WorldWideScience

Sample records for bovine rhinotracheitis virus

  1. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... cultures for vaccine production. All serials of vaccine shall be prepared from the first through the fifth... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine...

  2. Effects of crude extracts of various plants on infectious bovine rhinotracheitis virus-plaque production.

    Science.gov (United States)

    Kelling, C L; Schipper, I A; Schermeister, L J; Vacik, J P

    1976-02-01

    Extracts of 28 plants were tested without demonstable antiviral activity in an agar-overlay plaque-reduction antiviral assay system, using infectious bovine rhinotracheitis virus and bovine endocardial cell cultures. Ethanolic extract of Narcissus tazetta L bulb elicited antiviral activity by inhibition of viral plaque formation. Antiviral activity was demonstrated against infectious bovine rhinotracheitis and equine rhinopneumonitis viruses. Narcissus tazetta L bulb did not directly inactivate the virus extracellularly. The extract exhibited only limited toxicity to rapidly multiplying bovine endocardial cells at plaque-inhibitory levels and was not cytoxic to preformed confluent cell monolayers. Narcissus extract did not induce the formation of drug-resistant viral strains.

  3. 9 CFR 113.310 - Bovine Rhinotracheitis Vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Rhinotracheitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.310 Bovine Rhinotracheitis Vaccine. Bovine Rhinotracheitis Vaccine shall... as pure, safe, and immunogenic shall be used for preparing the production seed virus for vaccine...

  4. Serological responses in calves to vaccines against bovine respiratory syncytial, infectious bovine rhinotracheitis, bovine viral diarrhoea and parainfluenza-3 viruses.

    Science.gov (United States)

    Tollis, M; Di Trani, L; Cordioli, P; Vignolo, E; Di Pasquale, I

    1996-01-01

    The Istituto Superiore di Sanità (ISS), the National Veterinary Services Laboratory in Italy, is in charge of assessing the quality, safety and efficacy of veterinary vaccines before and after licensing. To evaluate the relative potency of several vaccines against bovine respiratory syncytial virus (BRSV), infectious bovine rhinotracheitis virus (IBRV), bovine viral diarrhoea virus (BVDV) and parainfluenza-3 virus (PI3V), the serological responses in vaccinated calves were studied. Vaccination with any of the vaccines under study induced specific antibody titres against the different viral antigens. The differences of the mean antibody titres within and among the test group vaccines were statistically significant. The results confirm and support those obtained by other authors in similar studies, suggesting that serological responses in vaccinated calves can be used as a helpful means of assessing the relative potency of vaccines against viral respiratory diseases of cattle. The criteria allowing such an evaluation are discussed.

  5. Determination of Cultural Conditions of Infectious Bovine Rhinotracheitis Virus Strain “BM”

    Directory of Open Access Journals (Sweden)

    Myroslava Hulyanych

    2016-09-01

    Full Text Available The purpose of our research was to determine cultural properties and cultural conditions of the infectious bovine rhinotracheitis virus of “BM” strain. Sensitivity of different cell lines to IBR virus was studied. The most effective system for cultivation of IBR virus turned MDBK cell line. Optimum multiplicity of infection was 0.01 TCD50/cell in which infectious virus replication activity is the highest. The research work proved that influence of maintenance medium and the presence of serum had no effect on the virus productivity. It was also proved that the method of infection significantly effects on intensity of accumulation of the virus.

  6. Immune Responses of Dairy Cattle to Parainfluenza-3 Virus in Intranasal Infectious Bovine Rhinotracheitis-Parainfluenza-3 Virus Vaccines

    OpenAIRE

    Burroughs, A.L.; Morrill, J.L.; Bostwick, J.L.; Ridley, R.K.; Fryer, H.C.

    1982-01-01

    Two hundred and fifty dairy heifers were vaccinated at three to six months of age with an intranasal infectious bovine rhinotracheitis-parainfluenza-3 vaccine. Eighteen additional heifers were tested prior to vaccination and again three to four weeks after vaccination. Neither cell-mediated nor humoral immunity was significantly raised to parainfluenza-3 virus in either group of cattle.

  7. The association between serological titers in infectious bovine rhinotracheitis virus, bovine virus diarrhea virus, parainfluenza-3 virus, respiratory syncytial virus and treatment for respiratory disease in Ontario feedlot calves.

    OpenAIRE

    Martin, S W; Bohac, J G

    1986-01-01

    A seroepidemiological study of the association between antibody titers to infectious bovine rhinotracheitis, parainfluenza-3, bovine virus diarrhea and bovine respiratory syncytial viruses, and treatment for bovine respiratory disease was conducted. A total of 322 calves from five different groups were bled on arrival, then one month later all cases (cattle treated for bovine respiratory disease) were rebled together with an equal number of controls (cattle not treated for any disease). Titer...

  8. A retrospective analysis of the infectious bovine rhinotracheitis (bovine herpes virus-1) surveillance program in Norway using Monte Carlo simulation models

    DEFF Research Database (Denmark)

    Paisley, Larry; Tharaldsen, J.; Jarp, J.

    2001-01-01

    Serological surveillance for antibodies against bovine herpes virus type I (BHV-1) which causes infectious bovine rhinotracheitis and infectious pustular vulvovaginitis has been carried out since 1992 in Norway. Since 1993 (when a single infected herd was detected) all bulk-milk and pooled...

  9. Expression of infectious bovine rhinotracheitis virus glycoprotein D ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    , immunoblotting. INTRODUCTION. Bovine herpesvirus 1 (BHV-1), a member of the Alphahe- rpesvirinae subfamily (Meurens et al., 2004), classified in the list B of the Office International des Epizooties. (Winkler et al., 2000), ...

  10. Immunogenicity of a modified-live virus vaccine against bovine viral diarrhea virus types 1 and 2, infectious bovine rhinotracheitis virus, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus when administered intranasally in young calves.

    Science.gov (United States)

    Xue, Wenzhi; Ellis, John; Mattick, Debra; Smith, Linda; Brady, Ryan; Trigo, Emilio

    2010-05-14

    The immunogenicity of an intranasally-administered modified-live virus (MLV) vaccine in 3-8 day old calves was evaluated against bovine viral diarrhea virus (BVDV) types 1 and 2, infectious bovine rhinotracheitis (IBR) virus, parainfluenza-3 (PI-3) virus and bovine respiratory syncytial virus (BRSV). Calves were intranasally vaccinated with a single dose of a multivalent MLV vaccine and were challenged with one of the respective viruses three to four weeks post-vaccination in five separate studies. There was significant sparing of diseases in calves intranasally vaccinated with the MLV vaccine, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding, greater white blood cell and platelet counts, and less severe pulmonary lesions than control animals. This was the first MLV combination vaccine to demonstrate efficacy against BVDV types 1 and 2, IBR, PI-3 and BRSV in calves 3-8 days of age. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Seroconversion to bovine viral diarrhoea virus and infectious bovine rhinotracheitis virus in dairy herds of Michoacan, Mexico.

    Science.gov (United States)

    Segura-Correa, José C; Solorio-Rivera, José L; Sánchez-Gil, Laura G

    2010-02-01

    Bovine viral diarrhoea virus (BVDV) and infectious bovine rhinotracheitis virus (IBRV) are important viral diseases around the world. The objective of this study was to estimate the incidence of seroconversion to BVDV and IBRV and to identify associated risk factors in dairy herds of Michoacan, Mexico. The longitudinal study included 62 herds and ran from December 2001 to November 2002. The total number of animals enrolled and completing the study were 392 and 342 animals for BVDV and 925 and 899 animals for IBRV. Animals were tested monthly for 12 months, for the presence of antibodies. Risk factors were: herd size (2-9, 10-25 and 26-55 animals), herd serostatus (seropositive or seronegative, only for IBRV), age group of the animal (6 to 12, 13 to 24, 25 to 48 and > 48 months) and animal origin (born in farm, purchased). The cumulative incidences for BVDV and IBRV were 16.4% and 3.4%, respectively; whereas, the incidence density rates for BVDV and IBRV were 15.9 and 2.9 per 1000 animal-months at risk, respectively. Seroconversion curves were statistically different for age group for BVDV and IBRV and for herd status for IBR. The relatively high incidence of seroconversion for BVDV suggests that a successful control programme should be oriented towards the identification and elimination of the PI animals and towards avoiding the introduction of PI cattle to the farm. The scenario of IBRV is favourable to implement a programme directed to reduce the number of new seropositive herds.

  12. Infectious bovine rhinotracheitis in Scotland.

    Science.gov (United States)

    2017-10-14

    A cattle dashboard has recently been developed to share surveillance information gathered from submissions to the Great Britain veterinary diagnostic network. Data relating to Scotland come from the SAC C VS. This article, by Tim Geraghty, relates to cases of infectious bovine rhinotracheitis in Scotland, as summarised on the APHA Cattle Dashboard. British Veterinary Association.

  13. Associations between health and productivity in cow-calf beef herds and persistent infection with bovine viral diarrhea virus, antibodies against bovine viral diarrhea virus, or antibodies against infectious bovine rhinotracheitis virus in calves.

    Science.gov (United States)

    Waldner, Cheryl L; Kennedy, Richard I

    2008-07-01

    To measure associations between health and productivity in cow-calf beef herds and persistent infection with bovine viral diarrhea virus (BVDV), antibodies against BVDV, or antibodies against infectious bovine rhinotracheitis (IBR) virus in calves. 1,782 calves from 61 beef herds. Calf serum samples were analyzed at weaning for antibodies against type 1 and type 2 BVDV and IBR virus. Skin biopsy specimens from 5,704 weaned calves were tested immunohistochemically to identify persistently infected (PI) calves. Herd production records and individual calf treatment and weaning weight records were collected. There was no association between the proportion of calves with antibodies against BVDV or IBR virus and herd prevalence of abortion, stillbirth, calf death, or nonpregnancy. Calf death risk was higher in herds in which a PI calf was detected, and PI calves were more likely to be treated and typically weighed substantially less than herdmates at weaning. Calves with high antibody titers suggesting exposure to BVDV typically weighed less than calves that had no evidence of exposure. BVDV infection, as indicated by the presence of PI calves and serologic evidence of infection in weaned calves, appeared to have the most substantial effect on productivity because of higher calf death risk and treatment risk and lower calf weaning weight.

  14. Pathogenicity of local isolate virus BHV-1 as the aetiological agent of Infectious Bovine Rhinotracheitis in Bali Cattle

    Directory of Open Access Journals (Sweden)

    Rini I Damayanti

    2005-10-01

    Full Text Available Infectious Bovine Rhinotracheitis is a disease of cattle characterised by clinical signs of the upper respiratory tract, reproductive tract and nervous system. A study to define the pathogenicity of four BHV-1 local isolates has been conducted. Fourteen Bali cattle that were free of BHV-1 has been selected and divided into four treatment groups. Each group of three was infected with virus isolate I, II, III and IV respectively with approximately a dose of 108TCID50 /10 ml and two cattle were used as control animals. Isolate I and III were originated from semen from IBR positive bulls number G 867 and G 148 respectively whereas isolate II was collected from vaginal mucosa and isolate IV was from nasal mucosa of IBR positive cattle treated with dexamethasone. Clinical response, gross-pathological and histopathological changes were observed. Immunohistochemical staining was applied to detect the antigen in tissue section. The results show that the BHV-1 local isolates could produce IBR syndrome namely fever and changes in the respiratory and reproductive tracts even though the clinical responses seemed to be disappeared by 21 days PI. Grossly there were hyperaemic nasal and vaginal mucosa and pneumonia whereas histologically there were non suppurative rhinitis, tracheitis, pneumonia and vulvovaginitis. Immunohistochemically the antigen was detected in the nasal concha and trachea. Dexamethasone treatment at 60-64 days PI could produce less severe clinical features and the second necroppsy at 69 days PI also results in less severe pathological responses. The findings also suggest that the pathogenicity of BHV-1 local isolates were as follows: isolates I, II, IV and III.

  15. Epidemiology and eradication of infectious bovine rhinotracheitis/infectious pustular vulvovaginitis (IBR/IPV virus in Finland

    Directory of Open Access Journals (Sweden)

    Hyytiäinen Mauno

    2007-01-01

    Full Text Available Abstract Background Infectious bovine rhinotracheitis/infectious pustular vulvovaginitis (IBR/IPV is a significant disease among domestic and wild cattle. The BHV-1 infection was first detected in Finland in 1970; presumably it was imported in 1968. The infection reappeared in the large-scale bulk-tank milk surveillances which started in 1990, and was eradicated in 1994. Our aim is to describe the epidemiology of this infection in Finland, and its eradication. Materials and methods The official sources of pertinent information, the legal basis for the disease control and the serological methods for the detection of the infection are described. Results and conclusion Ten AI bulls were found to be seropositive in 1970–1971. The total number of herds with BHV-1 antibody positive animals in the large-scale surveillance in 1990 and subsequent epidemiological investigations in 1991 was five, and the total number of seropositive animals was 90. The five herds formed three epidemiological units; semen of at least one bull seropositive in 1971 had been used in each unit. This remained the only plausible route of infection in each of the three units. Using the 'test and slaughter' approach and total stamping out in one herd the infection was eradicated in 1994.

  16. Determining bovine viral diarrhea and infectious bovine rhinotracheitis infections in dairy cattle using precolostral blood.

    Science.gov (United States)

    Baillargeon, Paul; Arango-Sabogal, Juan C; Wellemans, Vincent; Fecteau, Gilles

    2017-04-01

    The objective of this study was to determine if precolostral blood samples are useful to detect apparent fetal infections with bovine viral diarrhea (BVD) and infectious bovine rhinotracheitis (IBR) viruses. A convenience sample of 317 sera from 50 Canadian herds was used in the study. Antibody level was measured using 2 commercial IBR and BVD ELISA kits. Precolostral status of sera was confirmed on 304 samples using serum gamma-glutamyl transferase activity. Postcolostral serum samples yielded a higher proportion of positive results to IBR (OR = 86; 95% CI: 17.8 to 415.7) and BVD (OR = 199.3; 95% CI: 41.7 to 952.3) than did precolostral samples. All positive precolostral serum samples (n = 7 of 304) originated from calves born to vaccinated cows. Postcolostral positive serum samples (n = 11 of 13) originated mostly (60%) from calves born to non-vaccinated cows. Precolostral serum sampling can detect apparent fetal infections in a herd.

  17. Protection from persistent infection with a bovine viral diarrhea virus (BVDV) type 1b strain by a modified-live vaccine containing BVDV types 1a and 2, infectious bovine rhinotracheitis virus, parainfluenza 3 virus and bovine respiratory syncytial virus.

    Science.gov (United States)

    Xue, Wenzhi; Mattick, Debra; Smith, Linda

    2011-06-24

    Recent studies showed that BVDV-1b subgenotype is dominant in North and South American field BVDV isolates. However, nearly all commercially available BVDV-1 vaccines contain BVDV-1a strains. In order to study the efficacy of BVDV-1a vaccine against BVDV-1b infection, this study was designed to evaluate a modified-live vaccine (MLV) containing BVDV-1a and BVDV-2 strains for its efficacy in prevention of persistent infection of fetuses against BVDV-1b strain, when the heifers were vaccinated prior to breeding. Heifers were vaccinated subcutaneously with a single dose of the MLV and bred four weeks after vaccination. The pregnant heifers were challenged with a non-cytopathic BVDV-1b strain at approximately 80 days of gestation. Vaccinated heifers were protected from clinical disease and viremia caused by the BVDV-1b virus. At approximately 155 days of gestation, the fetuses were harvested and tissue samples of thymus, lungs, spleen, kidney and intestines were collected for virus isolation. BVDV was isolated from 100% of the fetuses in the non-vaccinated control group, and from only one fetus (4.3%) from the vaccinated group. Results demonstrated that the MLV containing BVDV-1a and BVDV-2 strains provided 96% protection from fetal persistent infection caused by the BVDV-1b strain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Effect of ambient temperature on viral replication and serum antibody titers following administration of a commercial intranasal modified-live infectious bovine rhinotracheitis-parainfluenza-3 virus vaccine to beef cattle housed in high- and moderate-ambient temperature environments.

    Science.gov (United States)

    Grissett, Gretchen P; White, Brad J; Anderson, David E; Larson, Robert E; Miesner, Matt D

    2014-12-01

    To evaluate the effect of ambient temperature on viral replication and serum antibody titers following administration of an intranasal modified-live infectious bovine rhinotracheitis (IBR)-parainfluenza-3 (PI3) virus vaccine to beef calves housed in high- (> 32°C) and moderate- (21°C) ambient temperature environments. 28 calves (mean weight, 206.8 kg). Calves were randomly allocated to 4 treatment groups (housed outdoors during high ambient temperature with [HAT; n = 10] or without [HAC; 4] vaccination or housed indoors in a moderate ambient temperature with [MAT; 10] or without [MAC; 4] vaccination). Rectal and nasal mucosal temperatures were recorded every 2 hours from 8 AM to 8 PM on days 0 (vaccination) and 1. Nasal swab specimens were obtained on days 0 through 7 for virus isolation. Serum samples were collected on days 0, 7, 14, and 28 for determination of antibody titers. Mean rectal temperature did not differ among the treatment groups. Mean nasal temperature for the HAT group was significantly higher than that for the MAT group at 6, 24, 30, 32, and 38 hours after vaccination. Viable IBR virus was isolated from all vaccinated calves on days 1 through 6. Two weeks after vaccination, vaccinated calves had anti-IBR antibody titers that were significantly greater than those for unvaccinated calves. Mean anti-IBR antibody titers did not differ significantly between the HAT and MAT groups. Results indicated that, following vaccination with an intranasal modified-live IBR-PI3 virus vaccine, IBR viral replication and serum antibody titers did not differ significantly between calves housed in high- and moderate-ambient temperature environments.

  19. Congenital Transmission of Infectious Bovine Rhinotracheitis (Ibr in Cattle and Buffalo in Indonesia

    Directory of Open Access Journals (Sweden)

    Sudarisman

    2007-03-01

    Full Text Available Congenital transmissions of infectious bovine rhinotracheitis (IBR in cattle and buffalo in Indonesia have been found along time ago, primarily in animals treated with artificial insemination which semen came from the BHV-1 virus infected bull. The artificial insemination industry concerns with BHV-1 virus contamination of semen from healthy seropositive bulls with latent infections. Collection of semen from bulls maintained with a rigorous herd health program is an unlikely source of distribution of BHV-1 virus. Virus from the lesions in infected bulls can contaminate semen and causes a hazard to artificial insemination practices. Preventing the congenital transmission should be done at the artificial insemination centre through a standard procedure for semen production and the semen must come from a seronegative BHV-1 virus bull. Serological test for BHV-1 virus should be done every six months and PCR test should be conducted to the semen batch showed seropositive results and also to the bulls showed clinical signs of IBR. Virus isolation can be done from samples of suspected bulls. Bulls are potential sources of infection, thus keeping the seropositive or IBR infected bulls should be avoided. Such bulls can transmit the disease during breeding. Some female cattle can develop a latent infection that can be reactivated, and the disease can be transmitted to the male during breeding or in neonatal calves during late gestation or shortly after birth. Embryo transfer technique which is encouraged at this time is also a concern since its possibility infected with BHV-1 virus.

  20. The program for eradication of infectious bovine rhinotracheitis/infectious pustular vulvovaginitis in the Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Lazić Sava

    2016-01-01

    Full Text Available Infectious bovine rhinotracheitis/infectious pustular vulvovaginitis (IBR/IPV are diseases that affect cattle population of all breeds, categories and age. Both diseases, especially infectious bovine rhinotracheitis (IBR, poses severe health threat and causes major economic losses and is considered one of the “most costly” disease in cattle industry. The causal agent of the disease is a virus and any detection of IBR/IPV specific antibodies in non-vaccinated cattle, either in blood or milk, indicates that animal is infected and represents the source of infection. Countries with developed and intensive cattle breeding have been developed and implemented their national eradication programs to control IBR/IPV in accordance with international regulations. In this article, we outlined the needs and program for the eradication of IBR/IPV in the Republic of Serbia. The eradication program for IBR/IPV is an extensive process that requires systematic strategy involving different phases and activities. The eradication process from the moment of implementation until obtaining IBR/IPV-free status can last over several years and requires joint work and considerable financial resources that will be compansated with the elimination of IBR/IPV from the herd. This article gives an overview of all stages and activities regarding eradication of the disease and certification and maintaining of IBR/IPV-free herd status.

  1. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... production. All serials of vaccine shall be prepared from the first through the fifth passage from the Master... immunogenicity of vaccine prepared from the Master Seed in accordance with the Outline of Production shall be... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feline Rhinotracheitis Vaccine, Killed...

  2. Infectious Bovine Rhinotracheitis (Ibr on Cattle in Indonesia and The Strategy For Disease Control

    Directory of Open Access Journals (Sweden)

    R.M. Abdul Adjid

    2010-03-01

    Full Text Available Infectious Bovine Rhinotracheitis (IBR caused by Bovine herpesvirus-1 (BHV-1 infects cattle and widely spreads in Indonesia. The disease infected cattle in breeding centers, artificial insemination centers and also holderfarmers. This infectious disease may cause economical losses primarily due to reproductive failure of infected animals. Recommended strategy for disease control is step by step control with priorities, started from upper to downstream, from breeding and artificial insemination (AI centers as the first priority, then village breeding centers as the second priority, and the last priority is in cattle owned by smallholders. In the breeding and AI centers, eradication of the disease is carried out by surveilance, excluding reactors, and applying biosecurity. In the village breeding centers, the use of semen for AI should come from centers that free from IBR, the use of bull that free from IBR, surveilance and application of biosecurity. At the farmer levels, IBR control is bone by using semen from AI centers free from IBR and routine vaccination. The final step is performed after evaluating the successful rate and economic impact of the disease control.

  3. Antiviral effects of bovine interferons on bovine respiratory tract viruses.

    OpenAIRE

    Fulton, R W; Downing, M M; Cummins, J M

    1984-01-01

    The antiviral effects of bovine interferons on the replication of bovine respiratory tract viruses were studied. Bovine turbinate monolayer cultures were treated with bovine interferons and challenged with several bovine herpesvirus 1 strains, bovine viral diarrhea virus, parainfluenza type 3 virus, goat respiratory syncytial virus, bovine respiratory syncytial virus, bovine adenovirus type 7, or vesicular stomatitis virus. Treatment with bovine interferons reduced viral yield for each of the...

  4. Bovine parainfluenza-3 virus.

    Science.gov (United States)

    Ellis, John A

    2010-11-01

    Bovine parainfluenza-3 virus (bPI(3)V) is a long-recognized, currently underappreciated, endemic infection in cattle populations. Clinical disease is most common in calves with poor passive transfer or decayed maternal antibodies. It is usually mild, consisting of fever, nasal discharge, and dry cough. Caused at least partly by local immunosuppressive effects, bPI(3)V infection is often complicated by coinfection with other respiratory viruses and bacteria, and is therefore an important component of enzootic pneumonia in calves and bovine respiratory disease complex in feedlot cattle. Active infection can be diagnosed by virus isolation from nasal swabs, or IF testing on smears made from nasal swabs. Timing of sampling is critical in obtaining definitive diagnostic test results. Parenteral and intranasal modified live vaccine combination vaccines are available. Priming early in calfhood with intranasal vaccine, followed by boosting with parenteral vaccine, may be the best immunoprophylactic approach. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. A comparative evaluation of avidin-biotin ELISA and micro SNT for detection of antibodies to infectious bovine rhinotracheitis in cattle population of Odisha, India

    Directory of Open Access Journals (Sweden)

    Priyaranjan Das

    2014-08-01

    Full Text Available Aim: The present study was undertaken to serologically detect Infectious Bovine Rhinotracheitis (IBR in the cattle population of Odisha, India using micro-Serum neutralization test (micro SNT and Avidin-Biotin Enzyme linked immuno sorbent assay (AB ELISA and finding out their comparative efficacy to serve as a suitable diagnostic tool in field condition. Materials and Methods: The study was carried out using serum samples (n=180 collected randomly from cattle populations of nine districts of Odisha. Similarly vaginal swabs (n=26 from cattle having history of repeat breeding, abortion, vulvo-vaginitis and nasal swabs (n=8 from calves with respiratory symptoms and nasal discharge were collected aseptically, to ascertain the circulation of virus among the cattle population. Results: Virus isolation by cell culture and subsequent confirmation by polymerase chain reaction confirmed four isolates. Screening of serum samples revealed 9.44% and 12.22% samples positive for IBR antibodies in micro SNT and AB ELISA respectively. The sensitivity and specificity of AB ELISA test was found to be 88.23% and 95.70% respectively taking micro SNT as gold standard and the kappa value between the two tests was 0.75. Conclusion: Screening of serum samples revealed 9.44% and 12.22% samples positive for IBR antibodies in micro SNT and AB ELISA respectively, thus highlighting the circulation of virus among the livestock population of Odisha and that AB ELISA could be more efficiently applied for the sero-diagnosis of IBR virus infections at field conditions, with demand for more study on faster, efficient and large scale screening of the infected animals.

  6. PREVALENCE OF BOVINE HERPES VIRUS - 1 IN ORGANIZED FARMS OF WEST BENGAL, INDIA

    Directory of Open Access Journals (Sweden)

    Sumit Chowdhury

    2016-06-01

    Full Text Available Infectious Bovine Rhinotracheitis, caused by Bovine Herpesvirus-1 (BoHV-1 maintains latency in trigeminal nerve ganglia of bovine. The sero-positive bull infected with BoHV-1 secretes the virus through semen intermittently, when the immune system is compromised. Sera from bulls housed at different bull stations were analyzed using gE protein specific IDEXX Kit, which showed 78.69% positivity. Each batch of semen from sero-positive bull was investigated further for presence of virus in semen by Real Time-PCR technique for validation of presence of virus in the frozen semen doses using gB specific primers and probe, which showed 0.968 % semen batches positive. This study showed that despite high sero prevalence in bull, the semen excretes very negligible amount of the virus indicating the subtypes circulating in farms of West Bengal, India is assumed to be respiratory type.

  7. Expression of infectious bovine rhinotracheitis virus glycoprotein D ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... which contains three main gB, gC and gD genes. ... vector was transformed and then induced in BL21 (DE3) strain of E.coli competent cells using IPTG. .... The transformed bacteria were selected by screening the colonies on LB media containing antibiotic. The suspected colony was further analyzed by.

  8. Expression of infectious bovine rhinotracheitis virus glycoprotein D ...

    African Journals Online (AJOL)

    A 1047bp PCR product of the gD gene with EcoRI, HindIII restriction sites were subcloned of pTZ57R/T and digested by the mentioned endonucleases. Digested insert cloned in to pET-32a and transfered in E.coli cells. For the expression of gD protein, the pET-32a recombinant vector was transformed and then induced in ...

  9. 9 CFR 113.315 - Feline Rhinotracheitis Vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feline Rhinotracheitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.315 Feline Rhinotracheitis Vaccine. Feline Rhinotracheitis Vaccine shall... as pure, safe, and immunogenic shall be used for preparing the production seed virus for vaccine...

  10. Intraherd correlation coefficients and design effects for bovine viral diarrhoea, infectious bovine rhinotracheitis, leptospirosis and neosporosis in cow-calf system herds in North-eastern Mexico.

    Science.gov (United States)

    Segura-Correa, J C; Domínguez-Díaz, D; Avalos-Ramírez, R; Argaez-Sosa, J

    2010-09-01

    Knowledge of the intraherd correlation coefficient (ICC) and design (D) effect for infectious diseases could be of interest in sample size calculation and to provide the correct standard errors of prevalence estimates in cluster or two-stage samplings surveys. Information on 813 animals from 48 non-vaccinated cow-calf herds from North-eastern Mexico was used. The ICC for the bovine viral diarrhoea (BVD), infectious bovine rhinotracheitis (IBR), leptospirosis and neosporosis diseases were calculated using a Bayesian approach adjusting for the sensitivity and specificity of the diagnostic tests. The ICC and D values for BVD, IBR, leptospirosis and neosporosis were 0.31 and 5.91, 0.18 and 3.88, 0.22 and 4.53, and 0.11 and 2.68, respectively. The ICC and D values were different from 0 and D greater than 1, therefore large sample sizes are required to obtain the same precision in prevalence estimates than for a random simple sampling design. The report of ICC and D values is of great help in planning and designing two-stage sampling studies. 2010 Elsevier B.V. All rights reserved.

  11. Cost-effectiveness of bulk-tank milk testing for surveys to demonstrate freedom from infectious bovine rhinotracheitis and bovine enzootic leucosis in Switzerland.

    Science.gov (United States)

    Reber, A; Reist, M; Schwermer, H

    2012-05-01

    In Switzerland, annual surveys to substantiate freedom from infectious bovine rhinotracheitis (IBR) and enzootic bovine leucosis (EBL) are implemented by a random allocation of farms to the respective survey as well as blood sampling of individual animals at farm level. Contrary to many other European countries, bulk-tank milk (BTM) samples have not been used for active cattle disease surveillance for several years in Switzerland. The aim of this project was to provide a financial comparison between the current surveillance programme consisting of blood sampling only and a modified surveillance programme including BTM sampling. A financial spreadsheet model was used for cost comparison. Various surveillance scenarios were tested with different sample sizes and sampling frequencies for BTM samples. The costs could be halved without compromising the power to substantiate the freedom from IBR and EBL through the surveillance programme. Alternatively, the sensitivity could be markedly increased when keeping the costs at the actual level and doubling the sample size. The risk-based sample size of the actual programme results in a confidence of 94,18 % that the farm level prevalence is below 0,2 %. Which the doubled sample size, the confidence is 99,69 % respectively.

  12. Bovine leukemia virus: current perspectives

    Directory of Open Access Journals (Sweden)

    Juliarena MA

    2017-08-01

    Full Text Available Marcela Alicia Juliarena,1 Clarisa Natalia Barrios,1 Claudia María Lützelschwab,1 Eduardo Néstor Esteban,2 Silvina Elena Gutiérrez1 1Department of Animal Health and Preventive Medicine, Veterinary Research Center of Tandil (CIVETAN, CIC-CONICET, Faculty of Veterinary Science, National University of the Center of Buenos Aires Province, Tandil, Argentina; 2BIOALPINA Program (GENIAL/COTANA, Colonia Alpina, Argentina Abstract: Enzootic bovine leukosis, caused by bovine leukemia virus (BLV, is the most common neoplasm of dairy cattle. Although beef and dairy cattle are susceptible to BLV infection and BLV-associated lymphosarcoma, the disease is more commonly detected in dairy herds, mostly because of the management practices in dairy farms. The pathogenicity of BLV in its natural host, the bovine, depends mainly on the resistance/susceptibility genetics of the animal. The majority of infected cattle are asymptomatic, promoting the extremely high dissemination rate of BLV in many bovine populations. The important productive losses caused by the BLV, added to the health risk of maintaining populations with a high prevalence of infection with a retrovirus, generates the need to implement control measures. Different strategies to control the virus have been attempted. The most effective approach is to identify and cull the totality of infected cattle in the herd. However, this approach is not suitable for herds with high prevalence of infection. At present, no treatment or vaccine has proven effective for the control of BLV. Thus far, the genetic selection of resistant animals emerges as a natural strategy for the containment of the BLV dissemination. In natural conditions, most of the infected, resistant cattle can control the infection, and therefore do not pass the virus to other animals, gradually decreasing the prevalence of the herd. Keywords: bovine leukemia virus, control, genetic resistance, BoLA-DRB3

  13. Bovine respiratory disease model based on dual infections with infection with bovine viral diarrhea virus and bovine corona virus

    Science.gov (United States)

    Bovine respiratory disease complex (BRDC) is the leading cause of economic loss in the U.S. cattle industry. BRDC likely results from simultaneous or sequential infections with multiple pathogens including both viruses and bacteria. Bovine viral diarrhea virus (BVDV) and bovine corona virus (BoCV...

  14. Seroprevalence of viral and bacterial diseases among the bovines in Himachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    Shailja Katoch

    2017-12-01

    Full Text Available Aim: The study was designed to measure the seroprevalence of viral and bacterial diseases: Infectious bovine rhinotracheitis, bovine viral diarrhea, bovine leukemia, bovine parainfluenza, bovine respiratory syncytial disease, brucellosis, and paratuberculosis among bovine of Himachal Pradesh during the year 2013-2015. Materials and Methods: The serum samples were collected from seven districts of state, namely, Bilaspur, Kangra, Kinnaur, Lahul and Spiti, Mandi, Sirmour, and Solan. The samples were screened using indirect ELISA kits to measure the seroprevalence of viral and bacterial diseases. Results: The overall seroprevalence of infectious bovine rhinotracheitis was 24.24%, bovine viral diarrhea 1.52%, bovine leukemia 9.09%, bovine parainfluenza 57.58%, bovine respiratory syncytial disease 50%, brucellosis 19.69%, and paratuberculosis 9.09% in Himachal Pradesh. The seroprevalence of bovine rhinotracheitis, bovine leukemia, bovine parainfluenza, bovine respiratory syncytial disease, and paratuberculosis in the state varied significantly (p0.01. Multiple seropositivity has been observed in this study. Bovine parainfluenza virus 3 was observed commonly in mixed infection with almost all viruses and bacteria under study. Conclusion: The viral and bacterial diseases are prevalent in the seven districts of Himachal Pradesh investigated in the study. Therefore, appropriate management practices and routine vaccination programs should be adopted to reduce the prevalence of these diseases.

  15. Development of a recombinase polymerase amplification combined with lateral-flow dipstick assay for detection of bovine ephemeral fever virus.

    Science.gov (United States)

    Hou, Peili; Zhao, Guimin; Wang, Hongmei; He, Chengqiang; Huan, Yanjun; He, Hongbin

    2017-12-26

    Bovine ephemeral fever virus (BEFV), identified as the causative pathogen of bovine ephemeral fever (BEF), is responsible for increasing numbers of epidemics/outbreaks and has a significant harmful effect on the livestock industry. Therefore, a rapid detection assay is imperative for BEFV diagnosis. In this study, we described the development of lateral-flow dipstick isothermal recombinase polymerase amplification (LFD-RPA) assays for detection of BEFV. RPA primers and LF probes were designed by targeting the specific G gene, and the amplification product can be visualized on a simple lateral flow dipstick with the naked eyes. The amplification reaction was performed at 38 °C for 20 min and LFD incubation time within 5 min. The detection limit of this assay was 8 copies per reaction, and there was no cross-reactivity with other bovine infectious viruses such as bovine viral diarrhea virus, infectious bovine rhinotracheitis virus, bovine respiratory syncytial virus, bovine coronavirus, bovine parainfluenza virus type 3, bovine vesicular stomatitis virus. In addition, the assay was performed with total 128 clinical specimens and the diagnostic results were compared with conventional RT-PCR, real-time quantative(q) PCR. The result showed that the coincidence rate of BEFV LFD-RPA and real-time qPCR was 96.09% (123/128), which was higher than conventional RT-PCR. The RPA combined with LFD assay probably provides a rapid and sensitive alternative for diagnosis of BEFV infections outbreak. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Viruses Avian influenza, bovine herpes, bovine viral diarrhea virus ...

    Indian Academy of Sciences (India)

    ... human cytomegalovirus, herpes simplex virus, human immunodeficiency virus I, influenza, lymphocytic choriomeningitis virus, measles, papilloma, rabies, respiratory syncitial virus, simian immunodeficiency virus, simian virus 40. Bacteria Borrelia burgdorferi (Lyme disease), Moraxella bovis, Mycobacterium tuberculosis, ...

  17. Short communication. Prevalence of antibodies against Parainfluenza virus type 3, Respiratory syncitial virus and bovine Herpesvirus type 1 in sheep from Northern Prefectures of Japan

    Directory of Open Access Journals (Sweden)

    Massimo Giangaspero

    2013-09-01

    Full Text Available Ovine sera collected in the Prefectures of Hokkaido, Aomori and Iwate in the Northern Japan were examined for the presence of antibodies against Respiratory syncytial virus (RSV, bovine Herpesvirus type 1 (infectious bovine rhinotracheitis: IBR and Parainfluenza virus type 3 (PIV3 using serum neutralisation (SN and enzyme-linked immunosorbent assay (ELISA tests. Twenty-three animals (11.73% out of the 196 tested were sero-positive to PIV3. Sixteen animals (8.69% out of the 184 tested reacted to RSV. No animals were positive to IBR antigen. Sero-conversions to PIV3 were detected in Hokkaido and Iwate (14.92% and 8.82%, respectively. Antibodies against RSV were detected in Hokkaido (9.23% and Aomori (14.28%. Although no diagnostic measures were in place, the infections did not appear to be related to any reduction in sheep productivity.

  18. Prevalence of antibodies against Parainfluenza virus type 3, Respiratory syncitial virus and bovine Herpesvirus type 1 in sheep from Northern Prefectures of Japan.

    Science.gov (United States)

    Giangaspero, Massimo; Savini, Giovanni; Orusa, Riccardo; Osawa, Takeshi; Harasawa, Ryô

    2013-01-01

    Ovine sera collected in the Prefectures of Hokkaido, Aomori and Iwate in the Northern Japan were examined for the presence of antibodies against Respiratory syncytial virus (RSV), bovine Herpesvirus type 1 (infectious bovine rhinotracheitis: IBR) and Parainfluenza virus type 3 (PIV3) using serum neutralisation (SN) and enzyme-linked immunosorbent assay (ELISA) tests. Twenty-three animals (11.73%) out of the 196 tested were sero-positive to PIV3. Sixteen animals (8.69%) out of the 184 tested reacted to RSV. No animals were positive to IBR antigen. Sero-conversions to PIV3 were detected in Hokkaido and Iwate (14.92% and 8.82%, respectively). Antibodies against RSV were detected in Hokkaido (9.23%) and Aomori (14.28%). Although no diagnostic measures were in place, the infections did not appear to be related to any reduction in sheep productivity.

  19. 9 CFR 113.311 - Bovine Virus Diarrhea Vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Virus Diarrhea Vaccine. 113.311... Virus Vaccines § 113.311 Bovine Virus Diarrhea Vaccine. Bovine Virus Diarrhea Vaccine shall be prepared..., and immunogenic shall be used for preparing the production seed virus for vaccine production. All...

  20. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... vaccine production. All serials of vaccine shall be prepared from the first through the fifth passage from... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea...

  1. Bovine respiratory syncytial virus (BRSV): A review

    DEFF Research Database (Denmark)

    Larsen, Lars Erik

    2000-01-01

    Bovine respiratory syncytial virus (BRSV) infection is the major cause of respiratory disease in calves during the first year of life. The study of the virus has been difficult because of its lability and very poor growth in cell culture. However, during the last decade, the introduction of new...... complex and unpredictable which makes the diagnosis and subsequent therapy very difficult. BRSV is closely related to human respiratory syncytial virus (HRSV) which is an important cause of respiratory disease in young children. In contrast to BRSV, the recent knowledge of HRSV is regularly extensively...

  2. Response of cattle persistently infected with bovine virus diarrhoea virus to bovine leukosis virus.

    Science.gov (United States)

    Roberts, D H; Lucas, M H; Wibberley, G; Westcott, D

    1988-03-26

    Six cattle persistently infected with bovine virus diarrhoea virus (BVDV) and seronegative, and two control, virus negative seropositive cattle were inoculated with lymphocytes infected with bovine leukosis virus (BLV). The two controls produced a normal immune response to BLV, developing antibodies at four and five weeks after inoculation. Two of the six cattle persistently infected with BVDV developed a strong antibody response by six weeks after inoculation with BLV. Four developed a depressed response to BLV, characterised in three by a 'hooking' reaction in the immunodiffusion test which persisted in successive bleedings but was interspersed occasionally by a weak positive reaction. In one of these animals, a series of 'hooking' reactions was followed by a number of negative results. The fourth animal remained serologically negative until 16 weeks after inoculation when a 'hooking' reaction was observed followed by a series of negative results. BLV was isolated from all the cattle persistently infected with BVDV at 42 or 58 weeks after inoculation regardless of whether the serum samples gave negative, 'hooking', weak positive or positive reactions in the immunodiffusion test. BLV was consistently isolated from the nasal secretions of a steer which was BVDV negative but seropositive. The possibility of decreased immune responsiveness to BLV in animals persistently infected with BVDV should be considered when formulating regulations governing the testing of animals for freedom from BLV.

  3. Susceptibility of bovine umbilical cord endothelial cells to bovine herpesviruses and pseudocowpox virus.

    NARCIS (Netherlands)

    Wellenberg, G.J.; Verstraten, E.R.A.M.; Jongejan, F.; Oirschot, van J.T.

    2002-01-01

    The purpose of the study was to determine the susceptibility of bovine umbilical cord endothelial (BUE) cells to bovine herpesvirus (BHV) 1, BHV2, BHV4 and BHV5, and to pseudocowpox virus. the detection limits and growth curves of these viruses in BUE cells were compared with those in Vero,

  4. Lack of Virus-Specific Bacterial Adherence to Bovine Embryonic Lung Cells Infected with Bovine Parainfluenza Virus Type 3 †

    OpenAIRE

    Toth, Thomas E.; Gates, Connie

    1983-01-01

    Infection of bovine embryonic lung cells with bovine parainfluenza virus type 3 did not induce in vitro, virus-specific, hemadsorption-related adherence of Corynebacterium pyogenes, Haemophilus somnus, Staphylococcus aureus, Streptococcus zooepidemicus, Pasteurella haemolytica, Listeria monocytogenes, Escherichia coli, Pasteurella multocida, Brucella sp., or Salmonella typhimurium.

  5. Bluetongue virus infection of bovine monocytes.

    Science.gov (United States)

    Whetter, L E; Maclachlan, N J; Gebhard, D H; Heidner, H W; Moore, P F

    1989-07-01

    Cultures of adherent and non-adherent bovine blood mononuclear cells were infected with bluetongue virus (BTV) serotype 10. Production of BTV proteins in mononuclear cell cultures was detected by immune precipitation of viral proteins from [35S]methionine-labelled extracts of these cells, by immunofluorescence staining of cells using monoclonal antibodies (MAbs) to BTV proteins VP7 and NS2, and by flow cytometry with MAbs to VP2, VP7, NS1 and NS2. BTV-infected cells were most numerous in cultures of adherent mononuclear cells; infected cells were initially identified as monocytes on the basis of their morphology, and size and scatter characteristics as determined by analysis with a fluorescence-activated cell sorter (FACS). The majority of adherent mononuclear cells with these scatter characteristics were confirmed to be monocytes by FACS analysis with a MAb specific for bovine monocytes. Identification of BTV-infected adherent mononuclear cells as monocytes was further established by double immunofluorescent labelling, as infected adherent cells reacted with the MAb specific for bovine monocytes, and with another MAb specific for class II antigen. Infection of adherent mononuclear cells was also confirmed by transmission electron microscopy, as BTV virions and tubules were present in lysates of cultures of BTV-infected adherent mononuclear cells and within the cytoplasm of adherent cells. In contrast, BTV proteins were detected in few cells identified as lymphocytes on the basis of their scatter characteristics, and mean fluorescence of such cells was considerably less than that of BTV-infected monocytes. Viraemia persisted until 35 days after inoculation of a colostrum-deprived calf inoculated with BTV. Virus was isolated from blood mononuclear cells at 1 week after infection of the calf, but not thereafter. BTV infection of blood mononuclear cells was demonstrated until 9 days after inoculation by indirect immunofluorescence staining of mononuclear cells. In

  6. Evolution of Bovine Respiratory Syncytial Virus

    Science.gov (United States)

    Valarcher, Jean-François; Schelcher, François; Bourhy, Hervé

    2000-01-01

    Until now, the analysis of the genetic diversity of bovine respiratory syncytial virus (BRSV) has been based on small numbers of field isolates. In this report, we determined the nucleotide and deduced amino acid sequences of regions of the nucleoprotein (N protein), fusion protein (F protein), and glycoprotein (G protein) of 54 European and North American isolates and compared them with the sequences of 33 isolates of BRSV obtained from the databases, together with those of 2 human respiratory syncytial viruses and 1 ovine respiratory syncytial virus. A clustering of BRSV sequences according to geographical origin was observed. We also set out to show that a continuous evolution of the sequences of the N, G, and F proteins of BRSV has been occurring in isolates since 1967 in countries where vaccination was widely used. The exertion of a strong positive selective pressure on the mucin-like region of the G protein and on particular sites of the N and F proteins is also demonstrated. Furthermore, mutations which are located in the conserved central hydrophobic part of the ectodomain of the G protein and which result in the loss of four Cys residues and in the suppression of two disulfide bridges and an α helix critical to the three-dimensional structure of the G protein have been detected in some recent French BRSV isolates. This conserved central region, which is immunodominant in BRSV G protein, thus has been modified in recent isolates. This work demonstrates that the evolution of BRSV should be taken into account in the rational development of future vaccines. PMID:11044116

  7. [Culture and control of cells producing bovine leukemia virus].

    Science.gov (United States)

    Granátová, M

    1987-10-01

    In the field surveys of the occurrence of enzootic bovine leucosis caused by the bovine leucosis virus (BLV), the identification of positive animals is based on the detection of specific antiviral antibodies by serological methods. The reliability of these tests (particularly their sensitivity and specificity) depends on the quality of the virus antigen. The preparation of the antigen is based on the cultivation of BLV virus in cultures of the FLS cell line. A modified procedure of preparing the BLV antigen in the FLS cell culture is described, along with the control of its production by the immunoperoxidase test.

  8. Detection and characterization of viruses as field and vaccine strains in feedlot cattle with bovine respiratory disease

    Science.gov (United States)

    This study investigated viruses in bovine respiratory disease (BRD) cases in feedlots, including bovine herpesvirus-1 (BoHV-1), bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine coronaviruses (BoCV) and parainfluenza-3 virus (PI3V). Nasal swabs were collected fro...

  9. Bovine rhinitis viruses are common in U.S. cattle with bovine respiratory disease.

    Science.gov (United States)

    Hause, Ben M; Collin, Emily A; Anderson, Joe; Hesse, Richard A; Anderson, Gary

    2015-01-01

    Bovine rhinitis viruses (BRV) are established etiological agents of bovine respiratory disease complex however little research into their epidemiology and ecology has been published for several decades. In the U.S., only bovine rhinitis A virus 1 (BRAV1) has been identified while bovine rhinitis A virus 2 (BRAV2) and bovine rhinitis B virus (BRBV) were previously only identified in England and Japan, respectively. Metagenomic sequencing of a nasal swab from a bovine respiratory disease (BRD) diagnostic submission from Kansas identified contigs with approximately 90% nucleotide similarity to BRAV2 and BRBV. A combination of de novo and templated assemblies using reference genomes yielded near complete BRAV2 and BRBV genomes. The near complete genome of bovine rhinitis A virus 1 (BRAV1) was also determined from a historical isolate to enable further molecular epidemiological studies. A 5'-nuclease reverse transcription PCR assay targeting the 3D polymerase gene was designed and used to screen 204 archived BRD clinical specimens. Thirteen (6.4%) were positive. Metagenomic sequencing of six positive samples identified mixed BRAV1/BRAV2, BRAV1/BRBV and BRAV2/BRBV infections for five samples. One sample showed infection only with BRAV1. Seroprevalence studies using a cell culture adapted BRBV found immunofluorescence assay-reactive antibodies were common in the herds analyzed. Altogether, these results demonstrate that BRV infections are common in cattle with respiratory disease and that BRAV1, BRAV2 and BRBV co-circulate in U.S. cattle and have high similarity to viruses isolated more than 30 years ago from diverse locations.

  10. Gangliosides Are Essential for Bovine Adeno-Associated Virus Entry

    OpenAIRE

    Schmidt, Michael; Chiorini, John A.

    2006-01-01

    Recombinant adeno-associated viruses (AAV) are promising gene therapy vectors. We have recently identified a bovine adeno-associated virus (BAAV) that demonstrates unique tropism and transduction activity compared to primate AAVs. To better understand the entry pathway and cell tropism of BAAV, we have characterized the initial cell surface interactions required for transduction with BAAV vectors. Like a number of AAVs, BAAV requires cell surface sialic acid groups for transduction and virus ...

  11. Protection against bovine leukosis virus infection in sheep with the BL 20 bovine lymphoblastoid cell line.

    Science.gov (United States)

    Roberts, D H; Lucas, M H; Sands, J; Wibberley, G

    1982-11-01

    The bovine lymphoblastoid BL 20 cell line derived from a case of sporadic bovine leukosis when inoculated into sheep did not induce an antibody response directed against bovine leukosis virus (BLV) structural proteins. Sheep were inoculated twice with the BL 20 cell line and then challenged with BLV infected lymphocytes. Three out of four sheep challenged four weeks after BL 20 inoculation did not develop BLV antibodies. Of the 12 sheep challenged later, three sheep did not develop BLV antibodies. BLV was isolated from all the seropositive animals and from none of the seronegative animals.

  12. MG-132 reduces virus release in Bovine herpesvirus-1 infection

    OpenAIRE

    Fiorito, Filomena; Iovane, Valentina; Cantiello, Antonietta; Marullo, Annarosaria; Martino, Luisa De; Iovane, Giuseppe

    2017-01-01

    Bovine herpesvirus 1 (BoHV-1) can provoke conjunctivitis, abortions and shipping fever. BoHV-1 infection can also cause immunosuppression and increased susceptibility to secondary bacterial infections, leading to pneumonia and occasionally to death. Herein, we investigated the influence of MG-132, a proteasome inhibitor, on BoHV-1 infection in bovine kidney (MDBK) cells. Infection of MDBK cells with BoHV-1 induces apoptotic cell death that enhances virus release. Whereas, MG-132 inhibited vir...

  13. Bovine Viral Diarrhea Virus-Associated Disease in Feedlot Cattle.

    Science.gov (United States)

    Larson, Robert L

    2015-11-01

    Bovine viral diarrhea virus (BVDv) is associated with bovine respiratory disease complex and other diseases of feedlot cattle. Although occasionally a primary pathogen, BVDv's impact on cattle health is through the immunosuppressive effects of the virus and its synergism with other pathogens. The simple presence or absence of BVDv does not result in consistent health outcomes because BVDv is only one of many risk factors that contribute to disease syndromes. Current interventions have limitations and the optimum strategy for their uses to limit the health, production, and economic costs associated with BVDv have to be carefully considered for optimum cost-effectiveness. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex.

    Directory of Open Access Journals (Sweden)

    Laurel J Gershwin

    Full Text Available Bovine respiratory disease complex (BRDC is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus, which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described.

  15. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex.

    Science.gov (United States)

    Gershwin, Laurel J; Van Eenennaam, Alison L; Anderson, Mark L; McEligot, Heather A; Shao, Matt X; Toaff-Rosenstein, Rachel; Taylor, Jeremy F; Neibergs, Holly L; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described.

  16. Bovine viral diarrhea virus: affinity chromatography on Crotalaria juncea lectin.

    Science.gov (United States)

    Moreno-Lopez, J; Kristiansen, T; Kårsnas, P

    1981-04-01

    Attempts were made to purify bovine viral diarrhea virus by chromatography on Crotalaria juncea lectin coupled to Sepharose 2B. A recovery of abut 65% of viral infectivity after desorption was obtained. Electron microscopy revealed mostly de-enveloped particles, rather uniform in appearance but differing in size. Immunodiffusion tests with immune calf sera showed precipitation lines of identity between the desorbed virus and extracts from infected cell cultures.

  17. Detection of bovine viral diarrhea virus antibodies in camels ...

    African Journals Online (AJOL)

    This study was carried out to determine the seroprevalence of bovine viral diarrhea virus (BVDV) antibodies in camels presented for slaughter at the Maiduguri abattoir using a BVDV specific indirect enzyme-linked-immunosorbent assay (ELISA). Ninety (90) serum samples collected from adult male and female camels were ...

  18. The Distribution Of Bovine Leukemia Virus Genotypes In Cattle From ...

    African Journals Online (AJOL)

    A study to investigate the types and distribution of bovine leukemia virus (BLV) genotypes and to estimate diagnostic test performance of agar gel immunodiffusion (AGID) was conducted on 807 cattle drawn from 68 farms found in 16 prefectures in Japan from. June 2002 to December 2003. AGID test on serum samples and ...

  19. Vaccination against δ-Retroviruses: The Bovine Leukemia Virus Paradigm

    Directory of Open Access Journals (Sweden)

    Gerónimo Gutiérrez

    2014-06-01

    Full Text Available Bovine leukemia virus (BLV and human T-lymphotropic virus type 1 (HTLV-1 are closely related d-retroviruses that induce hematological diseases. HTLV-1 infects about 15 million people worldwide, mainly in subtropical areas. HTLV-1 induces a wide spectrum of diseases (e.g., HTLV-associated myelopathy/tropical spastic paraparesis and leukemia/lymphoma (adult T-cell leukemia. Bovine leukemia virus is a major pathogen of cattle, causing important economic losses due to a reduction in production, export limitations and lymphoma-associated death. In the absence of satisfactory treatment for these diseases and besides the prevention of transmission, the best option to reduce the prevalence of d-retroviruses is vaccination. Here, we provide an overview of the different vaccination strategies in the BLV model and outline key parameters required for vaccine efficacy.

  20. Experimental infection of reindeer with bovine viral diarrhea virus

    Directory of Open Access Journals (Sweden)

    J.K. Morton

    1990-08-01

    Full Text Available Two 8-month reindeer (Rangifer tarandus and a 1-month-old Hereford-Holstein calf (Bos taurus were inoculated intranasally with the Singer (cytopathogenic strain of bovine viral diarrhea (BVD virus. Clinical signs in reindeer included loose stools containing blood and mucus, and transient laminitis or coronitis. Signs in the calf were limited to bloody mucus in the stool and lesions in the nasal mucosa. Antibody titers to BVD virus in the reindeer were intermittent, and titers in the calf persisted from days 14 to 63 post-inoculation (PI. Viremia was detected on PI day 4 in one reindeer, days 3-7 in the other, and days 2-7 in the calf. Bovine viral diarrhea virus was isolated from the lung of the calf at necropsy (PI day 63.

  1. One-step multiplex real time RT-PCR for the detection of bovine respiratory syncytial virus, bovine herpesvirus 1 and bovine parainfluenza virus 3.

    Science.gov (United States)

    Thonur, Leenadevi; Maley, Madeleine; Gilray, Janice; Crook, Tara; Laming, Ellie; Turnbull, Dylan; Nath, Mintu; Willoughby, Kim

    2012-03-28

    Detection of respiratory viruses in veterinary species has traditionally relied on virus detection by isolation or immunofluorescence and/or detection of circulating antibody using ELISA or serum neutralising antibody tests. Multiplex real time PCR is increasingly used to diagnose respiratory viruses in humans and has proved to be superior to traditional methods. Bovine respiratory disease (BRD) is one of the most common causes of morbidity and mortality in housed cattle and virus infections can play a major role. We describe here a one step multiplex reverse transcriptase quantitative polymerase chain reaction (mRT-qPCR) to detect the viruses commonly implicated in BRD. A mRT-qPCR assay was developed and optimised for the simultaneous detection of bovine respiratory syncytial virus (BRSV), bovine herpes virus type 1 (BoHV-1) and bovine parainfluenza virus type 3 (BPI3 i & ii) nucleic acids in clinical samples from cattle. The assay targets the highly conserved glycoprotein B gene of BoHV-1, nucleocapsid gene of BRSV and nucleoprotein gene of BPI3. This mRT-qPCR assay was assessed for sensitivity, specificity and repeatability using in vitro transcribed RNA and recent field isolates. For clinical validation, 541 samples from clinically affected animals were tested and mRT-qPCR result compared to those obtained by conventional testing using virus isolation (VI) and/or indirect fluorescent antibody test (IFAT). The mRT-qPCR assay was rapid, highly repeatable, specific and had a sensitivity of 97% in detecting 102 copies of BRSV, BoHV-1 and BPI3 i & ii. This is the first mRT-qPCR developed to detect the three primary viral agents of BRD and the first multiplex designed using locked nucleic acid (LNA), minor groove binding (MGB) and TaqMan probes in one reaction mix. This test was more sensitive than both VI and IFAT and can replace the aforesaid methods for virus detection during outbreaks of BRD.

  2. Bovine papilloma virus deoxyribonucleic acid: a novel eucaryotic cloning vector.

    Science.gov (United States)

    Sarver, N; Gruss, P; Law, M F; Khoury, G; Howley, P M

    1981-01-01

    A novel eucaryotic vector derived from the transforming region of bovine papilloma virus was established and demonstrated to be highly effective for introducing foreign genes into animal cells. The foreign deoxyribonucleic acid (DNA) is replicated and actively transcribed as an episome, and the transcripts are translated into an authentic gene product. We have constructed a DNA hybrid molecule, BPV69T-rI1, containing the transforming region of bovine papilloma virus DNA and the rat preproinsulin gene I (rI1), and used it to transform susceptible mouse cells. DNA hybridization analysis has demonstrated the presence of multiple unintegrated copies of hybrid DNA molecules, with the bovine papilloma virus 1 DNA segment and the rI1 gene covalently linked in selected transformed cell lines. S1 nuclease analysis revealed the presence of a correctly spliced coding segment of the preproinsulin transcript similar or identical in its electrophoretic mobility to that of messenger ribonucleic acid produced in rat insulinoma cells. Significant levels of a protein immunoreactive with anti-insulin serum were detected by radioimmunoassay in the culture medium of transformed cells. Immunoprecipitation analysis in conjunction with competitive binding to bovine proinsulin established the identity of the protein as that of rat proinsulin. Images PMID:6100967

  3. Anti-Bovine Programmed Death-1 Rat-Bovine Chimeric Antibody for Immunotherapy of Bovine Leukemia Virus Infection in Cattle.

    Science.gov (United States)

    Okagawa, Tomohiro; Konnai, Satoru; Nishimori, Asami; Maekawa, Naoya; Ikebuchi, Ryoyo; Goto, Shinya; Nakajima, Chie; Kohara, Junko; Ogasawara, Satoshi; Kato, Yukinari; Suzuki, Yasuhiko; Murata, Shiro; Ohashi, Kazuhiko

    2017-01-01

    Blockade of immunoinhibitory molecules, such as programmed death-1 (PD-1)/PD-ligand 1 (PD-L1), is a promising strategy for reinvigorating exhausted T cells and preventing disease progression in a variety of chronic infections. Application of this therapeutic strategy to cattle requires bovinized chimeric antibody targeting immunoinhibitory molecules. In this study, anti-bovine PD-1 rat-bovine chimeric monoclonal antibody 5D2 (Boch5D2) was constructed with mammalian expression systems, and its biochemical function and antiviral effect were characterized in vitro and in vivo using cattle infected with bovine leukemia virus (BLV). Purified Boch5D2 was capable of detecting bovine PD-1 molecules expressed on cell membranes in flow cytometric analysis. In particular, Biacore analysis determined that the binding affinity of Boch5D2 to bovine PD-1 protein was similar to that of the original anti-bovine PD-1 rat monoclonal antibody 5D2. Boch5D2 was also capable of blocking PD-1/PD-L1 binding at the same level as 5D2. The immunomodulatory and therapeutic effects of Boch5D2 were evaluated by in vivo administration of the antibody to a BLV-infected calf. Inoculated Boch5D2 was sustained in the serum for a longer period. Boch5D2 inoculation resulted in activation of the proliferation of BLV-specific CD4+ T cells and decrease in the proviral load of BLV in the peripheral blood. This study demonstrates that Boch5D2 retains an equivalent biochemical function to that of the original antibody 5D2 and is a candidate therapeutic agent for regulating antiviral immune response in vivo. Clinical efficacy of PD-1/PD-L1 blockade awaits further experimentation with a large number of animals.

  4. Anti-Bovine Programmed Death-1 Rat–Bovine Chimeric Antibody for Immunotherapy of Bovine Leukemia Virus Infection in Cattle

    Science.gov (United States)

    Okagawa, Tomohiro; Konnai, Satoru; Nishimori, Asami; Maekawa, Naoya; Ikebuchi, Ryoyo; Goto, Shinya; Nakajima, Chie; Kohara, Junko; Ogasawara, Satoshi; Kato, Yukinari; Suzuki, Yasuhiko; Murata, Shiro; Ohashi, Kazuhiko

    2017-01-01

    Blockade of immunoinhibitory molecules, such as programmed death-1 (PD-1)/PD-ligand 1 (PD-L1), is a promising strategy for reinvigorating exhausted T cells and preventing disease progression in a variety of chronic infections. Application of this therapeutic strategy to cattle requires bovinized chimeric antibody targeting immunoinhibitory molecules. In this study, anti-bovine PD-1 rat–bovine chimeric monoclonal antibody 5D2 (Boch5D2) was constructed with mammalian expression systems, and its biochemical function and antiviral effect were characterized in vitro and in vivo using cattle infected with bovine leukemia virus (BLV). Purified Boch5D2 was capable of detecting bovine PD-1 molecules expressed on cell membranes in flow cytometric analysis. In particular, Biacore analysis determined that the binding affinity of Boch5D2 to bovine PD-1 protein was similar to that of the original anti-bovine PD-1 rat monoclonal antibody 5D2. Boch5D2 was also capable of blocking PD-1/PD-L1 binding at the same level as 5D2. The immunomodulatory and therapeutic effects of Boch5D2 were evaluated by in vivo administration of the antibody to a BLV-infected calf. Inoculated Boch5D2 was sustained in the serum for a longer period. Boch5D2 inoculation resulted in activation of the proliferation of BLV-specific CD4+ T cells and decrease in the proviral load of BLV in the peripheral blood. This study demonstrates that Boch5D2 retains an equivalent biochemical function to that of the original antibody 5D2 and is a candidate therapeutic agent for regulating antiviral immune response in vivo. Clinical efficacy of PD-1/PD-L1 blockade awaits further experimentation with a large number of animals. PMID:28638381

  5. Anti-Bovine Programmed Death-1 Rat–Bovine Chimeric Antibody for Immunotherapy of Bovine Leukemia Virus Infection in Cattle

    Directory of Open Access Journals (Sweden)

    Tomohiro Okagawa

    2017-06-01

    Full Text Available Blockade of immunoinhibitory molecules, such as programmed death-1 (PD-1/PD-ligand 1 (PD-L1, is a promising strategy for reinvigorating exhausted T cells and preventing disease progression in a variety of chronic infections. Application of this therapeutic strategy to cattle requires bovinized chimeric antibody targeting immunoinhibitory molecules. In this study, anti-bovine PD-1 rat–bovine chimeric monoclonal antibody 5D2 (Boch5D2 was constructed with mammalian expression systems, and its biochemical function and antiviral effect were characterized in vitro and in vivo using cattle infected with bovine leukemia virus (BLV. Purified Boch5D2 was capable of detecting bovine PD-1 molecules expressed on cell membranes in flow cytometric analysis. In particular, Biacore analysis determined that the binding affinity of Boch5D2 to bovine PD-1 protein was similar to that of the original anti-bovine PD-1 rat monoclonal antibody 5D2. Boch5D2 was also capable of blocking PD-1/PD-L1 binding at the same level as 5D2. The immunomodulatory and therapeutic effects of Boch5D2 were evaluated by in vivo administration of the antibody to a BLV-infected calf. Inoculated Boch5D2 was sustained in the serum for a longer period. Boch5D2 inoculation resulted in activation of the proliferation of BLV-specific CD4+ T cells and decrease in the proviral load of BLV in the peripheral blood. This study demonstrates that Boch5D2 retains an equivalent biochemical function to that of the original antibody 5D2 and is a candidate therapeutic agent for regulating antiviral immune response in vivo. Clinical efficacy of PD-1/PD-L1 blockade awaits further experimentation with a large number of animals.

  6. Stability of Bovine viral diarrhea virus 1 nucleic acid in fetal bovine samples stored under different conditions

    Science.gov (United States)

    Infection of pregnant cattle with bovine viral diarrhea viruses can result in reproductive disease that includes fetal reabsorption, mummification, abortion, still births, congenital defects affecting structural, neural, reproductive and immune systems and the birth of calves persistently infected w...

  7. Spread of bovine syncytial virus in a dairy herd over a two year period.

    Science.gov (United States)

    Lucas, M H; Roberts, D H; Parker, B N; Wibberley, G

    1986-03-01

    During a two year period the spread of bovine syncytial virus was monitored in a closed herd of 50 to 100 milking cows. Out of a nucleus of 49 nonpregnant and pregnant heifers, six were found to be infected with bovine syncytial virus. Virus was detected only in the progeny of infected cows and not in the progeny of uninfected animals. Nineteen progeny of the bovine syncytial virus infected cows were studied in detail and virus was isolated from only four. Horizontal spread of the virus did not occur.

  8. Detection of bovine leukosis virus in bronchoalveolar lung washings and nasal secretions.

    Science.gov (United States)

    Roberts, D H; Lucas, M H; Wibberley, G; Bushnell, S

    1982-11-27

    Cattle and sheep persistently infected with bovine leukosis virus (BLV) were studied for the presence of the virus in bronchoalveolar lung washings and nasal secretions. The virus was demonstrated in the cellular fraction of the lung washings in six out of nine cattle and in one out of six sheep. In no instance was bovine leukosis isolated from the cell-free bronchoalveolar lung washings. The virus was isolated from the nasal secretion of only one of six naturally infected milking cows despite frequent sampling; the virus-infected nasal secretion was from a sick 10-year-old cow. Bovine leukosis virus was not isolated from cellular fractions of nasal secretions.

  9. One-step multiplex real time RT-PCR for the detection of bovine respiratory syncytial virus, bovine herpesvirus 1 and bovine parainfluenza virus 3

    Directory of Open Access Journals (Sweden)

    Thonur Leenadevi

    2012-03-01

    Full Text Available Abstract Background Detection of respiratory viruses in veterinary species has traditionally relied on virus detection by isolation or immunofluorescence and/or detection of circulating antibody using ELISA or serum neutralising antibody tests. Multiplex real time PCR is increasingly used to diagnose respiratory viruses in humans and has proved to be superior to traditional methods. Bovine respiratory disease (BRD is one of the most common causes of morbidity and mortality in housed cattle and virus infections can play a major role. We describe here a one step multiplex reverse transcriptase quantitative polymerase chain reaction (mRT-qPCR to detect the viruses commonly implicated in BRD. Results A mRT-qPCR assay was developed and optimised for the simultaneous detection of bovine respiratory syncytial virus (BRSV, bovine herpes virus type 1 (BoHV-1 and bovine parainfluenza virus type 3 (BPI3 i & ii nucleic acids in clinical samples from cattle. The assay targets the highly conserved glycoprotein B gene of BoHV-1, nucleocapsid gene of BRSV and nucleoprotein gene of BPI3. This mRT-qPCR assay was assessed for sensitivity, specificity and repeatability using in vitro transcribed RNA and recent field isolates. For clinical validation, 541 samples from clinically affected animals were tested and mRT-qPCR result compared to those obtained by conventional testing using virus isolation (VI and/or indirect fluorescent antibody test (IFAT. Conclusions The mRT-qPCR assay was rapid, highly repeatable, specific and had a sensitivity of 97% in detecting 102 copies of BRSV, BoHV-1 and BPI3 i & ii. This is the first mRT-qPCR developed to detect the three primary viral agents of BRD and the first multiplex designed using locked nucleic acid (LNA, minor groove binding (MGB and TaqMan probes in one reaction mix. This test was more sensitive than both VI and IFAT and can replace the aforesaid methods for virus detection during outbreaks of BRD.

  10. Bioinformatics and molecular analysis of the evolutionary relationship between bovine rhinitis A viruses and foot-and-mouth disease virus

    Science.gov (United States)

    Bovine rhinitis viruses (BRV) cause mild respiratory disease of cattle. In this study, a near full length genome sequence of a virus named RS3X, formerly classified as bovine rhinovirus type 1, isolated from infected cattle from the United Kingdom in the 1960s, was obtained and analyzed. Phylogeneti...

  11. Transcriptomic microarray analysis of BoMac cells after infection with bovine foamy virus

    NARCIS (Netherlands)

    Rola-Luszczak, M.; Materniak, M.; Pluta, A.; Hulst, M.M.; Kuz'mak, J.

    2014-01-01

    Bovine foamy virus (BFV) infections are highly prevalent among cattle worldwide. However, relatively little is known about the impact of this virus on the host immune system. In our study, we focused on a bovine macrophage cell line (BoMac) and examined changes in the BoMac transcriptome after in

  12. The effect of maternal antibodies on the detection of bovine virus diarrhoea virus in peripheral blood samples

    NARCIS (Netherlands)

    Zimmer, G.M.; Maanen, van C.; Goey, de I.; Brinkhof, J.; Wentink, G.H.

    2004-01-01

    Persistently infected animals (PI animals), that is those animals born after an intrauterine infection of the dam during the first 120 days of gestation, are the main source of bovine virus diarrhoea virus (BVD virus) in a cattle population. The success of any BVD virus eradication programme depends

  13. Systematic review and meta-analysis of the effectiveness of commercially available vaccines against bovine herpesvirus, bovine viral diarrhea virus, bovine respiratory syncytial virus, and parainfluenza type 3 virus for mitigation of bovine respiratory disease complex in cattle.

    Science.gov (United States)

    Theurer, Miles E; Larson, Robert L; White, Brad J

    2015-01-01

    To evaluate and analyze data from controlled studies on the effectiveness of vaccinating cattle with commercially available viral antigen vaccines for mitigation of the effects of bovine respiratory disease complex (BRDC). Systematic review and meta-analysis. 31 studies comprising 88 trials. Studies that reported the effectiveness of commercially available bovine herpesvirus-1 (BHV-1), bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), and parainfluenza type 3 virus (PI3) vaccines for protection of cattle against BRDC or its components were included in the analysis. Studies or trials were categorized as natural exposure or experimental challenge and were further divided by the viral antigen evaluated and vaccine type (modified-live virus [MLV] or inactivated vaccine). Meta-analysis was performed; summary Mantel-Haenszel risk ratios were determined, and Forest plots were generated. In natural exposure trials, beef calves vaccinated with various antigen combinations had a significantly lower BRDC morbidity risk than did nonvaccinated control calves. In trials evaluating BHV-1 and MLV BVDV vaccines in experimental challenge models, vaccinated calves had a lower BRDC morbidity risk than did control calves; however, in experimental challenge trials evaluating MLV BRSV and PI3 vaccines, no significant difference in morbidity or mortality risk was found between vaccinated and control calves. Estimating clinical efficacy from results of experimental challenge studies requires caution because these models differ substantially from those involving natural exposure. The literature provides data but does not provide sufficiently strong evidence to guide definitive recommendations for determining which virus components are necessary to include in a vaccination program for prevention or mitigation of BRDC in cattle.

  14. Carbon monoxide and biliverdin suppress bovine viral diarrhoea virus replication.

    Science.gov (United States)

    Ma, Zhiqian; Pu, Fengxing; Zhang, Xiaobin; Yan, Yunhuan; Zhao, Lijuan; Zhang, Angke; Li, Na; Zhou, En-Min; Xiao, Shuqi

    2017-12-01

    Bovine viral diarrhoea virus (BVDV) causes significant economic losses to the cattle industry worldwide. Previously, we demonstrated that heme oxygenase-1 (HO-1) can inhibit BVDV replication via an unknown molecular mechanism. To elucidate the mechanism involved, we assess whether the HO-1 downstream metabolites carbon monoxide (CO), biliverdin (BV) and iron affect BVDV replication. We treated Madin-Darby bovine kidney (MDBK) cells with an exogenous CO donor, CORM-2. We found that CORM-2 but not its inactive form (iCORM-2) inhibited BVDV replication in a dose-dependent and time duration-dependent manner, suggesting a CO-specific mediation of the CORM-2 antiviral effect. Direct incubation of BVDV with high-dose CORM-2 reduced virus titres, suggesting that CORM-2 attenuates BVDV growth by both physically inactivating virus particles in the extracellular environment and affecting intracellular BVDV replication, but mainly via an intracellular mechanism. Exogenous BV treatment, both post-infection and co-incubation with BVDV, inhibited BVDV replication in a dose-dependent manner, indicating that BV has potent antiviral activity against BVDV. Direct incubation of BVDV with BV had no significant effect on virus titres, indicating that BV is not virucidal and attenuates BVDV growth by affecting intracellular BVDV replication. Furthermore, BV was found to affect BVDV penetration but not attachment. However, increased iron via addition of FeCl3 did not interfere with BVDV replication. Collectively, the results of the present study demonstrate that the HO-1 metabolites BV and CO, but not iron, inhibit BVDV replication. These findings not only provide new insights into the molecular mechanism of HO-1 inhibition of BVDV replication but also suggest potential new control measures for future BVDV infection.

  15. Observations on two strains of bovine malignant catarrhal fever virus in tissue culture.

    Science.gov (United States)

    Wibberley, G

    1976-07-01

    Two cell-free strains of bovine malignant catarrhal fever (MCF) virus were examined by fluorescent antibody staining and for cytopathogenicity in secondary bovine thyroid (BTh) and secondary bovine kidney cell cultures, and in a bovine embryo lung cell line. The hartebeest-derived strain (K30) induced syncytia and intra-nuclear inclusions in all three systems, whereas the widebeest-derived strain (WC11) induced intra-nuclear inclusions in all systems, but syncytia in only BTh cells. Fluorescent antibody staining detected virus in tissue culture at least 24 h before the appearance of cytopathic effect.

  16. Comparison of levels and duration of detection of antibodies to bovine viral diarrhea virus 1, bovine viral diarrhea virus 2, bovine respiratory syncytial virus, bovine herpesvirus 1, and bovine parainfluenza virus 3 in calves fed maternal colostrum or a colostrum-replacement product.

