations in both cases but the same was dominated by mostly non-electrostatic forces at all salt concentrations. The polyelectrolytic forces contributed only 5–8% of the total standard molar Gibbs energy change. The standard molar enthalpy change enhanced whereas the standard molar entropic contribution decreased with rise in temperature but they compensated each other to keep the standard molar Gibbs energy change almost invariant. The negative standard molar heat capacity values suggested the involvement of a significant hydrophobic contribution in the complexation process. Besides, enthalpy–entropy compensation phenomenon was also observed in both the systems. The thermal stability of the serum proteins was found to be remarkably enhanced on binding to carmoisine.

  17. Effect of Temperature on Tolbutamide Binding to Glycated Serum Albumin

    Directory of Open Access Journals (Sweden)

    Agnieszka Szkudlarek

    2017-03-01

    Full Text Available Glycation process occurs in protein and becomes more pronounced in diabetes when an increased amount of reducing sugar is present in bloodstream. Glycation of protein may cause conformational changes resulting in the alterations of its binding properties even though they occur at a distance from the binding sites. The changes in protein properties could be related to several pathological consequences such as diabetic and nondiabetic cardiovascular diseases, cataract, renal dysfunction and Alzheimer’s disease. The experiment was designed to test the impact of glycation process on sulfonylurea drug tolbutamide-albumin binding under physiological (T = 309 K and inflammatory (T = 311 K and T = 313 K states using fluorescence and UV-VIS spectroscopies. It was found in fluorescence analysis experiments that the modification of serum albumin in tryptophanyl and tyrosyl residues environment may affect the tolbutamide (TB binding to albumin in subdomain IIA and/or IIIA (Sudlow’s site I and/or II, and also in subdomains IB and IIB. We estimated the binding of tolbutamide to albumin described by a mixed nature of interaction (specific and nonspecific. The association constants Ka (L∙mol−1 for tolbutamide at its high affinity sites on non-glycated albumin were in the range of 1.98–7.88 × 104 L∙mol−1 (λex = 275 nm, 1.20–1.64 × 104 L∙mol−1 (λex = 295 nm and decreased to 1.24–0.42 × 104 L∙mol−1 at λex = 275 nm (T = 309 K and T = 311 K and increased to 2.79 × 104 L∙mol−1 at λex = 275 nm (T = 313 K and to 4.43–6.61 × 104 L∙mol−1 at λex = 295 nm due to the glycation process. Temperature dependence suggests the important role of van der Waals forces and hydrogen bonding in hydrophobic interactions between tolbutamide and both glycated and non-glycated albumin. We concluded that the changes in the environment of TB binding of albumin in subdomain IIA and/or IIIA as well as in subdomains IB and IIB influence on

  18. Substitution at the C-3 Position of Catechins Has an Influence on the Binding Affinities against Serum Albumin.

    Science.gov (United States)

    Ikeda, Masaki; Ueda-Wakagi, Manabu; Hayashibara, Kaori; Kitano, Rei; Kawase, Masaya; Kaihatsu, Kunihiro; Kato, Nobuo; Suhara, Yoshitomo; Osakabe, Naomi; Ashida, Hitoshi

    2017-02-18

    It is known that catechins interact with the tryptophan (Trp) residue at the drug-binding site of serum albumin. In this study, we used catechin derivatives to investigate which position of the catechin structure strongly influences the binding affinity against bovine serum albumin (BSA) and human serum albumin (HSA). A docking simulation showed that (-)-epigallocatechin gallate (EGCg) interacted with both Trp residues of BSA (one at drug-binding site I and the other on the molecular surface), mainly by π-π stacking. Fluorescence analysis showed that EGCg and substituted EGCg caused a red shift of the peak wavelength of Trp similarly to warfarin (a drug-binding site I-specific compound), while 3-O-acyl-catechins caused a blue shift. To evaluate the binding affinities, the quenching constants were determined by the Stern-Volmer equation. A gallate ester at the C-3 position increased the quenching constants of the catechins. Against BSA, acyl substitution increased the quenching constant proportionally to the carbon chain lengths of the acyl group, whereas methyl substitution decreased the quenching constant. Against HSA, neither acyl nor methyl substitution affected the quenching constant. In conclusion, substitution at the C-3 position of catechins has an important influence on the binding affinity against serum albumin.

  19. Substitution at the C-3 Position of Catechins Has an Influence on the Binding Affinities against Serum Albumin

    Directory of Open Access Journals (Sweden)

    Masaki Ikeda

    2017-02-01

    Full Text Available It is known that catechins interact with the tryptophan (Trp residue at the drug-binding site of serum albumin. In this study, we used catechin derivatives to investigate which position of the catechin structure strongly influences the binding affinity against bovine serum albumin (BSA and human serum albumin (HSA. A docking simulation showed that (−-epigallocatechin gallate (EGCg interacted with both Trp residues of BSA (one at drug-binding site I and the other on the molecular surface, mainly by π–π stacking. Fluorescence analysis showed that EGCg and substituted EGCg caused a red shift of the peak wavelength of Trp similarly to warfarin (a drug-binding site I-specific compound, while 3-O-acyl-catechins caused a blue shift. To evaluate the binding affinities, the quenching constants were determined by the Stern–Volmer equation. A gallate ester at the C-3 position increased the quenching constants of the catechins. Against BSA, acyl substitution increased the quenching constant proportionally to the carbon chain lengths of the acyl group, whereas methyl substitution decreased the quenching constant. Against HSA, neither acyl nor methyl substitution affected the quenching constant. In conclusion, substitution at the C-3 position of catechins has an important influence on the binding affinity against serum albumin.

  20. Determination of serum albumin in the presence of poly(diallyldimethylammonium chloride) by resonance light scattering technique

    Science.gov (United States)

    Chen, Yanhua; Tian, Yuan; Gao, Dejiang; Bai, Yu; Yu, Aimin; Zhang, Hanqi

    2007-04-01

    By means of the resonance light scattering (RLS) technique, a new method was developed to determine the bovine serum albumin (BSA) and human serum albumin (HSA) by the interaction of serum albumin with poly(diallyldimethylammonium chloride) (PDDA). At Tris-NaOH buffer solution, the RLS intensity of serum albumin at the wavelength 320, 550 and 590 nm was obviously enhanced in the presence of PDDA. The influences of some experimental factors, including incubation time, addition sequence of reagents, pH value, concentration of PDDA and foreign substances, on the enhancement of the RLS intensity were examined. The optimum conditions of the experiment were selected. Under the selected experimental condition, the enhanced RLS intensities were directly proportional to the concentrations in the range of (0.0250-2.75) × 10 -6 mol/L for BSA and (0.0235-1.17) × 10 -6 mol/L for HSA. The detection limits (S/N = 3) were 8.40 × 10 -9 mol/L for BSA and 7.39 × 10 -9 mol/L for HSA. The synthetic samples were analysed and the results obtained were satisfactory.

  1. Serum free embryo culture medium improves in vitro survival of bovine blastocysts to vitrification

    OpenAIRE

    Gómez, E.; Rodríguez, A; Muñoz, M.; Caamaño, J.N. (José); Hidalgo, C.O. (Carlos); Morán, E.; Facal, Nieves; Díez, C.

    2013-01-01

    The aim of this study was to examine the effects of co-culture with Vero cells during the in vitro maturation (IVM) and three culture media, B2+5% fetal calf serum (FCS) on Vero cells, synthetic oviduct fluid (SOF)+5% FCS, and SOF+20 gL(-1) bovine serum albumin (BSA), on the developmental competence of the embryos and their ability to survive vitrification/warming. We also tested the effect of morphological quality and the age of the embryo on its sensitivity to vitrification. The IVM system ...

  2. Fatty acid binding to serum albumin: molecular simulation approaches.

    Science.gov (United States)

    Fujiwara, Shin-ichi; Amisaki, Takashi

    2013-12-01

    Binding affinity for human serum albumin (HSA) is one of the most important factors affecting the distribution and free blood concentration of many ligands. The effect of fatty acids (FAs) on HSA-ligand binding has long been studied. Since the elucidation of the 3-dimensional structure of HSA, molecular simulation approaches have been applied to studies of the structure-function relationship of HSA-FA binding. We review current insights into the effects of FA binding on HSA, focusing on the biophysical insights obtained using molecular simulation approaches such as docking, molecular dynamics (MD), and binding free energy calculations. Possible conformational changes on binding of FA molecules to HSA have been observed through MD simulations. High- and low-affinity FA-binding sites on HSA have been identified based on binding free energy calculations. The relationship between the warfarin binding affinity of HSA and FA molecules has been clarified based on the results of simulations of multi-site FA binding that cannot be experimentally observed. Molecular simulation approaches have great potentials to provide detailed biophysical insights into HSA as well as the effects of the binding of FAs or other ligands to HSA. This article is part of a Special Issue entitled Serum Albumin. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Technetium-99m-Labeled Autologous Serum Albumin: A Personal-Exclusive Source of Serum Component

    Directory of Open Access Journals (Sweden)

    Yuh-Feng Wang

    2011-01-01

    Full Text Available Technetium-99m human serum albumin (99mTc-HSA is an important radiopharmaceutical required in nuclear medicine studies. However, the risk of transfusion-transmitted infection remains a major safety concern. Autopreparation of serum component acquired from patient provides a “personal-exclusive” source for radiolabeling. This paper is to evaluate the practicality of on-site elusion and subsequent radiolabeling efficacy for serum albumin. Results showed that the autologous elute contained more albumin fraction than serum without extraction procedure. Good radiochemical purity and stability were demonstrated after radiolabeling. Biodistribution study showed that labeled albumin accumulated immediately in the lung, liver, and kidney. It was cleared steadily and excreted in the urine. The biologic half-life was defined, and all samples passed the pyrogenicity and sterility tests. In conclusion, autoalbumin could be extracted and radiolabeled properly in a nuclear medicine setting. Moreover, the risk of transfusion-transmitted infection associated with nonautologous, multisource 99mTc-HSA agents can be reduced.

  4. A quantum dot-based optical immunosensor for human serum albumin detection.

    Science.gov (United States)

    Tu, Meng-Che; Chang, Yun-Tzu; Kang, Yu-Ting; Chang, Hwan-You; Chang, Pin; Yew, Tri-Rung

    2012-04-15

    In this study, a CdSe/ZnS quantum dot (QD)-based immunosensor using a simple optical system for human serum albumin (HSA) detection is developed. Monoclonal anti-HSA (AHSA) immobilized on 3-aminopropyltriethoxysilane (APTES)-modified glass was used to capture HSA specifically. Bovine serum albumin (BSA) was used to block non-specific sites. The solution, containing AHSA-QD complex prepared by mixing biotinylated polyclonal anti-HSA and streptavidin coated QD, was used to conjugate with the HSA molecules captured on AHSA/BSA/APTES-modified glass for the modification of HSA with QD. A simple optical system, comprising a diode laser (405 nm), an optical lens, a 515-nm-long pass filter, and an Si-photodiode, was used to detect fluorescence and convert it to photocurrent. The current intensity was determined by the amount of QD specifically conjugated with HSA, and was therefore HSA-concentration-dependent and could be used to quantify HSA concentration. The detection limit of the pure QD solution was ~3.5×10(-12) M, and the detection limit for the CdSe/ZnS QD-based immunosensor developed in this study was approximately 3.2×10(-5) mg/ml. This small optical biosensing system shows considerable potential for future applications of on-chip liver-function detection. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Characterisation of molten globule-like state of sheep serum albumin at physiological pH.

    Science.gov (United States)

    Dar, Mohammad Aasif; Wahiduzzaman; Haque, Md Anzarul; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2016-08-01

    Sheep serum albumin (SSA) is a 583 amino acid residues long multidomain monomeric protein which is rich in cysteine and low in tryptophan content. The serum albumins (from human, bovine and sheep) play a vital role among all proteins investigated until now, as they are the most copious circulatory proteins. We have purified SSA from sheep kidneys by a simple and efficient two-step purification procedure. Further, we have studied urea-induced denaturation of SSA by monitoring changes in the difference absorption coefficient at 287nm (Δε287), intrinsic fluorescence emission intensity at 347nm (F347) and mean residue ellipticity at 222nm ([θ]222) at pH 7.4 and 25°C. The coincidence of denaturation curves of these optical properties suggests that urea-induced denaturation is a bi-phasic process (native (N) state↔intermediate (X) state↔denatured (D) state) with a stable intermediate populated around 4.2-4.7M urea. The intermediate (X) state was further characterized by the far-UV and near-UV CD, dynamic light scattering (DLS) and fluorescence using 1-anilinonaphthalene-8-sulfonic acid (ANS) binding method. All denaturation curves were analyzed for Gibbs free energy changes associated with the equilibria, N state↔X state and X state↔D state in the absence of urea. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 1HNMR study of methotrexate serum albumin (MTX SA) binding in rheumatoid arthritis

    Science.gov (United States)

    Sułkowska, A.; Maciążek-Jurczyk, M.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2008-11-01

    Rheumatoid arthritis (RA) is an immunologically depended disease. It is characterized by a chronic, progressive inflammatory process. Methotrexate (4-amino-10-methylfolic acid, MTX) is the modifying drug used to treat RA. The aim of the presented studies is to determine the low affinity binding site of MTX in bovine (BSA) and human (HSA) serum albumin with the use of proton nuclear magnetic resonance ( 1HNMR) spectroscopy. The analysis of 1HNMR spectra of MTX in the presence of serum albumin (SA) allows us to observe the interactions between aromatic rings of the drug and the rings of amino acids located in the hydrophobic subdomains of the protein. On the basis of the chemical shifts σ [ppm] and the relaxation times T1 [s] of drug protons the hydrophobic interaction between MTX-SA and the stoichiometric molar ratio of the complex was evaluated. This work is a part of a spectroscopic study on MTX-SA interactions [A. Sułkowska, M. Maciążek, J. Równicka, B. Bojko, D. Pentak, W.W. Sułkowski, J. Mol. Struct. 834-836 (2007) 162-169].

  7. Bacillus anthracis Co-Opts Nitric Oxide and Host Serum Albumin for Pathogenicity in Hypoxic Conditions

    Directory of Open Access Journals (Sweden)

    Stephen eSt John

    2013-05-01

    Full Text Available Bacillus anthracis is a dangerous pathogen of humans and many animal species. Its virulence has been mainly attributed to the production of Lethal and Edema toxins as well as the antiphagocytic capsule. Recent data indicate that the nitric oxide (NO synthase (baNOS plays an important pathogenic role at the early stage of disease by protecting bacteria from the host reactive species and S-nytrosylating the mitochondrial proteins in macrophages. In this study we for the first time present evidence that bacteria-derived NO participates in the generation of highly reactive oxidizing species which could be abolished by the NOS inhibitor L-NAME, free thiols, and superoxide dismutase but not catalase. The formation of toxicants is likely a result of the simultaneous formation of NO and superoxide leading to a labile peroxynitrite and its stable decomposition product, nitrogen dioxide. The toxicity of bacteria could be potentiated in the presence of bovine serum albumin. This effect is consistent with the property of serum albumin to serves as a trap of a volatile NO accelerating its reactions. Our data suggest that during infection in the hypoxic environment of pre-mortal host the accumulated NO is expected to have a broad toxic impact on host cell functions.

