WorldWideScience

Sample records for bovine mammary epithelial

  1. Effects of putrescine, cadaverine, spermine, spermidine and beta-phenylethylamine on cultured bovine mammary epithelial cells

    DEFF Research Database (Denmark)

    Fusi, Eleonora; Baldi, Antonella; Cheli, Federica;

    2008-01-01

    A bovine mammary epithelial cell line (BME-UV1) and three-dimensional collagen primary bovine organoids were used to evaluate the effects of cadaverine, putrescine, spermine, spermicline and beta-phenylethylamine on mammary epithelial cells. Each biogenic amine was diluted in several concentratio...

  2. Screen of Bovine Mammary Gland Epithelial Cell Specifcity Promotor

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-fei; Li Qing-zhang; Qiu You-wen; Gao Xue-jun

    2012-01-01

    Three lactoproteins (α-Sl-casein, β-lactoglobulin, and β-casein) promotors were cloned, sequenced and compared relative luciferase expression. The results showed that the promotor activity of bovine α-S1-casein gene was the best, and would be used to produce pharmaceutically and medically important proteins in the mammary gland of transgenic animals and also for the construction of an inducible eukaryotic expression vector.

  3. Bovine Mammary Epithelial Cell Lineages and Parenchymal Development

    Science.gov (United States)

    Mammary development proceeds from an aggregation of cells in the ventral ectoderm to the establishment of an elaborate tree of alveoli, ducts, and cisternae. However, despite abundant data on endocrine regulation of ruminant mammary growth, we know comparatively little about cell lineages, express...

  4. Methionine protects against hyperthermia-induced cell injury in cultured bovine mammary epithelial cells.

    Science.gov (United States)

    Han, Zhao-Yu; Mu, Tian; Yang, Zhen

    2015-01-01

    The aim of this study was to investigate the effects of methionine on cell proliferation, antioxidant activity, apoptosis, the expression levels of related genes (HSF-1, HSP70, Bax and Bcl-2) and the expression levels of protein (HSP70) in mammary epithelial cells, after heat treatment. Methionine (60 mg/L) increased the viability and attenuated morphological damage in hyperthermia-treated bovine mammary epithelial cells (BMECs). Additionally, methionine significantly reduced lactate dehydrogenase leakage, malondialdehyde formation, nitric oxide, and nitric oxide synthase activity. Superoxide dismutase, catalase, and glutathione peroxidase enzymatic activity was increased significantly in the presence of methionine. Bovine mammary epithelial cells also exhibited a certain amount of HSP70 reserve after methionine pretreatment for 24 h, and the expression level of the HSP70 gene and protein further increased with incubation at 42 °C for 30 min. Compared to the control, the expression of HSF-1 mRNA increased, and there was a significantly reduced expression of Bax/Bcl-2 mRNA and a reduced activity of caspase-3 against heat stress. Methionine also increased survival and decreased early apoptosis of hyperthermia-treated BMECs. Thus, methionine has cytoprotective effects on hyperthermia-induced damage in BMECs.

  5. 奶牛乳腺上皮细胞的原代培养%Primary Culture of Bovine Mammary Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    吴娟; 王凤龙; 王申元

    2009-01-01

    [Objective] To investigate the feasibility of the primary culture of bovine mammary epithelial cells in biochemical incubator. [Method] In vitro, bovine mammary epithelial cells were isolated and cultured by the tissue explant method in order to investigate the optimal culture conditions. The morphology observation and identification of the cultured cells were performed by inverted microscope observation, Giemsa staining and cytokeratin immunohistochemistry. [Result] Observed with inverted microscope, most of the bovine mammary epithelial cells were polygonal and displayed typical slabstone-like appearance. As it can be seen from cell staining results, the cell body was big and the nucleus was stained dark blue and was round or oval in shape, with clearly visible nucleoli, generally 2-4 nucleoli. The tissue-specific expression of cytokeratin 14 and cytokeratin 18 genes in mammary epithelial cells was identified by cytokeratin immunohistochemistry. [Conclusion] Primary bovine mammary epithelial cells were successfully cultured in biochemical incubator.