    Science.gov (United States)

    Chamorro, Manuel F; Walz, Paul H; Haines, Deborah M; Passler, Thomas; Earleywine, Thomas; Palomares, Roberto A; Riddell, Kay P; Galik, Patricia; Zhang, Yijing; Givens, M Daniel

    2014-04-01

    Colostrum-replacement products are an alternative to provide passive immunity to neonatal calves; however, their ability to provide adequate levels of antibodies recognizing respiratory viruses has not been described. The objective of this study was to compare the serum levels of IgG at 2 d of age and the duration of detection of antibodies to bovine viral diarrhea virus 1 (BVDV-1), bovine viral diarrhea virus 2 (BVDV-2), bovine respiratory syncytial virus (BRSV), bovine herpesvirus 1 (BHV-1), and bovine parainfluenza virus 3 (BPIV-3) in calves fed maternal colostrum (MC) or a colostrum replacement (CR) at birth. Forty newborn male Holstein calves were assigned to the CR or the MC group. Group CR (n = 20) received 2 packets of colostrum replacement (100 g of IgG per 470-g packet), while group MC (n = 20) received 3.8 L of maternal colostrum. Blood samples for detection of IgG and virus antibodies were collected from each calf at birth, at 2 and 7 d, and monthly until the calves became seronegative. Calves in the MC group had greater IgG concentrations at 2 d of age. The apparent efficiency of absorption of IgG was greater in the MC group than in the CR group, although the difference was not significant. Calves in the CR group had greater concentrations of BVDV neutralizing antibodies during the first 4 mo of life. The levels of antibodies to BRSV, BHV-1, and BPIV-3 were similar in the 2 groups. The mean time to seronegativity was similar for each virus in the 2 groups; however, greater variation was observed in the antibody levels and in the duration of detection of immunity in the MC group than in the CR group. Thus, the CR product provided calves with more uniform levels and duration of antibodies to common bovine respiratory viruses.

  17. Delayed-onset enzootic bovine leukosis possibly caused by superinfection with bovine leukemia virus mutated in the pol gene.

    Science.gov (United States)

    Watanabe, Tadaaki; Inoue, Emi; Mori, Hiroshi; Osawa, Yoshiaki; Okazaki, Katsunori

    2015-08-01

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis (EBL), to which animals are most susceptible at 4-8 years of age. In this study, we examined tumor cells associated with EBL in an 18-year-old cow to reveal that the cells carried at least two different copies of the virus, one of which was predicted to encode a reverse transcriptase (RT) lacking ribonuclease H activity and no integrase. Such a deficient enzyme may exhibit a dominant negative effect on the wild-type RT and cause insufficient viral replication, resulting in delayed tumor development in this cow.

  18. Increased bovine Tim-3 and its ligand expressions during bovine leukemia virus infection

    Directory of Open Access Journals (Sweden)

    Okagawa Tomohiro

    2012-05-01

    Full Text Available Abstract The immunoinhibitory receptor T cell immunoglobulin domain and mucin domain-3 (Tim-3 and its ligand, galectin-9 (Gal-9, are involved in the immune evasion mechanisms for several pathogens causing chronic infections. However, there is no report concerning the role of Tim-3 in diseases of domestic animals. In this study, cDNA encoding for bovine Tim-3 and Gal-9 were cloned and sequenced, and their expression and role in immune reactivation were analyzed in bovine leukemia virus (BLV-infected cattle. Predicted amino acid sequences of Tim-3 and Gal-9 shared high homologies with human and mouse homologues. Functional domains, including tyrosine kinase phosphorylation motif in the intracellular domain of Tim-3 were highly conserved among cattle and other species. Quantitative real-time PCR analysis showed that bovine Tim-3 mRNA is mainly expressed in T cells such as CD4+ and CD8+ cells, while Gal-9 mRNA is mainly expressed in monocyte and T cells. Tim-3 mRNA expression in CD4+ and CD8+ cells was upregulated during disease progression of BLV infection. Interestingly, expression levels for Tim-3 and Gal-9 correlated positively with viral load in infected cattle. Furthermore, Tim-3 expression level closely correlated with up-regulation of IL-10 in infected cattle. The expression of IFN-γ and IL-2 mRNA was upregulated when PBMC from BLV-infected cattle were cultured with Cos-7 cells expressing Tim-3 to inhibit the Tim-3/Gal-9 pathway. Moreover, combined blockade of the Tim-3/Gal-9 and PD-1/PD-L1 pathways significantly promoted IFN-γ mRNA expression compared with blockade of the PD-1/PD-L1 pathway alone. These results suggest that Tim-3 is involved in the suppression of T cell function during BLV infection.

  19. Fraction of bovine leukemia virus-infected dairy cattle developing enzootic bovine leukosis.

    Science.gov (United States)

    Tsutsui, Toshiyuki; Kobayashi, Sota; Hayama, Yoko; Yamamoto, Takehisa

    2016-02-01

    Enzootic bovine leucosis (EBL) is a transmissible disease caused by the bovine leukemia virus that is prevalent in cattle herds in many countries. Only a small fraction of infected animals develops clinical symptoms, such as malignant lymphosarcoma, after a long incubation period. In the present study, we aimed to determine the fraction of EBL-infected dairy cattle that develop lymphosarcoma and the length of the incubation period before clinical symptoms emerge. These parameters were determined by a mathematical modeling approach based on the maximum-likelihood estimation method, using the results of a nationwide serological survey of prevalence in cattle and passive surveillance records. The best-fit distribution to estimate the disease incubation period was determined to be the Weibull distribution, with a median and average incubation period of 7.0 years. The fraction of infected animals developing clinical disease was estimated to be 1.4% with a 95% confidence interval of 1.2-1.6%. The parameters estimated here contribute to an examination of efficient control strategies making quantitative evaluation available. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Bovine leucosis virus contamination of a vaccine produced in vivo against bovine babesiosis and anaplasmosis.

    Science.gov (United States)

    Rogers, R J; Dimmock, C K; de Vos, A J; Rodwell, B J

    1988-09-01

    Contamination of a batch of tick fever (babesiosis and anaplasmosis) vaccine with bovine leucosis virus (BLV) was detected when a herd, in the final stages of an enzootic bovine leucosis (EBL) accreditation program, developed a large number of seropositive cattle following use of tick fever vaccine. Investigations incriminated a single calf used to produce Anaplasma centrale vaccine from which 13,959 doses were distributed. The failure of this calf to give a positive agar gel immunodiffusion (AGID) test before use was not fully explained. A total of 22,627 cattle from 111 herds receiving contaminated vaccine was tested to validate claims for compensation. Results showed infection rates of 62% and 51.8% in vaccinated dairy and beef cattle, respectively, compared with 6.1% and 1.5% in non-vaccinated cattle in the same herds. The results also indicated that infection did not spread from vaccinated to non-vaccinated in-contact cattle. Heavy reliance is now placed on purchase of calves for vaccine production from EBL accredited-free herds and on transmission tests from the calves to sheep to prevent a recurrence of contamination. The need for a BLV antigen detection test, with the sensitivity of the sheep transmission test but simpler and faster to perform, is evident.

  1. Gangliosides are essential for bovine adeno-associated virus entry.

    Science.gov (United States)

    Schmidt, Michael; Chiorini, John A

    2006-06-01

    Recombinant adeno-associated viruses (AAV) are promising gene therapy vectors. We have recently identified a bovine adeno-associated virus (BAAV) that demonstrates unique tropism and transduction activity compared to primate AAVs. To better understand the entry pathway and cell tropism of BAAV, we have characterized the initial cell surface interactions required for transduction with BAAV vectors. Like a number of AAVs, BAAV requires cell surface sialic acid groups for transduction and virus attachment. However, glycosphingolipids (GSLs), not cell surface proteins, were required for vector entry and transduction. Incorporation of gangliosides, ceramide-based glycolipids containing one or more sialic acid groups, into the cytoplasmic cell membranes of GSL-depleted COS cells partially reconstituted BAAV transduction. The dependency of BAAV on gangliosides for transduction was further confirmed by studies with C6 cells, a rat glioma cell line that is deficient in the synthesis of complex gangliosides. C6 cells were resistant to transduction by BAAV. Addition of gangliosides to C6 cells prior to transduction rendered the cells susceptible to transduction by BAAV. Therefore, gangliosides are a likely receptor for BAAV.

  2. Synthesis of bovine leukemia virus antigens in Escherichia coli.

    Science.gov (United States)

    Ulrich, R; Siakkou, H; Platzer, C; Bossmann, H; Möhring, R; Wiedmann, M; Bähring, S; Rosenthal, S

    1990-01-01

    Plasmids were constructed by the use of pEX vectors that encode and express different parts of the bovine leukemia virus (BLV): main core protein p24, nucleic acid-binding protein p12, transmembrane protein gp30, and different segments of envelope protein gp51. Expression of fusion proteins with molecular weights higher than 117 kD for all recombinant plasmids was shown in Coomassie-blue stained gels and by Western blot analysis with rabbit anti-BLV sera. Coupling of a gp51-encoding with a p24-encoding DNA fragment in pEX vectors led to synthesis of a fusion protein that was recognized by monoclonal antibodies directed against gp51 and p24 epitopes. Using another vector, a gp51-encoding DNA fragment of BLV was expressed as a fusion protein with 100 amino acids of the MS2 polymerase. The fusion protein was recognized by monoclonal antibodies directed against gp51.

  3. Identification of two distinct bovine parainfluenza virus type 3 genotypes.

    Science.gov (United States)

    Horwood, Paul Francis; Gravel, Jennifer Lillian; Mahony, Timothy John

    2008-07-01

    The partial gene sequencing of the matrix (M) protein from seven clinical isolates of bovine parainfluenza virus type 3 (BPIV-3), and the complete sequencing of a representative isolate (Q5592) was completed in this study. Nucleotide sequence analysis was initiated because of the failure of in-house BPIV-3 RT-PCR methods to yield expected products for four of the isolates. Phylogenetic reconstructions based on the nucleotide sequences for the M-protein and the entire genome, using all of the available BPIV-3 nucleotide sequences, demonstrated that there were two distinct BPIV-3 genotypes (BPIV-3a and BPIV-3b). These newly identified genotypes have implications for the development of BPIV-3 molecular detection methods and may also impact on BPIV-3 vaccine formulations.

  4. Estimating transfer of bovine virus-diarrhoea virus in Danish cattle by use of register data

    DEFF Research Database (Denmark)

    Alban, L.; Stryhn, H.; Kjeldsen, A.M.

    2001-01-01

    To study how routinely recorded data (also called "register data") might be used in disease monitoring on a regional or national level, a database for bovine virus-diarrhoea virus (BVDV) was made from existing databases, covering the period January 1995-November 1999. This paper includes a general...... description of the database, including basic statistics for selected variables. Information was largely complete for cattle herds in the milk-recording scheme (MRS), but only partly available for other herds. A methodology was developed to identify when and how a herd initially was infected. For most herds...

  5. Molecular characterization of bovine leukemia virus from Moldovan dairy cattle.

    Science.gov (United States)

    Pluta, Aneta; Rola-Łuszczak, Marzena; Kubiś, Piotr; Balov, Svetlana; Moskalik, Roman; Choudhury, Bhudipa; Kuźmak, Jacek

    2017-06-01

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL), a disease that has worldwide distribution. Whilst it has been eradicated in most of Western Europe and Scandinavia, it remains a problem in other regions, particularly Eastern Europe and South America. For this study, in 2013, 24 cattle from three farms in three regions of Moldova were screened by ELISA and nested PCR. Of these cattle, 14 which were PCR positive, and these were molecularly characterized based on the nucleotide sequence of the env gene and the deduced amino acid sequence of the encoded gp51 protein. Our results demonstrated a low level of genetic variability (0-2.9%) among BLV field strains from Moldova, in contrast to that observed for other retroviruses, including human immunodeficiency virus (HIV) (20-38%) Mason IL (Trudy vologod moloch Inst 146-164, 1970) and equine infectious anemia virus (EIAV) (~40%) Willems L et al (AIDS Res Hum Retroviruses 16(16):1787-1795, 2000), where the envelope gene exhibits high levels of variation Polat M et al (Retrovirology 13(1):4, 2016). Sequence comparisons and phylogenetic analysis revealed that BLV genotype 7 (G7) is predominant in Moldova and that the BLV population in Moldovan cattle is a mixture of at least three new sub-genotypes: G7D, G7E and G4C. Neutrality tests revealed that negative selection was the major force operating upon the 51-kDa BLV envelope surface glycoprotein subunit gp51, although one positively selected site within conformational epitope G was detected in the N-terminal part of gp51. Furthermore, two functional domains, linear epitope B and the zinc-binding domain, were found to have an elevated ratio of nonsynonymous to synonymous codon differences. Together, these data suggest that the evolutionary constraints on epitopes G and B and the zinc-binding domains of gp51 differ from those on the other domains, with a tendency towards formation of homogenous genetic groups, which is a common concept of

  6. Improved detection of Bovine Viral Diarrhea Virus in Bovine lymphoid cell lines using PrimeFlow RNA assay

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) infections, whether as acute, persistent or contributing to co-infections, result in significant losses for cattle producers. BVDV can be identified by real-time PCR and ELISA, detection and quantification of viral infection at the single cell level is extremely di...

  7. Determining bovine viral diarrhea virus genotypes and biotypes circulating in cattle populations in Mexico

    Science.gov (United States)

    Bovine viral diarrhea (BVD) is the disease in cattle that results from infection with bovine viral diarrhea viruses (BVDV). BVDV is found in cattle populations throughout the world. While the term BVD encompasses a wide range of clinical manifestations, including severe respiratory disease, gastroe...

  8. Molecular detection of bovine leukemia virus in peripheral blood of Iranian cattle, camel and sheep

    National Research Council Canada - National Science Library

    Nekoei, S; Hafshejani, T Taktaz; Doosti, A; Khamesipour, F

    2015-01-01

    Bovine leukemia virus (BLV) is a deltaretrovirus which infects and induces proliferation of B-lymphocytes in the peripheral blood circulation and in lymphoid organs primarily of cattle, leading to leukemia/lymphoma...

  9. A metagenomics and case-control study to identify viruses associated with bovine respiratory disease.

    Science.gov (United States)

    Ng, Terry Fei Fan; Kondov, Nikola O; Deng, Xutao; Van Eenennaam, Alison; Neibergs, Holly L; Delwart, Eric

    2015-05-01

    Bovine respiratory disease (BRD) is a common health problem for both dairy and beef cattle, resulting in significant economic loses. In order to identify viruses associated with BRD, we used a metagenomics approach to enrich and sequence viral nucleic acids in the nasal swabs of 50 young dairy cattle with symptoms of BRD. Following deep sequencing, de novo assembly, and translated protein sequence similarity searches, numerous known and previously uncharacterized viruses were identified. Bovine adenovirus 3, bovine adeno-associated virus, bovine influenza D virus, bovine parvovirus 2, bovine herpesvirus 6, bovine rhinitis A virus, and multiple genotypes of bovine rhinitis B virus were identified. The genomes of a previously uncharacterized astrovirus and picobirnaviruses were also partially or fully sequenced. Using real-time PCR, the rates of detection of the eight viruses that generated the most reads were compared for the nasal secretions of 50 animals with BRD versus 50 location-matched healthy control animals. Viruses were detected in 68% of BRD-affected animals versus 16% of healthy control animals. Thirty-eight percent of sick animals versus 8% of controls were infected with multiple respiratory viruses. Significantly associated with BRD were bovine adenovirus 3 (P metagenomics and real-time PCR detection approach in carefully matched cases and controls can provide a rapid means to identify viruses associated with a complex disease, paving the way for further confirmatory tests and ultimately to effective intervention strategies. Bovine respiratory disease is the most economically important disease affecting the cattle industry, whose complex root causes include environmental, genetics, and infectious factors. Using an unbiased metagenomics approach, we characterized the viruses in respiratory secretions from BRD cases and identified known and previously uncharacterized viruses belonging to seven viral families. Using a case-control format with location

  10. Stability of Bovine viral diarrhea virus antigen in ear punch samples collected from bovine fetuses.

    Science.gov (United States)

    Ridpath, Julia F; Chiang, Yu-Wei; Waldbillig, Jill; Neill, John D

    2009-05-01

    Fourteen first-calf heifers were tested free of antibodies against Bovine viral diarrhea viruses (BVDV) by serum neutralization and free of BVDV by polymerase chain reaction. Twelve were exposed to BVDV-1b strain CA0401186a at 84-86 days of gestation, and 2 were exposed to mock inoculum and served as negative controls. Fetuses were harvested by cesarean section at 115-117 days of gestation. The 12 fetuses removed from the BVDV-exposed heifers were BVDV positive based on virus isolation from kidney, thymus, cerebellum, and spleen. It can be assumed that these fetuses would have developed into persistently infected calves had they been allowed to go to term. Virus was not isolated from the fetuses of control animals. Ear punch samples were collected from all fetuses at time of harvest. Antigen capture enzyme-linked immunosorbent assay (ACE), using a commercial kit, was performed on ear punch samples that were frozen within 5 hr of collection and stored at -20 degrees C until tested, tested after storage for 7 days at room temperature (18-25 degrees C), or tested after storage for 7 days at 37 degrees C. Samples stored for 7 days at room temperature or 37 degrees C lost an average of 34% of their starting weight. All samples from BVDV isolation-positive fetuses tested positive by ACE, whereas samples from nonexposed fetuses tested negative, regardless of storage conditions. These results suggest that ACE testing of skin samples collected from aborted fetuses and stillborn calves found in the field may represent a practical surveillance method for BVDV-induced reproductive disease.

  11. Development and evaluation of a Luminex multiplex serology assay to detect antibodies to bovine herpes virus 1, parainfluenza 3 virus, bovine viral diarrhoea virus, and bovine respiratory syncytial virus, with comparison to existing ELISA detection methods.

    Science.gov (United States)

    Anderson, Steve; Wakeley, Phil; Wibberley, Guy; Webster, Kath; Sawyer, Jason

    2011-03-07

    Detection of circulating antibodies to bovine herpes virus 1 (BHV-1), parainfluenza 3 virus (PI3V), bovine viral diarrhoea virus (BVDV) and bovine respiratory syncytial virus (BRSV) using ELISA is widely used for veterinary diagnostics and surveillance. In this paper, the potential of a multiplex serology test based on Luminex technology, where all antibodies are simultaneously detected in a single assay was investigated. The performance of "in-house" separate ELISAs which use relatively crude lysates of cultured virus as capture antigens, was compared to the multiplex assay where the same antigens were covalently bound to the fluorescent beads used in the Luminex platform. A panel of field serum samples was tested by the multiplex assay in parallel with the separate routine ELISAs to provide a comparison between tests. The BHV-1 and PI3V components of the multiplex test showed similar sensitivities and specificities to the separate "in-house" ELISAs. The performance of the BVDV and BRSV components was less successful and was attributed to relatively low signal strength for these antigens, leading to higher assay variability and a reduced ability to distinguish positive and negative samples compared to the "in-house" ELISAs. The results illustrated that antigens commonly used successfully in ELISAs cannot always be transferred for use in alternative assay systems. The use of recombinant BVDV E2 protein was investigated and was shown to lead to an appreciable increase in signal strength compared to the use of crude BVDV antigen in the Luminex system. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  12. Competitive virus assay method for titration of noncytopathogenic bovine viral diarrhea viruses (END⁺ and END⁻ viruses).

    Science.gov (United States)

    Muhsen, Mahmod; Ohi, Kota; Aoki, Hiroshi; Ikeda, Hidetoshi; Fukusho, Akio

    2013-03-01

    A new, reliable and secure virus assay method, named the competitive virus assay (CVA) method, has been established for the titration of bovine viral diarrhea viruses (BVDVs) that either show the exaltation of Newcastle disease virus (END) phenomenon or heterologous interference phenomenon (but not the END phenomenon). This method is based on the principle of (1) homologous interference between BVDVs, by using BVDV RK13/E(-) or BVDV RK13/E(+) strains as competitor virus, and (2) END phenomenon and heterologous interference, by using attenuated Newcastle disease virus (NDV) TCND strain as challenge virus. In titration of BVDV END(+) and BVDV END(-) viruses, no significant difference in estimated virus titer was observed between CVA and conventional methods. CVA method demonstrated comparable levels of sensitivity and accuracy as conventional END and interference methods, which require the use of a velogenic Miyadera strain of NDV and vesicular stomatitis virus (VSV), both of which are agents of high-risk diseases. As such, the CVA method is a safer alternative, with increased bio-safety and bio-containment, through avoidance of virulent strains that are commonly employed with conventional methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Bovine respiratory disease associated with Histophilus somni and bovine respiratory syncytial virus in a beef cattle feedlot from Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Selwyn Arligton Headley

    2017-03-01

    Full Text Available Bovine respiratory disease (BRD is a complex multifactorial and multi-etiological disease entity that is responsible for the morbidity and mortality particularly in feedlot cattle from North America. Information relative to the occurrence of BRD in Brazil and the associated infectious agents are lacking. This study investigated the participation of infectious agents of BRD in a beef cattle feedlot from Southeastern Brazil. Nasopharyngeal swabs of 11% (10/90 of cattle (n, 450 with clinical manifestations of respiratory distress were analyzed by targeting specific genes of the principal infectious pathogens of BRD. In addition, pulmonary fragments of one the animals that died were collected for histopathological and molecular diagnoses. The nucleic acids of Histophilus somni and bovine respiratory syncytial virus (BRSV were identified in 20% (2/10 of the nasopharyngeal swabs of the animals with respiratory distress; another contained only BRSV RNA. Moreover, the nucleic acids of both infectious agents were amplified from the pulmonary fragments of the animal that died with histopathological evidence of bronchopneumonia and interstitial pneumonia; the nasopharyngeal swab of this animal also contained the nucleic acids of both pathogens. Additionally, all PCR and/or RT-PCR assays designed to detect the specific genes of Mannheimia haemolytica, Pasteurella multocida, Mycoplasma bovis, bovine viral diarrhea virus, bovine herpesvirus -1, bovine parainfluenza virus-3, and bovine coronavirus yielded negative results. Phylogenetic analyses suggest that the isolates of H. somni circulating in Brazil are similar to those identified elsewhere, while there seem to be diversity between the isolates of BRSV within cattle herds from different geographical locations of Brazil.

  14. Cloning and characterization of a bovine adeno-associated virus.

    Science.gov (United States)

    Schmidt, Michael; Katano, Hisako; Bossis, Ioannis; Chiorini, John A

    2004-06-01

    To better understand the relationship between primate adeno-associated viruses (AAVs) and those of other mammals, we have cloned and sequenced the genome of an AAV found as a contaminant in two isolates of bovine adenovirus that was reported to be serologically distinct from primate AAVs. The bovine AAV (BAAV) genome has 4,693 bp, and its organization is similar to that of other AAV isolates. The left-hand open reading frame (ORF) and both inverted terminal repeats (ITRs) have the highest homology with the rep ORF and ITRs of AAV serotype 5 (AAV-5) (89 and 96%, respectively). However, the right-hand ORF was only 55% identical to the AAV-5 capsid ORF; it had the highest homology with the capsid ORF of AAV-4 (76%). By comparing the BAAV cap sequence with a model of an AAV-4 capsid, we mapped the regions of BAAV VP1 that are divergent from AAV-4. These regions are located on the outside of the capsid and are partially located in exposed loops. BAAV was not neutralized by antisera raised against recombinant AAV-2, AAV-4, or AAV-5, and it demonstrated a unique cell tropism profile in four human cancer cell lines, suggesting that BAAV might have transduction activity distinct from that of other isolates. A murine model of salivary gland gene transfer was used to evaluate the in vivo performance of recombinant BAAV. Recombinant BAAV-mediated gene transfer was 11 times more efficient than that with AAV-2. Overall, these data suggest that vectors based on BAAV could be useful for gene transfer applications.

  15. Bovine respiratory syncytial virus and bovine coronavirus in Swedish organic and conventional dairy herds.

    Science.gov (United States)

    Wolff, Cecilia; Emanuelson, Ulf; Ohlson, Anna; Alenius, Stefan; Fall, Nils

    2015-01-13

    Infections with bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BoCV) are endemic to the cattle populations in most countries, causing respiratory and/or enteric disease. It has been demonstrated that herds can remain free from these infections for several years also in high prevalence areas. Organically managed (OM) dairy herds have been shown to have lower seroprevalence of both viruses compared to conventionally managed (CM) herds. The objective of this study was to challenge the hypothesis of a lower occurrence of BRSV and BoCV in OM compared to CM dairy herds. In November 2011, May 2012 and May 2013 milk samples from four homebred primiparous cows were collected in 75 to 65 OM and 69 to 62 CM herds. The antibody status regarding BRSV and BoCV was analysed with commercial indirect ELISAs. Herds were classified as positive if at least one individual sample was positive. The prevalence of positive herds ranged from 73.4% to 82.3% for BRSV and from 76.8% to 85.3% for BoCV among OM and CM herds, over the three sampling occasions. There was no statistically significant difference between OM and CM herds at any sampling occasion. The incidence risk of newly infected herds did not differ statistically between OM and CM herds at any sampling occasion, neither for BRSV nor for BoCV. The incidence of herds turning sero-negative between samplings corresponded to the incidence of newly infected. Bulk tank milk (BTM) samples were also sampled in the herds and analysed. Several herds were negative on individual samples but positive in BTM. Herd-level data on production, health and reproduction were retrieved from VÄXA Sweden and the study herds were representative of the source population. There was no difference in prevalence of or incidence risk for BRSV or BoCV between Swedish OM and CM herds. Because the incidence of herds becoming seropositive was balanced by herds becoming seronegative it should be possible to lower the prevalence of these two

  16. A stochastic model for simulation of the economic consequences of bovine virus diarrhoea virus infection in a dairy herd

    DEFF Research Database (Denmark)

    Sørensen, J.T.; Enevoldsen, Carsten; Houe, H.

    1995-01-01

    A dynamic, stochastic model simulating the technical and economic consequences of bovine virus diarrhoea virus (BVDV) infections for a dairy cattle herd for use on a personal computer was developed. The production and state changes of the herd were simulated by state changes of the individual cows...

  17. Infection of differentiated airway epithelial cells from caprine lungs by viruses of the bovine respiratory disease complex.

    Science.gov (United States)

    Kirchhoff, Jana; Uhlenbruck, Sabine; Keil, Günther M; Schwegmann-Wessels, Christel; Ganter, Martin; Herrler, Georg

    2014-05-14

    Bovine respiratory syncytial virus (BRSV), bovine parainfluenza virus type 3 (BPIV3) and bovine herpesvirus type 1 (BHV-1) are important pathogens associated with the bovine respiratory disease complex (BRDC). Non-bovine ruminants such as goats may also be infected and serve as a virus reservoir to be considered in the development of control strategies. To evaluate the susceptibility of caprine airway epithelial cells to infection by viruses of BRDC, we established a culture system for differentiated caprine epithelial cells. For this purpose, we generated precision-cut lung slices (PCLS), in which cells are retained in their original structural configuration and remain viable for more than a week. The three bovine viruses were found to preferentially infect different cell types. Ciliated epithelial cells were the major target cells of BPIV3, whereas BHV-1 preferred basal cells. Cells infected by BRSV were detected in submucosal cell layers. This spectrum of susceptible cells is the same as that reported recently for infected bovine PCLS. While infection of caprine cells by BRSV and BPIV3 was as efficient as that reported for bovine cells, infection of caprine cells by BHV-1 required a tenfold higher dose of infectious virus as compared to infection of bovine airway cells. These results support the notion that non-bovine ruminants may serve as a reservoir for viruses of BRDC and introduce a culture system to analyze virus infection of differentiated airway epithelial cells from the caprine lung. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Relationships of bovine ephemeral fever epizootics to population immunity and virus variation.

    Science.gov (United States)

    Ting, Lu-Jen; Lee, Ming-Shiuh; Lee, Shu-Hwae; Tsai, Hsiang-Jung; Lee, Fan

    2014-10-10

    Bovine ephemeral fever is an arthropod-borne bovine viral disease caused by infection with bovine ephemeral fever virus which belongs to genus Ephemerovirus within the family Rhabdoviridae. In this study, serological data and virological information about the disease and the virus, spanning from 2001 to 2013, were employed to analyze the relationships of bovine ephemeral fever epizootics to population immunity and virus variation. National and regional surveillance data indicated that 2 of the 3 major epizootics and 87% regional outbreaks were associated with lower neutralizing antibody titers and immunity coverage, reflecting the importance of population immunity for the control of bovine ephemeral fever. Phylogenetic analysis and sequence comparison demonstrated that Taiwanese bovine ephemeral fever viruses were >96.0% and >97.6% similar to the East Asian isolates in nucleotide and amino acid sequences, respectively. These analyses supported that the Taiwanese viruses shared the same gene pool with the strains of the other East Asian countries, mainly Japan. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Spatial patterns of Bovine Corona Virus and Bovine Respiratory Syncytial Virus in the Swedish beef cattle population

    Directory of Open Access Journals (Sweden)

    Björkman Camilla

    2010-05-01

    Full Text Available Abstract Background Both bovine coronavirus (BCV and bovine respiratory syncytial virus (BRSV infections are currently wide-spread in the Swedish dairy cattle population. Surveys of antibody levels in bulk tank milk have shown very high nationwide prevalences of both BCV and BRSV, with large variations between regions. In the Swedish beef cattle population however, no investigations have yet been performed regarding the prevalence and geographical distribution of BCV and BRSV. A cross-sectional serological survey for BCV and BRSV was carried out in Swedish beef cattle to explore any geographical patterns of these infections. Methods Blood samples were collected from 2,763 animals located in 2,137 herds and analyzed for presence of antibodies to BCV and BRSV. Moran's I was calculated to assess spatial autocorrelation, and identification of geographical cluster was performed using spatial scan statistics. Results Animals detected positive to BCV or BRSV were predominately located in the central-western and some southern parts of Sweden. Moran's I indicated global spatial autocorrelation. BCV and BRSV appeared to be spatially related: two areas in southern Sweden (Skaraborg and Skåne had a significantly higher prevalence of BCV (72.5 and 65.5% respectively; almost the same two areas were identified as being high-prevalence clusters for BRSV (69.2 and 66.8% respectively. An area in south-east Sweden (Kronoberg-Blekinge had lower prevalences for both infections than expected (23.8 and 20.7% for BCV and BRSV respectively. Another area in middle-west Sweden (Värmland-Dalarna had also a lower prevalence for BRSV (7.9%. Areas with beef herd density > 10 per 100 km2 were found to be at significantly higher risk of being part of high-prevalence clusters. Conclusion These results form a basis for further investigations of between-herds dynamics and risk factors for these infections in order to design effective control strategies.

  20. Human and bovine viruses in the Milwaukee River watershed: hydrologically relevant representation and relations with environmental variables.

    Science.gov (United States)

    Corsi, S R; Borchardt, M A; Spencer, S K; Hughes, P E; Baldwin, A K

    2014-08-15

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56-2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n=63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  1. Human and bovine viruses in the Milwaukee River Watershed: hydrologically relevant representation and relations with environmental variables

    Science.gov (United States)

    Corsi, Steven R.; Borchardt, M. A.; Spencer, S. K.; Hughes, Peter E.; Baldwin, Austin K.

    2014-01-01

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  2. Coinfections of Sudanese dairy cattle with bovine herpes virus 1, bovine viral diarrhea virus, bluetongue virus and bovine herpes virus 4 and their relation to reproductive disorders

    Directory of Open Access Journals (Sweden)

    Amira M. Elhassan

    2016-12-01

    Reults: The meta-analysis of the data indicated high seroprevalence of coinfections with various combinations of these agents; only few animals were singly infected. An infection with BHV-1 was observed to be higher than the prevalence of associations between BHV-1 and the other three viral agents. Prevalence of seropositivities to coinfection with BHV-1/BTV; BHV-1/BVD; BHV-1/BTV/BVD were the highest while seropositivities prevalences that involved BHV-4 were much lower. The highest abortion rates were encountered in coinfections with BHV-1/BVD/BTV (31% and BHV-1/BVD/BTV/BHV-4 (30% while most infertility cases were noticed in coinfection with BHV-1/BVD/BTV (44% and BHV-1/BVD/BTV/BHV-4 (21%, and coinfections with the four viruses were encountered in most of the death after birth cases (25%. Overall mixed infections with BHV-1/BVD/BTV (34% and BHV-1/BVD/BTV/BHV-4 (22.5% were involved in the majority of reproductive problems studied. Conclusion: Mixed infections constitutes the vast majority of cases and are involved in the majority of reproductive disorders investigated. The high prevalence of seropositivity to all of the four viruses should call for an intervention strategy to reduce the impact of these viruses. [J Adv Vet Anim Res 2016; 3(4.000: 332-337

  3. Circulating microRNAs in serum from cattle challenged with Bovine Viral Diarrhea Virus

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is an RNA virus that is often associated with respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. The objective of this study was to identify microRNAs in cattle that had been challenged with a non-cytopat...

  4. Antiviral Activity of Marine Actinobacteria against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    OpenAIRE

    Juliana Cristina Santiago Bastos; Cláudia Beatriz Afonso de Menezes; Fabiana Fantinatti-Garboggini; Marina Aiello Padilla; Clarice Weis Arns; Luciana Konecny Kohn

    2015-01-01

    The Hepatitis C virus (Flaviviridae family, Hepacivirus genus) represents a major public health problem worldwide and it is responsible for chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. As this virus does not replicate efficiently in cell culture and in animals, bovine viral diarrhea virus (BVDV) is used as a surrogate model for screening assays of antiviral activity, and mechanism of action assays. From marine invertebrates and their microor...

  5. Isolation of bovine herpesvirus-1 (BHV-1) and bovine viral diarrhea virus (BVDV) in association with the in vitro production of bovine embryos.

    Science.gov (United States)

    Bielanski, A; Loewen, K S; Del Campo, M R; Sirard, M A; Willadsen, S

    1993-09-01

    The purpose of this study was to determine whether oocytes obtained from bovine ovaries collected at commercial abattoirs for use in in vitro fertilization programs would be contaminated with bovine herpesvirus-1 (BHV-1) and/or bovine viral diarrhea virus (BVDV). In total, of 85 samples tested containing 759 embryos produced by in vitro fertilization, 2 (2.4%) were positive for BHV-1 while none were positive for BVDV. The follicular fluid collected during oocyte aspiration tested positive in 11.8% for BVH-1 and in 4.7% for BVDV. Oviductal cells used to co-culture zygotes/embryos tested positive for BHV-1 and BVDV in 6.2% and 1.2% samples respectively.

  6. Associations between exposure to viruses and bovine respiratory disease in Australian feedlot cattle.

    Science.gov (United States)

    Hay, K E; Barnes, T S; Morton, J M; Gravel, J L; Commins, M A; Horwood, P F; Ambrose, R C; Clements, A C A; Mahony, T J

    2016-05-01

    Bovine respiratory disease (BRD) is the most important cause of clinical disease and death in feedlot cattle. Respiratory viral infections are key components in predisposing cattle to the development of this disease. To quantify the contribution of four viruses commonly associated with BRD, a case-control study was conducted nested within the National Bovine Respiratory Disease Initiative project population in Australian feedlot cattle. Effects of exposure to Bovine viral diarrhoea virus 1 (BVDV-1), Bovine herpesvirus 1 (BoHV-1), Bovine respiratory syncytial virus (BRSV) and Bovine parainfluenza virus 3 (BPIV-3), and to combinations of these viruses, were investigated. Based on weighted seroprevalences at induction (when animals were enrolled and initial samples collected), the percentages of the project population estimated to be seropositive were 24% for BoHV-1, 69% for BVDV-1, 89% for BRSV and 91% for BPIV-3. For each of the four viruses, seropositivity at induction was associated with reduced risk of BRD (OR: 0.6-0.9), and seroincrease from induction to second blood sampling (35-60 days after induction) was associated with increased risk of BRD (OR: 1.3-1.5). Compared to animals that were seropositive for all four viruses at induction, animals were at progressively increased risk with increasing number of viruses for which they were seronegative; those seronegative for all four viruses were at greatest risk (OR: 2.4). Animals that seroincreased for one or more viruses from induction to second blood sampling were at increased risk (OR: 1.4-2.1) of BRD compared to animals that did not seroincrease for any viruses. Collectively these results confirm that prior exposure to these viruses is protective while exposure at or after feedlot entry increases the risk of development of BRD in feedlots. However, the modest increases in risk associated with seroincrease for each virus separately, and the progressive increases in risk with multiple viral exposures highlights

  7. Three viruses of the bovine respiratory disease complex apply different strategies to initiate infection.

    Science.gov (United States)

    Kirchhoff, Jana; Uhlenbruck, Sabine; Goris, Katherina; Keil, Günther M; Herrler, Georg

    2014-02-18

    Bovine respiratory disease complex (BRDC) is the major cause of serious respiratory tract infections in calves. The disease is multifactorial, with either stress or reduced immunity allowing several pathogens to emerge. We investigated the susceptibility of bovine airway epithelial cells (BAEC) to infection by the three major viruses associated with the BRDC: bovine respiratory syncytial virus (BRSV), bovine herpesvirus type 1 (BHV-1) and bovine parainfluenza virus type 3 (BPIV3). For this purpose, two culture systems for well-differentiated BAEC were used: the air-liquid interface (ALI) system, where filter-grown BAEC differentiate into a pseudostratified respiratory epithelium and precision-cut lung slices (PCLS) where BAEC are maintained in the original tissue organisation. Comparative infection studies demonstrated that entry and release of BPIV3 occurred specifically via the apical membrane with ciliated cells being the major target cells. By contrast, airway epithelial cells were largely resistant to infection by BHV-1. When the epithelial barrier was abolished by opening tight junctions or by injuring the cell monolayer, BHV-1 infected mainly basal cells. Respiratory epithelial cells were also refractory to infection by BRSV. However, this virus infected neither differentiated epithelial cells nor basal cells when the integrity of the epithelial barrier was destroyed. In contrast to cells of the airway epithelium, subepithelial cells were susceptible to infection by BRSV. Altogether, these results indicate that the three viruses of the same disease complex follow different strategies to interact with the airway epithelium. Possible entry mechanisms are discussed.

  8. Establishing presence of antibodies against bovine respiratory syncytial virus (BRSV, parainfluenza virus 3 (PI3 and bovine herpesvirus 1 (BHV 1 in blood serum of cattle using indirect immunoenzyme probe

    Directory of Open Access Journals (Sweden)

    Šamanc Horea

    2009-01-01

    Full Text Available A total of 92 samples of bovine blood serum were examined for the presence of antibodies against the bovine respiratory syncytial virus using indirect immunoenzyme probe - iELISA. Specific antibodies against the bovine respiratory syncytial virus (BRSV were established in 46, or 50% blood serum samples. Investigations of the 92 blood serum samples of cattle for the presence of antibodies against the parainfluenza virus 3 (PI 3, revealed their presence in 77, or 83.69% of the samples, and the presence of antibodies against the bovine herpesvirus 1 (BHV 1 was established in 19, or 20.65% of the samples.

  9. Prevalence of Bovine Viral Diarrhoea Virus (BVDV), Bovine Herpes Virus 1 (BHV 1), Leptospirosis and Neosporosis, and associated risk factors in 161 Irish beef herds.

    Science.gov (United States)

    Barrett, Damien; Parr, Mervyn; Fagan, John; Johnson, Alan; Tratalos, Jamie; Lively, Francis; Diskin, Michael; Kenny, David

    2018-01-06

    There are limited data available, in Ireland or elsewhere, to determine the extent of exposure to various endemic diseases among beef cows and factors associated with exposure to causative pathogens. The objectives of this study were to determine the herd and within herd prevalence of Bovine Viral Diarrhoea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Leptospirosis and Neosporosis in a large scale study of commercial beef herds on the island of Ireland, and to examine herd level factors associated with exposure to these pathogens in these herds. The average number of cows tested per herd was 35.5 (median 30). Herd level seroprevalence to Bovine Herpesvirus-1(BHV-1), Bovine Viral-Diarrhoea Virus (BVDV), Leptospirosis and Neosporosis was 90%, 100%, 91% and 67%, respectively, while the mean within herd prevalence for the these pathogens was 40%, 77.7%, 65.7% and 5.7%, respectively. The study confirms that the level of seroconversion for the four pathogens of interest increases with herd size. There was also evidence that exposure to one pathogen may increase the risk of exposure to another pathogen. Herd level seroprevalences were in excess of 90% for BVDV, BHV-1 and Leptosporosis. Larger herds were subject to increased exposure to disease pathogens. This study suggests that exposure to several pathogens may be associated with the further exposure to other pathogens.

  10. Investigation of the Bovine Leukemia Virus Proviral DNA in Human Leukemias and Lung cancers in Korea

    OpenAIRE

    Lee, JeHoon; Kim, Yonggoo; Kang, Chang Suk; Cho, Dae Hyun; Shin, Dong Hwan; Yum, Young Na; Oh, Jae Ho; Kim, Sheen Hee; Hwang, Myung Sil; Lim, Chul Joo; Yang, Ki Hwa; Han, Kyungja

    2005-01-01

    The bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis. This study investigated the presence of the BLV in leukemia (179 acute lymphoblastic leukemia, 292 acute myeloid leukemia and 46 chronic myelogenous leukemia cases) and 162 lung cancer patients (139 adenocarcinoma, 23 squamous cell carcinoma) to determine if the BLV is a causative organism of leukemia and lung cancer in Koreans. A BLV infection was confirmed in human cells by PCR using a BLV-8 primer combinati...

  11. Inactivation of RNA viruses by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nonomiya, Takashi; Morimoto, Akinori; Iwatsuki, Kazuo; Tsutsumi, Takamasa (Ministry of Agriculture, Forestry and fisheries, Yokohama, Kanagawa (Japan). Animal Quarantine Service); Ito, Hitoshi; Yamashiro, Tomio; Ishigaki, Isao

    1992-09-01

    Four kinds of RNA viruses, Bluetongue virus (BT), Bovine Virus Diarrhea-Mucosal Disease virus (BVD[center dot]MD), Bovine Respiratory Syncytial virus (RS), Vesicular Stmatitis virus (VS), were subjected to various doses of gamma irradiation to determine the lethal doses. The D[sub 10] values, which are the dose necessary to decimally reduce infectivity, ranged from 1.5 to 3.4 kGy under frozen condition at dry-ice temperature, and they increased to 2.6 to 5.0 kGy under frozen condition at dry-ice temperature. Serum neutralzing antibody titer of Infectious Bovine Rhinotracheitis (IBR) was not adversely changed by the exposure to 36 kGy of gamma-rays under frozen condition. Analysis of electrophoresis patterns of the bovine serum also reveales that the serum proteins were not remarkably affected, even when exposed to 36 kGy of gamma radiation under frozen condition. The results suggested that gamma irradiation under frozen condition is an effective means for inactivating both DNA and RNA viruses without adversely affecting serum proteins and neutralizing antibody titer. (author).

  12. Replication and Transmission of the Novel Bovine Influenza D Virus in a Guinea Pig Model.

    Science.gov (United States)

    Sreenivasan, Chithra; Thomas, Milton; Sheng, Zizhang; Hause, Ben M; Collin, Emily A; Knudsen, David E B; Pillatzki, Angela; Nelson, Eric; Wang, Dan; Kaushik, Radhey S; Li, Feng

    2015-12-01

    Influenza D virus (FLUDV) is a novel influenza virus that infects cattle and swine. The goal of this study was to investigate the replication and transmission of bovine FLUDV in guinea pigs. Following direct intranasal inoculation of animals, the virus was detected in nasal washes of infected animals during the first 7 days postinfection. High viral titers were obtained from nasal turbinates and lung tissues of directly inoculated animals. Further, bovine FLUDV was able to transmit from the infected guinea pigs to sentinel animals by means of contact and not by aerosol dissemination under the experimental conditions tested in this study. Despite exhibiting no clinical signs, infected guinea pigs developed seroconversion and the viral antigen was detected in lungs of animals by immunohistochemistry. The observation that bovine FLUDV replicated in the respiratory tract of guinea pigs was similar to observations described previously in studies of gnotobiotic calves and pigs experimentally infected with bovine FLUDV but different from those described previously in experimental infections in ferrets and swine with a swine FLUDV, which supported virus replication only in the upper respiratory tract and not in the lower respiratory tract, including lung. Our study established that guinea pigs could be used as an animal model for studying this newly emerging influenza virus. Influenza D virus (FLUDV) is a novel emerging pathogen with bovine as its primary host. The epidemiology and pathogenicity of the virus are not yet known. FLUDV also spreads to swine, and the presence of FLUDV-specific antibodies in humans could indicate that there is a potential for zoonosis. Our results showed that bovine FLUDV replicated in the nasal turbinate and lungs of guinea pigs at high titers and was also able to transmit from an infected animal to sentinel animals by contact. The fact that bovine FLUDV replicated productively in both the upper and lower respiratory tracts of guinea pigs

  13. Detection of bluetongue virus in bovine fetuses using the avidin-biotin complex immunoperoxidase method.

    Science.gov (United States)

    Anderson, G A; Phillips, D L; Waldvogel, A S; Osburn, B I

    1989-01-01

    The avidin-biotin complex immunoperoxidase technique was adapted for use in detecting bluetongue virus (BTV) antigens in BTV serotype 11-infected bovine fetuses. Fetuses were infected with BTV serotype 11 at 120 days of gestation and then removed 20 days later by Cesarean section. Blood and tissue samples were collected from each animal and used for virus isolation in embryonated chicken eggs, the immunofluorescent antibody test, and the avidin-biotin complex test. The avidin-biotin complex method successfully identified BTV antigens in both fresh and autolyzed fetal brains. Thus, the avidin-biotin complex immunoperoxidase method has potential as a possible procedure for diagnosing bluetongue disease in aborted bovine fetuses.

  14. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV).

    Science.gov (United States)

    Lawson, James S; Salmons, Brian; Glenn, Wendy K

    2018-01-01

    Although the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma viruses (HPVs), and Epstein-Barr virus (EBV-also known as human herpes virus type 4). Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence. MMTV and human breast cancer-the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer-the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer-the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer-the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal. The influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  15. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV, Bovine Leukemia Virus (BLV, Human Papilloma Virus (HPV, and Epstein–Barr Virus (EBV

    Directory of Open Access Journals (Sweden)

    James S. Lawson

    2018-01-01

    Full Text Available BackgroundAlthough the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV, bovine leukemia virus (BLV, human papilloma viruses (HPVs, and Epstein–Barr virus (EBV-also known as human herpes virus type 4. Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence.The evidenceMMTV and human breast cancer—the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer—the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer—the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer—the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal.ConclusionThe influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  16. Characterization of a chimeric foot-and-mouth disease virus bearing bovine rhinitis B virus leader proteinase

    Science.gov (United States)

    Our recent study has shown that bovine rhinovirus type 2 (BRV2), a new member of the Aphthovirus genus, shares many motifs and sequence similarities with foot-and-mouth disease virus (FMDV). Despite low sequence conservation (36percent amino acid identity) and N- and C-terminus folding differences,...

  17. Human and bovine viruses in the Milwaukee River watershed: Hydrologically relevant representation and relations with environmental variables

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, S.R., E-mail: srcorsi@usgs.gov [U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI 53562 (United States); Borchardt, M.A.; Spencer, S.K. [U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr., Marshfield, WI 54449 (United States); Hughes, P.E.; Baldwin, A.K. [U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI 53562 (United States)

    2014-08-15

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  18. Seroprevalence of viral and bacterial diseases among the bovines in Himachal Pradesh, India

    OpenAIRE

    Shailja Katoch; Shweta Dohru; Mandeep Sharma; Vikram Vashist; Rajesh Chahota; Prasenjit Dhar; Aneesh Thakur; Subhash Verma

    2017-01-01

    Aim: The study was designed to measure the seroprevalence of viral and bacterial diseases: Infectious bovine rhinotracheitis, bovine viral diarrhea, bovine leukemia, bovine parainfluenza, bovine respiratory syncytial disease, brucellosis, and paratuberculosis among bovine of Himachal Pradesh during the year 2013-2015. Materials and Methods: The serum samples were collected from seven districts of state, namely, Bilaspur, Kangra, Kinnaur, Lahul and Spiti, Mandi, Sirmour, and Solan. The sam...

  19. Seroepidemiological study of parainfluenza 3 virus in bovines with reproductive failure, from monteria-colombia

    Directory of Open Access Journals (Sweden)

    César Betancur Hurtado

    2010-12-01

    Full Text Available The virus of the bovine Para influenza 3 is known to be a part of the bovine respiratory complex, along with another infectious agent as the bovine sincitialrespiratory virus, which has not as yet been diagnosed at the geographical area of this study. This work was carried out at Monteria, Colombia, in bovines from 28 farms, with the aim of finding the serological prevalence of the PI-3 virus. Blood samples were collected from 137 females, with a history of reproductive failure, and from 26 bulls from the same farms. The serological test used was the ELISA test. A descriptive analysis was carried out, recording data from positives and from negatives sera. A Chi-square test was used to test for association between the variables: sex, age, reproductive condition and type of production system, with serological reactivity to the PI-3virus. Concerning the results of the study, the point prevalence for the PI-3 virus found was 13, 5%, and under statistical bases, statistical significance was found between age groups and association was not found for the others variables taken in account for the study. According to the results, it was concluded that the PI-3 virus is present in bovines of Monteria, and that a part of the reproductive failure in females of the region, mostly the return to estrus and abortions, is due to the effect of that pathological entity. Finally, the authors recommend more extensive studies on PI-3 Infection, at the different cattle raising areas of Colombia, a country of 24 million heads.

  20. Bovine leukemia virus seroprevalence among cattle presented for slaughter in the United States

    Science.gov (United States)

    Infection with bovine leukemia virus (BLV) results in economic loss due reduced productivity, especially the reduction of milk production and early culling. In the USA.,USA, previous studies in 1996, 1999 and 2007 showed BLV infections widespread, especially in the dairy herds. The goal of this stud...

  1. Fatal Trichuris spp. infection in a Holstein heifer persistently infected with bovine viral diarrhea virus

    Science.gov (United States)

    2004-01-01

    Abstract Whipworms (Trichuris spp.) were identified in the colon of a recently purchased, 10-month-old dairy heifer that died suddenly. A skin test was positive for bovine viral diarrhea virus (BVDV). Signs of BVDV occurred in other heifers in the group, but fecal flotations were negative for whipworm eggs. PMID:15283522

  2. The effects of exposure of susceptible alpacas to alpacas persistently infected with bovine viral diarrhea virus

    Science.gov (United States)

    Reports of bovine viral diarrhea virus (BVDV) infections in alpacas have been increasing over the past several years but much is still unknown about the mechanisms of disease in this species. This report describes research performed to characterize the transmission of BVDV from persistently infected...

  3. Bovine leukemia virus infection in a juvenile alpaca with multicentric lymphoma

    Science.gov (United States)

    Lee, Laura C.; Scarratt, William K.; Buehring, Gertrude C.; Saunders, Geoffrey K.

    2012-01-01

    A 13-month-old alpaca (Vicugna pacos) was presented for mandibular masses and weight loss. Histopathology of biopsy tissue was consistent with lymphoma. The alpaca was euthanized and necropsy revealed lymphoma masses in multiple organs. Immunohistochemistry for T- and B-cell typing was inconclusive. Serology and in-situ polymerase chain reaction hybridization were positive for bovine leukemia virus. PMID:22942445

  4. Long-term clincopathological characteristics of alpacas naturally infected with bovine viral diarrhea virus type Ib

    Science.gov (United States)

    Background: Substantial bovine viral diarrhea virus (BVDV)-related production losses in North American alpaca herds have been associated with BVDV type Ib infection. Objectives: To classify and differentiate the long-term clinicopathological characteristics of BVDV type Ib infection of alpaca crias,...

  5. Seroepidemiological survey of bovine leukemia virus infection in cows in Khuzestan province

    Directory of Open Access Journals (Sweden)

    S Zamanizadeh

    2016-07-01

    Full Text Available Bovine leukemia virus (BLV is a member of the Delta retro virus genus (family Retroviridae and can cause persistent lymphocytosis and lymphosarcoma in cattle that is described as enzootic bovine leucosis (EBL. This disease causes significant economic losses associated with the costs of control and eradication programs. Control programs of leucosis are based on the screening of cows by serological methods and removing the infected cows. The aim of this study was to evaluate the seroprevalence of bovine leukemia virus in cattle in Khuzestan province. Serum samples from 527 cattle were randomly collected in Ahvaz, Baghmalek, Shooshtar, Gotvand, Shadegan, Hendijan, Behbahan, Ramhormoz and Susangerd cities and were examined by ELISA assay. Seroperevalence rate of bovine leukemia virus was 6.64% (95% CI: 4.51-8.77. Statistical analysis indicated no significant association between infection and age or breed. Relative frequency of infection was higher in female cows than males, but this difference was not significant and odds of infection in female cows than males were 2.6 (95% CI: 0.35-19.59. Prevalence rate of infection between industrial (15% and nonindustrial (3.4% husbandry was significantly different (p

  6. Schmallenberg virus detection in bovine semen after experimental infection of bulls.

    NARCIS (Netherlands)

    Poel, van der W.H.M.; Parlevliet, J.M.; Verstraten, E.R.A.M.; Kooi, E.A.; Hakze-van der Honing, van der R.W.; Stockhofe-Zurwieden, N.

    2014-01-01

    To study Schmallenberg virus (SBV) excretion in bovine semen after experimental infection, two bulls were inoculated subcutaneously with a SBV isolate (1 ml Vero cell culture 106 TCID50). After inoculation (at day 0), semen was collected daily from both animals for 21 days and samples were tested

  7. Evaluation of natural transmission of bovine leukaemia virus within dairy herds of Argentina

    NARCIS (Netherlands)

    Monti, G.E.; Frankena, K.; Jong, de M.C.M.

    2007-01-01

    The purpose of this study was to describe patterns of seroconversion to bovine leukaemia virus and to estimate the main parameters needed for future model building. A longitudinal study was carried out between February 1999 and November 2001 in seven commercial dairy farms in Argentina using 1535

  8. Studies on genetic diversity of bovine viral diarrhea viruses in Danish cattle herds

    DEFF Research Database (Denmark)

    Nagy, Abdou; Fahnøe, Ulrik; Rasmussen, Thomas Bruun

    2014-01-01

    Scandinavian countries have successfully pursued bovine viral diarrhea virus (BVDV) eradication without the use of vaccines. In Denmark, control and eradication of BVDV were achieved during the last two decades, but occasionally new BVDV infections are detected in some Danish cattle herds. The aim...

  9. Advances in development and evaluation of bovine herpesvirus 1 vaccines

    NARCIS (Netherlands)

    Oirschot, van J.T.; Kaashoek, M.J.; Rijsewijk, F.A.M.

    1996-01-01

    This review deals with conventional and modern bovine herpesvirus 1 (BHV1) vaccines. Conventional vaccines are widely used to prevent clinical signs of infectious bovine rhinotracheitis. The use of conventional vaccines, however, does not appear to have resulted in reduction of the prevalence of

  10. Single nucleotide polymorphisms in the bovine MHC region of Japanese Black cattle are associated with bovine leukemia virus proviral load.

    Science.gov (United States)

    Takeshima, Shin-Nosuke; Sasaki, Shinji; Meripet, Polat; Sugimoto, Yoshikazu; Aida, Yoko

    2017-04-04

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma that has spread worldwide and causes serious problems for the cattle industry. The BLV proviral load, which represents the BLV genome integrated into host genome, is a useful index for estimating disease progression and transmission risk. Here, we conducted a genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with BLV proviral load in Japanese Black cattle. The study examined 93 cattle with a high proviral load and 266 with a low proviral load. Three SNPs showed a significant association with proviral load. One SNP was detected in the CNTN3 gene on chromosome 22, and two (which were not in linkage disequilibrium) were detected in the bovine major histocompatibility complex region on chromosome 23. These results suggest that polymorphisms in the major histocompatibility complex region affect proviral load. This is the first report to detect SNPs associated with BLV proviral load in Japanese Black cattle using whole genome association study, and understanding host factors may provide important clues for controlling the spread of BLV in Japanese Black cattle.

  11. Control of Bovine Viral Diarrhea Virus in Ruminants

    Science.gov (United States)

    This document is a consensus statement, produced at the request of the American College of Veterinary Internal Medicine that reflects the opinion of an expert panel regarding the prevalence and host range, clinical manifestations, and the potential for ultimate eradication of bovine viral diarrhea v...

  12. Extensive sequence divergence among bovine respiratory syncytial viruses isolated during recurrent outbreaks in closed herds

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Tjørnehøj, Kirsten; Viuff, B.

    2000-01-01

    The nucleotides coding for the extracellular part of the G glycoprotein and the full SH protein of bovine respiratory syncytial virus (BRSV) were sequenced from viruses isolated from numerous outbreaks of BRSV infection. The isolates included viruses isolated from the same herd (closed dairy farms......, however, the most likely explanation was that BRSV was (re)introduced into the herd prior to each new outbreak These findings are highly relevant for the understanding of the transmission patterns of BRSV among calves and human respiratory syncytial virus among humans....... and veal calf production units) in different years and from all confirmed outbreaks in Denmark within a short period. The results showed that identical viruses were isolated within a herd during outbreaks and that viruses from recurrent infections varied by up to 11% in sequence even in closed herds...

  13. Identification and Characterization of Bovine Viral Diarrhea Virus from Indonesian Cattle (IDENTIFIKASI DAN KARAKTERISASI VIRUS BOVINE VIRAL DIARRHEA DARI SAPI INDONESIA

    Directory of Open Access Journals (Sweden)

    Muharam Saepulloh

    2015-05-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an important viral disease, which a ubiquitous pathogen ofcattle with worldwide economic importance and due to its misdiagnose with other viruses. The goal of thecurrent study was to identify and characterize of BVDV by reverse transcriptase polymerase chainreaction (RT-PCR and followed by sequence genome analyses. Blood, feces, and semen samples werecollected from 588 selected cattle from animals suffering from diarrhea and respiratory manifestation. RTPCRresults showed that the 69 (11.74% samples were positive to BVDV. Further molecularcharacterization was conducted only with 17 PCR positive samples. The results indicated the 17 IndonesianBVD virus isolates were belonging to the genotype-1 of BVDV (BVDV-1 based on sequence analysis anda phylogenetic relationship between Indonesian BVDV isolates and BVDV in the world. This finding is thefirst report of BVD-1 circulated in Indonesian cattle.

  14. In Vitro Evolution of Bovine Foamy Virus Variants with Enhanced Cell-Free Virus Titers and Transmission

    Directory of Open Access Journals (Sweden)

    Qiuying Bao

    2015-11-01

    Full Text Available Virus transmission is essential for spreading viral infections and is a highly coordinated process which occurs by cell-free transmission or cell–cell contact. The transmission of Bovine Foamy Virus (BFV is highly cell-associated, with undetectable cell-free transmission. However, BFV particle budding can be induced by overexpression of wild-type (wt BFV Gag and Env or artificial retargeting of Gag to the plasma membrane via myristoylation membrane targeting signals, closely resembling observations in other foamy viruses. Thus, the particle release machinery of wt BFV appears to be an excellent model system to study viral adaption to cell-free transmission by in vitro selection and evolution. Using selection for BFV variants with high cell-free infectivity in bovine and non-bovine cells, infectivity dramatically increased from almost no infectious units to about 105–106 FFU (fluorescent focus forming units/mL in both cell types. Importantly, the selected BFV variants with high titer (HT cell-free infectivity could still transmit via cell-cell contacts and were neutralized by serum from naturally infected cows. These selected HT–BFV variants will shed light into virus transmission and potential routes of intervention in the spread of viral infections. It will also allow the improvement or development of new promising approaches for antiretroviral therapies.

  15. bovine

    African Journals Online (AJOL)

    of various breeds under local conditions of management. (Hale, 1974b). AdditionaIly, this procedure has been used to assess the production of LH by the bovine anterior pituitary in vitro and to study the relationships between this production and the activity of the pineal- hypothalamic axis (Hayes, Knight & Symington, 1974;.

  16. Preimplantation bovine embryos: Pathobiology of Haemophilus somnus exposure and resistance mechanisms to vesicular stomatitis virus

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, M.S.

    1988-01-01

    Preimplantation bovine embryos were exposed in vitro to H. somnus to determine if the bacteria would adhere to zona pellucida-intact (ZP-I) embryos or adhere to or infect ZP-free embryos. The effect of H. somnus on embryonic development in vitro was also investigated. Electrophoretic comparisons of outer membrane proteins of H. somnus revealed 2 major protein bands common to 10 H. somnus isolates. A monoclonal antibody produced against the outer membrane proteins reacted to one of the major protein bands. The sensitivity of a nucleic acid probe for detection of vesicular stomatitis virus (VSV) was validated in cells in culture and used to determine if the synthetic double-stranded complex of polyriboinosinic and polyribocytidylic acids (poly I:C) would induce viral resistance in cultured bovine embryos. Two {sup 32}P-nick translated probes of high specific activity prepared from plasmids containing nucleic acid sequences of VSV virus were employed for viral mRNA detection in the tissue culture cells using a DNA-hybridization dot-blot technique. Using one of the probes, the technique was applied to detect differences in viral replication between four groups of bovine embryos (nonexposed, exposed to VSV virus, poly I:C-treated, and poly I:C-treated and exposed to VSV). The nucleic acid probe was sufficiently sensitive to detect differences in quantities of VSV mRNA among embryo treatment groups, resulting in the demonstration that resistance to viral infection was induced in day 9 bovine embryos.

  17. Bovine viral diarrhea virus fetal persistent infection after immunization with a contaminated modified-live virus vaccine.

    Science.gov (United States)

    Palomares, Roberto A; Marley, Shonda M; Givens, M Daniel; Gallardo, Rodrigo A; Brock, Kenny V

    2013-05-01

    The objective was to determine whether a multivalent modified-live virus vaccine containing noncytopathic bovine viral diarrhea virus (BVDV) administered off-label to pregnant cattle can result in persistently infected fetuses and to assess whether vaccinal strains can be shed to unvaccinated pregnant cattle commingling with vaccinates. Nineteen BVDV-naïve pregnant heifers were randomly assigned to two groups: cattle vaccinated near Day 77 of gestation with modified-live virus vaccine containing BVDV-1a (WRL strain), bovine herpes virus-1, parainfluenza 3, and bovine respiratory syncytial virus (Vx group; N = 10) or control unvaccinated cattle (N = 9). During the course of the study a voluntary stop-sale/recall was conducted by the manufacturer because of the presence of a BVDV contaminant in the vaccine. At Day 175 of gestation, fetuses were removed by Cesarean section and fetal tissues were submitted for virus isolation, and quantitative reverse transcription polymerase chain reaction using BVDV-1- and BVDV-2-specific probes. Nucleotide sequencing of viral RNA was performed for quantitative reverse transcription polymerase chain reaction-positive samples. Two vaccinated and two control heifers aborted their pregnancies, but their fetuses were unavailable for BVDV testing. Virus was isolated from all eight fetuses in the Vx group heifers and from 2 of 7 fetuses in the control unvaccinated heifers. Only BVDV-2 was detected in fetuses from the Vx group, and only BVDV-1 was detected in the two fetuses from the control group. Both BVDV-1 and BVDV-2 were detected in the vaccine. In conclusion, vaccination of pregnant heifers with a contaminated modified-live BVDV vaccine resulted in development of BVDV-2 persistently infected fetuses in all tested vaccinated animals. Furthermore, BVDV was apparently shed to unvaccinated heifers causing fetal infections from which only BVDV-1 was detected. Published by Elsevier Inc.

  18. Clinical and subclinical bovine leukemia virus infection in a dairy cattle herd in Zambia.

    Science.gov (United States)

    Pandey, Girja S; Simulundu, Edgar; Mwiinga, Danstan; Samui, Kenny L; Mweene, Aaron S; Kajihara, Masahiro; Mangani, Alfred; Mwenda, Racheal; Ndebe, Joseph; Konnai, Satoru; Takada, Ayato

    2017-04-01

    Bovine leukemia virus (BLV) causes enzootic bovine leucosis (EBL) and is responsible for substantial economic losses in cattle globally. However, information in Africa on the disease is limited. Here, based on clinical, hematological, pathological and molecular analyses, two clinical cases of EBL were confirmed in a dairy cattle herd in Zambia. In contrast, proviral DNA was detected by PCR in five apparently healthy cows from the same herd, suggesting subclinical BLV infection. Phylogenetic analysis of the env gene showed that the identified BLV clustered with Eurasian genotype 4 strains. This is the first report of confirmed EBL in Zambia.

  19. First Molecular Characterization of Bovine Leukemia Virus Infections in the Caribbean

    OpenAIRE

    Yang, Yi; Kelly, Patrick John; Bai, Jianfa; Zhang, Rong; Wang, Chengming

    2016-01-01

    Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis. To investigate the presence and genetic variability of BLV in the Caribbean for the first time, we preformed fluorescence resonance energy transfer (FRET)-PCR for the pol of BLV on DNA from whole blood of cattle from Dominica, Montserrat, Nevis and St. Kitts. Standard PCRs with primers for the env were used for phylogenetic analysis of BLV in positive animals. We found FRET-PCR positive cattle (12.6%, 41/325) on...

  20. Metagenomic characterization of the virome associated with bovine respiratory disease in feedlot cattle identified novel viruses and suggests an etiologic role for influenza D virus.

    Science.gov (United States)

    Mitra, Namita; Cernicchiaro, Natalia; Torres, Siddartha; Li, Feng; Hause, Ben M

    2016-08-01

    Bovine respiratory disease (BRD) is the most costly disease affecting the cattle industry. The pathogenesis of BRD is complex and includes contributions from microbial pathogens as well as host, environmental and animal management factors. In this study, we utilized viral metagenomic sequencing to explore the virome of nasal swab samples obtained from feedlot cattle with acute BRD and asymptomatic pen-mates at six and four feedlots in Mexico and the USA, respectively, in April-October 2015. Twenty-one viruses were detected, with bovine rhinitis A (52.7 %) and B (23.7 %) virus, and bovine coronavirus (24.7 %) being the most commonly identified. The emerging influenza D virus (IDV) tended to be significantly associated (P=0.134; odds ratio=2.94) with disease, whereas viruses commonly associated with BRD such as bovine viral diarrhea virus, bovine herpesvirus 1, bovine respiratory syncytial virus and bovine parainfluenza 3 virus were detected less frequently. The detection of IDV was further confirmed using a real-time PCR assay. Nasal swabs from symptomatic animals had significantly more IDV RNA than those collected from healthy animals (P=0.04). In addition to known viruses, new genotypes of bovine rhinitis B virus and enterovirus E were identified and a newly proposed species of bocaparvovirus, Ungulate bocaparvovirus 6, was characterized. Ungulate tetraparvovirus 1 was also detected for the first time in North America to our knowledge. These results illustrate the complexity of the virome associated with BRD and highlight the need for further research into the contribution of other viruses to BRD pathogenesis.

  1. Bovine Lactoferrin Inhibits Toscana Virus Infection by Binding to Heparan Sulphate

    Science.gov (United States)

    Pietrantoni, Agostina; Fortuna, Claudia; Remoli, Maria Elena; Ciufolini, Maria Grazia; Superti, Fabiana

    2015-01-01

    Toscana virus is an emerging sandfly-borne bunyavirus in Mediterranean Europe responsible for neurological diseases in humans. It accounts for about 80% of paediatric meningitis cases during the summer. Despite the important impact of Toscana virus infection-associated disease on human health, currently approved vaccines or effective antiviral treatments are not available. In this research, we have analyzed the effect of bovine lactoferrin, a bi-globular iron-binding glycoprotein with potent antimicrobial and immunomodulatory activities, on Toscana virus infection in vitro. Our results showed that lactoferrin was capable of inhibiting Toscana virus replication in a dose-dependent manner. Results obtained when lactoferrin was added to the cells during different phases of viral infection showed that lactoferrin was able to prevent viral replication when added during the viral adsorption step or during the entire cycle of virus infection, demonstrating that its action takes place in an early phase of viral infection. In particular, our results demonstrated that the anti-Toscana virus action of lactoferrin took place on virus attachment to the cell membrane, mainly through a competition for common glycosaminoglycan receptors. These findings provide further insights on the antiviral activity of bovine lactoferrin. PMID:25643293

  2. Bovine Lactoferrin Inhibits Toscana Virus Infection by Binding to Heparan Sulphate

    Directory of Open Access Journals (Sweden)

    Agostina Pietrantoni

    2015-01-01

    Full Text Available Toscana virus is an emerging sandfly-borne bunyavirus in Mediterranean Europe responsible for neurological diseases in humans. It accounts for about 80% of paediatric meningitis cases during the summer. Despite the important impact of Toscana virus infection-associated disease on human health, currently approved vaccines or effective antiviral treatments are not available. In this research, we have analyzed the effect of bovine lactoferrin, a bi-globular iron-binding glycoprotein with potent antimicrobial and immunomodulatory activities, on Toscana virus infection in vitro. Our results showed that lactoferrin was capable of inhibiting Toscana virus replication in a dose-dependent manner. Results obtained when lactoferrin was added to the cells during different phases of viral infection showed that lactoferrin was able to prevent viral replication when added during the viral adsorption step or during the entire cycle of virus infection, demonstrating that its action takes place in an early phase of viral infection. In particular, our results demonstrated that the anti-Toscana virus action of lactoferrin took place on virus attachment to the cell membrane, mainly through a competition for common glycosaminoglycan receptors. These findings provide further insights on the antiviral activity of bovine lactoferrin.

  3. Expression Profiles of Bovine Adeno-Associated Virus and Avian Adeno-Associated Virus Display Significant Similarity to That of Adeno-Associated Virus Type 5

    OpenAIRE

    Qiu, Jianming; Cheng, Fang; Pintel, David J.

    2006-01-01

    We present the first detailed expression profiles of nonprimate-derived adeno-associated viruses, namely, bovine adeno-associated virus (B-AAV) and avian adeno-associated virus (A-AAV), which were obtained after the infection of cell lines derived from their natural hosts. In general, the profiles of B-AAV and A-AAV were quite similar to that of AAV5; however, both exhibited features found for AAV2 as well. Like adeno-associated virus type 5 (AAV5), B-AAV and A-AAV utilized an internal polyad...

  4. Preparation of quadri-subtype influenza virus-like particles using bovine immunodeficiency virus gag protein

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakova, Irina; Hidajat, Rachmat; Hamilton, Garrett; Horn, Noah; Nickols, Brian; Prather, Raphael O. [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD (United States); Tumpey, Terrence M. [Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD (United States)

    2016-01-15

    Influenza VLPs comprised of hemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins have been previously used for immunological and virological studies. Here we demonstrated that influenza VLPs can be made in Sf9 cells by using the bovine immunodeficiency virus gag (Bgag) protein in place of M1. We showed that Bgag can be used to prepare VLPs for several influenza subtypes including H1N1 and H10N8. Furthermore, by using Bgag, we prepared quadri-subtype VLPs, which co-expressed within the VLP the four HA subtypes derived from avian-origin H5N1, H7N9, H9N2 and H10N8 viruses. VLPs showed hemagglutination and neuraminidase activities and reacted with specific antisera. The content and co-localization of each HA subtype within the quadri-subtype VLP were evaluated. Electron microscopy showed that Bgag-based VLPs resembled influenza virions with the diameter of 150–200 nm. This is the first report of quadri-subtype design for influenza VLP and the use of Bgag for influenza VLP preparation. - Highlights: • BIV gag protein was configured as influenza VLP core component. • Recombinant influenza VLPs were prepared in Sf9 cells using baculovirus expression system. • Single- and quadri-subtype VLPs were prepared by using BIV gag as a VLP core. • Co-localization of H5, H7, H9, and H10 HA was confirmed within quadri-subtype VLP. • Content of HA subtypes within quadri-subtype VLP was determined. • Potential advantages of quadri-subtype VLPs as influenza vaccine are discussed.

  5. Anti-bovine herpesvirus and anti-bovine viral diarrhea virus antibody responses in pregnant Holstein dairy cattle following administration of a multivalent killed virus vaccine.

    Science.gov (United States)

    Smith, Billy I; Rieger, Randall H; Dickens, Charlene M; Schultz, Ronald D; Aceto, Helen

    2015-10-01

    To determine the effect of a commercially available multivalent killed virus vaccine on serum neutralizing (SN) and colostrum neutralizing (CN) antibodies against bovine herpesvirus (BHV) type 1 and bovine viral diarrhea virus (BVDV) types 1 and 2 in pregnant dairy cattle. 49 Holstein dairy cattle. PROCEDURES :25 cattle were vaccinated (IM injection) at least 60 days prior to calving (ie, at the end of the lactation period or according to the expected calving date for heifers) and again 5 weeks later. The remaining 24 cattle were not vaccinated (control group). Titers of SN antibodies were measured at the 5-week time point. Titers of SN and CN antibodies were measured at parturition. 5 weeks after initial vaccination, titers of SN antibodies against BHV-1 and BVDV types 1 and 2 were 1:512, 1:128, and 1:2,048, respectively, in vaccinates and 1:64, 1:128, and 1:64, respectively, in unvaccinated controls. Equivalent SN antibody titers at parturition were 1:256, 1:64, and 1:512, respectively, in vaccinates and 1:128, 1:128, and 1:64, respectively, in controls. Median titers of CN antibodies against BHV-1 and BVDV types 1 and 2 were 1:1,280, 1:10,240, and 1:20,480, respectively, in vaccinates and 1:80, 1:1,280, and 1:2,560, respectively, in controls. Titers of antibodies against viral respiratory pathogens were significantly enhanced in both serum (BHV-1 and BVDV type 2) and colostrum (BHV-1 and BVDV types 1 and 2) in cattle receiving a killed virus vaccine (with no adverse reactions) before parturition. To maximize protection of bovine neonates, this method of vaccination should be considered.

  6. Recombinant Jembrana disease virus proteins as antigens for the detection of antibody to bovine lentiviruses.

    Science.gov (United States)

    Burkala, E J; Narayani, I; Hartaningsih, N; Kertayadnya, G; Berryman, D I; Wilcox, G E

    1998-09-01

    Jembrana disease virus (JDV) is a recently identified bovine lentivirus causing an acute severe disease syndrome in banteng cattle (Bos javanicus) and a milder disease syndrome in Bos taurus cattle in Indonesia. The virus is closely related genetically to the previously identified bovine lentivirus, bovine immunodeficiency virus (BIV). Recombinant clones were produced which contained the capsid (CA) and transmembrane (TM) subunits of the respective gag and env open reading frames of JDV. The proteins were expressed as fusions to the glutathione-s-transferase (GST) enzyme in Escherichia coli and purification was achieved using affinity chromatography via immobilized reduced glutathione. The soluble recombinant CA and TM antigens of JDV were reacted in western immunoblots with both serum antibodies from JDV-infected Bos javanicus cattle and Bos taurus cattle immunized with BIV. The recombinant CA protein of JDV reacted equally well with both the JDV and BIV antisera. The recombinant TM protein of JDV also reacted with antibody from the JDV infected cattle and with the BIV antisera. The results indicated conservation of immunogenic epitopes of the CA and TM proteins of the two viruses. The production of the recombinant proteins should enable the development of rapid and sensitive serological tests for JDV and BIV, and tools for further study of the immune response to JDV and the differential epidemiology of JDV infections in cattle.