  8. Interaction of tetramethylpyrazine with two serum albumins by a hybrid spectroscopic method

    Science.gov (United States)

    Cheng, Zhengjun

    The interactions of tetramethylpyrazine (TMPZ) with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by various spectroscopic techniques. Fluorescence tests showed that TMPZ could bind to BSA/HSA to form complexes. The binding constants of TMPZ-BSA and TMPZ-HSA complexes were observed to be 1.442 × 104 and 3.302 × 104 M-1 at 298 K, respectively. The thermodynamic parameters (ΔG, ΔH and ΔS) calculated on the basis of different temperatures revealed that the binding of TMPZ-HSA was mainly depended on hydrophobic interaction, and yet the binding of TMPZ-BSA might involve hydrophobic interaction strongly and electrostatic interaction. The results of synchronous fluorescence, three-dimensional fluorescence, UV-vis absorption, FT-IR and CD spectra showed that the conformations of both BSA and HSA altered with the addition of TMPZ. The binding average distance between TMPZ and BSA/HSA was evaluated according to Föster non-radioactive energy transfer theory. In addition, with the aid of site markers (such as, phenylbutazone, ibuprofen and digitoxin), TMPZ primarily bound to tryptophan residues of BSA/HSA within site I (sub-domain II A).

  9. Arginine and lysine reduce the high viscosity of serum albumin solutions for pharmaceutical injection.

    Science.gov (United States)

    Inoue, Naoto; Takai, Eisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2014-05-01

    Therapeutic protein solutions for subcutaneous injection must be very highly concentrated, which increases their viscosity through protein-protein interactions. However, maintaining a solution viscosity below 50 cP is important for the preparation and injection of therapeutic protein solutions. In this study, we examined the effect of various amino acids on the solution viscosity of very highly concentrated bovine serum albumin (BSA) and human serum albumin (HSA) at a physiological pH. Among the amino acids tested, l-arginine hydrochloride (ArgHCl) and l-lysine hydrochloride (LysHCl) (50-200 mM) successfully reduced the viscosity of both BSA and HSA solutions; guanidine hydrochloride (GdnHCl), NaCl, and other sodium salts were equally as effective, indicating the electrostatic shielding effect of these additives. Fourier transform infrared spectroscopy showed that BSA is in its native state even in the presence of ArgHCl, LysHCl, and NaCl at high protein concentrations. These results indicate that weakened protein-protein interactions play a key role in reducing solution viscosity. ArgHCl and LysHCl, which are also non-toxic compounds, will be used as additives to reduce the solution viscosity of concentrated therapeutic proteins. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Human serum albumin and oxidative stress in preeclamptic women and the mechanism of albumin for stress reduction.

    Science.gov (United States)

    Kinoshita, Hiroyuki; Watanabe, Kazushi; Azma, Toshiharu; Feng, Guo-Gang; Akahori, Takahiko; Hayashi, Hisaki; Sato, Motohiko; Fujiwara, Yoshihiro; Wakatsuki, Akihiko

    2017-08-01

    The present study to address one of the mechanisms in preeclampsia, examined whether levels of oxidative stress, human serum albumin, and endothelial function correlate in pregnant women and whether human serum albumin reduces levels of superoxide produced by NADPH oxidase activation in the human vascular smooth muscle cells. Pregnant women with (Preeclampsia group, n = 33) and without preeclampsia (Normal group, n = 37) were recruited to determine levels of reactive oxygen species (serum diacron-reactive oxygen metabolite [d-ROM]), and the flow-mediated dilation (FMD). Human coronary arterial smooth muscle cells or omental arteries were subjected to evaluate isometric force recordings, levels of superoxide, western immunoblotting, and immunohistochemistry. The superoxide scavenging assay was also performed in a cell-free system. Women in the preeclampsia group demonstrated lower FMD and higher serum d-ROM values than those in the normal group. There were the inverse correlations between serum levels of d-ROM and the degree of FMD and between serum levels of albumin and those of d-ROM. D-glucose reduced the levcromakalim-induced dilation of human omental arteries, and it increased levels of superoxide and the recruitment of the NADPH oxidase subunit p47phox in human coronary arterial smooth muscle cells. Human serum albumin (0.05 to 0.5 g/dL) prevented these alterations whereas it exerted no superoxide scavenging effect. Serum albumin relates to oxidative stress inversely, but to the endothelial function positively, in pregnant women. Human serum albumin appears to reduce oxidative stress via NADPH oxidase inhibition in the human vascular smooth muscle, indicating that the serum level may be a critical determinant of vascular oxidative stress in some human diseases.

  11. Fluorescence analysis of competition of phenylbutazone and methotrexate in binding to serum albumin in combination treatment in rheumatology

    Science.gov (United States)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2009-04-01

    Combination of several drugs is often necessary especially during long-them therapy. The competition between drugs can cause a decrease of the amount of a drug bound to albumin. This results in an increase of the free, biological active fraction of the drug. The aim of the presented study was to describe the competition between phenylbutazone (Phe) and methotrexate (MTX), two drugs recommended for the treatment of rheumatology in binding to bovine (BSA) and human (HSA) serum albumin in the high affinity binding site. Fluorescence analysis was used to estimate the effect of drugs on the protein fluorescence and to define the binding and quenching properties of drugs-serum albumin complexes. The effect of the displacement of one drug from the complex of the other with serum albumin has been described on the basis of the comparison of the quenching curves and binding constants for the binary and ternary systems. The conclusion that both Phe and MTX form a binding site in the same subdomain (IIA) points to the necessity of using a monitoring therapy owning to the possible increase of the uncontrolled toxic effects.

  12. Serum Albumin Is Independently Associated with Persistent Organ Failure in Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Wandong Hong

    2017-01-01

    Full Text Available Background and Aims. To investigate the association between serum albumin levels within 24 hrs of patient admission and the development of persistent organ failure in acute pancreatitis. Methods. A total of 700 patients with acute pancreatitis were enrolled. Multivariate logistic regression and subgroup analysis determined whether decreased albumin was independently associated with persistent organ failure and mortality. The diagnostic performance of serum albumin was evaluated by the area under Receiver Operating Characteristic (ROC curves. Results. As levels of serum albumin decrease, the risk of persistent organ failure significantly increases (Ptrend<0.001. The incidence of organ failure was 3.5%, 10.6%, and 41.6% in patients with normal albumin and mild and severe hypoalbuminaemia, respectively. Decreased albumin levels were also proportionally associated with prolonged hospital stay (Ptrend<0.001 and the risk of death (Ptrend<0.001. Multivariate analysis suggested that biliary etiology, chronic concomitant diseases, hematocrit, blood urea nitrogen, and the serum albumin level were independently associated with persistent organ failure. Blood urea nitrogen and the serum albumin level were also independently associated with mortality. The area under ROC curves of albumin for predicting organ failure and mortality were 0.78 and 0.87, respectively. Conclusion. A low serum albumin is independently associated with an increased risk of developing of persistent organ failure and death in acute pancreatitis. It may also be useful for the prediction of the severity of acute pancreatitis.

  13. Spectrofluorimetric determination of human serum albumin using terbium-danofloxacin probe.

    Science.gov (United States)

    Ramezani, Amir M; Manzoori, Jamshid L; Amjadi, Mohammad; Jouyban, Abolghasem

    2012-01-01

    A spectrofluorimetric method is proposed for the determination of human serum albumin (HSA) and bovine serum albumin (BSA) using terbium-danofloxacin (Tb(3+)-Dano) as a fluorescent probe. These proteins remarkably enhance the fluorescence intensity of the Tb(3+)-Dano complex at 545 nm, and the enhanced fluorescence intensity of Tb(3+)-Dano is proportional to the concentration of proteins (HSA and BSA). Optimum conditions for the determination of HSA were investigated and found that the maximum response was observed at: pH = 7.8, [Tb(3+)] = 8.5 × 10(-5) mol L(-1), [Dano] = 1.5 × 10(-4) mol L(-1). The calibration graphs for standard solutions of BSA, HSA, and plasma samples of HSA were linear in the range of 0.2 × 10(-6) - 1.3 × 10(-6) mol L(-1), 0.2 × 10(-6) - 1.4 × 10(-6) mol L(-1), and 0.2 × 10(-6) - 1 × 10(-6) mol L(-1), respectively. The detection limits (S/N = 3) for BSA, HSA, and plasma sample of HSA were 8.7 × 10(-8) mol L(-1), 6.2 × 10(-8) mol L(-1), and 8.1 × 10(-8) mol L(-1), respectively. The applicability of the method was checked using a number of real biological plasma samples and was compared with the UV spectrometric reference method. The results was showed that the method could be regarded as a simple, practical, and sensitive alternative method for determination of albumin in biological samples.

  14. Spectrofluorimetric Determination of Human Serum Albumin Using Terbium-Danofloxacin Probe

    Directory of Open Access Journals (Sweden)

    Amir M. Ramezani

    2012-01-01

    Full Text Available A spectrofluorimetric method is proposed for the determination of human serum albumin (HSA and bovine serum albumin (BSA using terbium-danofloxacin (Tb3+-Dano as a fluorescent probe. These proteins remarkably enhance the fluorescence intensity of the Tb3+-Dano complex at 545 nm, and the enhanced fluorescence intensity of Tb3+-Dano is proportional to the concentration of proteins (HSA and BSA. Optimum conditions for the determination of HSA were investigated and found that the maximum response was observed at: pH=7.8, [Tb3+] =8.5×10−5 mol L−1, [Dano] =1.5×10−4 mol L−1. The calibration graphs for standard solutions of BSA, HSA, and plasma samples of HSA were linear in the range of 0.2×10−6−1.3×10−6 mol L−1, 0.2×10−6−1.4×10−6 mol L−1, and 0.2×10−6−1×10−6 mol L−1, respectively. The detection limits (S/N = 3 for BSA, HSA, and plasma sample of HSA were 8.7×10−8 mol L−1, 6.2×10−8 mol L−1, and 8.1×10−8 mol L−1, respectively. The applicability of the method was checked using a number of real biological plasma samples and was compared with the UV spectrometric reference method. The results was showed that the method could be regarded as a simple, practical, and sensitive alternative method for determination of albumin in biological samples.

  15. Phenylbutazone and ketoprofen binding to serum albumin. Fluorescence study.

    Science.gov (United States)

    Maciążek-Jurczyk, Małgorzata

    2014-10-01

    A combination of phenylbutazone (PBZ) and ketoprofen (KP) is popular in therapy of rheumatoid arthritis (RA) but could be unsafe due to the uncontrolled growth of toxicity. Quenching fluorescence of serum albumin in the presence of the both drugs has been characterized by dynamic KQ [M(-1)], static V [M(-1)] quenching constants and also association constants Ka [M(-1)]. The quenching of tryptophanyl residues fluorescence by the KP and PBZ indicates the capability of these drugs to accept the energy from Trp-214 and Trp-135. Strong displacement of KP and PBZ bound to albumin cause by the binding of the second drug to SA close to Trp-214 (subdomain IIA) has been obtained. The displacement was also confirmed on the basis of quenching and association constants. The conclusion, that both PBZ and KP form a binding site in the same subdomains (IIA or/and IB), points to the necessity of using a monitoring therapy owning to the possible increase of the uncontrolled toxic effects. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Ligand-Mediated Coating of Liposomes with Human Serum Albumin.

    Science.gov (United States)

    Sato, Hikari; Nakhaei, Elnaz; Kawano, Takahito; Murata, Masaharu; Kishimura, Akihiro; Mori, Takeshi; Katayama, Yoshiki

    2018-02-13

    Coating liposome surfaces with human serum albumin (HSA) can improve the colloidal stability and prevent opsonization. HSA coating via specific binding with alkyl ligands is promising because although the ligand-mediated coating is relatively stable it can spontaneously exchange with fresh HSA. However, to achieve surface coating with HSA, multiple hydrophobic ligands must be exposed to an aqueous medium prior to binding with HSA. This presents a challenge, as hydrophobic ligands tend to be buried in the liposomal membrane. Here we present the first HSA modification of liposome surfaces via alkyl ligands. We found that a relatively short alkyl ligand, or a long alkyl ligand with a terminal carboxylate, could be exposed on the liposome surface without causing aggregation of the liposomes and these ligands could subsequently bind HSA. The resulting HSA-coated liposomes were as inert as conventional PEGylated liposomes in terms of macrophage recognition.

  17. Fluorescence quenching of human serum albumin by xanthines.

    Science.gov (United States)

    González-Jimènez, J; Frutos, G; Cayre, I

    1992-08-18

    A study of the fluorescence quenching of human serum albumin (HSA) by caffeine, theophylline and theobromine, based on temperature dependence, has shown that it is predominantly static. This quenching mechanism is due to the formation of a xanthine-HSA non-fluorescent complex. The Stern-Volmer equation let us determine the association constants. It seems that the quenching of the protein fluorescence depends on the number and position of the methyl groups. The temperature dependence of the association constant is used to estimate the values of the thermodynamic parameters involved in the interaction of the drugs with HSA. All three binding processes are exothermic and probably hydrophobic, and hydrogen bonds play a significant role in the stabilization of such complexes. The enthalpy and entropy changes observed appear to compensate each other to produce a relatively small Gibbs free energy.

  18. Variability in teicoplanin protein binding and its prediction using serum albumin concentrations

    OpenAIRE

    YANO, Ryouichi; NAKAMURA, Toshiaki; TSUKAMOTO, Hitoshi; IGARASHI, Toshiaki; GOTO, Nobuyuki; WAKIYA, Yoshifumi; MASADA, Mikio

    2007-01-01

    The impact of lower serum albumin levels on teicoplanin pharmacokinetics has not been previously determined. The authors assessed the relationship between total and free concentrations of teicoplanin in serum samples obtained from patients receiving teicoplanin therapy for Gram-positive bacterial infections. In addition, the authors determined the contribution of serum albumin concentrations to the unbound fraction of teicoplanin. One hundred ninety-eight serum samples were obtained from 65 p...

  19. Gambaran Kadar Albumin Serum Pada Pasien Penyakit Ginjal Kronik Stadium 5 Non Dialisis

    OpenAIRE

    Putri, Tiffany D; Mongan, Arthur E.; Memah, Maya F

    2016-01-01

    : Chronic kidney disease is a pathophysiology process with diverse etiology, causing a progressive decline on kidney function, and in most cases ends with kidney failure (stage 5). The low level of albumin serum is an important predictor of the morbidity and mortality, as a low albumin level is indicating the weak immunity and vitality in kidney failure patients. This is caused by an increase on inflammation and deficiency of protein intake. The low level of albumin serum is also a major indi...

  20. Serum Albumin Predicts Long-Term Neurological Outcomes After Acute Spinal Cord Injury.

    Science.gov (United States)

    Tong, Bobo; Jutzeler, Catherine R; Cragg, Jacquelyn J; Grassner, Lukas; Schwab, Jan M; Casha, Steve; Geisler, Fred; Kramer, John L K

    2017-12-01

    There is a need to identify reliable biomarkers of spinal cord injury recovery for clinical practice and clinical trials. Our objective was to correlate serum albumin levels with spinal cord injury neurological outcomes. We performed a secondary analysis of patients with traumatic spinal cord injury (n = 591) participating in the Sygen clinical trial. Serum albumin concentrations were obtained as part of routine blood chemistry analysis, at trial entry (24-72 hours), 1, 2, and 4 weeks after injury. The primary outcomes were "marked recovery" and lower extremity motor scores, derived from the International Standards for the Neurological Classification of Spinal Cord Injury. Data were analyzed with multivariable logistic and linear regression to adjust for potential confounders. Serum albumin was significantly associated with spinal cord injury neurological outcomes. Higher serum albumin concentrations at 1, 2, and 4 weeks were associated with higher 52-week lower extremity motor score. Similarly, the odds of achieving "marked neurological recovery" was greater for individuals with higher serum albumin concentrations. The association between serum albumin concentrations and neurological outcomes was independent of initial injury severity, treatment with GM-1, and polytrauma. In spinal cord injury, serum albumin is an independent marker of long-term neurological outcomes. Serum albumin could serve as a feasible biomarker for prognosis at the time of injury and stratification in clinical trials.