  6. Proteome analysis of functionally differentiated bovine (Bos indicus) mammary epithelial cells isolated from milk

    KAUST Repository

    Janjanam, Jagadeesh

    2013-10-01

    Mammary gland is made up of a branching network of ducts that end in alveoli. Terminally differentiated mammary epithelial cells (MECs) constitute the innermost layer of aveoli. They are milk-secreting cuboidal cells that secrete milk proteins during lactation. Little is known about the expression profile of proteins in the metabolically active MECs during lactation or their functional role in the lactation process. In the present investigation, we have reported the proteome map of MECs in lactating cows using 2DE MALDI-TOF/TOF MS and 1D-Gel-LC-MS/MS. MECs were isolated from milk using immunomagnetic beads and confirmed by RT-PCR and Western blotting. The 1D-Gel-LC-MS/MS and 2DE-MS/MS based approaches led to identification of 431 and 134 proteins, respectively, with a total of 497 unique proteins. Proteins identified in this study were clustered into functional groups using bioinformatics tools. Pathway analysis of the identified proteins revealed 28 pathways (p < 0.05) providing evidence for involvement of various proteins in lactation function. This study further provides experimental evidence for the presence of many proteins that have been predicted in annotated bovine genome. The data generated further provide a set of bovine MEC-specific proteins that will help the researchers to understand the molecular events taking place during lactation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of phenylalanine and threonine oligopeptides on milk protein synthesis in cultured bovine mammary epithelial cells.

    Science.gov (United States)

    Zhou, M M; Wu, Y M; Liu, H Y; Liu, J X

    2015-04-01

    This study was conducted to investigate the effects of phenylalanine (Phe) and threonine (Thr) oligopeptides on αs1 casein gene expression and milk protein synthesis in bovine mammary epithelial cells. Primary mammary epithelial cells were obtained from Holstein dairy cows and incubated in Dulbecco's modified Eagle's medium-F12 medium (DMEM/F12) containing lactogenic hormones (prolactin and glucocorticoids). Free Phe (117 μg/ml) was substituted partly with peptide-bound Phe (phenylalanylphenylalanine, phenylalanyl threonine, threonyl-phenylalanyl-phenylalanine) in the experimental media. After incubation with experimental medium, cells were collected for gene expression analysis and medium was collected for milk protein or amino acid determination. The results showed that peptide-bound Phe at 10% (11.7 μg/ml) significantly enhanced αs1 casein gene expression and milk protein synthesis as compared with equivalent amount of free Phe. When 10% Phe was replaced by phenylalanylphenylalanine, the disappearance of most essential amino acids increased significantly, and gene expression of peptide transporter 2 and some amino acid transporters was significantly enhanced. These results indicate that the Phe and Thr oligopeptides are important for milk protein synthesis, and peptide-bound amino acids could be utilised more efficiently in milk protein synthesis than the equivalent amount of free amino acids.

  8. Streptococcus uberis strains isolated from the bovine mammary gland evade immune recognition by mammary epithelial cells, but not of macrophages.

    Science.gov (United States)

    Günther, Juliane; Czabanska, Anna; Bauer, Isabel; Leigh, James A; Holst, Otto; Seyfert, Hans-Martin

    2016-01-01

    Streptococcus uberis is frequently isolated from the mammary gland of dairy cattle. Infection with some strains can induce mild subclinical inflammation whilst others induce severe inflammation and clinical mastitis. We compared here the inflammatory response of primary cultures of bovine mammary epithelial cells (pbMEC) towards S. uberis strains collected from clinical or subclinical cases (seven strains each) of mastitis with the strong response elicited by Escherichia coli. Neither heat inactivated nor live S. uberis induced the expression of 10 key immune genes (including TNF, IL1B, IL6). The widely used virulent strain 0140J and the avirulent strain, EF20 elicited similar responses; as did mutants defective in capsule (hasA) or biofilm formation (sub0538 and sub0539). Streptococcus uberis failed to activate NF-κB in pbMEC or TLR2 in HEK293 cells, indicating that S. uberis particles did not induce any TLR-signaling in MEC. However, preparations of lipoteichoic acid (LTA) from two strains strongly induced immune gene expression and activated NF-κB in pbMEC, without the involvement of TLR2. The immune-stimulatory LTA must be arranged in the intact S. uberis such that it is unrecognizable by the relevant pathogen receptors of the MEC. The absence of immune recognition is specific for MEC, since the same S. uberis preparations strongly induced immune gene expression and NF-κB activity in the murine macrophage model cell RAW264.7. Hence, the sluggish immune response of MEC and not of professional immune cells to this pathogen may aid establishment of the often encountered belated and subclinical phenotype of S. uberis mastitis. PMID:26738804

  9. β-Hydroxybutyrate Facilitates Fatty Acids Synthesis Mediated by Sterol Regulatory Element-Binding Protein1 in Bovine Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2015-11-01