  7. Perosomus elumbis in a Holstein calf infected with bovine viral diarrhea virus.

    Science.gov (United States)

    Karakaya, E; Alpay, G; Yilmazbas-Mecitoglu, G; Alasonyalilar-Demirer, A; Akgül, B; Inan-Ozturkoglu, S; Ozyigit, M O; Seyrek-Intas, D; Seyrek-Intas, K; Yesilbag, K; Gumen, A; Keskin, A

    2013-01-01

    The detection of bovine viral diarrhea virus (BVDV) in a female Holstein calf presented with perosomus elumbis, a congenital anomaly, is reported here. A cow with dystocia was evaluated and an abnormal dead calf was detected during vaginal examination. The calf was retrieved via caesarean section and exhibited abnormalities characteristic of PE, such as vertebral and pelvic malformations. These abnormalities were further confirmed using radiographic and necropsy examinations. At necropsy cerebellar hypoplasia was an additional finding, which is a typical lesion associated with bovine virus diarrhea (BVD). Several tissue samples from the calf were tested for the presence of antigens of BVDV and bovine herpesvirus-1 (BHV-1) by ELISA. In addition, sera samples from the dam and calf were tested for the presence of antibodies against BVDV, BHV-1, and bluetongue disease virus (BTV) using a virus neutralization assay. Results indicated that the calf was congenitally infected with BVDV, whereas there was no evidence for the presence of BHV-1 and BTV. In the dam's serum no antibodies against BVDV, BHV-1, and BTV were detected. Even though the etiology of perosomus elumbis is unknown, BVDV, which causes fetal anomalies at early gestation in cows, may have been a contributing factor in this case.

  8. Chimeric Bovine Respiratory Syncytial Virus with Attachment and Fusion Glycoproteins Replaced by Bovine Parainfluenza Virus Type 3 Hemagglutinin-Neuraminidase and Fusion Proteins

    Science.gov (United States)

    Stope, Matthias B.; Karger, Axel; Schmidt, Ulrike; Buchholz, Ursula J.

    2001-01-01

    Chimeric bovine respiratory syncytial viruses (BRSV) expressing glycoproteins of bovine parainfluenza virus type 3 (BPIV-3) instead of BRSV glycoproteins were generated from cDNA. In the BRSV antigenome cDNA, the open reading frames of the major BRSV glycoproteins, attachment protein G and fusion protein F, were replaced individually or together by those of the BPIV-3 hemagglutinin-neuraminidase (HN) and/or fusion (F) glycoproteins. Recombinant virus could not be recovered from cDNA when the BRSV F open reading frame was replaced by the BPIV-3 F open reading frame. However, cDNA recovery of the chimeric virus rBRSV-HNF, with both glycoproteins replaced simultaneously, and of the chimeric virus rBRSV-HN, with the BRSV G protein replaced by BPIV-3 HN, was successful. The replication rates of both chimeras were similar to that of standard rBRSV. Moreover, rBRSV-HNF was neutralized by antibodies specific for BPIV-3, but not by antibodies specific to BRSV, demonstrating that the BRSV glycoproteins can be functionally replaced by BPIV-3 glycoproteins. In contrast, rBRSV-HN was neutralized by BRSV-specific antisera, but not by BPIV-3 specific sera, showing that infection of rBRSV-HN is mediated by BRSV F. Hemadsorption of cells infected with rBRSV-HNF and rBRSV-HN proved that BPIV-3 HN protein expressed by rBRSV is functional. Colocalization of the BPIV-3 glycoproteins with BRSV M protein was demonstrated by confocal laser scan microscopy. Moreover, protein analysis revealed that the BPIV-3 glycoproteins were present in chimeric virions. Taken together, these data indicate that the heterologous glycoproteins were not only expressed but were incorporated into the envelope of recombinant BRSV. Thus, the envelope glycoproteins derived from a member of the Respirovirus genus can together functionally replace their homologs in a Pneumovirus background. PMID:11533200

  9. Isolation of foot-and-mouth disease virus specific bovine antibody fragments from phage display libraries.

    Science.gov (United States)

    Kim, Yong Joo; Lebreton, Françoise; Kaiser, Claude; Crucière, Catherine; Rémond, Michelle

    2004-03-01

    Foot-and-mouth disease virus (FMDV) is an important veterinary pathogen which can cause widespread epidemics. Due to the high antigenic variability of FMDV, it is important to undertake mutation analysis under immunological pressure. To study the bovine antibody response at a molecular level, phage display technology was used to produce bovine anti-FMDV Fabs. CH1-VH chains with FMDV specific binding could be isolated after selection from a library made from vaccinated cattle. Though their involvement in the bovine immune response remains to be ascertained, it is planned to express the five different selected VH domains in bacterial or insect systems as sequence homologies with integrin beta6 chain could shed light on the basis of FMDV type receptor specificities.

  10. First Results in the Use of Bovine Ear Notch Tag for Bovine Viral Diarrhoea Virus Detection and Genetic Analysis.

    Directory of Open Access Journals (Sweden)

    Christian Quinet

    Full Text Available Infection due to bovine viral diarrhoea virus (BVDV is endemic in most cattle-producing countries throughout the world. The key elements of a BVDV control programme are biosecurity, elimination of persistently infected animals and surveillance. Bovine viral diarrhoea (BVD is a notifiable disease in Belgium and an official eradication programme started from January 2015, based on testing ear notches sampled during the official identification and registration of calves at birth. An antigen-capture ELISA test based on the detection of BVDV Erns protein is used. Ear notch sample may also be used to characterize the genotype of the calf when appropriate elution/dilution buffer is added. Both BVDV antigen-ELISA analysis and animal traceability could be performed.With regards to the reference protocol used in the preparation of ear notch samples, alternative procedures were tested in terms of BVDV analytic sensitivity, diagnostic sensitivity and specificity, as well as quality and purity of animal DNA.The Allflex DNA Buffer D showed promising results in BVDV diagnosis and genome analyses, opening new perspectives for the livestock industry by the exploitation of the animal genome. Due to the high number of cattle involved in the Belgian official BVDV eradication programme based on ear notch tags sample, a large database on both BVDV status of newborn calves and cattle genome could be created for subsequent different uses (e.g. traceability, determination of parentage, genetic signatures throughout the genome associated with particular traits evolving through a more integrated animal health.

  11. Induction of C-type virus in cell lines derived from calf form bovine lymphosarcoma.

    Science.gov (United States)

    Onuma, M; Okada, K; Yamazaki, Y; Fujinaga, K; Fujimoto, Y; Mikami, T

    1978-01-01

    For attempt to detect an etiological agent, cultures from bovine lymphosarcoma cases (adult form (ALS), calf form (CLS), and thymic form (TLS) were maintained in vitro for over a 18 month period. In two cultures from ALS, bovine leukemia virus (BLV) antigen was constantly detected. On the other hand, BLV antigen remained negative in cultures from two CLS and one TLS cases up to 40 passages. The RNA dependent DNA polymerase activities in these cultures were also negative. Treatment of a culture from CLS (3178) originated from liver tumor with 5'-iodo-2'-deoxyuridine (IdU) and dexamethasone (DXM) resulted in production of an agent serologically and morphologically similar to BLV and in alteration of cell morphology. No virus was detected in culture from TLS after treatment with IdU and DXM.

  12. Bovine respiratory syncytial virus (BRSV) pneumonia in beef calf herds despite vaccination

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Tegtmeier, C.; Pedersen, E.

    2001-01-01

    The present report describes the clinical, pathological, serological and virological findings in calves from 2 larger Danish beef herds experiencing outbreaks of pneumonia. The calves had been vaccinated with an inactivated bovine respiratory syncytial virus (BRSV) vaccine 2 months prior to the o...... beef herds failed to protect the calves against severe or even fatal BRSV mediated respiratory disease 2 months later.......The present report describes the clinical, pathological, serological and virological findings in calves from 2 larger Danish beef herds experiencing outbreaks of pneumonia. The calves had been vaccinated with an inactivated bovine respiratory syncytial virus (BRSV) vaccine 2 months prior...... to the outbreak. The clinical signs comprised nasal discharge, pyrexia, cough and increased respiratory rates. A total of 28 calves died in the 2 herds. The laboratory investigations revealed that BRSV was involved and probably initiated both outbreaks. Furthermore, the serological results suggested...

  13. Viral antigen production in cell cultures on microcarriers Bovine parainfluenza 3 virus and MDBK cells.

    Science.gov (United States)

    Conceição, M M; Tonso, A; Freitas, C B; Pereira, C A

    2007-11-07

    Viral antigens can be obtained from infected mammalian cells cultivated on microcarriers. We have worked out parameters for the production of bovine parainfluenza 3 (PI-3) virus by Mandin-Darby Bovine Kidney (MDBK) cells cultivated on Cytodex 1 microcarriers (MCs) in spinners flasks and bioreactor using fetal bovine serum (FBS) supplemented Eagle minimal essential medium (Eagle-MEM). Medium renewal during the cell culture was shown to be crucial for optimal MCs loading (>90% MCs with confluent cell monolayers) and cell growth (2.5 x 10(6)cells/mL and a micro(x) (h(-1)) 0.05). Since cell cultures performed with lower amount of MCs (1g/L), showed good performances in terms of cell loading, we designed batch experiments with a lower concentration of MCs in view of optimizing the cell growth and virus production. Studies of cell growth with lower concentrations of MCs (0.85 g/L) showed that an increase in the initial cell seeding (from 7 to 40 cells/MC) led to a different kinetic of initial cell growth but to comparable final cell concentrations ((8-10)x10(5)cells/mL at 120 h) and cell loading (210-270 cells/MC). Upon infection with PI-3 virus, cultures showed a decrease in cell growth and MC loading directly related to the multiplicity of infection (moi) used for virus infection. Infected cultures showed also a higher consumption of glucose and production of lactate. The PI-3 virus and PI-3 antigen production among the cultures was not significantly different and attained values ranging from, respectively, 7-9 log(10) TCID(50)/mL and 1.5-2.2 OD. The kinetics of PI-3 virus production showed a sharp increase during the first 24h and those of PI-3 antigen increased after 24h. The differential kinetics of PI-3 virus and PI-3 antigen can be explained by the virus sensitivity to temperature. In view of establishing a protocol of virus production and based on the previous experiments, MDBK cell cultures performed under medium perfusion in a bioreactor of 1.2L were infected

  14. Serological and molecular detection of bovine leukemia virus in cattle in Iraq

    OpenAIRE

    Khudhair, Yahia Ismail; Hasso, Saleem Amin; Yaseen, Nahi Y.; Al-Shammari, Ahmed Majeed

    2016-01-01

    Bovine leukemia virus (BLV) is highly endemic in many countries, including Iraq, and it impacts the beef and dairy industries. The current study sought to determine the percentage of BLV infection and persistent lymphocytosis (PL) in cattle in central Iraq. Hematological, serological, and molecular observations in cross breeds and local breeds of Iraqi cattle naturally infected with BLV were conducted in the peripheral blood mononuclear cells of 400 cattle (340 cross breed and 60 local breed)...

  15. DETECTION OF BOVINE RESPIRATORY SYNCYTIAL VIRUS IN CALVES OF RIO GRANDE DO SUL, BRAZIL

    Directory of Open Access Journals (Sweden)

    Ivan Paulo Demartini Gonçalves

    1993-12-01

    Full Text Available During 20 months of the 1987-1990 period, lung tissue samples from 351 calves were obtained at a slaughterhouse. These calves were from counties nearby Porto Alegre. The direct and indirect fluorescent antibody tests (FAT using polyclonal and monoclonal antibody conjugates were performed on frozen lung sections. Eighteen (5.13% of the calf lung samples were positive for the Bovine Respiratory Syncytial Virus (BRSV. The BRSV was isolated from FAT positive samples.

  16. Genetic diversity of bovine viral diarrhoea viruses (BVDV) in Denmark during a 10-year eradication period

    DEFF Research Database (Denmark)

    Uttenthal, Åse; Stadejek, T.; Nylin, B.

    2005-01-01

    A 243 base-pair fragment of the 5'- untranslated region (5'-UTR) of bovine viral diarrhoea virus (BVDV) was RT-PCR amplified from tissue samples (after one passage) or from plasma collected from Danish cattle in 1962 (1), 1993 (7), or in 2002-03 (28) when BVD was almost extinct as a result of a 6...... subtype, the samples collected in 2002-2003 belonged to Id (22 samples), 1b (5 samples) and le (I sample) subtypes. In five herds, materials from two animals were obtained for PCR analysis. In four of five herds the sequences of the two viruses were identical, but in one herd the obtained sequences...

  17. Reciprocal complementation of bovine parainfluenza virus type 3 lacking either the membrane or fusion gene.

    Science.gov (United States)

    Takada, Marina; Matsuura, Ryosuke; Kokuho, Takehiro; Tsuboi, Takamitsu; Kameyama, Ken-Ichiro; Takeuchi, Kaoru

    2017-11-01

    Two defective bovine parainfluenza virus type 3 (BPIV3) strains were generated, one lacking the membrane (M) protein gene and expressing EGFP (ΔM-EGFP) and the other lacking the fusion (F) protein gene and expressing mStrawberry (ΔF-mSB), by supplying deficient proteins in trans. When Madin-Darby bovine kidney (MDBK) cells were co-infected with ΔM-EGFP and ΔF-mSB at a multiplicity of infection (MOI) of 0.1, complemented viruses were easily obtained. Complemented viruses grew as efficiently as wild-type BPIV3 and could be passaged in MDBK cell cultures even at an MOI of 0.01, possibly due to multiploid virus particles containing genomes of both ΔM-EGFP and ΔF-mSB. This reciprocal complementation method using two defective viruses would be useful to express large or multiple proteins in cell cultures using paramyxovirus vectors. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Development and trial of a bovine herpesvirus 1-thymidine kinase deletion virus as a vaccine.

    Science.gov (United States)

    Smith, G A; Young, P L; Rodwell, B J; Kelly, M A; Storie, G J; Farrah, C A; Mattick, J S

    1994-03-01

    An Australian bovine herpesvirus 1 (BHV1) isolate with a defined (427 base pair) deletion in the protein coding region of the thymidine kinase gene was obtained by standard marker rescue procedures. After selection in the presence of the nucleotide analogue 5'-iodo-deoxy-uridine the virus was analysed by hybridisation with three differential oligonucleotide probes, restriction endonuclease profile studies and DNA sequence analysis. The virus elicited an immune response in recipient animals after either intramuscular or intravenous administration and produced no significant deleterious side-effects when administered at a dose sufficient to stimulate the host immune response. The safety and immunogenicity of the recombinant BHV1 virus 39B1 were similar to those reported for other registered BHV1 vaccines and the virus would appear to be suitable for the production of a vaccine seed lot and more exhaustive field trials as a prelude to commercial vaccine production and registration.

  19. Replication and clearance of respiratory syncytial virus - Apoptosis is an important pathway of virus clearance after experimental infection with bovine respiratory syncytial virus

    DEFF Research Database (Denmark)

    Viuff, B.; Tjørnehøj, Kirsten; Larsen, Lars Erik

    2002-01-01

    Human respiratory syncytial virus is an important cause of severe respiratory disease in young children, the elderly, and in immunocompromised adults. Similarly, bovine respiratory syncytial virus (BRSV) is causing severe, sometimes fatal, respiratory disease in calves. Both viruses are pneumovirus...... and the infections with human respiratory syncytial. virus and BRSV have similar clinical, pathological, and epidemiological characteristics. In this study we used experimental BRSV infection in calves as a model of respiratory syncytial virus infection to demonstrate important aspects of viral replication...... and clearance in a natural target animal. Replication of BRSV was demonstrated in the luminal part of the respiratory epithelial cells and replication in the upper respiratory tract preceded the replication in the lower respiratory tract. Virus excreted to the lumen of the respiratory tract was cleared...

  20. Molecular diversity of bovine viral diarrhea virus in uruguay.

    Science.gov (United States)

    Maya, L; Puentes, R; Reolón, E; Acuña, P; Riet, F; Rivero, R; Cristina, J; Colina, R

    2016-03-01

    Bovine viral diarrhea (BVD) affects bovine production and reproduction causing significant economic losses all over the world. Two viral species has been recognized: BVDV-1 and BVDV-2, both distributed worldwide. Recently, novel specie of BVDV named HoBi-like pestivirus was discovered. The presence of BVDV was confirmed in 1996 in Uruguay, however, does not exist until today a schedule of compulsory vaccination along the country. Serological studies with samples from all Uruguayan herds were performed during 2000 and 2001 demonstrating that all of them were seropositive to BVDV with a mean prevalence of 69%. In addition, there have been no new studies done since those previously described and it is important to mention that the genetic diversity of BVD has never been described in Uruguay. Nowadays, there is strongly suspect that BVDV is one of the most important causes of reproductive failures in our herds. The aim of this study was to describe for the first time in Uruguay the genetic diversity of BVDV with samples collected from different regions along the country. Serological status of 390 non-vaccinated animals against BVDV with reproductive problems from farms of Rivera, Tacuarembó and Florida departments of Uruguay were studied. All herds were seropositive to BVDV and high proportion of animals were positive (298/390), while 4.1% (16/390) of the animals were positive to Antigen Capture ELISA test and Real Time PCR. Phylogenetic analysis performed with concatenated sequences from the 5'UTR and Npro genomic regions revealed that BVDV-1 and BVDV-2 are infecting our herds, being BVDV-1 the most frequently found. The major subtype was BVDV-1a, followed by BVDV-1i and BVDV-2b. This is the first study that describes the genetic diversity of BVDV in Uruguay and it will contribute to the elaboration of sanitization programs.

  1. Occurrence and phylogenetic analysis of bovine respiratory syncytial virus in outbreaks of respiratory disease in Norway.

    Science.gov (United States)

    Klem, Thea B; Rimstad, Espen; Stokstad, Maria

    2014-01-14

    Bovine respiratory syncytial virus (BRSV) is one of the major pathogens involved in the bovine respiratory disease (BRD) complex. The seroprevalence to BRSV in Norwegian cattle herds is high, but its role in epidemics of respiratory disease is unclear. The aims of the study were to investigate the etiological role of BRSV and other respiratory viruses in epidemics of BRD and to perform phylogenetic analysis of Norwegian BRSV strains. BRSV infection was detected either serologically and/or virologically in 18 (86%) of 21 outbreaks and in most cases as a single viral agent. When serology indicated that bovine coronavirus and/or bovine parainfluenza virus 3 were present, the number of BRSV positive animals in the herd was always higher, supporting the view of BRSV as the main pathogen. Sequencing of the G gene of BRSV positive samples showed that the current circulating Norwegian BRSVs belong to genetic subgroup II, along with other North European isolates. One isolate from an outbreak in Norway in 1976 was also investigated. This strain formed a separate branch in subgroup II, clearly different from the current Scandinavian sequences. The currently circulating BRSV could be divided into two different strains that were present in the same geographical area at the same time. The sequence variations between the two strains were in an antigenic important part of the G protein. The results demonstrated that BRSV is the most important etiological agent of epidemics of BRD in Norway and that it often acts as the only viral agent. The phylogenetic analysis of the Norwegian strains of BRSV and several previously published isolates supported the theory of geographical and temporal clustering of BRSV.

  2. Excretion of bovine herpesvirus 1 in semen is detected much longer by PCR than by virus isolation

    NARCIS (Netherlands)

    Engelenburg, van F.A.C.; Schie, van F.W.; Rijsewijk, F.A.M.; Oirschot, van J.T.

    1995-01-01

    To compare the sensitivities of PCR and virus isolation and to examine the course of virus excretion in semen, we intrapreputially inoculated eight bulls with bovine herpesvirus 1 (BHV1) and used two bulls as sentinels. From these bulls, we collected a large panel of semen samples during 65 days

  3. Surveillance, isolation and complete genome sequence of bovine parainfluenza virus type 3 in Egyptian cattle

    Directory of Open Access Journals (Sweden)

    Nader M. Sobhy

    2017-06-01

    Full Text Available Parainfluenza virus type 3 (PIV-3 can infect a wide variety of mammals including humans, domestic animals, and wild animals. In the present study, bovine parainfluenza virus type 3 (BPIV-3 was isolated from nasal swabs of Egyptian cattle presenting with clinical signs of mild pneumonia. The virus was isolated in Madin-Darby bovine kidney (MDBK cells and confirmed by reverse transcription-polymerase chain reaction (RT-PCR. The complete genome of Egyptian BPIV-3 strain was sequenced by using next generation (Illumina sequencing. The new isolate classified with genotype A of BPIV-3 and was closely related to the Chinese NM09 strain (JQ063064. Subsequently in 2015–16, a molecular surveillance study was undertaken by collecting and testing samples from cattle and buffaloes with respiratory tract infections. The survey revealed a higher rate of BPIV-3 infection in cattle than in buffaloes. The infection was inversely proportional to the age of the animals and to warm weather. This report should form a basis for further molecular studies on animal viruses in Egypt.

  4. Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea virus, Mycobacterium avium subspecies paratuberculosis, and Neospora caninum on culling in dairy cattle in four Canadian provinces.

    Science.gov (United States)

    Tiwari, Ashwani; VanLeeuwen, John A; Dohoo, Ian R; Stryhn, Henrik; Keefe, Greg P; Haddad, Joao P

    2005-08-30

    The purpose of this research was to determine the effects of seropositivity for exposure to bovine leukemia virus (BLV), bovine viral diarrhoea virus (BVDV), Mycobacterium avium subspecies paratuberculosis (MAP) and Neospora caninum (NC) on overall and reason-specific culling in Canadian dairy cattle. Serum samples from, approximately, 30 randomly selected cows from 134 herds were tested for antibodies against BLV, MAP and NC using commercially available ELISA test kits, while 5 unvaccinated cattle over 6 months of age were tested for antibodies to bovine viral diarrhoea virus (BVDV). For analyzing the time (in days) to culling of cows after the blood testing, a two-step approach was utilized, non-parametric (Kaplan-Meier survival graphs) visualization and then semi-parametric survival modelling (Cox proportional hazards model), while controlling for confounding variables and adjusting for within herd clustering. For all reasons of culling, MAP-seropositive cows had a 1.38 (1.05-1.81, 95% C.I.) times increased hazard of culling compared to MAP-seronegative cows. Seropositivity for the other pathogens was not associated with an increased risk of overall culling. Among cows that were culled because of either decreased reproductive efficiency or decreased milk production or mastitis, MAP-seropositive cows were associated with 1.55 (1.12-2.15, 95% C.I.) times increased hazard compared to MAP-seronegative cows. Among cows that were culled because of reproductive inefficiency, NC-seropositive cows had a 1.43 (1.15-1.79, 95% C.I.) times greater hazard than NC-seronegative cows. Among cows that were culled because of decreased milk production, cows in BVDV-seropositive herds had a 1.86 (1.28-2.70, 95% C.I.) times increased hazard compared to cows in BVDV-seronegative herds. BLV-seropositive cows did not have an increased risk of reason-specific culling as compared to BLV-seronegative cows. No significant interaction on culling among seropositivity for the pathogens was

  5. In vitro permissivity of bovine cells for wild-type and vaccinal myxoma virus strains

    Directory of Open Access Journals (Sweden)

    Foucras Gilles

    2007-09-01

    Full Text Available Abstract Myxoma virus (MYXV, a leporide-specific poxvirus, represents an attractive candidate for the generation of safe, non-replicative vaccine vector for non-host species. However, there is very little information concerning infection of non-laboratory animals species cells with MYXV. In this study, we investigated interactions between bovine cells and respectively a wild type strain (T1 and a vaccinal strain (SG33 of MYXV. We showed that bovine KOP-R, BT and MDBK cell lines do not support MYXV production. Electron microscopy observations of BT-infected cells revealed the low efficiency of viral entry and the production of defective virions. In addition, infection of bovine peripheral blood mononuclear cells (PBMC occurred at a very low level, even following non-specific activation, and was always abortive. We did not observe significant differences between the wild type strain and the vaccinal strain of MYXV, indicating that SG33 could be used for new bovine vaccination strategies.

  6. Expression of the Surface Glycoproteins of Human Parainfluenza Virus Type 3 by Bovine Parainfluenza Virus Type 3, a Novel Attenuated Virus Vaccine Vector

    Science.gov (United States)

    Haller, Aurelia A.; Miller, Tessa; Mitiku, Misrach; Coelingh, Kathleen

    2000-01-01

    Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive phenotype for growth in tissue culture at 39°C and was attenuated in the lungs of Syrian golden hamsters. In order to test whether r-bPIV3 could serve as a vector, the fusion and hemagglutinin-neuraminidase genes of bPIV3 were replaced with those of hPIV3. The resulting bovine/human PIV3 was temperature sensitive for growth in Vero cells at 37°C. The replication of bovine/human PIV3 was also restricted in the lungs of hamsters, albeit not as severely as was observed for r-bPIV3. Despite the attenuation phenotypes observed for r-bPIV3 and bovine/human PIV3, both of these viruses protected hamsters completely upon challenge with hPIV3. In summary, bPIV3 was shown to function as a virus vector that may be especially suitable for vaccination of infants and children against PIV3 and other viruses. PMID:11090161

  7. Comparison of single vaccination versus revaccination with a modified-live virus vaccine containing bovine herpesvirus-1, bovine viral diarrhea virus (types 1a and 2a), parainfluenza type 3 virus, and bovine respiratory syncytial virus in the prevention of bovine respiratory disease in cattle.

    Science.gov (United States)

    Step, Douglas L; Krehbiel, Clinton R; Burciaga-Robles, Luis O; Holland, Ben P; Fulton, Robert W; Confer, Anthony W; Bechtol, David T; Brister, David L; Hutcheson, John P; Newcomb, Harold L

    2009-09-01

    Objective-To compare effects of administration of a modified-live respiratory virus vaccine once with administration of the same vaccine twice on the health and performance of cattle. Design-Randomized, controlled trial. Animals-612 mixed-breed male cattle with unknown health histories. Procedures-Cattle were randomly assigned to 1 of 2 treatment groups (single vaccination treatment group [SVAC group] vs revaccination treatment group [REVAC group]) during the preconditioning phase of production. All cattle were given a modified-live respiratory virus vaccine. Eleven days later, REVAC group cattle received a second injection of the same vaccine. During the finishing phase of production, cattle from each treatment group were either vaccinated a third time with the modified-live respiratory virus vaccine or given no vaccine. Health observations were performed daily. Blood and performance variables were measured throughout the experiment. Results-During preconditioning, no significant differences were observed in performance or antibody production between groups. Morbidity rate from bovine respiratory disease was lower for SVAC group cattle; however, days to first treatment for bovine respiratory disease were not different between groups. No significant differences in body weights, daily gains, or dry-matter intake between groups were observed during the finishing phase. Revaccination treatment group cattle had improved feed efficiency regardless of vaccination protocol in the finishing phase. Conclusions and Clinical Relevance-Vaccination once with a modified-live respiratory virus vaccine was as efficacious as vaccination twice in the prevention of bovine respiratory disease of high-risk cattle, although feed efficiency was improved in REVAC group cattle during the finishing period.

  8. Flow cytometric analysis of in vitro bluetongue virus infection of bovine blood mononuclear cells.

    Science.gov (United States)

    Barratt-Boyes, S M; Rossitto, P V; Stott, J L; MacLachlan, N J

    1992-08-01

    Cultures of adherent and non-adherent bovine peripheral blood mononuclear (PBM) cells were inoculated with bluetongue virus (BTV) serotype 10. Some cultures of non-adherent cells were stimulated with interleukin 2 (IL-2) and concanavalin A for 24 h prior to virus inoculation. Cells were harvested at various intervals up to 72 h after inoculation. A panel of leukocyte differentiation antigen-specific monoclonal antibodies (MAbs), specific for bovine CD2, CD4 or CD8, monocytes and granulocytes, B cells, gamma delta T cells or the IL-2 receptor (IL-2r), was directly conjugated to fluorescein isothiocyanate, and a MAb specific for the BTV major core protein VP7 was directly conjugated to phycoerythrin. Cells were labelled with conjugated MAbs in single- and double-label immunofluorescence studies to identify specifically the BTV-infected cells in inoculated cultures. The viability of cells was determined by propidium iodide exclusion, and all analyses were done using flow cytometry. Productive infection of cultures of PBM cells was confirmed by virus titration. The data revealed a clear difference between subsets of bovine PBM cells in susceptibility to infection with BTV in vitro. Monocytes were readily infected with BTV, as were stimulated CD4+ cells, and infection was cytopathic to monocytes and stimulated lymphocytes. The proportion of infected cells decreased after 24 h and virus titres dropped markedly by 72 h in all cultures. CD4+ cells in cultures of unstimulated non-adherent cells inoculated with BTV showed increased expression of IL-2r. The possible relevance of these findings to the pathogenesis of BTV infection of cattle is discussed.

  9. Safety of inoculation of bovine parainfluenza virus 3 as potential vaccine vector in pigs.

    Science.gov (United States)

    Wang, Feng-Xue; Liu, Ying; Zhu, Hong-Wei; Liu, Xing; Yang, Yong; Sun, Na; Cheng, Shi-Peng; Wen, Yong-Jun

    2015-06-01

    Bovine parainfluenza virus 3 (BPIV3) is one of the most important respiratory pathogens in cattle. One BPIV3, named NM09, was isolated from cattle suffering from severe respiratory diseases in 2009. BPIV3 is a potential recombinant vaccine vector. To investigate whether NM09 can infect pigs and determine BPIV3 defense in these animals, BPIV3 antibody-free pigs were inoculated intramuscularly with the BPIV3 NM09 strain in a continuous passage. Clinical signs were observed each day after inoculation. Viral nucleic acid was detected in nasal and anal secretions. Results showed that virus-inoculated pigs displayed few observable clinical signs related to respiratory diseases. The antibody was identified, but the virus could not be detected in the second continuous passage in pigs. Thus, BPIV3 is a potential vaccine vector for genetic engineering.

  10. Preventive and Therapeutic Strategies for Bovine Leukemia Virus: Lessons for HTLV

    Science.gov (United States)

    Rodríguez, Sabrina M.; Florins, Arnaud; Gillet, Nicolas; de Brogniez, Alix; Sánchez-Alcaraz, María Teresa; Boxus, Mathieu; Boulanger, Fanny; Gutiérrez, Gerónimo; Trono, Karina; Alvarez, Irene; Vagnoni, Lucas; Willems, Luc

    2011-01-01

    Bovine leukemia virus (BLV) is a retrovirus closely related to the human T-lymphotropic virus type 1 (HTLV-1). BLV is a major animal health problem worldwide causing important economic losses. A series of attempts were developed to reduce prevalence, chiefly by eradication of infected cattle, segregation of BLV-free animals and vaccination. Although having been instrumental in regions such as the EU, these strategies were unsuccessful elsewhere mainly due to economic costs, management restrictions and lack of an efficient vaccine. This review, which summarizes the different attempts previously developed to decrease seroprevalence of BLV, may be informative for management of HTLV-1 infection. We also propose a new approach based on competitive infection with virus deletants aiming at reducing proviral loads. PMID:21994777

  11. Preventive and Therapeutic Strategies for Bovine Leukemia Virus: Lessons for HTLV

    Directory of Open Access Journals (Sweden)

    Lucas Vagnoni

    2011-07-01

    Full Text Available Bovine leukemia virus (BLV is a retrovirus closely related to the human T-lymphotropic virus type 1 (HTLV-1. BLV is a major animal health problem worldwide causing important economic losses. A series of attempts were developed to reduce prevalence, chiefly by eradication of infected cattle, segregation of BLV-free animals and vaccination. Although having been instrumental in regions such as the EU, these strategies were unsuccessful elsewhere mainly due to economic costs, management restrictions and lack of an efficient vaccine. This review, which summarizes the different attempts previously developed to decrease seroprevalence of BLV, may be informative for management of HTLV-1 infection. We also propose a new approach based on competitive infection with virus deletants aiming at reducing proviral loads.

  12. Bovine viral diarrhoea, bovine herpesvirus and parainfluenza-3 virus infection in three cattle herds in Egypt in 2000.

    Science.gov (United States)

    Aly, N M; Shehab, G G; Abd el-Rahim, I H A

    2003-12-01

    This study reported field outbreaks of bovine viral diarrhoea virus (BVDV) infection, either alone or mixed with bovine herpesvirus-1 (BHV-1) and/or parainfluenza-3 virus (PI-3V) in Egypt during 2000. In Lower Egypt, young calves in three cattle herds in El-Minufiya Province, El-Fayoum Province and in governmental quarantine in El-Behira Province, showed symptoms of enteritis, either alone or accompanied by respiratory manifestations. The affected herds were visited and the diseased animals were clinically examined. Many epidemiological aspects, such as morbidities, mortalities and case fatalities, as well as the abortive rate, were calculated. Ethylenediamine tetra-acetic acid-blood samples, sterile nasal swabs and serum samples were obtained for virological and serological diagnosis. The laboratory investigations revealed that the main cause of calf mortalities in the three herds was infection with BVDV, either alone, as on the El-Minufiya farm, or mixed with PI-3V, as on the El-Fayoum farm, or mixed with both BHV-1 and PI-3V, as in the herd in governmental quarantine in El-Behira Province. A total of nine dead calves from the three herds were submitted for thorough post-mortem examination. Tissue samples from recently dead calves were obtained for immunohistochemical and histopathological studies. The most prominent histopathological findings were massive degeneration, necrosis and erosions of the lining epithelium of the alimentary tract. Most of the lymphoreticular organs were depleted of lymphocytes. In pneumonic cases, bronchopneumonia and atypical interstitial pneumonia were evident. The present study suggested that the immunosuppressive effect of BVDV had predisposed the animals to secondary infection with BHV-1 and PI-3V. This study concluded that concurrent infection with BVDV, BHV-1 and PI-3V should be considered as one of the infectious causes of pneumoenteritis and, subsequently, the high morbidities and mortalities among young calves in Egypt

  13. Inactivation of enveloped and non-enveloped viruses in the process of chemical treatment and gamma irradiation of bovine-derived grafting materials.

    Science.gov (United States)

    Lee, Kwang-Il; Lee, Jung-Soo; Jung, Hong-Hee; Lee, Hwa-Yong; Moon, Seong-Hwan; Kang, Kyoung-Tak; Shim, Young-Bock; Jang, Ju-Woong

    2012-01-01

    Xenografts, unlike other grafting products, cannot be commercialized unless they conform to stringent safety regulations. Particularly with bovine-derived materials, it is essential to remove viruses and inactivate infectious factors because of the possibility that raw materials are imbrued with infectious viruses. The removal of the characteristics of infectious viruses from the bovine bone grafting materials need to be proved and inactivation process should satisfy the management provision of the Food and Drug Administration (FDA). To date, while most virus inactivation studies were performed in human allograft tissues, there have been almost no studies on bovine bone. To evaluate the efficacy of virus inactivation after treatment of bovine bone with 70% ethanol, 4% sodium hydroxide, and gamma irradiation, we selected a variety of experimental model viruses that are known to be associated with bone pathogenesis, including bovine parvovirus (BPV), bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), and bovine parainfluenza-3 virus (BPIV-3). The cumulative virus log clearance factor or cumulative virus log reduction factor for the manufacturing process was obtained by calculating the sum of the individual virus log clearance factors or log reduction factors determined for individual process steps with different physicochemical methods. The cumulative log clearance factors achieved by three different virus inactivation processes were as follows: BPV ≥ 17.73, BHV ≥ 20.53, BVDV ≥ 19.00, and BPIV-3 ≥ 16.27. On the other hand, the cumulative log reduction factors achieved were as follows: BPV ≥ 16.95, BHV ≥ 20.22, BVDV ≥ 19.27, and BPIV-3 ≥ 15.58. Treatment with 70% ethanol, 4% sodium hydroxide, or gamma irradiation was found to be very effective in virus inactivation, since all viruses were at undetectable levels during each process. We have no doubt that application of this established process to bovine bone graft manufacture will be

  14. Simulation modelling to support national policy making in the control of bovine herpesvirus 1

    NARCIS (Netherlands)

    Vonk Noordegraaf, A.

    2002-01-01

    Bovine herpesvirus 1 (BHV1) is the causative agent of infectious bovine rhinotracheitis (IBR), a respiratory disease in cattle. Increased international legislation, together with a high prevalence of BHV1 infected cattle in The Netherlands, put pressure on Dutch

  15. Virus survival in slurry: Analysis of the stability of foot-and-mouth disease, classical swine fever, bovine viral diarrhoea and swine influenza viruses

    DEFF Research Database (Denmark)

    Bøtner, Anette; Belsham, Graham

    2012-01-01

    of an outbreak of disease before it has been recognized. The survival of foot-and-mouth disease virus, classical swine fever virus, bovine viral diarrhoea virus and swine influenza virus, which belong to three different RNA virus families plus porcine parvovirus (a DNA virus) was examined under controlled...... conditions. For each RNA virus, the virus survival in farm slurry under anaerobic conditions was short (generally ≤1h) when heated (to 55°C) but each of these viruses could retain infectivity at cool temperatures (5°C) for many weeks. The porcine parvovirus survived considerably longer than each of the RNA...... viruses under all conditions tested. The implications for disease spread are discussed....

  16. Human and bovine viruses and bacteria at three Great Lakes beaches: Environmental variable associations and health risk

    Science.gov (United States)

    Corsi, Steven R.; Borchardt, Mark A.; Carvin, Rebecca B.; Burch, Tucker R; Spencer, Susan K.; Lutz, Michelle A.; McDermott, Colleen M.; Busse, Kimberly M.; Kleinheinz, Gregory; Feng, Xiaoping; Zhu, Jun

    2016-01-01

    Waterborne pathogens were measured at three beaches in Lake Michigan, environmental factors for predicting pathogen concentrations were identified, and the risk of swimmer infection and illness was estimated. Waterborne pathogens were detected in 96% of samples collected at three Lake Michigan beaches in summer, 2010. Samples were quantified for 22 pathogens in four microbial categories (human viruses, bovine viruses, protozoa, and pathogenic bacteria). All beaches had detections of human and bovine viruses and pathogenic bacteria indicating influence of multiple contamination sources at these beaches. Occurrence ranged from 40 to 87% for human viruses, 65–87% for pathogenic bacteria, and 13–35% for bovine viruses. Enterovirus, adenovirus A, Salmonella spp., Campylobacter jejuni, bovine polyomavirus, and bovine rotavirus A were present most frequently. Variables selected in multiple regression models used to explore environmental factors that influence pathogens included wave direction, cloud cover, currents, and water temperature. Quantitative Microbial Risk Assessment was done for C. jejuni, Salmonella spp., and enteroviruses to estimate risk of infection and illness. Median infection risks for one-time swimming events were approximately 3 × 10–5, 7 × 10–9, and 3 × 10–7 for C. jejuni, Salmonella spp., and enteroviruses, respectively. Results highlight the importance of investigating multiple pathogens within multiple categories to avoid underestimating the prevalence and risk of waterborne pathogens.

  17. Investigation of the bovine leukemia virus proviral DNA in human leukemias and lung cancers in Korea.

    Science.gov (United States)

    Lee, Jehoon; Kim, Yonggoo; Kang, Chang Suk; Cho, Dae Hyun; Shin, Dong Hwan; Yum, Young Na; Oh, Jae Ho; Kim, Sheen Hee; Hwang, Myung Sil; Lim, Chul Joo; Yang, Ki Hwa; Han, Kyungja

    2005-08-01

    The bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis. This study investigated the presence of the BLV in leukemia (179 acute lymphoblastic leukemia, 292 acute myeloid leukemia and 46 chronic myelogenous leukemia cases) and 162 lung cancer patients (139 adenocarcinoma, 23 squamous cell carcinoma) to determine if the BLV is a causative organism of leukemia and lung cancer in Koreans. A BLV infection was confirmed in human cells by PCR using a BLV-8 primer combination. All 517 cases of human leukemia and 162 lung cancer were negative for a PCR of the BLV proviral DNA. In conclusion, although meat has been imported from BLV endemic areas, the BLV infection does not appear to be the cause of human leukemia or lung cancer in Koreans. These results can be used as a control for further studies on the BLV in Koreans.

  18. The prevalence of antibodies of Brucella abortus, Dermatophilus congolensis and bovine leukaemia virus in Nigerian slaughter cattle.

    Science.gov (United States)

    Oyejide, A; Adu, F D; Makinde, A A; Ezeh, E N

    1987-01-01

    In a pilot survey to compare the relative prevalence of three diseases in apparently healthy White Fulani Zebu (WFZ) cattle slaughtered in Nigeria, sera from 80 randomly selected animals with no significant gross lesions on ante mortem and post mortem inspection were examined for antibodies to Brucella abortus, Dermatophilus congolensis and bovine leukaemia virus. Of the samples screened, 5.0, 8.8 and 2.0% showed serological evidence for brucellosis, cutaneous streptothricosis and bovine leukosis respectively.

  19. Generation and Characterization of a Hepatitis C Virus NS3 Protease-Dependent Bovine Viral Diarrhea Virus

    Science.gov (United States)

    Lai, Vicky C. H.; Zhong, Weidong; Skelton, Angela; Ingravallo, Paul; Vassilev, Venteislav; Donis, Ruben O.; Hong, Zhi; Lau, Johnson Y. N.

    2000-01-01

    Unique to pestiviruses, the N-terminal protein encoded by the bovine viral diarrhea virus (BVDV) genome is a cysteine protease (Npro) responsible for a self-cleavage that releases the N terminus of the core protein (C). This unique protease is dispensable for viral replication, and its coding region can be replaced by a ubiquitin gene directly fused in frame to the core. To develop an antiviral assay that allows the assessment of anti-hepatitis C virus (HCV) NS3 protease inhibitors, a chimeric BVDV in which the coding region of Npro was replaced by that of an NS4A cofactor-tethered HCV NS3 protease domain was generated. This cofactor-tethered HCV protease domain was linked in frame to the core protein of BVDV through an HCV NS5A-NS5B junction site and mimicked the proteolytic function of Npro in the release of BVDV core for capsid assembly. A similar chimeric construct was built with an inactive HCV NS3 protease to serve as a control. Genomic RNA transcripts derived from both chimeric clones, PH/B (wild-type HCV NS3 protease) and PH/B(S139A) (mutant HCV NS3 protease) were then transfected into bovine cells (MDBK). Only the RNA transcripts from the PH/B clone yielded viable viruses, whereas the mutant clone, PH/B(S139A), failed to produce any signs of infection, suggesting that the unprocessed fusion protein rendered the BVDV core protein defective in capsid assembly. Like the wild-type BVDV (NADL), the chimeric virus was cytopathic and formed plaques on the cell monolayer. Sequence and biochemical analyses confirmed the identity of the chimeric virus and further revealed variant viruses due to growth adaptation. Growth analysis revealed comparable replication kinetics between the wild-type and the chimeric BVDVs. Finally, to assess the genetic stability of the chimeric virus, an Npro-null BVDV (BVDV−Npro in which the entire Npro coding region was deleted) was produced. Although cytopathic, BVDV−Npro was highly defective in viral replication and growth, a

  20. Absence of Bovine leukemia virus (BLV) infection in buffaloes from Amazon and southeast region in Brazil.

    Science.gov (United States)

    De Oliveira, Cairo H S; Resende, Cláudia F; Oliveira, Carlos M C; Barbosa, José D; Fonseca, Antônio A; Leite, Rômulo C; Reis, Jenner K P

    2016-07-01

    Enzootic bovine leucosis is an infectious disease caused by Bovine leukemia virus (BLV) and is well described in bovines. The majority of infected animals are asymptomatic, one to five percent develop lymphoma and from 30 to 50% present a persistent lymphocytosis. The virus occurs naturally in cattle and experimentally in buffaloes, capybaras and rabbits. The occurrence of lymphoma in buffaloes has been attributed to BLV infection by some authors in India and Venezuela, but not confirmed by other studies and little information on natural BLV infection in buffaloes is available. The aim of this study was to evaluate the occurrence of BLV in a sub-sample of buffalo from Amazon and southeast regions in Brazil. Three hundred and fifteen serum samples were negative using commercial AGID and ELISA (ELISA-gp51) which detect anti-BLV glycoprotein gp51 antibodies. The same samples were also evaluated for antibodies to whole virus through a commercial ELISA (ELISA-BLV) in which 77 (24.44%) were found seropositive and two (0.63%) inconclusive. On the other hand, all animals were negative by PCR to BLV targeted to the env and tax genes. These results suggest that ELISA-BLV produces false positive results in buffalo serum (p<0.001). In addition, one buffalo lymphoma sample was negative in both PCR assays used in this study. BLV was not detected in buffaloes from the Amazon basin and the southeast region of Brazil. Serological tests, like ELISA-BLV, usually used for cattle may produce false-positive results for BLV in buffaloes and direct detection tests such as PCR should be chosen in these surveys. The occurrence of lymphoma in buffalo was not associated with BLV infection in the one case analyzed in this work and the etiology and pathogenesis of this disease should be clarified. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Experimental infection of rabbits with bovine viral diarrhoea virus by a natural route of exposure

    Science.gov (United States)

    2014-01-01

    Bovine viral diarrhoea virus (BVDV) is an important pathogen of cattle that can naturally infect a wide range of even-toed ungulates. Non-bovine hosts may represent reservoirs for the virus that have the potential to hamper BVDV eradication programs usually focused on cattle. Rabbits are very abundant in countries such as the United Kingdom or Australia and are often living on or near livestock pastures. Earlier reports indicated that rabbits can propagate BVDV upon intravenous exposure and that natural infection of rabbits with BVDV may occur but experimental proof of infection of rabbits by a natural route is lacking. Therefore, New Zealand White rabbits were exposed to a Scottish BVDV field strain intravenously, oro-nasally and by contaminating their hay with virus. None of the animals showed any clinical signs. However, the lymphoid organs from animals sacrificed at day five after exposure showed histological changes typical of transient infection with pestivirus. Most organ samples and some buffy coat samples were virus positive at day five but saliva samples remained negative. Development of antibodies was observed in all intravenously challenged animals, in all of the nebulised group and in four of six animals exposed to contaminated hay. To our knowledge this is the first report of BVDV propagation in a species other than ruminants or pigs after exposure to the virus by a natural route. However, to assess the role of rabbits as a potential reservoir for BVDV it remains to be determined whether persistent infection caused by intra-uterine infection is possible and whether BVDV is circulating in wild rabbit populations. PMID:24690167

  2. Bovine respiratory syncytial virus ISCOMs - protection in the presence of maternal antibodies

    DEFF Research Database (Denmark)

    Hägglund, Sara; Hu, Ke-Fei; Larsen, Lars Erik

    2004-01-01

    The protection induced by immunostimulating complexes (ISCOMs) against bovine respiratory syncytial virus (BRSV) was evaluated and compared to that of a commercial inactivated vaccine (CV) in calves with BRSV-specific maternal antibodies. Following experimental challenge, controls (n = 4......) and animals immunized with CV (n = 5) developed moderate to severe respiratory disease, whereas calves immunized with ISCOMS (17 = 5) remained clinically healthy. BRSV was re-isolated from the nasopharynx of all controls and from all calves immunized with CV, but from none of the calves immunized with ISCOMs...... of maternal antibodies in calves and induced strong clinical and virological protection against a BRSV challenge....

  3. Genotyping and phylogenetic analysis of bovine viral diarrhea virus (BVDV) isolates in Kosovo.

    Science.gov (United States)

    Goga, Izedin; Berxholi, Kristaq; Hulaj, Beqe; Sylejmani, Driton; Yakobson, Boris; Stram, Yehuda

    2014-01-01

    Three serum samples positive in Antigen ELISA BVDV have been tested to characterise genetic diversity of bovine viral diarrhea virus (BVDV) in Kosovo. Samples were obtained in 2011 from heifers and were amplified by reverse transcription-polymerase chain reaction, sequenced and analysed by computer-assisted phylogenetic analysis. Amplified products and nucleotide sequence showed that all 3 isolates belonged to BVDV 1 genotype and 1b sub genotype. These results enrich the extant knowledge of BVDV and represent the first documented data about Kosovo BVDV isolates.

  4. Synthetic analogues of bovine bactenecin dodecapeptide reduce herpes simplex virus type 2 infectivity in mice

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Shestakov, Andrey; Hancock, Robert E. W

    2013-01-01

    We have evaluated the potential of four synthetic peptides (denoted HH-2, 1002, 1006, 1018) with a distant relationship to the host defense peptide bovine bactenecin dodecapeptide for their ability to prevent genital infections with herpes simplex virus type 2 (HSV-2) in mice. All four peptides...... infectious doses of HSV-2. These data show that peptides HH-2 and 1018 have antiviral properties and can be used to prevent genital herpes infection in mice. (C) 2013 Elsevier B.V. All rights reserved....

  5. Characterization of the major structural proteins of purified bovine viral diarrhea virus.

    Science.gov (United States)

    Coria, M F; Schmerr, M J; McClurkin, A W

    1983-01-01

    Bovine viral diarrhea virus (BVDV) was concentrated and purified by a combination of ultrafiltration, hydroextraction using polyethylene glycol and affinity chromatography. A lectin from Crotalaria juncea that has an affinity for galactose was used in the affinity chromatography. Virions of BVDV with classic envelopes were observed by electron microscopy. Four major proteins with estimated molecular weights of 75,000, 66,000, 54,000, and 26,000 were identified in sodium dodecyl sulfate--polyacrylamide gel electrophoresis slab gels. The proteins of 75,000 and 54,000 were glycoproteins as shown by staining with dansyl hydrazine.

  6. High-resolution melting (HRM) for genotyping bovine ephemeral fever virus (BEFV).

    Science.gov (United States)

    Erster, Oran; Stram, Rotem; Menasherow, Shopia; Rubistein-Giuni, Marisol; Sharir, Binyamin; Kchinich, Evgeni; Stram, Yehuda

    2017-02-02

    In recent years there have been several major outbreaks of bovine ephemeral disease in the Middle East, including Israel. Such occurrences raise the need for quick identification of the viruses responsible for the outbreaks, in order to rapidly identify the entry of viruses that do not belong to the Middle-East BEFV lineage. This challenge was met by the development of a high-resolution melt (HRM) assay. The assay is based on the viral G gene sequence and generation of an algorithm that calculates and evaluates the GC content of various fragments. The algorithm was designed to scan 50- to 200-base-long segments in a sliding-window manner, compare and rank them using an Order of Technique of Preference by Similarity to Ideal Solution (TOPSIS) the technique for order preference by similarity to ideal solution technique, according to the differences in GC content of homologous fragments. Two fragments were selected, based on a match to the analysis criteria, in terms of size and GC content. These fragments were successfully used in the analysis to differentiate between different virus lineages, thus facilitating assignment of the viruses' geographical origins. Moreover, the assay could be used for differentiating infected from vaccinated animales (DIVA). The new algorithm may therefore be useful for development of improved genotyping studies for other viruses and possibly other microorganisms. Copyright © 2016. Published by Elsevier B.V.

  7. Production of highly immunogenic virus-like particles of bovine papillomavirus type 6 in silkworm pupae.

    Science.gov (United States)

    Watanabe, Satoko; Iizuka, Tetsuya; Hatama, Shinichi; Kanno, Toru; Mase, Masaji; Shibahara, Tomoyuki

    2017-10-13

    Bovine papillomaviruses (BPVs) are the causative agent of bovine teat papillomatosis, which can lead to severe economic losses in dairy cattle. Among the 14 identified BPV genotypes, BPV type 6 (BPV6) is the most frequently detected in teat papilloma lesions, and is therefore thought to play a major role in teat papillomatosis. To develop an effective vaccine against BPV6 infection, we produced virus-like particles of BPV6 (BPV6-VLP) in silkworm (Bombyx mori) pupae and purified these by heparin affinity chromatography using a single column. About 0.7mg purified BPV6-VLP was obtained from one pupa. BPV6-VLP-immunized mice produced a specific IgG to BPV6 that recognized BPV6 antigen with high sensitivity in an immunohistochemical analysis. Thus, silkworm pupae are a useful bioreactor for the production of BPV6-VLP, which can potentially be used as a vaccine for bovine teat papillomatosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An investigation into the susceptibility of cattle to bovine leukosis virus following inoculation by various routes.

    Science.gov (United States)

    Roberts, D H; Lucas, M H; Wibberley, G; Chasey, D

    1982-03-06

    The effect of different routes of inoculation on the incubation period, as indicated by the detection of antibody and by the detection of bovine leukosis virus (BLV) in lymphocytes, were compared. None of the 12-month-old steers exposed to BLV by the oral route developed BLV infection. Intratracheal, subcutaneous and intradermal inoculations were found to be particularly effective in establishing BLV infection, which was detected three to four weeks after inoculation. In the majority of animals, serum antibody and virus were detected at the same time. One out of four in-oestrus heifers inoculated via the uterus with mixtures of BLV infected lymphocytes and semen became infected. It appears that there is an inhibitory factor in fresh semen that prevents BLV infection from becoming established. Viral antigen was detected earlier in BLV infected lymphocytes using the cocultivation method than by electron microscopy to demonstrate BLV particles in mitogen stimulated lymphocytes.

  9. Effect of freezing treatment on colostrum to prevent the transmission of bovine leukemia virus.

    Science.gov (United States)

    Kanno, Toru; Ishihara, Ryoko; Hatama, Shinichi; Oue, Yasuhiro; Edamatsu, Hiroki; Konno, Yasuhiro; Tachibana, Satoshi; Murakami, Kenji

    2014-03-01

    Here, we used a sheep bioassay to determine the effect of freezing colostrum to prevent the transmission of bovine leukemia virus (BLV) among neonatal calves. Leukocytes were isolated from the colostrum of a BLV-infected Holstein cow and were then either left untreated (control) or freeze-thawed. A sheep inoculated intraperitoneally with the untreated leukocytes was infected with BLV at 3 weeks after inoculation, whereas the sheep inoculated with treated leukocytes did not become infected. The uninfected sheep was inoculated again with leukocytes isolated from the colostrum of another BLV-infected Holstein cow after freezing treatment, and again it did not become infected with BLV. Finally, this sheep was inoculated with the leukocytes isolated from the colostrum of another virus-infected cow without freezing treatment, and it became infected with BLV at 4 weeks after inoculation. The results indicate that colostrum should be frozen as a useful means of inactivating the infectivity of BLV-infected lymphocytes.

  10. Identification of immediate early gene products of bovine herpes virus 1 (BHV-1) as dominant antigens recognized by CD8 T cells in immune cattle

    DEFF Research Database (Denmark)

    Hart, Jane; MacHugh, Niall D.; Sheldrake, Tara

    2017-01-01

    In common with other herpes viruses, bovine herpes virus 1 (BHV-1) induces strong virus-specific CD8 T-cell responses. However, there is a paucity of information on the antigenic specificity of the responding T-cells. The development of a system to generate virus-specific CD8 T-cell lines from BH...

  11. L233P mutation of the Tax protein strongly correlated with leukemogenicity of bovine leukemia virus.

    Science.gov (United States)

    Inoue, Emi; Matsumura, Keiko; Soma, Norihiko; Hirasawa, Shintaro; Wakimoto, Mayuko; Arakaki, Yoshihiro; Yoshida, Takashi; Osawa, Yoshiaki; Okazaki, Katsunori

    2013-12-27

    The bovine leukemia virus (BLV) Tax protein is believed to play a crucial role in leukemogenesis by the virus. BLV usually causes asymptomatic infections in cattle, but only one-third develop persistent lymphocytosis that rarely progress after a long incubation period to lymphoid tumors, namely enzootic bovine leucosis (EBL). In the present study, we demonstrated that the BLV tax genes could be divided into two alleles and developed multiplex PCR detecting an L233P mutation of the Tax protein. Then, in order to define the relationship between the Tax protein and leukemogenicity, we examined 360 tumor samples randomly collected from dairy or breeding cattle in Japan, of which Tax proteins were categorized, for age at the time of diagnosis of EBL. The ages of 288 animals (80.0%) associated with L233-Tax and those of 70 animals (19.4%) with P233-Tax individually followed log-normal distributions. Only the two earliest cases (0.6%) with L233-Tax disobeyed the log-normal distribution. These findings suggest that the animals affected by EBL were infected with the virus at a particular point in life, probably less than a few months after birth. Median age of those with P233-Tax was 22 months older than that with L233-Tax and geometric means exhibited a significant difference (P<0.01). It is also quite unlikely that viruses carrying the particular Tax protein infect older cattle. Here, we conclude that BLV could be divided into two categories on the basis of amino acid at position 233 of the Tax protein, which strongly correlated with leukemogenicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Susceptibility of in vitro produced hatched bovine blastocysts to infection with bluetongue virus serotype 8

    Directory of Open Access Journals (Sweden)

    Vandaele Leen

    2011-01-01

    Full Text Available Abstract Bluetongue virus serotype 8 (BTV-8, which caused an epidemic in ruminants in central Western Europe in 2006 and 2007, seems to differ from other bluetongue serotypes in that it can spread transplacentally and has been associated with an increased incidence of abortion and other reproductive problems. For these reasons, and also because BTV-8 is threatening to spread to other parts of the world, there is a need for more information on the consequences of infection during pregnancy. The aim of the present study was to investigate whether hatched (i.e. zona pellucida-free in vitro produced bovine blastocysts at 8-9 days post insemination are susceptible to BTV-8 and whether such infection induces cell death as indicated by apoptosis. Exposure of hatched in vitro produced bovine blastocysts for 1 h to a medium containing 103.8 or 104.9 TCID50 of the virus resulted in active viral replication in between 25 and 100% of the cells at 72 h post exposure. The infected blastocysts also showed growth arrest as evidenced by lower total cell numbers and a significant level of cellular apoptosis. We conclude from this in vitro study that some of the reproductive problems that are reported when cattle herds are infected with BTV-8 may be attributed to direct infection of blastocysts and other early-stage embryos in utero.

  13. Isolation and characterization of bovine parainfluenza virus type 3 from water buffaloes (Bubalus bubalis) in Argentina.

    Science.gov (United States)

    Maidana, Silvina S; Lomonaco, Patricia M; Combessies, Gustavo; Craig, María I; Diodati, Julian; Rodriguez, Daniela; Parreño, Viviana; Zabal, Osvaldo; Konrad, José L; Crudelli, Gustavo; Mauroy, Axel; Thiry, Etienne; Romera, Sonia A

    2012-06-20

    Parainfluenza virus type 3 (PIV3) was isolated from dairy buffaloes (Bubalus bubalis) naturally affected with respiratory and reproductive clinical conditions. Examination of nasal and vaginal swabs collected from 12 diseased buffaloes led to the isolation of three paramyxovirus isolates from two animals. Antigenic, morphological and biological characteristics of these three isolates were essentially similar to those of members of the Paramyxoviridae family. Antigenic analysis by direct immunofluorescence and cross neutralization test placed these isolates together with bovine parainfluenza virus type 3 (BPIV3). Nucleotide and amino acid phylogenetic analysis of partial matrix gene sequences of the buffalo isolates and six field BPIV3 isolates from bovines in Argentina were studied. Buffalo isolates were similar to genotype B (BPIV3b) while the six BPIV3 isolates were similar to genotypes A (BPIV3a) and C (BPIV3c). This is the first characterization of BPIV3 in water buffalo.According to the samples analyzed, in Argentina, the genotype B was found in buffalo and the genotypes A and C were found in cattle.

  14. Isolation and characterization of bovine parainfluenza virus type 3 from water buffaloes (Bubalus bubalis in Argentina

    Directory of Open Access Journals (Sweden)

    Maidana Silvina S

    2012-06-01

    Full Text Available Abstract Background Parainfluenza virus type 3 (PIV3 was isolated from dairy buffaloes (Bubalus bubalis naturally affected with respiratory and reproductive clinical conditions. Results Examination of nasal and vaginal swabs collected from 12 diseased buffaloes led to the isolation of three paramyxovirus isolates from two animals. Antigenic, morphological and biological characteristics of these three isolates were essentially similar to those of members of the Paramyxoviridae family. Antigenic analysis by direct immunofluorescence and cross neutralization test placed these isolates together with bovine parainfluenza virus type 3 (BPIV3. Nucleotide and amino acid phylogenetic analysis of partial matrix gene sequences of the buffalo isolates and six field BPIV3 isolates from bovines in Argentina were studied. Buffalo isolates were similar to genotype B (BPIV3b while the six BPIV3 isolates were similar to genotypes A (BPIV3a and C (BPIV3c. Conclusions This is the first characterization of BPIV3 in water buffalo. According to the samples analyzed, in Argentina, the genotype B was found in buffalo and the genotypes A and C were found in cattle.

  15. Detection of bovine respiratory syncytial virus infections in young dairy and beef cattle in Poland.

    Science.gov (United States)

    Urban-Chmiel, Renata; Wernicki, Andrzej; Puchalski, Andrzej; Dec, Marta; Stęgierska, Diana; Grooms, Daniel L; Barbu, Nicolas I

    2015-03-01

    Bovine respiratory syncytial virus (BRSV) is a major contributor to bovine respiratory disease complex in dairy and beef calves, especially during the first year of life. There is a lack of comprehensive information about the prevalence of infection in cattle herds in Poland as well as in European countries outside the European Union. The aim of this study was to estimate the prevalence of BRSV infections in young beef and dairy cattle in southeastern Poland, a region that has direct contact with non-EU countries. Animals & methods: Nasal swabs and sera (n = 120) were obtained from young cattle aged 6-12 months from 45 farms in eastern and southeastern Poland. BRSV antigen detection in the nasal swabs was carried out using a rapid immunomigration assay used in diagnosing human respiratory syncytial virus (hRSV) infections in humans, while antibodies to BRSV were detected in the sera by ELISA antibody detection. The study confirmed the presence of BRSV infections in young cattle under 12 months of age from both dairy and beef herds. BRSV was detected in 27 of the 45 herds (60%) sampled. Findings from this study indicate a high prevalence of BRSV infections in cattle in Poland, which may have a significant influence on health status and animal performance. The prevalence of infection is similar to that in other parts of Poland and other countries in Europe. Development of strategies to reduce BRSV infections is needed to improve health and productivity.

  16. In Vivo Characterisation of Five Strains of Bovine Viral Diarrhoea Virus 1 (Subgenotype 1c

    Directory of Open Access Journals (Sweden)

    Rebecca K. Ambrose

    2018-01-01

    Full Text Available Bovine viral diarrhoea virus 1 (BVDV-1 is strongly associated with several important diseases of cattle, such as bovine respiratory disease, diarrhoea and haemoragic lesions. To date many subgenotypes have been reported for BVDV-1, currently ranging from subgenotype 1a to subgenotype 1u. While BVDV-1 has a world-wide distribution, the subgenotypes have a more restricted geographical distribution. As an example, BVDV-1 subgenotypes 1a and 1b are frequently detected in North America and Europe, while the subgenotype 1c is rarely detected. In contrast, BVDV-1 subgenotype 1c is by far the most commonly reported in Australia. Despite this, uneven distribution of the biological importance of the subgenotypes remains unclear. The aim of this study was to characterise the in vivo properties of five strains of BVDV-1 subgenotype 1c in cattle infection studies. No overt respiratory signs were reported in any of the infected cattle regardless of strain. Consistent with other subgenotypes, transient pyrexia and leukopenia were commonly identified, while thrombocytopenia was not. The quantity of virus detected in the nasal secretions of transiently infected animals suggested the likelihood of horizontal transmission was very low. Further studies are required to fully understand the variability and importance of the BVDV-1 subgenotype 1c.

  17. Bovine parainfluenza virus type 3 accessory proteins that suppress beta interferon production.

    Science.gov (United States)

    Komatsu, Takayuki; Takeuchi, Kenji; Gotoh, Bin

    2007-07-01

    The paramyxovirus P gene encodes accessory proteins antagonistic to interferon (IFN). Viral proteins responsible for the IFN antagonism, however, are distinct among paramyxoviruses. Here we determine bovine parainfluenza virus type 3 (bPIV3) IFN antagonists that suppress IFN-beta production, and investigate the underlying molecular mechanism. Of bPIV3 P gene products, C and V proteins were found to suppress double-stranded RNA-stimulated IFN-beta production. The V protein of bPIV3 and Sendai virus in the same genus Respirovirus significantly inhibits double-stranded RNA-stimulated IFN-beta production and the IFN-beta promoter activation enhanced by overexpression of MDA5 but not RIG-I, and yet does not suppress IFN-beta production induced by TRIF, TBK1, and IKKi. The V protein of both viruses specifically binds to MDA5 but not RIG-I. These results suggest that the V protein targets MDA5 for blockage of the IFN-beta gene activation signal. On the other hand, both bPIV3 and Sendai virus C proteins modestly inhibited IFN-beta production irrespective of a species of the signaling molecules used as an inducer. Interestingly, reporter gene expression driven by various promoters was also suppressed by the C proteins irrespective of the promoter species. These results demonstrate that the target of the respirovirus C protein is undoubtedly different from that of the V protein.

  18. Antiviral activity of Petiveria alliacea against the bovine viral diarrhea virus.

    Science.gov (United States)

    Ruffa, M J; Perusina, M; Alfonso, V; Wagner, M L; Suriano, M; Vicente, C; Campos, R; Cavallaro, L

    2002-07-01

    Natural products are a relevant source of antiviral drugs. Five medicinal plants used in Argentina have been assayed to detect inhibition of viral growth. Antiviral activity of the infusions and methanolic extracts of Aristolochia macroura, Celtis spinosa, Plantago major, Schinus areira, Petiveria alliacea and four extracts obtained from the leaves and stems of the last plant were evaluated by the plaque assay. P. alliacea, unlike A. macroura, C. spinosa, P. major and S. areira, inhibited bovine viral diarrhea virus (BVDV) replication. Neither P. alliacea nor the assays of the other plants were active against herpes simplex virus type 1, poliovirus type 1, adenovirus serotype 7 and vesicular stomatitis virus type 1. Four extracts of P. alliacea were assayed to detect anti-BVDV activity. Ethyl acetate (EC(50) of 25 microg/ml) and dichloromethane (EC(50) of 43 microg/ml) extracts were active; moreover, promising SI (IC(50)/EC(50)) values were obtained. BVDV is highly prevalent in the cattle population, there are no antiviral compounds available; additionally, it is a viral model of the hepatitis C virus. For these reasons and in view of the results obtained, the isolation and characterization of the antiviral components present in the P. alliacea extracts is worth carrying out in the future. Copyright 2002 S. Karger AG, Basel

  19. Suboptimal enhancer sequences are required for efficient bovine leukemia virus propagation in vivo: implications for viral latency.

    OpenAIRE

    Merezak, C; Pierreux, Christophe; Adam, E.; Lemaigre, Frédéric; Rousseau, Guy; Calomme, C; Van Lint, C; Christophe, D; Kerkhofs, P.; Burny, A.; Kettmann, R.; Willems, L.

    2001-01-01

    Repression of viral expression is a major strategy developed by retroviruses to escape from the host immune response. The absence of viral proteins (or derived peptides) at the surface of an infected cell does not permit the establishment of an efficient immune attack. Such a strategy appears to have been adopted by animal oncoviruses such as bovine leukemia virus (BLV) and human T-cell leukemia virus (HTLV). In BLV-infected animals, only a small fraction of the infected lymphocytes (between ...

  20. Complete genome sequence of the first isolate of genotype C bovine parainfluenza virus type 3 in Japan.

    Science.gov (United States)

    Konishi, Misako; Ohkura, Takashi; Shimizu, Madoka; Akiyama, Masanori; Kameyama, Ken-Ichiro; Takeuchi, Kaoru

    2014-11-26

    Bovine parainfluenza virus type 3 (BPIV3) isolates are classified into three genotypes (BPIV3a to -c). Here, we report the complete genome sequence of the BPIV3c isolate for the first time in Japan. Our results indicate that new primer sets will be required to detect all genotypes of BPIV3 strains. Copyright © 2014 Konishi et al.

  1. Complete Genome Sequences of Bovine Parainfluenza Virus Type 3 Strain BN-1 and Vaccine Strain BN-CE.

    Science.gov (United States)

    Ohkura, Takashi; Kokuho, Takehiro; Konishi, Misako; Kameyama, Ken-Ichiro; Takeuchi, Kaoru

    2013-01-01

    Bovine parainfluenza virus type 3 (BPIV3) is associated with upper respiratory disease in cattle in many countries. Here, we report the complete genome sequences of the BPIV3 BN-1 strain, isolated from cattle in Japan, and the BN-CE vaccine strain, derived from the BN-1 strain by passages in chicken embryo fibroblasts.

  2. Novel Atlantic bottlenose dolphin parainfluenza virus TtPIV-1 clusters with bovine PIV-3 genotype B strains

    Science.gov (United States)

    Parainfluenza virus 3 (PIV-3) is a common viral infection not only in humans, but many other species. Serological evidence suggests that nearly 100% of children in the United States have been infected with PIV-3 by five years of age. Similarly, in cattle PIV-3 is commonly associated with bovine re...

  3. Inactivated bovine herpesvirus 1 marker vaccines are more efficacious in reducing virus excretion after reactivation than a live marker vaccine

    NARCIS (Netherlands)

    Bosch, J.C.; Kaashoek, M.J.; Oirschot, van J.T.

    1997-01-01

    A comparative study was carried out to evaluate the efficacy of three bovine herpesvirus 1 (BHV1) marker vaccines to reduce the reexcretion of virus after reactivation of latent BHV1. A live gE-negative vaccine an inactivated gE-negative vaccine and an experimental gD-subunit vaccine were tested in

  4. Antibody responses against epitopes on the F protein of bovine respiratory syncytial virus differ in infected or vaccinated cattle

    NARCIS (Netherlands)

    Schrijver, R.S.; Hensen, E.J.; Langedijk, J.P.M.; Daus, F.; Middel, W.G.J.; Kramps, J.A.; Oirschot, van J.T.

    1997-01-01

    The fusion protein F of bovine respiratory syncytial virus (BRSV) is an important target for humoral and cellular immune responses, and antibodies against the F protein have been associated with protection. However, the F protein can induce antibodies with different biological activity, possibly

  5. Evaluation of bovine coronavirus antibody levels, virus shedding, and respiratory disease incidence throughout the beef cattle production cycle

    Science.gov (United States)

    Objective- Determine how levels of serum antibody to bovine coronavirus (BCV) are related to virus shedding patterns and respiratory disease incidence in beef calves at various production stages. Animals- 890 crossbred beef calves from four separately managed herds at the U.S. Meat Animal Research C...

  6. Increased pulmonary secretion of tumor necrosis factor-alpha in calves experimentally infected with bovine respiratory syncytial virus

    DEFF Research Database (Denmark)

    Rontved, C. M.; Tjørnehøj, Kirsten; Viuff, B.

    2000-01-01

    Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease among calves in the Danish cattle industry. An experimental BRSV infection model was used to study the pathogenesis of the disease in calves. Broncho alveolar lung lavage (BAL) was performed on 28 Jersey calves...

  7. Detection and characterization of viruses as field and vaccine strains in feedlot cattle with bovine respiratory disease.

    Science.gov (United States)

    Fulton, R W; d'Offay, J M; Landis, C; Miles, D G; Smith, R A; Saliki, J T; Ridpath, J F; Confer, A W; Neill, J D; Eberle, R; Clement, T J; Chase, C C L; Burge, L J; Payton, M E

    2016-06-24

    This study investigated viruses in bovine respiratory disease (BRD) cases in feedlots, including bovine herpesvirus-1 (BoHV-1), bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine coronaviruses (BoCV) and parainfluenza-3 virus (PI3V). Nasal swabs were collected from 114 cattle on initial BRD treatment. Processing included modified live virus (MLV) vaccination. Seven BRD necropsy cases were included for 121 total cases. Mean number of days on feed before first sample was 14.9 days. Swabs and tissue homogenates were tested by gel based PCR (G-PCR), quantitative-PCR (qPCR) and quantitative real time reverse transcriptase PCR (qRT-PCR) and viral culture. There were 87/114 (76.3%) swabs positive for at least one virus by at least one test. All necropsy cases were positive for at least one virus. Of 121 cases, positives included 18/121 (14.9%) BoHV-1; 19/121 (15.7%) BVDV; 76/121 (62.8%) BoCV; 11/121 (9.1%) BRSV; and 10/121 (8.3%) PI3V. For nasal swabs, G-PCR (5 viruses) detected 44/114 (38.6%); q-PCR and qRT-PCR (4 viruses) detected 81/114 (71.6%); and virus isolation detected 40/114 (35.1%). Most were positive for only one or two tests, but not all three tests. Necropsy cases had positives: 5/7 G-PCR, 5/7 q-PCR and qRT-PCR, and all were positive by cell culture. In some cases, G-PCR and both real time PCR were negative for BoHV-1, BVDV, and PI3V in samples positive by culture. PCR did not differentiate field from vaccines strains of BoHV-1, BVDV, and PI3V. However based on sequencing and analysis, field and vaccine strains of culture positive BoHV-1, BoCV, BVDV, and PI3V, 11/18 (61.1%) of BoHV-1 isolates, 6/17 (35.3%) BVDV isolates, and 1/10 (10.0%) PI3V identified as vaccine. BRSV was only identified by PCR testing. Interpretation of laboratory tests is appropriate as molecular based tests and virus isolation cannot separate field from vaccine strains. Additional testing using sequencing appears appropriate for identifying vaccine

  8. Using Bovine Viral Diarrhea Virus (BVDV) As Surrogate for Human Hepatitis C Virus

    Science.gov (United States)

    This test is designed to validate virucidal effectiveness claims for a product to be registered as a virucide. It determines the potential of the test agent to disinfect hard surfaces contaminated with human Hepatitis C virus (HCV).

  9. Vaccination with recombinant modified vaccinia virus Ankara expressing bovine respiratory syncytial virus (bRSV) proteins protects calves against RSV challenge

    NARCIS (Netherlands)

    Antonis, A.F.G.; Most, van der R.G.; Suezer, Y.; Stockhofe-Zurwieden, N.; Daus, F.J.; Sutter, G.; Schrijver, R.S.