  1. Fluorescence study of binding of adenosine derivatives to phospholipid membranes — effect of serum albumin

    Science.gov (United States)

    Sułkowska, Anna; Kłoczko, Magdalena; Sułkowski, Wiesław

    2001-05-01

    To increase stability against serum albumin and to minimize permeability increases caused by interaction with serum albumin, two types of liposomes consisting of various molar ratio lecithin/cholesterol were prepared. The adenosine derivatives were encapsulated in liposome vesicles of two sizes: 100 and 450 nm, prepared by modified reverse-phase evaporation method. The dependence of the stability of liposomes on the presence of serum albumin was studied by use of spectrofluorimetric technique. In the presence of serum albumin the studied ligands encapsulated into various types of liposome vesicles were released and this resulted in a decrease in the fluorescence spectrum of serum albumin in the region of tryptophan emission. Increase in the cholesterol content of the liposomes resulted in decreased leakage of the entrapped drugs, the effect of liposome size on leakage being less important.

  2. Serum Albumin Domain Structures in Human Blood Serum by Mass Spectrometry and Computational Biology.

    Science.gov (United States)

    Belsom, Adam; Schneider, Michael; Fischer, Lutz; Brock, Oliver; Rappsilber, Juri

    2016-03-01

    Chemical cross-linking combined with mass spectrometry has proven useful for studying protein-protein interactions and protein structure, however the low density of cross-link data has so far precluded its use in determining structures de novo. Cross-linking density has been typically limited by the chemical selectivity of the standard cross-linking reagents that are commonly used for protein cross-linking. We have implemented the use of a heterobifunctional cross-linking reagent, sulfosuccinimidyl 4,4'-azipentanoate (sulfo-SDA), combining a traditional sulfo-N-hydroxysuccinimide (sulfo-NHS) ester and a UV photoactivatable diazirine group. This diazirine yields a highly reactive and promiscuous carbene species, the net result being a greatly increased number of cross-links compared with homobifunctional, NHS-based cross-linkers. We present a novel methodology that combines the use of this high density photo-cross-linking data with conformational space search to investigate the structure of human serum albumin domains, from purified samples, and in its native environment, human blood serum. Our approach is able to determine human serum albumin domain structures with good accuracy: root-mean-square deviation to crystal structure are 2.8/5.6/2.9 Å (purified samples) and 4.5/5.9/4.8Å (serum samples) for domains A/B/C for the first selected structure; 2.5/4.9/2.9 Å (purified samples) and 3.5/5.2/3.8 Å (serum samples) for the best out of top five selected structures. Our proof-of-concept study on human serum albumin demonstrates initial potential of our approach for determining the structures of more proteins in the complex biological contexts in which they function and which they may require for correct folding. Data are available via ProteomeXchange with identifier PXD001692. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Risk factors for the failure to achieve normal albumin serum levels after albumin transfusion in neonates

    Directory of Open Access Journals (Sweden)

    Nadya Arafuri

    2016-07-01

    Conclusions Failure to achieve normal albumin levels after transfusion in neonates was significantly associated with low albumin level prior to transfusion, critical illness, sepsis, and >24-hour interval between transfusion and post-transfusion albumin examination.[Paediatr Indones. 2016;56:129-33.].

  4. [The macrophage disappearance reaction in guinea pigs sensitized with bovine gamma globulin or human scrum albumin (author's transl)].

    Science.gov (United States)

    Schimke, R; Bernstein, B; Ambrosius, H

    1977-01-01

    The macrophage disappearance reaction (MDR) is a suitable test for detection of cell mediated immunity against bovine gamma globulin (BGG) and human serum albumin (HSA) in guinea pigs. The MDR is a technical simple, good manipulable, and quantifiable test. The optimal test conditions for the antigens BGC and HSA are the following: Peritoneal exudat cells (PEC) were stimulated with paraffin oil. On the 5th day after receiving oil the animals were injected with 80 microgram BGG or 30 microgram HSA i.p. 5 hours later the PEC were harvested and counted. With the MDR it is possible to detect differences with respect to degree of cell-mediated immunity. Supernatants of sensitized lymphocytes produces the MDR too.

  5. BINDING OF TOLBUTAMIDE TO GLYCATED HUMAN SERUM ALBUMIN

    Science.gov (United States)

    Joseph, K.S.; Anguizola, Jeanethe; Hage, David S.

    2010-01-01

    The presence of elevated levels of glucose in blood during diabetes can lead to the non-enzymatic glycation of serum proteins such as human serum albumin (HSA). This study examined the changes that occur in binding of the sulfonylurea drug tolbutamide to HSA as the level of glycation for this protein was increased. High-performance affinity chromatography was used in this work along with columns containing various preparations of in vitro glycated HSA. It was found in frontal analysis experiments that the binding of tolbutamide with all of the tested preparations of glycated HSA could be described by a two-site model involving both strong and weak affinity interactions. The association equilibrium constants (Ka) for tolbutamide at its high affinity sites on glycated HSA were in the range of 0.8–1.2 × 105 M−1 and increased by 1.4-fold in going from normal HSA to mildly glycated HSA. It was found through competition studies that tolbutamide was binding at both Sudlow sites I and II on the glycated HSA, in agreement with previous studies. The Ka for tolbutamide at Sudlow site II increased by 1.1 to 1.4-fold in going from normal HSA to glycated HSA. At Sudlow site I, the Ka for tolbutamide increased by 1.2 to 1.3-fold in going from normal HSA to the glycated HSA samples. This information demonstrates the effects that glycation can have on drug interactions on HSA and should provide a better quantitative understanding of how the protein binding of tolbutamide in serum may be affected for individuals with diabetes. PMID:20880646

  6. Control of declared origin of bovine serum, a pilot study

    Science.gov (United States)

    Horacek, M.; Papesch, W.

    2009-04-01

    Bovine serum is the essential culture medium for cell cultures. Therefore it is highly demanded and the quality of the serum, e.g.: absence of bacteria, viruses certain antibodies, etc.., are important criteria. as some cattle diseases are endemic in certain regions, the origin of bovine serum is an important quality measure for its value. Thus the need to control the declared origins is present. Bovine serum was measured for d2H, d13C, d15N and d34S of proteine (dry residue) and d2H and d18O of the serum water. The hydrogen and oxygen are mainly depending by the isotopic composition of the water ingested by the cattle, and thus usually influenced by the isotopic signal of the precipitation. The carbon isotope signal is reflecting the diet of the cattle, whether it mainly feed on C3- or C4-plants. The nitrogen and sulphur isotope ratio is transferred from the ground/soil into the plant material and into the animal tissue, with some offset for nitrogen and without any significant offset for sulphur. Bovine serum samples from Canada, USA, Mexico, Brazil, Australia and New Zealand have been analysed. Due to the variations in the environmental conditions in different countries and regions which influence the isotope signatures of the serum samples it is possible to discriminate samples of different origin. Main discriminating parameters are d2H and d18O, d13C and d34S.

  7. Antimicrobial Activity of Ceftriaxone Compared with Cefotaxime in the Presence of Serum Albumin

    Directory of Open Access Journals (Sweden)

    Swapan K Nath

    1995-01-01

    Full Text Available The effect of serum albumin on the antimicrobial activity of ceftriaxone, cefotaxime, and a 1:1 ratio of cefotaxime and its desacetyl metabolite against nonpseudomonal Gram-negative bacilli was determined. Antimicrobial activity of drugs was evaluated by measuring minimum inhibitory (mic and bactericidal (mbc concentrations in broth with and without human serum albumin. The analysis of logarithmically transformed mean mics and mbcs showed that there was a highly significant interaction between drug and serum albumin (P<0.0001. The inhibitory and bactericidal activities were greatest for cefotaxime followed by cefotaxime/desacetylcefotaxime and ceftriaxone (P<0.01. Time-kill kinetics demonstrated that ceftriaxone was less bactericidal than cefotaxime in broth with albumin. On the basis of these results it was concluded that the in vitro antimicrobial activity of ceftriaxone compared with that of cefotaxime was significantly diminished in the presence of serum albumin.

  8. Serum albumin correlates with affective prosody in adult males with attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Grabemann, Marco; Mette, Christian; Zimmermann, Marco; Wiltfang, Jens; Kis, Bernhard

    2014-07-30

    The aim of this study was to determine the relationship between serum albumin, affective prosody, and symptoms of attention-deficit hyperactivity disorder (ADHD) found coincidentally in a recently published study. Here, serum albumin levels were assessed as a covariate. Twenty healthy male adults (controls) and 20 adult male patients with ADHD participated in the study on two study days. Serum albumin levels and performance in an affective prosody task were assessed, and correlations were determined. Serum albumin had a significant correlation with performance on an affective prosody task on both of the 2 study days. The same correlations were not significant in the healthy control group. There was no difference in the serum albumin level between patients with ADHD and healthy controls. The association between serum albumin and affective prosody in adults with ADHD is a novel finding. However, to date, there is no clear theory that explains this association. Future research should analyze whether serum albumin influences causes changes in performance in affective prosody using experimental designs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Complexation of insecticide chlorantraniliprole with human serum albumin: Biophysical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Ding Fei [Department of Chemistry, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193 (China); Liu Wei [College of Economics and Management, China Agricultural University, Beijing 100083 (China); Diao Jianxiong [Department of Chemistry, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193 (China); Yin Bin [Key Laboratory of Pesticide Chemistry and Application Technology, Ministry of Agriculture, Department of Applied Chemistry, China Agricultural University, Beijing 100193 (China); Zhang Li, E-mail: zhli.work@gmail.co [Key Laboratory of Pesticide Chemistry and Application Technology, Ministry of Agriculture, Department of Applied Chemistry, China Agricultural University, Beijing 100193 (China); Sun Ying, E-mail: sunying@cau.edu.c [Department of Chemistry, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193 (China)

    2011-07-15

    Chlorantraniliprole is a novel insecticide belonging to the diamide class of selective ryanodine receptor agonists. A biophysical study on the binding interaction of a novel diamide insecticide, chlorantraniliprole, with staple in vivo transporter, human serum albumin (HSA) has been investigated utilizing a combination of steady-state and time-resolved fluorescence, circular dichroism (CD), and molecular modeling methods. The interaction of chlorantraniliprole with HSA gives rise to fluorescence quenching through static mechanism, this corroborates the fluorescence lifetime outcomes that the ground state complex formation and the predominant forces in the HSA-chlorantraniliprole conjugate are van der Waals forces and hydrogen bonds, as derived from thermodynamic analysis. The definite binding site of chlorantraniliprole in HSA has been identified from the denaturation of protein, competitive ligand binding, and molecular modeling, subdomain IIIA (Sudlow's site II) was designated to possess high-affinity binding site for chlorantraniliprole. Moreover, using synchronous fluorescence, CD, and three-dimensional fluorescence we testified some degree of HSA structure unfolding upon chlorantraniliprole binding. - Highlights: {yields} Our study highlights for the first time how binding dynamics can predominate for the new diamide insecticide, chlorantraniliprole. {yields} Chlorantraniliprole is situated within subdomain IIIA, Sudlow's site II, which is the same as that of indole-benzodiazepine site. {yields} Biophysical and molecular modeling approaches are useful to resolve the ligand interaction with biomacromolecule. {yields} It serves as a protective device in binding and in inactivating potential toxic compounds to which the body is exposed.

  10. Superhydrophobic Effect on the Adsorption of Human Serum Albumin

    Science.gov (United States)

    Leibner, Evan S.; Barnthip, Naris; Chen, Weinan; Baumrucker, Craig R.; Badding, John V.; Pishko, Michael; Vogler, Erwin A.

    2009-01-01

    Analytical protocol greatly influences measurement of human-serum albumin (HSA) adsorption to commercial expanded polytetrafluororethylene (ePTFE) exhibiting superhydrophobic wetting properties. Degassing of buffer solutions and evacuation of ePTFE adsorbent to remove trapped air immediately prior to contact with protein solutions are shown to be essential. Results obtained with ePTFE as a prototypical superhydrophobic test material suggest that vacuum degassing should be applied in the measurement of protein adsorption to any surface exhibiting superhydrophobicity. Solution depletion quantified using radiometry (I-125 labeled HSA) or electrophoresis yield different measures of adsorption, with nearly four-fold higher surface concentrations of unlabeled HSA measured by the electrophoresis method. This outcome is attributed to the influence of the radiolabel on HSA hydrophilicity which decreases radiolabeled-HSA affinity for a hydrophobic adsorbent in comparison to unlabeled HSA. These results indicate that radiometry underestimates the actual amount of protein adsorbed to a particular material. Removal of radiolabeled HSA adsorbed to ePTFE by 3X serial buffer rinses also shows that the remaining “bound fraction” was about 35% lower than the amount measured by radiometric depletion. This observation implies that measurement of protein bound after surface rinsing significantly underestimates the actual amount of protein concentrated by adsorption into the surface region of a protein-contacting material. PMID:19135420

  11. Cooperative binding of drugs on human serum albumin

    Science.gov (United States)

    Varela, L. M.; Pérez-Rodríguez, M.; García, M.

    In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer-Emmet-Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.

  12. Interaction of perfluorooctanoic acid with human serum albumin

    Directory of Open Access Journals (Sweden)

    Chen Fang-Fang

    2009-05-01

    Full Text Available Abstract Background Recently, perfluorooctanoic acid (PFOA has become a significant issue in many aspects of environmental ecology, toxicology, pathology and life sciences because it may have serious effects on the endocrine, immune and nervous systems and can lead to embryonic deformities and other diseases. Human serum albumin (HSA is the major protein component of blood plasma and is called a multifunctional plasma carrier protein because of its ability to bind an unusually broad spectrum of ligands. Results The interaction of PFOA with HSA was investigated in the normal physiological condition by equilibrium dialysis, fluorospectrometry, isothermal titration calorimetry (ITC and circular dichroism (CD. The non-covalent interaction is resulted from hydrogen bond, van der Waals force and hydrophobic stack. PFOA binding to HSA accorded with two-step binding model with the saturation binding numbers of PFOA, only 1 in the hydrophobic intracavity of HSA and 12 on the exposed outer surface. The interaction of PFOA with HSA is spontaneous and results in change of HSA conformation. The possible binding sites were speculated. Conclusion The present work suggested a characterization method for the intermolecular weak interaction. It is potentially useful for elucidating the toxigenicity of perfluorochemicals when combined with biomolecular function effect, transmembrane transport, toxicological testing and the other experiments.

  13. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, David, E-mail: caballero@unistra.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Martinez, Elena [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Bausells, Joan [Centre Nacional de Microelectronica (CNM-IMB), CSIC, Campus UAB, 08193 Bellaterra (Spain); Errachid, Abdelhamid, E-mail: abdelhamid.errachid-el-salhi@univ-lyon1.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Universite Claude Bernard - Lyon 1, LSA - UMR 5180, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Samitier, Josep [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain)

    2012-03-30

    interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins detected specifically, thus, establishing the basis and the potential applicability of the developed silicon nitride-based immunosensor for the detection of proteins in real and more complex samples.