    Full Text Available Background/Aims: In dairy cows, β-hydroxybutyrate (BHBA is utilized as precursors of de novo synthesized fatty acids in mammary gland. Ketotic cows are characterized by excessive negative energy balance (NEB, which can further increase the blood BHBA concentration. Sterol regulatory element-binding protein1 (SREBP1 and cell death-inducing DNA fragmentation factor-alpha-like effector α (Cidea play crucial roles in lipid synthesis. Therefore, we hypothesized that BHBA could stimulate SREBP1/Cidea pathway to increase milk fat synthesis in bovine mammary epithelial cells. Methods: Bovine mammary epithelial cells were treated with different concentrations of BHBA and transfected with adenovirus to silence SREBP1 expression. The effects of BHBA on the lipid synthesis in bovine mammary epithelial cells were investigated. Results: The results showed that BHBA could significantly increase the expression of SREBP1, fatty acid synthase (FAS, acetyl-CoA carboxylase α (ACC-α, Cidea and diacylglycerol transferase-1 (DGAT-1, as well as the triglycerides (TG content in bovine mammary epithelial cells. BHBA treatment also increased the transfer of mature SREBP1 to nucleus compared with control group. However, SREBP1 silencing could significantly down-regulate the overexpression of FAS, ACC-α, Cidea and DGAT-1, as well as TG content induced by BHBA. Conclusion: The present data indicate that BHBA can significantly increase TG secretion mediated by SREBP1 in bovine mammary epithelial cells.

  10. Tudor-SN Regulates Milk Synthesis and Proliferation of Bovine Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jinxia Ao

    2015-12-01

    Full Text Available Tudor staphylococcal nuclease (Tudor-SN is a highly conserved and ubiquitously expressed multifunctional protein, related to multiple and diverse cell type- and species-specific cellular processes. Studies have shown that Tudor-SN is mainly expressed in secretory cells, however knowledge of its role is limited. In our previous work, we found that the protein level of Tudor-SN was upregulated in the nucleus of bovine mammary epithelial cells (BMEC. In this study, we assessed the role of Tudor-SN in milk synthesis and cell proliferation of BMEC. We exploited gene overexpression and silencing methods, and found that Tudor-SN positively regulates milk synthesis and proliferation via Stat5a activation. Both amino acids (methionine and estrogen triggered NFκB1 to bind to the gene promoters of Tudor-SN and Stat5a, and this enhanced the protein level and nuclear localization of Tudor-SN and p-Stat5a. Taken together, these results suggest the key role of Tudor-SN in the transcriptional regulation of milk synthesis and proliferation of BMEC under the stimulation of amino acids and hormones.

  11. The cell wall component lipoteichoic acid of Staphylococcus aureus induces chemokine gene expression in bovine mammary epithelial cells

    Science.gov (United States)

    KIKU, Yoshio; NAGASAWA, Yuya; TANABE, Fuyuko; SUGAWARA, Kazue; WATANABE, Atsushi; HATA, Eiji; OZAWA, Tomomi; NAKAJIMA, Kei-ichi; ARAI, Toshiro; HAYASHI, Tomohito

    2016-01-01

    Staphylococcus aureus (SA) is a major cause of bovine mastitis, but its pathogenic mechanism remains poorly understood. To evaluate the role of lipoteichoic acid (LTA) in the immune or inflammatory response of SA mastitis, we investigated the gene expression profile in bovine mammary epithelial cells stimulated with LTA alone or with formalin-killed SA (FKSA) using cap analysis of gene expression. Seven common differentially expressed genes related to immune or inflammatory mediators were up-regulated under both LTA and FKSA stimulations. Three of these genes encode chemokines (IL-8, CXCL6 and CCL2) functioning as chemoattractant molecules for neutrophils and macrophages. These results suggest that the initial inflammatory response of SA infection in mammary gland may be related with LTA induced chemokine genes. PMID:27211287

  12. Short communication: opposing effects of lactoferrin on the proliferation of fibroblasts and epithelial cells from bovine mammary gland.