    2007-01-01

    Respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in infants and calves. Bovine RSV (bRSV) is a natural pathogen for cattle, and bRSV infection in calves shares many features with the human infection. Thus, bRSV infection in cattle provides the ideal setting to

  10. Variability and Global Distribution of Subgenotypes of Bovine Viral Diarrhea Virus.

    Science.gov (United States)

    Yeşilbağ, Kadir; Alpay, Gizem; Becher, Paul

    2017-05-26

    Bovine viral diarrhea virus (BVDV) is a globally-distributed agent responsible for numerous clinical syndromes that lead to major economic losses. Two species, BVDV-1 and BVDV-2, discriminated on the basis of genetic and antigenic differences, are classified in the genus Pestivirus within the Flaviviridae family and distributed on all of the continents. BVDV-1 can be segregated into at least twenty-one subgenotypes (1a-1u), while four subgenotypes have been described for BVDV-2 (2a-2d). With respect to published sequences, the number of virus isolates described for BVDV-1 (88.2%) is considerably higher than for BVDV-2 (11.8%). The most frequently-reported BVDV-1 subgenotype are 1b, followed by 1a and 1c. The highest number of various BVDV subgenotypes has been documented in European countries, indicating greater genetic diversity of the virus on this continent. Current segregation of BVDV field isolates and the designation of subgenotypes are not harmonized. While the species BVDV-1 and BVDV-2 can be clearly differentiated independently from the portion of the genome being compared, analysis of different genomic regions can result in inconsistent assignment of some BVDV isolates to defined subgenotypes. To avoid non-conformities the authors recommend the development of a harmonized system for subdivision of BVDV isolates into defined subgenotypes.

  11. Influence of border disease virus (BDV) on serological surveillance within the bovine virus diarrhea (BVD) eradication program in Switzerland.

    Science.gov (United States)

    Kaiser, V; Nebel, L; Schüpbach-Regula, G; Zanoni, R G; Schweizer, M

    2017-01-13

    In 2008, a program to eradicate bovine virus diarrhea (BVD) in cattle in Switzerland was initiated. After targeted elimination of persistently infected animals that represent the main virus reservoir, the absence of BVD is surveilled serologically since 2012. In view of steadily decreasing pestivirus seroprevalence in the cattle population, the susceptibility for (re-) infection by border disease (BD) virus mainly from small ruminants increases. Due to serological cross-reactivity of pestiviruses, serological surveillance of BVD by ELISA does not distinguish between BVD and BD virus as source of infection. In this work the cross-serum neutralisation test (SNT) procedure was adapted to the epidemiological situation in Switzerland by the use of three pestiviruses, i.e., strains representing the subgenotype BVDV-1a, BVDV-1h and BDSwiss-a, for adequate differentiation between BVDV and BDV. Thereby the BDV-seroprevalence in seropositive cattle in Switzerland was determined for the first time. Out of 1,555 seropositive blood samples taken from cattle in the frame of the surveillance program, a total of 104 samples (6.7%) reacted with significantly higher titers against BDV than BVDV. These samples originated from 65 farms and encompassed 15 different cantons with the highest BDV-seroprevalence found in Central Switzerland. On the base of epidemiological information collected by questionnaire in case- and control farms, common housing of cattle and sheep was identified as the most significant risk factor for BDV infection in cattle by logistic regression. This indicates that pestiviruses from sheep should be considered as a source of infection of domestic cattle and might well impede serological BVD surveillance.

  12. The effects of bovine viral diarrhoea virus on cattle reproduction in relation to disease control.

    Science.gov (United States)

    Fray, M D; Paton, D J; Alenius, S

    2000-07-02

    Bovine viral diarrhoea virus (BVDV) is a major reproductive pathogen in cattle. Infection of the bull can lead to a fall in semen quality and the isolation of infectious virus in the ejaculate, while infection in the cow leads to poor conception rates, abortions and congenital defects. BVDV also reduces the animal's resistance to other respiratory and enteric pathogens. The prevalence of BVDV is primarily due to the efficiency with which the virus crosses the placenta of susceptible females. Calves that survive infection during the first trimester of pregnancy are born with a persistent and lifelong infection. These persistently infected (PI) animals represent between 1.0% and 2.0% of the cattle population and continuously shed infectious virus. The availability of reliable diagnostic ELISA and PCR techniques, which can test milk or serum samples for virus or antibodies, has simplified BVDV surveillance and improved the prospects for control. Although PI animals are the principal vectors within and between herds, they can be readily identified and removed. By contrast, cows carrying a PI foetus are particularly problematic. These animals have been compared to 'Trojan Horses' because they are virus-negative and antibody-positive but they deliver PI calves. In general, acutely infected cattle are much less efficient vectors but infections at the onset of puberty have resulted in a localised and persistent infection within the testes. Under these circumstances, virus shedding into the semen may remain undetected. Transmission of BVDV can be controlled through vaccination or eradication. BVDV vaccine technology has been developing over the past 30 years, but currently available vaccines are still of the conventional inactivated or attenuated sort. In general, vaccination has not been applied with sufficient rigor to make a significant impact on the level of circulating virus, unlike the national and regional eradication programmes established in areas such as

  13. Comparison of the copy numbers of bovine leukemia virus in the lymph nodes of cattle with enzootic bovine leukosis and cattle with latent infection.

    Science.gov (United States)

    Somura, Yoshiko; Sugiyama, Emi; Fujikawa, Hiroshi; Murakami, Kenji

    2014-10-01

    To establish a diagnostic index for predicting enzootic bovine leukosis (EBL), proviral bovine leukemia virus (BLV) copies in whole blood, lymph nodes and spleen were examined by quantitative real-time PCR (qPCR). Cattle were divided into two groups, EBL and BLV-infected, based on meat inspection data. The number of BLV copies in all specimens of EBL cattle was significantly higher than those of BLV-infected cattle (p < 0.0001), and the number of BLV copies in the lymph nodes was particularly large. Over 70 % of the superficial cervical, medial iliac and jejunal lymph nodes from EBL cattle had more than 1,000 copies/10 ng DNA, whereas lymph nodes from BLV-infected cattle did not. These findings suggest that the cattle harboring more than 1,000 BLV copies may be diagnosed with EBL.

  14. The molecular epidemiological study of bovine leukemia virus infection in Myanmar cattle.

    Science.gov (United States)

    Polat, Meripet; Moe, Hla Hla; Shimogiri, Takeshi; Moe, Kyaw Kyaw; Takeshima, Shin-Nosuke; Aida, Yoko

    2017-02-01

    Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide and affects both health status and productivity. However, no studies have examined the distribution of BLV in Myanmar, and the genetic characteristics of Myanmar BLV strains are unknown. Therefore, the aim of this study was to detect BLV infection in Myanmar and examine genetic variability. Blood samples were obtained from 66 cattle from different farms in four townships of the Nay Pyi Taw Union Territory of central Myanmar. BLV provirus was detected by nested PCR and real-time PCR targeting BLV long terminal repeats. Results were confirmed by nested PCR targeting the BLV env-gp51 gene and real-time PCR targeting the BLV tax gene. Out of 66 samples, six (9.1 %) were positive for BLV provirus. A phylogenetic tree, constructed using five distinct partial and complete env-gp51 sequences from BLV strains isolated from three different townships, indicated that Myanmar strains were genotype-10. A phylogenetic tree constructed from whole genome sequences obtained by sequencing cloned, overlapping PCR products from two Myanmar strains confirmed the existence of genotype-10 in Myanmar. Comparative analysis of complete genome sequences identified genotype-10-specific amino acid substitutions in both structural and non-structural genes, thereby distinguishing genotype-10 strains from other known genotypes. This study provides information regarding BLV infection levels in Myanmar and confirms that genotype-10 is circulating in Myanmar.

  15. Genetic diversity of bovine viral diarrhea virus in cattle from Mexico.

    Science.gov (United States)

    Gómez-Romero, Ninnet; Basurto-Alcántara, Francisco J; Verdugo-Rodríguez, Antonio; Bauermann, Fernando V; Ridpath, Julia F

    2017-05-01

    Bovine viral diarrhea virus (BVDV) infects cattle populations worldwide, causing significant economic losses though its impact on animal health. Previous studies have reported the prevalence of BVDV species and subgenotypes in cattle from the United States and Canada. We investigated the genetic diversity of BVDV strains detected in bovine serum samples from 6 different Mexican regions. Sixty-two BVDV isolates from Mexico were genetically typed based on comparison of sequences from the 5' untranslated region (5'-UTR) of the viral genome. Phylogenetic reconstruction indicated that 60 of the samples belonged to the BVDV-1 genotype and 2 to the BVDV-2 genotype. Comparison of partial 5'-UTR sequences clustered 49 samples within BVDV-1c, 8 samples within BVDV-1a, 3 samples within BVDV-1b, and 2 samples clustered with the BVDV-2a subgenotypes. Our study, combined with information previously published on BVDV field strain diversity in the United States and Canada, benefits the development of effective detection assays, vaccines, and control programs for North America.

  16. Clinical and immunological effects of Newcastle disease virus vaccine on bovine papillomatosis.

    Science.gov (United States)

    Avki, Sirri; Turutoglu, Hulya; Simsek, Atilla; Unsal, Ayhan

    2004-03-01

    Newcastle disease virus (NDV) has antineoplastic and immunostimulatory properties, and it is currently being clinically tested in anticancer therapy. In order to analyze the immunostimulatory effects of NDV on bovine papillomatosis, we inoculated 14 cows subcutaneously with an attenuated vaccine containing the LaSota strain of NDV (LS-NDV). Four cows with papillomatosis served as controls. Serum samples were collected from each animal 1 h before and, 7 and 21 days after inoculation. In inoculated cows, on days 7 and 21 the mean antibody titers were log2 2.43 +/- 0.92 and log2 5.57 +/- 0.72 by haemagglutination inhibition (HI), and the mean levels of tumor necrosis factor-alpha (TNF-alpha) were 5.80 +/- 4.19 and 5.39 +/- 2.66 ng/ml by WEHI-164 cytotoxicity assay. Significant differences between inoculated and control animals were evident for antibody titers on day 21 and clinical scores on day 60. A correlation was evident between the TNF-alpha activities and clinical scores on day 21. The clinical observations at day 60 showed that the papillomas in five cows were completely resolved (36%), one animal had no alterations on clinical appearance of the tumor (7%), and papillomas in eight cows were regressed (57%). In conclusion, these results demonstrated that inoculation of LS-NDV vaccine stimulates an antibody response and limited increase in TNF-alpha activity and may enhance clinical recovery in bovine papillomatosis.

  17. Serological and molecular detection of bovine leukemia virus in cattle in Iraq

    Science.gov (United States)

    Khudhair, Yahia Ismail; Hasso, Saleem Amin; Yaseen, Nahi Y; Al-Shammari, Ahmed Majeed

    2016-01-01

    Bovine leukemia virus (BLV) is highly endemic in many countries, including Iraq, and it impacts the beef and dairy industries. The current study sought to determine the percentage of BLV infection and persistent lymphocytosis (PL) in cattle in central Iraq. Hematological, serological, and molecular observations in cross breeds and local breeds of Iraqi cattle naturally infected with BLV were conducted in the peripheral blood mononuclear cells of 400 cattle (340 cross breed and 60 local breed) using enzyme-linked immunosorbent assay and polymerase chain reaction (PCR). On the basis of the absolute number of lymphocytes, five of the 31 positive PCR cases had PL. Among these leukemic cattle, one case exhibited overt neutrophilia. Serum samples were used to detect BLV antibodies, which were observed in 28 (7%) samples. PCR detected BLV provirus in 31 samples (7.75%). All 28 of the seropositive samples and the 3 seronegative samples were positive using PCR. Associations were observed between bovine leukosis and cattle breed, age and sex. Age-specific analysis showed that the BLV percentage increased with age in both breeds. Female cattle (29 animals; 7.34%) exhibited significantly higher infectivity than male cattle (two animals; 4.34%). In conclusion, comprehensive screening for all affected animals is needed in Iraq; programs that segregate cattle can be an effective and important method to control and/or eliminate the BLV. PMID:27273225

  18. Bovine leukaemia virus DNA in fresh milk and raw beef for human consumption.

    Science.gov (United States)

    Olaya-Galán, N N; Corredor-Figueroa, A P; Guzmán-Garzón, T C; Ríos-Hernandez, K S; Salas-Cárdenas, S P; Patarroyo, M A; Gutierrez, M F

    2017-11-01

    Bovine leukaemia virus (BLV) is the causative agent of enzootic bovine leucosis, which has been reported worldwide. BLV has been found recently in human tissue and it could have a significant impact on human health. A possible hypothesis regarding viral entry to humans is through the consumption of infected foodstuffs. This study was aimed at detecting the presence of BLV DNA in raw beef and fresh milk for human consumption. Nested PCR directed at the BLV gag gene (272 bp) was used as a diagnostic test. PCR products were confirmed by Sanger sequencing. Forty-nine per cent of the samples proved positive for the presence of proviral DNA. This is the first study highlighting the presence of the BLV gag gene in meat products for human consumption and confirms the presence of the viral DNA in raw milk, as in previous reports. The presence of viral DNA in food products could suggest that viral particles may also be found. Further studies are needed to confirm the presence of infected viral particles, even though the present findings could represent a first approach to BLV transmission to humans through foodstuff consumption.

  19. First Molecular Characterization of Bovine Leukemia Virus Infections in the Caribbean.

    Science.gov (United States)

    Yang, Yi; Kelly, Patrick John; Bai, Jianfa; Zhang, Rong; Wang, Chengming

    2016-01-01

    Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis. To investigate the presence and genetic variability of BLV in the Caribbean for the first time, we preformed fluorescence resonance energy transfer (FRET)-PCR for the pol of BLV on DNA from whole blood of cattle from Dominica, Montserrat, Nevis and St. Kitts. Standard PCRs with primers for the env were used for phylogenetic analysis of BLV in positive animals. We found FRET-PCR positive cattle (12.6%, 41/325) on Dominica (5.2%; 4/77) and St. Kitts (19.2%; 37/193) but not on Montserrat (0%, 0/12) or Nevis (0%, 0/43). Positive animals were cows on farms where animals were raised intensively. Phylogenetic analysis using the neighbor-joining (NJ) method on partial and full-length env sequences obtained for strains from Dominica (n = 2) and St. Kitts (n = 5) and those available in GenBank (n = 90) (genotypes 1-10) revealed the Caribbean strains belonged to genotype 1 (98-100% sequence homology). Ours is the first molecular characterization of BLV infections in the Caribbean and the first description of genotype 1 in the region.

  20. First Molecular Characterization of Bovine Leukemia Virus Infections in the Caribbean.

    Directory of Open Access Journals (Sweden)

    Yi Yang

    Full Text Available Bovine leukemia virus (BLV is a retrovirus that causes enzootic bovine leucosis. To investigate the presence and genetic variability of BLV in the Caribbean for the first time, we preformed fluorescence resonance energy transfer (FRET-PCR for the pol of BLV on DNA from whole blood of cattle from Dominica, Montserrat, Nevis and St. Kitts. Standard PCRs with primers for the env were used for phylogenetic analysis of BLV in positive animals. We found FRET-PCR positive cattle (12.6%, 41/325 on Dominica (5.2%; 4/77 and St. Kitts (19.2%; 37/193 but not on Montserrat (0%, 0/12 or Nevis (0%, 0/43. Positive animals were cows on farms where animals were raised intensively. Phylogenetic analysis using the neighbor-joining (NJ method on partial and full-length env sequences obtained for strains from Dominica (n = 2 and St. Kitts (n = 5 and those available in GenBank (n = 90 (genotypes 1-10 revealed the Caribbean strains belonged to genotype 1 (98-100% sequence homology. Ours is the first molecular characterization of BLV infections in the Caribbean and the first description of genotype 1 in the region.

  1. Molecular characterization of a Korean bovine parainfluenza virus type 3 isolate.

    Science.gov (United States)

    Oem, Jae-Ku; Lee, Eun-Yong; Lee, Kyoung-Ki; Kim, Seong-Hee; Lee, Myoung-Heon; Hyun, Bang-Hun

    2013-02-22

    Bovine parainfluenza virus type 3 (BPIV-3) was isolated from Korean native cattle that presented clinical signs of mild pneumonia. The complete genome of a representative isolate (12Q061) was sequenced. The newly identified strain, which was found to be distinct from the previously reported genotypes A (BPIV-3a) and B (BPIV-3b) and closely related to the Chinese strain SD0835, was tentatively classified as genotype C (BPIV-3c). Our results suggest a relationship between BPIV-3 genetic variation and the geographic location of its isolation. Identification of these new BPIV-3 genotypes may facilitate the development of improved diagnostic methods and vaccines. This is to our knowledge the first report of the identification and molecular characterization of BPIV-3 in Korea. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Seroprevalence of bovine viral diarrhea virus in crossbred dairy cattle in Bangladesh

    Science.gov (United States)

    Uddin, Mohammed Arif; Ahasan, A. S. M. Lutful; Islam, Kamrul; Islam, Md. Zohorul; Mahmood, Altaf; Islam, Ariful; Islam, Kazi Muhammad Fakhrul; Ahad, Abdul

    2017-01-01

    Aim: The study was conducted to determine the seroprevalence of bovine viral diarrhea virus (BVDV) and hematological features in crossbred dairy cattle in Chittagong, Bangladesh. Materials and Methods: The antibody against BVDV in crossbred dairy cattle serum was detected by indirect enzyme-linked immunosorbent assay. The association of different categorical variables in the prevalence of BVDV has been studied. Blood samples were collected and analyzed to know the hematological variations in the study population. Results: The overall seroprevalence of BVDV in the study area was 51.1% (95% confidence interval [CI], 40.5-61.5). Among different physiological stages of animals, the highest 57.1% (95% CI, 42.2-71.2) prevalence was in case of non-pregnant animals. Aborted cows were found to be significantly (pproduction industry. Therefore, it is necessary to conduct effective control measures to reduce the burden of BVDV. PMID:28919681

  3. An enzyme-linked immunosorbent assay for enzootic bovine leukosis virus antibodies.

    Science.gov (United States)

    Todd, D; Adair, B M; Wibberley, G

    1980-08-09

    An enzyme-linked immunosorbent assay (ELISA) for detecting antibodies to enzootic bovine leukosis (EBL) virus is described and its sensitivity compared with that of the agar gel immunodiffusion test (AGIDT) using 198 sera collected in Great Britain. There was 95 per cent agreement between the ELISA and AGIDT, when sera with positive/negative ratio (P/N) values of 1 . 5 or greater were considered positive. A total of 259 out of 264 sera (98 per cent) collected in Northern Ireland had P/N values of less than 1 . 5, the remaining sera having P/N values of 1 . 5 and 1 . 6. As Northern Ireland is clinically and serologically free of EBL infection it is proposed that sera with P/N values of 1 . 5 and 1 . 6, which account for approximately 3.5 per cent of the total sera tested, are considered doubtful and should be tested by another serological test.

  4. Effects of bovine leukemia virus infection on crossbred and purebred dairy cattle productive performance in Brazil

    Directory of Open Access Journals (Sweden)

    Daniela Souza Rajão

    2014-02-01

    Full Text Available The aim of this study was to evaluate the effects of bovine leukemia virus (BLV infection on productive performance of dairy cattle in Brazil. A total of 158 blood samples from lactating adult cows, purebred Holstein and crossbred Holstein X Zebu, were analyzed by Agar Gel Immunodifusion Test (AGID and leukogram. According to AGID and leukogram results, animals were grouped into three categories: seronegative, seropositive without persistent lymphocytosis, and seropositive with persistent lymphocytosis. Milk production data were compared between groups, according to breed. BLV infected females showed lower milk yield than uninfected ones, both purebred and crossbred ones. There was no difference between milk yield of seropositive cows with or without persistent lymphocytosis. These results indicate an association between BLV infection and reduction of milk production, and this study is the first one to show these effects in crossbred Holstein X Zebu cows.

  5. Effects of human metapneumovirus and respiratory syncytial virus antigen insertion in two 3' proximal genome positions of bovine/human parainfluenza virus type 3 on virus replication and immunogenicity

    NARCIS (Netherlands)

    R.S. Tang (Roderick); J.H. Schickli (Jeanne); M. MacPhail (Mia); F. Fernandes (Fiona); L. Bicha (Leenas); J. Spaete (Joshua); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); R. Spaete (Richard); A.A. Haller (Aurelia)

    2003-01-01

    textabstractA live attenuated bovine parainfluenza virus type 3 (PIV3), harboring the fusion (F) and hemagglutinin-neuraminidase (HN) genes of human PIV3, was used as a virus vector to express surface glycoproteins derived from two human pathogens, human metapneumovirus (hMPV) and respiratory

  6. Seroepidemiological study of bovine respiratory viruses (BRSV, BoHV-1, PI-3V, BVDV, and BAV-3) in dairy cattle in central region of Iran (Esfahan province).

    Science.gov (United States)

    Shirvani, Edris; Lotfi, Mohsen; Kamalzadeh, Morteza; Noaman, Vahid; Bahriari, Masumeh; Morovati, Hasan; Hatami, Alireza

    2012-01-01

    Respiratory diseases in calves are responsible for major economic losses in both beef and dairy production. Several viruses, such as bovine respiratory syncytial virus (BRSV), bovine herpes virus-1 (BoHV-1), bovine parainfluenza virus-3 (BPI-3V), bovine viral diarrhea virus (BVDV), and bovine adenoviruses (BAV), are detected in most clinical cases with respiratory signs. The aim of this study is to define seroprevalences of five major viral causes of bovine respiratory infections in cattle in central region of Iran (Esfahan province). The population targeted was 642 dairy cows (Holstein-Friesian) from 25 farms. Samples of blood serum from female cattle were examined. Sera were tested by commercial ELISA kits to detect antibody against BRSV, BoHV-1, BPI-3V, BVDV, and BAV-3. The results were analyzed by Chi-square test. In the present study, seroprevalences of BRSV, BoHV-1, PI3V, BVDV, and BAV-3 were 51.1%, 72%, 84.4%, 49.2%, and 55.6%, respectively. The present study shows that infections of bovine respiratory viruses are very common in cattle in Esfahan.

  7. Phylogenetic study on the 5'-untranslated region of bovine viral diarrhoea virus isolates from Iran

    Directory of Open Access Journals (Sweden)

    Majid Esmaelizad

    2014-09-01

    Full Text Available Bovine viral diarrhoea virus is a pathogen of bovids associated with reproduction system, causing in infected animals a range of ailments, from abortion to congenital defects. In this article, the nucleotide structure of the 5'-untranslated region (5-UTR from 7 Iranian bovine diarrhoea virus (BVDV isolates was characterized and subjected to comparative analysis against a panel of BVDV isolates from different sources. To this end, a 288 bp-long stretch of the internal ribosome entry site was amplified by RT-PCR. The PCR products subsequently cloned into PTZ57T vector and sequenced using T7 promoter primers. This resulted in detection of 3 new point mutations G→A and G→T in 2 isolates. When these findings were phylogenetically assessed, all the examined Iranian isolates were deemed to belong to the type1 of BVDV. Besides, 2 subtypes were identified among these isolates. In group A, a high level of similarity (99.2% between Iranian isolates with a cytopathic Australian strain of BVDV-1c was detected; while in group B, the 4 Iranian isolates proved to be very similar to NADL-like BVDV-1a strains. We believe that the surprisingly high level of similarity between group A Iranian isolates and their corresponding Australian strain is likely to be an indication of a shared common ancestor. If correct, the most likely explanation of this observation is the introduction of such strains from Australia to Iran, possibly through exportation of infected live animals or animal productions (e.g. semen and meat at some points in the past. Nevertheless, this hypothesis remains to be proved as further epidemiological work at genomic level is required to understand population of BVDV in Iran.

  8. Preliminary mapping of non-conserved epitopes on envelope glycoprotein E2 of bovine viral diarrhea virus type 1 and 2

    NARCIS (Netherlands)

    Jelsma, H.; Loeffen, W.L.A.; Beuningen, van A.R.; Rijn, van P.A.

    2013-01-01

    Bovine viral diarrhea virus (BVDV) belongs together with Classical swine fever virus (CSFV) and Border disease virus (BDV) to the genus Pestivirus in the Flaviviridae family. BVDV has been subdivided into two different species, BVDV1 and BVDV2 based on phylogenetic analysis. Subsequent

  9. Quantitative trait loci associated with the immune response to a bovine respiratory syncytial virus vaccine.

    Directory of Open Access Journals (Sweden)

    Richard J Leach

    Full Text Available Infectious disease is an important problem for animal breeders, farmers and governments worldwide. One approach to reducing disease is to breed for resistance. This linkage study used a Charolais-Holstein F2 cattle cross population (n = 501 which was genotyped for 165 microsatellite markers (covering all autosomes to search for associations with phenotypes for Bovine Respiratory Syncytial Virus (BRSV specific total-IgG, IgG1 and IgG2 concentrations at several time-points pre- and post-BRSV vaccination. Regions of the bovine genome which influenced the immune response induced by BRSV vaccination were identified, as well as regions associated with the clearance of maternally derived BRSV specific antibodies. Significant positive correlations were detected within traits across time, with negative correlations between the pre- and post-vaccination time points. The whole genome scan identified 27 Quantitative Trait Loci (QTL on 13 autosomes. Many QTL were associated with the Thymus Helper 1 linked IgG2 response, especially at week 2 following vaccination. However the most significant QTL, which reached 5% genome-wide significance, was on BTA 17 for IgG1, also 2 weeks following vaccination. All animals had declining maternally derived BRSV specific antibodies prior to vaccination and the levels of BRSV specific antibody prior to vaccination were found to be under polygenic control with several QTL detected.Heifers from the same population (n = 195 were subsequently immunised with a 40-mer Foot-and-Mouth Disease Virus peptide (FMDV in a previous publication. Several of these QTL associated with the FMDV traits had overlapping peak positions with QTL in the current study, including the QTL on BTA23 which included the bovine Major Histocompatibility Complex (BoLA, and QTL on BTA9 and BTA24, suggesting that the genes underlying these QTL may control responses to multiple antigens. These results lay the groundwork for future investigations to identify the

  10. Isolation and identification of a bovine viral diarrhea virus from sika deer in china

    Directory of Open Access Journals (Sweden)

    Wang Nan

    2011-02-01

    Full Text Available Abstract Background Bovine viral diarrhea virus (BVDV infections continue to cause significantly losses in the deer population. Better isolation and identification of BVDV from sika deer may contribute significantly to the development of prophylactic therapeutic, and diagnostic reagents as well as help in prevention and control of BVDV. However, isolation and identification of BVDV from sika deer is seldom reported in literature. In this study, we collected some samples according to clinical sign of BVDV to isolation and identification of BVDV from sika deer. Results we isolated a suspected BVDV strain from livers of an aborted fetus from sika deer in Changchun (China using MDBK cell lines, named as CCSYD strain, and identified it by cytopathic effect (CPE, indirect immunoperoxidase test (IPX and electron microscopy(EM. The results indicated that this virus was BVDV by a series of identification. The structural proteins E0 gene was cloned and sequenced. The obtained E0 gene sequence has been submitted to GenBank with the accession number: FJ555203. Alignment with other 9 strains of BVDV, 7 strains of classical swine fever virus (CSFV and 3 strains of border disease virus(BDV in the world, showed that the homology were 98.6%-84.8%, 76.0%-74.7%, 76.6%-77.0% for nucleotide sequence, respectively. The phylogenetic analysis indicated that new isolation and identification CCSYD strain belonged to BVDV1b. Conclusion To the best of our knowledge, this is the first report that BVDV was isolated and identified in sika deer. This current research contributes development new BVDV vaccine to prevent and control of BVD in sika deer.

  11. Safety, bioavailability and mechanism of action of nitric oxide to control Bovine Respiratory Disease Complex in calves entering a feedlot.

    Science.gov (United States)

    Regev-Shoshani, G; Vimalanathan, S; Prema, D; Church, J S; Reudink, M W; Nation, N; Miller, C C

    2014-04-01

    Bovine Respiratory Disease Complex (BRDc), a multi-factorial disease, negatively impacts the cattle industry. Nitric oxide (NO), a naturally occurring molecule, may have utility controlling incidence of BRDc. Safety, bioavailability, toxicology and tolerance/stress of administering NO to cattle is evaluated herein. Thirteen, crossbred, multiple-sourced, commingled commercial weaned beef calves were treated multiple times intranasally over a 4 week period with either a nitric oxide releasing solution (treatment) or saline (control). Exhaled NO, methemoglobin percent (MetHg) and serum nitrites demonstrated biological availability as a result of treatment. Cortisol levels, tissue nitrites, behavior and gross and macroscopic pathology of organs were all normal. Moreover, preliminary in vitro studies using Mannheimia haemolytica, Infectious Bovine Rhinotracheitis, Bovine Parainfluenza-3 and Bovine Respiratory Syncytial Virus, suggest a potential explanation for the previously demonstrated efficacy for BRDc. These data confirm the bioavailability, safety and lack of residual of NO treatment to cattle, along with the bactericidal and virucidal effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Viral infections and bovine mastitis: a review.

    Science.gov (United States)

    Wellenberg, G J; van der Poel, W H M; Van Oirschot, J T

    2002-08-02

    This review deals with the role of viruses in the aetiology of bovine mastitis. Bovine herpesvirus 1, bovine herpesvirus 4, foot-and-mouth disease virus, and parainfluenza 3 virus have been isolated from milk from cows with clinical mastitis. Intramammary inoculations of bovine herpesvirus 1 or parainfluenza 3 virus-induced clinical mastitis, while an intramammary inoculation of foot-and-mouth disease virus resulted in necrosis of the mammary gland. Subclinical mastitis has been induced after a simultaneous intramammary and intranasal inoculation of lactating cows with bovine herpesvirus 4. Bovine leukaemia virus has been detected in mammary tissue of cows with subclinical mastitis, but whether this virus was able to induce bovine mastitis has not been reported. Bovine herpesvirus 2, vaccinia, cowpox, pseudocowpox, vesicular stomatitis, foot-and-mouth disease viruses, and bovine papillomaviruses can play an indirect role in the aetiology of bovine mastitis. These viruses can induce teat lesions, for instance in the ductus papillaris, which result in a reduction of the natural defence mechanisms of the udder and indirectly in bovine mastitis due to bacterial pathogens. Bovine herpesvirus 1, bovine viral diarrhoea virus, bovine immunodeficiency virus, and bovine leukaemia virus infections may play an indirect role in bovine mastitis, due to their immunosuppressive properties. But, more research is warranted to underline their indirect role in bovine mastitis. We conclude that viral infections can play a direct or indirect role in the aetiology of bovine mastitis; therefore, their importance in the aetiology of bovine mastitis and their economical impact needs further attention.

  13. Deteksi Bovine Herpesvirus-1 Secara Immunohistokimia pada Membran Korioallantois Telur Ayam Berembrio (IMMUNOHISTOCHEMISTRY DETECTION OF BOVINE HERPESVIRUS-1 IN CORIOALLANTOIC MEMBRANE OF CHICKEN EMBRYONATED EGG

    Directory of Open Access Journals (Sweden)

    Yuli Purwandari Kristianingrum

    2016-01-01

    Full Text Available Infectious Bovine Rhinotracheitis (IBR is caused by Bovine Herpes virus-1 in the cattle. The clinicalsigns demonstrate depression, anorexia, swelling of the vulva, redness of the vestibule, pustule and ulceron the vaginal mucosal. Based on previous research, IBR virus from the nasal swab could be grown inchorio-allantoic membrane of embryonated chicken eggs. This study aim was to confirm whether IBR virusin cattle could be grown in embryonated chicken eggs as a substitute for cell culture. A total of five nasalswab samples from the cows that were positive for IBR infection (diagnosed by Polymerase Chain Reactionand cell culture were inoculated on the chorio-allantois membrane of embryonated chicken eggs.Observation of lesions performed at 3-5 days after inoculation. Re-inoculation (passage was done threetimes. Pock characteristic lesions were observed on the corioallantoic membrane with the size of 5-7 mm,rounded shape, opaque edge, with necrosis in the central area. Furthermore, pock lesions were processedfor hematoxylin and eosin staining and immuno-histochemistry. The result of hematoxylin and eosinstaining showed that the formation of intranuclear inclusion bodies and vacuolization of the epithelial cellof membrane was observed. Immuno-histochemistry staining showed positive reaction for antibodiesagainst BHV-1 in the epithelial cells membrane. In conclusion, embryonated chicken eggs could be usedas a medium for detection of IBR.

  14. Identification and genome characterization of genotype B and genotype C bovine parainfluenza type 3 viruses isolated in the United States.

    Science.gov (United States)

    Neill, John D; Ridpath, Julia F; Valayudhan, Binu T

    2015-05-15

    Bovine parainfluenza 3 viruses (BPI3V) are respiratory pathogens of cattle that cause disease singly but are often associated with bovine respiratory disease complex (BRDC) in conjunction with other viral and bacterial agents. Bovine vaccines currently contain BPI3V to provide protection against the virus, but there is no current information regarding the BPI3V strains that are circulating in the U.S. A project was initiated to sequence archival BPI3V isolates to study viral evolution over time. This was done with a deep sequencing protocol that generated sequences of multiple RNA virus genomes simultaneously. Analysis of the BPI3V sequences revealed that, in addition to the genotype A (BPI3Va) viruses previously described in the United States, there were two additional genotypes of BPI3V circulating that had been described only in Australia (BPI3Vb) and Asia (BPI3Vc). The U.S. BPI3Vb and BPI3Vc isolates showed some divergence from the Australian and Asian strains; the BPI3Vb were 93 % similar to the Australian Q5592 strain and the BPI3Vc viruses were 98 % similar to the 12Q061 strain that was described in South Korea. Overall, the three genotypes were 82 to 84 % identical to each other and 80 % identical to the most similar human PI3V. Cross-neutralization studies using an APHIS/NVSL BPI3V reference serum showed that neutralization titers against the genotype B and C viruses were 4- to ≥16-fold less then the titer against the APHIS BPI3Va reference strain, SF-4. This study clearly demonstrated that BPI3Vb and BPI3Vc strains, previously thought to be foreign to the U.S., are indeed circulating in domestic livestock herds. Based on virus neutralization using polyclonal antisera, there were antigenic differences between viruses from these genotypes and the BPI3Va viruses that are included in currently marketed bovine vaccines. Further study of these viruses is warranted to determine pathogenic potential and cross-protection afforded by vaccination.

  15. Cis-drivers and trans-drivers of bovine leukemia virus oncogenesis.

    Science.gov (United States)

    Safari, Roghaiyeh; Hamaidia, Malik; de Brogniez, Alix; Gillet, Nicolas; Willems, Luc

    2017-10-01

    The bovine leukemia virus (BLV) is a retrovirus inducing an asymptomatic and persistent infection in ruminants and leading in a minority of cases to the accumulation of B-lymphocytes (lymphocytosis, leukemia or lymphoma). Although the mechanisms of oncogenesis are still largely unknown, there is clear experimental evidence showing that BLV infection drastically modifies the pattern of gene expression of the host cell. This alteration of the transcriptome in infected B-lymphocytes results first, from a direct activity of viral proteins (i.e. transactivation of gene promoters, protein-protein interactions), second, from insertional mutagenesis by proviral integration (cis-activation) and third, from gene silencing by microRNAs. Expression of viral proteins stimulates a vigorous immune response that indirectly modifies gene transcription in other cell types (e.g. cytotoxic T-cells, auxiliary T-cells, macrophages). In principle, insertional mutagenesis and microRNA-associated RNA interference can modify the cell fate without inducing an antiviral immunity. Despite a tight control by the immune response, the permanent attempts of the virus to replicate ultimately induce mutations in the infected cell. Accumulation of these genomic lesions and Darwinian selection of tumor clones are predicted to lead to cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Parainfluenza-3 and bovine respiratory syncytial virus: intraherd correlation adjusted for sensitivity and specificity

    Directory of Open Access Journals (Sweden)

    José Segura C.

    2013-11-01

    Full Text Available Objective. The purpose of this study was to compare the intra-class correlation coefficients (ICC and design effects (D estimates adjusted or unadjusted for sensibility (Se and specificity (Sp of the diagnostic tests using a Bayesian procedure. Materials and methods. Sera from 232 animals from 44 randomly selected herds, to detect antibodies against parainfluenza-3 virus (PIV3 from non-vaccinated dual-purpose cattle from Colima Mexico, were used. Only 176 animals from 33 herds were used to evaluate the presence of the bovine respiratory syncytial virus (BRSV. Results. The ICC and D values adjusted and unadjusted for PIV3 were 0.33, 2.73, 0.32, and 2.71, respectively. For BRSV the values were 0.31, 2.64, 0.28 and 2.49. Conclusions. The adjusted or unadjusted ICC and D estimates were similar because of the high Se and Sp of the diagnostic tests and the relatively high prevalence of the diseases here studied.

  17. First report of Bovine Viral Diarrhea Virus antigen from pneumonic cattle in Sudan

    Directory of Open Access Journals (Sweden)

    Intisar Kamil Saeed

    2015-06-01

    Full Text Available To explore the expected role of Bovine Viral Diarrhea Virus (BVDV in pneumonia in cattle, cattle lungs (n=242 showing signs of pneumonia were collected from slaughter houses of three different localities located at Northern, Central and Western Sudan during 2010–2013. The collected samples were tested for the presence of BVDV antigen using Enzyme-Linked Immunosorbent Assay (ELISA, and Fluorescent Antibody Test (FAT. Twenty six (10.7% out of 242 samples were found to be positive for BVDV. Positive results were seen in all the three studied areas, with the highest prevalence (16.7%; n=4/24 at Gezira State in Central Sudan. BVDV genome could be detected in all ELISA positive samples. The results indicated the existence of BVDV infection in cattle in different areas in Sudan, and its possible association with respiratory infections in cattle. Analysis using BLAST indicated that the sequence was identical to the previously reported BVDV-1 (GenBank accession AF220247.1.; nucleotide A was found in our study at position 9 of our sequence, whereas T was present instead in the reference virus. This is the first report of detecting BVDV antigen, genome, and its sequence analysis collected from cattle lungs in Sudan.

  18. Bovine viral diarrhea virus (BVDV genetic diversity in Spain: A review

    Directory of Open Access Journals (Sweden)

    Francisco J. Diéguez

    2017-07-01

    Full Text Available Bovine viral diarrhea virus (BVDV, a member of the genus Pestivirus of the family Flaviviridae, causes significant losses in cattle farming worldwide because of reduced milk production, increased mortality of young animals and reproductive, respiratory and intestinal problems. The virus is characterized by an important genetic, and consequently antigenic and pathogenic diversity. Knowing the variability of viral strains present in a population provides valuable information, particularly relevant for control programs development, vaccination recommendations and even identification of likely infection sources. Such information is therefore important at both local and regional levels. This review focuses on the genetic diversity of BVDV isolates infecting cattle in Spain over the last years. According to the published data, the most prevalent BVDV group in Spain was 1b, and to a lesser extent 1d, 1e and 1f. Besides, BVDV-2 has also been found in Spain with several ratified isolates. The studies carried out in Spain also showed increased genetic heterogeneity of BVDV strains, possibly due to a more intensive use of analytical tools available, presenting studies with increasingly greater sample sizes.

  19. Analysis of bovine viral diarrhoea virus: Biobank and sequence database to support eradication in Scotland.

    Science.gov (United States)

    Russell, G C; Grant, D M; Lycett, S; Bachofen, C; Caldow, G L; Burr, P D; Davie, K; Ambrose, N; Gunn, G J; Zadoks, R N

    2017-05-06

    Samples from bovine viral diarrhoea virus (BVDV)-positive cattle were gathered by Scottish diagnostic laboratories and used to produce a Biobank of samples with associated location and identification data in support of the Scottish BVDV eradication scheme. The samples were subject to direct amplification and sequencing of the 5'-untranslated region (5'-UTR) to define the viral types and subtypes present. From 2693 samples collected prior to 2016, approximately 2300 sequences were obtained, representing 8 BVDV type 1 subtypes. No BVDV type 2 samples were detected. The samples came from all regions of the UK but 66 per cent were from Scotland. Analysis of the sequences showed great diversity in the 5'-UTR, with 1206 different sequences. Many samples carried virus with identical 5'-UTR sequences; often from single locations, but there were also examples of the same sequence being obtained from samples at several different locations. This work provides a resource that can be used to analyse the movement of BVDV strains both within Scotland and between Scotland and other nations, particularly in the latter stages of the Scottish eradication programme, and so inform the advice available to both livestock keepers and policymakers. British Veterinary Association.

  20. Bovine lactoferrin peptidic fragments involved in inhibition of herpes simplex virus type 1 infection.

    Science.gov (United States)

    Siciliano, R; Rega, B; Marchetti, M; Seganti, L; Antonini, G; Valenti, P

    1999-10-14

    Bovine lactoferrin (BLf) prevents the infection of some enveloped and naked viruses. To identify BLf sequences responsible for the antiviral activity, we tested 31 HPLC fractions, derived from tryptic digestion of BLf, toward herpes simplex virus type 1 (HSV-1). Only a few HPLC purified fragments were active against HSV-1, even if at lower extent than the native undigested BLf. Two large fragments, one corresponding to the C-lobe (amino acid sequence 345-689) and the other corresponding to a large portion of the N-lobe (1-280), were inhibitors of HSV-1 infection, while a smaller part of the N-lobe (86-258) was ineffective. Among the low-molecular-weight fragments, only two small peptides, which coeluted in a single chromatographic peak, were effective towards HSV-1. These peptides, both present in the N-lobe, were identified as peptides 222-230 (ADRDQYELL) and 264-269 (EDLIWK). The same peptides, chemically synthesised, were able to inhibit HSV-1 infection only when they were assayed in association. Copyright 1999 Academic Press.

  1. The constitutive expression of the V gene of Parainfluenza virus 5 affects the growth properties of bovine herpesvirus 5

    Directory of Open Access Journals (Sweden)

    Francisco Esmaile de Sales Lima

    2014-02-01

    Full Text Available This study aimed to analyze the effect of the expression of Parainfluenza virus 5 (PIV5 V protein in bovine cells on the replication of Bovine herpesvirus 5 (BoHV-5. Growth properties of BoHV-5 were evaluated in parental and PIV5 transfected cells. In one-step growth experiments, the BoHV-5 reached higher titers at earlier time points in the transfected cells when compared to the parental cells. The mean plaque size produced by the BoHV-5 in transfected cells was larger than the parental cells. This indicated that the expression of the PIV5 V gene facilitated the release and cell-to-cell spread of BoHV-5 in bovine cells.

  2. Le virus de la leucémie bovine et l’homéostasie du compartiment lymphocytaire périphérique

    Directory of Open Access Journals (Sweden)

    Luc Willems

    2007-01-01

    Full Text Available Bovine leukaemia virus and peripheral blood lymphocytes homeostasis. Bovine leukaemia virus (BLV is the etiological agent of a lymphoproliferative disease in cattle. This retrovirus can also be transmitted experimentally to the ovine species, in which pathology is more rapid and more frequent. In this model, infection leads to an increased cell turnover. This accelerated lymphocyte dynamics might be related to viral expression which induces cellular proliferation and host cell destruction by the immune system.

  3. Molecular analysis of bovine viral diarrhoea virus isolates from South Africa

    Directory of Open Access Journals (Sweden)

    N. Kabongo

    2003-11-01

    Full Text Available The presence of bovine viral diarrhoea virus in South Africa has been confirmed by several serological surveys. However, little is known about its biological properties. Twenty five isolates obtained by isolation in tissue culture and detected by means of the antigen capture ELISA from clinically sick cattle and from foetal calf serum in South Africa were characterized on the basis of analysis of the 5' non-translated (NTR region of the genome. A reverse-transcription polymerase chain reaction (RT-PCR was used to amplify specific sequences from the 5'NTR of the genome. The oligonucleotide primers corresponding to positions 105-125 and 399-378, respectively, in the sequence of BVDV strain NADL were used to generate the PCR products. Both strands were sequenced directly with these primers and fluorescence-labelled dideoxynucleotides in an automated nucleic acid sequencer. Reference strains of pestiviruses [(BVDV type I, BVDV type II, border disease virus (BDV and hog cholera virus (HCV] and isolates from a previous investigation on BVDV in southern Africa were included for comparative purposes. All the BVDV strains obtained during this study belong to subgroups of BVDV genotype I. No association could be demonstrated between the geographic origin of the isolates. A number of isolates formed another branch separate from the existing branches Ia, Ib and Ic. These findings suggest that extensive genetic diversity can be found within BVDV type I isolates from southern Africa. Isolates that group with the classical BVDV type I strains, particularly of American origin, coexist with variants that appear to represent a local genetic pool and or variants evolving from the classical strains.

  4. Bovine leukemia virus nucleocapsid protein is an efficient nucleic acid chaperone

    Energy Technology Data Exchange (ETDEWEB)

    Qualley, Dominic F., E-mail: dqualley@berry.edu; Sokolove, Victoria L.; Ross, James L.

    2015-03-13

    Nucleocapsid proteins (NCs) direct the rearrangement of nucleic acids to form the most thermodynamically stable structure, and facilitate many steps throughout the life cycle of retroviruses. NCs bind strongly to nucleic acids (NAs) and promote NA aggregation by virtue of their cationic nature; they also destabilize the NA duplex via highly structured zinc-binding motifs. Thus, they are considered to be NA chaperones. While most retroviral NCs are structurally similar, differences are observed both within and between retroviral genera. In this work, we compare the NA binding and chaperone activity of bovine leukemia virus (BLV) NC to that of two other retroviral NCs: human immunodeficiency virus type 1 (HIV-1) NC, which is structurally similar to BLV NC but from a different retrovirus genus, and human T-cell leukemia virus type 1 (HTLV-1) NC, which possesses several key structural differences from BLV NC but is from the same genus. Our data show that BLV and HIV-1 NCs bind to NAs with stronger affinity in relation to HTLV-1 NC, and that they also accelerate the annealing of complementary stem-loop structures to a greater extent. Analysis of kinetic parameters derived from the annealing data suggests that while all three NCs stimulate annealing by a two-step mechanism as previously reported, the relative contributions of each step to the overall annealing equilibrium are conserved between BLV and HIV-1 NCs but are different for HTLV-1 NC. It is concluded that while BLV and HTLV-1 belong to the same genus of retroviruses, processes that rely on NC may not be directly comparable. - Highlights: • BLV NC binds strongly to DNA and RNA. • BLV NC promotes mini-TAR annealing as well as HIV-1 NC. • Annealing kinetics suggest a low degree of similarity between BLV NC and HTLV-1 NC.

  5. Use of homologous recombination in yeast to create chimeric bovine viral diarrhea virus cDNA clones

    Directory of Open Access Journals (Sweden)

    Sandra Arenhart

    Full Text Available Abstract The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp#2 and chi-NADL/IBSP4ncp#3. The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome.

  6. Innate immune responses of calves during transient infection with a noncytopathic strain of bovine viral diarrhea virus

    DEFF Research Database (Denmark)

    Muller-Doblies, D.; Arquint, A.; Schaller, P.

    2004-01-01

    In this study, six immunocompetent calves were experimentally infected with a noncytopathic strain of bovine viral diarrhea virus (BVDV), and the effects of the viral infection on parameters of the innate immune response of the host were analyzed. Clinical and virological data were compared...... 2 to 15. In the context of this study with BVDV, the level of Mx protein expression in WBC provided the most telling diagnostic window to monitor the host's ongoing innate immune response....

  7. Estimation of bovine leukemia virus (BLV) proviral load harbored by lymphocyte subpopulations in BLV-infected cattle at the subclinical stage of enzootic bovine leucosis using BLV-CoCoMo-qPCR

    OpenAIRE

    Panei, Carlos Javier; Takeshima, Shin-nosuke; Omori, Takashi; Nunoya, Tetsuo; Davis, William C.; Ishizaki, Hiroshi; Matoba, Kazuhiro; Aida, Yoko

    2013-01-01

    Background Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis (EBL), which is the most common neoplastic disease of cattle. BLV infection may remain clinically silent at the aleukemic (AL) stage, cause persistent lymphocytosis (PL), or, more rarely, B cell lymphoma. BLV has been identified in B cells, CD2+ T cells, CD3+ T cells, CD4+ T cells, CD8+ T cells, ?/? T cells, monocytes, and granulocytes in infected cattle that do not have tumors, although the most consistently i...

  8. Effects of Trypanocidal Drugs on the Function of Trypanosomes.

    Science.gov (United States)

    1979-09-01

    infectious bovine rhinotracheitis virus, and parainfluenza type 3 virus. When used in passage range 30-55, optimal results were obtained. (Abstr... bovine viral diarrhea, infectious bovine rhinotracheitis, parainfluenza type 3, herpes simplex, reovirus type 3, vaccinia, vesicular stomatitis (Oqden...grown and maintained following procedures similar to those used for T. rhodesiense EATRO 1895 (2) except that bovine embryonic trachea tissue culture

  9. PREVALÊNCIA DE LEUCOSE ENZOÓTICA BOVINA, DIARRÉIA VIRAL BOVINA RINOTRAQUEÍTE INFECCIOSA BOVINA E NEOSPOROSE BOVINA EM 26 PROPRIEDADES LEITEIRAS DA REGIÃO NORDESTE DO RIO GRANDE DO SUL, BRASIL PREVALENCE OF ENZOOTIC BOVINE LEUKOSIS, BOVINE VIRAL DIARRHEA, INFECTIOUS BOVINE RHINOTRACHEITIS AND BOVINE NEOSPOROSIS IN 26 DAIRY CATTLE FARMS FROM THE NORTHEAST REGION OF RIO GRANDE DO SUL , BRAZIL

    Directory of Open Access Journals (Sweden)

    Cleber Fiori

    2008-12-01

    .936 and sex (p = 0.562. Of the 360 sheep samples, nine (2.5% were reactive. There also was no significant association between the analyzed variables and the seropositiveness for brucellosis: age group (p = 0.522; race (p = 0.576 and sex (p = 0.461. Significant association was observed (p = 0.042 among the studied species and seropositiveness for brucellosis in the investigated animals. The seropositiveness for Brucella abortus in goats and sheep was traced for the first time in the “Sertão” (dry interior region, backlands of Pernambuco, fact that can hinder the success of the National Program of Control and Erradication of Brucellosis, due to the fact that it is common to raise small ruminants with bovines in this area, besides representing risks to Public Health.
     
    KEY WORDS: Brucellosis, ovines, caprines, small ruminants, serodiagnosis.

  10. Bovine respiratory syncytial virus ISCOMs-Immunity, protection and safety in young conventional calves.

    Science.gov (United States)

    Hägglund, Sara; Hu, Kefei; Vargmar, Karin; Poré, Lesly; Olofson, Ann-Sophie; Blodörn, Krister; Anderson, Jenna; Ahooghalandari, Parvin; Pringle, John; Taylor, Geraldine; Valarcher, Jean-François

    2011-11-03

    Bovine respiratory syncytial virus (BRSV) is a major cause of bronchiolitis and pneumonia in cattle and causes yearly outbreaks with high morbidity in Europe. Commercial vaccines against this virus needs improvement of efficacy, especially in calves with BRSV-specific maternally derived antibodies (MDA). We previously reported that an experimental BRSV-ISCOM vaccine, but not a commercial vaccine, induced strong clinical and virological protection in calves with MDA, immunized at 7-15 weeks of age. The aim of the present study was to characterize the immune responses, as well as to investigate the efficacy and safety in younger animals, representing the target population for vaccination. Four groups of five 3-8 week old calves with variable levels of BRSV-specific MDA were immunized s.c. twice at a 3 weeks interval with (i) BRSV immunostimulating complexes (BRSV-ISCOMs), (ii) BRSV-protein, (iii) adjuvant, or (iv) PBS. All calves were challenged with virulent BRSV by aerosol 2 weeks later and euthanized on day 6 after infection. The cellular and humoral responses were monitored as well as the clinical signs, the viral excretion and the pathology following challenge. Despite presence of MDA at the time of the immunization, only a minimum of clinical signs were observed in the BRSV-ISCOM group after challenge. In contrast, in all control groups, clinical signs of disease were observed in most of the animals (respiratory rates up to 76min(-1) and rectal temperatures up to 41°C). The clinical protection was associated to a highly significant reduction of virus replication in the upper and lower respiratory tract of calves, rapid systemic and local antibody responses and T helper cell responses dominated by IFNγ production. Animals that did not shed virus detectable by PCR or cell culture following challenge possessed particularly high levels of pulmonary IgA. The protective immunological responses to BRSV proteins and the ability to overcome the inhibiting effect of

  11. Comparison of the prevalence and incidence of infection with bovine virus diarrhoea virus (BVDV) in Denmark and Michigan and association with possible risk factors

    DEFF Research Database (Denmark)

    Houe, H.; Baker, J.C.; Maes, R.K.

    1995-01-01

    Based on 2 previous surveys on the occurrence of infection with bovine virus diarrhoea virus (BVDV) in Danish and Michigan dairy herds, the prevalence and incidence of the infection were compared. The presence of certain possible risk factors for the occurrence of infection in the 2 areas were...... purchased more than 40 animals within recent 3 1/2-4 years were significantly associated with presence of PI animals in the dairy herds (p = 0.01) when tested by the Mantel-Haenszel chi 2. Using multivariable logistic regression, the occurrence of PI animals was found to be significantly related...

  12. Bovine Viral Diarrhea Virus in Zoos: A Perspective from the Veterinary Team.

    Science.gov (United States)

    Kottwitz, Jack J; Ortiz, Melissa

    2015-01-01

    The many different species in close proximity make zoological collections a unique environment for disease transmission. Bovine Viral Diarrhea Virus (BVDV) is of special concern with zoos due to the numerous exotic ruminant species that this virus can infect. BVDV occurs as both a non-cytopathic and a cytopathic strain both of which are capable of infecting exotic ruminants. The cytopathic strain causes mucosal disease (MD) and death. Infection with the non-cytopathic strain may produce persistently infected (PI) animals. PI individuals may show vague clinical signs, including abortion. Management of BVDV in zoos should focus on identification of PI individuals and prevention of infection of other animals of the collection. Variability makes serological testing as the sole method of screening for BVDV infection undesirable in exotic ruminants. Combination testing provides a definitive answer, especially in sensitive wildlife. Use of a combination of antigen-capture ELISA (ACE) with haired skin, Real Time-PCR (RT-PCR) on whole blood, and antibody detection via serum neutralization has the greatest potential to identify PI animals. An animal that is positive on both ACE and RT-PCR, but is negative on serology should be considered highly suspicious of being a PI, and should be isolated and undergo repeat testing 4-6 weeks later to confirm positive status. This testing methodology also allows screening of pregnant and newborn animals. Isolation or culling may need to be considered in animals determined to be positive via combination testing. These decisions should only be made after careful consideration and evaluation, especially with endangered species.

  13. A Randomized Placebo Controlled Trial of Ibuprofen for Respiratory Syncytial Virus Infection in a Bovine Model.

    Directory of Open Access Journals (Sweden)

    Paul Walsh

    Full Text Available Respiratory syncytial virus (RSV is the most common cause of bronchiolitis and hospital admission in infants. An analogous disease occurs in cattle and costs US agriculture a billion dollars a year. RSV causes much of its morbidity indirectly via adverse effects of the host response to the virus. RSV is accompanied by elevated prostaglandin E2 (PGE2 which is followed by neutrophil led inflammation in the lung. Ibuprofen is a prototypical non-steroidal anti-inflammatory drug that decreases PGE2 levels by inhibiting cyclooxygenase.We hypothesized that treatment of RSV with ibuprofen would decrease PGE2 levels, modulate the immune response, decrease clinical illness, and decrease the histopathological lung changes in a bovine model of RSV. We further hypothesized that viral replication would be unaffected.We performed a randomized placebo controlled trial of ibuprofen in 16 outbred Holstein calves that we infected with RSV. We measured clinical scores, cyclooxygenase, lipoxygenase and endocannabinoid products in plasma and mediastinal lymph nodes and interleukin (Il-4, Il-13, Il-17 and interferon-γ in mediastinal lymph nodes. RSV shedding was measured daily and nasal Il-6, Il-8 and Il-17 every other day. The calves were necropsied on Day 10 post inoculation and histology performed.One calf in the ibuprofen group required euthanasia on Day 8 of infection for respiratory distress. Clinical scores (p<0.01 and weight gain (p = 0.08 seemed better in the ibuprofen group. Ibuprofen decreased cyclooxygenase, lipoxygenase, and cytochrome P450 products, and increased monoacylglycerols in lung lymph nodes. Ibuprofen modulated the immune response as measured by narrowed range of observed Il-13, Il-17 and IFN-γ gene expression in mediastinal lymph nodes. Lung histology was not different between groups, and viral shedding was increased in calves randomized to ibuprofen.Ibuprofen decreased PGE2, modulated the immune response, and improved clinical outcomes

  14. Serological relationships among subgroups in bovine viral diarrhea virus genotype 1 (BVDV-1).

    Science.gov (United States)

    Alpay, Gizem; Yeşilbağ, Kadir

    2015-01-30

    Bovine viral diarrhea virus (BVDV) has various economic impacts associated with diarrhea, poor performance, an increase in the frequency of other infections and lethal outcomes. Both genotypes, namely BVDV-1 and BVDV-2, as well as different subgroups within these genotypes have been reported worldwide. Understanding the serological differences among the BVDV subgroups is important for disease epidemiology and prevention as well as vaccination programs. The aim of this study was to determine the serological relatedness among the subgroups in BVDV-1. For that purpose, sheep hyperimmune sera were collected against representative strains from 6 of the subgroups of BVDV-1 (BVDV-1a, -1b, -1d, -1f, -1h and -1l). The serum samples that gave the peak antibody titer to the homologous strains were used to perform cross neutralization assays. The highest homologous antibody titer (1:5160) was obtained against BVDV-1h. Regarding the cross neutralizing (heterologous) antibodies, the lowest titer (1:20) was produced by the BVDV-1f antiserum against the BVDV-1a and BVDV1-b viruses. The highest cross neutralizing titer (1:2580) achieved by the BVDV-1h antiserum was against the BVDV-1b strain. The cross neutralization results indicated particular serological differences between the recently described subgroup (BVDV-1l) and BVDV-1a/-1b, which are widely used in commercial vaccines. Considering the cross neutralization titers, it is concluded that selected BVDV-1l and BVDV-1h strains can be used for the development of diagnostic and control tools. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Review of the Michigan Upper Peninsula bovine viral diarrhea virus eradication project.

    Science.gov (United States)

    Grooms, Daniel L; Bartlett, Benjamin B; Bolin, Steven R; Corbett, Erik M; Grotelueschen, Dale M; Cortese, Victor S

    2013-08-15

    To evaluate the effects of a voluntary regional bovine viral diarrhea virus (BVDV) control project implemented in the Upper Peninsula of Michigan. Longitudinal study. Sample-294 cattle producers and 11,917 cattle from the Upper Peninsula. Producer participation was assessed to determine the effectiveness of the project's promotional and educational campaigns. Participating herds were screened for cattle persistently infected (PI) with BVDV by real-time reverse transcriptase PCR assay on ear notch specimens from all newborn calves and cattle that did not calve (bulls and young stock) during the year of enrollment. Responses to a survey administered to producers 4 years after project initiation were evaluated to assess the project's effect on BVDV management practices implemented by producers. 294 of 495 (59%) known cattle producers in the Upper Peninsula participated in the project, and 11,917 cattle from 232 herds were tested for BVDV, of which 22 (0.18%) cattle from 9 (3.9%) herds were identified as PI with BVDV and euthanized or slaughtered. Of 140 survey respondents, 85 (61%) indicated they would test all new herd additions for BVDV, 83 (59%) would quarantine new herd additions for 30 days before introducing them to the main herd, and 81 (58%) would use the fact that their herd was free of cattle PI with BVDV for marketing purposes. Results indicated that the project enhanced producer knowledge about BVDV and led to changes in producer behavior regarding BVDV management. Stakeholder engagement was as critical to project success as was increased BVDV knowledge.

  16. Effect of infection with bovine leukemia virus on milk production in Michigan dairy cows.

    Science.gov (United States)

    Norby, B; Bartlett, P C; Byrem, T M; Erskine, R J

    2016-03-01

    The objective of this study was to determine the association between individual cow-level milk production and bovine leukemia virus (BLV) infection as measured by milk BLV-ELISA. Dairy Herd Improvement technicians collected milk samples from 10 cows from each of first, second, third, and 4+ parity cows in 105 Holstein herds with ≥ 120 milking cows. Milk samples were tested for the presence of anti-BLV antibodies by ELISA. Additional data regarding the cows and the herds were collected by farm survey and Dairy Herd Improvement records. A set of mixed-effect models using all cows and only 2+ parity cows were used to investigate the association between BLV ELISA-corrected optical density and 305-d mature equivalents of individual cows. The BLV milk positivity was associated with decreased 305-d mature-equivalent yields, especially among the older cows. Additionally, increasing milk ELISA-corrected optical density was associated with increasing loss of milk production at the cow level. In summary, our results provide evidence that BLV infection is associated with decreased milk production in Michigan dairy cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Isolation and genetic characterization of bovine parainfluenza virus type 3 from cattle in China.

    Science.gov (United States)

    Zhu, Yuan-Mao; Shi, Hong-Fei; Gao, Yu-Ran; Xin, Jiu-Qing; Liu, Ni-Hong; Xiang, Wen-Hua; Ren, Xian-Gang; Feng, Jun-Ke; Zhao, Li-Ping; Xue, Fei

    2011-05-05

    Bovine parainfluenza virus type 3 (BPIV3) is one of the most important of the known viral respiratory pathogens of both young and adult cattle. However BPIV3 has not been detected or isolated in China prior to this study. In 2008, four BPIV3 strains were isolated with MDBK cells from cattle in China and characterized by RT-PCR, nucleotide sequence analysis, transmission electron microscope observation, hemadsorption and hemagglutination tests. Nucleotide phylogenetic analysis of partial hemagglutinin-neuraminidase (HN) gene for four isolates and the complete genome for the SD0835 isolate implicated that the four Chinese BPIV3 strains were distinct from the previously reported genotype A (BPIV3a) and genotype B (BPIV3b) and might be a potentially new genotype, which was tentatively classified as genotype C (BPIV3c). This is the first study to report the isolation and genetic characterization of BPIV3 from cattle in China. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Marine natural seaweed products as potential antiviral drugs against Bovine viral diarrhea virus

    Directory of Open Access Journals (Sweden)

    Ana Maria Viana Pinto

    2012-08-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an etiologic agent that causes important economic losses in the world. It is endemic in cattle herds in most parts of the world. The purpose of this study was to evaluate the in vitro cytotoxic effect and antiviral properties of several marine natural products obtained from seaweeds: the indole alkaloid caulerpin (CAV, 1 and three diterpenes: 6-hydroxydichotoma-3,14-diene-1,17-dial (DA, 2, 10,18-diacetoxy-8-hydroxy-2,6-dolabelladiene (DB1, 3 and 8,10,18-trihydroxy-2,6-dolabelladiene (DB3, 4. The screening to evaluate the cytotoxicity of compounds did not show toxic effects to MDBK cells. The antiviral activity of the compounds was measured by the inhibition of the cytopathic effect on infected cells by plaque assay (PA and EC50 values were calculated for CAV (EC=2,0± 5.8, DA (EC 2,8± 7.7, DB1 (EC 2,0±9.7, and DB3 (EC 2,3±7.4. Acyclovir (EC50 322± 5.9 was used in all experiments as the control standard. Although the results of the antiviral activity suggest that all compounds are promising as antiviral agents against BVDV, the Selectivity Index suggests that DB1 is the safest of the compounds tested.

  19. Determinants of the Bovine Leukemia Virus Envelope Glycoproteins Involved in Infectivity, Replication and Pathogenesis

    Directory of Open Access Journals (Sweden)

    Alix de Brogniez

    2016-03-01

    Full Text Available Interaction of viral envelope proteins with host cell membranes has been extensively investigated in a number of systems. However, the biological relevance of these interactions in vivo has been hampered by the absence of adequate animal models. Reverse genetics using the bovine leukemia virus (BLV genome highlighted important functional domains of the envelope protein involved in the viral life cycle. For example, immunoreceptor tyrosine-based activation motifs (ITAM of the envelope transmembrane protein (TM are essential determinants of infection. Although cell fusion directed by the aminoterminal end of TM is postulated to be essential, some proviruses expressing fusion-deficient envelope proteins unexpectedly replicate at wild-type levels. Surprisingly also, a conserved N-linked glycosylation site of the extracellular envelope protein (SU inhibits cell-to-cell transmission suggesting that infectious potential has been limited during evolution. In this review, we summarize the knowledge pertaining to the BLV envelope protein in the context of viral infection, replication and pathogenesis.

  20. Determinants of the Bovine Leukemia Virus Envelope Glycoproteins Involved in Infectivity, Replication and Pathogenesis

    Science.gov (United States)

    de Brogniez, Alix; Mast, Jan; Willems, Luc

    2016-01-01

    Interaction of viral envelope proteins with host cell membranes has been extensively investigated in a number of systems. However, the biological relevance of these interactions in vivo has been hampered by the absence of adequate animal models. Reverse genetics using the bovine leukemia virus (BLV) genome highlighted important functional domains of the envelope protein involved in the viral life cycle. For example, immunoreceptor tyrosine-based activation motifs (ITAM) of the envelope transmembrane protein (TM) are essential determinants of infection. Although cell fusion directed by the aminoterminal end of TM is postulated to be essential, some proviruses expressing fusion-deficient envelope proteins unexpectedly replicate at wild-type levels. Surprisingly also, a conserved N-linked glycosylation site of the extracellular envelope protein (SU) inhibits cell-to-cell transmission suggesting that infectious potential has been limited during evolution. In this review, we summarize the knowledge pertaining to the BLV envelope protein in the context of viral infection, replication and pathogenesis. PMID:27023592

  1. Genetic diversity of bovine viral diarrhea viruses from the Galicia region of Spain.

    Science.gov (United States)

    Factor, C; Yus, E; Eiras, C; Sanjuan, M L; Cerviño, M; Arnaiz, I; Diéguez, F J

    2016-01-01

    This study examined the frequency and diversity of bovine viral diarrhoea viruses (BVDVs) infecting cattle in Galicia (northwestern Spain). A total of 86 BVDV strains were typed in samples of serum from 79 persistently infected animals and 3 viraemic animals and of abomasal fluid from 4 fetuses. Samples came from 73 farms participating in a voluntary BVDV control programme. Typing was based on a 288-bp sequence from the 5' untranslated region amplified using primers 324 and 326. Of the 86 strains, 85 (98.8 per cent) belonged to species BVDV-1 and 1 (1.2 per cent) belonged to BVDV-2; 73 strains (84.9 per cent) were typed as BVDV-1b, 2 as BVDV-1e and 6 as BVDV-1d. One strain each was typed as belonging to 1a, 1h, 1k and 1l. The sole BVDV-2 strain was classified as 2a. These results identify BVDV-1b as the predominant species, and they indicate the presence of viral types not previously described anywhere in Spain. This is also the first report of BVDV-2 in Galicia and only the second report of BVDV-2 in Spain.

  2. Viral infections and bovine mastitis: a review

    NARCIS (Netherlands)

    Wellenberg, G.J.; Poel, van der W.H.M.; Oirschot, van J.T.

    2002-01-01

    This review deals with the role of viruses in the aetiology of bovine mastitis. Bovine herpesvirus 1, bovine herpesvirus 4, foot-and-mouth disease virus, and parainfluenza 3 virus have been isolated from milk from cows with clinical mastitis. Intramammary inoculations of bovine herpesvirus 1 or

  3. Bovine Lactoferrin Inhibits Dengue Virus Infectivity by Interacting with Heparan Sulfate, Low-Density Lipoprotein Receptor, and DC-SIGN

    Directory of Open Access Journals (Sweden)

    Jo-Mei Chen

    2017-09-01

    Full Text Available Bovine lactoferrin (bLF presents in milk and has been shown to inhibit several viral infections. Effective drugs are unavailable for the treatment of dengue virus (DENV infection. In this study, we evaluated the antiviral effect of bLF against DENV infection in vivo and in vitro. Bovine LF significantly inhibited the infection of the four serotypes of DENV in Vero cells. In the time-of-drug addition test, DENV-2 infection was remarkably inhibited when bLF was added during or prior to the occurrence of virus attachment. We also revealed that bovine LF blocks binding between DENV-2 and the cellular membrane by interacting with heparan sulfate (HS, dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN, and low-density lipoprotein receptors (LDLR. In addition, bLF inhibits DENV-2 infection and decreases morbidity in a suckling mouse challenge model. This study supports the finding that bLF may inhibit DENV infection by binding to the potential DENV receptors.

  4. Using a Herd Profile to Determine Age-Specific Prevalence of Bovine Leukemia Virus in Michigan Dairy Herds

    Directory of Open Access Journals (Sweden)

    Ronald J. Erskine

    2012-01-01

    Full Text Available Enzootic bovine leukosis is a contagious disease of cattle caused by the retrovirus, bovine leukemia virus (BLV and is the most common cause of malignant neoplasm in cattle. In order to facilitate surveillance of this disease in dairy herds, we developed a method to combine ELISA of milk collected during routine production testing with a prescribed sampling of cows that is independent of the proportion of cows within each lactation. In 113 Michigan dairy herds, milk samples from ten cows in each of the 1st, 2nd, 3rd, and ≥4th lactations were analyzed for anti-Bovine Leukemia Virus (BLV antibodies by milk ELISA. For each herd, a BLV herd profile (BHP was calculated as the simple average of the percent of BLV-positive cows within each of the four lactation groups. The mean BHP for all herds was 32.8%, with means of 18.5, 28.8, 39.2, and 44.8% of 1st, 2nd, 3rd, and ≥4th lactation animals infected, respectively. In eight herds, we determined the correlation between the BHP, and true herd prevalence by testing the entire lactating herd (r=0.988,  P<0.0001. The BHP allows discrimination of lactation-specific BLV prevalence within a dairy herd, to help identify risk factors and management plans that may be important in transmission of BLV.

  5. Implementation of immunohistochemistry on frozen ear notch tissue samples in diagnosis of bovine viral diarrhea virus in persistently infected cattle.

    Science.gov (United States)

    Bedeković, Tomislav; Lemo, Nina; Lojkić, Ivana; Beck, Ana; Lojkić, Mirko; Madić, Josip

    2011-12-05

    Bovine viral diarrhea is a contagious disease of domestic and wild ruminants and one of the most economically important diseases in cattle. Bovine viral diarrhea virus belongs to the genus Pestivirus, within the family Flaviviridae. The identification and elimination of the persistently infected animals from herds is the initial step in the control and eradication programs. It is therefore necessary to have reliable methods for diagnosis of bovine viral diarrhea virus. One of those methods is immunohistochemistry. Immunohistochemistry on formalin fixed, paraffin embedded tissue is a routine technique in diagnosis of persistently infected cattle from ear notch tissue samples. However, such technique is inappropriate due to complicated tissue fixation process and it requires more days for preparation. On the contrary, immunohistochemistry on frozen tissue was usually applied on organs from dead animals. In this paper, for the first time, the imunohistochemistry on frozen ear notch tissue samples was described. Seventeen ear notch tissue samples were obtained during the period 2008-2009 from persistently infected cattle. Samples were fixed in liquid nitrogen and stored on -20°C until testing. Ear notch tissue samples from all persistently infected cattle showed positive results with good section quality and possibility to determinate type of infected cells. Although the number of samples was limited, this study indicated that immunohistochemistry on formalin fixed paraffin embedded tissue can be successfully replaced with immunohistochemistry on frozen ear notch tissue samples in diagnosis of persistently infected cattle.

  6. Implementation of immunohistochemistry on frozen ear notch tissue samples in diagnosis of bovine viral diarrhea virus in persistently infected cattle

    Directory of Open Access Journals (Sweden)

    Bedeković Tomislav

    2011-12-01

    Full Text Available Abstract Background Bovine viral diarrhea is a contagious disease of domestic and wild ruminants and one of the most economically important diseases in cattle. Bovine viral diarrhea virus belongs to the genus Pestivirus, within the family Flaviviridae. The identification and elimination of the persistently infected animals from herds is the initial step in the control and eradication programs. It is therefore necessary to have reliable methods for diagnosis of bovine viral diarrhea virus. One of those methods is immunohistochemistry. Immunohistochemistry on formalin fixed, paraffin embedded tissue is a routine technique in diagnosis of persistently infected cattle from ear notch tissue samples. However, such technique is inappropriate due to complicated tissue fixation process and it requires more days for preparation. On the contrary, immunohistochemistry on frozen tissue was usually applied on organs from dead animals. In this paper, for the first time, the imunohistochemistry on frozen ear notch tissue samples was described. Findings Seventeen ear notch tissue samples were obtained during the period 2008-2009 from persistently infected cattle. Samples were fixed in liquid nitrogen and stored on -20°C until testing. Ear notch tissue samples from all persistently infected cattle showed positive results with good section quality and possibility to determinate type of infected cells. Conclusions Although the number of samples was limited, this study indicated that immunohistochemistry on formalin fixed paraffin embedded tissue can be successfully replaced with immunohistochemistry on frozen ear notch tissue samples in diagnosis of persistently infected cattle.