  14. Effects of serum albumin on the degradation and cytotoxicity of single-walled carbon nanotubes.

    Science.gov (United States)

    Ding, Yun; Tian, Rong; Yang, Zhen; Chen, Jianfa; Lu, Naihao

    2017-03-01

    Neutrophil myeloperoxidase (MPO) and peroxynitrite (ONOO-) can oxidatively biodegrade carboxylated single-walled carbon nanotubes (SWCNTs). The protein-SWCNTs interactions will play an important role in the degradation and cytotoxicity of nanotubes. Here, we investigated the binding of bovine serum albumin (BSA, a common and well-characterized model blood serum protein) to SWCNTs, and found that the hydrophobic and electrostatic interactions might be crucial factors in stabilizing the binding of SWCNTs with BSA. The binding of BSA could impair SWCNTs biodegradation in vitro through the competitive adsorption to nanotube. Both SWCNTs and BSA-SWCNTs were significantly degraded in zymosan-stimulated macrophages, and the degradation degree was more for BSA-SWCNTs. The mechanism for SWCNTs degradation in activated macrophages was further investigated to demonstrate the dominant participation of MPO and ONOO--driven pathways. Moreover, binding of BSA to SWCNTs reduced cytotoxicity and degraded nanotubes induced less cytotoxicity than non-degraded nanotubes. The binding of BSA may be an important determinant for the biodegradation and cytotoxicity of SWCNTs in inflammatory cells, and therefore, provide a new route to mitigate the potential toxicity of nanotubes in future biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Tingkat Maturasi in vitro Oosit Kambing dalam Medium dengan Suplementasi Serum dan Albumin

    Directory of Open Access Journals (Sweden)

    Sri Gustari

    2009-12-01

    Full Text Available The present study aimed to study the effect of ?maturation media? on maturation rate of goat oocytesafter in vitro maturation. Goat ovaries were collected from a slaughter house in Godean, Sleman. Immediatelyafter slaughter the ovaries were collected, rinsed with physiological NaCl three times then placed in aflask containing the NaCl solutions and hept at 36-370C before transportaion to the laboratory. Oocyteswere observed under stereo microscope and its quality was classified into A, B, and C. Oocytes in vitromaturaion (IVM was performed in TCM-199 media suplemented with : a 0.4 mg/ml bovine serum albumin(BSA; and b 10% newborn calf serum (NCS then incubated at 38.50C with 5% CO2 for 24-27 h. Followingthis, oocytes were observed under inverted microscope for first polar body extrusion, then stained withaceto-orcein in order to evaluate nuck or maturation. The nuclear maturation stages including : germinalvesicles (GV, germinal vesicles break down (GVBD, metaphase I, apaphase I, telophase I and metaphaseII, respectivelly. The overall results showed that 74-74%, 52-66.6% and 21.5-23.8% of oocytes quality A, B,and C reached maturation at metaphase II, respectivelly. There were no significant differences in oocytesmaturation using media supplemented with either BSA or NCS.

  16. Crystals of Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    Science.gov (United States)

    Carter, Daniel C. (Inventor)

    1996-01-01

    Serum albumin crystal forms have been produced which exhibit superior x-ray diffraction quality. The crystals are produced from both recombinant and wild-type human serum albumin, canine, and baboon serum albumin and allow the performance of drug-binding studies as well as genetic engineering studies. The crystals are grown from solutions of polyethylene glycol or ammonium sulphate within prescribed limits during growth times from one to several weeks and include the following space groups: P2(sub 1), C2, P1.

  17. An alternate mode of binding of the polyphenol quercetin with serum albumins when complexed with Cu(II)

    Energy Technology Data Exchange (ETDEWEB)

    Singha Roy, Atanu; Tripathy, Debi Ranjan; Ghosh, Arup Kumar [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India); Dasgupta, Swagata, E-mail: swagata@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2012-11-15

    Polyphenols find wide use as antioxidants, cancer chemopreventive agents and metal chelators. The latter activity has proved interesting in many aspects. We have probed the binding characteristics of the polyphenol quercetin-Cu(II) complex with human serum albumin (HSA) and bovine serum albumin (BSA). Fluorescence studies reveal that the quercetin-Cu(II) complex can quench the fluorescence of the serum albumins. The binding constant (K{sub b}) values are of the order of 10{sup 5} M{sup -1} which increased with rise in temperature in case of HSA and BSA interacting with the quercetin-Cu(II) complex. Displacement studies reveal that both the ligands bind to site 1 (subdomain IIA) of the serum albumins. However, thermodynamic parameters calculated from temperature dependent studies indicated that the mode of interaction of the complexes with the proteins differs. Both {Delta}H Degree-Sign and {Delta}S Degree-Sign were positive for the interaction of the quercetin-Cu(II) complex with both proteins but the value of {Delta}H Degree-Sign was negative in case of the interaction of quercetin with the proteins. This implies that after chelation with metal ions, the polyphenol alters its mode of interaction which could have varying implications on its other physicochemical activities. - Research Highlights: Black-Right-Pointing-Pointer Mode of binding of quercetin with SAs is altered after complexation with Cu(II). Black-Right-Pointing-Pointer Hydrophobic forces play a key role in the binding of the copper complex with SAs. Black-Right-Pointing-Pointer Negative {Delta}G Degree-Sign values indicate the spontaneity of the binding processes. Black-Right-Pointing-Pointer Quercetin and its copper complex bind at the same site of the SAs.

  18. Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Lin, Jinyong; Cao, Gang; Lin, Juqiang; Liu, Nenrong; Liao, Fadian; Ruan, Qiuyong; Wu, Shanshan; Huang, Zufang; Li, Ling; Chen, Rong

    2014-09-01

    Surface-enhanced Raman scattering (SERS) spectroscopy combined with membrane electrophoresis (ME) was firstly employed to detect albumin variation in type II diabetic development. Albumin was first purified from human serum by ME and then mixed with silver nanoparticles to perform SERS spectral analysis. SERS spectra were obtained from blood albumin samples of 20 diabetic patients and 19 healthy volunteers. Subtle but discernible changes in the acquired mean spectra of the two groups were observed. Tentative assignment of albumin SERS bands indicated specific structural changes of albumin molecule with diabetic development. Meanwhile, PCA-LDA diagnostic algorithms were employed to classify the two kinds of albumin SERS spectra, yielding the diagnostic sensitivity of 90% and specificity of 94.7%. The results from this exploratory study demonstrated that the EM-SERS method in combination with multivariate statistical analysis has great potential for the label-free detection of albumin variation for improving type II diabetes screening.

  19. Novel Transgenic Mouse Model for Studying Human Serum Albumin as a Biomarker of Carcinogenic Exposure.

    Science.gov (United States)

    Sheng, Jonathan; Wang, Yi; Turesky, Robert J; Kluetzman, Kerri; Zhang, Qing-Yu; Ding, Xinxin

    2016-05-16

    Albumin is a commonly used serum protein for studying human exposure to xenobiotic compounds, including therapeutics and environmental pollutants. Often, the reactivity of albumin with xenobiotic compounds is studied ex vivo with human albumin or plasma/serum samples. Some studies have characterized the reactivity of albumin with chemicals in rodent models; however, differences between the orthologous peptide sequences of human and rodent albumins can result in the formation of different types of chemical-protein adducts with different interaction sites or peptide sequences. Our goal is to generate a human albumin transgenic mouse model that can be used to establish human protein biomarkers of exposure to hazardous xenobiotics for human risk assessment via animal studies. We have developed a human albumin transgenic mouse model and characterized the genotype and phenotype of the transgenic mice. The presence of the human albumin gene in the genome of the model mouse was confirmed by genomic PCR analysis, whereas liver-specific expression of the transgenic human albumin mRNA was validated by RT-PCR analysis. Further immunoblot and mass spectrometry analyses indicated that the transgenic human albumin protein is a full-length, mature protein, which is less abundant than the endogenous mouse albumin that coexists in the serum of the transgenic mouse. The transgenic protein was able to form ex vivo adducts with a genotoxic metabolite of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a procarcinogenic heterocyclic aromatic amine formed in cooked meat. This novel human albumin transgenic mouse model will facilitate the development and validation of albumin-carcinogen adducts as biomarkers of xenobiotic exposure and/or toxicity in humans.

  20. Surface analysis of polydimethylsiloxane fouled with bovine serum albumin

    CSIR Research Space (South Africa)

    Windvoel, T

    2010-01-01

    Full Text Available The interest in the analysis of biological materials surfaces has grown both academically and industrially. This is because the applications for surfaces in contact with biological materials have also increased. These applications include...

  1. Curcumin delivered through bovine serum albumin/polysaccharides multilayered microcapsules.

    Science.gov (United States)

    Paşcalău, V; Soritau, O; Popa, F; Pavel, C; Coman, V; Perhaita, I; Borodi, G; Dirzu, N; Tabaran, F; Popa, C

    2016-01-01

    The aim of the paper is to obtain and characterize k-carrageenan-chitosan dual hydrogel multilayers shell BSA gel microcapsules, as a carrier for curcumin, and as a possible antitumoral agent in biological studies. We used the CaCO3 template to synthesize non-toxic CaCO3/BSA particles as microtemplates by coprecipitating a CaCl2 solution that contains dissolved BSA, with an equimolar Na2CO3 solution. The microcapsules shell is assembled through a layer-by-layer deposition technique of calcium cross-linked k-carrageenan hydrogel alternating with polyelectrolite complex hydrogel formed via electrostatic interactions between k-carrageenan and chitosan. After the removal of CaCO3 through Ca(2+) complexation with EDTA, and by a slightly treatment with HCl diluted solution, the BSA core is turned into a BSA gel through a thermal treatment. The BSA gel microcapsules were then loaded with curcumin, through a diffusion process from curcumin ethanolic solution. All the synthesized particles and microcapsules were stucturally characterized by: Fourier Transform Infrared Spectroscopy, UV-Vis Spectrometry, X-ray diffraction, thermal analysis, fluorescence spectroscopy, fluorescence optical microscopy, confocal laser scanning microscopy and scanning electron microscopy. The behavior of curcumin loaded microcapsules in media of different pH (SGF, SIF and PBS) was studied in order to reveal the kinetics and the release profile of curcumin. The in vitro evaluation of the antitumoral activity of encapsulated curcumin microcapsules on HeLa cell line and the primary culture of mesenchymal stem cells is the main reason of the microcapsules synthesis as BSA-based vehicle meant to enhance the biodisponibility of curcumin, whose anti-tumor, anti-oxidant and anti-inflammatory properties are well known. © The Author(s) 2015.

  2. On the possible involvement of bovine serum albumin precursor in ...

    Indian Academy of Sciences (India)

    formaldehyde in PBS for 20 min and permeabilized with. 0.1% TritonX-100 in PBS for 5 min. The cover slip was finally mounted on a slide using mounting medium. (VectaShield) containing DAPI in 1 μg/mL concentration and imaged under confocal microscope (Olympus, FV1000). References. Sen J and Chaudhuri A 2005 ...

  3. Production of biological nanoparticles from bovine serum albumin ...

    African Journals Online (AJOL)

    The protein concentration of 5-40 mg.ml-1 was resulted; the main effect on the particle size and minimum mean size diameter gained was 30 mg.ml-1 protein concentration. The nanoparticle sample was purified with 50,000 g centrifuge then followed by dialysis, micro and ultrafiltration and then analyzed by SEM, PCS as ...

  4. Fatty acid-modified gapmer antisense oligonucleotide and human serum albumin constructs for pharmacokinetic modulation

    DEFF Research Database (Denmark)

    Hvam, Michael Lykke; Cai, Yunpeng; Dagnæs-Hansen, Frederik

    2017-01-01

    oligonucleotides (ASOs)/albumin constructs. We show by an electrophoretic mobility assay that fatty acid-modified gapmer and human serum albumin (HSA) can self-assemble into constructs that offer favorable pharmacokinetics. The interaction was dependent on fatty acid type (either palmitic or myristic acid), number...

  5. Gallium-68-labeled macroaggregated human serum albumin, sup 68 Ga-MAA

    Energy Technology Data Exchange (ETDEWEB)

    Even, G.A.; Green, M.A. (Purdue Univ., Lafayette, IN (USA). Dept. of Medicinal Chemistry and Pharmacognosy)

    1989-01-01

    A technique is described that allows labeling of commercial MAA (macroaggregated human serum albumin) kits with generator-produced {sup 68}Ga. This positron-emitting radiopharmaceutical should serve as an effective substitute for {sup 68}Ga-albumin microspheres in PET imaging studies that require a particulate tracer of regional perfusion. (author).

  6. Ionization of tyrosine residues in human serum albumin and in its complexes with bilirubin and laurate

    DEFF Research Database (Denmark)

    Honoré, B; Brodersen, R

    1992-01-01

    Spectrophotometric titration of human serum albumin indicates that ionization of the 18 tyrosine residues takes place between pH 9 and 12.7. A Hill plot indicates that protons dissociate co-operatively from tyrosine residues, in pure albumin between pH 11.0 and 11.4 with a Hill coefficient 1.7, a...

  7. Interaction of indomethacin with adult human albumin and neonatal serum

    DEFF Research Database (Denmark)

    Honoré, B; Brodersen, R; Robertson, A

    1983-01-01

    The binding of indomethacin to albumin was investigated at 37 degrees C, pH 7.4. The first stoichiometric binding constant is 2.5 X 10(5) M-1. Indomethacin utilizes both the bilirubin and diazepam binding functions equally. The effect on bilirubin binding to albumin is negligible at therapeutic...

  8. Molecular interaction studies of trimethoxy flavone with human serum albumin.

    Directory of Open Access Journals (Sweden)

    Mahesh Gokara

    Full Text Available BACKGROUND: Human serum albumin (HSA is the most abundant protein in blood plasma, having high affinity binding sites for several endogenous and exogenous compounds. Trimethoxy flavone (TMF is a naturally occurring flavone isolated from Andrographis viscosula and used in the treatment of dyspepsia, influenza, malaria, respiratory functions and as an astringent and antidote for poisonous stings of some insects. METHODOLOGY/PRINCIPAL FINDINGS: The main aim of the experiment was to examine the interaction between TMF and HSA at physiological conditions. Upon addition of TMF to HSA, the fluorescence emission was quenched and the binding constant of TMF with HSA was found to be K(TMF = 1.0+/-0.01x10(3 M(-1, which corresponds to -5.4 kcal M(-1 of free energy. Micro-TOF Q mass spectrometry results showed a mass increase of from 66,513 Da (free HSA to 66,823 Da (HAS +Drug, indicating the strong binding of TMF with HSA resulting in decrease of fluorescence. The HSA conformation was altered upon binding of TMF to HSA with decrease in alpha-helix and an increase in beta-sheets and random coils suggesting partial unfolding of protein secondary structure. Molecular docking experiments found that TMF binds strongly with HSA at IIIA domain of hydrophobic pocket with hydrogen bond and hydrophobic interactions. Among which two hydrogen bonds are formed between O (19 of TMF to Arg 410, Tyr 411 and another one from O (7 of TMF to Asn 391, with bond distance of 2.1 A, 3.6 A and 2.6 A, respectively. CONCLUSIONS/SIGNIFICANCE: In view of the evidence presented, it is imperative to assign a greater role of HSA's as a carrier molecule for many drugs to understand the interactions of HSA with TMF will be pivotal in the design of new TMF-inspired drugs.