    Science.gov (United States)

    Nakajima, K; Itoh, F; Nakamura, M; Kawamura, A; Yamazaki, T; Kozakai, T; Takusari, N; Ishisaki, A

    2015-02-01

    Lactoferrin is present in several physiologic fluids, including milk and colostrum. Recently, evidence has accumulated that lactoferrin acts as a regulator of cell proliferation. Lactoferrin mRNA and protein levels in bovine mammary glands are known to markedly increase after cessation of milking. To clarify the role of bovine lactoferrin (bLF) in mammary involution and remodeling during dry periods, we investigated whether bLF affects the proliferation of cultured cells derived from bovine mammary gland and examined the mechanism underlying the proliferative response to bLF. Addition of bLF to the culture medium increased the proliferation of bovine mammary stromal fibroblasts (bMSF), but decreased that of bovine mammary epithelial cells (bMEC). Proliferation was significantly increased in the bMSF treated with bLF (100μg/mL or greater) as compared with unstimulated cells. The maximal proliferative effect of bLF on bMSF occurred at 1,000μg/mL, such that the proliferation of the bLF-stimulated bMSF was approximately 2.5 times that of unstimulated cells. The bLF increased the production of proliferating cell nuclear antigen and rapid phosphorylation of the p44/p42 mitogen-activated protein kinase in bMSF, but not in bMEC. The bLF-induced proliferation and production of proliferating cell nuclear antigen in bMSF was suppressed by U0126, a specific inhibitor of mitogen-activated protein kinase. Furthermore, treatment with bLF for 24h decreased the mRNA levels of the 3 isoforms of transforming growth factor β in bMSF (16-66%) but upregulated those in bMEC (122-157%). These opposite effects of bLF on the proliferation of epithelial and fibroblast cells and their expression of transforming growth factor β may play a crucial role in bovine mammary involution and remodeling. PMID:25497822

  13. Short communication: Differential loss of bovine mammary epithelial barrier integrity in response to lipopolysaccharide and lipoteichoic acid.

    Science.gov (United States)

    Wellnitz, Olga; Zbinden, Christina; Huang, Xiao; Bruckmaier, Rupert M

    2016-06-01

    In the mammary gland, the blood-milk barrier prevents an uncontrolled intermixture of blood and milk constituents and hence maintains the osmotic gradient to draw water into the mammary secretion. During mastitis, the permeability of the blood-milk barrier is increased, which is reflected by the transfer of blood constituents into milk and vice versa. In this study, we aimed to investigate changes in the barrier function of mammary epithelial cells in vitro as induced by cell wall components of different pathogens. Primary bovine mammary epithelial cells from 3 different cows were grown separately on Transwell (Corning Inc., Corning, NY) inserts. The formation of tight junctions between adjacent epithelial cells was shown by transmission electron microscopy and by immunofluorescence staining of the tight junction protein zona occludens-1. The integrity of the epithelial barrier was assayed by means of transepithelial electrical resistance, as well as by diffusion of the fluorophore Lucifer yellow across the cell layer. The release of lactate dehydrogenase (LDH) was used as an indicator for cytotoxic effects. In response to a 24-h challenge with bacterial endotoxin, barrier integrity was reduced after 3 or 7h, respectively, in response to 0.5mg/mL lipopolysaccharide (LPS) from Escherichia coli or 20mg/mL lipoteichoic acid (LTA) from Staphylococcus aureus. No paracellular leakage was observed in response to 0.2mg/mL LPS or 2mg/mL LTA. Although LPS and LTA affected barrier permeability, most likely by opening the tight junctions, only LPS caused cell damage, reflected by increased LDH concentrations in cell culture medium. These results prove a pathogen-specific loss of blood-milk barrier integrity during mastitis, which is characterized by tight junction opening by both LPS and LTA and by additional epithelial cell destruction through LPS. PMID:27060811

  14. Effect of the Ketone Body Beta-Hydroxybutyrate on the Innate Defense Capability of Primary Bovine Mammary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Maria Hillreiner

    Full Text Available Negative energy balance and ketosis are thought to cause impaired immune function and to increase the risk of clinical mastitis in dairy cows. The present in vitro study aimed to investigate the effect of elevated levels of the predominant ketone body β-hydroxybutyrate on the innate defense capability of primary bovine mammary epithelial cells (pbMEC challenged with the mastitis pathogen Escherichia coli (E. coli. Therefore, pbMEC of healthy dairy cows in mid- lactation were isolated from milk and challenged in culture with 3 mM BHBA and E. coli. pbMEC stimulated with E. coli for 6 h or 30 h showed an up-regulation of several innate immune genes, whereas co-stimulation of pbMEC with 3 mM BHBA and E. coli resulted in the down-regulation of CCL2, SAA3, LF and C3 gene expression compared to the challenge with solely the bacterial stimulus. These results indicated that increased BHBA concentrations may be partially responsible for the higher mastitis susceptibility of dairy cows in early lactation. Elevated levels of BHBA in blood and milk during negative energy balance and ketosis are likely to impair innate immune function in the bovine mammary gland by attenuating the expression of a broad range of innate immune genes.