  7. Lifetime effects of infection with bovine leukemia virus on longevity and milk production of dairy cows.

    Science.gov (United States)

    Nekouei, Omid; VanLeeuwen, John; Stryhn, Henrik; Kelton, David; Keefe, Greg

    2016-10-01

    Enzootic bovine leukosis (EBL) is an economically important disease of dairy cattle caused by bovine leukemia virus (BLV). The economic impacts of the infection have been debated in the literature. The present study was conducted to determine the lifetime effects of BLV infection on longevity and milk production of dairy cows in Canada. The data were aggregated from a combination of two data sets: 1) BLV serum-ELISA test results from Canada-wide surveys of production limiting diseases, which took place between 1998 and 2003 in 8 provinces, and 2) longitudinal production data for all cows in the former study, extracted from the Canadian dairy herd improvement database. All participant cows had been culled or died by the onset of this study. A historical cohort study was designed, including cows which tested positive to BLV-antibodies in their first lactation (positive cohort, n=1858) and cows which tested negative in their second or later lactations (negative cohort, n=2194). To assess the impacts of infection with BLV on longevity (the number of lifetime lactations), a discrete-time survival analysis was carried out. The effect of BLV on the lifetime milk production (the sum of all life 305-day milk production) was evaluated using a multilevel linear regression model. Overall, 4052 cows from 348 herds met the eligibility criteria and were enrolled in the study. In the longevity model, the interaction term between time (lactation number) and BLV-status was highly significant. Cows which were positive to BLV had consistently greater probabilities of being culled (or dying) than the test-negative cows. In the milk production model, the interaction term between BLV-status and longevity of the cows was highly significant; indicating that lifetime BLV effects on the total milk production was dependent on the lactation in which the study cows were culled/died. Infected cows with 2 and 3 lactations showed significantly lower life milk productions [-2554kg (-3609 to -1500

  8. Effectiveness of human, camel, bovine and sheep lactoferrin on the hepatitis C virus cellular infectivity: comparison study

    Science.gov (United States)

    2013-01-01

    Purpose The prevalence of HCV infection has increased during recent years and the incidence reach 3% of the world's population, and in some countries like Egypt, may around 20%. The developments of effective and preventive agents are critical to control the current public health burden imposed by HCV infection. Lactoferrin in general and camel lactoferrin specifically has been shown to have a compatitive anti-viral activity against hepatitis C virus (HCV). The purpose of this study was to examine and compare the anti-infectivity of native human, camel, bovine and sheep lactoferrin on continuous of HCV infection in HepG2 cells. Material and methods Used Lfs were purified by Mono S 5/50 GL column and Superdex 200 5/150 column. The purified Lfs were evaluated in two ways; 1. the pre-infected cells were treated with the Lfs to inhibit intracellular replication at different concentrations and time intervals, 2. Lfs were directly incubated with the virus molecules then used to cells infection. The antiviral activity of the Lfs were determined using three techniques; 1. RT-nested PCR, 2. Real-time PCR and 3. Flowcytometric. Results Human, camel, bovine and sheep lactoferrin could prevent the HCV entry into HepG2 cells by direct interaction with the virus instead of causing significant changes in the target cells. They were also able to inhibit virus amplification in HCV infected HepG2 cells. The highest anti-infectivity was demonstrated by the camel lactoferrin. Conclusion cLf has inhibitory effect on HCV (genotype 4a) higher than human, bovine and sheep lactoferrin. PMID:23782993

  9. [Detection and differentiation of the bovine parainfluenza-3 virus strains studied by amplification and sequencing of the HN gene].

    Science.gov (United States)

    Vecherov, A E; Aianot, P K; Timina, A M; Lisitsin, V V

    2003-01-01

    A possibility of using the amplification of gene HN fragment in combination with nucleotide cDNA sequencing for the purpose of identification and strain differentiation of bovine parainfluenza-3 virus was demonstrated. A comparative analysis of the primary structure in the studied HN gene fragment revealed 2 genetic groups among the investigated virus' strains and isolates. Group 1 is made up of Northern American viral strains and of Russian isolates, whose primary structure has a high level of homology to the primary SF-4/32 strain structure; group 2 comprises the virus' Russian isolates with a high level of homology to the mentioned strains to Japanese strains' sequences. The biggest differences between the studied strains and the viral isolates amounted to around 8%, when the nucleotide sequences were compared, and to around 4%, when the corresponding amino-acid sequences were compared.

  10. Persistent Bovine Viral Diarrhea Virus infection in domestic and wild small ruminants and camelids including the mountain goat (Oreamnos americanus

    Directory of Open Access Journals (Sweden)

    Danielle Darracq Nelson

    2016-01-01

    Full Text Available Bovine viral diarrhea virus (BVDV is a Pestivirus best known for causing a variety of disease syndromes in cattle, including gastrointestinal disease, reproductive insufficiency, immunosuppression, mucosal disease, and hemorrhagic syndrome. The virus can be spread by transiently infected individuals and by persistently infected animals that may be asymptomatic while shedding large amounts of virus throughout their lifetime. BVDV has been reported in over 40 domestic and free-ranging species, and persistent infection has been described in eight of those species: white-tailed deer, mule deer, eland, mousedeer, mountain goats, alpacas, sheep, and domestic swine. This paper reviews the various aspects of BVDV transmission, disease syndromes, diagnosis, control, and prevention, as well as examines BVDV infection in domestic and wild small ruminants and camelids including mountain goats (Oreamnos americanus.

  11. Persistent Bovine Viral Diarrhea Virus Infection in Domestic and Wild Small Ruminants and Camelids Including the Mountain Goat (Oreamnos americanus).

    Science.gov (United States)

    Nelson, Danielle D; Duprau, Jennifer L; Wolff, Peregrine L; Evermann, James F

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is a pestivirus best known for causing a variety of disease syndromes in cattle, including gastrointestinal disease, reproductive insufficiency, immunosuppression, mucosal disease, and hemorrhagic syndrome. The virus can be spread by transiently infected individuals and by persistently infected animals that may be asymptomatic while shedding large amounts of virus throughout their lifetime. BVDV has been reported in over 40 domestic and free-ranging species, and persistent infection has been described in eight of those species: white-tailed deer, mule deer, eland, mousedeer, mountain goats, alpacas, sheep, and domestic swine. This paper reviews the various aspects of BVDV transmission, disease syndromes, diagnosis, control, and prevention, as well as examines BVDV infection in domestic and wild small ruminants and camelids including mountain goats (Oreamnos americanus).

  12. Bovine parainfluenza virus type 3 (PIV3) expressing the respiratory syncytial virus (RSV) attachment and fusion proteins protects hamsters from challenge with human PIV3 and RSV.

    Science.gov (United States)

    Haller, Aurelia A; Mitiku, Misrach; MacPhail, Mia

    2003-08-01

    Parainfluenza virus type 3 (PIV3) and respiratory syncytial virus (RSV) are the main causes of ubiquitous acute respiratory diseases of infancy and early childhood, causing 20-25 % of pneumonia and 45-50 % of bronchiolitis in hospitalized children. The primary goal of this study was to create an effective and safe RSV vaccine based on utilizing attenuated bovine PIV3 (bPIV3) as a virus vector backbone. bPIV3 had been evaluated in human clinical trials and was shown to be attenuated and immunogenic in children as young as 2 months of age. The ability of bPIV3 to function as a virus vaccine vector was explored further by introducing the RSV attachment (G) and fusion (F) genes into the bPIV3 RNA genome. The resulting virus, bPIV3/RSV(I), contained an insert of 2900 nt, comprising two translationally competent transcription units. Despite this increase in genetic material, the virus replicated to high titres in Vero cells. This recombinant virus expressed the RSV G and F proteins sufficiently to evoke a protective immune response in hamsters upon challenge with RSV or human PIV3 and to elicit RSV neutralizing and PIV3 haemagglutinin inhibition serum antibodies. In effect, a bivalent vaccine was produced that could protect vaccinees from RSV as well as PIV3. Such a vaccine would vastly reduce the respiratory disease burden, the associated hospitalization costs and, most importantly, decrease morbidity and mortality of infants, immunocompromised individuals and the elderly.

  13. Molecular analyses detect natural coinfection of water buffaloes (Bubalus bubalis with bovine viral diarrhea viruses (BVDV in serologically negative animals

    Directory of Open Access Journals (Sweden)

    María I Craig

    2015-06-01

    Full Text Available Infection of water buffaloes (Bubalus bubalis with bovine viral diarrhea viruses (BVDV has been confirmed in several studies by serological and molecular techniques. In order to determine the presence of persistently infected animals and circulating species and subtypes of BVDV we conducted this study on a buffalo herd, whose habitat was shared with bovine cattle (Bossp.. Our serological results showed a high level of positivity for BVDV-1 and BVDV-2 within the buffalo herd. The molecular analyses of blood samples in serologically negative animals revealed the presence of viral nucleic acid, confirming the existence of persistent infection in the buffaloes. Cloning and sequencing of the 5′ UTR of some of these samples revealed the presence of naturally mix-infected buffaloes with at least two different subtypes (1a and 1b, and also with both BVDV species (BVDV-1 and BVDV-2.

  14. Infection expérimentale de veaux par le virus respiratoire syncytial bovin : évaluation de la persistance virale

    OpenAIRE

    Callendret, Benoît

    2002-01-01

    Le Virus Respiratoire Syncytial Bovin (VRSB) est une cause majeure de maladie respiratoire des jeunes bovins. La persistance du VRSB et du VRS humain à pu être démontrée in vitro sur différentes lignées cellulaires et in vivo sur des cobayes ou sur des sujets immunodéprimés. En revanche, la persistance du VRS in vivo chez son hôte naturel immunocompétent n'a jamais pu être mise en évidence. Elle a pourtant depuis longtemps été fortement suspectée à partir des données épidémiologiques. En outr...

  15. Seroprevalence of bovine viral diarrhea virus in crossbred dairy cattle in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammed Arif Uddin

    2017-08-01

    Full Text Available Aim: The study was conducted to determine the seroprevalence of bovine viral diarrhea virus (BVDV and hematological features in crossbred dairy cattle in Chittagong, Bangladesh. Materials and Methods: The antibody against BVDV in crossbred dairy cattle serum was detected by indirect enzyme-linked immunosorbent assay. The association of different categorical variables in the prevalence of BVDV has been studied. Blood samples were collected and analyzed to know the hematological variations in the study population. Results: The overall seroprevalence of BVDV in the study area was 51.1% (95% confidence interval [CI], 40.5-61.5. Among different physiological stages of animals, the highest 57.1% (95% CI, 42.2-71.2 prevalence was in case of non-pregnant animals. Aborted cows were found to be significantly (p<0.05 more seropositive 77.8% (95% CI, 52.4-93.6 than the non-aborted cows (77.8%, 95% CI, 52.4-93.6, compared to 44.7%, 95% CI, 33.3-56.6, respectively. Cows having the history of retained placenta were found more positive than without the history of retained placenta (63.2%, 95% CI, 38.4-83.7, compared to 54.7%, 95% CI, 40.4-68.4, respectively. Among the animals of different age groups, BVDV seroprevalence was higher 61.3% (95% CI, 42.2-78.2 in animals of more than 3 years up to 5 years, whereas 32% was in case of 0-1-year-old. Significant variation found in different geographical areas of the study area. Hematological analyses have shown variation between the BVDV positive and negative animals. Conclusion: Seroprevalence of BVDV found to be high in the study area is also economically important and cause significant damage to the production industry. Therefore, it is necessary to conduct effective control measures to reduce the burden of BVDV.

  16. Bluetongue virus infection alters the impedance of monolayers of bovine endothelial cells as a result of cell death.

    Science.gov (United States)

    Drew, Clifton P; Gardner, Ian A; Mayo, Christie E; Matsuo, Eiko; Roy, Polly; MacLachlan, N James

    2010-07-01

    Bluetongue virus (BTV) is the cause of bluetongue, an emerging, arthropod-transmitted disease of ungulates. Bluetongue is characterized by vascular injury with hemorrhage, tissue infarction and widespread edema, lesions that are consistent with those of the so-called viral hemorrhagic fevers. To further investigate the pathogenesis of vascular injury in bluetongue, we utilized an electrical impedance assay and immunofluorescence staining to compare the effects of BTV infection on cultured bovine endothelial cells (bPAEC) with those of inducers of cell death (Triton X-100) and interendothelial gap formation (tissue necrosis factor [TNF]). The data confirm that the adherens junctions of BTV-infected bPAECs remained intact until 24h post-infection, and that loss of monolayer impedance precisely coincided with onset of virus-induced cell death. In contrast, recombinant bovine TNF-alpha caused rapid loss of bPAEC monolayer impedance that was associated with interendothelial gap formation and redistribution of VE-cadherin, but without early cell death. The data from these in vitro studies are consistent with a pathogenesis of bluetongue that involves virus-induced vascular injury leading to thrombosis, hemorrhage and tissue necrosis. However, the contribution of cytokine-induced interendothelial gap formation with subsequent edema and hypovolemic shock contributes to the pathogenesis of bluetongue remains to be fully characterized. Copyright 2010 Elsevier B.V. All rights reserved.

  17. An evaluation of circulating bovine viral diarrhea virus type 2 maternal antibody level and response to vaccination in Angus calves.

    Science.gov (United States)

    Downey, E D; Tait, R G; Mayes, M S; Park, C A; Ridpath, J F; Garrick, D J; Reecy, J M

    2013-09-01

    Vaccination against viruses has been shown to help prevent bovine respiratory disease in cattle. However, both passively acquired maternal antibody concentration and calf age have been shown to impact the ability of the immune system of a calf to respond to vaccination. The objectives of this study were to identify and evaluate environmental and management factors that affect 1) passively acquired bovine viral diarrhea virus (BVDV) type 2 antibody level, 2) decay rate of passively acquired BVDV type 2 antibody level, and 3) responses to BVDV type 2 vaccinations. A 2-shot modified live vaccine was administered to 1,004 Angus calves that were weaned at either the initial vaccination (n = 508) or the booster vaccination (n = 496). Calves weaned at the initial vaccination averaged 139 d whereas calves weaned at booster vaccination averaged 128 d of age. Bovine viral diarrhea virus type 2 antibodies were measured in 3 approximately 21-d intervals, serially collected serum samples to quantify antibody levels at initiation and end of vaccination protocol in addition to responses to initial, booster, and overall vaccination protocol. Amount of passively transferred antibody in the calf increased as dam age increased from 2 to 6 yr (P 0.05). Calf age nested within birth year-season and dam age affected both initial and final antibody level, initial response, booster response, and overall antibody response to vaccination. The level of circulating, passively acquired maternal antibodies present at the time of vaccination had a significant (P calf to mount an overall antibody response to vaccination, maternal antibodies in circulation need to be less than 3.12 titers. However, the age at which a calf reached this antibody threshold was dependent on dam age. This information will help cattle managers and consultants design vaccination protocols to successfully mount an antibody response to vaccination.

  18. Weaning management of newly received beef calves with or without exposure to a persistently infected bovine viral diarrhea virus type 1b calf: Effects on health, performance, BVDV type 1a titers, and circulating leukocytes

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is a major culprit in the development of bovine respiratory disease (BRD) either directly via acute clinical illness or indirect effects of immunosuppression. Calves born persistently infected (PI) with BVDV are the primary transmission source of the virus; however...

  19. Frequency of antibodies against bovine herpesvirus type 1 (BoHV-1 in beef cattle not vaccinated

    Directory of Open Access Journals (Sweden)

    Ermilton Junio Pereira de Freitas

    2014-06-01

    Full Text Available Bovine herpesvirus type 1 (BoHV-1, is responsible for clinical manifestations such as infectious bovine rhinotracheitis, abortion, conjunctivitis, infectious pustular vulvovaginitis and balanoposthitis. This virus has been responsible for major losses in different productive and reproductive herds in the country. Thus, the objective of this study was to estimate the frequency of antibodies against BoHV-1 in beef heifers not vaccinated in Microregion of Imperatriz, Maranhao, and identify the age group most affected by the virus, as well as a study of factors associated with virus infection and to evaluate the indirect ELISA using the serum neutralization (SN as a reference standard. The study was conducted in 48 herds, cutting, distributed in 12 counties of Microregion of Imperatriz. The samples were collected from female cattle stratified into three age groups, ? 12 months, between 12 and 36 months and ? 36 months of age. The samples were subjected to two serological tests, ELISA and SN. In each herd, an epidemiological questionnaire was applied in order to obtain information on management and reproductive sanitary, for the study of risk factors. The frequency of antibodies against BoHV-1 in Microregion of Imperatriz was 63.23%, and the municipalities of Açailândia Buritirana showed the highest frequencies, both with 80.44%, the most affected age group, the Microregion, was animals aged ? 36 months (69.65%. Based on the results we can conclude that the frequency of antibodies against BoHV-1 is high, between the age groups most affected were the animals aged ? 36 months were considered risk factors for virus transmission, return to estrus (OR=1.874, recovery of animals from other states / region (OR=1.365 and the creation of goat / sheep associated with bovine (OR=1.348, the indirect ELISA technique showed moderate concordance when compared to SN technique, which is the gold standard technique for diagnosis of BoHV-1.

  20. Cholesterol-rich lipid rafts play a critical role in bovine parainfluenza virus type 3 (BPIV3) infection.

    Science.gov (United States)

    Li, Liyang; Yu, Liyun; Hou, Xilin

    2017-10-01

    Lipid rafts are specialized lipid domains enriched in cholesterol and sphingolipid, which can be utilized in the lifecycle of numerous enveloped viruses. Bovine parainfluenza virustype3 (BPIV3) entry to cell is mediated by receptor binding and membrane fusion, but how lipid rafts in host cell membrane and BPIV3 envelope affect virus infection remains unclear. In this study, we investigated the role of lipid rafts in the different stages of BPIV3 infection. The MDBK cells were treated by methyl-β-cyclodextrin (MβCD) to disrupt cellular lipid raft, and the virus infection was determined. The results showed that MβCD significantly inhibited BPIV3 infection in a dose-dependent manner, but didn't block the binding of virus to the cell membrane. Whereas, the MDBK cells treated by MβCD after virus-entry had no effects on the virus infection, to suggest that BPIV3 infection was associated with lipid rafts in cell membrane during viral entry stage. To further confirm lipid rafts in viral envelope also affected BPIV3 infection, we treated BPIV3 with MβCD to determine the virus titer. We found that disruption of the viral lipid raft caused a significant reduction of viral yield. Cholesterol reconstitution experiment showed that BPIV3 infection was successfully restored by cholesterol supplementation both in cellular membrane and viral envelope, which demonstrated that cholesterol-rich lipid rafts played a critical role in BPIV3 infection. These findings provide insights on our understanding of the mechanism of BPIV3 infection and imply that lipid raft might be a good potential therapeutic target to prevent virus infection. Copyright © 2017. Published by Elsevier Ltd.

  1. Direct polymerase chain reaction from blood and tissue samples for rapid diagnosis of bovine leukemia virus infection.

    Science.gov (United States)

    Nishimori, Asami; Konnai, Satoru; Ikebuchi, Ryoyo; Okagawa, Tomohiro; Nakahara, Ayako; Murata, Shiro; Ohashi, Kazuhiko

    2016-06-01

    Bovine leukemia virus (BLV) infection induces bovine leukemia in cattle and causes significant financial harm to farmers and farm management. There is no effective therapy or vaccine; thus, the diagnosis and elimination of BLV-infected cattle are the most effective method to eradicate the infection. Clinical veterinarians need a simpler and more rapid method of diagnosing infection, because both nested polymerase chain reaction (PCR) and real-time PCR are labor intensive, time-consuming, and require specialized molecular biology techniques and expensive equipment. In this study, we describe a novel PCR method for amplifying the BLV provirus from whole blood, thus eliminating the need for DNA extraction. Although the sensitivity of PCR directly from whole blood (PCR-DB) samples as measured in bovine blood containing BLV-infected cell lines was lower than that of nested PCR, the PCR-DB technique showed high specificity and reproducibility. Among 225 clinical samples, 49 samples were positive by nested PCR, and 37 samples were positive by PCR-DB. There were no false positive samples; thus, PCR-DB sensitivity and specificity were 75.51% and 100%, respectively. However, the provirus loads of the samples detected by nested PCR and not PCR-DB were quite low. Moreover, PCR-DB also stably amplified the BLV provirus from tumor tissue samples. PCR-DB method exhibited good reproducibility and excellent specificity and is suitable for screening of thousands of cattle, thus serving as a viable alternative to nested PCR and real-time PCR.

  2. Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese Black cattle.

    Science.gov (United States)

    Miyasaka, T; Takeshima, S-n; Jimba, M; Matsumoto, Y; Kobayashi, N; Matsuhashi, T; Sentsui, H; Aida, Y

    2013-02-01

    Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. Bovine leukocyte antigen (BoLA) is strongly involved in the subclinical progression of BLV infections. Recent studies show that the BoLA-DRB3 gene might play a direct role in controlling the number of BLV-infected peripheral B lymphocytes in vivo in Holstein cattle. However, the specific BoLA class II allele and DRB3-DQA1 haplotypes determining the BLV proviral load in Japanese Black cattle are yet to be identified. In this study, we focused on the association of BLV proviral load and polymorphism of BoLA class II in Japanese Black cattle. We genotyped 186 BLV-infected, clinically normal cattle for BoLA-DRB3 and BoLA-DQA1 using a polymerase chain reaction-sequence-based typing method. BoLA-DRB3*0902 and BoLA-DRB3*1101 were associated with a low proviral load (LPVL), and BoLA-DRB3*1601 was associated with a high proviral load (HPVL). Furthermore, BoLA-DQA1*0204 and BoLA-DQA1*10012 were related to LPVL and HPVL, respectively. Furthermore, we confirmed the correlation between the DRB3-DQA1 haplotype and BLV proviral load. Two haplotypes, namely 0902B or C (DRB3*0902-DQA1*0204) and 1101A (DRB3*1101-DQA1*10011), were associated with a low BLV proviral load, whereas one haplotype 1601B (DRB3*1601-DQA1*10012) was associated with a high BLV proviral load. We conclude that resistance is a dominant trait and susceptibility is a recessive trait. Additionally, resistant alleles were common between Japanese Black and Holstein cattle, and susceptible alleles differed. This is the first report to identify an association between the DRB3-DQA1 haplotype and variations in BLV proviral load. © 2012 John Wiley & Sons A/S.

  3. Priming Cross-Protective Bovine Viral Diarrhea Virus-Specific Immunity Using Live-Vectored Mosaic Antigens.

    Directory of Open Access Journals (Sweden)

    Shehnaz Lokhandwala

    Full Text Available Bovine viral diarrhea virus (BVDV plays a key role in bovine respiratory disease complex, which can lead to pneumonia, diarrhea and death of calves. Current vaccines are not very effective due, in part, to immunosuppressive traits and failure to induce broad protection. There are diverse BVDV strains and thus, current vaccines contain representative genotype 1 and 2 viruses (BVDV-1 & 2 to broaden coverage. BVDV modified live virus (MLV vaccines are superior to killed virus vaccines, but they are susceptible to neutralization and complement-mediated destruction triggered by passively acquired antibodies, thus limiting their efficacy. We generated three novel mosaic polypeptide chimeras, designated NproE2123; NS231; and NS232, which incorporate protective determinants that are highly conserved among BVDV-1a, 1b, and BVDV-2 genotypes. In addition, strain-specific protective antigens from disparate BVDV strains were included to broaden coverage. We confirmed that adenovirus constructs expressing these antigens were strongly recognized by monoclonal antibodies, polyclonal sera, and IFN-γ-secreting T cells generated against diverse BVDV strains. In a proof-of-concept efficacy study, the multi-antigen proto-type vaccine induced higher, but not significantly different, IFN-γ spot forming cells and T-cell proliferation compared to a commercial MLV vaccine. In regards to the humoral response, the prototype vaccine induced higher BVDV-1 specific neutralizing antibody titers, whereas the MLV vaccine induced higher BVDV-2 specific neutralizing antibody titers. Following BVDV type 2a (1373 challenge, calves immunized with the proto-type or the MLV vaccine had lower clinical scores compared to naïve controls. These results support the hypothesis that a broadly protective subunit vaccine can be generated using mosaic polypeptides that incorporate rationally selected and validated protective determinants from diverse BVDV strains. Furthermore, regarding

  4. Serologic survey for antibodies against three genotypes of bovine parainfluenza 3 virus in unvaccinated ungulates in Alabama.

    Science.gov (United States)

    Newcomer, Benjamin W; Neill, John D; Galik, Patricia K; Riddell, Kay P; Zhang, Yijing; Passler, Thomas; Velayudhan, Binu T; Walz, Paul H

    2017-02-01

    OBJECTIVE To determine titers of serum antibodies against 3 genotypes of bovine parainfluenza 3 virus (BPI3V) in unvaccinated ungulates in Alabama. ANIMALS 62 cattle, goats, and New World camelids from 5 distinct herds and 21 captured white-tailed deer. PROCEDURES Serum samples were obtained from all animals for determination of anti-BPI3V antibody titers, which were measured by virus neutralization assays that used indicator (reference) viruses from each of the 3 BPI3V genotypes (BPI3V-A, BPI3V-B, and BPI3V-C). The reference strains were recent clinical isolates from US cattle. Each sample was assayed in triplicate for each genotype. Animals with a mean antibody titer ≤ 2 for a particular genotype were considered seronegative for that genotype. RESULTS Animals seropositive for antibodies against BPI3V were identified in 2 of 3 groups of cattle and the group of New World camelids. The geometric mean antibody titer against BPI3V-B was significantly greater than that for BPI3V-A and BPI3V-C in all 3 groups. All goats, captive white-tailed deer, and cattle in the third cattle group were seronegative for all 3 genotypes of the virus. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that BPI3V-A may no longer be the predominant genotype circulating among ungulates in Alabama. This may be clinically relevant because BPI3V is frequently involved in the pathogenesis of bovine respiratory disease complex, current vaccines contain antigens against BPI3V-A only, and the extent of cross-protection among antibodies against the various BPI3V genotypes is unknown.

  5. Bovine leukaemia virus genotypes 5 and 6 are circulating in cattle from the state of São Paulo, Brazil.

    Science.gov (United States)

    Gregory, Lilian; Carrillo Gaeta, Natália; Araújo, Jansen; Matsumiya Thomazelli, Luciano; Harakawa, Ricardo; Ikuno, Alice A; Hiromi Okuda, Liria; de Stefano, Eliana; Pituco, Edviges Maristela

    2017-12-01

    Enzootic bovine leucosis (EBL) is a silent disease caused by a retrovirus [bovine leukaemia virus (BLV)]. BLV is classified into almost 10 genotypes that are distributed in several countries. The present research aimed to describe two BLV gp51 env sequences of strains detected in the state of São Paulo, Brazil and perform a phylogenetic analysis to compare them to other BLV gp51 env sequences of strains around the world. Two bovines from different herds were admitted to the Bovine and Small Ruminant Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil. In both, lymphosarcoma was detected and the presence of BLV was confirmed by nested PCR. The neighbour-joining algorithm distance method was used to genotype the BLV sequences by phylogenetic reconstruction, and the maximum likelihood method was used for the phylogenetic reconstruction. The phylogeny estimates were calculated by performing 1000 bootstrap replicates. Analysis of the partial envelope glycoprotein (env) gene sequences from two isolates (25 and 31) revealed two different genotypes of BLV. Isolate 25 clustered with ten genotype 6 isolates from Brazil, Argentina, Thailand and Paraguay. On the other hand, isolate 31 clustered with two genotype 5 isolates (one was also from São Paulo and one was from Costa Rica). The detected genotypes corroborate the results of previous studies conducted in the state of São Paulo, Brazil. The prediction of amino acids showed substitutions, particularly between positions 136 and 150 in 11 out of 13 sequences analysed, including sequences from GenBank. BLV is still important in Brazil and this research should be continued.

  6. Identification of short hairpin RNA targeting foot-and-mouth disease virus with transgenic bovine fetal epithelium cells.

    Directory of Open Access Journals (Sweden)

    Hongmei Wang

    Full Text Available BACKGROUND: Although it is known that RNA interference (RNAi targeting viral genes protects experimental animals, such as mice, from the challenge of Foot-and-mouth disease virus (FMDV, it has not been previously investigated whether shRNAs targeting FMDV in transgenic dairy cattle or primary transgenic bovine epithelium cells will confer resistance against FMDV challenge. PRINCIPAL FINDING: Here we constructed three recombinant lentiviral vectors containing shRNA against VP2 (RNAi-VP2, VP3 (RNAi-VP3, or VP4 (RNAi-VP4 of FMDV, and found that all of them strongly suppressed the transient expression of a FLAG-tagged viral gene fusion protein in 293T cells. In BHK-21 cells, RNAi-VP4 was found to be more potent in inhibition of viral replication than the others with over 98% inhibition of viral replication. Therefore, recombinant lentiviral vector RNAi-VP4 was transfected into bovine fetal fibroblast cells to generate transgenic nuclear donor cells. With subsequent somatic cell cloning, we generated forty transgenic blastocysts, and then transferred them to 20 synchronized recipient cows. Three transgenic bovine fetuses were obtained after pregnant period of 4 months, and integration into chromosome in cloned fetuses was confirmed by Southern hybridization. The primary tongue epithelium cells of transgenic fetuses were isolated and inoculated with 100 TCID(50 of FMDV, and it was observed that shRNA significantly suppressed viral RNA synthesis and inhibited over 91% of viral replication after inoculation of FMDV for 48 h. CONCLUSION: RNAi-VP4 targeting viral VP4 gene appears to prevent primary epithelium cells of transgenic bovine fetus from FMDV infection, and it could be a candidate shRNA used for cultivation of transgenic cattle against FMDV.

  7. Inefficient viral replication of bovine leukemia virus induced by spontaneous deletion mutation in the G4 gene.

    Science.gov (United States)

    Murakami, Hironobu; Uchiyama, Jumpei; Nikaido, Sae; Sato, Reiichiro; Sakaguchi, Masahiro; Tsukamoto, Kenji

    2016-10-01

    Enzootic bovine leucosis is caused by bovine leukemia virus (BLV) infection, which is highly prevalent in several regions of the world and significantly impacts the livestock industry. In BLV infection, the proviral load in the blood reflects disease progression. Although the BLV genome is highly conserved among retroviruses, genetic variation has been reported. However, the relationship between proviral load and genetic variation is poorly understood. In this study, we investigated the changes in proviral load in BLV-infected cattle in Japan and then identified and analysed a BLV strain pvAF967 that had a static proviral load. First, examining the proviral load in the aleukaemic cattle in 2014 and 2015, cow AF967 showed a static proviral load, while the other cows showed significant increases in proviral load. Sequencing the provirus in cow AF967 showed a deletion of 12 nt located in the G4 gene. An in vitro assay system using BLV molecular clone was set up to evaluate viral replication and production. In this in vitro assay, the deletion mutation in the G4 gene resulted in a significant decrease in viral replication and production. In addition, we showed that the deletion mutation did not affect the viral transcriptional activity of Tax protein, which is also important for virus replication. The emergence of strain pvAF967 that showed a static proviral load, combined with other retrovirus evolutionary traits, suggests that some BLV strains may have evolved to be symbiotic with cattle.

  8. A bovine parainfluenza virus type 3 vaccine is safe and immunogenic in early infancy.

    Science.gov (United States)

    Greenberg, David P; Walker, Robert E; Lee, Min-Shi; Reisinger, Keith S; Ward, Joel I; Yogev, Ram; Blatter, Mark M; Yeh, Sylvia H; Karron, Ruth A; Sangli, Chithra; Eubank, Lane; Coelingh, Kathleen L; Cordova, Julie M; August, Marilyn J; Mehta, Harshvardhan B; Chen, Wendy; Mendelman, Paul M

    2005-04-01

    A phase 2 trial was conducted to assess in young infants the safety, tolerability, infectivity, and immunogenicity of multiple doses of an intranasal vaccine using bovine parainfluenza virus type 3 (bPIV3). One hundred ninety-two healthy 2-month-old infants were randomized 1 : 1 : 1 to receive 1x10(5) median tissue culture infective dose (TCID(50)) bPIV3 vaccine, 1x10(6) TCID(50) bPIV3 vaccine, or placebo at 2, 4, 6, and 12-15 months of age. Safety information was collected by use of diary sheets and telephone interviews. Nasal wash and serum specimens were collected for assessment of infectivity and immunogenicity. The safety profiles of both dosages of bPIV3 were similar to that of placebo, with the exception of fever with temperature of >/=38.1 degrees C after dose 2 only, occurring in 34% of the 1x10(5) TCID(50) group, 35% of the 1x10(6) TCID(50) group, and 12% of the placebo group (P<.01). No vaccine-related serious adverse events were reported. The cumulative vaccine infectivity (isolation of bPIV3 and/or bPIV3 seroconversion) after dose 3 was similar in the 2 vaccine groups (87% in the 1x10(5) TCID(50) group and 77% in the 1x10(6) TCID(50) group) (P=.46). Seroconversion rates after dose 3, assessed by means of hemagglutination inhibition assay, after adjustment for decrease in maternal antibody titers, were 67% in the 1x10(5) TCID(50) group, 57% in the 1x10(6) TCID(50) group, and 12% in the placebo group (P<.01). Isolation of bPIV3 was common after dose 1, dose 2, or dose 3, but only 1 of 51 participants in the vaccine groups had bPIV3 isolated after dose 4. Multiple doses of bPIV3 vaccine were well tolerated and immunogenic in young infants.

  9. Phylogeography, phylodynamics and transmission chains of bovine viral diarrhea virus subtype 1f in Northern Italy.

    Science.gov (United States)

    Cerutti, Francesco; Luzzago, Camilla; Lauzi, Stefania; Ebranati, Erika; Caruso, Claudio; Masoero, Loretta; Moreno, Ana; Acutis, Pier Luigi; Zehender, Gianguglielmo; Peletto, Simone

    2016-11-01

    Bovine viral diarrhea virus (BVDV) type 1 in Italy is characterized by high genetic diversity, with at least 20 subtypes. Subtype 1f is endemic in a restricted geographic area, meaning that it has local distribution. We investigated the population dynamics of BVDV-1f in Northern Italy and characterized the transmission chains of a subset of samples from Piedmont and Aosta Valley regions. A total of 51 samples from 1966 to 2013 were considered and 5' UTR sequences were used for phylogeography. A subset of 12 samples was selected for Npro gene sequencing and further characterization of the transmission chains using both molecular and epidemiological data. Phylogeography estimated the root of BVDV-1f tree in Veneto in 1965. Four significant subclades included sequences clustering by region: Lombardy (n=3), Lombardy and Emilia-Romagna (n=7), Piedmont (n=17), Piedmont and Aosta Valley (n=21). The Piedmont-only subclade has a ladder-like branching structure, while the Piedmont and Aosta Valley subclade has a nearly complete binary structure. In the subset, the outbreak reconstruction identified one sample from Piedmont as the most probable source of infection for the Aosta Valley cases. An ad hoc questionnaire submitted to public veterinarians revealed connections between sampled and non-sampled farms by means of trades, exhibitions and markets. According to the phylogeography, BVDV-1f moved westward, entering from Veneto, and spreading to Lombardy and Emilia-Romagna in the early 1990s, and finally to Piedmont and Aosta Valley in the first decade of 2000s. Both phylogeographic analyses on the whole dataset and on the selection of Npro dataset pointed out that subtype 1f entered Aosta Valley from Piedmont. The integration of molecular and epidemiological data revealed connections between farms, and such approach should be considered in any control plan. In Aosta Valley, the study showed that BVDV1f can be controlled only monitoring the introduction of cattle from Piedmont

  10. Identification of candidate protein markers of Bovine Parainfluenza Virus Type 3 infection using an in vitro model.

    Science.gov (United States)

    Gray, Darren W; Welsh, Michael D; Doherty, Simon; Mooney, Mark H

    2017-05-01

    Bovine Parainfluenza Virus Type 3 (BPI3V) infections are often asymptomatic, causing respiratory tissue damage and immunosuppression, predisposing animals to severe bacterial pneumonia, the leading cause of Bovine Respiratory Disease (BRD) mortality. As with many pathogens, routine BPI3V serology does not indicate the presence of damaged respiratory tissue or active infection. In vitro proteomic marker screening using disease relevant cell models could help identify markers of infection and tissue damage that are also detectable during in vivo infections. This study utilised a proteomic approach to investigate in vitro cellular responses during BPI3V infection to enhance the current understanding of intracellular host-virus interactions and identify putative markers of in vivo infection. Through 2D gel electrophoresis proteomic analysis, BPI3V Phosphoprotein P and host T-complex Protein 1 subunit theta were found to be accumulated at the latter stages of infection within bovine fibroblasts. These proteins were subsequently detected using targeted multiple reaction monitoring (MRM) mass spectrometry in the plasma of animals challenged with BPI3V, with differential protein level profiles observed dependant on animal vaccination status. Potential mechanisms by which BPI3V overcomes host cellular immune response mechanisms allowing for replication and production of viral proteins were also revealed. Assessment of circulating protein marker levels identified through an in vitro approach as described may enable more effective diagnosis of active viral infection and diseased or damaged respiratory tissue in animals and allow for more effective utilisation of preventative therapeutic interventions prior to bacterial disease onset and significantly aid the management and control of BRD. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Antiviral Activity of Bacillus sp. Isolated from the Marine Sponge Petromica citrina against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    Science.gov (United States)

    Bastos, Juliana Cristina Santiago; Kohn, Luciana Konecny; Fantinatti-Garboggini, Fabiana; Padilla, Marina Aiello; Flores, Eduardo Furtado; da Silva, Bárbara Pereira; de Menezes, Cláudia Beatriz Afonso; Arns, Clarice Weis

    2013-01-01

    The Hepatitis C virus causes chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. The Bovine viral diarrhea virus is used as a surrogate model for antiviral assays for the HCV. From marine invertebrates and microorganisms isolated from them, extracts were prepared for assessment of their possible antiviral activity. Of the 128 tested, 2 were considered active and 1 was considered promising. The best result was obtained from the extracts produced from the Bacillus sp. isolated from the sponge Petromica citrina. The extracts 555 (500 µg/mL, SI>18) and 584 (150 µg/mL, SI 27) showed a percentage of protection of 98% against BVDV, and the extract 616, 90% of protection. All of them showed activity during the viral adsorption. Thus, various substances are active on these studied organisms and may lead to the development of drugs which ensure an alternative therapy for the treatment of hepatitis C. PMID:23628828

  12. Antiviral activity of Bacillus sp. isolated from the marine sponge Petromica citrina against bovine viral diarrhea virus, a surrogate model of the hepatitis C virus.

    Science.gov (United States)

    Bastos, Juliana Cristina Santiago; Kohn, Luciana Konecny; Fantinatti-Garboggini, Fabiana; Padilla, Marina Aiello; Flores, Eduardo Furtado; da Silva, Bárbara Pereira; de Menezes, Cláudia Beatriz Afonso; Arns, Clarice Weis

    2013-04-29

    The Hepatitis C virus causes chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. The Bovine viral diarrhea virus is used as a surrogate model for antiviral assays for the HCV. From marine invertebrates and microorganisms isolated from them, extracts were prepared for assessment of their possible antiviral activity. Of the 128 tested, 2 were considered active and 1 was considered promising. The best result was obtained from the extracts produced from the Bacillus sp. isolated from the sponge Petromica citrina. The extracts 555 (500 µg/mL, SI>18) and 584 (150 µg/mL, SI 27) showed a percentage of protection of 98% against BVDV, and the extract 616, 90% of protection. All of them showed activity during the viral adsorption. Thus, various substances are active on these studied organisms and may lead to the development of drugs which ensure an alternative therapy for the treatment of hepatitis C.

  13. Studies on the pathogenesis of a Chinese strain of bovine parainfluenza virus type 3 infection in Balb/c mice.

    Science.gov (United States)

    Dong, Xiu-Mei; Zhu, Yuan-Mao; Cai, Hong; Lv, Chuang; Gao, Yu-Ran; Yu, Zuo; Xue, Fei

    2012-07-06

    To date, three genotypes A, B, and C of bovine parainfluenza virus type 3 (BPIV3) have been isolated from cattle and only limited studies on the pathogenesis of the genotype A of BPIV3 infection in calves and laboratory animals have been conducted. The pathogenesis of the genotypes B and C of BPIV3 infection in calves and laboratory animals have not been reported. To alleviate the difficulties associated with sourcing suitable calves for infection studies, the establishment of BPIV3 infection model using laboratory model animals could aid in increasing the knowledge of the pathogenesis of this virus. Therefore thirty Balb/c mice were intranasally inoculated with a Chinese BPIV3 strain SD0835 which was classified as genotype C. Virus replications in mice were demonstrated by using virus isolation and titration, immunofluorescent staining, and immunohistochemistry and had occurred in the respiratory tissues as early as 24h after intranasal inoculation. The results of immunofluorescent staining and IHC implicated that the lungs and tracheas might be the major tissues in which the SD0835 infected and replicated. The histopathologic examinations revealed that alveoli septa thickening and focal cellulose pneumonia were seen in the lungs of experimentally infected mice. The aforementioned results indicated that the SD0835 of the genotype C was pathogenic to Balb/c mice and the mouse infection model could cast light on the genotype C of BPIV3 infection process and pathogenesis. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. In vitro inhibition of the bovine viral diarrhoea virus by the essential oil of Ocimum basilicum (basil) and monoterpenes.

    Science.gov (United States)

    Kubiça, Thaís F; Alves, Sydney H; Weiblen, Rudi; Lovato, Luciane T

    2014-01-01

    The bovine viral diarrhoea virus (BVDV) is suggested as a model for antiviral studies of the hepatitis C virus (HCV). The antiviral activity of the essential oil of Ocimum basilicum and the monoterpenes camphor, thymol and 1,8-cineole against BVDV was investigated. The cytotoxicities of the compounds were measured by the MTT (3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide) test, and the antiviral activities were tested by the plaque reduction assay. The oil or compounds were added to the assay in three different time points: a) pre-treatment of the virus (virucidal assay); b) pre-treatment of the cells; or c) post-treatment of the cells (after virus inoculation). The percentage of plaques inhibition for each compound was determined based on the number of plaques in the viral control. The results were expressed by CC50 (50% cytotoxic concentration), IC50 (inhibitory concentration for 50% of plaques) and SI (selectivity index = CC50/IC50). Camphor (CC50 = 4420.12 μg mL(-1)) and 1,8-cineole (CC50 = 2996.10 μg mL(-1)) showed the lowest cytotoxicities and the best antiviral activities (camphor SI = 13.88 and 1,8-cineol SI = 9.05) in the virucidal assay. The higher activities achieved by the monoterpenes in the virucidal assay suggest that these compounds act directly on the viral particle.

  15. In vitro inhibition of the bovine viral diarrhoea virus by the essential oil of Ocimum basilicum (basil and monoterpenes

    Directory of Open Access Journals (Sweden)

    Thaís F. Kubiça

    2014-01-01

    Full Text Available The bovine viral diarrhoea virus (BVDV is suggested as a model for antiviral studies of the hepatitis C virus (HCV. The antiviral activity of the essential oil of Ocimum basilicum and the monoterpenes camphor, thymol and 1,8-cineole against BVDV was investigated. The cytotoxicities of the compounds were measured by the MTT (3-(4.5-dimethylthiazol-2-yl-2.5-diphenyltetrazolium bromide test, and the antiviral activities were tested by the plaque reduction assay. The oil or compounds were added to the assay in three different time points: a pre-treatment of the virus (virucidal assay; b pre-treatment of the cells; or c post-treatment of the cells (after virus inoculation. The percentage of plaques inhibition for each compound was determined based on the number of plaques in the viral control. The results were expressed by CC50 (50% cytotoxic concentration, IC50 (inhibitory concentration for 50% of plaques and SI (selectivity index = CC50/IC50. Camphor (CC50 = 4420.12 µgmL-1 and 1,8-cineole (CC50 = 2996.10 µgmL-1 showed the lowest cytotoxicities and the best antiviral activities (camphor SI = 13.88 and 1,8-cineol SI = 9.05 in the virucidal assay. The higher activities achieved by the monoterpenes in the virucidal assay suggest that these compounds act directly on the viral particle.

  16. The acute phase response of haptoglobin and serum amyloid A (SAA) in cattle undergoing experimental infection with bovine respiratory syncytial virus

    DEFF Research Database (Denmark)

    Heegaard, Peter M. H.; Godson, D.L.; Toussaint, M.J.M.

    2000-01-01

    The ability of a pure virus infection to induce an acute phase protein response is of interest as viral infections are normally considered to be less efficient in inducing an acute phase protein response than bacterial infections. This was studied in a bovine model for infection with bovine...... respiratory syncytial virus (BRSV), analysing the induction of the two most dominant bovine acute phase proteins haptoglobin and serum amyloid A (SAA). Strong and reproducible acute phase responses were detected for both proteins, peaking at around 7-8 days after inoculation of BRSV, while no response...... was seen in mock-inoculated control animals. The serum concentrations reached for SAA and haptoglobin during the BRSV-induced acute phase response were generally the same or higher than previously reported for bacterial infections in calves. The magnitude and the duration of the haptoglobin response...

  17. Multiplex detection of IgG and IgM to Rift Valley fever virus nucleoprotein, nonstructural proteins, and glycoprotein in ovine and bovine

    Science.gov (United States)

    A multiplex fluorescence microsphere immunoassay (FMIA) was used to detect bovine and ovine IgM and IgG antibodies to several Rift Valley fever virus (RVFV) proteins, including the major surface glycoprotein, Gn; the nonstructural proteins, NSs and NSm; and the nucleoprotein, N. Target antigens were...

  18. An Outbreak of Late-Term Abortions, Premature Births, and Congenital Deformities Associated with a Bovine Viral Diarrhea Virus 1 Subtype b that Induces Thrombocytopenia

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) genotype 1 subtype b caused an outbreak of premature births, late term abortions, brachygnathism, growth retardation, brain deformities and rare other skeletal deformities in Holstein calves born to first calf heifers on one dairy. Experimental challenge of three,...

  19. A comparison of an enzyme-linked immunosorbent assay and counter current electrophoresis for the detection of bovine serum albumin in virus vaccines.

    NARCIS (Netherlands)

    A.R. ter Avest (Anja); A.D.M.E. Osterhaus (Albert); G. van Steenis (Bert)

    1987-01-01

    textabstractA monoclonal antibody directed against bovine serum albumin (BSA) has been developed and used in an enzyme-linked immunosorbent assay (ELISA) system for the detection of BSA in virus vaccines. The results correlated well with those obtained with a counter current electrophoresis system

  20. Challenges for bovine viral diarrhoea virus antibody detection in bulk milk by antibody enzyme-linked immunosorbent assays due to changes in milk production levels

    DEFF Research Database (Denmark)

    Foddai, Alessandro; Enøe, Claes; Stockmarr, Anders

    2015-01-01

    Background: Bovine viral diarrhoea (BVD) is considered eradicated from Denmark. Currently, very few (if any) Danish cattle herds could be infected with BVD virus (BVDV). The Danish antibody blocking enzyme-linked immunosorbent assay (ELISA) has been successfully used during the Danish BVD...

  1. Evaluation of a new antibody-based enzyme-linked immunosorbent assay for the detection of bovine leukemia virus infection in dairy cattle

    NARCIS (Netherlands)

    Monti, G.E.; Frankena, K.; Engel, B.; Buist, W.; Tarabla, H.D.; Jong, de M.C.M.

    2005-01-01

    The objective of this study was to validate a new blocking enzyme-linked immunosorbent assay (ELISA) (designated M108 for milk and S108 for serum samples) for detecting bovine leukemia virus (BLV) infection in dairy cattle. Milk, serum, and ethylenediaminetetraacetic acid-blood samples were

  2. Feed intake and weight changes in Bos indicus-Bos taurus crossbred steers following Bovine Viral Diarrhea Virus Type 1b challenge under production conditions

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) has major impacts on beef cattle production worldwide, but the understanding of host animal genetic influence on illness is limited. This study evaluated rectal temperature, weight change and feed intake in Bos indicus crossbred steers (n = 366) that were challenge...

  3. The biological effects of ozone on representative members of five groups of animal viruses

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, D.C.; Zee, Y.C.; Osebold, J.W.

    1982-04-01

    In an effort to establish the biological relevance of the reactions of ozone with soluble proteins and lipid bilayer membrane systems, representative viruses from five major virus groups were exposed to moderate concentrations of ozone. The virus suspensions were exposed at 37/sup 0/C to 0.00, 0.16, and 0.64 ppm ozone in the gas phase. The ozone reacted with the virus suspensions as a thin film of fluid on the surface of a rotating culture bottle as the gas was drawn through the bottle at a flow rate of 2 liters/min. The three enveloped viruses tested exhibited different susceptibilities to ozone inactivation which correlated with their thermolability in the absence of ozone. The order of susceptibility to ozone inactivation of the enveloped viruses was vesicular stomatitis virus (VSV) (Rhabdoviridae) > influenza A virus (WSN strain) (Orthomyxoviridae) > infectious bovine rhinotracheitis virus (IBRV) (Herpesviridae). The inactivation reactions of the enveloped viruses with ozone showed pseudo-first-order kinetics. A simple reaction model was used to derive a reaction rate expression from which rate constrants and reaction stoichiometry were estimated. In contrast to the enveloped viruses, the two nonenveloped viruses examined were relatively resistant to ozone inactivation. Polio virus type I (Picornaviridae) was found to be completely resistant to ozone inactivation after 60 hr exposure to either ozone concentration, while infectious canine hepatitis virus (Adenoviridae) showed only slight inactivation after exposure to 0.64 ppm ozone for 66 hr. The significance of these results with regard to the reactions of ozone with cell membranes and other components is discussed.

  4. An outbreak of teat papillomatosis in cattle caused by bovine papilloma virus (BPV) type 6 and unclassified BPVs.

    Science.gov (United States)

    Maeda, Yukiko; Shibahara, Tomoyuki; Wada, Yoshihiro; Kadota, Koichi; Kanno, Toru; Uchida, Ikuo; Hatama, Shinichi

    2007-04-15

    Out of 700 heifers at a local farm in Hokkaido, the Northern island of Japan, 560 (80%) were found to have benign teat tumors. All of the analyzed tumors were macroscopically of the flat-and-round type, and no other types such as rice-grain or frond epithelial type were found. The lesions were characterized by epithelial hyperplasia, acanthosis and hyperkeratosis. Unlike in typical fibropapilloma, fibroplasia of the underlying dermis was not observed. Bovine papilloma virus (BPV) capsid antigen and virus particles were found in basophilic intranuclear inclusions of the stratum granulosum of the epidermis by immunohistochemistry and electron microscopy, respectively. BPV-specific DNA was also detected in the lesions. By means of the polymerase chain reaction (PCR) and DNA sequencing of the PCR products, the viruses causing this outbreak were identified mainly as BPV-6 (64%), partly as unclassified BPVs (14%) and their co-infections (21%). Our findings suggest that this outbreak of benign teat tumors was associated with several BPV types.

  5. Bovine herpes virus-1 (BoHV-1 detection in dairy cattle with reproductive problems in Sudan

    Directory of Open Access Journals (Sweden)

    Amira Mohamed Elhassan

    2015-06-01

    Full Text Available The present work aimed to observe the infection pattern of Bovine herpes virus-1 (BoHV-1 in dairy cattle with reproductive problems in Sudan. A total of 140 samples comprising of vaginal swab (n=97, placenta (n=15, whole blood (n=19, uterine fluid (n=1, and serum (n=8 were collected from 16 dairy herds showing particularly high rate of abortion and infertility in Khartoum State. The samples were used for virus isolation, and were tested by Enzyme-Linked Immunosorbent Assay (ELISA and polymerase chain reaction (PCR. No virus could be isolated from the samples inoculated for isolation in cell culture. Out of 80 specimens tested by ELISA, 7 (8.75% were found to be positive, and one sample was doubtful. Using PCR, 11 (10.7% out of 103 samples were found to be positive. When comparing between two methods for DNA extraction, the DNA extracted by commercial kit was found to be better in quality as compared to the DNA extracted using phenol/chloroform/isoamyl-alcohol method. The study confirmed the presence of BoHV-1 in cattle farms with reproductive problems in Sudan.

  6. A comparison of two ELISAs for the detection of antibodies to bovine leucosis virus in bulk-milk.

    Science.gov (United States)

    Ridge, S E; Galvin, J W

    2005-07-01

    To estimate the sensitivity, specificity and detection limits for two bulk-milk enzyme-linked immunosorbent assays, the Svanovir BLV-gp51-Ab and the Lactelisa BLV Ab Bi indirect tank 250, for the detection of antibody to bovine leucosis virus in milk. Milk samples from 27 cows known to have enzootic bovine leucosis (EBL) were serially diluted with milk from a herd known to be free from the disease. The dilution at which antibodies could no longer be detected by each test was determined. A total of 1959 bulk-milk samples submitted to a laboratory for the Victorian (EBL) eradication program were tested with both the Svanovir and the Lactelisa assays. A Bayesian approach was used to calculate maximum-likelihood estimates of test sensitivity and specificity. An additional 660 bulk-milk samples were tested with both the Svanovir and the Lactelisa assays. Herds that had positive results on either or both of the assays were subjected to blood or milk testing of individual cattle. The dilution of milk at which the Svanovir assay failed to detect enzootic bovine leucosis antibody in half of the samples was 1 in 40, whereas the comparable value for the Lactelisa was 1 in 200. Computer modeling of the operating characteristics of the Svanovir assay indicated that the sensitivity of that assay would be considerably lower than that for the Lactelisa, and the specificity was estimated to be higher. Evaluation of the assays using 660 bulk-milk samples showed that the Lactelisa assay detected four infected herds that were not detected by the Svanovir test. No false positive results were recorded for either assay. Use of the Lactelisa assay in the Victorian EBL eradication program will enhance disease detection and eradication, but may also result in an increased frequency of false positive bulk-milk test results.

  7. Novel Atlantic bottlenose dolphin parainfluenza virus TtPIV-1 clusters with bovine PIV-3 genotype B strains.

    Science.gov (United States)

    Eberle, Kirsten C; Neill, John D; Venn-Watson, Stephanie K; McGill, Jodi L; Sacco, Randy E

    2015-10-01

    Parainfluenza virus 3 (PIV-3) is a common viral infection not only in humans, but also in many other species. Serological evidence suggests that nearly 100 % of children in the United States have been infected with PIV-3 by 5 years of age. Similarly, in cattle, PIV-3 is commonly associated with bovine respiratory disease complex. A novel dolphin PIV-3 (TtPIV-1) was described by Nollens et al. in 2008 from a dolphin that was diagnosed with an unknown respiratory illness. At that time, TtPIV-1 was found to be most similar to, but distinct from, bovine PIV-3 (BPIV-3). In the present study, similar viral growth kinetics and pro-inflammatory cytokine (IL-1β, IL-6, and CXCL8) production were seen between BPIV-3 and TtPIV-1 in BEAS-2B, MDBK, and Vero cell lines. Initial nomenclature of TtPIV-1 was based on partial sequence of the fusion and RNA polymerase genes. Based on the similarities we saw with the in vitro work, it was important to examine the TtPIV-1 genome in more detail. Full genome sequencing and subsequent phylogenetic analysis revealed that all six viral genes of TtPIV-1 clustered within the recently described BPIV-3 genotype B strains, and it is proposed that TtPIV-1 be re-classified with BPIV-3 genotype B strains.

  8. Molecular analyses detect natural coinfection of water buffaloes (Bubalus bubalis) with bovine viral diarrhea viruses (BVDV) in serologically negative animals.

    Science.gov (United States)

    Craig, María I; König, Guido A; Benitez, Daniel F; Draghi, María G

    2015-01-01

    Infection of water buffaloes (Bubalus bubalis) with bovine viral diarrhea viruses (BVDV) has been confirmed in several studies by serological and molecular techniques. In order to determine the presence of persistently infected animals and circulating species and subtypes of BVDV we conducted this study on a buffalo herd, whose habitat was shared with bovine cattle (Bossp.). Our serological results showed a high level of positivity for BVDV-1 and BVDV-2 within the buffalo herd. The molecular analyses of blood samples in serologically negative animals revealed the presence of viral nucleic acid, confirming the existence of persistent infection in the buffaloes. Cloning and sequencing of the 5' UTR of some of these samples revealed the presence of naturally mix-infected buffaloes with at least two different subtypes (1a and 1b), and also with both BVDV species (BVDV-1 and BVDV-2). Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Production, Characterization, and Use of Monoclonal Antibodies Against gp51 Protein to Diagnose Bovine Leukemia Virus Infection.

    Science.gov (United States)

    Troiano, Ludmilla D C; Thomaz-Soccol, Vanete; Agottani, Jorge V B; Brodzinski, Josiane; Penha, Tania R; Ozaki, Silvia C

    2013-02-01

    Enzootic bovine leukosis (EBL) is a retroviral infection that causes persistent lymphocytosis and lymphosarcoma in cattle. The economic importance of infection by bovine leukemia virus (BLV) is due to several factors, including losses in exportation, treatment of secondary infection, and reduction in dairy production. To facilitate the development of a national test that is sensitive, simple, and applicable on a large scale, this work aimed to produce and characterize monoclonal antibodies (mAbs) against gp51 protein from BLV for use in an enzyme-linked immunosorbent assay (ELISA) test. Two hundred seventy-four hybridomas were generated, from which 37 were mAbs secretory clones screened by indirect ELISA. The specificity of the mAbs generated against gp51 was verified by Western blot analysis, and the isotypes were characterized for isotyping in IgG1 and IgM. To evaluate the test, 250 sera were tested by agar gel immunodiffusion and mAb-ELISA. The values obtained for the mAb-ELISA test were 95% sensitivity and 90% specificity.

  10. Bovine Leukemia Virus Small Noncoding RNAs Are Functional Elements That Regulate Replication and Contribute to Oncogenesis In Vivo.

    Directory of Open Access Journals (Sweden)

    Nicolas A Gillet

    2016-04-01

    Full Text Available Retroviruses are not expected to encode miRNAs because of the potential problem of self-cleavage of their genomic RNAs. This assumption has recently been challenged by experiments showing that bovine leukemia virus (BLV encodes miRNAs from intragenomic Pol III promoters. The BLV miRNAs are abundantly expressed in B-cell tumors in the absence of significant levels of genomic and subgenomic viral RNAs. Using deep RNA sequencing and functional reporter assays, we show that miRNAs mediate the expression of genes involved in cell signaling, cancer and immunity. We further demonstrate that BLV miRNAs are essential to induce B-cell tumors in an experimental model and to promote efficient viral replication in the natural host.

  11. Bovine viral diarrhoea virus antigen in foetal calf serum batches and consequences of such contamination for vaccine production.

    Science.gov (United States)

    Makoschey, B; van Gelder, P T J A; Keijsers, V; Goovaerts, D

    2003-09-01

    A protocol to test foetal calf serum (FCS) for contamination with bovine viral diarrhoea virus (BVDV) is described. Following this protocol, which combines cell culture methods and detection of pestivirus RNA, seven batches of FCS were tested. Infectious BVDV was detected in four of those batches. One of the remaining batches contained a relatively high number of non-infectious BVDV particles. A sample of this batch was formulated with aluminium hydroxide and aluminium phosphate as adjuvant into an experimental vaccine preparation. This product was injected twice into BVDV seronegative cattle with a 4 week interval. Blood samples taken 4 weeks after the second application were negative for BVDV specific antibodies. Our data stress that detection of BVDV RNA is not sufficient for a complete risk assessment on FCS. Discrimination between infectious and non-infectious BVDV is essential. This can only be achieved by cell culture methods.

  12. Sites of replication of bovine respiratory syncytial virus in naturally infected calves as determined by in situ hybridization

    DEFF Research Database (Denmark)

    Viuff, B.; Uttenthal, Åse; Tegtmeier, C.

    1996-01-01

    Replication of bovine respiratory syncytial virus (BRSV) was studied in three naturally infected calves by in situ hybridization using strand-specific RNA probes. One of the calves was a 5-month-old Friesian, the other two calves were a 3-month-old and a 2-week-old Jersey. Two Jersey calves, 3...... months and 3 weeks of age, served as controls. Replication of BRSV took place in the luminal lining of the respiratory tract. In one of the BRSV infected animals (calf No. 1), replication was especially seen in the bronchi, whereas in the two other animals (calf Nos. 2 and 3) replication of BRSV...... was detected. In tissue outside the respiratory tract neither BRSV antigen nor replication of BRSV could be demonstrated....

  13. Detection of antibodies and risk factors for infection with bovine respiratory syncytial virus and parainfluenza virus 3 in dual-purpose farms in Colima, Mexico.

    Science.gov (United States)

    Figueroa-Chávez, Daniel; Segura-Correa, José C; García-Márquez, Luís Jorge; Pescador-Rubio, Alfonso; Valdivia-Flores, Arturo Gerardo

    2012-10-01

    A cross-sectional study was carried out, from November 2007 to March 2008, to estimate the prevalence of and to determine risk factors associated with bovine syncytial respiratory virus (BRSV) and parainfluenza 3 virus (PIV3) in dual-purpose herds in Colima, México. One hundred and seventy-six sera from 33 herds for PIV3 and 232 sera from 44 herds for BRSV were used. Sera were analyzed by indirect ELISA for the detection of antibodies against BRSV and PIV3 in cattle herds to determine the seroprevalence of respiratory diseases. The apparent and true prevalences for PIV3 were 60.8% and 54.4% and for BRSV 52.2% and 50.8%, respectively. The percentage of herds showing at least one positive animal was 78.7% for PIV3, and 93.2% for BRSV. Age (≤ 12, 13-48, and >48 months old) and respiratory signs (no, yes) showed significant association (P < 0.05) with PIV3 and age with BRSV. This study showed that animals were exposed to both viruses and that age was the main risk factor. The need to establish new vaccination plans to effectively protect cattle against those infections in the state of Colima, Mexico is suggested.

  14. Molecular detection of Bluetongue Virus (BTV and Bovine Leukemia Virus (BLV in uterine biopsies of dairy cows with or without reproductive problems

    Directory of Open Access Journals (Sweden)

    Juliana Marques Bicalho

    2016-10-01

    Full Text Available Reproductive performance of dairy cows has a direct impact on herd productivity. Infectious agents, such as Bluetongue Virus (BTV and Bovine Leukemia Virus (BLV, are associated with reproductive failure. However, it remains unknown if these viruses are present in the uterus and cause gestational loss. This study used molecular methods to assess if BTV and BLV can be detected in the uterus of serologically positive dairy cows with a record of abortions, stillbirths and repeat breeding (n=23 and without a record of reproductive problems (n =23. The cows came from three dairy herds of the state of Minas Gerais, Brazil. BTV was not detected in any of the uterine biopsies. Proviral DNA of BLV was detected in 54.5 % of the seropositive cows, but positivity for BLV in the uterus was not associated with the existence of reproductive problems. In conclusion, this study shows that BLV, but not BTV, is present in the uterus of seropositive cows, regardless of reproductive performance.

  15. The use of aqueous two-phase systems to concentrate and purify bovine leukemia virus outer envelope protein gp51.

    Science.gov (United States)

    Hammar, L; Merza, M; Malm, K; Eriksson, S; Morein, B

    1989-06-01

    Enzootic bovine leucosis is a chronic lymphoproliferative disease of cattle. The causative agent, bovine leukemia virus (BLV), is related to the human retroviruses HTLV-I and -II. The external env-protein of BLV, a glycoprotein of 51 kDa, carries neutralizing epitopes and should be an essential component in a vaccine against the virus. Problems have been encountered with the concentration and purification of intact virions of BLV and other retroviruses. During centrifugation procedures the external env-proteins are to a great extent detached and consequently poorly recovered with the virion particles. Therefore, other methods are sought to obtain a high yield of the external glycoproteins. The use of two-phase systems based on water soluble polymers is described for the extraction of BLV-gp51 from culture medium. Several polymer systems were tested and the results showed that some were attractive for large scale application. The classical combination dextran-polyethylene glycol gave promising results; a partition coefficient of about 0.02 was obtained for the distribution of the gp51 between the top and combined inter- and bottom phases. In a single extraction step it was possible to obtain 45% of the glycoprotein in a small volume bottom phase and at the same time about 15-fold purified. That should be compared with a recovery of less than 20% with the conventional centrifugation procedures. It is concluded that extraction in phase systems based on water soluble polymers is a methodology well suited for the concentration and purification of BLV-gp51.

  16. Development and Characterization of A Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S M; Danganan, L; Tammero, L; Vitalis, B; Lenhoff, R; Naraghi-arani, P; Hindson, B

    2007-08-06

    Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed candidate multiplexed assays that may potentially be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the ability to improve our nation's capability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect food and agricultural resources with a diagnostic test which could enhance the nation's capabilities for early detection of a foreign animal disease. In FY2005 with funding from the DHS, LLNL developed the first version (Version 1.0) of a multiplexed (MUX) nucleic-acid-based RT-PCR assay that included signatures for foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases (FADs) of swine, Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease Virus (SVDV), and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus [BPSV], Orf of sheep, and Pseudocowpox). In FY06, LLNL has developed Bovine and Porcine species-specific panel which included existing signatures from Version 1.0 panel as well as new signatures. The MUX RT-PCR porcine assay for detection of FMDV includes the FADs, VESV and SVD in addition to vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome (PRRS). LLNL has also developed a MUX RT-PCR bovine assay for detection of FMDV with rule out tests for the two bovine FADs malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis

  17. A single L288I substitution in the fusion protein of bovine parainfluenza virus type 3 enhances virus growth in semi-suitable cell lines.

    Science.gov (United States)

    Matsuura, Ryosuke; Takada, Marina; Kokuho, Takehiro; Tsuboi, Takamitsu; Kameyama, Ken-Ichiro; Takeuchi, Kaoru

    2017-08-01

    The bovine parainfluenza virus type 3 BN-CE vaccine strain was obtained by serial passage of the BN-1 strain in chicken embryonic fibroblasts (CEF). We previously identified a substitution (L288I) in the fusion (F) protein between the two strains. To examine the effect of the substitution on CEF adaptation and attenuation, we generated a recombinant BN-1 strain with the L288I substitution in the F protein (F L288I -EGFP). F L288I -EGFP replicated more efficiently than a recombinant BN-1 strain (wt-EGFP) in semi-suitable cell lines, suggesting that the L288I substitution was established in the BN-1 strain during the process of adaptation in CEF.

  18. 9 CFR 113.309 - Bovine Parainfluenza3 Vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Parainfluenza3 Vaccine. 113.309... Virus Vaccines § 113.309 Bovine Parainfluenza3 Vaccine. Bovine Parainfluenza3 Vaccine shall be produced... virus dose from the lot of Master Seed Virus shall be established as follows: (1) Twenty-five bovine...

  19. Identification of amino acid changes in the envelope glycoproteins of bovine viral diarrhea viruses isolated from alpaca that may be involved in host adaptation.

    Science.gov (United States)

    Neill, John D; Dubovi, Edward J; Ridpath, Julia F

    2015-09-30

    Bovine viral diarrhea viruses (BVDV) are most commonly associated with infections of cattle. However, BVDV are often isolated from closely related ruminants with a number of BVDV-1b viruses being isolated from alpacas that were both acutely and persistently infected. The complete nucleotide sequence of the open reading frame of eleven alpaca-adapted BVDV isolates and the region encoding the envelope glycoproteins of an additional three isolates were determined. With the exception of one, all alpaca isolates were >99.2% similar at the nucleotide level. The Hercules isolate was more divergent, with 95.7% sequence identity to the other viruses. Sequence similarity of the 14 viruses indicated they were isolates of a single BVDV strain that had adapted to and were circulating through alpaca herds. Hercules was a more distantly related strain that has been isolated only once in Canada and represented a separate adaptation event that possessed the same adaptive changes. Comparison of amino acid sequences of alpaca and bovine-derived BVDV strains revealed three regions with amino acid sequences unique to all alpaca isolates. The first contained two small in-frame deletions near the N-terminus of the E2 glycoprotein. The second was found near the C-terminus of the E2 protein where four altered amino acids were located within a 30 amino acid domain that participates in E2 homodimerization. The third region contained three variable amino acids in the C-terminus of the E(rns) within the amphipathic helix membrane anchor. These changes were found in the polar side of the amphipathic helix and resulted in an increased charge within the polar face. Titration of bovine and alpaca viruses in both bovine and alpaca cells indicated that with increased charge in the amphipathic helix, the ability to infect alpaca cells also increased. Published by Elsevier B.V.

  20. Evaluation of two chimeric bovine-human parainfluenza virus type 3 vaccines in infants and young children.

    Science.gov (United States)

    Karron, Ruth A; Thumar, Bhagvanji; Schappell, Elizabeth; Surman, Sonja; Murphy, Brian R; Collins, Peter L; Schmidt, Alexander C

    2012-06-06

    Human parainfluenza virus type 3 (HPIV3) is an important cause of lower respiratory tract illness in children, yet a licensed vaccine or antiviral drug is not available. We evaluated the safety, tolerability, infectivity, and immunogenicity of two intranasal, live-attenuated HPIV3 vaccines, designated rHPIV3-N(B) and rB/HPIV3, that were cDNA-derived chimeras of HPIV3 and bovine PIV3 (BPIV3). These were evaluated in adults, HPIV3 seropositive children, and HPIV3 seronegative children. A total of 112 subjects participated in these studies. Both rB/HPIV3 and rHPIV3-N(B) were highly restricted in replication in adults and seropositive children but readily infected seronegative children, who shed mean peak virus titers of 10(2.8) vs. 10(3.7)pfu/mL, respectively. Although rB/HPIV3 was more restricted in replication in seronegative children than rHPIV3-N(B), it induced significantly higher titers of hemagglutination inhibition (HAI) antibodies against HPIV3. Taken together, these data suggest that the rB/HPIV3 vaccine is the preferred candidate for further clinical development. Copyright © 2012. Published by Elsevier Ltd.

  1. Production of a highly immunogenic subunit ISCOM vaccine against Bovine Viral Diarrhea Virus

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Roensholt, L.; Jensen, M.Holm

    1999-01-01

    by Vaccination of the dam. We describe in this report the production and initial testing of an inactivated subunit vaccine against BVDV. The vaccine is based on production of antigen in primary bovine cell cultures, extraction of antigens from infected cells with detergent, chromatographic purification......, concentration, and insertion of antigens into immune stimulating complexes (ISCOMs). Vaccines based on two different Danish strains of BVDV were injected into calves and the antisera produced were tested for neutralising activity against a panel of Danish BVDV strains. The two vaccines induced different...... neutralisation responses, which seem to partly complement each other. The implication of these observations for successful Vaccination against BVDV is discussed....

  2. Synthesis of beta-enantiomers of N4-hydroxy-3'-deoxypyrimidine nucleosides and their evaluation against bovine viral diarrhoea virus and hepatitis C virus in cell culture.

    Science.gov (United States)

    Hollecker, Laurent; Choo, Hyunah; Chong, Youhoon; Chu, Chung K; Lostia, Stefania; McBrayer, Tamara R; Stuyver, Lieven J; Mason, J Christian; Du, Jinfa; Rachakonda, Suguna; Shi, Junxing; Schinazi, Raymond F; Watanabe, Kyochi A

    2004-01-01

    N4-Hydroxycytidine (NHC) was recently reported to have anti-pestivirus and anti-hepacivirus activity. It is thought that this nucleoside acts as a weak alternative substrate for the hepatitis C virus (HCV) polymerase. In addition to NHC, 3'-deoxyuridine (3'-dU) was found to inhibit bovine diarrhoea virus (BVDV) production by 1 log10 at 37.2 microM. These initial findings prompted the synthesis of beta-D and beta-L analogues of (i) base-modified 3'-deoxy-NHC; (ii) 3'-deoxyuridine; and 3'-deoxycytidine. The antiviral activity of these 42 nucleosides was evaluated against BVDV and HCV bicistronic replicon in cell culture. Among the NHC analogues, the antiviral activity observed for the beta-L-3'-deoxy-5-fluoro-derivative 1-(3-deoxy-beta-L-erythro-pentofuranosyl)-5-fluoro-4-hydroxyaminopyrimidin-2(1H)-one and the beta-D-3'-deoxy-5-iodo-derivative 1-(3-deoxy-beta-D-erythro-pentofuranosyl)-5-iodocytosine in the replicon system (1 log10 reduction at 100 microM) was due to the concomitant toxicity towards intracellular ribosomal RNA levels (CC90 equal or lower than the EC90). In conclusion, none of the newly synthesized derivatives exhibited enhanced antiviral activity compared to the parent nucleoside NHC.

  3. Detection of antibodies and risk factors for infection with bovine respiratory syncytial virus and parainfluenza virus-3 in beef cattle of Yucatan, Mexico.

    Science.gov (United States)

    Solís-Calderón, J J; Segura-Correa, J C; Aguilar-Romero, F; Segura-Correa, V M

    2007-11-15

    We collected blood samples from 756 > or =2-year-old cattle in 54 herds in Yucatan, Mexico, and used all of those to determine the antibody seroprevalences (in an indirect enzyme-linked inmunosorbance assay) to bovine respiratory syncytial virus (BRSV) and risk factors for animal-level seropositivity. We used 728 of the same samples (from 52 of the same herds) to do the same for parainfluenza virus-3 (PIV3). Cattle were selected by two-stage cluster sampling. Herd-level and animal-level risk factors were obtained through a personal interview. We analyzed the data by using a random-effects multivariable logistic regression model for clustered observations. All herds had at least 3 (BRSV) or 5 (PIV3) seropositive animals. The animal-level true seroprevalences were: 90.8% (86.5, 95.2%) and 85.6% (80.9, 90.4%) for BRSV and PIV3, respectively. Animals in large herds and old animals had the highest odds of being seropositives to BRSV, and those risk factors plus animals born on the farm for PIV3 infection.

  4. Inhibition of Bovine Viral Diarrhea Virus RNA Synthesis by Thiosemicarbazone Derived from 5,6-Dimethoxy-1-Indanone▿

    Science.gov (United States)

    Castro, Eliana F.; Fabian, Lucas E.; Caputto, María E.; Gagey, Dolores; Finkielsztein, Liliana M.; Moltrasio, Graciela Y.; Moglioni, Albertina G.; Campos, Rodolfo H.; Cavallaro, Lucía V.

    2011-01-01

    In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV). PMID:21430053

  5. Virus-induced enhancement of arachidonate metabolism by bovine alveolar macrophages in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Laegreid, W.W.; Taylor, S.M.; Leid, R.W.; Silflow, R.M.; Evermann, J.R.; Breeze, R.G.; Liggitt, H.D.

    1989-04-01

    Virus infection of alveolar macrophages both in vivo and in vitro has been associated with a variety of changes in cellular function. Some of these changes are identical to the effects that arachidonate-derived mediators, prostaglandins, leukotrienes, and hydroxyeicosatetraenoic acids, have on macrophage function. Virus infection of macrophages has been previously shown to increase the output of some arachidonate metabolites, most notably PGE2. However, the effect of virus infection on arachidonate metabolism in general has not been well described. In our experiments, primary cultures of alveolar macrophages obtained from normal cattle by bronchoalveolar lavage, were infected in vitro with parainfluenza type 3 virus. At days 0 to 4 post-infection (p.i.) these cells were labelled with 3H-arachidonic acid and stimulated with either serum-coated zymosan, the calcium ionophore A23187, or phorbol myristate acetate. The complete spectrum of arachidonate-derived metabolites was determined by reverse-phase high performance liquid chromatography with UV and on-line radiometric monitoring of column eluant. The total output of metabolites of arachidonic acid by virus-infected alveolar macrophages was increased over that of noninfected controls (with all stimuli tested) by day 4 p.i. (P less than or equal to 0.05). The production of metabolites by the cyclooxygenase, 12- and 5-lipoxygenase enzyme systems was significantly increased, as was the release of 3H-arachidonate. The lack of stimulus specificity and the increases in arachidonate release suggest that greater substrate availability, due either to increased phospholipase activity or direct virus-membrane interaction, may be responsible for the virus-induced enhancement of metabolite output.