  9. Low molecular weight silicones particularly facilitate human serum albumin denaturation.

    Science.gov (United States)

    Nayef, Lamees M; Khan, Madiha F; Brook, Michael A

    2015-04-01

    There is a market trend towards the administration of therapeutic proteins using sterilized, pre-filled glass syringes lubricated with silicone oil. It has been widely reported that initially clear solutions of proteins can become turbid during transport and storage, with unclear outcomes with respect to bioefficacy. While the basic processes of interactions of proteins with hydrophobic entities, leading to denaturation and aggregation, are increasingly well understood, the apparently random occurrence of such processes in syringes is not. To better understand the parameters that may be responsible for this change, we report the systematic examination of a series of factors that can affect the behavior of the protein human serum albumin (HSA) when in contact with silicone oil in water. Fluorescence spectroscopy showed that greater mixing times and greater concentrations of silicones (polydimethylsiloxane (PDMS)), especially lower molecular weight hydrophobic silicones like octamethyltetracyclosiloxane (D4), were associated with increased protein denaturation. The turbidity of HSA solutions, due to the formation both of silicone oil-in-water (O/W) emulsions and protein aggregates, was also facilitated by the presence of D4. A series of mixtures of silicone oils, all of which exhibited a viscosity of 1000 cSt but which were comprised of different silicone constituents, clearly showed a correlation between the presence of lower molecular silicones and enhanced solution turbidity. While the addition of a non-ionic silicone-polyether surfactant led to greater turbidity by increasing the number of stabilized oil droplets, it was not accompanied by protein denaturation. These results are consistent with HSA denaturation and subsequent aggregation as a consequence of contact particularly with low molecular weight, hydrophobic silicones that are more mobile, leading to more efficient protein/silicone contact. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements

    Directory of Open Access Journals (Sweden)

    Levitt DG

    2016-07-01

    Full Text Available David G Levitt,1,* Michael D Levitt2,* 1Department of Integrative Biology and Physiology, University of Minnesota, 2Research Service, Veterans Affairs Medical Center, Minneapolis, MN, USA *These authors contributed equally to this work Abstract: Serum albumin concentration (CP is a remarkably strong prognostic indicator of morbidity and mortality in both sick and seemingly healthy subjects. Surprisingly, the specifics of the pathophysiology underlying the relationship between CP and ill-health are poorly understood. This review provides a summary that is not previously available in the literature, concerning how synthesis, catabolism, and renal and gastrointestinal clearance of albumin interact to bring about albumin homeostasis, with a focus on the clinical factors that influence this homeostasis. In normal humans, the albumin turnover time of about 25 days reflects a liver albumin synthesis rate of about 10.5 g/day balanced by renal (≈6%, gastrointestinal (≈10%, and catabolic (≈84% clearances. The acute development of hypoalbuminemia with sepsis or trauma results from increased albumin capillary permeability leading to redistribution of albumin from the vascular to interstitial space. The best understood mechanism of chronic hypoalbuminemia is the decreased albumin synthesis observed in liver disease. Decreased albumin production also accounts for hypoalbuminemia observed with a low-protein and normal caloric diet. However, a calorie- and protein-deficient diet does not reduce albumin synthesis and is not associated with hypoalbuminemia, and CP is not a useful marker of malnutrition. In most disease states other than liver disease, albumin synthesis is normal or increased, and hypoalbuminemia reflects an enhanced rate of albumin turnover resulting either from an increased rate of catabolism (a poorly understood phenomenon or enhanced loss of albumin into the urine (nephrosis or intestine (protein-losing enteropathy. The latter may occur

  11. Neutralization of X4- and R5-tropic HIV-1 NL4-3 variants by HOCl-modified serum albumins

    Directory of Open Access Journals (Sweden)

    Schwalbe Birco

    2010-06-01

    Full Text Available Abstract Background Myeloperoxidase (MPO, an important element of the microbicidal activity of neutrophils, generates hypochlorous acid (HOCl from H2O2 and chloride, which is released into body fluids. Besides its direct microbicidal activity, HOCl can react with amino acid residues and HOCl-modified proteins can be detected in vivo. Findings This report is based on binding studies of HOCl-modified serum albumins to HIV-1 gp120 and three different neutralization assays using infectious virus. The binding studies were carried out by surface plasmon resonance spectroscopy and by standard ELISA techniques. Virus neutralization assays were carried out using HIV-1 NL4-3 virus and recombinant strains with CXCR4 and CCR5 coreceptor usage. Viral infection was monitored by a standard p24 or X-gal staining assay. Our data demonstrate that HOCl-modified mouse-, bovine- and human serum albumins all bind to the HIV-1 NL4-3 gp120 (LAV glycoprotein in contrast to non-modified albumin. Binding of HOCl-modified albumin to gp120 correlated to the blockade of CD4 as well as that of V3 loop specific monoclonal antibody binding. In neutralization experiments, HOCl-modified serum albumins inhibited replication and syncytium formation of the X4- and R5-tropic NL4-3 isolates in a dose dependent manner. Conclusions Our data indicate that HOCl-modified serum albumin veils the binding site for CD4 and the V3 loop on gp120. Such masking of the viral gp120/gp41 envelope complex might be a simple but promising strategy to inactivate HIV-1 and therefore prevent infection when HOCl-modified serum albumin is applied, for example, as a topical microbicide.

  12. A retrospective analysis of 25% human serum albumin supplementation in hypoalbuminemic dogs with septic peritonitis

    Science.gov (United States)

    Horowitz, Farrah B.; Read, Robyn L.; Powell, Lisa L.

    2015-01-01

    This study describes the influence of 25% human serum albumin (HSA) supplementation on serum albumin level, total protein (TP), colloid osmotic pressure (COP), hospital stay, and survival in dogs with septic peritonitis. Records of 39 dogs with septic peritonitis were evaluated. In the HSA group, initial and post-transfusion TP, albumin, COP, and HSA dose were recorded. In the non-supplemented group, repeated values of TP, albumin, and COP were recorded over their hospitalization. Eighteen dogs survived (53.8% mortality). Repeat albumin values were higher in survivors (mean 23.9 g/L) and elevated repeat albumin values were associated with HSA supplementation. Repeat albumin and TP were higher in the HSA supplemented group (mean 24 g/L and 51.9 g/L, respectively) and their COP increased by 5.8 mmHg. Length of hospitalization was not affected. Twenty-five percent HSA increases albumin, TP, and COP in canine patients with septic peritonitis. Higher postoperative albumin levels are associated with survival. PMID:26028681

  13. PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent

    Science.gov (United States)

    Fahrländer, E.; Schelhaas, S.; Jacobs, A. H.; Langer, K.

    2015-04-01

    Modification with poly(ethylene glycol) (PEG) is a widely used method for the prolongation of plasma half-life of colloidal carrier systems such as nanoparticles prepared from human serum albumin (HSA). However, the quantification of the PEGylation extent is still challenging. Moreover, the influence of different PEG derivatives, which are commonly used for nanoparticle conjugation, has not been investigated so far. The objective of the present study is to develop a method for the quantification of PEG and to monitor the influence of diverse PEG reagents on the amount of PEG linked to the surface of HSA nanoparticles. A size exclusion chromatography method with refractive index detection was established which enabled the quantification of unreacted PEG in the supernatant. The achieved results were confirmed using a fluorescent PEG derivative, which was detected by photometry and fluorimetry. Additionally, PEGylated HSA nanoparticles were enzymatically digested and the linked amount of fluorescently active PEG was directly determined. All the analytical methods confirmed that under optimized PEGylation conditions a PEGylation efficiency of up to 0.5 mg PEG per mg nanoparticle could be achieved. Model calculations made a ‘brush’ conformation of the PEG chains on the particle surface very likely. By incubating the nanoparticles with fetal bovine serum the reduced adsorption of serum proteins on PEGylated HSA nanoparticles compared to non-PEGylated HSA nanoparticles was demonstrated using sodium dodecylsulfate polyacrylamide gel electrophoresis. Finally, the positive effect of PEGylation on plasma half-life was demonstrated in an in vivo study in mice. Compared to unmodified nanoparticles the PEGylation led to a four times larger plasma half-life.

  14. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast

    DEFF Research Database (Denmark)

    Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D.

    2014-01-01

    Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been....... cerevisiae requires the presence of serum or albumin for efficient cholesterol uptake. These results suggest that albumin can serve as sterol donor in ABC transporter-dependent sterol uptake, a process potentially important for growth of C. glabrata inside infected humans. Serum albumin can serve as sterol...... donor in ATP-binding cassette-transporter-dependent sterol uptake, a process potentially important for growth of Candida glabrata inside infected humans....

  15. Heat-induced cross-linking and degradation of wheat gluten, serum albumin, and mixtures thereof.

    Science.gov (United States)

    Rombouts, Ine; Lagrain, Bert; Delcour, Jan A

    2012-10-10

    Some wheat-based food systems, such as cakes, cookies, and egg noodles, contain mixtures of animal and plant (gluten) proteins and are processed under (mildly) alkaline conditions. Although changes in these proteins during processing can affect end product quality, they have seldom been studied. This study investigated protein cross-linking and degradation during heating (0-120 min, pH 8.0, 50-130 °C) of (mixtures of) wheat gluten and bovine serum albumin (BSA). The decrease in protein extractabilities in sodium dodecyl sulfate containing buffer under (non)reducing conditions and the levels of (cross-linked) amino acids were measured. No indications for polymerization at 50 °C were found. Below 100 °C, BSA polymerized more readily than wheat gluten. Above 100 °C, the opposite was observed. The kinetics of heat-induced polymerization of a 1:1 gluten-BSA mixture were similar to that of isolated gluten, implying that gluten decelerated BSA denaturation. Severe heating (130 °C, >15 min) induced degradation reactions in gluten but not in BSA. At all conditions used in this study, disulfide (SS) bonds contributed to the extractability loss. In addition, above 110 °C, β-elimination of cystine led to non-SS cross-links. Intramolecular SS bonds more often transformed in intermolecular non-SS bonds in BSA than in gluten.

  16. The influence of fatty acids on theophylline binding to human serum albumin. Comparative fluorescence study

    Science.gov (United States)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Szkudlarek-Haśnik, A.; Zubik-Skupień, I.; Góra, A.; Dubas, M.; Korzonek-Szlacheta, I.; Wielkoszyński, T.; Żurawiński, W.; Sosada, K.

    2012-04-01

    Theophylline, popular diuretic, is used to treat asthma and bronchospasm. In blood it forms complexes with albumin, which is also the main transporter of fatty acids. The aim of the present study was to describe the influence of fatty acids (FA) on binding of theophylline (Th) to human serum albumin (HSA) in the high affinity binding sites. Binding parameters have been obtained on the basis of the fluorescence analysis. The data obtained for the complex of Th and natural human serum albumin (nHSA) obtained from blood of obese patients qualified for surgical removal of stomach was compared with our previous studies on the influence of FA on the complex of Th and commercially available defatted human serum albumin (dHSA).

  17. One Year Serum Albumin is an Independent Predictor of Outcomes in Kidney Transplant Recipients

    Science.gov (United States)

    Dahlberg, Rebecca; Muth, Brenda; Samaniego, Milagros; Hofmann, R Michael; Pirsch, John; Djamali, Arjang

    2010-01-01

    Objective This research study was conducted to investigate whether serum albumin levels predict allograft/patient outcomes in the new era of transplant medicine and immunology. Methods The association of 1-year post transplant serum albumin and patient and graft outcomes was retrospectively analyzed in 500 kidney transplant recipients between 1998 and 2005. Albumin was used as a categorical and a continuous variable in univariate and multivariate Cox regression and Kaplan-Meier survival analyses. Results The average (± SE) age at transplant was 47 ± 12 years. Patients were followed for 63.4 ± 28 months after transplant. There were 56 graft losses and 38 patient deaths. In univariate analysis, the following variables were associated with the composite endpoint of patient death or allograft loss: one-year serum albumin (HR 0.52, p=0.0009), one-year serum albumin < 4.0 g/dL (HR 1.81, p=0.02), one-year serum creatinine (HR 3.55, p <0.00001), ACE-I/ARB use (HR 1.61, p=0.03), a history of previous transplant (HR 1.54, p=0.04), months of dialysis before transplant (HR 1.01, p=0.00003), type of transplant (deceased donor HR 1.64, p=0.02) and acute rejection (HR 1.52, p=0.0000003). Of these, multivariable Cox regression analyses retained one-year serum albumin (HR 1.4, p<0.0001), serum creatinine (HR 2.7, p<0.0001) and acute rejection (HR 1.7, p=0.02) as significant predictors of patient/graft loss. Conclusion One-year serum albumin is an independent predictor of poor outcomes in the contemporary era of transplant medicine and immunosuppression. Further studies are needed to separate the role of this biomarker in inflammation and nutrition in kidney transplant recipients. PMID:20537920

  18. Investigation of Non-Covalent Interactions of Aflatoxins (B1, B2, G1, G2, and M1 with Serum Albumin

    Directory of Open Access Journals (Sweden)

    Miklós Poór

    2017-10-01

    Full Text Available Aflatoxins are widely spread mycotoxins produced mainly by Aspergillus species. Consumption of aflatoxin-contaminated foods and drinks causes serious health risks for people worldwide. It is well-known that the reactive epoxide metabolite of aflatoxin B1 (AFB1 forms covalent adducts with serum albumin. However, non-covalent interactions of aflatoxins with human serum albumin (HSA are poorly characterized. Thus, in this study the complex formation of aflatoxins was examined with HSA applying spectroscopic and molecular modelling studies. Our results demonstrate that aflatoxins form stable complexes with HSA as reflected by binding constants between 2.1 × 104 and 4.5 × 104 dm3/mol. A binding free energy value of −26.90 kJ mol−1 suggests a spontaneous binding process between AFB1 and HSA at room-temperature, while the positive entropy change of 55.1 JK−1 mol−1 indicates a partial decomposition of the solvation shells of the interacting molecules. Modeling studies and investigations with site markers suggest that Sudlow’s Site I of subdomain IIA is the high affinity binding site of aflatoxins on HSA. Interaction of AFB1 with bovine, porcine, and rat serum albumins was also investigated. Similar stabilities of the examined AFB1-albumin complexes were observed suggesting the low species differences of the albumin-binding of aflatoxins.

  19. Serum albumin levels and their correlates among individuals with motor disorders at five institutions in Japan.

    Science.gov (United States)

    Ohwada, Hiroko; Nakayama, Takeo; Kanaya, Yuki; Tanaka, Yuki

    2017-02-01

    The level of serum albumin is an index of nourishment care and management. However, the distribution and correlates of serum albumin levels among individuals with motor disorders have not been reported until now. Therefore, we examined the distribution and correlates of serum albumin levels among individuals with motor disorders. A cross-sectional study on 249 individuals with motor disabilities (144 men, mean age: 51.4 years; 105 women, mean age: 51.4 years) was conducted at five institutions in Ibaraki Prefecture, Japan in 2008. The results were compared with data from the National Health and Nutrition Survey. The mean serum albumin levels were 4.0 ± 0.4 g/dL for men and 3.8 ± 0.5 g/dL for women. Overall, 17 (11.8%) men and 25 (23.8%) women had hypoalbuminemia (serum albumin level ≤ 3.5 g/dL); these proportions were greater than those among healthy Japanese adults (≤ 1%). Low serum albumin level was related with female sex, older age, low calf circumference, low relative daily energy intake, low hemoglobin (Hb), low blood platelet count, low high-density lipoprotein cholesterol (HDL-C), low HbA1c, and high C-reactive protein (CRP) levels. The strongest correlates, based on standardized betas, were Hb (0.321), CRP (-0.279), and HDL-C (0.279) levels. These results indicate that the prevalence of hypoalbuminemia is higher in individuals with motor disabilities than in healthy individuals and that inflammation is a strong negative correlate of serum albumin levels. Therefore, inflammation should be examined for the assessment of hypoalbuminemia among institutionalized individuals with motor disabilities.