  6. Herpesvírus bovino tipo 1 no sêmen Bovine herpesvirus-1 in semen

    Directory of Open Access Journals (Sweden)

    Maurilio Andrade Rocha

    1999-06-01

    Full Text Available O herpesvírus bovino tipo 1 (HVB-1 é o agente causador da rinotraqueíte infecciosa bovina, além de estar associado a doenças do trato genital em bovinos. A transmissão do HVB-1 através da inseminação artificial (IA pode ocasionar problemas reprodutivos nas vacas inseminadas, como endometrite, infertilidade, absorção embrionária e abortos. Animais infectados tornam-se portadores vitalícios do HVB-1 e podem apresentar episódios intermitentes de reexcreção viral. O HVB-1 poder ser encontrado no sêmen de touros, independente do desenvolvimento de anticorpos neutralizantes. Uma vez que os testes sorológicos não são suficientes para se estimar a presença do HVB-1 no sêmen e que as condições de processamento e armazenamento do sêmen são ideais para a preservação do vírus, somente o exame individual das partidas pode assegurar a comercialização de sêmen livre do vírus. Testes laboratoriais para detecção do HVB-1 no sêmen bovino e medidas adicionais para controlar a transmissão do vírus através da IA são apresentados.Bovine herpesvirus 1 (BHV-1 is the causative agent of infectious bovine rhinotracheitis (IBR and is also associated with genital disease in cattle. BHV-1 transmission by artificial insemination (AI may cause reproductive problems in inseminated cows, such as endometritis, infertility, embryonic absorption and abortion. Infected animals are lifelong reservoirs of BHV-1 and may go through intermittent episodes of virus reexcretion. It is important to note that conditions of semen storage are optimal for virus survival. Additionally, BHV-1 can be found in bovine semen despite of the development of neutralizing antibody. Since serological tests are not sufficient to ascertain the presence of the virus in semen, the laboratory testing of all semen batches for BHV-1 is the only way to ensure the BHV-1-free status of the semen for commercialization. Laboratory tests used for BHV-1 detection in bovine semen

  7. Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014.

    Science.gov (United States)

    Ohno, Ayumu; Takeshima, Shin-nosuke; Matsumoto, Yuki; Aida, Yoko

    2015-12-02

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma. BLV has spread worldwide and causes serious problems. After infection, the BLV genome is integrated into the host DNA and can be amplified during periods of latency. We previously designed degenerate primers using the Coordination of Common Motifs (CoCoMo) algorithm to establish a new quantitative real-time PCR method (BLV-CoCoMo-qPCR-2) of measuring the proviral load of both known and novel BLV variants. Here, we aimed to examine the correlation between proviral load and risk factors for BLV infection, such as breeding systems, parousity, and colostrum feeding. Blood and serum samples were collected from 83 BLV-positive farms in 22 prefectures of Japan, and the BLV proviral load and anti-BLV antibody levels were measured. BLV was detected in 73.3% (1039/1,417) of cattle by BLV-CoCoMo-qPCR-2 and the provirus was detected in 93 of 1039 antibody-negative samples. The results showed that the proviral load increased with progression of lymphocytosis. Next, the risk factors associated with increasing BLV infection rate were examined along with any association with proviral load. The proviral load was higher in cattle with lymphocytosis than in healthy cattle, and higher in multiparous cows than in nulliparous cows. Finally, proviral loads were higher in contact breeding systems than in non-contact breeding systems. Taken together, these findings may help to formulate a plan for eliminating BLV from contaminated farms. This is the first nationwide study to estimate BLV proviral load in Japanese cattle. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Comparative Analysis of the Antiviral Activity of Camel, Bovine, and Human Lactoperoxidases Against Herpes Simplex Virus Type 1.

    Science.gov (United States)

    El-Fakharany, Esmail M; Uversky, Vladimir N; Redwan, Elrashdy M

    2017-05-01

    Lactoperoxidase is a milk hemoprotein that acts as a non-immunoglobulin protective protein and shows strong antimicrobial activity. Bovine milk contains about 15 and 7 times higher levels of lactoperoxidase than human colustrum and camel milk, respectively. Human, bovine, and camel lactoperoxidases (hLPO, bLPO, and cLPO, respectively) were purified as homogeneous samples with specific activities of 4.2, 61.3, and 8.7 u/mg, respectively. The optimal working pH was 7.5 (hLPO and bLPO) and 6.5 (cLPO), whereas the optimal working temperature for these proteins was 40 °C. The K m of hLPO, cLPO, and bLPO were 17, 16, and 19 mM, and their corresponding V max values were 2, 1.7, and 2.7 μmol/min ml. However, in the presence of H2O2, the K m values were 11 mM for hLPO and cLPO and 20 mM for bLPO, while the corresponding V max values were 1.17 for hLPO and 1.4 μmol/min ml for cLPO and bLPO. All three proteins were able to inhibit the herpes simplex virus type 1 (HSV-1) in Vero cell line model. The relative antiviral activities were proportional to the protein concentrations. The highest anti-HSV-1 activity was exhibited by bLPO that inhibited the HSV particles at a concentration of 0.5 mg/ml with the relative activity of 100%.

  9. Molecular epidemiology of bovine papillomatosis and the identification of a putative new virus type in Brazilian cattle.

    Science.gov (United States)

    Batista, Marcus V A; Silva, Maria A R; Pontes, Nayara E; Reis, Marcio C; Corteggio, Annunziata; Castro, Roberto S; Borzacchiello, Giuseppe; Balbino, Valdir Q; Freitas, Antonio C

    2013-08-01

    Bovine papillomaviruses (BPVs) are a diverse group of double-stranded DNA viruses, of which 12 viral types have been detected and characterized so far. However, there is still a limited understanding of the diversity of BPV. Several putative new BPVs have been detected and some of these have been recently characterized as new viral types. However, only a very limited amount of information is available on the pathology associated with these novel viral types yet this information could be of significant value in improving our understanding of the biology of BPV. The objective of this study was to examine some of the epidemiological features of cutaneous bovine papillomatosis in Brazilian cattle, in particular to establish the relationship between BPV types isolated from beef and dairy cattle herds and the lesions they cause. Seventy-two cutaneous lesions were collected from 60 animals. Histopathological, PCR and sequencing assays were conducted to characterize the lesions and detect the BPV types responsible. Phylogenetic analysis was carried out using the maximum likelihood method. BPV types 1-6 and 8-10 were found, as well as a putative new BPV type that belongs to the Deltapapillomavirus genus. The tumors were all classified as fibropapillomas. This is believed to be the first record of BPV types 3 and 10 associated with fibropapillomas. These results confirm that there is a wide range of BPV types that infect cattle, and that an understanding of this diversity is necessary for improved methods of therapeutic treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. (Npro) protein of bovine viral d

    Indian Academy of Sciences (India)

    Prakash

    Bovine viral diarrhoea virus (BVDV) is an economically important pathogen of cattle and sheep, and causes significant respiratory and reproductive disease worldwide. Bovine viral diarrhoea virus type 1 (BVDV-1), BVDV-2 along with the border disease virus (BDV) and classical swine fever virus (CSFV) belong to the genus ...

  11. BLV-CoCoMo-qPCR: a useful tool for evaluating bovine leukemia virus infection status

    Directory of Open Access Journals (Sweden)

    Jimba Mayuko

    2012-09-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is associated with enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide, imposing a severe economic impact on the dairy cattle industry. Recently, we developed a new quantitative real-time polymerase chain reaction (PCR method using Coordination of Common Motifs (CoCoMo primers to measure the proviral load of known and novel BLV variants in BLV-infected animals. Indeed, the assay was highly effective in detecting BLV in cattle from a range of international locations. This assay enabled us to demonstrate that proviral load correlates not only with BLV infection capacity as assessed by syncytium formation, but also with BLV disease progression. In this study, we compared the sensitivity of our BLV-CoCoMo-qPCR method for detecting BLV proviruses with the sensitivities of two real-time PCR systems, and also determined the differences of proviral load with serotests. Results BLV-CoCoMo-qPCR was found to be highly sensitive when compared with the real-time PCR-based TaqMan MGB assay developed by Lew et al. and the commercial TaKaRa cycleave PCR system. The BLV copy number determined by BLV-CoCoMo-qPCR was only partially correlated with the positive rate for anti-BLV antibody as determined by the enzyme-linked immunosorbent assay, passive hemagglutination reaction, or agar gel immunodiffusion. This result indicates that, although serotests are widely used for the diagnosis of BLV infection, it is difficult to detect BLV infection with confidence by using serological tests alone. Two cattle were experimentally infected with BLV. The kinetics of the provirus did not precisely correlate with the change in anti-BLV antibody production. Moreover, both reactions were different in cattle that carried different bovine leukocyte antigen (BoLA-DRB3 genotypes. Conclusions Our results suggest that the quantitative measurement of proviral load by BLV

  12. Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis

    Science.gov (United States)

    Jones, Clinton

    2013-01-01

    α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776

  13. Evaluation of a single-tube fluorogenic RT-PCR assay for detection of bovine respiratory syncytial virus in clinical samples

    DEFF Research Database (Denmark)

    Hakhverdyan, Mikhayil; Hägglund, Sara; Larsen, Lars Erik

    2005-01-01

    Bovine respiratory syncytial virus (BRSV) causes severe disease in naive cattle of all ages and is a common pathogen in the respiratory disease complex of calves. Simplified methods for rapid BRSV diagnosis would encourage sampling during outbreaks and would consequently lead to an extended......, antigen ELISA (Ag-ELISA) and virus isolation (VI). Interspersed negative control samples, samples from healthy animals and eight symptomatically or genetically related viruses were all negative, confirming a high specificity of the assay. Taken together, the data indicated that the fRT-PCR assay can...... understanding of the virus. In this study, a BRSV fluorogenic reverse transcription PCR (fRT-PCR) assay, based on TaqMan principle, was developed and evaluated on a large number of clinical samples, representing various cases of natural and experimental BRSV infections. By using a single-step closed-tube format...

  14. Pathogenesis of a genotype C strain of bovine parainfluenza virus type 3 infection in albino guinea pigs.

    Science.gov (United States)

    Shi, Hong-Fei; Zhu, Yuan-Mao; Dong, Xiu-Mei; Cai, Hong; Ma, Lei; Wang, Shu; Yan, Hao; Wang, Xue-Zhi; Xue, Fei

    2014-08-08

    Bovine parainfluenza virus type 3 (BPIV3) is one of the most important of the known viral respiratory tract agents of both young and adult cattle and widespread among cattle around the world. Up to present, three genotypes A, B and C of BPIV3 have been described on the basis of genetic and phylogenetic analysis and only limited studies on the pathogenesis of the genotype A of BPIV3 infection in calves and laboratory animals have been performed. The report about experimental infections of the genotypes B and C of BPIV3 in laboratory animals and calves was scant. Therefore, an experimental infection of guinea pigs with the Chinese BPIV3 strain SD0835 of the genotype C was performed. Sixteen guinea pigs were intranasally inoculated with the suspension of SD0835, while eight control guinea pigs were also intranasally inoculated with the same volume of supernatant from uninfected MDBK cells. The virus-inoculated guinea pigs displayed a few observable clinical signs that were related to the respiratory tract disease and two of the sixteen experimentally infected guinea pigs died at 2 and 3 days post inoculation (PI), respectively, and apparent gross pneumonic lesions were observed at necropsy. The gross pneumonic lesions in guinea pigs inoculated with SD0835 consisted of dark red, slightly depressed, irregular areas of consolidation in the lung lobes from the second to 9th day of infection at necropsy, and almost complete consolidation and atelectasis of the lung lobes were seen at 7 days PI. Histopathological changes including alveoli septa thickening and focal cellulose pneumonia were also observed in the lungs of guinea pigs experimentally infected with SD0835. Viral replication was detectable by virus isolation and titration, real-time RT-PCR and immunohistochemistry (IHC) staining in the respiratory tissues of guinea pigs as early as 24h after intranasal inoculation with SD0835. The results of virus isolation and titration showed that guinea pigs were permissive for

  15. Evaluation of attenuation, immunogenicity and efficacy of a bovine parainfluenza virus type 3 (PIV-3) vaccine and a recombinant chimeric bovine/human PIV-3 vaccine vector in rhesus monkeys.

    Science.gov (United States)

    Pennathur, Sridhar; Haller, Aurelia A; MacPhail, Mia; Rizzi, Tom; Kaderi, Sepideh; Fernandes, Fiona; Bicha, Leenas; Schickli, Jeanne H; Tang, Roderick S; Chen, Wendy; Nguyen, Nick; Mathie, Sharon; Mehta, Hersh; Coelingh, Kathleen L

    2003-12-01

    Restricted replication in the respiratory tract of rhesus monkeys is an intrinsic property of bovine parainfluenza virus type 3 (bPIV-3) strains. This host range phenotype of bPIV-3 has been utilized as a marker to evaluate the attenuation of bPIV-3 vaccines for human use. Two safety, immunogenicity and efficacy studies in primates evaluated and compared three human parainfluenza virus type 3 (hPIV-3) vaccine candidates: biologically derived bPIV-3, a plasmid-derived bPIV-3 (r-bPIV-3) and a chimeric bovine/human PIV-3 (b/hPIV-3). These studies also examined the feasibility of substituting Vero cells, cultured in the presence or absence of foetal bovine serum, for foetal rhesus lung-2 (FRhL-2) cells as the tissue culture substrate for the production of bPIV-3 vaccine. The results demonstrated that (i) Vero cell-produced bPIV-3 was as attenuated, immunogenic and efficacious as bPIV-3 vaccine grown in FRhL-2 cells, (ii) plasmid-derived bPIV-3 was as attenuated, immunogenic and efficacious as the biologically derived bPIV-3 and (iii) the b/hPIV-3 chimera displayed an intermediate attenuation phenotype and protected animals completely from hPIV-3 challenge. These results support the use of bPIV-3 vaccines propagated in Vero cells in human clinical trials and the use of b/hPIV-3 as a virus vaccine vector to express foreign viral antigens.

  16. Use of three-dimensional accelerometers to evaluate behavioral changes in cattle experimentally infected with bovine viral diarrhea virus.

    Science.gov (United States)

    Bayne, Jenna E; Walz, Paul H; Passler, Thomas; White, Brad J; Theurer, Miles E; van Santen, Edzard

    2016-06-01

    OBJECTIVE To assess the use of 3-D accelerometers to evaluate behavioral changes in cattle experimentally infected with a low-virulent strain of bovine viral diarrhea virus (BVDV). ANIMALS 20 beef steers (mean weight, 238 kg). PROCEDURES Calves were allocated to a BVDV (n = 10) or control (10) group. On day 0, calves in the BVDV group were inoculated with a low-virulent strain of BVDV (4 × 10(6) TCID50, intranasally), and calves in the control group were sham inoculated with BVDV-free medium (4 mL; intranasally). An accelerometer was affixed to the right hind limb of each calf on day -7 to record activity (lying, walking, and standing) continuously until 35 days after inoculation. Baseline was defined as days -7 to -1. Blood samples were collected at predetermined times for CBC, serum biochemical analysis, virus isolation, and determination of anti-BVDV antibody titers. RESULTS All calves in the BVDV group developed viremia and anti-BVDV antibodies but developed only subclinical or mild disease. Calves in the control group did not develop viremia or anti-BVDV antibodies. Mean time allocated to each activity did not differ significantly between the BVDV and control groups on any day except day 8, when calves in the BVDV group spent less time standing than the calves in the control group. Following inoculation, calves in both groups tended to spend more time lying and less time walking and standing than they did during baseline. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that behavioral data obtained by accelerometers could not distinguish calves subclinically infected with BVDV from healthy control calves. However, subtle changes in the behavior of the BVDV-infected calves were detected and warrant further investigation.

  17. EXPRESSION OF GLYCOPROTEIN gD AND EVALUATION OF IMMUNE RESPONSE OF BOVINE HERPES VIRUS TYPE-1 IN BUFFALO

    Directory of Open Access Journals (Sweden)

    Sumit Chowdhury

    2012-12-01

    Full Text Available Bovine Herpes Virus type-1 (BoHV-1 causes a multitude of clinical symptoms in cattle, buffaloes and small ruminants. No effective live attenuated or killed vaccine is currently available and extensive research work in progress towards the development of the subunit and genetically engineered vaccine. Since DNA vaccine is currently regarded as most important breakthrough in vaccinology, the present work was aimed at construction of DNA vaccine using most immunogenic glycoprotein gD and studying its immune response and protection in buffalo. gD specific DIG labelled probe was used to screen gD specific clones from cDNA library. The gD specific cloned plasmid was purified for eukaryotic expression. The SDS-PAGE & Western blot analysis showed the transient expression of the expected 71 kDa gD following transfection in COS-7 cells. Four seronegative buffalo calves were immunized at 0, 30 and 60 days with recombinant purified plasmid and two calves were kept as control. The result of SNT, ELISA and MTT indicate gene specific seroconversion and CMI response following immunization with plasmid. At 86 days of post first vaccination, animals were challenged with virulent BoHV-1 (216/IBR. Hematological picture of the control animals showed leucopenia and that was due to destruction of lymphocytes shown by TLC and apoptosis study. Vaccinated animals showed reduced virus shedding in terms of days post challenge as well as titers compared to the controls. Based on the above findings, we concluded that DNA based vaccine induces specific and protective immune responses to the buffalo.

  18. Serological survey of bovine viral diarrhoea virus in Namibian and South African kudu (Tragelaphus strepsiceros and eland (Taurotragus oryx

    Directory of Open Access Journals (Sweden)

    Terence P. Scott

    2013-02-01

    Full Text Available Bovine viral diarrhoea virus (BVDV is a pestivirus that affects members of the order Artiodactyla, including members of the subfamily Bovinae. Little is known about the seroprevalence of BVDV in southern Africa, especially the prevalence in wild ruminant populations such as kudu (Tragelaphus strepsiceros. A handful of random surveys suggested that seroprevalence ranged between 6% and 70% in southern African wild ruminants. The present study aimed to determine the seroprevalence of BVDV amongst kudu and eland (Taurotragus oryx from Namibia and South Africa. A BVDV-specific enzyme-linked immunosorbent assay was performed on 50 serum samples from kudu and eland from South Africa and Namibia. The seroprevalence of BVDV in South African kudu was 71%, identical to that in Namibian kudu. The seroprevalence in Namibian eland was 40%. The kudu and cattle farming (free ranging regions in Namibia predominantly overlap in the central regions, ensuring ample opportunity for cross-species transmission of BVDV. It is therefore important to determine the true prevalence of BVDV in southern Africa in both domesticated and wild animals. In addition, a potential link between BVDV incidence and a devastating rabies epidemic in Namibian kudu was proposed and such a notion could be supported or discredited by comparative prevalence data.

  19. [Prokaryotic expression of HN gene of bovine parainfluenza virus type 3 and the establishment of indirect ELISA method].

    Science.gov (United States)

    Zhou, Yu-Long; Ren, Ya-Chao; Zhu, Zhan-Bo; Hou, Xi-Lin; Wang, Mi; Geng, Jing; Piao, Fan-Ze; Li, Sen

    2012-01-01

    The prokaryotic expression plasmid pQE30-HN of hemagglutinin-neuraminidase (HN) protein gene of bovine parainfluenza virus type 3 (BPIV3) strain HJ-1 was expressed by IPTG induction in E. coli XL1Blue. The recombinant HN protein(rHN) was purified by electroeluting method, and used as coated antigen. An indirect enzyme-linked immunosorbent assay (ELISA) was developed to detect the antibody valence of BPIV3. The best working conditions of ELISA were as follows: the antigen concentration was 6 microg/mL; the serum dilution was 1:50; the blocking reagent was 5% skimmed milk; the blocking time was 60 min at 37 degrees C; the second antibody concentration was 1:10 000; The cut-off value was 0.30. The method revealed a good specificity, no cross-reaction to the positive sera of BCV, IBRV or BRSV was observed. We applied the method to detect 323 serum samples of dairy cow in Heilongjiang Province, the seropositivity rate of BPIV3 was about 58%. The indirect ELISA established provided a technological basis for the development of ELISA kit.

  20. Seroprevalence and risk factors of bovine viral diarrhoea virus (BVDV) infection in yaks (Bos grunniens) in northwest China.

    Science.gov (United States)

    Ma, Jian-Gang; Cong, Wei; Zhang, Fu-Heng; Feng, Sheng-Yong; Zhou, Dong-Hui; Wang, Yi-Ming; Zhu, Xing-Quan; Yin, Hong; Hu, Gui-Xue

    2016-12-01

    Bovine viral diarrhoea virus (BVDV), a member of the Pestivirus genus, is an important pathogen of cattle worldwide, causing reproductive disorders in adult cattle and mucosal disease in calves. However, limited information about BVDV infection in yaks (Bos grunniens) in China is available, especially in white yaks which is a unique yak breed that only lives in Tianzhu Tibetan Autonomous County (TTAC), Gansu Province, northwest China. Therefore, we conducted a cross-sectional study to estimate the seroprevalence and risk factors associated with BVDV infection in 1584 yaks in Gansu province, northwest China, between April 2013 and March 2014 using an indirect ELISA test. The overall seroprevalence of BVDV in yaks was 37.56 % (595/1584), with 45.08 % (275/610) in black yaks and 32.85 % (320/974) in white yaks. Moreover, positive yaks were found in all four regions, varied from 33.22 to 40.31 %. Male yaks had a similar seroprevalence (37.84 %) with that of the female yaks (37.11 %). Season, species and geographical origins of yaks were considered as risk factors analyzed by logistic regression model. To our knowledge, this is the first report of seroprevalence and risk factors associated with BVDV infection in white yaks in China.

  1. Detection of Bovine Leukemia Virus in Brains of Cattle with a Neurological Syndrome: Pathological and Molecular Studies

    Directory of Open Access Journals (Sweden)

    Rubens Henrique Ramos D’Angelino

    2013-01-01

    Full Text Available Bovine leukemia virus (BLV was investigated in the central nervous system (CNS of cattle with neurological syndrome. A total of 269 CNS samples were submitted to nested-PCR (BLV env gene gp51, and the viral genotypes were identified. The nested-PCR was positive in 4.8% (13/269 CNS samples, with 2.7% (2/74 presenting at histological examination lesions of nonpurulent meningoencephalitis (NPME, whereas 5.6% (11/195 not presenting NPME (P>0.05. No samples presented lymphosarcoma. The PCR products (437 bp were sequenced and submitted to phylogenetic analysis by neighbor-joining and maximum composite likelihood methods, and genotypes 1, 5, and 6 were detected, corroborating other South American studies. The genotype 6 barely described in Brazil and Argentina was more frequently detected in this study. The identity matrices showed maximum similarity (100% among some samples of this study and one from Argentina (FJ808582, recovered from GenBank. There was no association among the genotypes and NPME lesions.

  2. Detection of Bovine Leukemia Virus in Brains of Cattle with a Neurological Syndrome: Pathological and Molecular Studies

    Science.gov (United States)

    D'Angelino, Rubens Henrique Ramos; Pituco, Edviges Maristela; Villalobos, Eliana Monteforte Cassaro; Harakava, Ricardo; Gregori, Fábio

    2013-01-01

    Bovine leukemia virus (BLV) was investigated in the central nervous system (CNS) of cattle with neurological syndrome. A total of 269 CNS samples were submitted to nested-PCR (BLV env gene gp51), and the viral genotypes were identified. The nested-PCR was positive in 4.8% (13/269) CNS samples, with 2.7% (2/74) presenting at histological examination lesions of nonpurulent meningoencephalitis (NPME), whereas 5.6% (11/195) not presenting NPME (P > 0.05). No samples presented lymphosarcoma. The PCR products (437 bp) were sequenced and submitted to phylogenetic analysis by neighbor-joining and maximum composite likelihood methods, and genotypes 1, 5, and 6 were detected, corroborating other South American studies. The genotype 6 barely described in Brazil and Argentina was more frequently detected in this study. The identity matrices showed maximum similarity (100%) among some samples of this study and one from Argentina (FJ808582), recovered from GenBank. There was no association among the genotypes and NPME lesions. PMID:23710448

  3. Prevalence of Bovine Viral Diarrhoea Virus antibodies among the industrial dairy cattle herds in suburb of Mashhad-Iran.

    Science.gov (United States)

    Talebkhan Garoussi, M; Haghparast, A; Hajenejad, M R

    2009-04-01

    Mashhad is a major dairy production in Iran. The subject of this study was to survey the seroprevalence of Bovine Viral Diarrhea Virus (BVDV) infection using an indirect Enzyme-linked immunosorbent assay (ELISA) test in industrial dairy cattle herds in suburb of Mashhad-Iran. Totally, 141 serum samples were tested. None of the herds had been vaccinated against BVDV. Commercial indirect ELISA kit was used. The herds divided to 3 sizes as cow population. They were included: small, medium and large herds. Data were analyzed using Chi-square test. Ninety-seven (68.79%) cows were ELISA seropositive. However, the true BVDV seroprevalence was 72.25%. All of the herds were antibody positive against BVDV. The prevalence ranged from 66 to 100% within the herds. There were no significant differences between the presence of antibodies to BVDV and the herd size (P > 0.05). The prevalence in animals lower than 2 years old differed significantly with cows higher than 2 years old (P Mashhad-Iran, which is responsible for the presence antibody.

  4. Effects of subclinical bovine leukemia virus infection on some production parameters in a dairy farm in southern Turkey.

    Science.gov (United States)

    Kale, M; Bulut, O; Yapkic, O; Gulay, M S; Pehlivanoglu, F; Ata, A; Yavru, S

    2007-09-01

    Some production parameters of seropositive cows (age, first calving age, 305 day mature equivalent last milk yield production, lifetime mature equivalent milk yield production, lifetime total milk production, lifetime total milking period, lifetime monthly milk production, lifetime daily milk production, lifetime total days of milking, number of inseminations per pregnancy (for last pregnancy), number of calves and calving interval (for last pregnancy)) were analysed in the current study. The study population was clinically healthy Holstein cows from a commercial dairy herd in southern Turkey. Of 109 animals, 65 cows were seropositive by ELISA and the prevalence of bovine leukemia virus (BLV) infection was 59.6%. The prevalence of seropositive cows in 2nd (62.8%), 3rd (64.7%), 4th (61.5%), and 5th (66.6 %) lactations was slightly higher than that of cows in 1st (52.6%) lactations. No statistical differences were observed between BLV seronegative and seropositive cows for production and reproduction parameters analysed in this study (P > 0.05).

  5. Development and Characterization of a Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out Supplemental Materials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S; Danganan, L; Tammero, L; Lenhoff, R; Naraghi-arani, P; Hindson, B

    2007-08-06

    Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed advanced rapid diagnostics that may be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the potential to improve our nation's ability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect animal populations of high economic importance in the United States. Under 2005 DHS funding we have developed multiplexed (MUX) nucleic-acid-based PCR assays that combine foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease (SVD) and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1 or Infectious Bovine Rhinotracheitus IBR), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus BPSV, Orf of sheep, and Pseudocowpox). Under 2006 funding we have developed a Multiplexed PCR [MUX] porcine assay for detection of FMDV with rule out tests for VESV and SVD foreign animal diseases in addition to one other domestic vesicular animal disease vesicular stomatitis virus (VSV) and one domestic animal disease of swine porcine reproductive and respiratory syndrome (PRRS). We have also developed a MUX bovine assay for detection of FMDV with rule out tests for the two bovine foreign animal diseases malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis virus (VSV), bovine viral diarrhea virus (BVDV), infectious bovine rhinotracheitus virus (BHV-1), bluetongue virus (BTV), and the Parapox

  6. Pre-Arrival Management of Newly Received Beef Calves With or Without Exposure to a Persistently Infected Bovine Viral Diarrhea Virus Type I Calf Affects Health, Performance, BVDV Type I Titers, and Circulating Leukocytes

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is a major culprit in the development of BRD either directly via acute clinical disease or through indirect effects of immunosuppression. Calves born persistently infected (PI) with BVDV are the primary vector for introduction of the virus into herds or productio...

  7. Anticorpos contra o vírus da língua azul em bovinos do sertão da Paraíba Antibodies to bluetongue virus in bovines of Paraíba State, Brazil

    Directory of Open Access Journals (Sweden)

    C.B. Melo

    2000-02-01

    Full Text Available In June of 1997 the prevalence of antibodies to bluetongue virus was between 3.94 and 4.82% in 137 bovine serum samples from 12 herds in Paraiba State, Brazil. This is the first report of antibodies to bluetongue virus in Paraiba State herds.

  8. Does porphyrin suppres the apoptotic and necrotic effects of bovine herpes virus type-1(BoHV-1) and herpes simplex virus type-1(HSV-1)?

    Science.gov (United States)

    Yavuz, Beyza; Yazici, Zafer

    2016-09-01

    In this study, antiviral effect of porphyrin was investigated. Cooper strain of Bovine Herpes Virus type 1(BoHV-1) and Kos strain of Herpes Simplex Virus type-1 (HSV-1) were used to determine the potential of porphyrins to inhibit infection in vitro (with morphological and cytopathological criteria). Apoptotic and necrotic changes were determined by using DAPI and propidium staining. The non-cytotoxic dose of porphyrin (NCD-p) was initially calculated as 312.50µg/mL on MDBK and Vero cells. The apoptotic cell (APC) count was found 10% with BoHV-1 while it was 5.3% with BoHV-1 treated with porphyrin on MDBK cells between 6th to 24th hours post infection (hpi). Necrotic cell (NEC) count was 51% with BoHV-1 and 37.8% BoHV-1 treated with porphyrin on MDBK cells at 24th hpi. On the other hand, the APC count was found 23% with HSV-1, while 22% with the HSV-1 treated with porphyrin on Vero cells between 6th to 24th hpi. NEC count was 49% with HSV-1 and 34% HSV-1 treated with porphyrin on MDBK cells at 24th hpi. The results show that BoHV-1 was inhibited by porphyrin resulting in decreased apoptotic and necrotic changes in MDBK cells. On the contrary, porphyrine was not effective in the inhibition of HSV-1 in terms of apoptosis but it caused necrotic changes in Vero cells.

  9. Genomic and antigenic characterization of bovine parainfluenza-3 viruses in the United States including modified live virus vaccine (MLV) strains and field strains from cattle.

    Science.gov (United States)

    Fulton, R W; Neill, J D; Saliki, J T; Landis, C; Burge, L J; Payton, M E

    2017-05-02

    This study investigated the genetic and antigenic characterization of parainfluenza-3 virus (PI3V) of cattle. Using molecular tests including real time PCR and viral genome sequencing, PI3V strains could be separated into PI3V types, including PI3V A, PI3V B, and PI3V C. Isolates from cattle with bovine respiratory disease clinical signs and commercial vaccines in the U.S. with MLV PI3V were typed using these molecular tests. All the MLV vaccine strains tested were PI3V A. In most cases PI3V field strains from calves receiving MLV vaccines were types heterologous to the vaccine type A. Also antigenic differences were noted as PI3V C strains had lower antibody levels than PI3V A in serums from cattle receiving MLV PI3V A vaccines. This study further demonstrates there is genetic variability of U.S. PI3V strains and also antigenic variability. In addition, isolates from cattle with BRD signs and receiving MLV vaccines may have heterologous types to the vaccines, and molecular tests should be performed to differentiate field from vaccine strains. Potentially the efficacy of current PI3V A vaccines should be evaluated with other types such a PI3V B and PI3V C. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Homology Modeling and Analysis of Structure Predictions of the Bovine Rhinitis B Virus RNA Dependent RNA Polymerase (RdRp

    Directory of Open Access Journals (Sweden)

    Devendra K. Rai

    2012-07-01

    Full Text Available Bovine Rhinitis B Virus (BRBV is a picornavirus responsible for mild respiratory infection of cattle. It is probably the least characterized among the aphthoviruses. BRBV is the closest relative known to Foot and Mouth Disease virus (FMDV with a ~43% identical polyprotein sequence and as much as 67% identical sequence for the RNA dependent RNA polymerase (RdRp, which is also known as 3D polymerase (3Dpol. In the present study we carried out phylogenetic analysis, structure based sequence alignment and prediction of three-dimensional structure of BRBV 3Dpol using a combination of different computational tools. Model structures of BRBV 3Dpol were verified for their stereochemical quality and accuracy. The BRBV 3Dpol structure predicted by SWISS-MODEL exhibited highest scores in terms of stereochemical quality and accuracy, which were in the range of 2Å resolution crystal structures. The active site, nucleic acid binding site and overall structure were observed to be in agreement with the crystal structure of unliganded as well as template/primer (T/P, nucleotide tri-phosphate (NTP and pyrophosphate (PPi bound FMDV 3Dpol (PDB, 1U09 and 2E9Z. The closest proximity of BRBV and FMDV 3Dpol as compared to human rhinovirus type 16 (HRV-16 and rabbit hemorrhagic disease virus (RHDV 3Dpols is also substantiated by phylogeny analysis and root-mean square deviation (RMSD between C-α traces of the polymerase structures. The absence of positively charged α-helix at C terminal, significant differences in non-covalent interactions especially salt bridges and CH-pi interactions around T/P channel of BRBV 3Dpol compared to FMDV 3Dpol, indicate that despite a very high homology to FMDV 3Dpol, BRBV 3Dpol may adopt a different mechanism for handling its substrates and adapting to physiological requirements. Our findings will be valuable in the

  11. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV in cattle

    Directory of Open Access Journals (Sweden)

    Loy John Dustin

    2013-01-01

    Full Text Available Abstract Background Bovine viral diarrhea virus is one of the most significant and costly viral pathogens of cattle worldwide. Alphavirus-derived replicon particles have been shown to be safe and highly effective vaccine vectors against a variety of human and veterinary pathogens. Replicon particles are non-propagating, DIVA compatible, and can induce both humoral and cell mediated immune responses. This is the first experiment to demonstrate that Alphavirus-based replicon particles can be utilized in a standard prime/boost vaccination strategy in calves against a commercially significant bovine pathogen. Findings Replicon particles that express bovine viral diarrhea virus sub-genotype 1b E2 glycoprotein were generated and expression was confirmed in vitro using polyclonal and monoclonal antibodies specific to E2. Vaccine made from particles was generated in Vero cells and administered to BVDV free calves in a prime/boost regimen at two dosage levels. Vaccination resulted in neutralizing antibody titers that cross-neutralized both type 1 and type 2 BVD genotypes following booster vaccination. Additionally, high dose vaccine administration demonstrated some protection from clinical disease and significantly reduced the degree of leukopenia caused by viral infection. Conclusions Replicon particle vaccines administered in a prime/boost regimen expressing BVDV E2 glycoprotein can induce cross-neutralizing titers, reduce leukopenia post challenge, and mitigate clinical disease in calves. This strategy holds promise for a safe and effective vaccine to BVDV.

  12. In vitro and in vivo antivirus activity of an anti-programmed death-ligand 1 (PD-L1 rat-bovine chimeric antibody against bovine leukemia virus infection.

    Directory of Open Access Journals (Sweden)

    Asami Nishimori

    Full Text Available Programmed death-1 (PD-1, an immunoinhibitory receptor on T cells, is known to be involved in immune evasion through its binding to PD-ligand 1 (PD-L1 in many chronic diseases. We previously found that PD-L1 expression was upregulated in cattle infected with bovine leukemia virus (BLV and that an antibody that blocked the PD-1/PD-L1 interaction reactivated T-cell function in vitro. Therefore, this study assessed its antivirus activities in vivo. First, we inoculated the anti-bovine PD-L1 rat monoclonal antibody 4G12 into a BLV-infected cow. However, this did not induce T-cell proliferation or reduction of BLV provirus loads during the test period, and only bound to circulating IgM+ B cells until one week post-inoculation. We hypothesized that this lack of in vivo effects was due to its lower stability in cattle and so established an anti-PD-L1 rat-bovine chimeric antibody (Boch4G12. Boch4G12 was able to bind specifically with bovine PD-L1, interrupt the PD-1/PD-L1 interaction, and activate the immune response in both healthy and BLV-infected cattle in vitro. Therefore, we experimentally infected a healthy calf with BLV and inoculated it intravenously with 1 mg/kg of Boch4G12 once it reached the aleukemic (AL stage. Cultivation of peripheral blood mononuclear cells (PBMCs isolated from the tested calf indicated that the proliferation of CD4+ T cells was increased by Boch4G12 inoculation, while BLV provirus loads were significantly reduced, clearly demonstrating that this treatment induced antivirus activities. Therefore, further studies using a large number of animals are required to support its efficacy for clinical application.

  13. Molecular epidemiological and serological studies of bovine leukemia virus (BLV) infection in Thailand cattle.

    Science.gov (United States)

    Lee, EunJung; Kim, Eun-Ju; Ratthanophart, Jadsada; Vitoonpong, Ratchaneekorn; Kim, Bo-Hye; Cho, In-Soo; Song, Jae-Young; Lee, Kyoung-Ki; Shin, Yeun-Kyung

    2016-07-01

    BLV is the etiological agent of enzootic bovine leucosis. BLV has negative effects on animal health and causes economic losses worldwide. However, epidemiological studies on BLV are relatively unknown in many parts of Asian countries. Thus, this study sought to explore BLV infections in cattle in Thailand to determine the extent of the geographic distribution of BLV and to measure its prevalence rates. For this study, 744 cattle from 11 farms in 9 provinces of Thailand were screened in 2013 and 2014 by ELISA and nested PCR. Of those cattle, 41 BLVs were genetically characterized using 188 BLV gp51 env gene sequences available in GenBank. The BLV prevalence in Thailand was high, ranging from 5.3% to 87.8%, as determined by PCR and 11.0% to 100% as determined by ELISA, according to geographical region. Phylogenetic analysis showed that Thailand BLVs belonged to genotypes 1 and 6 and a new genotype 10, which are sporadically observed across Thailand with a prevalence of 31.7%, 19.5%, and 48.8%, respectively. A significant number of amino acid substitutions were also found in the gp51 sequences, of which unique changes in genotype 10 have not been reported previously. Briefly, the majority of substitutions were confined to CD4+/CD8+ T-cell epitopes, neutralizing domains, and E-D-A epitopes. Those observations indicate that BLV infections in Thailand cattle are prevalent and that the geographic distribution of BLV is dynamic, with a high level of genetic diversity. This distribution implies a long-term BLV infection in cattle populations and the movement of infected cattle. In sum, this study suggests that intensive surveillance and effective prevention strategies are required to determine the prevalence of BLV in Thailand and control continuous infections with BLVs. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Simulation of the K-function in the analysis of spatial clustering for non-randomly distributed locations-Exemplified by bovine virus diarrhoea virus (BVDV) infection in Denmark

    DEFF Research Database (Denmark)

    Ersbøll, Annette Kjær; Ersbøll, Bjarne Kjær

    2009-01-01

    The K-function is often used to detect spatial clustering in spatial point processes, e.g. clustering of infected herds. Clustering is identified by testing the observed K-function for complete spatial randomness modelled, e.g. by a homogeneous Poisson process. The approach provides information a...... of the herd locations in general. The approach also overcomes edge effects and problems with complex shapes of the study region. An application to bovine virus diarrhoea virus (BVDV) infection in Denmark is described....

  15. Suboptimal enhancer sequences are required for efficient bovine leukemia virus propagation in vivo: implications for viral latency.

    Science.gov (United States)

    Merezak, C; Pierreux, C; Adam, E; Lemaigre, F; Rousseau, G G; Calomme, C; Van Lint, C; Christophe, D; Kerkhofs, P; Burny, A; Kettmann, R; Willems, L

    2001-08-01

    Repression of viral expression is a major strategy developed by retroviruses to escape from the host immune response. The absence of viral proteins (or derived peptides) at the surface of an infected cell does not permit the establishment of an efficient immune attack. Such a strategy appears to have been adopted by animal oncoviruses such as bovine leukemia virus (BLV) and human T-cell leukemia virus (HTLV). In BLV-infected animals, only a small fraction of the infected lymphocytes (between 1 in 5,000 and 1 in 50,000) express large amounts of viral proteins; the vast majority of the proviruses are repressed at the transcriptional level. Induction of BLV transcription involves the interaction of the virus-encoded Tax protein with the CREB/ATF factors; the resulting complex is able to interact with three 21-bp Tax-responsive elements (TxRE) located in the 5' long terminal repeat (5' LTR). These TxRE contain cyclic AMP-responsive elements (CRE), but, remarkably, the "TGACGTCA" consensus is never strictly conserved in any viral strain (e.g.,AGACGTCA, TGACGGCA, TGACCTCA). To assess the role of these suboptimal CREs, we introduced a perfect consensus sequence within the TxRE and showed by gel retardation assays that the binding efficiency of the CREB/ATF proteins was increased. However, trans-activation of a luciferase-based reporter by Tax was not affected in transient transfection assays. Still, in the absence of Tax, the basal promoter activity of the mutated LTR was increased as much as 20-fold. In contrast, mutation of other regulatory elements within the LTR (the E box, NF-kappa B, and glucocorticoid- or interferon-responsive sites [GRE or IRF]) did not induce a similar alteration of the basal transcription levels. To evaluate the biological relevance of these observations made in vitro, the mutations were introduced into an infectious BLV molecular clone. After injection into sheep, it appeared that all the recombinants were infectious in vivo and did not revert

  16. Glycoprotein-G-gene-based molecular and phylogenetic analysis of rabies viruses associated with a large outbreak of bovine rabies in southern Brazil.

    Science.gov (United States)

    Cargnelutti, Juliana F; de Quadros, João M; Martins, Mathias; Batista, Helena B C R; Weiblen, Rudi; Flores, Eduardo F

    2017-12-01

    A large outbreak of hematophagous-bat-associated bovine rabies has been occurring in Rio Grande do Sul (RS), the southernmost Brazilian state, since 2011, with official estimates exceeding 50,000 cattle deaths. The present article describes a genetic characterization of rabies virus (RABV) recovered from 59 affected cattle and two sheep, from 56 herds in 16 municipalities (2012-2016). Molecular analysis was performed using the nucleotide (nt) and predicted amino acid (aa) sequences of RABV glycoprotein G (G). A high level of nt and aa sequence identity was observed among the examined G sequences, ranging from 98.4 to 100%, and from 97.3 to 100%, respectively. Likewise, high levels of nt and aa sequence identity were observed with bovine (nt, 99.8%; aa, 99.8%) and hematophagous bat (nt, 99.5%; aa, 99.4%) RABV sequences from GenBank, and lower levels were observed with carnivore RABV sequences (nt, 92.8%; aa, 88.1%). Some random mutations were observed in the analyzed sequences, and a few consistent mutations were observed in some sequences belonging to cluster 2, subcluster 2b. The clustering of the sequences was observed in a phylogenetic tree, where two distinct clusters were evident. Cluster 1 comprised RABV sequences covering the entire study period (2012 to 2016), but subclusters corresponding to different years could be identified, indicating virus evolution and/or introduction of new viruses into the population. In some cases, viruses from the same location obtained within a short period grouped into different subclusters, suggesting co-circulation of viruses of different origins. Subcluster segregation was also observed in sequences obtained in the same region during different periods, indicating the involvement of different viruses in the cases at different times. In summary, our results indicate that the outbreaks occurring in RS (2012 to 2016) probably involved RABV of different origins, in addition to a possible evolution of RABV isolates within this

  17. Comparison of the virucidal efficiency of peracetic acid, potassium monopersulfate and sodium hypochlorite on hepatitis A and enteric cytopathogenic bovine orphan virus.

    Science.gov (United States)

    Martin, H; Soumet, C; Fresnel, R; Morin, T; Lamaudière, S; Le Sauvage, A L; Deleurme, K; Maris, P

    2013-10-01

    The virucidal activity of peroxy-products was evaluated and compared with sodium hypochlorite using the EN 14675 European suspension test and a surface test developed in our laboratory. The classical approach on infectivity of viruses was complemented with a prospective approach on virus genomes. Both infectivity tests were adapted and/or developed to determine the activity of disinfectants against reference bovine enterovirus type 1 [enteric cytopathogenic bovine orphan virus (ECBO)] and resistant hepatitis A virus (HAV) in conditions simulating practical use. Similar concentrations of active chlorine were virucidal against both viruses, either at 0·062% using the suspension test or at 0·50-1% using the surface test. However, for potassium monopersulfate and peracetic acid products, concentrations of approximately three times (3%) to 72 times (9%) higher were necessary against HAV than ECBO when determined with the suspension test. With the surface test, 4-8% peroxy-products were virucidal against HAV, either 16 times more peroxy-products concentrations than against ECBO. No significant impact on the targeted area of the viral genome measured by real-time RT-PCRs was obtained for ECBO and HAV suspensions treated with disinfectants, even with doses higher than the minimal virucidal concentrations. Sodium hypochlorite, but not peroxy-products, had similar activity against ECBO and HAV. No relation could be established between infectivity tests and genome destruction. This is the first comparative study that investigates with novel suspension and surface tests the reduction of infectivity and genome destruction of two resistant viruses by peroxy-compounds. The results and conclusions collected with European standards are discussed. © 2013 The Society for Applied Microbiology.

  18. Circulation of multiple subtypes of bovine viral diarrhoea virus type 1 with no evidence for HoBi-like pestivirus in cattle herds of southern Italy.

    Science.gov (United States)

    Lanave, G; Decaro, N; Lucente, M S; Guercio, A; Cavaliere, N; Purpari, G; Padalino, I; Larocca, V; Antoci, F; Marino, P A; Buonavoglia, C; Elia, G

    2017-06-01

    Pestiviruses of cattle include bovine viral diarrhoea 1 (BVDV-1) and 2 (BVDV-2) plus an emerging group, named HoBi-like pestivirus. In the present paper, the results of an epidemiological survey for pestiviruses circulating in cattle in southern Italy are presented. Molecular assays carried out on a total of 924 bovine samples detected 74 BVDV strains, including 73 BVDV-1 and 1 BVDV-2 viruses. Phylogenetic analysis carried out on partial 5'UTR and Npro sequences revealed the presence of 6 different subtypes of BVDV-1 and a single BVDV-2c strain. BVDV-1 displayed a high level of genetic heterogeneity, which can have both prophylactic and diagnostic implications. In addition, the detection of BVDV-2c highlights the need for a continuous surveillance for the emergence of new pestivirus strains in cattle farms in southern Italy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Investigation of the presence of human or bovine respiratory syncytial virus in the lungs of mink (Neovison vison with hemorrhagic pneumonia due to Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Salomonsen Charlotte M

    2012-11-01

    Full Text Available Abstract Background Hemorrhagic pneumonia is a disease of farmed mink (Neovison vison caused by Pseudomonas aeruginosa. The disease is highly seasonal in Danish mink with outbreaks occurring almost exclusively in the autumn. Human respiratory syncytial virus (RSV has been shown to augment infection with P. aeruginosa in mice and to promote adhesion of P. aeruginosa to human respiratory cells. Findings We tested 50 lung specimens from mink with hemorrhagic pneumonia for bovine RSV by reverse transcriptase polymerase chain reaction (PCR and for human RSV by a commercial real-time PCR. RSV was not found. Conclusions This study indicates that human and bovine RSV is not a major co-factor for development of hemorrhagic pneumonia in Danish mink.

  20. Investigation of the presence of human or bovine respiratory syncytial virus in the lungs of mink (Neovison vison) with hemorrhagic pneumonia due to Pseudomonas aeruginosa.

    Science.gov (United States)

    Salomonsen, Charlotte M; Breum, Solvej Ø; Larsen, Lars E; Jakobsen, Jeanette; Høiby, Niels; Hammer, Anne S

    2012-11-26

    Hemorrhagic pneumonia is a disease of farmed mink (Neovison vison) caused by Pseudomonas aeruginosa. The disease is highly seasonal in Danish mink with outbreaks occurring almost exclusively in the autumn. Human respiratory syncytial virus (RSV) has been shown to augment infection with P. aeruginosa in mice and to promote adhesion of P. aeruginosa to human respiratory cells. We tested 50 lung specimens from mink with hemorrhagic pneumonia for bovine RSV by reverse transcriptase polymerase chain reaction (PCR) and for human RSV by a commercial real-time PCR. RSV was not found. This study indicates that human and bovine RSV is not a major co-factor for development of hemorrhagic pneumonia in Danish mink.

  1. Bovine viral diarrhoea virus seroprevalence and vaccination usage in dairy and beef herds in the Republic of Ireland

    Directory of Open Access Journals (Sweden)

    Cowley D J Bosco

    2012-07-01

    -off percentage positivity - PCO PP of 7.58%. This PCO PP gave a relative sensitivity (Se and specificity (Sp of 98.57% and 100% respectively, relative to the use of the ELISA on individual sera, and was chosen as the optimal cut-off since it resulted in maximization of the prevalence independent Youden’s Index. The herd-level BVD prevalence in non-vaccinating herds was 98.7% (95% CI - 98.3-99.5% in the cross-sectional study with no significant difference between dairy and beef herds (98.3% vs 98.8%, respectively, p = 0.595. An agreement of 95.4% was found on Kappa analysis of herd serological classification when bulk milk and serum pool results were compared in non-vaccinating herds. 19.2 percent of farmers used BVDV vaccine; 81% of vaccinated herds were dairy. A significant association was found between seroprevalence (quartiles and herd size (quartiles (p  Conclusions The results from this study indicate that the true herd-level seroprevalence to Bovine Virus Diarrhoea (BVD virus in Ireland is approaching 100%. The results of the present study will assist with national policy development, particularly with respect to the national BVD eradication programme which commenced recently.

  2. A systematic worldwide review of the direct monetary losses in cattle due to bovine viral diarrhoea virus infection.

    Science.gov (United States)

    Richter, Veronika; Lebl, Karin; Baumgartner, Walter; Obritzhauser, Walter; Käsbohrer, Annemarie; Pinior, Beate

    2017-02-01

    Bovine viral diarrhoea virus (BVDV) is an important infectious agent of cattle worldwide that affects herd productivity and reproduction. In this systematic review of the impact of BVDV, studies were analysed with a particular focus on the monetary implications and types of direct losses, the initial infection status of herds, production systems, time periods of assessment, calculation level, study types and whether or not country-specific assessments were published. A linear mixed model was applied to analyse factors that influence the level of monetary direct losses due to BVDV infection. The 44 studies included in this review covered 15 countries and assessed direct monetary losses due to BVDV incurred over the past 30 years. Direct losses between and within countries were largely heterogeneous with respect to the monetary level and types of direct losses, ranging from 0.50 to 687.80 US dollars (USD) per animal.1 Average direct losses per naïve dairy cow were USD24.85 higher than per beef cow. Country-specific assessments of direct losses due to BVDV were provided in 38/44 (86.4%) studies. Mortality, morbidity, premature culling, stillbirths, abortion, reinfection, country and study type had a significant influence on the monetary level of direct losses (r2 = 0.69). Countries recording direct losses were more likely to carry out voluntary or compulsory control and eradication programmes (odds ratio = 10.2; 95% confidence interval 1.7-81.9; P = 0.004). Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Economic costs associated with two testing strategies for screening feeder calves for persistent infection with bovine viral diarrhea virus.

    Science.gov (United States)

    Larson, Robert L; Miller, Robert B; Kleiboeker, Steve B; Miller, Margaret A; White, Brad J

    2005-01-15

    To develop partial budgets of the economic costs of 2 test strategies for screening cattle for persistent infection with bovine viral diarrhea virus (BVDV). Partial budget analysis. 938 calves arriving at 2 stocker operations. Calves were tested to determine prevalence of persistent BVDV infection. Test strategies that were evaluated included a single-test strategy consisting of immunohistochemical staining of skin biopsy specimens from all animals and a 2-test strategy consisting of polymerase chain reaction (PCR) assaying of pooled blood samples followed by immunohistochemical staining of skin biopsy specimens from animals in pools for which assay results were positive. Break-even costs (i.e., cost of persistent BVDV infection per animal necessary to justify whole-herd diagnostic testing) associated with each test strategy were calculated as a function of disease prevalence and test cost. Apparent prevalence of persistent BVDV infection was 0.32%. Sensitivity and specificity of the PCR assay for pooled samples were 100% and 89.7%, respectively. Regardless of the prevalence of persistent BVDV infection, the break-even cost for the 2-test strategy was lower than the break-even cost for the single-test strategy. However, the economic advantage was greatest when prevalence was low. Results suggest that using a 2-test strategy to screen cattle for persistent BVDV infection, whereby the first test involves PCR assaying of pooled samples and the second involves immunohistochemical testing only of those animals represented in pooled samples with positive assay results, will reduce the cost of screening incoming feedlot cattle, compared with immunohistochemical testing of all animals.

  4. Evaluation of the effects of long-term storage of bovine ear notch samples on the ability of 2 diagnostic assays to identify calves persistently infected with bovine viral diarrhoea virus

    Directory of Open Access Journals (Sweden)

    F. Khan

    2011-04-01

    Full Text Available Research aimed at optimising diagnostic laboratory procedures is central to the development of effective bovine viral diarrhoea virus (BVDV control programmes. BVDV is a singlestranded RNA virus that crosses the placenta to infect foetuses, resulting in reproductive losses due to foetal death or persistently infected calves that die early in life. Persistently infected animals are widely accepted to be the primary reservoir of BVDV and the largest source of infection. This poses important challenges to overall animal/herd health and can cause major losses to the cattle industry. Long-term storage of bovine ear notch samples from calves persistently infected with BVDV may adversely affect the ability of diagnostic assays to detect the virus efficiently. In order to test this hypothesis, ear notch samples from 7 animals were divided into 2 groups. One set was subjected to prompt formalin fixation and the other set stored either as fresh samples without preservatives at –2 °C, or soaked overnight in phosphate buffered saline followed by freezing of the supernatant fluid at –2 °C. Frozen ear notches and ear notch supernatant yielded positive results with an antigen- capture, enzyme linked immunosorbent assay (AC-ELISA for the duration of the study (6 months and optical density (OD values remained significantly within range. There was no significant difference between storing fresh ear notch samples or PBS at –2 °C. However, positive immunohistochemistry (IHC staining on formalin fixed ear notches started to fade between Day 17 and Day 29 when stored at room temperature. It was concluded that fresh ear notches could safely be stored at –2 °C for a period of 6 months prior to testing for BVD viral antigens.

  5. Evaluation of the effects of long-term storage of bovine ear notch samples on the ability of 2 diagnostic assays to identify calves persistently infected with bovine viral diarrhoea virus.

    Science.gov (United States)

    Khan, F; Vorster, J H; van Vuuren, M; Mapham, P

    2011-03-01

    Research aimed at optimising diagnostic laboratory procedures is central to the development of effective bovine viral diarrhoea virus (BVDV) control programmes. BVDV is a single-stranded RNA virus that crosses the placenta to infect foetuses, resulting in reproductive losses due to foetal death or persistently infected calves that die early in life. Persistently infected animals are widely accepted to be the primary reservoir of BVDV and the largest source of infection. This poses important challenges to overall animal/herd health and can cause major losses to the cattle industry. Long-term storage of bovine ear notch samples from calves persistently infected with BVDV may adversely affect the ability of diagnostic assays to detect the virus efficiently. In order to test this hypothesis, ear notch samples from 7 animals were divided into 2 groups. One set was subjected to prompt formalin fixation and the other set stored either as fresh samples without preservatives at -2 degrees C, or soaked overnight in phosphate buffered saline followed by freezing of the supernatant fluid at -2 degrees C. Frozen ear notches and ear notch supernatant yielded positive results with an antigen-capture, enzyme linked immunosorbent assay (AC-ELISA) for the duration of the study (6 months) and optical density (OD) values remained significantly within range. There was no significant difference between storing fresh ear notch samples or PBS at -2 degrees C. However, positive immunohistochemistry (IHC) staining on formalin fixed ear notches started to fade between Day 17 and Day 29 when stored at room temperature. It was concluded that fresh ear notches could safely be stored at -2 degrees C for a period of 6 months prior to testing for BVD viral antigens.

  6. Greater numbers of nucleotide substitutions are introduced into the genomic RNA of bovine viral diarrhea virus during acute infections of pregnant cattle than of non-pregnant cattle

    Directory of Open Access Journals (Sweden)

    Neill John D

    2012-08-01

    Full Text Available Abstract Background Bovine viral diarrhea virus (BVDV strains circulating in livestock herds show significant sequence variation. Conventional wisdom states that most sequence variation arises during acute infections in response to immune or other environmental pressures. A recent study showed that more nucleotide changes were introduced into the BVDV genomic RNA during the establishment of a single fetal persistent infection than following a series of acute infections of naïve cattle. However, it was not known if nucleotide changes were introduce when the virus crossed the placenta and infected the fetus or during the acute infection of the dam. Methods The sequence of the open reading frame (ORF from viruses isolated from four acutely infected pregnant heifers following exposure to persistently infected (PI calves was compared to the sequences of the virus from the progenitor PI calf and the virus from the resulting progeny PI calf to determine when genetic change was introduced. This was compared to genetic change found in viruses isolated from a pregnant PI cow and its PI calf, and in three viruses isolated from acutely infected, non-pregnant cattle exposed to PI calves. Results Most genetic changes previously identified between the progenitor and progeny PI viruses were in place in the acute phase viruses isolated from the dams six days post-exposure to the progenitor PI calf. Additionally, each progeny PI virus had two to three unique nucleotide substitutions that were introduced in crossing the placenta and infection of the fetus. The nucleotide sequence of two acute phase viruses isolated from steers exposed to PI calves revealed that six and seven nucleotide changes were introduced during the acute infection. The sequence of the BVDV-2 virus isolated from an acute infection of a PI calf (BVDV-1a co-housed with a BVDV-2 PI calf had ten nucleotides that were different from the progenitor PI virus. Finally, twenty nucleotide changes were

  7. Efficacy of four commercially available multivalent modified-live virus vaccines against clinical disease, viremia, and viral shedding in early-weaned beef calves exposed simultaneously to cattle persistently infected with bovine viral diarrhea virus and cattle acutely infected with bovine herpesvirus 1.

    Science.gov (United States)

    Chamorro, Manuel F; Walz, Paul H; Passler, Thomas; Palomares, Roberto; Newcomer, Benjamin W; Riddell, Kay P; Gard, Julie; Zhang, Yijing; Galik, Patricia

    2016-01-01

    To evaluate the efficacy of 4 commercially available multivalent modified-live virus vaccines against clinical disease, viremia, and viral shedding caused by bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BHV1) in early-weaned beef calves. 54 early-weaned beef steers (median age, 95 days). Calves were randomly assigned to 1 of 5 groups and administered PBSS (group A [control]; n = 11) or 1 of 4 commercially available modified-live virus vaccines that contained antigens against BHV1, BVDV types 1 (BVDV1) and 2 (BVDV2), parainfluenza type 3 virus, and bovine respiratory syncytial virus (groups B [11], C [10], D [11], and E [11]). Forty-five days after vaccination, calves were exposed simultaneously to 6 cattle persistently infected with BVDV and 8 calves acutely infected with BHV1 for 28 days (challenge exposure). For each calf, serum antibody titers against BVDV and BHV1 were determined before vaccination and before and after challenge exposure. Virus isolation was performed on nasal secretions, serum, and WBCs at predetermined times during the 28-day challenge exposure. None of the calves developed severe clinical disease or died. Mean serum anti-BHV1 antibody titers did not differ significantly among the treatment groups at any time and gradually declined during the study. Mean serum anti-BVDV antibody titers appeared to be negatively associated with the incidence of viremia and BVDV shedding. The unvaccinated group (A) had the lowest mean serum anti-BVDV antibody titers. The mean serum anti-BVDV antibody titers for group D were generally lower than those for groups B, C, and E. Results indicated differences in vaccine efficacy for the prevention of BVDV viremia and shedding in early-weaned beef calves.

  8. Evidence for positive selection on the E2 gene of bovine viral diarrhoea virus type 1.

    Science.gov (United States)

    Tang, Fangqiang; Zhang, Chuyu

    2007-12-01

    Despite the growing interest in the molecular epidemiology of pestivirus, there have been few attempts to determine which regions of the pestivirus genome are subject to positive selection, although this may be a key indicator of the nature of the interaction between host and virus. By using likelihood-based methods for phylogenetic inference, the positive selection pressure of BVDV-1 E2 gene were assessed and a site-by-site analysis of the dN/dS ratio was performed, to identify specific codons undergoing diversifying positive selection. The overall omega was 0.20, indicating that most sites were subject to strong purifying selection and five positively selected sites (886, 888, 905, 944, and 946) were identified. It is surprising to find that all the potential positively selected sites fall within the C-terminal of E2, and out of the N-terminal of E2 which is thought to be surface-exposed and therefore prime targets for host antibody response. In conclusion, these results suggest that selection favoring avoidance of antibody recognition has not been a major factor in the history of BVDV-1. Further analysis is necessary to see if amino acid substitutions in the BVDV-1 positively selected sites can lead to change of host tropism or\\and escape from epitope-specific CD8 T-cell response.

  9. A Report on Bovine Ephemeral Fever Virus in Turkey: Antigenic Variations of Different Strains of EFV in the 1985 and 2012 Outbreaks Using Partial Glycoprotein Gene Sequences.

    Science.gov (United States)

    Oğuzoğlu, T Ç; Ertürk, A; Çizmeci, Ş G; Koç, B T; Akça, Y

    2015-10-01

    We described the aetiological agents of outbreaks of bovine ephemeral fever (BEF) that occurred in 1985 and 2012 in Turkey, and identify mutations in the viruses from both outbreaks. Outbreaks have emerged periodically every 4-5 years in the same regions in Turkey. Because these regions are located in a subtropical climatic zone, good conditions for vector populations exist. The results of this study show that the BEFVs from outbreaks in Turkey vary significantly. Effective prevention will require a vaccine that contains BEFVs from different genetic clusters. © 2013 Blackwell Verlag GmbH.

  10. Investigation of the presence of human or bovine respiratory syncytial virus in the lungs of mink (Neovison vison) with hemorrhagic pneumonia due to Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Salomonsen, Charlotte Mark; Breum, Solvej Østergaard; Larsen, Lars Erik

    2012-01-01

    Background Hemorrhagic pneumonia is a disease of farmed mink (Neovison vison) caused by Pseudomonas aeruginosa. The disease is highly seasonal in Danish mink with outbreaks occurring almost exclusively in the autumn. Human respiratory syncytial virus (RSV) has been shown to augment infection with P....... aeruginosa in mice and to promote adhesion of P. aeruginosa to human respiratory cells. Findings We tested 50 lung specimens from mink with hemorrhagic pneumonia for bovine RSV by reverse transcriptase polymerase chain reaction (PCR) and for human RSV by a commercial real-time PCR. RSV was not found...

  11. Coordinated Role of Toll-Like Receptor-3 and Retinoic Acid-Inducible Gene-I in the Innate Response of Bovine Endometrial Cells to Virus

    Directory of Open Access Journals (Sweden)

    Luisa C. Carneiro

    2017-08-01

    Full Text Available Bovine herpesvirus-4 (BoHV-4 and bovine viral diarrhea virus (BVDV infect the uterus of cattle, often resulting in reduced fertility, or abortion of the fetus, respectively. Here, exposure of primary bovine endometrial cells to BoHV-4 or BVDV modulated the production of inflammatory mediators. Viral pathogen-associated molecular patterns (PAMPs are detected via pattern-recognition receptors (PRRs. However, the relative contribution of specific PRRs to innate immunity, during viral infection of the uterus, is unclear. Endometrial epithelial and stromal cells constitutively express the PRR Toll-like receptor (TLR-3, but, the status of retinoic acid-inducible gene I (RIG-I, a sensor of cytosolic nucleic acids, is unknown. Primary endometrial epithelial and stromal cells had low expression of RIG-I, which was increased in stromal cells after 12 h transfection with the TLR3 ligand Poly(I:C, a synthetic analog of double-stranded RNA. Furthermore, short interfering RNA targeting TLR3, or interferon (IFN regulatory transcription factor 3, an inducer of type I IFN transcription, reduced Poly(I:C-induced RIG-I protein expression and reduced inflammatory mediator secretion from stromal cells. We conclude that antiviral defense of endometrial stromal cells requires coordinated recognition of PAMPs, initially via TLR3 and later via inducible RIG-I.

  12. Phylogenetic analysis of the bovine parainfluenza virus type 3 from cattle herds revealing the existence of a genotype A strain in China.

    Science.gov (United States)

    Wen, Yong-Jun; Shi, Xin-Chuan; Wang, Feng-Xue; Wang, Wei; Zhang, Shu-Qin; Li, Guo; Song, Ni; Chen, Li-Zhi; Cheng, Shi-Peng; Wu, Hua

    2012-12-01

    In 2009, a bovine parainfluenza virus (BPIV3), named as NM09, was isolated using MDBK cell culture from the nasal swabs of normal cattle in China. The NM09 isolate was characterized by RT-PCR and nucleotide sequence analysis. Its complete genome was 15,456 nucleotides in length. Similar to other sequenced PIV strains, the NM09 virus consisted of six non-overlapping genes, which were predicted to encode nine proteins with conserved and complementary 3' leader and 5' trailer regions, conserved gene starts, gene stops, and trinucleotide intergenic sequences. Nucleotide phylogenetic analysis of matrix and hemagglutinin-neuraminidase gene demonstrated that this NM09 isolate belonged to BPIV3 genotype A instead of the previously reported BPIV3 genotype C in China. It is implicated that the different genotypes A and C might coexist infection for a long time in China.

  13. Prevalence of bovine viral diarrhoea virus antibodies in bulk tank milk of industrial dairy cattle herds in suburb of Mashhad-Iran.

    Science.gov (United States)

    Garoussi, M Talebkhan; Haghparast, A; Estajee, H

    2008-04-17

    Bulk milk for the presence of antibodies against bovine viral diarrhea virus (BVDV) from 38 industrial dairy cattle herds complexes with 250-3000 Holstein dairy cows in suburb of Mashhad-Iran was tested. None of the herds were vaccinated against BVDV. Commercial indirect ELISA-kit for the detection of specific antibodies was used. The result could be read visually where the optical density (OD) was measured at 450 nm. The percent positivity (PP) values >or=7 and prevalence of BVDV antibody-positive herds was 89.47 and 93.98%, respectively. The range of PP was 1.59-107.66 among the herds. The OD in 52.63% bulk milk of the herds was very high. It is concluded that exposure to BVD virus was widely distributed in the dairy cattle herds in suburb of Mashhad-Iran.

  14. Diagnosis of enzootic pneumonia in Danish cattle: reverse transcription-polymerase chain reaction assay for detection of bovine respiratory syncytial virus in naturally and experimentally infected cattle

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Tjørnehøj, Kirsten; Viuff, B.

    1999-01-01

    A reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for detection of bovine respiratory syncytial virus (BRSV) in lung tissue of naturally and experimentally infected cattle. Primers were selected from the gene coding the F fusion protein, which is relatively conserved...... among BRSV isolates. The RT-PCR assay was highly specific, it yielded positive reactions only when performed on BRSV-infected cell cultures or tissues. The detection limit of the RT-PCR assay was assessed as 5 TCID50. BRSV was detected in tissues of the respiratory tract and in the tracheobroncheal...... lymph node of calves euthanized 2-8 days after experimental infection with BRSV, whereas samples of other tissues and samples from mock-infected animals were negative at all time points. Examination of lung samples from 8 different regions of the lungs revealed that although the virus was most often...

  15. BLV-CoCoMo-qPCR: Quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm

    Directory of Open Access Journals (Sweden)

    Matoba Kazuhiro

    2010-11-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is closely related to human T-cell leukemia virus (HTLV and is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly extended course that often involves persistent lymphocytosis and culminates in B-cell lymphomas. BLV provirus remains integrated in cellular genomes, even in the absence of detectable BLV antibodies. Therefore, to understand the mechanism of BLV-induced leukemogenesis and carry out the selection of BLV-infected animals, a detailed evaluation of changes in proviral load throughout the course of disease in BLV-infected cattle is required. The aim of this study was to develop a new quantitative real-time polymerase chain reaction (PCR method using Coordination of Common Motifs (CoCoMo primers to measure the proviral load of known and novel BLV variants in clinical animals. Results Degenerate primers were designed from 52 individual BLV long terminal repeat (LTR sequences identified from 356 BLV sequences in GenBank using the CoCoMo algorithm, which has been developed specifically for the detection of multiple virus species. Among 72 primer sets from 49 candidate primers, the most specific primer set was selected for detection of BLV LTR by melting curve analysis after real-time PCR amplification. An internal BLV TaqMan probe was used to enhance the specificity and sensitivity of the assay, and a parallel amplification of a single-copy host gene (the bovine leukocyte antigen DRA gene was used to normalize genomic DNA. The assay is highly specific, sensitive, quantitative and reproducible, and was able to detect BLV in a number of samples that were negative using the previously developed nested PCR assay. The assay was also highly effective in detecting BLV in cattle from a range of international locations. Finally, this assay enabled us to demonstrate that proviral load correlates not only with BLV infection capacity as assessed by syncytium formation, but

  16. Molecular assays for targeting human and bovine enteric viruses in coastal waters and their application for library-independent source tracking

    Science.gov (United States)

    Fong, T.-T.; Griffin, Dale W.; Lipp, E.K.

    2005-01-01

    Rapid population growth and urban development along waterways and coastal areas have led to decreasing water quality. To examine the effects of upstream anthropogenic activities on microbiological water quality, methods for source-specific testing are required. In this study, molecular assays targeting human enteroviruses (HEV), bovine enteroviruses (BEV), and human adenoviruses (HAdV) were developed and used to identify major sources of fecal contamination in the lower Altamaha River, Georgia. Two-liter grab samples were collected monthly from five tidally influenced stations between July and December 2002. Samples were analyzed by reverse transcription- and nested-PCR. PCR results were confirmed by dot blot hybridization. Eleven and 17 of the 30 surface water samples tested positive for HAdV and HEV, respectively. Two-thirds of the samples tested positive for either HEV or HAdV, and the viruses occurred simultaneously in 26% of samples. BEV were detected in 11 of 30 surface water samples. Binary logistic regression analysis showed that the presence of both human and bovine enteric viruses was not significantly related to either fecal coliform or total coliform levels. The presence of these viruses was directly related to dissolved oxygen and streamflow but inversely related to water temperature, rainfall in the 30 days preceding sampling, and chlorophyll-?? concentrations. The stringent host specificity of enteric viruses makes them good library-independent indicators for identification of water pollution sources. Viral pathogen detection by PCR is a highly sensitive and easy-to-use tool for rapid assessment of water quality and fecal contamination when public health risk characterization is not necessary. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  17. Endotoxin-free purification for the isolation of Bovine Viral Diarrhoea Virus E2 protein from insoluble inclusion body aggregates

    Directory of Open Access Journals (Sweden)

    Mahony Timothy J

    2011-07-01

    Full Text Available Abstract Background Protein expression in Escherichia coli may result in the recombinant protein being expressed as insoluble inclusion bodies. In addition, proteins purified from E. coli contain endotoxins which need to be removed for in vivo applications. The structural protein, E2, from Bovine Viral Diarrhoea Virus (BVDV is a major immunogenic determinant, and is an ideal candidate as a subunit vaccine. The E2 protein contains 17 cysteine residues creating difficulties in E. coli expression. In this report we outline a procedure for successfully producing soluble and endotoxin-free BVDV E2 protein from inclusion bodies (IB. Results The expression of a truncated form of BVDV-E2 protein (E2-T1 in E. coli resulted in predominantly aggregated insoluble IB. Solubilisation of E2-T1 with high purity and stability from IB aggregates was achieved using a strong reducing buffer containing 100 mM Dithiothreitol. Refolding by dialysis into 50 mM Tris (pH 7.0 containing 0.2% Igepal CA630 resulted in a soluble but aggregated protein solution. The novel application of a two-phase extraction of inclusion body preparations with Triton X-114 reduced endotoxin in solubilised E2-T1 to levels suitable for in vivo use without affecting protein yields. Dynamic light scattering analyses showed 37.5% of the protein was monomeric, the remaining comprised of soluble aggregates. Mice immunised with E2-T1 developed a high titre antibody response by ELISA. Western hybridisation analysis showed E2-T1 was recognised by sera from immunised mice and also by several BVDV-E2 polyclonal and monoclonal antibodies. Conclusion We have developed a procedure using E. coli to produce soluble E2-T1 protein from IB, and due to their insoluble nature we utilised a novel approach using Triton X-114 to efficiently remove endotoxin. The resultant protein is immunogenic and detectable by BVDV-E2 specific antibodies indicating its usefulness for diagnostic applications and as a subunit

  18. A systematic review of financial and economic assessments of bovine viral diarrhea virus (BVDV) prevention and mitigation activities worldwide.

    Science.gov (United States)

    Pinior, Beate; Firth, Clair L; Richter, Veronika; Lebl, Karin; Trauffler, Martine; Dzieciol, Monika; Hutter, Sabine E; Burgstaller, Johann; Obritzhauser, Walter; Winter, Petra; Käsbohrer, Annemarie

    2017-02-01

    Infection with bovine viral diarrhea virus (BVDV) results in major economic losses either directly through decreased productive performance in cattle herds or indirectly, such as through expenses for control programs. The aim of this systematic review was to review financial and/or economic assessment studies of prevention and/or mitigation activities of BVDV at national, regional and farm level worldwide. Once all predefined criteria had been met, 35 articles were included for this systematic review. Studies were analyzed with particular focus on the type of financially and/or economically-assessed prevention and/or mitigation activities. Due to the wide range of possible prevention and/or mitigation activities, these activities were grouped into five categories: i) control and/or eradication programs, ii) monitoring or surveillance, iii) prevention, iv) vaccination and v) individual culling, control and testing strategies. Additionally, the studies were analyzed according to economically-related variables such as efficiency, costs or benefits of prevention and/or mitigation activities, the applied financial and/or economic and statistical methods, the payers of prevention and/or mitigation activities, the assessed production systems, and the countries for which such evaluations are available. Financial and/or economic assessments performed in Europe were dominated by those from the United Kingdom, which assessed mostly vaccination strategies, and Norway which primarily carried out assessments in the area of control and eradication programs; whereas among non-European countries the United States carried out the majority of financial and/or economic assessments in the area of individual culling, control and testing. More than half of all studies provided an efficiency calculation of prevention and/or mitigation activities and demonstrated whether the inherent costs of implemented activities were or were not justified. The dairy sector was three times more likely to

  19. Endotoxin-free purification for the isolation of Bovine Viral Diarrhoea Virus E2 protein from insoluble inclusion body aggregates

    Science.gov (United States)

    2011-01-01

    Background Protein expression in Escherichia coli may result in the recombinant protein being expressed as insoluble inclusion bodies. In addition, proteins purified from E. coli contain endotoxins which need to be removed for in vivo applications. The structural protein, E2, from Bovine Viral Diarrhoea Virus (BVDV) is a major immunogenic determinant, and is an ideal candidate as a subunit vaccine. The E2 protein contains 17 cysteine residues creating difficulties in E. coli expression. In this report we outline a procedure for successfully producing soluble and endotoxin-free BVDV E2 protein from inclusion bodies (IB). Results The expression of a truncated form of BVDV-E2 protein (E2-T1) in E. coli resulted in predominantly aggregated insoluble IB. Solubilisation of E2-T1 with high purity and stability from IB aggregates was achieved using a strong reducing buffer containing 100 mM Dithiothreitol. Refolding by dialysis into 50 mM Tris (pH 7.0) containing 0.2% Igepal CA630 resulted in a soluble but aggregated protein solution. The novel application of a two-phase extraction of inclusion body preparations with Triton X-114 reduced endotoxin in solubilised E2-T1 to levels suitable for in vivo use without affecting protein yields. Dynamic light scattering analyses showed 37.5% of the protein was monomeric, the remaining comprised of soluble aggregates. Mice immunised with E2-T1 developed a high titre antibody response by ELISA. Western hybridisation analysis showed E2-T1 was recognised by sera from immunised mice and also by several BVDV-E2 polyclonal and monoclonal antibodies. Conclusion We have developed a procedure using E. coli to produce soluble E2-T1 protein from IB, and due to their insoluble nature we utilised a novel approach using Triton X-114 to efficiently remove endotoxin. The resultant protein is immunogenic and detectable by BVDV-E2 specific antibodies indicating its usefulness for diagnostic applications and as a subunit vaccine. The optimised E. coli

  20. Generation by self re-fusion of bovine³ × murine² heterohybridomas secreting virus-neutralizing bovine monoclonal antibodies to bovine herpesvirus 1 glycoproteins gB, gC, and gD.

    Science.gov (United States)

    Levings, Randall L; Stoll, Ione R; Warg, Janet V; Patterson, Peggy A; Hobbs, Lea Ann; Kaeberle, Merlin L; Roth, James A

    2014-05-15

    Seventy-eight heterohybridomas (HH) stably secreting bovine monoclonal antibodies (BomAb) to Bovine herpesvirus 1 (BHV1) were produced by fusing lymph node cells from a BHV1 hyperimmunized calf with 3 types of non-secreting fusion partners. Seven were generated through fusion with the murine × murine (murine(2)) hybridoma SP2/0, 3 through fusion with bovine-murine(2) HH previously generated using cells from the same calf, and 68 through fusion with bovine(2)-murine(2) HH previously generated by sequential fusions using cells from the same calf. The chromosome number of example HH increased with increasing numbers of input fusions. A variety of indirect fluorescent antibody assay patterns was observed using the BomAb, suggesting diverse antigen specificity. Three bovine(3)-murine(2) HH secreted IgG1 BomAb neutralizing BHV1 without complement, and were chosen for further characterization. SDS-PAGE of detergent-solubilized BHV1 proteins bound to the 3 neutralizing BomAb demonstrated their individual specificities for BHV1 envelope glycoproteins gB, gC, and gD, the major neutralization targets for BHV1. The 3 HH stably secreted the BomAb in culture for over one year, and pilot-scale production of the BomAb was accomplished by in vivo and in vitro methods. A cocktail of the 3 BomAb was administered intravenously (i.v.) to a 6-month-old calf and its serum neutralization activity decreased with a half-life consistent with non-immune clearance, suggesting that BomAb may be useful for passive immune treatment of disease in cattle. Rabbits were passively protected by i.v. injection with each of the anti-gB and anti-gD BomAb when challenged i.v. with BHV1 24h later. Self re-fusion was shown to be advantageous for efficiently producing HH stably secreting host monoclonal antibodies. The BomAb described should prove useful in studies of the host immune response to BHV1, as reagents, and as sources of bovine immunoglobulin sequences. Published by Elsevier B.V.

  1. Sero prevalence and risk factors associated with bovine herpes virus type 1 (BHV1) infection in non-vaccinated cattle herds in Andalusia (South of Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, M. A.; Arenas-Casas, A.; Carbonero-Martinez, A.; Borge-Rodriguez, C.; Garcia-Bocanegra, I.; Maldonado, J. L.; Gomez-Pacheco, J. M.; Perea-Remujo, J. A.

    2009-07-01

    An epidemiological and serological survey of bovine herpes virus 1 (BHV1) infection was conducted in Andalusia from January to April of 2000. A total of 4,035 blood samples were collected from 164 herds. A questionnaire, which included variables potentially associated with infection, was filled out for each herd. Serum samples were obtained to identify specific BHV1 antibodies and were tested using a blocking ELISA test. The observed crude odds ratio (OR) (estimate of the chance of a particular event occurring in an exposed group in relation to its rate of occurrence in a nonexposed group) for vaccination is 9.8 (95 % confidence interval: 8.3-11.7). The vaccinated group comprised large dairy farms. This study can only be considered as representative of unvaccinated, small to medium size dairy farms and beef farms in Andalusia. True sero prevalence of the BHV1 virus in non vaccinated bovine populations in Andalusia reached 45.7% of individuals and 70.4% of herds. Risk factors for BHV1 infection in bovine Andalusian non vaccinated herds are nonexistence of specific cattle infrastructure (OR: 3.07), beef crossbreeding (OR: 7.90), affiliation with Livestock Health Defence Associations (OR: 2.57), a history of reproductive disorders (OR: 8.39), external replacement (OR: 2.74), proximity to an urban area (OR: 6.11) and herd size (41.98). To control for confounding effects, a binomial logistic regression model was developed. From this regression, BHV1 infections are concentrated in large herds, with external replacement, located close to urban areas. This is the first published report on BHV1 prevalence in the South of Spain. (Author) 14 refs.

  2. Genetic characterization of bovine viral diarrhea virus strains in Beijing, China and innate immune responses of peripheral blood mononuclear cells in persistently infected dairy cattle.

    Science.gov (United States)

    Weng, Xiao Gang; Song, Quan Jiang; Wu, Qiong; Liu, Ming Chao; Wang, Meng Ling; Wang, Jiu Feng

    2015-01-01

    To acquire epidemiological data on the bovine viral diarrhea virus (BVDV) and identify cattle persistently infected (PI) with this virus, 4,327 samples from Holstein dairy cows were screened over a four-year period in Beijing, China. Eighteen BVD viruses were isolated, 12 from PI cattle. Based on genetic analysis of their 5'-untranslated region (5'-UTR), the 18 isolates were assigned to subgenotype BVDV-1m, 1a, 1d, 1q, and 1b. To investigate the innate immune responses in the peripheral-blood mononuclear cells of PI cattle, the expression of Toll-like receptors (TLRs), RIG-I-like receptors, interferon-α (IFN-α), IFN-β, myxovirus (influenza virus) resistance 1 (MX1), and interferon stimulatory gene 15 (ISG15) was assessed by qPCR. When compared with healthy cattle, the expression of TLR-7, IFN-α, and IFN-β mRNA was downregulated, but the expression of MX1 and ISG-15 mRNA was upregulated in PI cattle. Immunoblotting analysis revealed that the expression of interferon regulatory factor 3 (IRF-3) and IRF-7 was lower in PI cattle than in healthy cattle. Thus, BVDV-1m and 1a are the predominant subgenotypes in the Beijing region, and the strains are highly divergent. Our findings also suggest that the TLR-7/IRF-7 signaling pathway plays a role in evasion of host restriction by BVDV.

  3. Development of a clone from established Bovine Kidney (BK cell line and evaluation of its sensitivity to Parainfluenza type 3 and Herpes Simplex type 1 viruses.

    Directory of Open Access Journals (Sweden)

    Yashar Mohammadzadeh sedigh

    2009-09-01

    Full Text Available Background: Application of continuous cell lines has got a special place in the virological researches. These cells are immortal and their chromosomes are aneuploid. Therefore, they can be passage without any limitation. The aim of this research was to choose the best way of producing clone of cells. Methods: in this study, Bovine Kidney (BK cell line was used to be cloned through limiting dilution method in which Vero cells were used as feeder layer. Vero cells were first cultured in DMEM supplimented with 7% heat inactivated calf serum and after a monolayer were formed, their growth was arrested by Mitomycin C. The cloned cells after incubation were separated and cultured in a new flask. After several experiments different clones were obtained and cultured for further studies. Results: Karyotype of clone cells were determined and compared with original cells. It was shown that cloned cells were more homogenous in early passages and their karyotypes showed less variability than original ones. Cloned and original cells were inoculated with HSV-1 and Parainfluenza virus 3 in order to evaluate its biological abilities. Tissue culture of infectious dose 50 (TCID50 of each virus was calculated and it was shown that there was no significant different between the HSV-1 titers before and after cloning whereas the titer of the Parainfluenza virus 3 was significantly higher in the original cells. Conclusions: Cloned cells of BK showed more stable karyotype and were less sensitive to parainfluenza type-3 virus infection than original BK cells.

  4. The bovine viral diarrhea virus E2 protein formulated with a novel adjuvant induces strong, balanced immune responses and provides protection from viral challenge in cattle.

    Science.gov (United States)

    Snider, Marlene; Garg, Ravendra; Brownlie, Robert; van den Hurk, Jan V; van Drunen Littel-van den Hurk, Sylvia

    2014-11-28

    Bovine viral diarrhea virus (BVDV) is still one of the most serious pathogens in cattle, meriting the development of improved vaccines. Recently, we developed a new adjuvant consisting of poly[di(sodium carboxylatoethylphenoxy)]-phosphazene (PCEP), either CpG ODN or poly(I:C), and an immune defense regulator (IDR) peptide. As this adjuvant has been shown to mediate the induction of robust, balanced immune responses, it was evaluated in an E2 subunit vaccine against BVDV in lambs and calves. The BVDV type 2 E2 protein was produced at high levels in a mammalian expression system and purified. When formulated with either CpG ODN or poly(I:C), together with IDR and PCEP, the E2 protein elicited high antibody titers and production of IFN-γ secreting cells in lambs. As the immune responses were stronger when poly(I:C) was used, the E2 protein with poly(I:C), IDR and PCEP was subsequently tested in cattle. Robust virus neutralizing antibodies as well as cell-mediated immune responses, including CD8(+) cytotoxic T cell (CTL) responses, were induced. The fact that CTL responses were demonstrated in calves vaccinated with an E2 protein subunit vaccine indicates that this adjuvant formulation promotes cross-presentation. Furthermore, upon challenge with a high dose of virulent BVDV-2, the vaccinated calves showed almost no temperature response, weight loss, leukopenia or virus replication, in contrast to the control animals, which had severe clinical disease. These data suggest that this E2 subunit formulation induces significant protection from BVDV-2 challenge, and thus is a promising BVDV vaccine candidate; in addition, the adjuvant platform has applications in bovine vaccines in general. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Weaning management of newly received beef calves with or without continuous exposure to a persistently infected bovine viral diarrhea virus pen mate: Effects on rectal temperature, peripheral blood leukocytes and serum

    Science.gov (United States)

    Exposure to animals persistently infected (PI) with bovine viral diarrhea virus (BVDV) results in immunomodulation in cohorts. It is hypothesized that the extent of modulation differs for preconditioned (PC) vs. auction market (AM) cattle. Our objective was to compare immune responses of PC or AM ca...

  6. Genotyping bovine coronaviruses.

    Science.gov (United States)

    Bovine coronaviruses (BoCV) are enveloped, single-stranded, positive-sense RNA viruses of the Coronaviridae family. Infection is associated with enteritis and pneumonia in calves and Winter Dysentery in adult cattle. Strains, isolated more than 50 years ago, are used in vaccines and as laboratory ...

  7. Efficacy of an intranasal modified live bovine respiratory syncytial virus and temperature-sensitive parainfluenza type 3 virus vaccine in 3-week-old calves experimentally challenged with PI3V.

    Science.gov (United States)

    Vangeel, Ilse; Ioannou, Faye; Riegler, Lutz; Salt, Jeremy S; Harmeyer, Silke S

    2009-01-01

    Two experimental parainfluenza type 3 virus (PI3V) challenge studies were undertaken to evaluate the efficacy of a single intranasal dose of an attenuated live vaccine containing modified live bovine respiratory syncytial virus (BRSV) and temperature-sensitive PI3V in 3-week-old calves. In the first study, vaccine efficacy was evaluated in colostrum deprived calves. Nasal shedding of PI3V was highly significantly reduced in vaccinated calves challenged 10 days or 21 days after vaccination. In the second study, vaccine efficacy was assessed in calves with maternal antibodies against PI3V by challenge 66 days post-vaccination. Vaccination also significantly reduced PI3V excretion after challenge in this study. In both studies, clinical signs after challenge were very mild and were not different between vaccinated and control calves.

  8. Evaluation of reproductive protection against bovine viral diarrhea virus and bovine herpesvirus-1 afforded by annual revaccination with modified-live viral or combination modified-live/killed viral vaccines after primary vaccination with modified-live viral vaccine.

    Science.gov (United States)

    Walz, Paul H; Givens, M Daniel; Rodning, Soren P; Riddell, Kay P; Brodersen, Bruce W; Scruggs, Daniel; Short, Thomas; Grotelueschen, Dale

    2017-02-15

    The objective of this study was to compare reproductive protection in cattle against bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BoHV-1) provided by annual revaccination with multivalent modified-live viral (MLV) vaccine or multivalent combination viral (CV) vaccine containing temperature-sensitive modified-live BoHV-1 and killed BVDV when MLV vaccines were given pre-breeding to nulliparous heifers. Seventy-five beef heifers were allocated into treatment groups A (n=30; two MLV doses pre-breeding, annual revaccination with MLV vaccine), B (n=30; two MLV doses pre-breeding, annual revaccination with CV vaccine) and C (n=15; saline in lieu of vaccine). Heifers were administered treatments on days 0 (weaning), 183 (pre-breeding), 366 (first gestation), and 738 (second gestation). After first calving, primiparous cows were bred, with pregnancy assessment on day 715. At that time, 24 group A heifers (23 pregnancies), 23 group B heifers (22 pregnancies), and 15 group C heifers (15 pregnancies) were commingled with six persistently infected (PI) cattle for 16days. Ninety-nine days after PI removal, cows were intravenously inoculated with BoHV-1. All fetuses and live offspring were assessed for BVDV and BoHV-1. Abortions occurred in 3/23 group A cows, 1/22 group B cows, and 11/15 group C cows. Fetal infection with BVDV or BoHV-1 occurred in 4/23 group A offspring, 0/22 group B offspring, and 15/15 group C offspring. This research demonstrates efficacy of administering two pre-breeding doses of MLV vaccine with annual revaccination using CV vaccine to prevent fetal loss due to exposure to BVDV and BoHV-1. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Identification of three antigen epitopes on the nucleocapsid protein of the genotype C of bovine parainfluenza virus type 3.

    Science.gov (United States)

    Ren, Jian-Le; Zhu, Yuan-Mao; Zhou, Yue-Hui; Lv, Chuang; Yan, Hao; Ma, Lei; Shi, Hong-Fei; Xue, Fei

    2015-07-09

    Bovine parainfluenza virus type 3 (BPIV3) is an important respiratory tract pathogen for both young and adult cattle. So far, three genotypes A, B and C of BPIV3 have been described on the basis of genetic and phylogenetic analysis. But fine mapping of epitopes of BPIV3 is scant and the antigenic variations among the three genotypes of BPIV3 have not been reported. Nucleocapsid protein (NP) is the most abundant protein in the virion and highly conserved in BPIV3, which is crucial for the induction of protective immunity in host. To identify antigenic determinants of BPIV3 NP, a panel of monoclonal antibodies (mAbs) was tested against a series of overlapping recombinant NP fragments expressed in Escherichia coli. Firstly, six monoclonal antibodies (mAbs) against NP of the genotype C of BPIV3 (BPIV3c) were generated by using the purified BPIV3c strain SD0835 as immunogen and the recombinant NP of SD0835 as screening antigen. Then three antigen epitopes were identified with the six mAbs. One epitope (91)GNNADVKYVIYM(102) was recognized by mAb 5E5. The mAbs 7G5, 7G8, 7G9, and 7H5 were reactive with another epitope (407)FYKPTGG(413). The third epitope (428)ESRGDQDQ(435) was reactive with mAb 6F8. Further analysis showed that the epitope (91-102 amino acids [aa]) was the most conserved and reactive with mAb 5E5 for all three genotypes of BPIV3 and HPIV3. The epitope (407-413 aa) was relatively conserved and reactive with mAbs 7G5, 7G8, 7G9, and 7H5 for BPIV3a, BPIV3c and HPIV3, but not reactive with BPIV3b. The epitope (428-435 aa) was less conserved and was reactive only with mAb 6F8 for BPIV3a and BPIV3c. These results suggested that there were evident antigenic variations among the three genotypes of BPIV3 and HPIV3. The mAb 6F8 could be used to detect BPIV3a and BPIV3c. The mAbs 7G5, 7G8, 7G9, and 7H5 might be used for differentiate BPIV3a, BPIV3c and HPIV3 from BPIV3b. The mAb 5E5 might be used for detecting all three types of BPIV3 and HPIV3. The results in this

  10. Identification of immediate early gene products of bovine herpes virus 1 (BHV-1) as dominant antigens recognized by CD8 T cells in immune cattle.

    Science.gov (United States)

    Hart, Jane; MacHugh, Niall D; Sheldrake, Tara; Nielsen, Morten; Morrison, W Ivan

    2017-07-01

    In common with other herpes viruses, bovine herpes virus 1 (BHV-1) induces strong virus-specific CD8 T-cell responses. However, there is a paucity of information on the antigenic specificity of the responding T-cells. The development of a system to generate virus-specific CD8 T-cell lines from BHV-1-immune cattle, employing Theileria-transformed cell lines for antigen presentation, has enabled us to address this issue. Use of this system allowed the study to screen for CD8 T-cell antigens that are efficiently presented on the surface of virus-infected cells. Screening of a panel of 16 candidate viral gene products with CD8 T-cell lines from 3 BHV-1-immune cattle of defined MHC genotypes identified 4 antigens, including 3 immediate early (IE) gene products (ICP4, ICP22 and Circ) and a tegument protein (UL49). Identification of the MHC restriction specificities revealed that the antigens were presented by two or three class I MHC alleles in each animal. Six CD8 T-cell epitopes were identified in the three IE proteins by screening of synthetic peptides. Use of an algorithm (NetMHCpan) that predicts the peptide-binding characteristics of restricting MHC alleles confirmed and, in some cases refined, the identity of the epitopes. Analyses of the epitope specificity of the CD8 T-cell lines showed that a large component of the response is directed against these IE epitopes. The results indicate that these IE gene products are dominant targets of the CD8 T-cell response in BHV-I-immune cattle and hence are prime-candidate antigens for the generation of a subunit vaccine.

  11. An 8-year longitudinal sero-epidemiological study of bovine leukaemia virus (BLV) infection in dairy cattle in Turkey and analysis of risk factors associated with BLV seropositivity.

    Science.gov (United States)

    Şevik, Murat; Avcı, Oğuzhan; İnce, Ömer Barış

    2015-04-01

    Enzootic bovine leukosis (EBL) which is caused by bovine leukaemia virus (BLV) has an important economic impact on dairy herds due to reduced milk production and restrictions on livestock exports. This study was conducted to determine the BLV infection status in Central Anatolia Region of Turkey, an important milk production centre, and to examine the risk factors such as purchasing cattle, increasing cattle age, cattle breed and herd size associated with transmission of BLV infection. To estimate the rate of BLV infection, a survey for specific antibodies in 28,982 serum samples from animals belonging to 1116 different herds situated in Central Anatolia Region of Turkey were tested from January 2006 to December 2013. A generalized mixed linear model was used to evaluate the risk factors that influenced BLV seroprevalence. Antibodies against BLV were detected in 431 (2.28 %) of 18,822 Holstein and 29 (0.28 %) of 10,160 Brown Swiss cows. Among 1116 herds, 132 herds (11.82 %) had one or more positive animals. Also results of our study show that the prevalence of BLV infection increased from 2006 to 2011, and it tends to reduce with BLV control programme. Furthermore, we found positive associations between percentage of seropositive animal and increasing cattle age, herd size, cattle breed and purchased cattle. Age-specific prevalence showed that BLV prevalence increased with age. These factors should be taken into consideration for control of BLV infection.

  12. Infection of the upper respiratory tract of hamsters by the bovine parainfluenza virus type 3 BN-1 strain expressing enhanced green fluorescent protein.

    Science.gov (United States)

    Ohkura, Takashi; Minakuchi, Moeko; Sagai, Mami; Kokuho, Takehiro; Konishi, Misako; Kameyama, Ken-Ichiro; Takeuchi, Kaoru

    2015-02-01

    Bovine parainfluenza virus type 3 (BPIV3) is an important pathogen associated with bovine respiratory disease complex (BRDC). We have generated a recombinant BPIV3 expressing enhanced green fluorescent protein (rBPIV3-EGFP) based on the BN-1 strain isolated in Japan. After intranasal infection of hamsters with rBPIV3-EGFP, EGFP fluorescence was detected in the upper respiratory tract including the nasal turbinates, pharynx, larynx, and trachea. In the nasal turbinates, rBPIV3-EGFP attained high titers (>10(6) TCID50/g of tissue) 2-4 days after infection. Ciliated epithelial cells in the nasal turbinates and trachea were infected with rBPIV3-EGFP. Histopathological analysis indicated that mucosal epithelial cells in bronchi were shed by 6 days after infection, leaving non-ciliated cells, which may have increased susceptibility to bacterial infection leading to the development of BRDC. These data indicate that rBPIV3-EGFP infection of hamsters is a useful small animal model for studying the development of BPIV3-associated BRDC. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells

    Directory of Open Access Journals (Sweden)

    Andrea Pecora

    2015-03-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2 was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 µg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.

  14. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    Science.gov (United States)

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Genetic Typing of Bovine Viral Diarrhoea Virus (BVDV by Restriction Fragment Length Polymorphism (RFLP and Identification of a New Subtype in Poland

    Directory of Open Access Journals (Sweden)

    Kuta Aleksandra

    2015-04-01

    Full Text Available Restriction fragment length polymorphism (RFLP analysis was developed for genetic typing of Polish strains of bovine viral diarrhoea virus (BVDV. The method was applied using 60 BVDV isolates, which included BVDV genotype 1, subtypes a, b, d, e, f, and g, and genotype 2a. RT-PCR products of the 5’untranslated region (5’UTR were digested using three enzymes. Restriction patterns classified the strains into seven groups, each with a specific and different pattern from other subtypes. These findings were confirmed by nucleotide sequencing and phylogenetic analysis. The results suggest that RFLP analysis is a simple, reliable, and fast genotyping method for BVDV strains in comparison with sequencing. This method can distinguish six subtypes of BVDV-1 including a new subtype 1e, identified exclusively by this method, and it allows differentiation of BVDV-1 from BVDV-2 genotype.

  16. BOLA-DRB3 gene polymorphisms influence bovine leukaemia virus infection levels in Holstein and Holstein × Jersey crossbreed dairy cattle.

    Science.gov (United States)

    Carignano, H A; Beribe, M J; Caffaro, M E; Amadio, A; Nani, J P; Gutierrez, G; Alvarez, I; Trono, K; Miretti, M M; Poli, M A

    2017-08-01

    Bovine leukemia virus (BLV) infections, causing persistent lymphocytosis and lethal lymphosarcoma in cattle, have reached high endemicity on dairy farms. We observed extensive inter-individual variation in the level of infection (LI) by assessing differences in proviral load in peripheral blood. This phenotypic variation appears to be determined by host genetics variants, especially those located in the BoLA-DRB3 MHCII molecule. We performed an association study using sequencing-based typed BOLA-DRB3 alleles from over 800 Holstein and Holstein × Jersey cows considering LI in vivo and accounting for filial relationships. The DBR3*0902 allele was associated with a low level of infection (LLI) (cows. Moreover, we identified two BOLA-DRB3 alleles associated with a HLI, which is compatible with a highly contagious profile. © 2017 Stichting International Foundation for Animal Genetics.

  17. An experimental infection model for reproduction of calf pneumonia with bovine respiratory syncytial virus (BRSV) based on one combined exposure of calves

    DEFF Research Database (Denmark)

    Tjørnehøj, Kirsten; Uttenthal, Åse; Viuff, B.

    2003-01-01

    Bovine respiratory syncytial virus (BRSV) has been recognised as an important pathogen in calf pneumonia for 30 years, but surprisingly few effective infection models for studies of the immune response and the pathogenesis in the natural host have been established. We present a reproducible...... experimental infection model for BRSV in 2-5-month-old, conventionally reared Jersey calves. Thirty-four colostrum-fed calves were inoculated once by aerosol and intratracheal injection with BRSV. Respiratory disease was recorded in 91% of the BRSV-inoculated calves, 72% had an accompanying rise in rectal...... temperature and 83% exhibited >5%, consolidation of the lung tissue. The disease closely resembled natural outbreaks of BRSV-related pneumonia, and detection of BRSV in nasal secretions and lung tissues confirmed the primary role of BRSV. Nine mock-inoculated control calves failed to develop respiratory...

  18. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis

    Directory of Open Access Journals (Sweden)

    Arainga Mariluz

    2012-03-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G or reduced (TaxS240P transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting

  19. Bovine leukemia virus linked to breast cancer but not coinfection with human papillomavirus: Case-control study of women in Texas.

    Science.gov (United States)

    Baltzell, Kimberly A; Shen, Hua Min; Krishnamurty, Savitri; Sison, Jennette D; Nuovo, Gerard J; Buehring, Gertrude C

    2017-12-20

    Bovine leukemia virus (BLV) and human papillomavirus (HPV) were previously identified in human breast tissue and have been associated with breast cancer in independent studies. The objective of the current study was to test for the presence of BLV and HPV in the same breast tissue specimens to determine whether the viruses were associated with breast cancer either singly or together. Archival formalin-fixed paraffin-embedded breast tissue sections from 216 women were received from The University of Texas MD Anderson Cancer Center along with patient diagnosis. In situ polymerase chain reaction and/or DNA hybridization methods were used to detect targeted DNA segments of BLV and HPV. Standard statistical methods were used to calculate age-adjusted odds ratios, attributable risk, and P values for the trend related to the association between presence of a virus and a diagnosis of breast disease. Women diagnosed with breast cancer were significantly more likely to have BLV DNA in their breast tissue compared with women with benign diagnoses and no history of breast cancer. Women with breast pathology classified as premalignant and no history of breast cancer also were found to have an elevated risk of harboring BLV DNA in their breast tissue. HPV status was not associated with malignancy, premalignant breast disease, or the presence of BLV in the breast tissues. The data from the current study supported previous findings of a significant association between BLV DNA in breast tissue and a diagnosis of breast cancer, but did not demonstrate oncogenic strains of HPV associated with breast cancer or the presence of BLV DNA in breast tissue. The authors believe the findings of the current study contribute to overall knowledge regarding a possible causal role for viruses in human breast cancer. Cancer 2017. © 2017 American Cancer Society. © 2017 American Cancer Society.

  20. Human Polyclonal Antibodies Produced in Transchromosomal Bovine Prevent Lethal Zika Virus Infection and Testicular Atrophy in Mice

    Science.gov (United States)

    2017-03-21

    Immunization of transchromosomal bovines. One TcB (#2227) was immunized with ZIKV pDNA vaccine at 12 mg per animal per vaccination by using the...Institute of Infectious Diseases, Fort Detrick, MD, USA. 4Aldevron, Fargo, ND, USA 5SAB Biotherapeutics, Sioux Falls, SD, USA 6Department of Animal ...treatment using polyclonal antibodies for pregnant women at risk of ZIKV related complications could be a safe alternative to vaccination . We found that

  1. Detección del virus de la leucosis bovina en ganado criollo colombiano mediante PCR-anidado Bovine leukemia virus detection in Creole Colombian breeds using nested-PCR

    Directory of Open Access Journals (Sweden)

    Darwin Yovanny Hernández-Herrera

    2011-12-01

    Full Text Available Se evaluó la presencia del virus de la leucosis bovina (VLB en 360 muestras de ADN de ocho razas bovinas criollas: Blanco Orejinegro (BON, Casanareño (CAS, Costeño con Cuernos (CCC, Chino Santandereano (ChS, Caqueteño (CQT, Hartón del Valle (HV, Romosinuano (RS y San Martinero (SM, dos Razas Sintéticas Colombianas: Lucerna (LUC y Velásquez (VEL y dos razas foráneas: Brahmán (B y Holstein (H. Para la detección del pro-virus se amplificó una región del gen env viral, mediante PCR anidada. La presencia del VLB fue mayor en la raza HV seguido por ChS (83.3% y 60% respectivamente, VEL y LUC tuvieron el mismo porcentaje (50%, en CAS, CCC y CQT la presencia del virus fue de 26.7%, 23.3% y 16.7% respectivamente; no se encontró el virus en BON, SM y RS. En las razas foráneas la presencia fue de 83.3% para H y 6.7% para B. Se encontró dependencia altamente significativa entre la presencia del VLB y la raza, el sexo y región de origen de la muestra. El promedio de presencia en las razas criollas fue menor que en las foráneas, menor en los machos que en las hembras y en la región norte que en el suroccidente y el centro del país.Using 360 DNA samples from eight Creole bovine breeds Blanco Orejinegro (BON, Casanareño (CAS, Costeño con Cuernos (CCC, Chino Santandereano (ChS, Caqueteño (CQT, Hartón del Valle (HV, Romosinuano (RS and San Martinero (SM, two synthetic Colombian breeds: Lucerna (LUC and Velásquez (VEL and two introduced breeds Brahmán (B and Holstein (H; the presence of Bovine Leukemia Virus (BLV was evaluated through the amplification of a viral gene region env (provirus detection - nested-PCR. The percentage of presence and independence test were calculated (X². Presence of BLV was higher in HV breed, followed by ChS (83.3% and 60% respectively; VEL and LUC breeds showed the same percentage (50%. In CAS, CCC and CQT the presence of virus was 26.7%, 23.3% y 16.7% respectively. On the other hand, no virus presence was

  2. Effects of Disinfectant Used in Japan on Bovine Rhinitis B Virus and Bovine Adenovirus Type 7 Under Mimic Conditions of Field Usage

    OpenAIRE

    桐澤, 力雄; 川本, 哲; 永幡, 肇

    2012-01-01

    家畜防疫に用いられている消毒用資材の現場の使用条件下での口蹄疫ウイルスに対する消毒効果の指標とするために,口蹄疫ウイルスと同様の性状を持つ牛鼻炎B ウイルス(BRBV)とエンベロープを持たない牛アデノウイルス7 型(BAdVh7)を用いて検討した.8 種類の消毒薬(消石灰,炭酸ナトリウム,クエン酸,ヨウ素系,塩素系,アルデヒド系,複合及び水酸化ナトリウム添加消毒薬)を用いた.スラリー処理で両ウイルスに効果を示したのは消石灰と炭酸ナトリウムであった.生乳処理では,BAdVh7 に対する塩素系消毒薬以外はすべて効果を示した.土壌散布と堆肥散布後のBRBV に対する効果は消石灰と炭酸ナトリウムでみられ,BAdVh7 に対しては消石灰のみが効果を示した.以上の成績より,口蹄疫ウイルスの土壌や堆肥における消毒には消石灰と炭酸ナトリウム,生乳に対してはすべての消毒薬の有効性が示唆された. To estimate the effects on foot-and-mouth disease virus (FMDV) of disinfectants used on Japanese farms,...

  3. The internal initiation of translation in bovine viral diarrhea virus RNA depends on the presence of an RNA pseudoknot upstream of the initiation codon

    Directory of Open Access Journals (Sweden)

    Moes Lorin

    2007-11-01

    Full Text Available Abstract Background Bovine viral diarrhea virus (BVDV is the prototype representative of the pestivirus genus in the Flaviviridae family. It has been shown that the initiation of translation of BVDV RNA occurs by an internal ribosome entry mechanism mediated by the 5' untranslated region of the viral RNA 1. The 5' and 3' boundaries of the IRES of the cytopathic BVDV NADL have been mapped and it has been suggested that the IRES extends into the coding of the BVDV polyprotein 2. A putative pseudoknot structure has been recognized in the BVDV 5'UTR in close proximity to the AUG start codon. A pseudoknot structure is characteristic for flavivirus IRESes and in the case of the closely related classical swine fever virus (CSFV and the more distantly related Hepatitis C virus (HCV pseudoknot function in translation has been demonstrated. Results To characterize the BVDV IRESes in detail, we studied the BVDV translational initiation by transfection of dicistronic expression plasmids into mammalian cells. A region coding for the amino terminus of the BVDV SD-1 polyprotein contributes considerably to efficient initiation of translation. The translation efficiency mediated by the IRES of BVDV strains NADL and SD-1 approximates the poliovirus type I IRES directed translation in BHK cells. Compared to the poliovirus IRES increased expression levels are mediated by the BVDV IRES of strain SD-1 in murine cell lines, while lower levels are observed in human cell lines. Site directed mutagenesis revealed that a RNA pseudoknot upstream of the initiator AUG is an important structural element for IRES function. Mutants with impaired ability to base pair in stem I or II lost their translational activity. In mutants with repaired base pairing either in stem 1 or in stem 2 full translational activity was restored. Thus, the BVDV IRES translation is dependent on the pseudoknot integrity. These features of the pestivirus IRES are reminiscent of those of the classical

  4. Amplification of bovine papillomavirus DNA by N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, or infection with herpes simplex virus

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J.; Schlehofer, J.R.; Mergener, K.; Gissmann, L.; zur Hausen, H. (Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.))

    1989-09-01

    Treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or irradiation with ultraviolet light (uv254 nm) induces amplification of integrated as well as episomal sequences of bovine papillomavirus (BPV) type 1 DNA in BPV-1-transformed mouse C127 cells (i.e., ID13 cells). This is shown by filter in situ hybridization and Southern blot analysis of cellular DNA. Similarly, infection of ID13 cells with herpes simplex virus (HSV) type 1 which has been shown to be mutagenic for host cell DNA leads to amplification of BPV DNA sequences. In contrast to this induction of DNA amplification by initiators, treatment of ID13 cells with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) does not result in increased synthesis of BPV DNA nor does TPA treatment modulate the initiator-induced DNA amplification. Similar to other cell systems infection with adeno-associated virus (AAV) type 2 inhibits BPV-1 DNA amplification irrespective of the inducing agent. In contrast to initiator-induced DNA amplification, treatment with carcinogen (MNNG) or tumor promoters or combination of MNNG and promoter of C127 cells prior to transformation by BPV-1 does not lead to an increase in the number of transformed foci. The induction of amplification of papillomavirus DNA by initiating agents possibly represents one of the mechanisms by which the observed synergism between papillomavirus infection and initiators in tumorigenesis might occur.

  5. Evidence of bovine viral diarrhea virus infection in three species of sympatric wild ungulates in Nevada: life history strategies may maintain endemic infections in wild populations

    Directory of Open Access Journals (Sweden)

    Peregrine Lee Wolff

    2016-03-01

    Full Text Available Evidence for bovine viral diarrhea virus (BVDV infection was detected in 2009-10 while investigating a pneumonia die-off in Rocky Mountain bighorn sheep (Ovis canadensis canadensis, and sympatric mountain goats (Oreamnos americanum in adjacent mountain ranges in Elko County, Nevada. Seroprevalence to BVDV-1 was 81% (N=32 in the bighorns and 100% (N=3 in the mountain goats. Serosurveillance from 2011 to 2015 of surviving bighorns and mountain goats as well as sympatric mule deer (Odocoileus hemionus, indicated a prevalence of 72% (N=45, 45% (N=51, and 51% (N=342 respectively. All species had antibody titers to BVDV1 and BVDV2. BVDV1 was isolated in cell culture from three bighorn sheep and a mountain goat kid. BVDV2 was isolated from two mule deer. Six deer (N=96 sampled in 2013 were positive for BVDV by antigen-capture ELISA on ear notch. Wild ungulates and cattle concurrently graze public and private lands in these two mountain ranges, thus providing potential for interspecies viral transmission. Like cattle, mule deer, mountain goats, and bighorn sheep can be infected with BVDV and can develop clinical disease including immunosuppression. Winter migration patterns that increase densities and species interaction during the first and second trimester of gestation may contribute to the long term maintenance of the virus in these wild ungulates. More studies are needed to determine the population level impacts of BVDV infection on these three species.

  6. Enzootic bovine leucosis.

    Science.gov (United States)

    Tyler, L

    1978-09-02

    Enzootic bovine leucosis is associated with infection by bovine leucosis virus. The incubation period is measured in years and a minority of infected animals develop clinical signs. The disease is widespread in Europe and elsewhere and can cause significant economic loss. The epidemiology is incompletely understood and findings from one cattle production system may not be directly applicable to another. Major control programmes exist in Denmark and West Germany and control schemes are being developed elsewhere. Eradication of enzootic bovine leucosis has been established as a goal in the EEC and research is revealing the ways in which this goal may be attained. To be effective, control and epidemiological monitoring must be interactive. Recently introduced serological tests, of improved sensitivity, provide a valuable tool.

  7. Brief communication: evidence that B lymphocytes carry the nuclear pocket abnormality associated with bovine leukemia virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, K.A.; Paul, P.S.; Weber, A.F.; Sorensen, D.K.; Johnson, D.W.

    1976-01-01

    Peripheral blood lymphocytes from three cows with persistent lymphocytosis were separated on nylon wool columns into nylon wool adherent and nonadherent populations. The percentage of cells coated with surface immunoglobulin and the frequency of lymphocytic nuclear pockets in each subpopulation were then determined. In each case the adherent population consisted predominantly of B cells with an increased nuclear pocket frequency while the non-adherent cells were 98 to 99 percent surface immunoglobulin negative and contained essentially no nuclear pockets. These findings provide additional evidence that the B subpopulation of cells is highly involved in bovine leukemia oncogenesis.

  8. A radioimmunoassay detecting the bovine leukaemia virus transmembrane protein gp30 and anti-gp30 antibodies in the serum of cattle.

    Science.gov (United States)

    Bossmann, H; Siakkou, H; Ulrich, R; Uckert, W; Kraft, R; Rosenthal, S; Rosenthal, H A

    1989-03-01

    By means of SDS PAGE we isolated from virus-infected foetal lamb kidney (FLK) cells a relatively homogenous envelope transmembrane protein gp30 of bovine leukaemia virus (BLV). As shown by a partial sequence analysis of the N-terminus of this protein, our gp30 preparation contained only traces (less than 5%) of p24 gag protein: Rabbit anti-gp30 serum did not cross react with the BLV proteins gp51, p12, p15(1), p15(2), and p10 but reacted weakly with the p24 polypeptide. 125I-labelled gp30 (chloramine-T) was precipitated with the serum of BLV-infected cattle. Nonlabelled preparation of gp30 competitively inhibited the reaction of 125I-labelled gp30 with the natural antibodies. We investigated 193 cattle sera by liquid phase radioimmunoassays (RIA) using 125I-gp30, gp51 and p24 antigens. Sixteen noninfected cattle sera were negative in all tests. The 177 serum samples of BLV-infected animals were examined to the diagnostic value of the three tests. Of these, 175 were positive in gp51 RIA, 172 in p24 RIA and 164 in gp30 RIA. In all three tests, 159 sera were positive while 18 sera, mostly coming from animals with normal leukocyte counts, were positive only either with gp51 or p24, or were double positive with either gp51/p24 or gp51/gp30. We conclude that the gp51 RIA is superior to both the gp30 and the p24 RIA and that the gp30 RIA will be useful for investigating the role of gp30 in virus pathogenicity.

  9. Development and evaluation of two truncated recombinant NP antigen-based indirect ELISAs for detection of bovine parainfluenza virus type 3 antibodies in cattle.

    Science.gov (United States)

    Yang, Yong; Wang, Feng-Xue; Sun, Na; Cao, Li; Zhang, Shu-Qin; Zhu, Hong-Wei; Guo, Li; Cheng, Shi-Peng; Wen, Yong-Jun

    2015-09-15

    Bovine parainfluenza virus type 3 (BPIV3) is one of the most important viral respiratory pathogens in both young and adult cattle. Nucleocapsid protein (NP) is the most abundant viral protein and the main regulator of virus replication and transcription. In this study, amino acid sequence data of BPIV3 NP was used to identify potential linear epitopic regions, which were subsequently used to design truncated recombinant NP antigens. The amino-terminal region (aa 9-157, NP-N) and the carboxy-terminal region (aa 391-500, NP-C) were selected, and these two truncated recombinant BPIV3 NP proteins were expressed in Escherichia coli based on the results of prediction studies. Furthermore, Enzyme-Linked Immunosorbent Assays (ELISAs) were established using the truncated recombinant BPIV3-N proteins as antigens, and 154 clinical samples were used to evaluate the newly established ELISA systems in comparison with a virus neutralisation test (VNT) as a reference. The results showed that a high coincidence rate was observed for the data that were obtained by the two methods. The sensitivity of NP-N ELISA and NP-C ELISA were 98.4% and 94.6%, respectively, and the specificity of both ELISAs was 100% with reference to the VNTs. Our data indicated that both ends of NP have high immunogenicity during BPIV3 infection and that they were good targets for serodiagnosis. The ELISAs based on the two truncated proteins were especially suitable for use in large-scale epidemiological investigations. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Circulation of bovine viral diarrhea virus--1 (BVDV-1) in dairy cattle and buffalo farms in Ismailia Province, Egypt.

    Science.gov (United States)

    Soltan, Mohamed Ahmed; Wilkes, Rebecca P; Elsheery, Mohamed Nagy; Elhaig, Mahmoud Mohy; Riley, Matthhew C; Kennedy, Melissa A

    2015-12-30

    Bovine viral diarrhea (BVD) is one of the most economically significant diseases in the bovine industry causing losses due to diarrhea, reproductive disorders, immunosuppression and mortalities. The aim of our investigation was to detect and subtype BVDV from calves on two dairy cattle and two buffalo farms in Ismailia province, Egypt as an indicator of BVDV infection status in the province. A total of 298 blood samples were collected and tested using an optimized one-step, real-time multiplex Taqman-based RT-PCR. All the positive samples by the multiplex real-time RT-PCR were tested using conventional RT-PCR to amplify multiple areas of the genome for further phylogenetic analysis and subtyping. Thirty one (10.4%) of the tested samples were positive for BVDV-1. Only three samples, all from a single dairy cattle farm, had enough viral RNA to be amplified by RT-PCR. The PCR products were sequenced and phylogenetic analysis revealed detection of BVDV-1b. The detected strain is closely related to worldwide BVDV-1b strains, making it difficult to trace its origin. Nucleotide and amino acid alignments of the E2 glycoprotein region of the detected strain with other BVDV-1b strains showed high divergence, with identity ranging from 81.3% to 93.6% and 85.3% to 93.6%, respectively. To our knowledge, this is the first report describing the circulation of BVDV-1b in Egyptian dairy cattle populations.

  11. bta-miR-29b attenuates apoptosis by directly targeting caspase-7 and NAIF1 and suppresses bovine viral diarrhea virus replication in MDBK cells.

    Science.gov (United States)

    Fu, Qiang; Shi, Huijun; Shi, Mengting; Meng, Luping; Zhang, Hui; Ren, Yan; Guo, Fei; Jia, Bin; Wang, Pengyan; Ni, Wei; Chen, Chuangfu

    2014-07-01

    MicroRNAs (miRNAs) are small, endogenous, noncoding RNA molecules that serve as powerful regulators of multiple cellular processes, including apoptosis, differentiation, growth, and proliferation. Bovine viral diarrhea virus (BVDV) contributes significantly to health-related economic losses in the beef and dairy industries. Although BVDV-induced apoptosis correlates with increased intracellular viral RNA accumulation and with bta-miR-29b (miR-29b) expression upregulation in Madin-Darby bovine kidney (MDBK) cells infected with BVDV strain NADL, the role of miR-29b in regulating BVDV-infection-related apoptosis remains unexplored. Here, we report that miR-29b serves as a new miRNA regulating apoptosis. We showed that miR-29b target sequences were present in the 3' untranslated regions of 2 key apoptosis regulators mRNAs, cysteine aspartases-7 (caspase-7) and nuclear apoptosis-inducing factor 1 (NAIF1). Indeed, upon miRNA overexpression, both mRNA and protein levels of caspase-7 and NAIF1 were decreased. We further found that miR-29b attenuated apoptosis by directly regulating intracellular levels of caspase-7 and NAIF1. Moreover, apoptosis blockage by miR-29b was rescued upon co-infection of MDBK cells with lentiviruses expressing caspase-7 and NAIF1. Importantly, miR-29b decreased BVDV NADL envelope glycoprotein E1 mRNA levels and suppressed viral replication. These studies advance our understanding of the mechanisms of miRNAs in mediating the cells combating viral infections.

  12. Identification of a novel overlapping sequential E epitope (E') on the bovine leukaemia virus SU glycoprotein and analysis of immunological data.

    Science.gov (United States)

    Forti, Katia; Rizzo, Giorgia; Cagiola, Monica; Ferrante, Giovanna; Marini, Carla; Feliziani, Francesco; Pezzotti, Giovanni; De Giuseppe, Antonio

    2014-08-06

    Bovine leukaemia virus (BLV), an oncogenic C-type retrovirus, is the causative agent of enzootic bovine leucosis. Binding of BLV to its cellular receptor is mediated by the surface envelope glycoprotein subunit (SU). Previous studies have identified eight different epitopes (A through H) on the BLV SU. In this study, a new sequential epitope was identified using the monoclonal antibody 2G7 (MAb 2G7) on the C-terminal region of the BLV SU. To localise and refine the map of this epitope, a series of deleted forms in the C and N-terminal ends of the glycoprotein were made and synthesised in baculovirus and Escherichia coli expression systems. The synthetic proteins were analysed both in Western blot and MAb-capture ELISA assays. MAb 2G7 recognised a stretch of 11 amino acids, named epitope E', corresponding to residues 189-SDWVPSVRSWA-199 (comprising the 33 amino acids signal peptide) overlapping with the E epitope of the SU. The data obtained by Enzyme-Linked Immunosorbent Assay (ELISA) revealed that the E' epitope was hidden on whole BLV particles and that the variation in reactivity between epitope E' and MAb 2G7 depends on the glycosylation state of SU. Similarly, the analysis of immunological data evidenced that the failure of interaction between the MAb anti-DD' and its epitope was also due to a steric hindrance of the glycosylation. Finally, the ELISA assay analysis performed with the deleted and mutated forms of rSU evidenced that the conformational epitopes F, G and H lied into in the 34-173 amino-acids residues of N-terminal region of SU. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Bovine Viral Diarrhea Virus Type 2 Impairs Macrophage Responsiveness to Toll-Like Receptor Ligation with the Exception of Toll-Like Receptor 7.

    Directory of Open Access Journals (Sweden)

    Robert G Schaut

    Full Text Available Bovine viral diarrhea virus (BVDV is a member of the Flaviviridae family. BVDV isolates are classified into two biotypes based on the development of cytopathic (cp or non-cytopathic (ncp effects in epithelial cell culture. BVDV isolates are further separated into species, BVDV1 and 2, based on genetic differences. Symptoms of BVDV infection range from subclinical to severe, depending on strain virulence, and may involve multiple organ systems and induction of a generalized immunosuppression. During BVDV-induced immune suppression, macrophages, critical to innate immunity, may have altered pathogen recognition receptor (PRR signaling, including signaling through toll-like receptors (TLRs. Comparison of BVDV 2 strains with different biotypes and virulence levels is valuable to determining if there are differences in host macrophage cellular responses between viral phenotypes. The current study demonstrates that cytopathic (cp, noncytopathic (ncp, high (hv or low virulence (lv BVDV2 infection of bovine monocyte-derived macrophages (MDMΦ result in differential expression of pro-inflammatory cytokines compared to uninfected MDMΦ. A hallmark of cp BVDV2 infection is IL-6 production. In response to TLR2 or 4 ligation, as might be observed during secondary bacterial infection, cytokine secretion was markedly decreased in BVDV2-infected MDMΦ, compared to non-infected MDMΦ. Macrophages were hyporesponsive to viral TLR3 or TLR8 ligation. However, TLR7 stimulation of BVDV2-infected MDMΦ induced cytokine secretion, unlike results observed for other TLRs. Together, these data suggest that BVDV2 infection modulated mRNA responses and induced a suppression of proinflammatory cytokine protein responses to TLR ligation in MDMΦ with the exception of TLR7 ligation. It is likely that there are distinct differences in TLR pathways modulated following BVDV2 infection, which have implications for macrophage responses to secondary infections.

  14. Complete suppression of viral gene expression is associated with the onset and progression of lymphoid malignancy: observations in Bovine Leukemia Virus-infected sheep

    Directory of Open Access Journals (Sweden)

    Burny Arsène

    2007-07-01

    Full Text Available Abstract Background During malignant progression, tumor cells need to acquire novel characteristics that lead to uncontrolled growth and reduced immunogenicity. In the Bovine Leukemia Virus-induced ovine leukemia model, silencing of viral gene expression has been proposed as a mechanism leading to immune evasion. However, whether proviral expression in tumors is completely suppressed in vivo was not conclusively demonstrated. Therefore, we studied viral expression in two selected experimentally-infected sheep, the virus or the disease of which had features that made it possible to distinguish tumor cells from their nontransformed counterparts. Results In the first animal, we observed the emergence of a genetically modified provirus simultaneously with leukemia onset. We found a Tax-mutated (TaxK303 replication-deficient provirus in the malignant B-cell clone while functional provirus (TaxE303 had been consistently monitored over the 17-month aleukemic period. In the second case, both non-transformed and transformed BLV-infected cells were present at the same time, but at distinct sites. While there was potentially-active provirus in the non-leukemic blood B-cell population, as demonstrated by ex-vivo culture and injection into naïve sheep, virus expression was completely suppressed in the malignant B-cells isolated from the lymphoid tumors despite the absence of genetic alterations in the proviral genome. These observations suggest that silencing of viral genes, including the oncoprotein Tax, is associated with tumor onset. Conclusion Our findings suggest that silencing is critical for tumor progression and identify two distinct mechanisms-genetic and epigenetic-involved in the complete suppression of virus and Tax expression. We demonstrate that, in contrast to systems that require sustained oncogene expression, the major viral transforming protein Tax can be turned-off without reversing the transformed phenotype. We propose that suppression

  15. Taxonomic and epidemiological aspects of the bovine viral diarrhoea virus 2 species through the observation of the secondary structures in the 5' genomic untranslated region

    Directory of Open Access Journals (Sweden)

    Massimo Giangaspero

    2008-06-01

    Full Text Available Bovine viral diarrhoea virus 2 (BVDV-2 strains demonstrated in cattle, sheep and adventitious contaminants of biological products were evaluated by the palindromic nucleotide substitutions (PNS method at the three variable loci (V1, V2 and V3 in the 5’ untranslated region (UTR, to determine their taxonomic status. Variation in conserved genomic sequences was used as a parameter for the epidemiological evaluation of the species in relation to geographic distribution, animal host and virulence. Four genotypes were identified within the species. Taxonomic segregation corresponded to geographic distribution of genotype variants. Genotype 2a was distributed worldwide and was also the only genotype that was circulating in sheep and cattle. Genotypes 2b, 2c and 2d were restricted to South America. Genotypes 2a and 2d were related to the contamination of biological products. Genetic variation could be related to the spread of BVDV-2 species variants in different geographic areas. Chronologically, the species emerged in North America in 1978 and spread to the United Kingdom and Japan, continental Europe, South America and New Zealand. Correlation between clinical features related with isolation of BVDV-2 strains and genetic variation indicated that subgenotype 1, variant 4 of genotype 2a, was related to a haemorrhagic syndrome. These observations suggest that the evaluation of genomic secondary structures, by identifying markers for expression of virus biological activities and species evolutionary history, may be a useful tool for the epidemiological evaluation of BVDV-2 species and possibly of other species of the genus Pestivirus.

  16. Reproductive disorders in relation to Neospora caninum, Brucella spp. and bovine viral diarrhoea virus serostatus in breeding and dairy farms of central and southern Ethiopia.

    Science.gov (United States)

    Asmare, K; Regassa, F; Robertson, L J; Martin, A D; Skjerve, E

    2013-08-01

    Abortion and stillbirth are important reproductive disorders in the dairy industry and are often caused by infectious agents. This study investigated whether bovine viral diarrhoea virus (BVDV), Brucella spp., and Neospora caninum are associated with abortion and/or stillbirth in dairy cattle in Ethiopia. Dairy cattle from 99 farms were categorized as cases (n=134) or controls (n=268) according to reproductive data. Blood samples were screened for antibodies for these infectious agents. The overall proportion of cattle that were seropositive for BVDV, Brucella spp., and N. caninum was 11∙7%, 3∙2%, and 17∙2%, respectively. Seropositivity for BVDV and Brucella spp. was similar for cases and controls, but significantly more cases were seropositive for N. caninum (29∙8%) than controls (10∙8%). This is the first report demonstrating N. caninum is common in dairy cattle in Ethiopia, and is probably a greater impediment to reproductive success in Ethiopian dairy farms than either BVDV or Brucella spp.

  17. Synthesis, antiviral evaluation and molecular docking studies of N4-aryl substituted/unsubstituted thiosemicarbazones derived from 1-indanones as potent anti-bovine viral diarrhea virus agents.

    Science.gov (United States)

    Soraires Santacruz, María C; Fabiani, Matías; Castro, Eliana F; Cavallaro, Lucía V; Finkielsztein, Liliana M

    2017-08-01

    A series of N4-arylsubstituted thiosemicarbazones derived from 1-indanones and a set of compounds lacking such substitution in the N4 position of the thiosemicarbazone moiety were synthesized and evaluated for their anti-bovine viral diarrhea virus (BVDV) activity. Among these, derivatives 2 and 15 displayed high activity (EC50=2.7±0.4 and 0.7±0.1µM, respectively) as inhibitors of BVDV replication. Novel key structural features related to the anti-BVDV activity were identified by structure-activity relationship (SAR) analysis. In a previous study, the thiosemicarbazone of 5,6-dimethoxy-1-indanone (5,6-TSC) was characterized as a non-nucleoside inhibitor (NNI) of the BVDV RNA-dependent RNA polymerase. In the present work, cross-resistance assays were performed with the most active compounds. Such studies were carried out on 5,6-TSC resistant BVDV (BVDV-TSCr T1) carrying mutations in the viral polymerase. This BVDV mutant was also resistant to compound 15. Molecular docking studies and MM/PBSA calculations were performed to assess the most active derivatives at the 5,6-TSC viral polymerase binding site. The differences in the interaction pattern and the binding affinity of derivative 15 either to the wild type or BVDV-TSCr T1 polymerase were key factors to define the mode of action of this compound. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Pharmacophore modeling, resistant mutant isolation, docking, and MM-PBSA analysis: Combined experimental/computer-assisted approaches to identify new inhibitors of the bovine viral diarrhea virus (BVDV).

    Science.gov (United States)

    Tonelli, Michele; Boido, Vito; La Colla, Paolo; Loddo, Roberta; Posocco, Paola; Paneni, Maria Silvia; Fermeglia, Maurizio; Pricl, Sabrina

    2010-03-15

    Starting from a series of our new 2-phenylbenzimidazole derivatives, shown to be selectively and potently active against the bovine viral diarrhea virus (BVDV), we developed a hierarchical combined experimental/molecular modeling strategy to explore the drug leads for the BVDV RNA-dependent RNA-polymerase. Accordingly, a successful 3D pharmacophore model was developed, characterized by distinct chemical features that may be responsible for the activity of the inhibitors. BVDV mutants resistant to lead compounds in our series were then isolated, and the mutant residues on the viral molecular target, the RNA-dependent RNA-polymerase, were identified. Docking procedures upon pharmacophoric constraints and mutational data were carried out, and the binding affinity of all active compounds for the RdRp were estimated. Given the excellent agreement between in silico and in vitro data, this procedure is currently being employed in the design a new series of more selective and potent BVDV inhibitors. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. To compare the incubation period following intratracheal and subcutaneous inoculation of bovine leukosis virus infected lymphocytes and to study their clearance from the circulation.

    Science.gov (United States)

    Roberts, D H; Lucas, M H; Wibberley, G

    1986-04-01

    The migration of fluorescein isothiocyanate labelled lymphocytes through the tracheobronchial mucosa has been studied in cattle. Following intratracheal inoculation of labelled non-infected autologous lymphocytes and bovine leukosis virus (BLV) infected heterologous (presumed allogeneic) lymphocytes, the labelled lymphocytes appeared in the blood circulation between 4 and 7 days post inoculation. Following intravenous inoculation of labelled autologous lymphocytes, the cells could be detected in the circulation for 10 days post inoculation whereas BLV infected and non-infected heterologous lymphocytes could be detected for only 2 days. The migration of BLV-infected heterologous lymphocytes through the tracheobronchial mucosa caused a delay in the appearance of labelled lymphocytes in the circulation and a corresponding delay in the appearance of BLV antibodies. Comparison was made of the effect of two different routes of inoculation, subcutaneous and intratracheal on the incubation period as indicated by the detection of antibody. Subcutaneous inoculation of 1 X 10(4), 5 X 10(3), 1 X 10(3) of lymphocytes from a BLV infected cow caused seroconversion whereas 5 X 10(2) cells did not. Intratracheal inoculation of 5 X 10(3) cells caused sero-conversion. One animal did not develop BLV antibody until 30 weeks after inoculation although BLV could be isolated from the blood at 24 and 26 weeks post inoculation.

  20. Feed Intake and Weight Changes in Bos indicus-Bos taurus Crossbred Steers Following Bovine Viral Diarrhea Virus Type 1b Challenge Under Production Conditions.

    Science.gov (United States)

    Runyan, Chase A; Downey-Slinker, Erika D; Ridpath, Julia F; Hairgrove, Thomas B; Sawyer, Jason E; Herring, Andy D

    2017-12-12

    Bovine viral diarrhea virus (BVDV) has major impacts on beef cattle production worldwide, but the understanding of host animal genetic influence on illness is limited. This study evaluated rectal temperature, weight change and feed intake in Bos indicus crossbred steers ( n = 366) that were challenged with BVDV Type 1b, and where family lines were stratified across three vaccine treatments of modified live (MLV), killed, (KV) or no vaccine (NON). Pyrexia classification based on 40.0 °C threshold following challenge and vaccine treatment were investigated for potential interactions with sire for weight change and feed intake following challenge. Pyrexia classification affected daily feed intake (ADFI, p = 0.05), and interacted with day ( p gain (ADG) and cumulative feed intake during the first 14 day post-challenge; ADG (CV of 104%) and feed efficiency were highly variable in the 14-day period immediately post-challenge as compared to the subsequent 14-day periods. A sire × vaccine strategy interaction affected ADFI ( p < 0.001), and a sire by time period interaction affected ADG ( p = 0.03) and total feed intake ( p = 0.03). This study demonstrates that different coping responses may exist across genetic lines to the same pathogen, and that subclinical BVDV infection has a measurable impact on cattle production measures.

  1. Feed Intake and Weight Changes in Bos indicus-Bos taurus Crossbred Steers Following Bovine Viral Diarrhea Virus Type 1b Challenge Under Production Conditions

    Directory of Open Access Journals (Sweden)

    Chase A. Runyan

    2017-12-01

    Full Text Available Bovine viral diarrhea virus (BVDV has major impacts on beef cattle production worldwide, but the understanding of host animal genetic influence on illness is limited. This study evaluated rectal temperature, weight change and feed intake in Bos indicus crossbred steers (n = 366 that were challenged with BVDV Type 1b, and where family lines were stratified across three vaccine treatments of modified live (MLV, killed, (KV or no vaccine (NON. Pyrexia classification based on 40.0 °C threshold following challenge and vaccine treatment were investigated for potential interactions with sire for weight change and feed intake following challenge. Pyrexia classification affected daily feed intake (ADFI, p = 0.05, and interacted with day (p < 0.001 for ADFI. Although low incidence of clinical signs was observed, there were marked reductions in average daily gain (ADG and cumulative feed intake during the first 14 day post-challenge; ADG (CV of 104% and feed efficiency were highly variable in the 14-day period immediately post-challenge as compared to the subsequent 14-day periods. A sire × vaccine strategy interaction affected ADFI (p < 0.001, and a sire by time period interaction affected ADG (p = 0.03 and total feed intake (p = 0.03. This study demonstrates that different coping responses may exist across genetic lines to the same pathogen, and that subclinical BVDV infection has a measurable impact on cattle production measures.

  2. Bluetongue virus infection alters the impedance of monolayers of bovine endothelial cells as a result of cell death

    OpenAIRE

    Drew, Clifton P.; Ian A Gardner; Mayo, Christie E.; MATSUO, Eiko; Roy, Polly; MacLachlan, N. James

    2010-01-01

    Bluetongue virus (BTV) is the cause of bluetongue, an emerging, arthropod-transmitted disease of ungulates. Bluetongue is characterized by vascular injury with hemorrhage, tissue infarction and widespread edema, lesions that are consistent with those of the so-called viral hemorrhagic fevers. To further investigate the pathogenesis of vascular injury in bluetongue, we utilized an electrical impedance assay and immunofluorescence staining to compare the effects of BTV infection on cultured bov...

  3. Mucosal immunization of rhesus monkeys against respiratory syncytial virus subgroups A and B and human parainfluenza virus type 3 by using a live cDNA-derived vaccine based on a host range-attenuated bovine parainfluenza virus type 3 vector backbone.

    Science.gov (United States)

    Schmidt, Alexander C; Wenzke, Daniel R; McAuliffe, Josephine M; St Claire, Marisa; Elkins, William R; Murphy, Brian R; Collins, Peter L

    2002-02-01

    Reverse genetics was used to develop a two-component, trivalent live attenuated vaccine against human parainfluenza virus type 3 (HPIV3) and respiratory syncytial virus (RSV) subgroups A and B. The backbone for each of the two components of this vaccine was the attenuated recombinant bovine/human PIV3 (rB/HPIV3), a recombinant BPIV3 in which the bovine HN and F protective antigens are replaced by their HPIV3 counterparts (48). This chimera retains the well-characterized host range attenuation phenotype of BPIV3, which appears to be appropriate for immunization of young infants. The open reading frames (ORFs) for the G and F major protective antigens of RSV subgroup A and B were each placed under the control of PIV3 transcription signals and inserted individually or in homologous pairs as supernumerary genes in the promoter proximal position of rB/HPIV3. The level of replication of rB/HPIV3-RSV chimeric viruses in the respiratory tract of rhesus monkeys was similar to that of their parent virus rB/HPIV3, and each of the chimeras induced a robust immune response to both RSV and HPIV3. RSV-neutralizing antibody titers induced by rB/HPIV3-RSV chimeric viruses were equivalent to those induced by infection with wild-type RSV, and HPIV3-specific antibody responses were similar to, or slightly less than, after infection with the rB/HPIV3 vector itself. This study describes a novel vaccine strategy against RSV in which vaccine viruses with a common attenuated backbone, specifically rB/HPIV3 derivatives expressing the G and/or F major protective antigens of RSV subgroup A and of RSV subgroup B, are used to immunize by the intranasal route against RSV and HPIV3, which are the first and second most important viral agents of pediatric respiratory tract disease worldwide.

  4. Recombinant viral vaccines for enzootic bovine leucosis

    National Research Council Canada - National Science Library

    Daniel, R C; Gatei, M H; Good, M F; Boyle, D B; Lavin, M F

    1993-01-01

    ...) and part of gp30 of the bovine leukaemia virus (BLV) are described. It has been reported that vaccination of sheep with recombinant VV vaccines containing the complete env gene appears to protect sheep against challenge infection with BLV...

  5. Estimation of bovine leukemia virus (BLV) proviral load harbored by lymphocyte subpopulations in BLV-infected cattle at the subclinical stage of enzootic bovine leucosis using BLV-CoCoMo-qPCR.

    Science.gov (United States)

    Panei, Carlos Javier; Takeshima, Shin-nosuke; Omori, Takashi; Nunoya, Tetsuo; Davis, William C; Ishizaki, Hiroshi; Matoba, Kazuhiro; Aida, Yoko

    2013-05-04

    Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis (EBL), which is the most common neoplastic disease of cattle. BLV infection may remain clinically silent at the aleukemic (AL) stage, cause persistent lymphocytosis (PL), or, more rarely, B cell lymphoma. BLV has been identified in B cells, CD2+ T cells, CD3+ T cells, CD4+ T cells, CD8+ T cells, γ/δ T cells, monocytes, and granulocytes in infected cattle that do not have tumors, although the most consistently infected cell is the CD5+ B cell. The mechanism by which BLV causes uncontrolled CD5+ B cell proliferation is unknown. Recently, we developed a new quantitative real-time polymerase chain reaction (PCR) method, BLV-CoCoMo-qPCR, which enabled us to demonstrate that the proviral load correlates not only with BLV infection, as assessed by syncytium formation, but also with BLV disease progression. The present study reports the distribution of BLV provirus in peripheral blood mononuclear cell subpopulations isolated from BLV-infected cows at the subclinical stage of EBL as examined by cell sorting and BLV-CoCoMo-qPCR. Phenotypic characterization of five BLV-infected but clinically normal cattle with a proviral load of > 100 copies per 1 × 105 cells identified a high percentage of CD5+ IgM+ cells (but not CD5- IgM+ B cells, CD4+ T cells, or CD8+T cells). These lymphocyte subpopulations were purified from three out of five cattle by cell sorting or using magnetic beads, and the BLV proviral load was estimated using BLV-CoCoMo-qPCR. The CD5+ IgM+ B cell population in all animals harbored a higher BLV proviral load than the other cell populations. The copy number of proviruses infecting CD5- IgM+ B cells, CD4+ cells, and CD8+ T cells (per 1 ml of blood) was 1/34 to 1/4, 1/22 to 1/3, and 1/31 to 1/3, respectively, compared with that in CD5+ IgM+ B cells. Moreover, the BLV provirus remained integrated into the genomic DNA of CD5+ IgM+ B cells, CD5- IgM+ B cells, CD4+ T cells, and CD8+ T cells

  6. O polietilenoglicol aumenta a penetração do vírus da diarréia viral bovina, do vírus da estomatite vesicular e do vírus sincicial respiratório bovino em células de cultivo Polyethylene glycol increases the penetration of bovine viral diarrhea virus, vesicular stomatitis virus and bovine respiratory syncytial virus in cultured cells

    Directory of Open Access Journals (Sweden)

    Renata Dezengrini

    2009-06-01

    bovine enveloped viruses in culture cells. Penetration efficiency was measured by counting the number of viral plaques produced in bovine kidney cells (MDBK. The addition of 5% PEG (molecular weight 6.000 to the viral inoculum containing 100 TCID50 mL-1 (tissue culture median infectious dosis of each virus, during adsorption for 2h at 37°C, resulted in a significant increase in the number of plaques for bovine viral diarrhea virus (BVDV (increase of 3.4-fold, vesicular stomatitis virus (VSV (2.2-fold and bovine respiratory syncytial virus (BRSV (1.5-fold. The addition of 5% PEG to the inoculum of bovine herpesviruses 1, 2 and 5 (BoHV-1, BoHV-2 and BoHV-5 did not increase the number of viral plaques. On the other hand, PEG produced a reduction in the number of plaques by bovine parainfluenza virus (bPI-3V (1.4-fold. Furthermore, the addition of 5% PEG produced a 10- to 1000-fold increase in the sensitivity of BVDV detection in the serum of three persistently infected calves; and doubled the sensitivity of detection of BRSV in nasal secretions of two experimentally infected sheep. These results demonstrate that PEG enhances the efficiency of infection by BVDV, VSV and BRSV in cultured bovine cells and therefore may be used to increase the sensitivity of virus detection in clinical samples (viral isolation, and/or to increase virus titers in cell cultures.

  7. Chimeric bovine/human parainfluenza virus type 3 expressing respiratory syncytial virus (RSV) F glycoprotein: effect of insert position on expression, replication, immunogenicity, stability, and protection against RSV infection.

    Science.gov (United States)

    Liang, Bo; Munir, Shirin; Amaro-Carambot, Emerito; Surman, Sonja; Mackow, Natalie; Yang, Lijuan; Buchholz, Ursula J; Collins, Peter L; Schaap-Nutt, Anne

    2014-04-01

    A recombinant chimeric bovine/human parainfluenza type 3 virus (rB/HPIV3) vector expressing the respiratory syncytial virus (RSV) fusion F glycoprotein previously exhibited disappointing levels of RSV F immunogenicity and genetic stability in children (D. Bernstein et al., Pediatr. Infect. Dis. J. 31:109-114, 2012; C.-F. Yang et al., Vaccine 31:2822-2827, 2013). To investigate parameters that might affect vaccine performance and stability, we constructed and characterized rB/HPIV3 viruses expressing RSV F from the first (pre-N), second (N-P), third (P-M), and sixth (HN-L) genome positions. There was a 30- to 69-fold gradient in RSV F expression from the first to the sixth position. The inserts moderately attenuated vector replication in vitro and in the upper and lower respiratory tracts of hamsters: this was not influenced by the level of RSV F expression and syncytium formation. Surprisingly, inserts in the second, third, and sixth positions conferred increased temperature sensitivity: this was greatest for the third position and was the most attenuating in vivo. Each rB/HPIV3 vector induced a high titer of neutralizing antibodies in hamsters against RSV and HPIV3. Protection against RSV challenge was greater for position 2 than for position 6. Evaluation of insert stability suggested that RSV F is under selective pressure to be silenced during vector replication in vivo, but this was not exacerbated by a high level of RSV F expression and generally involved a small percentage of recovered vector. Vector passaged in vitro accumulated mutations in the HN open reading frame, causing a dramatic increase in plaque size that may have implications for vaccine production and immunogenicity. The research findings presented here will be instrumental for improving the design of a bivalent pediatric vaccine for respiratory syncytial virus and parainfluenza virus type 3, two major causes of severe respiratory tract infection in infants and young children. Moreover, this

  8. Chimeric Bovine/Human Parainfluenza Virus Type 3 Expressing Respiratory Syncytial Virus (RSV) F Glycoprotein: Effect of Insert Position on Expression, Replication, Immunogenicity, Stability, and Protection against RSV Infection

    Science.gov (United States)

    Munir, Shirin; Amaro-Carambot, Emerito; Surman, Sonja; Mackow, Natalie; Yang, Lijuan; Buchholz, Ursula J.; Collins, Peter L.; Schaap-Nutt, Anne

    2014-01-01

    ABSTRACT A recombinant chimeric bovine/human parainfluenza type 3 virus (rB/HPIV3) vector expressing the respiratory syncytial virus (RSV) fusion F glycoprotein previously exhibited disappointing levels of RSV F immunogenicity and genetic stability in children (D. Bernstein et al., Pediatr. Infect. Dis. J. 31:109–114, 2012; C.-F. Yang et al., Vaccine 31:2822–2827, 2013). To investigate parameters that might affect vaccine performance and stability, we constructed and characterized rB/HPIV3 viruses expressing RSV F from the first (pre-N), second (N-P), third (P-M), and sixth (HN-L) genome positions. There was a 30- to 69-fold gradient in RSV F expression from the first to the sixth position. The inserts moderately attenuated vector replication in vitro and in the upper and lower respiratory tracts of hamsters: this was not influenced by the level of RSV F expression and syncytium formation. Surprisingly, inserts in the second, third, and sixth positions conferred increased temperature sensitivity: this was greatest for the third position and was the most attenuating in vivo. Each rB/HPIV3 vector induced a high titer of neutralizing antibodies in hamsters against RSV and HPIV3. Protection against RSV challenge was greater for position 2 than for position 6. Evaluation of insert stability suggested that RSV F is under selective pressure to be silenced during vector replication in vivo, but this was not exacerbated by a high level of RSV F expression and generally involved a small percentage of recovered vector. Vector passaged in vitro accumulated mutations in the HN open reading frame, causing a dramatic increase in plaque size that may have implications for vaccine production and immunogenicity. IMPORTANCE The research findings presented here will be instrumental for improving the design of a bivalent pediatric vaccine for respiratory syncytial virus and parainfluenza virus type 3, two major causes of severe respiratory tract infection in infants and young

  9. A matched case-control study comparing udder health, production and fertility parameters in dairy farms before and after the eradication of Bovine Virus Diarrhoea in Switzerland.