  20. Non-enzymatic glucosylation induced neo-epitopes on human serum albumin: A concentration based study.

    Directory of Open Access Journals (Sweden)

    Km Neelofar

    Full Text Available Hyperglycaemia induced non enzymatic glycation is accelerated in diabetic patients and aggressively involved in diabetes progression. Human serum albumin (HSA is the most abundant protein in blood circulation. In hyperglycaemia, it undergoes fast glycation and results in the impairment of structure. Our previous study has demonstrated structural alterations in Amadori-albumin modified with different glucose concentrations from physiological to pathophysiological range. Here, we focused on immunological characterization of Amadori-albumin. Immunogenicity of Amadori-albumin was analysed by direct binding and competitive ELISA. Amadori-albumin was found to be highly immunogenic (expect albumin modified with 5mM and induced high titre antibodies depending upon the extent of modification. Very high titre antibodies were obtained with albumin modified with 75mM glucose as compared to native albumin. Anti-Amadori-albumin-IgG from rabbit sera exhibited increased recognition of Amadori-albumin than native albumin in competitive immunoassay. Alteration induced in albumin after glucosylation has made it highly immunogenic. Induced antibodies were quite specific for respective immunogens but showed cross-reaction with other Amadori/native proteins. It suggests that glucosylation has generated highly immunogenic epitopes on albumin. Formation of high molecular weight immune complex with retarded mobility further supports specificity of anti-Amadori-albumin-IgG towards Amadori-albumin. It may be concluded that due to early glycation, an array of modification occurred in HSA structure. Such gross structural changes might favour polymerization of most of the native epitopes into potent immunogenic neo-epitopes, but some original epitopes were still active and has contributed in the immunogenicity. It could be concluded that induction of anti-Amadori-albumin antibodies may be due to protection of glucose modified albumin from protiolytic breakdown. We assumed

  1. Formation of erythrocyte rouleaux in preheated normal serum: roles of albumin polymers and lysophosphatidylcholine.

    Science.gov (United States)

    Forsdyke, D R; Palfree, R G; Takeda, A

    1982-07-01

    The role of humoral factors in cell-cell interactions was studied in a simple model system: the aggregation of erythrocytes into cylindrical rouleaux when suspended in normal serum preheated at 62 degree C for 20 min. The rouleaugenic activity of heated serum was associated with an increased concentration of albumin polymers. On heating above 62 degree C, albumin released ligands, such as lysophosphatidylcholine, in quantities sufficient to convert erythrocytes to acanthocytes. The latter did not participate in rouleaux formation. Thus normal serum only became rouleaugenic when heated over a narrow range of temperatures. These properties of serum were reproduced in a system consisting only of erythrocytes, heated albumin, and lysophosphatidylcholine. Rouleau formation increased as albumin polymer size increased. Unheated normal serum could also be made rouleaugenic merely by concentrating to above normal physiological concentrations. Unheated, unconcentrated, sera from patients with various diseases are known to be rouleaugenic, but polymeric albumin appears infrequently in such sera; usually there are increases in macroglobulins are large polymeric forms of smaller serum proteins. Current evidence is consistent with the hypothesis that a small shift in the concentration of one or more of these macromolecules above a critical value promotes a phase separation of erythrocytes which spontaneously aggregate to form rouleaux.

  2. Can serum concentration of C-reactive protein, albumin and body ...

    African Journals Online (AJOL)

    Objective: To determine whether serum concentration of C-reactive protein, serum albumin level and body weight can serve as an index of disease progression and treatment assessment in HIV/AIDS. Methodology: The study investigated 80 subjects (40 subjects on anti-retroviral therapy and 40 not on therapy) and 40 ...

  3. Serum albumin levels predict vascular dysfunction with paradoxical pathogenesis in healthy individuals.

    Science.gov (United States)

    Kadono, Mayuko; Hasegawa, Goji; Shigeta, Masako; Nakazawa, Atsuko; Ueda, Miho; Yamazaki, Masahiro; Fukui, Michiaki; Nakamura, Naoto

    2010-03-01

    Serum albumin is affected by both nutritional status and inflammation. It is, therefore, thought to be highly linked with pathogenesis of vascular dysfunction. Cross-sectional data from 2091 individuals aged 23-87, who underwent a general health examination, were analyzed. First, we investigated the association between serum albumin level and vascular functions, as assessed by brachial-ankle pulse-wave velocity (PWV). Then, we evaluated the prevalence of hyperglycemia (fasting blood sugar >or=100mg/dl), metabolic syndrome as determined by NCEP criteria, and inflammation (CRP >or=0.4mg/dl), across tertiles of albumin levels. In a multivariate regression model, a U-shaped relationship between serum albumin and PWV was statistically significant when albumin level was treated as a continuous variable in g/dl and centered at 4.4g/dl (quadratic term P-value=0.006). The highest tertile of albumin level (4.6-5.4g/dl) was associated with increased odds ratios for hyperglycemia of 1.35 (1.07-1.70) compared to the middle tertile (4.4-4.5g/dl), whereas the lowest tertile (3.3-4.3g/dl) was associated with reduced odds ratios for hyperglycemia of 0.80 (0.65-0.99). The highest tertile was also associated with increased odds ratios for metabolic syndrome of 1.30 (0.96-1.76) compared to the middle tertile, whereas the lowest tertile was associated with reduced odds ratios of 0.70 (0.51-0.95). Furthermore, the lowest tertile was associated with increased prevalence of inflammation with an adjusted odds ratio of 1.85 (1.15-2.97). The current results demonstrate that extremes of serum albumin levels are linked to vascular dysfunction among healthy individuals. Furthermore, serum albumin is paradoxically linked to vascular disease under conditions both of overnutrition and of malnutrition and inflammation complex.

  4. A Microtus fortis protein, serum albumin, is a novel inhibitor of Schistosoma japonicum schistosomula

    Directory of Open Access Journals (Sweden)

    Rong Li

    2013-11-01

    Full Text Available Schistosomiasis is an endemic parasite disease and praziquantel is the only drug currently in use to control this disease. Experimental and epidemiological evidence strongly suggests that Microtus fortis ( Mf is a naturally resistant vertebrate host of Schistosoma japonicum . In the present study, we found that Mf serum albumin ( Mf -albumin and the conditioned medium of pcDNA3.1- Mf -albumin caused 46.2% and 38.7% schistosomula death rates in 96 h, respectively, which were significantly higher than that of the negative control (p < 0.05. We also found that mice injected with Mf -albumin had a 43.5% reduction in worm burden and a 48.1% reduction in liver eggs per gram (p < 0.05 in comparison to the control animals. To characterise the mechanisms involved in clearance, schistosomula were incubated with fluorescein isothiocyanate-labelled Mf -albumin and fluorescent enrichment effects were found in the gut lumen of schistosomula after 48 h of incubation. Next, digestive tract excretions from schistosomula were collected and the sensitivity of Mf -albumin to digestive tract excretions was evaluated. The results indicated that schistosomula digestive tract excretions showed indigestibility of Mf -albumin. The death of schistosomula could be partially attributed to the lack of digestion of Mf -albumin by digestive tract excretions during the development of the schistosomula stage. Therefore, these data indicate the potential of Mf -albumin as one of the major selective forces for schistosomiasis.

  5. Metabolic acidosis components in advanced chronic kidney disease: association with serum albumin and parathyroid hormone.

    Science.gov (United States)

    Vasconcelos, Daniele Pinto; Bayas de Queiroz, Rafaela Elizabeth; Ponte Costa, Tandara Maria; Rocha Guerreiro, Monique Queiroz; Oliveira Leitão, Maria Alessandra; Corrêa, Larissa Chagas; Libório, Alexandre Braga

    2015-05-01

    To investigate the associations between the 2 main components of metabolic acidosis (unmeasured anions [UA] and hyperchloremia) with serum albumin and intact parathormone (iPTH) in patients with advanced chronic kidney disease. Cross-sectional study with advanced chronic kidney disease patients (estimated glomerular filtration rate acidosis, 45.7% had metabolic acidosis exclusively because of UA and 53.7% had a hyperchloremic component (either mixed metabolic acidosis or pure hyperchloremic metabolic acidosis). Considering the main acid-base status determinants, only UA had a significant correlation with serum albumin (r = -0.278, P acidosis with bone disorders and nutritional status, suggesting that the two main metabolic acidosis components (UA and hyperchloremia) have different effects on serum parathormone and serum albumin. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  6. Serum total protein, albumin and globulin levels in Trypanosoma ...

    African Journals Online (AJOL)

    Owner

    2Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 405 Hilgard Avenue,. P.O. Box 951361, Los Angeles, ... total protein, albumin and globulin were investigated in rabbits over a period of twenty eight days. ..... dynamics of erythrocyte membrane sialic acid concentration during.

  7. Effects of oral contraceptives on total serum proteins, albumin,

    African Journals Online (AJOL)

    rum total protein, globulin and cholesterol levels were sig-. nificantly increased in oral contraceptive and their control counterparts. The albumin/globulin ratio in subjects on oral contraceptives users is significantly decreased compared with controls. In view of the findings of this study, it is suggested that the biochemical ...

  8. Effect of newborn bovine serum on cryopreservation of adult bovine testicular tissue.

    Science.gov (United States)

    Wu, J Y; Sun, Y X; Wang, A B; Che, G Y; Hu, T J; Zhang, X M

    2014-04-01

    Bovine serum is widely used for cryopreservation of various cells and tissues. However, its cryoprotective effects on the cells and tissues are ambiguous and controversial. To test the effects of newborn calf serum (NCS) on cryopreservation of bovine testis tissue, NCS of 0%, 5%, 10% and 20% (v/v) was added into minimum essential medium + 10% dimethyl sulphoxide (DMSO)-based medium according to our previous report. Interestingly, the testicular cell viabilities and spermatogonia percentages from four groups were very close. The results indicated that an increase in the concentration of NCS in freezing medium to 20% has no significant effect on survival of both testicular cells and spermatogonia, and 10% DMSO-based freezing medium can maintain the testicular cell viability and spermatogonia percentage at a relatively high level (83.4 ± 0.7 and 56.5 ± 2.2 respectively). Taken together, NCS is dispensable for cryopreservation of adult bovine testis tissue. Our results provide an evidence for cutting down the costs in cryopreservation research of bovine testis tissue by reducing or giving up the use of serum. © 2013 Blackwell Verlag GmbH.

  9. SGA scores have poor correlation with serum albumin in obese hemodialysis patients: a secondary analysis.

    Science.gov (United States)

    Erb, Eric D; Hand, Rosa K; Steiber, Alison L

    2014-07-01

    The objective of this study was to determine the relationship between serum albumin and the Subjective Global Assessment (SGA) in a sample of obese hemodialysis (HD) patients. Study subjects (N = 253) included patients who were categorized into well-nourished (68%, SGA score 6-7) and malnourished (score 1-5) groups, and, on the basis of the body mass index (BMI), into obese (BMI > 30 kg/m(2); 35%) and nonobese (BMI SGA Validation Project and Nutrition Algorithm Preliminary Report determined the relationship between the 7-point SGA and serum albumin concentrations in a sample of obese HD patients. Data were analyzed at Case Western Reserve University from a total of 253 HD patients. The SGA scores in the BMI groups were compared with serum albumin as an objective measure of nutrition and inflammation risk. By using analysis of variance, the obese and nonobese populations showed statistically significant differences in SGA scores (obese: P SGA group with age and gender as covariates. Serum albumin values (P SGA group. The secondary analysis showed that SGA does not correlate well with serum albumin; thus, it may not be a valid nutrition assessment tool among obese HD patients. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  10. A discussion of serum albumin level in advanced-stage hepatocellular carcinoma: a medical oncologist's perspective.

    Science.gov (United States)

    Tanriverdi, Ozgur

    2014-11-01

    Hepatocellular carcinoma is the most common primary malignant tumor of the liver, and it is particularly prevalent in East and Southeast Asia. With surgical and/or local interventional treatment methods, survival rates for early-stage hepatocellular cancers have increased. However, it is not yet clear which staging systems are more applicable in hepatocellular carcinoma. Serum albumin level is already being used as a criterion in most staging systems. Albumin is an important serum protein in human bodily functions, but only 5 % of the daily amount needed is synthesized by the liver. The serum albumin level is affected by multifactorial situations, including capillary permeability, drugs, liver insufficiency, inflammation and/or infections, dehydration or overhydration, protein loosing disorders, and decreased nutrition intake in anorexia-malnutrition syndrome and cancer cachexia. Because of this complex situation, serum albumin level may affect many staging systems for hepatocellular carcinoma by leading to false-negative results. In this paper, the statuses of current staging systems are reviewed, and possible negative events regarding the serum albumin levels found in these staging systems are discussed.

  11. A comparative study of some physico-chemical properties of human serum albumin samples from different sources--I : Some physico-chemical properties of isoionic human serum albumin solutions

    NARCIS (Netherlands)

    Dröge, J.H.M.; Janssen, L.H.M.; Wilting, J.

    1982-01-01

    Human serum albumin samples from different sources were investigated. The fatty acid content of the albumin before and after deionization on a mixed bed ion-exchange column varied from sample to sample. When an albumin sample from one source was deionized under standard conditions the amount of

  12. Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins.

    Science.gov (United States)

    Yu, Siming; Perálvarez-Marín, Alex; Minelli, Caterina; Faraudo, Jordi; Roig, Anna; Laromaine, Anna

    2016-08-14

    The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the outside of the SPIONs and their binding strength to the SPIONs is about 3.5 × 10(-4) M, ten times higher than the adsorption of fetal bovine serum (FBS) on the same SPIONs. We elucidate a strong electrostatic interaction between BSA and the SPIONs, although the secondary structure of the protein is not affected. We present data that supports the strong binding of the BSA monolayer on SPIONs and the properties of the BSA layer as a protein-resistant coating. We believe that a complete understanding of the behavior and morphology of BSA-SPIONs and how the protein interacts with SPIONs is crucial for improving NP surface design and expanding the potential applications of SPIONs in nanomedicine.

  13. Serum Albumin Concentrations in a Multi-Ethnic Cohort of Patients with Human Immunodeficiency Virus Infection from South East London.

    Science.gov (United States)

    Chong, James Jy; Fragaszy, Ellen; Dukes, Oliver; Cason, John; Kozlakidis, Zisis

    2015-01-01

    Human albumin is the most abundant protein in sera and a valuable biomarker in monitoring a variety of diseases. In this study we investigated the relationship between serum albumin concentrations and effects of initiation of highly active antiretroviral therapy (HAART). Serum albumin concentrations amongst 70 HIV-infected patients from diverse ethnicities were analyzed, in the absence of any other confounding comorbidities, over a period of 8 years in South East London, United Kingdom. Serum albumin data was collected, on average, every 4-6 weeks during routine visits. Serum albumin was measured prior to starting HAART, and measured at the first clinic visit after commencing HAART. These were compared to a control group of untreated individuals. Based on our analyses we conclude that serum albumin concentrations increase significantly after the initiation of therapy.

  14. Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study

    Science.gov (United States)

    Szkudlarek, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.; Sułkowska, A.

    2016-01-01

    The modification of human serum albumin (HSA) structure by non-enzymatic glycation is one of the underlying factors that contribute to the development of complications of diabetes and neurodegenerative diseases. The aim of the present work was to estimate how glycation of HSA altered its tertiary structure. Changes of albumin conformation were investigated by comparison of glycated (gHSA) and non-glycated human serum albumin (HSA) absorption spectra, red edge excitation shift (REES) and synchronous spectra. Effect of glycation on human serum albumin tertiary structure was also investigated by 1H NMR spectroscopy. Formation of gHSA Advanced Glycation End-products (AGEs) caused absorption of UV-VIS light between 310 nm and 400 nm while for non-glycated HSA in this region no absorbance has been registered. Analysis of red edge excitation shift effect allowed for observation of structural changes of gHSA in the hydrophobic pocket containing the tryptophanyl residue. Moreover changes in the microenvironment of tryptophanyl and tyrosyl residues brought about AGEs on the basis of synchronous fluorescence spectroscopy have been confirmed. The influence of glycation process on serum albumin binding to 5-dimethylaminonaphthalene-1-sulfonamide (DNSA), 2-(p-toluidino) naphthalene-6-sulfonic acid (TNS), has been studied. Fluorescence analysis showed that environment of both binding site I and II is modified by galactose glycation.

  15. Characterization of Silver Nanoparticles in Cell Culture Medium Containing Fetal Bovine Serum.

    Science.gov (United States)

    Hansen, Ulf; Thünemann, Andreas F

    2015-06-23

    Nanoparticles are being increasingly used in consumer products worldwide, and their toxicological effects are currently being intensely debated. In vitro tests play a significant role in nanoparticle risk assessment, but reliable particle characterization in the cell culture medium with added fetal bovine serum (CCM) used in these tests is not available. As a step toward filling this gap, we report on silver ion release by silver nanoparticles and on changes in the particle radii and in their protein corona when incubated in CCM. Particles of a certified reference material, p1, and particles of a commercial silver nanoparticle material, p2, were investigated. The colloidal stability of p1 is provided by the surfactants polyethylene glycol-25 glyceryl trioleate and polyethylene glycol-20 sorbitan monolaurate, whereas p2 is stabilized by polyvinylpyrrolidone. Dialyses of p1 and p2 reveal that their silver ion release rates in CCM are much larger than in water. Particle characterization was performed with asymmetrical flow field-flow fractionation, small-angle X-ray scattering, dynamic light scattering, and electron microscopy. p1 and p2 have similar hydrodynamic radii of 15 and 16 nm, respectively. The silver core radii are 9.2 and 10.2 nm. Gel electrophoresis and subsequent peptide identification reveal that albumin is the main corona component of p1 and p2 after incubation in CCM that consists of Dulbecco's modified Eagle medium with 10% fetal bovine serum added.

  16. Spectrofluorimetric study of the interaction of methyl-parathion with fish serum albumin.

    Science.gov (United States)

    Silva, Dilson; Cortez-Moreira, Madelayne; Bastos, Vera Lúcia Freire Cunha; Bastos, Jayme Cunha; Cortez, Célia Martins

    2010-09-01

    The interaction of methyl-parathion with the albumin of Piaractus mesopotamicus (Holmberg 1887) (= pacu), a fish species typical of Brazilian rivers, was studied and the results compared with known values for human and bovine albumin obtained in an earlier investigation. Methyl-parathion (O,O-dimethyl O-p-nitrophenyl phosphorothioate) is an organophosphorous pesticide still used in agriculture and fish farming in many countries. The fluorescence quenching technique with tryptophan as a natural probe was used to detect for the presence of methyl-parathion. Fluorescence can be mathematically expressed by the Stern-Volmer equation to calculate quenching constants, and changes in the behavior of Stern-Volmer curves at different temperatures indicate the nature of the mechanism causing the quenching. Our results indicate that methyl-parathion forms a complex with fish albumin. The estimated association constant is 9.73 x 103 (+/- 4.9 x 102) M(-1) at 25 degrees C.

  17. Palmitate and stearate binding to human serum albumin. Determination of relative binding constants

    DEFF Research Database (Denmark)

    Vorum, H; Fisker, K; Honoré, B

    1997-01-01

    Multiple binding equilibria of two apparently insoluble ligands, palmitate and stearate, to defatted human serum albumin were studied in a 66 mM sodium phosphate buffer (pH 7.4) at 37 degrees C, by determination of dialytic exchange rates of ligands among identical equilibrium solutions. The expe......Multiple binding equilibria of two apparently insoluble ligands, palmitate and stearate, to defatted human serum albumin were studied in a 66 mM sodium phosphate buffer (pH 7.4) at 37 degrees C, by determination of dialytic exchange rates of ligands among identical equilibrium solutions...

  18. Alteration of human serum albumin binding properties induced by modifications: A review

    Science.gov (United States)

    Maciążek-Jurczyk, Małgorzata; Szkudlarek, Agnieszka; Chudzik, Mariola; Pożycka, Jadwiga; Sułkowska, Anna

    2018-01-01

    Albumin, a major transporting protein in the blood, is the main target of modification that affects the binding of drugs to Sudlow's site I and II. These modification of serum protein moderates its physiological function, and works as a biomarker of some diseases. The main goal of the paper was to explain the possible alteration of human serum albumin binding properties induced by modifications such as glycation, oxidation and ageing, their origin, methods of evaluation and positive and negative meaning described by significant researchers.

  19. Crystals of Human Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    Science.gov (United States)

    Carter, Daniel C. (Inventor)

    1994-01-01

    This invention pertains to crystals of serum albumin and processes for growing them. The purpose of the invention is to provide crystals of serum albumin which can be studied to determine binding sites for drugs. Form 2 crystals grow in the monoclinic space P2(sub 1), and possesses the following unit cell constraints: a = 58.9 +/- 7, b = 88.3 +/- 7, c = 60.7 +/- 7, Beta = 101.0 +/- 2 degrees. One advantage of the invention is that it will allow rational drug design

  20. Fluorescence detection of serum albumin with a turnover-based sensor utilizing Kemp elimination reaction.

    Science.gov (United States)

    Sakamoto, Shingo; Komatsu, Toru; Ueno, Tasuku; Hanaoka, Kenjiro; Urano, Yasuteru

    2017-08-01

    The Kemp elimination reaction is a well-known chemical reaction that is facilitated on a protein surface microenvironment, and in particular is highly accelerated in a unique binding pocket of serum albumin. We have designed and synthesized a fluorescently activatable coumarin derivative with a benzisoxazole scaffold to enable monitoring of the Kemp elimination reaction in terms of fluorescence change for the first time. We show that this fluorescent sensor can sensitively and selectively quantitate serum albumin in blood samples. It also works in a dry-chemistry format. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Natural alkaloid Luotonin A and its affixed acceptor molecules: Serum albumin binding studies.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Kumar, Gujuluva Gangatharan Vinoth; Anitha, Kandasamy; Ravi, Lokesh; Raja, Jeyaraj Dhaveethu; Rajagopal, Gurusamy; Rajesh, Jegathalaprathaban

    2017-08-01

    Effective interaction of natural alkaloid Luotonin A (L) and its affixed acceptor molecules 1 and 2 with donor molecule as Bovine serum albumin (BSA) at various pH (4.0, 7.4 and 10.0) medium have been demonstrated using various conventional spectroscopic techniques. These analyses provide some valuable features on the interaction between BSA and acceptor molecules (L, 1 and 2). From the absorption and fluorescence spectral titration studies, the formation of ground-state complexes between the acceptor molecules (L, 1 and 2) and the BSA have been confirmed. The results of the afore titrations analysis reveal that, the strong binding of receptor 1 with BSA (Kapp 5.68×10(4)M(-1); KSV 1.86×10(6)Lmol(-1); Ka 6.42×10(5)Lmol(-1); Kass 8.09×10(6)M(-1); ΔG -33.35kJ/mol) at physiological pH medium (7.4) than other receptor molecules 2 and L. The Förster resonance energy transfer (FRET) efficiency between the tryptophan (Trp) residues of BSA and acceptor molecules L, 1 and 2 during the interaction, are 28.85, 85.24 and 53.25 % respectively. The superior binding efficacy of acceptor 1 at physiological pH condition has been further confirmed by FT-IR and Raman spectral analysis methods. Moreover, theoretical docking studies of acceptors L, 1 and 2 towards HSA have been demonstrated to differentiate their binding behaviours. It reveals that, acceptor 1 has the strongest binding ability with HSA through two hydrogen bonding and the Atomic contact energy (ACE) value of -483.96kcal/mol. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Mangiferin binding to serum albumin is non-saturable and induces conformational changes at high concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, P.G.; Barbosa, A.F. [Biochemistry Laboratory, Institute of Exact Sciences, Federal University of Alfenas, Unifal-MG, R. Gabriel Monteiro da Silva, 700, 37130-000 Alfenas, MG (Brazil); Saraiva, L.A. [Phytochemistry and Medicinal Chemistry Laboratory, Institute of Exact Sciences, Unifal-MG (Brazil); Camps, I. [Physics Laboratory, Institute of Exact Sciences, Unifal-MG (Brazil); Silveira, N.J.F. da [Bioinformatics Laboratory, Institute of Exact Sciences, Unifal-MG (Brazil); Veloso, M.P. [Phytochemistry and Medicinal Chemistry Laboratory, Institute of Exact Sciences, Unifal-MG (Brazil); Santos, M.H., E-mail: poliany.santos@gmail.com [Phytochemistry and Medicinal Chemistry Laboratory, Institute of Exact Sciences, Unifal-MG (Brazil); Schneedorf, J.M., E-mail: zemasfs@gmail.com [Biochemistry Laboratory, Institute of Exact Sciences, Federal University of Alfenas, Unifal-MG, R. Gabriel Monteiro da Silva, 700, 37130-000 Alfenas, MG (Brazil)

    2012-11-15

    The binding interaction between mangiferin (MGF), which a natural xanthone isolated from mangoes, and bovine serum albumin (BSA) was studied with absorbance and fluorescence spectroscopy, cyclic voltammetry and molecular modeling. The data were analyzed to assess the binding mechanism, effect of pH and ionic strength, conformational changes in the protein and electrical charge transfer involved. The MGF-BSA complex exhibited positive cooperativity with a 1:1 stoichiometry (K{sub d}=0.38 mmol L{sup -1}) for the first binding site and a non-saturable binding at high ligand concentrations. Furthermore, the data also suggest an increase in drug bioavailability in the acidic region and relatively low ionic strength values, which are close to physiological levels. The data suggest a specific electrostatic interaction together with hydrophobic effects and H-bonding displayed in MGF binding to the BSA IIA subdomain. Synchronous fluorescence spectra indicate that there are conformational changes in the polypeptide backbone upon ligand binding. Cyclic voltammetry indicates that there is an irreversible charge transfer between MGF and BSA that is modulated by diffusion on the electrode surface, where two electrons are transferred. These results can help the knowledge of the pharmacokinetic activities of natural or chemical xanthone-based drugs. - Highlights: Black-Right-Pointing-Pointer The MGF-BSA complex exhibited positive cooperativity beyond 1:1 stoichiometry. Black-Right-Pointing-Pointer The interaction of MGF with BSA is non-saturable at higher ligand concentration. Black-Right-Pointing-Pointer The binding was accomplished by H-bonding, hydrophobic and electrostatic forces. Black-Right-Pointing-Pointer The apparent binding constant for MGF-BSA was 0.38 mmol L{sup -1}. Black-Right-Pointing-Pointer MGF binds electrostatically to BSA, different from a hydrophobic interaction to HSA.

  3. Association between Serum Albumin Concentration and Ketosis Risk in Hospitalized Individuals with Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Cheng, Po-Chung; Hsu, Shang-Ren; Cheng, Yun-Chung

    2016-01-01

    Objective. This study examined the association between serum albumin concentration and ketosis risk in hospitalized individuals with type 2 diabetes mellitus (T2DM). Methods. A retrospective cross-sectional study was conducted at a medical center in Taiwan. Inclusion criteria were endocrinology ward inpatients exceeding 21 years of age, with preexisting diagnosis of T2DM, and blood glucose above 13.9 millimoles per liter (mmol/L) at admission. Individuals without measurement of serum albumin, urine ketone, or hemoglobin A1C, or harboring active infection, myocardial infarction, cerebrovascular event, cirrhosis, malignancy, or overt proteinuria were excluded. Using serum albumin concentration below 3.0 grams per deciliter to define hypoalbuminemia, 151 hypoalbuminemic cases and 104 normoalbuminemic controls were enrolled. The presence of ketones in urine established ketosis. Results. The prevalence of ketonuria was 48% in hypoalbuminemic subjects compared to 30% in normoalbuminemic controls (odds ratio (OR): 2.15; 95% confidence interval (CI): 1.26-3.57; P = 0.004). Moreover, among the 156 subjects with serum beta-hydroxybutyrate measurement in addition to urine ketone, 33% of the hypoalbuminemic individuals had ketonemia exceeding 3 mmol/L compared to 19% of those with normoalbuminemia (OR: 2.12, 95% CI: 0.99-4.48, P = 0.051). Conclusions. Serum albumin concentration is inversely associated with ketosis risk in hospitalized individuals with T2DM.

  4. Association between Serum Albumin Concentration and Ketosis Risk in Hospitalized Individuals with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Po-Chung Cheng

    2016-01-01

    Full Text Available Objective. This study examined the association between serum albumin concentration and ketosis risk in hospitalized individuals with type 2 diabetes mellitus (T2DM. Methods. A retrospective cross-sectional study was conducted at a medical center in Taiwan. Inclusion criteria were endocrinology ward inpatients exceeding 21 years of age, with preexisting diagnosis of T2DM, and blood glucose above 13.9 millimoles per liter (mmol/L at admission. Individuals without measurement of serum albumin, urine ketone, or hemoglobin A1C, or harboring active infection, myocardial infarction, cerebrovascular event, cirrhosis, malignancy, or overt proteinuria were excluded. Using serum albumin concentration below 3.0 grams per deciliter to define hypoalbuminemia, 151 hypoalbuminemic cases and 104 normoalbuminemic controls were enrolled. The presence of ketones in urine established ketosis. Results. The prevalence of ketonuria was 48% in hypoalbuminemic subjects compared to 30% in normoalbuminemic controls (odds ratio (OR: 2.15; 95% confidence interval (CI: 1.26–3.57; P=0.004. Moreover, among the 156 subjects with serum beta-hydroxybutyrate measurement in addition to urine ketone, 33% of the hypoalbuminemic individuals had ketonemia exceeding 3 mmol/L compared to 19% of those with normoalbuminemia (OR: 2.12, 95% CI: 0.99–4.48, P=0.051. Conclusions. Serum albumin concentration is inversely associated with ketosis risk in hospitalized individuals with T2DM.