    Science.gov (United States)

    Tschopp, A; Deiss, R; Rotzer, M; Wanda, S; Thomann, B; Schüpbach-Regula, G; Meylan, M

    2017-09-01

    An obligatory eradication programme for Bovine Virus Diarrhoea (BVD) was implemented in Switzerland in 2008. Between 2008 and 2012, all bovines were tested for antigen or antibodies against BVDV. By the year 2012, eradication was completed in the majority of farms. A decrease of the prevalence of persistently infected (PI) newborn calves was observed from 1.4% in 2008 to study was to assess the effects of BVD eradication on different parameters of animal health, production and fertility in Swiss dairy herds which had completed the eradication programme. A matched case-control study was carried out using data from two periods, before (Period 1) and after (Period 2) the active phase of eradication. Case farms had at least two PI animals detected before or during the eradication; controls were BVD-free and matched for region, herd size and use of alpine pasture. A total of 110 farmers (55 pairs) were recruited. During a phone interview, a questionnaire about farm characteristics, animal health and appreciation of the BVD eradication programme was filled in. Breeding data and milk test day records were also analyzed. Parameters were first compared between (i) case and control herds before eradication, and (ii) Period 1 and Period 2 for case herds only. Milk yield (MY), bulk milk somatic cell count (BMSCC), prevalence of subclinical mastitis (SCM), and non-return rate (NRR) showed a p-valuecase-control) was created (IA). Except for MY, the IA was significant for all parameters modelled. Despite an overall p-value of 0.27, case herds tended to have a higher MY after eradication (β=0.53, p=0.050). For BMSCC and SCM, case herds had higher values than controls in both periods; udder health was significantly improved in control herds and it remained stable in case herds, with a slight decrease of BMSCC (β=-0.19, p=0.010). Finally, among fertility parameters, NRR showed a general improvement but it was significant only in control herds (β=0.29, p=0.019). Even though the

  10. Efficacy and safety of Ban Huang oral liquid for treating bovine ...

    African Journals Online (AJOL)

    The results of laboratory pathogen testing, analysis of clinical symptoms, and analysis of pathological anatomy were combined to diagnose bovine respiratory diseases in 147 Simmental cattle caused by mixed infections of M. bovis, bovine respiratory syncytial virus, bovine parainfluenza virus type 3, and Mannheimia ...

  11. Dairy Cows Naturally Infected with Bovine Leukemia Virus Exhibit Abnormal B- and T-Cell Phenotypes after Primary and Secondary Exposures to Keyhole Limpet Hemocyanin

    Directory of Open Access Journals (Sweden)

    Meredith C. Frie

    2017-07-01

    Full Text Available Bovine leukemia virus (BLV is a retrovirus that is highly prevalent in US dairy herds: over 83% are BLV infected and the within-herd infection rate can be almost 50% on average. While BLV is known to cause lymphosarcomas, only 5% or fewer infected cattle will develop lymphoma; this low prevalence of cancer has historically not been a concern to dairy producers. However, more recent research has found that BLV+ cows without lymphoma produce less milk and have shorter lifespans than uninfected herdmates. It has been hypothesized that BLV infection interferes with normal immune function in infected cattle, and this could lead to reduced dairy production. To assess how naturally infected BLV+ cows responded to a primary and secondary immune challenge, 10 BLV+ and 10 BLV− cows were injected subcutaneously with keyhole limpet hemocyanin (KLH and dimethyldioctadecylammonium bromide. B- and T-cell responses were characterized over the following 28 days. A total of 56 days after primary KLH exposure, cows were re-injected with KLH and B- and T-cell responses were characterized again over the following 28 days. BLV+ cows produced less KLH-specific IgM after primary immune stimulation; demonstrated fewer CD45R0+ B cells, altered proportions of CD5+ B cells, altered expression of CD5 on CD5+ B cells, and reduced MHCII surface expression on B cells ex vivo; exhibited reduced B-cell activation in vitro; and displayed an increase in BLV proviral load after KLH exposure. In addition, BLV+ cows had a reduced CD45R0+γδ+ T-cell population in the periphery and demonstrated a greater prevalence of IL4-producing T cells in vitro. All together, our results demonstrate that both B- and T-cell immunities are disrupted in BLV+ cows and that antigen-specific deficiencies can be detected in BLV+ cows even after a primary immune exposure.

  12. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves.

    Science.gov (United States)

    Nonnecke, B J; McGill, J L; Ridpath, J F; Sacco, R E; Lippolis, J D; Reinhardt, T A

    2014-09-01

    Studies in young animals have shown an association between vitamin deficiencies and increased risk of infectious disease; however, there is a paucity of information regarding the effect of acute infection on the vitamin status of the vitamin-replete neonate. To characterize the effects of acute infection on vitamin D and E status of the neonate, 6 vitamin-replete preruminant Holstein bull calves were experimentally infected with bovine viral diarrhea virus (BVDV; strain BVDV2-1373). Six mock-inoculated calves served as controls. Sustained pyrexia, leukopenia, and asynchronous increases in serum haptoglobin and serum amyloid A characterized the response of calves to infection with BVDV. Infection was also associated with increased serum IFN-γ, IL-2, and IL-6 concentrations. During the last 8 d of the 14-d postinoculation period, serum 25-hydroxyvitamin D and α-tocopherol concentrations in infected calves decreased by 51 and 82%, respectively. The observed inverse association between vitamin D and E status and serum amyloid A in infected calves suggests that the infection-induced acute phase response contributed to the reduced vitamin status of these animals. Additional studies are necessary to determine if the negative effect of infection on status are unique to this specific infection model or is representative of preruminant calf's response to acute infection. Studies are also needed to characterize mechanisms underlying infection-related changes in vitamin D and E status and to determine whether additional vitamin D or E supplementation during an acute infection diminishes disease severity and duration in the young animal. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Bovine viral diarrhea virus in free-ranging wild ruminants in Switzerland: low prevalence of infection despite regular interactions with domestic livestock

    Science.gov (United States)

    2012-01-01

    Background In the frame of an eradication program for bovine viral diarrhea (BVD) in Swiss livestock, the question was raised whether free-ranging wildlife could threaten the success of this sanitary measure. Therefore, we conducted serological and virological investigations on BVD virus (BVDV) infections in the four indigenous wild ruminant species (roe deer, red deer, Alpine chamois and Alpine ibex) from 2009 to 2011, and gathered information on interactions between wild and domestic ruminants in an alpine environment by questionnaire survey. Results Thirty-two sera out of 1’877 (1.7%, 95% confidence interval [CI] 1.2-2.4) were seropositive for BVDV, and a BVDV1 sub genotype h virus was found in a seropositive chamois (0.05%, 95% CI 0.001-0.3). The seropositive animals originated from sub-alpine or alpine regions and significantly more seropositive red deer, chamois and ibex than roe deer were found. There were no statistically significant differences between sampling units, age classes, genders, and sampling years. The obtained prevalences were significantly lower than those documented in livestock, and most positive wild ruminants were found in proximity of domestic outbreaks. Additionally, BVDV seroprevalence in ibex was significantly lower than previously reported from Switzerland. The survey on interspecific interactions revealed that interactions expected to allow BVDV transmission, from physical contacts to non-simultaneous use of the same areas, regularly occur on pastures among all investigated ruminant species. Interactions involving cervids were more often observed with cattle than with small ruminants, chamois were observed with all three domestic species, and ibex interacted mostly with small ruminants. Interactions related to the use of anthropogenic food sources were frequently observed, especially between red deer and cattle in wintertime. Conclusions To our knowledge, this is the first report of BVDV RNA isolated from an Alpine chamois

  14. Bovine viral diarrhea virus in free-ranging wild ruminants in Switzerland: low prevalence of infection despite regular interactions with domestic livestock

    Directory of Open Access Journals (Sweden)

    Casaubon Julien

    2012-10-01

    Full Text Available Abstract Background In the frame of an eradication program for bovine viral diarrhea (BVD in Swiss livestock, the question was raised whether free-ranging wildlife could threaten the success of this sanitary measure. Therefore, we conducted serological and virological investigations on BVD virus (BVDV infections in the four indigenous wild ruminant species (roe deer, red deer, Alpine chamois and Alpine ibex from 2009 to 2011, and gathered information on interactions between wild and domestic ruminants in an alpine environment by questionnaire survey. Results Thirty-two sera out of 1’877 (1.7%, 95% confidence interval [CI] 1.2-2.4 were seropositive for BVDV, and a BVDV1 sub genotype h virus was found in a seropositive chamois (0.05%, 95% CI 0.001-0.3. The seropositive animals originated from sub-alpine or alpine regions and significantly more seropositive red deer, chamois and ibex than roe deer were found. There were no statistically significant differences between sampling units, age classes, genders, and sampling years. The obtained prevalences were significantly lower than those documented in livestock, and most positive wild ruminants were found in proximity of domestic outbreaks. Additionally, BVDV seroprevalence in ibex was significantly lower than previously reported from Switzerland. The survey on interspecific interactions revealed that interactions expected to allow BVDV transmission, from physical contacts to non-simultaneous use of the same areas, regularly occur on pastures among all investigated ruminant species. Interactions involving cervids were more often observed with cattle than with small ruminants, chamois were observed with all three domestic species, and ibex interacted mostly with small ruminants. Interactions related to the use of anthropogenic food sources were frequently observed, especially between red deer and cattle in wintertime. Conclusions To our knowledge, this is the first report of BVDV RNA isolated from an

  15. Van Bölgesi Keçilerinde Parainfluenza Virus – 3 (PIV-3) ve Bovine Herpesvirus-1 (BHV-1) Enfeksiyonlarının Seroprevalansı

    OpenAIRE

    ATASEVEN, Veysel Soydal; BAŞARAN, Zeynep; YILMAZ, Volkan; DAĞALP, Seval Bilge

    2010-01-01

    Bu çalışmada, Van merkez ve ilçelerinde yetiştirilen keçi sürülerinden alınan 407 adet kan serum örneğinde bovine herpesvirus-1 (BHV-1) ve parainfluenza virus-3 (PIV-3) spesifik antikorlarının varlığı virus nötralizasyon (VN) testi ile araştırıldı. Serum örneklerinin 21 adedinde (%5.2) PIV-3 ve 3 adedinde (%0.7) BHV-1’e karşı spesifik antikor varlığı tespit edildi. Elde edilen veriler, Van ilindeki yerli ırk keçilerde PIV-3 ve BHV-1 enfeksiyonlarının varlığını ortaya koymaktadır...

  16. Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow Silica Mesoporous Nanoparticle Formulation.

    Directory of Open Access Journals (Sweden)

    Donna Mahony

    Full Text Available Bovine viral diarrhoea virus 1 (BVDV-1 is arguably the most important viral disease of cattle. It is associated with reproductive, respiratory and chronic diseases in cattle across the world. In this study we have investigated the capacity of the major immunological determinant of BVDV-1, the E2 protein combined with hollow type mesoporous silica nanoparticles with surface amino functionalisation (HMSA, to stimulate immune responses in sheep. The current work also investigated the immunogenicity of the E2 nanoformulation before and after freeze-drying processes. The optimal excipient formulation for freeze-drying of the E2 nanoformulation was determined to be 5% trehalose and 1% glycine. This excipient formulation preserved both the E2 protein integrity and HMSA particle structure. Sheep were immunised three times at three week intervals by subcutaneous injection with 500 μg E2 adsorbed to 6.2 mg HMSA as either a non-freeze-dried or freeze-dried nanoformulation. The capacity of both nanovaccine formulations to generate humoral (antibody and cell-mediated responses in sheep were compared to the responses in sheep immunisation with Opti-E2 (500 μg together with the conventional adjuvant Quil-A (1 mg, a saponin from the Molina tree (Quillaja saponira. The level of the antibody responses detected to both the non-freeze-dried and freeze-dried Opti-E2/HMSA nanoformulations were similar to those obtained for Opti-E2 plus Quil-A, demonstrating the E2 nanoformulations were immunogenic in a large animal, and freeze-drying did not affect the immunogenicity of the E2 antigen. Importantly, it was demonstrated that the long term cell-mediated immune responses were detectable up to four months after immunisation. The cell-mediated immune responses were consistently high in all sheep immunised with the freeze-dried Opti-E2/HMSA nanovaccine formulation (>2,290 SFU/million cells compared to the non-freeze-dried nanovaccine formulation (213-500 SFU/million cells

  17. Infectivity of enzootic bovine leukosis infected animals during the incubation period.

    Science.gov (United States)

    Roberts, D H; Lucas, M H; Wibberley, G; Swallow, C

    1985-03-23

    Steers and calves were experimentally infected with bovine leukosis virus. The virus was isolated from the blood and from the tracheal and bronchoalveolar washings before antibodies could be detected in the serum. Bovine leukosis virus was not detected during any period in the blood plasma.

  18. Effectivity of PCR and AGID methods to detect of enzootic bovine leukosis in Indonesia

    OpenAIRE

    Saepulloh M; Sendow I

    2015-01-01

    Enzootic Bovine Leucosis (EBL) is one of viral diseases in cattle caused by bovine leukemia virus (BLV), from Retroviridae. The virus can be detected using severals methods such as Polymerase Chain Reaction (PCR), while antibody can be detected using Agar Gel Immunodifussion (AGID). The aim of this experiment was to study the effectivity of PCR and AGID methods to detect enzootic bovine leukosis virus in Indonesia. Samples of peripheral blood leukocyte (PBL) were collected from cattles those ...

  19. Bovine papillomavirus isolation by ultracentrifugation.

    Science.gov (United States)

    Araldi, R P; Giovanni, D N S; Melo, T C; Diniz, N; Mazzuchelli-de-Souza, J; Sant'Ana, T A; Carvalho, R F; Beçak, W; Stocco, R C

    2014-11-01

    The bovine papillomavirus (BPV) is the etiological agent of bovine papillomatosis, which causes significant economic losses to livestock, characterized by the presence of papillomas that regress spontaneously or persist and progress to malignancy. Currently, there are 13 types of BPVs described in the literature as well as 32 putative new types. This study aimed to isolate viral particles of BPV from skin papillomas, using a novel viral isolation method. The virus types were previously identified with new primers designed. 77 cutaneous papilloma samples of 27 animals, Simmental breed, were surgically removed. The DNA was extracted and subjected to PCR using Delta-Epsilon and Xi primers. The bands were purified and sequenced. The sequences were analyzed using software and compared to the GenBank database, by BLAST tool. The viral typing showed a prevalence of BPV-2 in 81.81% of samples. It was also detected the presence of the putative new virus type BR/UEL2 in one sample. Virus isolation was performed by ultracentrifugation in a single density of cesium chloride. The method of virus isolation is less laborious than those previously described, allowing the isolation of complete virus particles of BPV-2. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. 77 FR 29914 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2012-05-21

    ... RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products AGENCY... live bovines and products derived from bovines with regard to bovine spongiform encephalopathy. This... products to revise the conditions for the importation of live bovines and products derived from bovines...

  1. Molecular and Phylogenetic Analyses of Bovine Rhinovirus Type 2 Shows it is Closely Related to Foot-and-Mouth Disease Virus

    Science.gov (United States)

    Bovine rhinovirus 2 (BRV2), a causative agent of respiratory disease in cattle, is currently an unclassified species tentatively assigned to the genus rhinovirus in the family Picornaviridae. A nearly full-length cDNA of the BRV2 genome was cloned and the nucleotide sequence from the poly(C) to the ...

  2. Viral and Bacterial Pathogens in Bovine Respiratory Disease in Finland

    Directory of Open Access Journals (Sweden)

    Soveri T

    2004-12-01

    Full Text Available Pathogens causing bovine respiratory tract disease in Finland were investigated. Eighteen cattle herds with bovine respiratory disease were included. Five diseased calves from each farm were chosen for closer examination and tracheobronchial lavage. Blood samples were taken from the calves at the time of the investigation and from 86 calves 3–4 weeks later. In addition, 6–10 blood samples from animals of different ages were collected from each herd, resulting in 169 samples. Serum samples were tested for antibodies to bovine parainfluenza virus-3 (PIV-3, bovine respiratory syncytial virus (BRSV, bovine coronavirus (BCV, bovine adenovirus-3 (BAV-3 and bovine adenovirus-7 (BAV-7. About one third of the samples were also tested for antibodies to bovine virus diarrhoea virus (BVDV with negative results. Bacteria were cultured from lavage fluid and in vitro susceptibility to selected antimicrobials was tested. According to serological findings, PIV-3, BAV-7, BAV-3, BCV and BRSV are common pathogens in Finnish cattle with respiratory problems. A titre rise especially for BAV-7 and BAV-3, the dual growth of Mycoplasma dispar and Pasteurella multocida, were typical findings in diseased calves. Pasteurella sp. strains showed no resistance to tested antimicrobials. Mycoplasma bovis and Mannheimia haemolytica were not found.

  3. Seroprevalence and risk factors associated with bovine herpesvirus ...

    African Journals Online (AJOL)

    Bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) are well known etiological agents of cattle that produce important economic losses due to reproductive failures and calf mortality, as well as enteric and respiratory disease. Tamaulipas is located northeast of Mexico, an important cattle production and ...

  4. Diagnosis of enzootic bovine leucosis in single and pooled samples.

    Science.gov (United States)

    Hoff-Jørgensen, R

    1990-12-01

    Diagnosis of enzootic bovine leucosis is based on detection of antibodies against bovine leukemia virus, BLV. Some ELISA modifications have proved sensitive enough for use in the examination of pooled blood samples from slaughterhouses, milk and pooled milk samples. Suggestions for the standardisation of different ELISA modifications using a common reference serum are presented.

  5. The vaccines for Bovine Herpesvirus Type 1: A review | Zhao ...

    African Journals Online (AJOL)

    Bovine herpesvirus type 1 (BoHV-1) is the pathogen of Infectious Bovine Rhinothracheitis (IBR) disease, causing great economic losses in the livestock industry. Vaccine is a powerful means to control the virus. Here, the review described the currently available knowledge regarding to the advance in the field of BoHV-1 ...

  6. Foot-and-mouth disease virus, but not bovine enterovirus, targets the host cell cytoskeleton, via the non-structural protein 3Cpro

    DEFF Research Database (Denmark)

    Armer, Hannah; Moffat, Katy; Wileman, Thomas

    2008-01-01

    Foot-and-mouth disease virus (FMDV), a member of the Picornaviridae, is a pathogen of cloven-hoofed animals and causes a disease of major economic importance. Picornavirus-infected cells show changes in cell morphology and rearrangement of cytoplasmic membranes, which are a consequence of virus...

  7. Homologous recombination in bovine pestiviruses. Phylogenetic and statistic evidence.

    Science.gov (United States)

    Jones, Leandro Roberto; Weber, E Laura

    2004-12-01

    Bovine pestiviruses (Bovine Viral Diarrea Virus 1 (BVDV 1) and Bovine Viral Diarrea Virus 2 (BVDV 2)) belong to the genus Pestivirus (Flaviviridae), which is composed of positive stranded RNA viruses causing significant economic losses world-wide. We used phylogenetic and bootstrap analyses to systematically scan alignments of previously sequenced genomes in order to explore further the evolutionary mechanisms responsible for variation in the virus. Previously published data suggested that homologous crossover might be one of the mechanisms responsible for the genomic rearrangements observed in cytopathic (cp) strains of bovine pestiviruses. Nevertheless, homologous recombination involves not just homologous crossovers, but also replacement of a homologous region of the acceptor RNA. Furthermore, cytopathic strains represent dead paths in evolution, since they are isolated exclusively from the fatal cases of mucosal disease. Herein, we report evidence of homologous inter-genotype recombination in the genome of a non-cytopathic (ncp) strain of Bovine Viral Diarrea Virus 1, the type species of the genus Pestivirus. We also show that intra-genotype homologous recombination might be a common phenomenon in both species of Pestivirus. This evidence demonstrates that homologous recombination contribute to the diversification of bovine pestiviruses in nature. Implications for virus evolution, taxonomy and phylogenetics are discussed.

  8. VIRUSES

    Indian Academy of Sciences (India)

    and-mouth disease in livestock was an infectious particle smaller than any bacteria. This was the first clue to the nature of viruses, genetic entities that lie somewhere in the gray area between living and non-living states.

  9. Virome of US bovine calf serum.

    Science.gov (United States)

    Sadeghi, Mohammadreza; Kapusinszky, Beatrix; Yugo, Danielle M; Phan, Tung Gia; Deng, Xutao; Kanevsky, Isis; Opriessnig, Tanja; Woolums, Amelia R; Hurley, David J; Meng, Xiang-Jin; Delwart, Eric

    2017-03-01

    Using viral metagenomics we analyzed four bovine serum pools assembled from 715 calves in the United States. Two parvoviruses, bovine parvovirus 2 (BPV2) and a previously uncharacterized parvovirus designated as bosavirus (BosaV), were detected in 3 and 4 pools respectively and their complete coding sequences generated. Based on NS1 protein identity, bosavirus qualifies as a member of a new species in the copiparvovirus genus. Also detected were low number of reads matching ungulate tetraparvovirus 2, bovine hepacivirus, and several papillomaviruses. This study further characterizes the diversity of viruses in calf serum with the potential to infect fetuses and through fetal bovine serum contaminate cell cultures. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  10. Serological and genetic characterisation of bovine respiratory syncytial virus (BRSV) indicates that Danish isolates belong to the intermediate subgroup: no evidence of a selective effect on the variability of G protein nucleotide sequence by prior cell culture adaption and passages in cell culture

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Uttenthal, Åse; Arctander, P.

    1998-01-01

    Danish isolates of bovine respiratory syncytial virus (BRSV) were characterised by nucleotide sequencing of the G glycoprotein and by their reactivity with a panel of monoclonal antibodies (MAbs). Among the six Danish isolates, the overall sequence divergence ranged between 0 and 3...... part of the G gene of additional 11 field BRSV viruses, processed directly from lung samples without prior adaption to cell culture growth. revealed sequence variabilities in the range obtained with the propagated virus. In addition, several passages in cell culture and in calves had no major impact...... on the nucleotide sequence of the G protein. These findings indicated that the previously established variabilities of the G protein of RS virus isolates were not attributable to mutations induced during the propagation of the virus. The reactivity of the Danish isolates with G protein-specific MAbs were similar...

  11. Isolamento do vírus Parainfluenza bovino tipo 3 no Rio Grande do Sul, Brasil Isolation of bovine Parainfluenza virus type 3 in Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Diocela Andrade Gonçalves

    2003-10-01

    Full Text Available É descrito o isolamento do vírus Parainfluenza bovino tipo 3 (bPI-3 a partir de secreções nasais coletadas de um bovino com infecção respiratória. A identificação do agente foi realizada através de isolamento em cultivo celular e confirmada por testes de hemaglutinação, inibição da hemaglutinação, hemadsorção e imunofluorescência direta. Este é o primeiro registro do isolamento do vírus no Rio Grande do Sul.The isolation of bovine parainfluenza virus type 3 (bPI-3 from a case of mild respiratory disease in a calf is described. Identification was carried out by virus isolation in cell cultures and confirmed by hemagglutination, hemagglutination inhibition, hemadsorbtion and direct imunofluorescence. This is the first report on the isolation of bPI-3 in Rio Grande do Sul, Brazil.

  12. 9 CFR 113.47 - Detection of extraneous viruses by the fluorescent antibody technique.

    Science.gov (United States)

    2010-01-01

    ... tested for: (i) Bluetongue virus; (ii) Bovine adenoviruses; (iii) Bovine parvovirus; and (iv) Bovine respiratory syncytial virus. (3) Canine cells shall, in addition, be tested for: (i) Canine coronavirus; (ii) Canine distemper virus; and (iii) Canine parvovirus. (4) Equine cells shall, in addition, be tested for...

  13. Vaccination of cattle against bovine viral diarrhoea

    NARCIS (Netherlands)

    Oirschot, van J.T.; Bruschke, C.J.M.; Rijn, van P.A.

    1999-01-01

    This brief review describes types and quality (efficacy and safety) of bovine viral diarrhoea virus (BVDV) vaccines that are in the market or under development. Both conventional live and killed vaccines are available. The primary aim of vaccination is to prevent congenital infection, but the few

  14. Discovery of a bovine enterovirus in alpaca.

    Directory of Open Access Journals (Sweden)

    Shasta D McClenahan

    Full Text Available A cytopathic virus was isolated using Madin-Darby bovine kidney (MDBK cells from lung tissue of alpaca that died of a severe respiratory infection. To identify the virus, the infected cell culture supernatant was enriched for virus particles and a generic, PCR-based method was used to amplify potential viral sequences. Genomic sequence data of the alpaca isolate was obtained and compared with sequences of known viruses. The new alpaca virus sequence was most similar to recently designated Enterovirus species F, previously bovine enterovirus (BEVs, viruses that are globally prevalent in cattle, although they appear not to cause significant disease. Because bovine enteroviruses have not been previously reported in U.S. alpaca, we suspect that this type of infection is fairly rare, and in this case appeared not to spread beyond the original outbreak. The capsid sequence of the detected virus had greatest homology to Enterovirus F type 1 (indicating that the virus should be considered a member of serotype 1, but the virus had greater homology in 2A protease sequence to type 3, suggesting that it may have been a recombinant. Identifying pathogens that infect a new host species for the first time can be challenging. As the disease in a new host species may be quite different from that in the original or natural host, the pathogen may not be suspected based on the clinical presentation, delaying diagnosis. Although this virus replicated in MDBK cells, existing standard culture and molecular methods could not identify it. In this case, a highly sensitive generic PCR-based pathogen-detection method was used to identify this pathogen.

  15. Discovery of a bovine enterovirus in alpaca.

    Science.gov (United States)

    McClenahan, Shasta D; Scherba, Gail; Borst, Luke; Fredrickson, Richard L; Krause, Philip R; Uhlenhaut, Christine

    2013-01-01

    A cytopathic virus was isolated using Madin-Darby bovine kidney (MDBK) cells from lung tissue of alpaca that died of a severe respiratory infection. To identify the virus, the infected cell culture supernatant was enriched for virus particles and a generic, PCR-based method was used to amplify potential viral sequences. Genomic sequence data of the alpaca isolate was obtained and compared with sequences of known viruses. The new alpaca virus sequence was most similar to recently designated Enterovirus species F, previously bovine enterovirus (BEVs), viruses that are globally prevalent in cattle, although they appear not to cause significant disease. Because bovine enteroviruses have not been previously reported in U.S. alpaca, we suspect that this type of infection is fairly rare, and in this case appeared not to spread beyond the original outbreak. The capsid sequence of the detected virus had greatest homology to Enterovirus F type 1 (indicating that the virus should be considered a member of serotype 1), but the virus had greater homology in 2A protease sequence to type 3, suggesting that it may have been a recombinant. Identifying pathogens that infect a new host species for the first time can be challenging. As the disease in a new host species may be quite different from that in the original or natural host, the pathogen may not be suspected based on the clinical presentation, delaying diagnosis. Although this virus replicated in MDBK cells, existing standard culture and molecular methods could not identify it. In this case, a highly sensitive generic PCR-based pathogen-detection method was used to identify this pathogen.

  16. Effects of on-arrival versus delayed clostridial or modified live respiratory vaccinations on health, performance, bovine viral diarrhea virus type I titers, and stress and immune measures of newly received beef calves.

    Science.gov (United States)

    Richeson, J T; Kegley, E B; Gadberry, M S; Beck, P A; Powell, J G; Jones, C A

    2009-07-01

    Stress, commonly associated with weaning, marketing, and shipment of feeder cattle, can compromise immune function, and vaccine administration during immunosuppression may reduce vaccine efficacy and calf growth. Four treatments were compared in a 2 x 2 factorial arrangement to evaluate the effect of on-arrival (d 0) vs. delayed (d 14) administration of clostridial (CLOS) and respiratory (RESP) vaccines on health, performance, bovine viral diarrhea virus (BVDV) antibody titers, and physiological immune measurements of high-risk, newly received calves. Crossbred bull and steer calves (n = 263) were weighed (239 +/- 1.2 kg), stratified by sex, and randomly assigned to vaccination treatment: 1) arrival CLOS, arrival RESP (ACAR); 2) arrival CLOS, delayed RESP (ACDR); 3) delayed CLOS, arrival RESP (DCAR); and 4) delayed CLOS, delayed RESP (DCDR). Body weight and blood samples were collected on d 0, 14, 28, 42, and 56. Average daily gain did not differ (P > or = 0.34), averaging 0.98, 0.93, 0.95, and 0.91 kg/d for ACAR, ACDR, DCAR, and DCDR, respectively, for the entire 56-d trial. Vaccination timing did not affect morbidity (P > or = 0.23); however, there tended to be a CLOS timing effect (P = 0.07) and RESP timing effect (P = 0.09) on days to initial bovine respiratory disease (BRD) treatment. Average days to initial BRD treatment were less for ACAR (6 +/- 0.8 d) compared with DCDR (8 +/- 0.8 d; P = 0.01). Greater white blood cell counts were observed for DCDR than ACDR (P = 0.01), with ACAR and DCAR being intermediate. Serum cortisol concentrations were greater on d 0 than d 14 (P gain or morbidity in high risk, newly received stocker calves. Calves administered RESP vaccine on d 0 developed antibody titers to BVDV type I earlier than delayed RESP treatments. Total white blood cell count was greatest when RESP and CLOS vaccination were delayed (DCDR).

  17. VACUNAS CONTRA EL HERPESVIRUS BOVINO-1: UNA MIRADA DESDE EL PASADO HACIA EL FUTURO DE LA INMUNIZACIÓN Bovine Herpesvirus-1 Vaccine’s: A Look From The Past To The Immunization Future

    Directory of Open Access Journals (Sweden)

    JULIÁN RUIZ-SAENZ

    Full Text Available El herpesvirus Bovino-1 (BHV-1 es uno de los principales patógenos que afecta el ganado; la infección primaria se acompaña de varias manifestaciones clínicas tales como la rinotraqueitis, aborto, vulvovaginitis/balanopostitis pustular y en algunos casos, enfermedad neurológica. Luego de la recuperación, la infección persiste durante toda la vida del individuo en un estado de latencia en ganglios nervioso trigémino o sacro. La Organización Mundial de Sanidad Animal (OIE reporta que la vacunación contra el BHV-1 puede ser efectiva en reducir las manifestaciones clínicas y en consecuencia las pérdidas económicas, pero no logra proteger completamente de la infección. Es por esto que durante los últimos años se han desarrollado gran cantidad de agentes vacunales que van desde las vacunas clásicas inactivadas hasta aquellas que usan tecnología de DNA recombinante. El presente artículo se enfoca en presentar una actualización acerca de las vacunas más usadas desde hace ya varios años y resumir los avances más importantes en la generación de nuevas vacunas contra el BHV-1; tratando así de abrir un nuevo panorama para la generación de vacunas en Colombia.Bovine herpesvirus-1 is one of the most important pathogens of cattle; the primary infection is characterized by clinical manifestations such as infectious bovine rhinotracheitis, abortion, infectious pustular vulvovaginitis and in some cases, neurological signs. After recovering, the virus establishes viral latency in sensory neurons of trigeminal or sacral ganglia. The World Organization for Animal Health (OIE reports that vaccination against BHV-1 could be useful to reduce the clinical manifestations and in consequence the economic looses, but it can not protect against the infection. Therefore, a huge amount of vaccines have been developed that includes from classic inactivation to recombinant DNA technologies. This paper makes an updated review about the most used vaccines

  18. PREVALENCE OF BOVINE (1)

    African Journals Online (AJOL)

    BACKGROUND: Tuberculosis is caused by a number of Mycobacterium species, of which Mycobacterium bovis, causing 'bovine tuberculosis' is ... KEY WORDS: Mycobacterium bovis, Zoonosis, Holeta, Ethiopia causing 'bovine tuberculosis ..... isolation of infected animals in which communal grazing and watering practiced.

  19. Papillomatosis of the bovine teat (mammary papilla).

    Science.gov (United States)

    Olson, R O; Olson, C; Easterday, B C

    1982-12-01

    A 4th of 667 cattle examined at a Wisconsin abattoir had teat papillomas. Excised teat papillomas were sorted by gross morphologic characteristics into 3 groups: (i) atypical filiform, (ii) atypical flat, and (iii) typical fibropapilloma. Bovine papilloma virus capsid antigen was detected in thin-section slides of the 3 groups of teat papillomas by peroxidase-antiperoxidase assay. The bovine papilloma virus involved with the atypical papillomas could not be characterized by molecular hybridization, because enough pure virus could not be harvested. Homogenates of the 3 groups of teat papillomas were inoculated on 2 ponies and 4 calves. Typical fibropapillomas were produced on the 4 calves, and fibromas, on the 2 ponies. Atypical papillomas were produced only in 2 heifers.

  20. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

    DEFF Research Database (Denmark)

    Pandya, Mital; Rasmussen, Michael; Hansen, Andreas

    2015-01-01

    Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8+ T cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presentation......, and different antigen peptide motifs are associated with specific genetic sequences of class I molecules. Understanding bovine leukocyte antigen (BoLA), peptide-MHC class I binding specificities may facilitate development of vaccines or reagents for quantifying the adaptive immune response to intracellular....... The results of these analyses showed that BoLA alleles cluster into three distinct groups with the potential to define “BoLA supertypes.” This streamlined approach identifies potential T cell epitopes from pathogens, such as FMDV, and provides insight into T cell immunity following infection or vaccination....

  1. A Novel Genetic Group of Bovine Hepacivirus in Archival Serum Samples from Brazilian Cattle

    Directory of Open Access Journals (Sweden)

    Cláudio W. Canal

    2017-01-01

    Full Text Available Hepatitis C virus (HCV (genus Hepacivirus; family Flaviviridae is a major human pathogen causing persistent infection and hepatic injury. Recently, emerging HCV-like viruses were described infecting wild animals, such as bats and rodents, and domestic animals, including dogs, horses, and cattle. Using degenerate primers for detecting bovine pestiviruses in a 1996 survey three bovine serum samples showed a low identity with the genus Pestivirus of the Flaviviridae family. A virus could not be isolated in cell culture. The description of bovine hepaciviruses (BovHepV in 2015 allowed us to retrospectively identify the sequences as BovHepV, with a 88.9% nucleotide identity. In a reconstructed phylogenetic tree, the Brazilian BovHepV samples grouped within the bovine HCV-like cluster in a separated terminal node that was more closely related to the putative bovine Hepacivirus common ancestor than to bovine hepaciviruses detected in Europe and Africa.

  2. Dinâmica das proteínas séricas de fêmeas bovinas da raça holandesa naturalmente infectadas pelo vírus da leucose dos bovinos Serum protein dynamics in Holstein cows naturally infected with bovine leukemia virus

    Directory of Open Access Journals (Sweden)

    Eduardo Harry Birgel Junior

    2001-08-01

    Full Text Available Com o objetivo de avaliar a dinâmica das proteínas séricas de fêmeas bovinas da raça holandesa, criadas no Estado de São Paulo e naturalmente infectadas pelo vírus da leucose dos bovinos, foram colhidas 60 amostras de soro sangüíneo. Os animais foram divididos em 3 grupos experimentais: Grupo 1 - composto de 20 fêmeas não reagentes ao antígeno gp-51 do vírus da leucose dos bovinos; Grupo 2 - composto de 20 fêmeas reagentes ao antígeno gp-5l do vírus da leucose dos bovinos sem linfocitose; Grupo 3 - composto de 20 fêmeas reagentes ao antígeno gp-5l do vírus da leucose dos bovinos com linfocitose. A avaliação do proteinograma sérico foi realizada pela determinação dos teores séricos de proteína total pelo método do biureto e a separação das frações albumina, alfaglobulina, betaglobulina e gamaglobulina através de eletroforese. A determinação quantitativa dos níveis séricos de imunoglobulinas IgM e IgG foi realizada através de imunodifusão radial simples. Os valores séricos do proteinograma e da concentração sérica das imunoglobulinas IgG e IgM dos animais não reagentes ao vírus da leucose dos bovinos foram semelhantes àqueles observados nos animais reagentes ao vírus da leucose dos Bovinos sem linfocitose e no grupo de animais reagentes ao vírus da leucose dos bovinos com linfocitose.In an attempt to determine the serum protein dynamics in cattle naturally infected with bovine leukemia virus, samples of blood sera from 60 cows of Holstein breed, raised in the State of São Paulo, Brazil, were collected.The animals were divided in three Groups: Group 1- was composed of 20 bovine leukemia virus antibody negative cows; Group 2 - was composed of 20 cows reacting to the antigen (gp-51 of the bovine leukemia virus without lymphocytosis and Group 3 - was composed of 20 cows reacting to the antigen (gp-51 of the bovine leukemia virus with lymphocytosis. Serum total protein was determined by the biuret

  3. Excreção e transmissão do vírus da diarréia viral bovina por bezerros persistentemente infectados Shedding and transmission of bovine viral diarrhea virus by persistently infected calves

    Directory of Open Access Journals (Sweden)

    Sandra Arenhart

    2009-09-01

    /48 (16,6% foram soropositivos para anticorpos no dia 10, 26/48 (54,1% no dia 40 e 37/48 (77% haviam soroconvertido no dia 100, quando encerrou-se o monitoramento. Estes resultados demonstram que a viremia e excreção viral contínua em altos títulos por animais PI assegura a transmissão rápida do BVDV a animais mantidos em contato, sendo a transmissão notadamente mais rápida em condições intensivas e de alta densidade animal.Persistently infected (PI calves born to cows infected with non-cytopathic bovine virus diarrhea virus (BVDV represent the main reservoir of the virus in nature. We herein report an investigation on the patterns of virus shedding and transmission by five PI calves produced experimentally through inoculation of pregnant cows with Brazilian BVDV isolates. Five calves that survived intrauterine infection were born healthy, lacking neutralizing antibodies to BVDV and harboring virus in the blood. After weaning - and following the disappearance of colostral antibodies - PI calves were monitored for virus in serum and body secretions (ocular, oral, nasal and genital at weekly intervals for up to 150 days. For each animal, the virus titers in serum showed minor variations throughout the collections (with one exception that presented an increase late in infection, yet the titers varied widely among animals (from 10² to 10(6TCID50/mL. Virus shedding in secretions was detected steadily during all the observation period with minor titer variations for each particular animal. The highest titers were generally detected in nasal and ocular secretions (titers 10(4 to 10(6TCID50mL whereas genital and oral secretions usually contained low amount of virus (10² to 10³TCID50mL. To evaluate the kinetics of virus transmission by these animals, one PI was introduced on a group of 10 seronegative calves maintained with a high animal density simulating the conditions of an intensive management. All 10 contact calves seroconverted to BVDV by day 30. Another PI calf

  4. Effect of copper, manganese, and zinc supplementation on the performance, clinical signs, and mineral status of calves following exposure to bovine viral diarrhea virus type 1b and subsequent infection.

    Science.gov (United States)

    Wilson, B K; Vazquez-Anon, M; Step, D L; Moyer, K D; Haviland, C L; Maxwell, C L; O'Neill, C F; Gifford, C A; Krehbiel, C R; Richards, C J

    2016-03-01

    Research has indicated that trace mineral (TM) supplementation may alter immune function and reduce morbidity associated with bovine respiratory disease. The objective of this experiment was to determine the influence of dietary Cu, Mn, and Zn supplementation on the performance, clinical signs, and TM balance of calves following a bovine viral diarrhea virus (BVDV) and (MH) combination respiratory pathogen challenge. Steers ( = 16; 225 ± 20 kg BW) from a single ranch were processed, weaned, and randomly pairwise assigned to either the TM-supplemented (MIN) or the control (CON) experimental treatments. The MIN calves received an additional 150 mg of Cu, 130 mg of Mn, and 320 mg of Zn daily and the CON calves received the basal diet with no additional Cu, Mn, or Zn supplementation. The basal diet contained sufficient Mn and Zn but inadequate Cu based on published nutrient requirements. After 46 d on the experimental treatments, all calves were naturally exposed to a heifer persistently infected with BVDV type 1b for 4 d and then subsequently intratracheally challenged with MH. Data were analyzed using the GLIMMIX procedure of SAS with sampling time serving as a repeated measure and calf serving as the experimental unit. The respiratory challenge was validated via increased BVDV type 1b antibody concentrations, MH whole cell and leukotoxin antibody concentrations, rectal temperatures (TEMP), and subjective clinical severity scores (CS). Calf performance ( ≥ 0.48) was not affected by TM supplementation. Mineral supplementation also did not impact the CS or TEMP of calves ( ≥ 0.53). There was a treatment × time ( serum were all impacted by time ( ≤ 0.03). Calves receiving the MIN treatment had greater ( serum Cu and Fe concentrations were increased ( ≤ 0.05) in CON calves compared with MIN calves. Mineral supplementation did not impact TM concentrations within the muscle ( ≥ 0.38). The supplementation of Cu, Mn, and Zn can improve the Cu and Mn status within

  5. Detection of bovine viral diarrhea virus by amplification on polycation-treated cells followed by enzyme immunoassay Detección del virus de la diarrea viral bovina por amplificación sobre células tratadas con policationes seguida de enzimoinmunoensayo

    Directory of Open Access Journals (Sweden)

    L. M. Gogorza

    2006-12-01

    Full Text Available A bovine viral diarrhea virus (BVDV amplification method combined with an enzyme immunoassay was developed to detect BVDV antigens in seropositive cattle. Reconstitution assays conducted by adding decreasing amounts of BVDV (Singer strain to Madin-Darby bovine kidney (MDBK cells showed that the sensitivity threshold of the combined assay was 10-7 TCID50. BVDV amplification was carried out in polycation (DEAE-Dextran and polybrene- treated MDBK cells. Treated cells were able to replicate both ether-treated virus and neutralizing antibody-coated virus. Ammonium chloride decreased virus replication in polycation-treated cells, suggesting viral penetration by endocytosis. BVDV detection was tested in leukocytes from 104 seropositive cattle from 2 unvaccinated commercial closed dairy herds with high seroprevalence. Lysates and co-cultures of peripheral blood leukocytes (PBL were tested, directly or after up to 6 blind passages in normal or polycation-treated cells. BVDV was detected in 10/104 cattle after only one co-culture of PBL in treated cells. No virus was detected in whole blood or plasma samples. BVDV positive and negative cattle were retested three times, achieving consistent results. The finding of immune carriers supports the possibility that these animals may constitute an epidemiological risk.Se desarrolló un método de detección de antígenos del virus de la diarrea viral bovina (BVDV combinando amplificación viral con enzimoinmunoensayo. El método combinado presentó una sensibilidad de 10-7 TCID50 en ensayos con diluciones decrecientes de BVDV cepa Singer sobre la línea celular MDBK. La amplificación del título viral se efectuó sobre células MDBK tratadas con policationes Estas células replicaron tanto el BVDV tratado con éter como el unido a anticuerpos. La replicación viral en las células tratadas disminuyó ante la presencia de cloruro de amonio, lo que sugiere la penetración viral por endocitosis. El BVDV se determin

  6. 78 FR 73993 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2013-12-10

    ... Health Inspection Service 9 CFR Parts 92, 93, 94, 95, 96, and 98 RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products Corrections In rule document 2013-28228 appearing on...

  7. 77 FR 20319 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2012-04-04

    ...; ] DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 9 CFR Part 93 RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products Correction In proposed rule document...

  8. Failed detection of Bovine viral diarrhea virus 2 subgenotype a (BVDV-2a) by direct fluorescent antibody test on tissue samples due to reduced reactivity of field isolates to raw anti-BVDV antibody.

    Science.gov (United States)

    Yan, Lifang; Pace, Lanny W; Baughman, Brittany; Wilson, Floyd D; Zhang, Shuping; Zhang, Michael Z

    2016-03-01

    Bovine viral diarrhea virus 1 (BVDV-1) is associated with mild or subclinical infections, whereas BVDV-2 is frequently implicated in outbreaks of severe thrombocytopenia and acute fatal disease. In the present study, the carcass of a beef breed cow and tissue samples of a beef calf were received for laboratory diagnosis. Both animals exhibited severe clinical signs compatible with thrombocytopenia or hemorrhagic syndrome. Direct fluorescent antibody test (DFAT) failed to detect BVDV antigen in the tissue specimens of both cases. However, immunohistochemistry (IHC) revealed the presence of BVDV antigen in oral and esophageal mucosa and Peyer patches of the beef breed cow. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) detected BVDV-2 in selected tissues of both animals. Subsequently, BVDV was isolated from both cases and subjected to genetic and serologic characterizations. Mutations in the 5'-untranslated genomic region (5'-UTR) primer and probe binding sites and the E2 gene were associated with reduced efficiency of an established real-time RT-PCR assay and amino acid alterations in the E2 glycoprotein, respectively. Both viral isolates were classified by real-time RT-PCR and phylogenetic analysis as BVDV-2 subgenotype a. Unlike BVDV reference strains Singer and 125c, the isolates cross-reacted with anti-BVDV-1 and anti-BVDV-2 reference sera, indicating antigenic variations in field isolates. The isolates also showed reduced reactivity to porcine anti-BVDV antiserum (the raw serum used to produce BVDV DFA conjugate). In summary, data from the present investigation indicated that genetic and antigenic variations affected the performance of detection assays, especially DFAT, highlighting the need for regular evaluation and modification of BVDV tests. © 2016 The Author(s).

  9. Comparison of serum, ear notches, and nasal and saliva swabs for Bovine viral diarrhea virus antigen detection in colostrum-fed persistently infected (PI) calves and non-PI calves.

    Science.gov (United States)

    Lanyon, Sasha R; Sims, Sarah K; Cockcroft, Peter D; Reichel, Michael P

    2014-11-01

    The diagnosis of neonatal and young calves persistently infected (PI) with Bovine viral diarrhea virus (BVDV) by antigen-capture enzyme-linked immunosorbent assay (ACE) may be complicated by interference from colostrum-derived specific antibodies. Ten calves, with 3 calves identified as PI and 7 as non-PI were used in the current study. All non-PI calves were shown to be seropositive for BVDV-specific antibodies by antibody enzyme-linked immunosorbent assay (Ab-ELISA) on serum. Serum samples, ear notch samples, and nasal and saliva swabs were collected from each calf from birth until 12 weeks of age and tested by ELISA for BVDV-specific antigen and antibodies. Following colostrum ingestion, Ab-ELISA sample-to-positive (S/P) ratios rose by a mean of 0.95 (95% confidence interval [CI] = 0.64-1.25) and 1.72 (95% CI = 1.55-1.89) in seropositive, non-PI calves and in PI calves, respectively. The mean S/P ratios then declined to approximately 1.1 in non-PI calves and 0.5 in PI calves at between 60 and 80 days of age. In PI calves, testing for antigen in serum and nasal and saliva swabs was subject to interference by colostrum-derived antibodies in calves up to 3 weeks of age. Nasal swabs were less affected than serum and saliva swabs. Ear notches maintained positive ACE corrected optical densities at all sample times, despite a drop in the signal following the ingestion of colostrum. © 2014 The Author(s).

  10. Association between Genes BoLA-DRB3.2*8 and BoLA-DRB3.2*12 with Resistance and BoLA-DRB3.2*16 with Susceptibility to Infection by Bovine Leukemia Virus

    Directory of Open Access Journals (Sweden)

    C Úsuga-Monroy*, JJ Echeverri Zuluaga and A López-Herrera

    2016-11-01

    Full Text Available The Bovine Leukemia Virus (BLV is a retrovirus that affects the immune system of cattle as their target cells are B lymphocytes. Some polymorphisms at the BoLA-DRB 3.2 gene have been associated with resistance/susceptibility to diseases. The objective of this research was to determine the polymorphisms at the BoLA-DRB 3.2 gene and associate them with resistance (R, neutrality (N or susceptibility (S to BLV in a Holstein cow population.500 blood samples were taken. Nested PCR was performed for detecting BLV virus and PCR-RFLP was performed to identify alleles of gene BoLA-DRB 3.2. Susceptibility was determined using odds ratio (OR and P value. According to their genotype, cows were classified in homozygous (R/R, N/N, or S/S and heterozygous (R/N, R/S, N/S. BLV molecular prevalence was 44%. The most frequent allele was BoLA-DRB3.2*22 (16.8%, alleles associated with resistance to BLV were BoLA-DRB3.2*8 (OR=1.489; P<0.10 and BoLA-DRB3.2*12 (OR=3.897; P<0.10 and allele BoLA-DRB3.2*16 (OR=0.710; P<0.10 was associated with susceptibility. Allele BoLA-DRB3.2*8 had the highest allelic frequency for negative cows (0.19. 63.7% of cows with genotype RN and 70% of cows with genotype RR were resistant to infection by BLV. Alleles R and S have a dominant effect on allele N (P<0.05. The use of reliable diagnostic techniques in conjunction with identification of resistant or susceptible animals can monitor the progress of the disease in dairy herds. Alleles BoLA-DRB3.2*8 and *12 were positively related to the disease and therefore cows have low risk of infection, unlike allele BoLA-DRB3.2*16 which was negatively related and animals have high risk for the disease.

  11. Antiviral activity of bovine uterus and placenta induced by Newcastle disease virus Atividade antiviral do útero e da placenta bovina induzida pelo vírus da doença de Newcastle

    Directory of Open Access Journals (Sweden)

    J.B. Barreto Filho

    2007-06-01

    Full Text Available The antiviral activity profile of the uterus and fetal membranes from bovine placenta, induced by the Newcastle disease virus (NDV throughout gestation, was investigated. Explants of the endometrium and caruncles were collected from the uterus, and amniochorion, allantochorion and cotyledons, from fetal placenta. Tissue cultures were induced with ~6.0 hemagglutinating units (HU of NDV. Supernatants were concentrated 20 fold, filtered in 100kDa cut-off membranes and antiviral activity was titrated in MDBK x VSV system. Tissues of the uterus did not exhibit antiviral activity, while allantochorion and amniochorion produced antiviral factors throughout gestation. Antiviral factors were not related with IFN-alpha, gamma, tau or TNF-alpha. The antiviral activity pattern observed showed to be related with the development of fetal membranes and increased at the end of pregnancy. Such data suggest that IFN genes inducible by virus are present in fetal membranes of the cow placenta and their expression is dependent on the age of gestation.Investigou-se a atividade antiviral do útero e da placenta bovina, ao longo da gestação, induzidos pelo vírus da doença de Newcastle (NDV. Explantes do endométrio e carúnculas foram colhidos do útero. Os tecidos corioamniótico, corioalantóide e cotilédones foram dissecados da placenta fetal. Os cultivos celulares foram induzidos com aproximadamente 6,0 unidades hemaglutinantes do NDV. Os sobrenadantes foram concentrados 20 vezes, filtrados em dispositivos com superfície de separação de 100kDa e a atividade antiviral foi titulada em células MDBK e vírus da estomatite vesicular (VSV. Endométrio, carúnculas e cotilédones não apresentaram atividade antiviral. Corioamniótico e corioalantóide produziram fatores antivirais ao longo da gestação. Estes fatores não foram relacionados aos IFN - alfa, gama ou tau e nem ao TNF - alfa. O padrão de produção de fatores antivirais acompanhou o desenvolvimento

  12. Diagnosis of bovine neosporosis.

    Science.gov (United States)

    Dubey, J P; Schares, G

    2006-08-31

    The protozoan parasite Neospora caninum is a major cause of abortion in cattle. The diagnosis of neosporosis-associated mortality and abortion in cattle is difficult. In the present paper we review histologic, serologic, immunohistochemical, and molecular methods for dignosis of bovine neosporosis. Although not a routine method of diagnosis, methods to isolate viable N. caninum from bovine tissues are also reviewed.

  13. Updating of the bovine neosporosis

    Directory of Open Access Journals (Sweden)

    Alexander Martínez Contreras

    2012-06-01

    Full Text Available In the fields of Medicine and bovine production, there is a wide variety of diseases affecting reproduction, in relation to the number of live births, the interval between births and open days, among others. Some of these diseases produce abortions and embryonic death, which explain the alteration of reproductive parameters. Many of these diseases have an infectious origin, such as parasites, bacteria, viruses and fungi, which are transmitted among animals. Besides, some of them have zoonotic features that generate problems to human health. Among these agents, the Neospora caninum, protozoan stands out. Its life cycle is fulfilled in several species of animals like the dog and the coyote. These two act as its definitive hosts and the cattle as its intermediary host. The Neospora caninum causes in the infected animals, reproductive disorders, clinical manifestations and decreased production which affects productivity of small, medium and large producers. Because of this, diagnostic techniques that allow understanding the epidemiological behavior of this disease have been developed. However in spite of being a major agent in the bovine reproductive health, few studies have been undertaken to determine the prevalence of this agent around the world. Therefore, the objective of this review was to collect updated information on the behavior of this parasite, targeting its epidemiology, its symptoms, its impact on production and the methods of its control and prevention.

  14. Caracterização preliminar de amostras do vírus da Diarréia Viral Bovina (BVDV isoladas no Brasil Preliminary characterization of brazilian isolates of bovine viral diarrhea virus (BVDV

    Directory of Open Access Journals (Sweden)

    Sônia A. Botton

    1998-04-01

    ção contra o vírus.This article reports the preliminary characterization of 19 Brazilian bovine viral diarrhea virus (BVDV isolates, regarding the biological, antigenic and molecular properties. Eleven viruses were isolated from bovine fetuses, six were obtained from blood of animals from herds with reproductive problems, and two were isolated from clinical cases of gastroenteric disease. The clinical cases affected young animals and were characterized by diarrhea, oronasal and digestive erosions and ulceration, and occasional digestive bleeding and vulvar petechial hemorrhage. Sixteen isolates (84.2%, including those obtained from fetuses and clinical cases, were of the non-cytopathic (ncp biotype. Replication of three isolates (15.8% in tissue culture was characterized by appearance of cellular vacuolation and progressive destruction of the monolayers. Analysis of these isolates after cloning revealed a mixed population of cytopathic (cp and non-cytopathic viruses. Analysis of viral polypeptides by SDS-PAGE followed by "Western immunoblot" revealed the production of the non-structural protein NS3/p80 in cells infected with the cp viruses. In contrast, generation of NS3/p80 was not observed in cells infected with the ncp isolates, which only expressed the precursor polypeptide NS23/p125. Analysis of reactivity with a panel of 15 monoclonal antibodies (MAbs revealed a marked antigenic variability among the isolates, mainly in the envelope glycoprotein E2/gp53. Although one MAb to this glycoprotein recognized 18 isolates (94.7%, the other nine E2/gp53 MAbs recognized zero to 57.9% of the isolates. The marked antigenic diversity observed among the brazilian BVDV isolates may have important implications on diagnosis and immunization strategies.

  15. Viruses and Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, James S., E-mail: james.lawson@unsw.edu.au; Heng, Benjamin [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney (Australia)

    2010-04-30

    Viruses are the accepted cause of many important cancers including cancers of the cervix and anogenital area, the liver, some lymphomas, head and neck cancers and indirectly human immunodeficiency virus associated cancers. For over 50 years, there have been serious attempts to identify viruses which may have a role in breast cancer. Despite these efforts, the establishment of conclusive evidence for such a role has been elusive. However, the development of extremely sophisticated new experimental techniques has allowed the recent development of evidence that human papilloma virus, Epstein-Barr virus, mouse mammary tumor virus and bovine leukemia virus may each have a role in the causation of human breast cancers. This is potentially good news as effective vaccines are already available to prevent infections from carcinogenic strains of human papilloma virus, which causes cancer of the uterine cervix.

  16. Hibridación in situ del virus respiratorio syncytial bovino en pulmón de cordero a diferentes tiempos postinfección Bovine respiratory syncytial virus in-situ hybridization from sheep lungs at different times postinfection

    OpenAIRE

    E. REDONDO; L. GOMEZ; C. L. KELLING; A. GAZQUEZ; A. J. MASOT

    2003-01-01

    Se estudió, mediante la técnica de hibridación in situ, la distribución del ARN viral del virus respiratorio Sincicial Bovino (VRSB) en pulmón de corderos infectados en forma experimental, a diferentes tiempos postinoculación. La sonda usada para la hibridación in situ se preparó mediante transcripción reversa del ARN del VRSB, seguida de la amplificación mediante PCR de cADN. 25 corderos de raza Merino de ambos sexos y de un peso vivo de 55 (+/- 10) Kg, fueron inoculados por vía intratraquea...

  17. Bovine Herpesvirus 4 infections and bovine mastitis

    NARCIS (Netherlands)

    Wellenberg, Gerardus Johannus

    2002-01-01

    Mastitis is an often occurring disease in dairy cattle with an enormous economic impact for milk producers worldwide. Despite intensive research, which is historically based on the detection of bacterial udder pathogens, still around 20-35% of clinical cases of bovine mastitis have an unknown

  18. Bovine coronaviruses from the respiratory tract: Antigenic and genetic diversity

    Science.gov (United States)

    Bovine corona viruses (BoCV) isolated from respiratory tract, nasal swab and broncho alveolar washing fluid samples were evaluated for genetic and antigenic differences. These BoCV from the respiratory tract of healthy and clinically ill cattle with BRD signs were compared to reference and vaccine ...

  19. Oncolytic viruses in cancer therapy.

    Science.gov (United States)

    Vähä-Koskela, Markus J V; Heikkilä, Jari E; Hinkkanen, Ari E

    2007-09-08

    Oncolytic virotherapy is a promising form of gene therapy for cancer, employing nature's own agents to find and destroy malignant cells. The purpose of this review is to provide an introduction to this very topical field of research and to point out some of the current observations, insights and ideas circulating in the literature. We have strived to acknowledge as many different oncolytic viruses as possible to give a broader picture of targeting cancer using viruses. Some of the newest additions to the panel of oncolytic viruses include the avian adenovirus, foamy virus, myxoma virus, yaba-like disease virus, echovirus type 1, bovine herpesvirus 4, Saimiri virus, feline panleukopenia virus, Sendai virus and the non-human coronaviruses. Although promising, virotherapy still faces many obstacles that need to be addressed, including the emergence of virus-resistant tumor cells.

  20. Parameters for MDBK cell growth on microcarriers and BoHV-1 virus production

    Directory of Open Access Journals (Sweden)

    Ethel C. Freitas

    2017-09-01

    Full Text Available Bovine herpes virus 1 (BoHV-1 is an important veterinary agent , which causes infectious bovine rhinotra-cheitis. This disease affects the respiratory tract or genitals, causing weight loss, reduced milk production and abor-tion. Several vaccines against BoHV-1 have been developed. In this paper, we study the parameters for MDBK growth on microcarriers (Cytodex 1 and for BoHV-1 virus production. The cell culture attached to microcarriers is an effi-cient method to enlarge the surface of cell growth and for large-scale cell production. Our studies reveal that MDBK adhered to MCs in 30 minutes and that initial agitation of culture did not influence on the efficiency of adhesion or cell growth. In our experiments, we detected no relevant influence of agitation on initial cell adhesion of MDBK to MCs. The maximum cell yield was similar to all initial conditions of agitation studied. The maximum yield obtained in culture started with 15, 20 and 30 cells / MC, was respectively.8.7 x105, 9.3 x105 and 9.8 x105 cells / ml . The cellular distribution on the MCs at the beginning of the culture was more heterogeneous in higher initial densities. After three medium exchanges during MDBK cell culture, the increase in the final yield was 100% higher than that from culture performed without medium change (0.93 x 106 cells / mL. Replacing 50% of the culture medium with fresh medium after 24 hours of growth, the concentration of glucose (5 mM and glutamine (1.8 mM were almost completely res-tored. In these studies, BoHV-1 infections of MDBK were performed after 48, 72 and 86 hours with daily exchanges of 50% of the medium. The increase in viral titer was proportional to the number of viable cells present at the time of infection. The best result of BoHV-1 production was achieved when the infection was performed from 86 hours of cell culture, reaching about 3.7 x108 (TCID50/ml after 24-48 hours of infection, being on average four times higher when compared to the

  1. Seroprevalence of some bovine viral respiratory diseases among non vaccinated cattle in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mohamed Abd El Fatah Mahmoud

    2013-02-01

    Full Text Available Aim: Four viral pathogens, bovine viral diarrhea virus (BVDV, and bovine herpes virus type 1 (BHV-1, bovine parainfluenza type 3 virus (PI-3V, bovine respiratory syncytial virus (BRSV are mainly associated with bovine respiratory diseases that cause major economic losses in the dairy cattle industry. This study aimed to document exposure of cattle in Saudi Arabia to infectious BVDV, BHV-1, PI-3V and BRSV viruses in non vaccinated cattle in order to obtain epidemiological and immunological information. Materials and Methods: In the present study, 460 random serum samples obtained from non vaccinated cattle in five districts (Riyadh, Eastern Province, Jizan, Najran, Asir of Saudi Arabia between January to March 2011. These samples were tested for presence of antibodies against BVDV, BHV-1, BRSV and PIV-3 by commercial indirect ELISA kits. Results: Our findings displayed that Seropositivity rates were 26 % for BVD, 17.4 % for BHV-1, 69.1 % for PI-3V and 75.6 % for BRSV in the sampled population. In addition, coinfections with more than one virus were considerably common among non-vaccinated dairy cattle. Conclusion: These results indicate that exposure to these agents is common within the study areas. Preventive and control measures against these infectious agents should therefore be adopted. [Vet World 2013; 6(1.000: 1-4

  2. RT-PCR em pools de soros sangüíneos para o diagnóstico da infecção aguda e de animais persistentemente infectados pelo vírus da diarréia viral bovina RT-PCR in pools of bovine blood serum to detect acute infection and persistently infected animals with bovine viral diarrhea virus

    Directory of Open Access Journals (Sweden)

    D. Pilz

    2007-02-01

    Full Text Available Utilizou-se a técnica da RT-PCR para a detecção da região 5' UTR do genoma do vírus da diarréia viral bovina (BVDV em pools de soros sangüíneos provenientes de um rebanho, constituído por 226 animais, que apresentava distúrbios da reprodução. A partir das amostras individuais de soro e de acordo com a categoria dos animais e o número de animais por categoria foram formados 10 pools (A a J de soros. A primeira avaliação revelou a amplificação de um produto com 290pb nas reações referentes aos grupos D (35 vacas e H (25 bezerros lactentes que, após o desmembramento em amostras individuais, resultou na identificação de 11 vacas lactantes e 12 bezerros em amamentação positivos. Para a identificação de animais persistentemente infectados (PI entre os 23 positivos na primeira avaliação, realizou-se a segunda colheita de soros sangüíneos, três meses após. A RT-PCR das amostras individuais de soro revelou resultado positivo em cinco bezerros. Em dois, foi possível isolar o BVDV em cultivo de células MDBK. A especificidade das reações da RT-PCR foi confirmada pelo seqüenciamento dos produtos amplificados a partir do soro de uma vaca com infecção aguda, de um bezerro PI e das duas amostras do BVDV isoladas em cultivo celular. A utilização da RT-PCR em pools de soros sangüíneos demonstrou ser uma estratégia rápida de diagnóstico etiológico e de baixo custo tanto para a detecção de infecção aguda quanto de animais PI.The 5' untranslated region of the bovine viral diarrhea virus (BVDV genome was detected by RT-PCR assay in pools of blood sera samples collected from a cattle herd (n=226 animals with reproductive failures. Based on the classes of animal and the number of animals per class, the individual blood serum samples were distributed in 10 sera pools (A to J. During the first evaluation a 290bp amplicon was amplified in reactions from groups D (35 cows and H (25 sucking calves. The individual analysis

  3. Molecular and epidemiological characterization of a respiratory disease outbreak in pre-weaned beef calves associated with bovine coronavirus

    Science.gov (United States)

    Bovine coronavirus (BCV) is associated with respiratory tract infections in cattle of all ages; however, a temporal study to evaluate the effect of BCV immunity on virus shedding and bovine respiratory disease (BRD) incidence in pre-weaned beef calves has not been reported. Thus, we report here a pr...

  4. Respiratory disease associated with bovine coronavirus infection in cattle herds in Southern Italy.

    Science.gov (United States)

    Decaro, Nicola; Campolo, Marco; Desario, Costantina; Cirone, Francesco; D'Abramo, Maria; Lorusso, Eleonora; Greco, Grazia; Mari, Viviana; Colaianni, Maria Loredana; Elia, Gabriella; Martella, Vito; Buonavoglia, Canio

    2008-01-01

    Four outbreaks of bovine respiratory disease (BRD) associated with bovine coronavirus (BCoV) infection in Italian cattle herds were reported. In 3 outbreaks, BRD was observed only in 2-3-month-old feedlot calves, whereas in the remaining outbreak, lactating cows, heifers, and calves were simultaneously affected. By using reverse transcription polymerase chain reaction (RT-PCR), BCoV RNA was detected in all outbreaks without evidence of concurrent viral pathogens (i.e., bovine respiratory syncytial virus, bovine herpesvirus type 1, bovine viral diarrhea virus, bovine parainfluenza virus). Common bacteria of cattle were recovered only from 2 outbreaks of BRD: Staphylococcus spp. and Proteus mirabilis (outbreak 1) and Mannheimia haemolytica (outbreak 4). A recently established real-time RT-PCR assay showed that viral RNA loads in nasal secretions ranged between 3.10 x 10(2) and 7.50 x 10(7) RNA copies/microl of template. Bovine coronavirus was isolated from respiratory specimens from all outbreaks except outbreak 1, in which real-time RT-PCR found very low viral titers in nasal swabs.

  5. Seroprevalence and risk factors of several bovine viral diseases in dairy farms of San Pedro de los Milagros, Antioquia, Colombia

    National Research Council Canada - National Science Library

    Nicolás Fernando Ramírez Vásquez; David Villar Argaiz; Jorge Arturo Fernández Silva; Julián Londoño Pino; Jenny Jovanna Chaparro Gutiérrez; Martha Eufemia Olivera Ángel

    2016-01-01

    .... All farms were up to date on the annual official vaccinations against brucellosis and foot and mouth disease, and 5 out of 29 farms used vaccines against viruses of the bovine respiratory complex...

  6. Detection of bovine herpesvirus type 4 antibodies and bovine lymphotropic herpesvirus in New Zealand dairy cows.

    Science.gov (United States)

    de Boer, M W; Zheng, T; Buddle, B M; McDougall, S

    2014-11-01

    To detect the presence of bovine herpesvirus (BoHV) type 4 in New Zealand dairy cows with clinical metritis. Serum samples taken from 92 dairy cows with clinical metritis, each from a different farm, were tested for the presence of antibodies against BoHV-4 using a commercially available, indirect ELISA. Peripheral blood mononuclear cells (PBMC) were collected from 10 BoHV-4 seropositive cows, and PBMC were examined by a pan-herpesvirus nested PCR to detect herpesvirus. PCR products were sequenced directly and a proportion of the PCR products were cloned and sequenced to identify the virus present. Antibodies to BoHV-4 were detected in 23/92 (25%) serum samples. The pan-herpesvirus PCR was positive in 8/10 PBMC samples. Cloning and sequencing identified that all of the eight PCR-positive PBMC contained bovine lymphotropic herpesvirus (BLHV); no BoHV-4 DNA was detected. This study reports the finding of the presence of apparent antibodies to BoHV-4, and BLHV DNA in New Zealand dairy cows affected by metritis. Bovine herpesvirus type 4 and BLHV are reported to have the potential to cause reproduction failure in cows. This is the first report of apparent BoHV-4 antibodies, and BLHV in New Zealand. The importance and epidemiology of these viruses in cattle in New Zealand requires further investigation.

  7. Intervet Symposium: bovine neosporosis

    NARCIS (Netherlands)

    Schetters, T.; Dubey, J.P.; Adrianarivo, A.; Frankena, K.; Romero, J.J.; Pérez, E.; Heuer, C.; Nicholson, C.; Russell, D.; Weston, J.

    2004-01-01

    This article summarises the most relevant data of presentations delivered at the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP) held in New Orleans, LA, USA, from 10 to 14 August 2003) in a symposium session on bovine neosporosis. The

  8. Synthesis of Nucleoside Analogues with Potential Antiviral Activity against Negative Strand RNA Virus Targets

    Science.gov (United States)

    1989-11-01

    ye Paramyxovirus Human parainfluenza , mumps Morbillivirus Measles, Rinderpest (cattle) 9 canine distemper viruses Pneumovirus Respiratory syncytial...significant effect on man include Rabies virus1 0 and Vesicular Stomatitus virus (VSV) in the Americas and Bovine Ephemeral Fever virus in Australasia. Of the...structurally related to neplanocin A, namely 9-(trans-2’,trans-3’-dihydroxycyclo- pent-4’-enyl) derivatives, 4 and 5, are potent inhibitors of bovine liver

  9. Genome Sequence of Bovine Polyomavirus 1 Detected in a Salers Cow (Bos taurus) from Catalonia, Spain.

    Science.gov (United States)

    Ben Salem, Nicole; Pérez de Val, Bernat; Martin, Maite; Moens, Ugo; Ehlers, Bernhard

    2016-01-28

    We identified a variant of the first bovine polyomavirus (BPyV1; family Polyomaviridae) in a lymph node of a Salers cow. As the 2 previously published genome sequences of this virus originated from fetal bovine serum and ground beef, respectively, this is the first BPyV1 genome that could be traced back to an individual. Copyright © 2016 Ben Salem et al.

  10. Camel and bovine chymosin

    DEFF Research Database (Denmark)

    Jensen, Jesper Langholm; Mølgaard, Anne; Poulsen, Jens-Christian Navarro

    2013-01-01

    Bovine and camel chymosin are aspartic peptidases that are used industrially in cheese production. They cleave the Phe105-Met106 bond of the milk protein κ-casein, releasing its predominantly negatively charged C-terminus, which leads to the separation of the milk into curds and whey. Despite...... chymosin. Both enzymes possess local positively charged patches on their surface that can play a role in interactions with the overall negatively charged C-terminus of κ-casein. Camel chymosin contains two additional positive patches that favour interaction with the substrate. The improved electrostatic...... interactions arising from variation in the surface charges and the greater malleability both in domain movements and substrate binding contribute to the better milk-clotting activity of camel chymosin towards bovine milk....

  11. Mycotic bovine nasal granuloma

    Directory of Open Access Journals (Sweden)

    Conti Díaz Ismael Alejandro

    2003-01-01

    Full Text Available A case of mycotic bovine nasal granuloma in a 10 year-old Jersey cow, produced by Drechslera halodes is presented. Histopathological sections showed abundant hyaline and pigmented extra and intracellular fungal structures together with a polymorphic cellular granuloma formed by neutrophils, lymphocytes, plasmocytes, histiocytes and giant cells of the Langhans type. It is the first case of mycotic bovine nasal granuloma recognized in Uruguay although this disease seems to be frequent according to the opinion of veterinarian specialists. Another similar clinical case also in a Jersey cow from the same dairy house with an intense cellular infiltrate rich in eosinophils without granulomatous image, together with extracellular hyaline and fuliginous fungal forms, is also referred for comparative purposes. Geotrichum sp. was isolated. The need of an early diagnosis and treatment of the disease is stressed.

  12. Diagnostic imaging in bovine orthopedics.

    Science.gov (United States)

    Kofler, Johann; Geissbühler, Urs; Steiner, Adrian

    2014-03-01

    Although a radiographic unit is not standard equipment for bovine practitioners in hospital or field situations, ultrasound machines with 7.5-MHz linear transducers have been used in bovine reproduction for many years, and are eminently suitable for evaluation of orthopedic disorders. The goal of this article is to encourage veterinarians to use radiology and ultrasonography for the evaluation of bovine orthopedic disorders. These diagnostic imaging techniques improve the likelihood of a definitive diagnosis in every bovine patient but especially in highly valuable cattle, whose owners demand increasingly more diagnostic and surgical interventions that require high-level specialized techniques. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Recombinant viral vaccines for enzootic bovine leucosis.

    Science.gov (United States)

    Daniel, R C; Gatei, M H; Good, M F; Boyle, D B; Lavin, M F

    1993-10-01

    Recently published studies on the development and use of recombinant vaccinia virus (VV) vaccines incorporating either the complete envelope (env) gene or only a fragment of the env gene consisting of the coding sequence for the env glycoprotein 51 (gp51) and part of gp30 of the bovine leukaemia virus (BLV) are described. It has been reported that vaccination of sheep with recombinant VV vaccines containing the complete env gene appears to protect sheep against challenge infection with BLV. The evidence for this protection is based on the lack of persistence of high titres of anti-gp51 antibodies compared with unvaccinated BLV infected controls, on the enhanced CD4 proliferative responses to specific BLV gp51 synthetic peptides in the vaccinated sheep, and on the inability to detect BLV pro-virus by polymerase chain reaction in the vaccinated sheep after 4 months following challenge infection compared with continual detection in unvaccinated sheep over a 16 month trial period. It has been suggested that cell-mediated immune responses may be an important aspect of protective immunity against BLV infection and it has been reported that large tracts of amino acid sequences within the env and pol genes are highly conserved in different isolates from different countries which is of importance in designing peptide derived vaccines.

  14. Production effects of pathogens causing bovine leukosis, bovine viral diarrhea, paratuberculosis, and neosporosis.

    Science.gov (United States)

    Tiwari, A; Vanleeuwen, J A; Dohoo, I R; Keefe, G P; Haddad, J P; Tremblay, R; Scott, H M; Whiting, T

    2007-02-01

    The primary purpose of this research was to determine associations among seropositivity for bovine leukemia virus (BLV), bovine viral diarrhea virus (BVDV), Mycobacterium avium ssp. paratuberculosis (MAP), and Neospora caninum (NC) and each of 3 outcome variables (305-d milk, fat, and protein production) in Canadian dairy cattle. Serum samples from up to 30 randomly selected cows from 342 herds on monthly milk testing were tested for antibodies against BLV (IDEXX ELISA; IDEXX Corporation, Westbrook, ME), MAP (IDEXX or Biocor ELISA; Biocor Animal Health, Inc., Omaha, NE), and NC (IDEXX or Biovet ELISA; Biovet Inc., St. Hyacinthe, Quebec, Canada). Up to 5 unvaccinated cattle over 6 mo of age were tested for virus-neutralizing antibodies to the Singer strain of type 1 BVDV. Dairy Herd Improvement records were obtained electronically for all sampled cows. Linear mixed models with herd and cow as random variables were fit, with significant restricted maximum likelihood estimates of outcome effects being obtained, while controlling for potential confounding variables. Bovine leukemia virus seropositivity was not associated with 305-d milk, 305-d fat, or 305-d protein production. Cows in BVDV-seropositive herds (at least one unvaccinated animal with a titer > or =1:64) had reductions in 305-d milk, fat, and protein of 368, 10.2, and 9.5 kg, respectively, compared with cows in BVDV-seronegative herds. Mycobacterium avium ssp. paratuberculosis seropositivity was associated with lower 305-d milk of 212 kg in 4+-lactation cows compared with MAP-seronegative 4+-lactation cows. Neospora caninum seropositivity in primiparous cows was associated with lower 305-d milk, fat, and protein of 158, 5.5, and 3.3 kg, respectively, compared with NC-seronegative primiparous cows. There were no interactions among seropositivity for any of the pathogens and their effects on any of the outcomes examined, although the low MAP seroprevalence limited this analysis. Results from this research

  15. Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements.

    Science.gov (United States)

    Klima, Cassidy L; Zaheer, Rahat; Cook, Shaun R; Booker, Calvin W; Hendrick, Steve; Alexander, Trevor W; McAllister, Tim A

    2014-02-01

    In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type