  5. Interactions between 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide and serum albumins: Investigation by spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yang; Wei Song [School of Chemical Engineering, Northwest University, No. 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Zhao Yingyong [Biomedicine Key Laboratory of Shaanxi Province, Northwest University, No. 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Hu Xiaoyun, E-mail: hxy3275@nwu.edu.cn [Department of Physics, Northwest University, No. 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Fan Jun, E-mail: fanjun@nwu.edu.cn [School of Chemical Engineering, Northwest University, No. 229 Taibai North Road, Xi' an, Shaanxi 710069 (China)

    2012-04-15

    A novel 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide (DON) has been synthesized as a spectrofluorimetric probe for the determination of proteins. Photophysics of DON in different solvents has been delineated in this paper. Progressive redshift with polarity of solvents in emission and absorption spectra hints at intramolecular charge transfer. The interactions of DON with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)) were studied by fluorescence and absorption spectroscopy. Fluorescence data revealed that the quenching of HSA/BSA by DON were static quenching and the DON-HSA/BSA complexes were formed. The binding constant (K{sub b}) for HSA and was found to be 8.44 Multiplication-Sign 10{sup -4} and 60.26 Multiplication-Sign 10{sup -4} M{sup -1} and the number of binding sites (n) were 1.00 and 1.40, respectively. The thermodynamic parameters, {Delta}H and {Delta}S, for the DON-HSA system was calculated to be -14.83 kJ mol{sup -1} and 23.61 J mol{sup -1} K{sup -1}, indicating the hydrogen bonds and hydrophobic interactions were the dominant intermolecular force. {Delta}H and {Delta}S for the binding of DON with BSA was -60.08 kJ mol{sup -1} and -90.7441 mol{sup -1} K{sup -1}, suggesting the hydrogen bonds and van der Waals force played the main role in the interaction. The results of displacement experiments showed that DON bound HSA/BSA occurred at the Trp-214 proximity, located in subdomain IIA of the serum albumin structure (the warfarin binding pocket). The effect of DON on the conformation of HSA was also analyzed by synchronous and three-dimensional fluorescence spectra. The fluorescence of DON could be quenched by HSA, based on which, a fluorometric method for the determination of microamount protein using DON in the medium of HCl-Tris buffer solution (pH=7.4) was developed. The linear range of the calibration curves was 0.1-10.0 {mu}M for HSA, 0.1-11.2 {mu}M for BSA and 0.2-9.7 {mu}M for egg albumin (EA). The

  6. Competitive Protein Adsorption of Albumin and Immunoglobulin G from Human Serum onto Polymer Surfaces

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2010-01-01

    Competitive protein adsorption from human serum onto unmodified polyethylene terephthalate (PET) surfaces and plasma-polymerized PET surfaces, using the monomer diethylene glycol vinyl ether (DEGVE), has been investigated using radioactive labeling. Albumin and immunoglobulin G (IgG) labeled...... with two different iodine isotopes have been added to human serum solutions of different concentrations, and adsorption has been performed using adsorption times from approximately 5 s to 24 h. DEGVE surfaces showed indications of being nonfouling regarding albumin and IgG adsorption during competitive...... protein adsorption from diluted human serum solutions with relatively low protein concentrations, but the nonfouling character was weakened when less diluted human serum solutions with higher protein concentrations were used. The observed adsorption trend is independent of adsorption time, indicating...

  7. Competitive protein adsorption of albumin and immunoglobulin G from human serum onto polymer surfaces.

    Science.gov (United States)

    Holmberg, Maria; Hou, Xiaolin

    2010-01-19

    Competitive protein adsorption from human serum onto unmodified polyethylene terephthalate (PET) surfaces and plasma-polymerized PET surfaces, using the monomer diethylene glycol vinyl ether (DEGVE), has been investigated using radioactive labeling. Albumin and immunoglobulin G (IgG) labeled with two different iodine isotopes have been added to human serum solutions of different concentrations, and adsorption has been performed using adsorption times from approximately 5 s to 24 h. DEGVE surfaces showed indications of being nonfouling regarding albumin and IgG adsorption during competitive protein adsorption from diluted human serum solutions with relatively low protein concentrations, but the nonfouling character was weakened when less diluted human serum solutions with higher protein concentrations were used. The observed adsorption trend is independent of adsorption time, indicating that the protein concentration has a stronger influence on observed adsorption characteristics of the material than the adsorption time has.

  8. Growth Status and Its Relationship with Serum Lipids and Albumin in Children with Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Fallahi

    2016-05-01

    Full Text Available Cystic fibrosis (CF is an autosomal recessive disease, which affects many organs as it impairs chloride channel. This study was performed to evaluate growth status and its relationship with some laboratory indices such as Cholesterol (chol, Triglyceride (TG, albumin and total protein in children with CF referred to pediatrics center. This study was designed as a cross-sectional study in one year section. Demographic features were compared with standard percentiles curves. Chol, TG, albumin, total protein, prothrombin time, and hemoglobin were measured. Stool exams were also performed. A questionnaire was designed to obtain a history of the first presentation of disease, birth weight, type of labor and parent relativity. In 52% of patients, failure to thrive (FTT was the first presentation. Steatorrhea and respiratory infections were the first presentations, which were seen in 13.7% and 33% of the cases, respectively. The weight of 88% of patients was below the 15th percentile while 82% had a height percentile below 15th. Head circumference in 53% of patients was below the 15th percentile. There was a significant association between weight percentile and serum albumin and total protein (P=0.03 and P=0.007, respectively. There was also a significant relationship between height percentile and serum albumin and total protein (P<0.001 and P<0.000, respectively. The relationships between head circumference and serum albumin and total protein were also significant (P=0.006 and P<0.000, respectively. There was also a significant association between height percentile and hemoglobin. The decrease in anthropometric percentiles leads to decreased serum albumin and total protein.

  9. Kinetics of fatty acid binding ability of glycated human serum albumin

    Indian Academy of Sciences (India)

    Unknown

    [Yamazaki E, Inagaki M, Kurita O and Inoue T 2005 Kinetics of fatty acid binding ability of glycated human serum albumin; J. Biosci. 30. 475–481]. 1. Introduction. Glycation is a reaction between α- and/or ε-amino groups in proteins and carbonyl groups of reducing sugars in- volving the reversible formation of Schiff base ...

  10. Profiling the Serum Albumin Cys34 Adductome of Solid Fuel Users in Xuanwei and Fuyuan, China

    NARCIS (Netherlands)

    Lu, Sixin S; Grigoryan, Hasmik; Edmands, William M B; Hu, Wei; Iavarone, Anthony T; Hubbard, Alan E.; Rothman, Nathaniel; Vermeulen, Roel|info:eu-repo/dai/nl/216532620; Lan, Qing; Rappaport, Stephen M.

    2017-01-01

    Xuanwei and Fuyuan counties in China have the highest lung cancer rates in the world due to household air pollution from combustion of smoky coal for cooking and heating. To discover potential biomarkers of indoor combustion products, we profiled adducts at the Cys34 locus of human serum albumin

  11. A spectroscopic and molecular docking approach on the binding of tinzaparin sodium with human serum albumin

    Science.gov (United States)

    Abdullah, Saleh M. S.; Fatma, Sana; Rabbani, Gulam; Ashraf, Jalaluddin M.

    2017-01-01

    Protein bound toxins are poorly removed by conventional extracorporeal therapies. Venous thromboembolism (VTE) is a major cause of morbidity and mortality in patients with cancer. The interaction between tinzaparin, an inhibitor of angiotensin converting enzyme and human serum albumin, a principal plasma protein in the liver has been investigated in vitro under a simulated physiological condition by UV-vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence intensity of human serum albumin was strongly quenched by tinzaparin (TP). The binding constants and binding stoichiometry can be calculated from the data obtained from fluorescence quenching experiments. The negative value of ΔG° reveals that the binding process is a spontaneous process. Thermodynamic analysis shows that the HSA-TP complex formation occurs via hydrogen bonds, hydrophobic interactions and undergoes slight structural changes as evident by far-UV CD. It indicated that the hydrophobic interactions play a main role in the binding of TP to human serum albumin. In addition, the distance between TP (acceptor) and tryptophan residues of human serum albumin (donor) was estimated to be 2.21 nm according to the Förster's resonance energy transfer theory. For the deeper understanding of the interaction, thermodynamic, and molecular docking studies were performed as well. Our docking results suggest that TP forms stable complex with HSA (Kb ∼ 104) and its primary binding site is located in subdomain IIA (Sudlow Site I). The results obtained herein will be of biological significance in pharmacology and clinical medicine.

  12. Spectroscopic investigation of the interaction between thiourea-zinc complex and serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Wu Fangying, E-mail: fywu@ncu.edu.c [Department of Chemistry and Center of Analysis and Testing, Nanchang University, Nanchang 330031 (China); Zhang Lina; Ji Zhaojun; Wan Xiaofen [Department of Chemistry and Center of Analysis and Testing, Nanchang University, Nanchang 330031 (China)

    2010-07-15

    The interaction between 1-Zn (N-p-(dimethylamino)benzamido-N'-phenylthiourea-zinc) complex and serum albumins was studied. In the presence of proteins such as BSA or HSA, the fluorescence spectrum of 1 did not change. However, the fluorescence intensity of its zinc complex (1-Zn) was greatly enhanced. It was ascribed to the fact that zinc ion promoted the interaction between 1 and proteins. Therefore, it was concluded that zinc ion could facilitate bioactivity of thiourea derivative drugs. Energy transfer occurred between 1-Zn and the proteins, which led to decrease of proteins' emission and increase of 1-Zn's emission. The fluorescence quenching of serum albumins by 1-Zn was considered as a static quenching process. The binding constants between 1-Zn and serum albumins were estimated as 1.02x10{sup 12} mol{sup -1} L for BSA and 1.32x10{sup 10} mol{sup -1} L for HSA, respectively, and the number of binding sites was 2 for both. The effect of 1-Zn on the conformation of serum albumins was further investigated using synchronous fluorescence spectrometry and the results implied that tyrosine residues of proteins were closer to 1-Zn than tryptophan residues.

  13. Usage analysis of human serum albumin in patients with liver cancer and liver cirrhosis after hepatectomy

    Directory of Open Access Journals (Sweden)

    HUANG Donghai

    2015-06-01

    Full Text Available ObjectiveTo analyze the usage of human serum albumin in patients with liver cancer and liver cirrhosis after hepatectomy. MethodsA total of 121 patients with liver cancer and liver cirrhosis who received hepatectomy in our hospital from January 2012 to January 2014 were divided into control group (n=60 and observation group (n=61. Both groups received human serum albumin in addition to the routine treatment for liver protection. The observation group was given intravenous drip of 5% human serum albumin within 48 h after surgery. The plasma albumin concentrations of patients were measured at 48 h after surgery, and if the concentration was <35 g/L, the patients would be given 20% human serum albumin until the concentration was ≥35 g/L. The control group was given intravenous drip of 20% human serum albumin within 48 h after surgery until the plasma albumin concentration was ≥35 g/L. The amounts of used human serum albumin and plasma were recorded for both groups. The urine volume, abdominal drainage volume, central venous pressure (CVP, mean arterial pressure (MAP, and thromboelastogram (TEG R and K values were measured at 1, 3, 7, and 10 days after surgery. The liver function indices before and after surgery and the indocyanine green retention rate at 15 minutes (ICG R15 at 7 days after surgery were measured. Comparison of continuous data between the two groups was made by t test, while comparison of categorical data was made by chisquare test. Results(1 There were no significant differences in age, sex, Child-Pugh classification, surgical approach, intraoperative blood loss, occlusion time of the first porta hepatis, and operation time between the two groups (P>0.05. But there were significant differences in the amounts of used human serum albumin and plasma and the length of hospital stay between the two groups (P<0.05. (2 There were significant differences in daily urine volume, CVP, MAP, abdominal drainage volume, and interstitial

  14. Molecular displacement of warfarin from human serum albumin by flavonoid aglycones

    Energy Technology Data Exchange (ETDEWEB)

    Poór, Miklós [Institute of Laboratory Medicine, University of Pécs, Pécs H-7624 (Hungary); Li, Yin; Kunsági-Máté, Sándor [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); János Szentágothai Research Center, H-7624 Pécs (Hungary); Petrik, József [Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb (Croatia); Vladimir-Knežević, Sanda [Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb (Croatia); Kőszegi, Tamás, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pécs, Pécs H-7624 (Hungary)

    2013-10-15

    The well-known 4-hydroxycoumarin derivative warfarin is a widespread anticoagulant drug. Besides its strong albumin binding property warfarin has a narrow therapeutic window. Therefore, a few percent of displacement from albumin can result in serious biological consequences. The flavonoid molecular group also shows very strong plasma albumin binding characteristics occupying the same binding site. It is plausible to hypothesize that flavonoid aglycones may be able to displace warfarin from human serum albumin (HSA). In our study the competing activities of different flavone (acacetin, apigenin, chrysin, luteolin), flavonol (galangin, quercetin) and flavanone (hesperetin, naringenin) aglycones were investigated using fluorescence spectroscopy. Our results represent that flavonoids are able to displace warfarin from the surface of HSA. On the other hand, when comparing flavone or flavonol groups to flavanones the latter group seems to be much weaker competitor. These observations were also supported by calculation of stability constants. Our investigations strongly suggest that we should reckon with the described molecular displacement. However, further in vivo studies are needed to support the findings of our model system. -- Highlights: • Various flavonoids are able to displace warfarin from human serum albumin. • Flavones and flavonols are much more effective competitors than flavanones. • Even 300 nM aglycone concentrations show the interaction with 3 μM warfarin. • Flavonoid pairs show quasi-additive desorbing property. • Flavones and flavonols are much stronger competitors than the examined drugs.

  15. Recombinant human serum albumin hydrogel as a novel drug delivery vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Masaaki, E-mail: Hirose.Masaaki@mh.mt-pharma.co.jp [Advanced Medical Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, 3-16-89 Kashima, Yodogawa-ku, Osaka 532-8505 (Japan); Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Tachibana, Akira; Tanabe, Toshizumi [Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2010-06-15

    Serum albumin acts as a physiological carrier for various compounds including drugs. A hydrogel consisting of recombinant human serum albumin (rHSA) was prepared to take advantage of drug binding ability of albumin for a sustained drug release carrier. The hydrogel was prepared by mixing rHSA and dithiothreitol and casted to a polystyrene mold. Hydrogel formation was thought to occur through the intermolecular interaction of the hydrophobic groups by protein denaturation. The release of sodium benzoate and salicylic acid from the hydrogel completed in 2 h, while warfarin release continued for 24 h. The total amounts of the drugs released from 100 mg of 15 and 5% rHSA hydrogel were 2.3 and 1.4 {mu}mol for warfarin, 1.4 and 1.1 {mu}mol for salicylic acid and 0.9 and 0.9 {mu}mol for sodium benzoate. These results reflected the order of the binding ability of drugs for intact albumin indicating that the drug binding ability of HSA still remained after the hydrogel formation. However, fibroblast cells attached and proliferated well on the hydrogel, indicating that denaturation of rHSA proceeded to the extent to allow the cell attachment. The present rHSA hydrogel might be suitable for a sustained release carrier of drugs having affinity for albumin.

  16. Clinical Implications of Serum Albumin Levels in Acute Heart Failure: Insights From DOSE-AHF and ROSE-AHF.

    Science.gov (United States)

    Grodin, Justin L; Lala, Anuradha; Stevens, Susanna R; DeVore, Adam D; Cooper, Lauren B; AbouEzzeddine, Omar F; Mentz, Robert J; Groarke, John D; Joyce, Emer; Rosenthal, Julie L; Vader, Justin M; Tang, W H Wilson

    2016-11-01

    Hypoalbuminemia is common in patients with chronic heart failure and, as a marker of disease severity, is associated with an adverse prognosis. Whether hypoalbuminemia contributes to (or is associated with) worse outcomes in acute heart failure (AHF) is unclear. We sought to determine the implications of low serum albumin in patients receiving decongestive therapies for AHF. Baseline serum albumin levels were measured in 456 AHF subjects randomized in the DOSE-AHF and ROSE-AHF trials. We assessed the relationship between admission albumin levels (both as a continuous variable and stratified by median albumin [≥3.5 g/dL]) and worsening renal function (WRF), worsening heart failure (WHF), and clinical decongestion by 72 hours; 7-day cardiorenal biomarkers; and post-discharge outcomes. The mean baseline albumin level was 3.5 ± 0.5 g/dL. Albumin was not associated with WRF, WHF, or clinical decongestion by 72 hours. Furthermore, there was no association between continuous albumin levels and symptom change according to visual analog scale or weight change by 72 hours. Albumin was not associated with 60-day mortality, rehospitalization, or unscheduled emergency room visits. Baseline serum albumin levels were not associated with short-term clinical outcomes for AHF patients undergoing decongest