  15. Spontaneously immortalised bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li Qianqian

    2010-10-01

    Full Text Available Abstract Background Spontaneous immortalisation of cultured mammary epithelial cells (MECs is an extremely rare event, and the molecular mechanism behind spontaneous immortalisation of MECs is unclear. Here, we report the establishment of a spontaneously immortalised bovine mammary epithelial cell line (BME65Cs and the changes in gene expression associated with BME65Cs cells. Results BME65Cs cells maintain the general characteristics of normal mammary epithelial cells in morphology, karyotype and immunohistochemistry, and are accompanied by the activation of endogenous bTERT (bovine Telomerase Reverse Transcriptase and stabilisation of the telomere. Currently, BME65Cs cells have been passed for more than 220 generations, and these cells exhibit non-malignant transformation. The expression of multiple genes was investigated in BME65Cs cells, senescent BMECs (bovine MECs cells, early passage BMECs cells and MCF-7 cells (a human breast cancer cell line. In comparison with early passage BMECs cells, the expression of senescence-relevant apoptosis-related gene were significantly changed in BME65Cs cells. P16INK4a was downregulated, p53 was low expressed and Bax/Bcl-2 ratio was reversed. Moreover, a slight upregulation of the oncogene c-Myc, along with an undetectable level of breast tumor-related gene Bag-1 and TRPS-1, was observed in BME65Cs cells while these genes are all highly expressed in MCF-7. In addition, DNMT1 is upregulated in BME65Cs. These results suggest that the inhibition of both senescence and mitochondrial apoptosis signalling pathways contribute to the immortality of BME65Cs cells. The expression of p53 and p16INK4a in BME65Cs was altered in the pattern of down-regulation but not "loss", suggesting that this spontaneous immortalization is possibly initiated by other mechanism rather than gene mutation of p53 or p16INK4a. Conclusions Spontaneously immortalised BME65Cs cells maintain many characteristics of normal BMEC cells and

  16. 奶牛乳腺上皮细胞系的培养与鉴定%Culture and Identification of the Bovine Mammary Epithelial Cell Line

    Institute of Scientific and Technical Information of China (English)

    詹康; 贡笑笑; 左晓昕; 陈银银; 占今舜; 赵国琦

    2015-01-01

    本试验旨在培养功能性奶牛乳腺上皮细胞系,为奶牛泌乳调控和奶牛乳房炎发病机制研究提供功能性的细胞模型。采用组织块细胞培养法来分离纯化并鉴定奶牛乳腺上皮细胞;采用有限稀释法单克隆奶牛乳腺上皮细胞;采用噻唑蓝( MTT)法来分析奶牛乳腺上皮细胞的生长曲线是否为正常的“S”形;观察细胞角蛋白18免疫荧光来证明所培养的细胞为上皮型;选择培养至10和20代的奶牛乳腺上皮细胞进行染色体核型分析。结果表明:1)利用组织块细胞分离法能够成功获得奶牛乳腺上皮细胞并传至20代。2)培养5~6 d成纤维细胞迅速增殖且周围分裂出少量的上皮细胞。培养8d奶牛乳腺上皮细胞迅速增殖,形成岛屿状集落,呈单层“鹅卵石”和“铺路石”形态生长。3)奶牛乳腺上皮细胞角蛋白18鉴定为阳性。4)培养至10和20代的奶牛乳腺上皮细胞染色体数为60条,具有正常的细胞二倍体核型。综上所述,采用组织块培养细胞能够获得具有稳定性、功能性的奶牛乳腺上皮细胞,但不是永生化细胞。%To establish a functional model of bovine mammary epithelial cell line for the study of lactation reg-ulation, pathogenesis of mastitis, this research applied tissue culture to isolate and culture bovine mammary epi-thelial cells; the limiting dilution method to purify bovine mammary epithelial cells; methyl thiazolyl tetrazoli-um ( MTT) method was used to identify whether the growth curve of bovine mammary epithelial cells was‘S’ type or not;cytokeratin 18 immunofluorescence was observed to prove that the cells were epithelial type;kary-otype analysis was carried out on bovine mammary epithelial cells in passages 10 and 20. The results showed as follows:1) bovine mammary epithelial cells could be successfully cultured and passaged 20 generations by tis-sue culture method. 2) At 5 to 6 days of cultivation, the

  17. IGF-binding proteins mediate TGF-beta 1-induced apoptosis in bovine mammary epithelial BME-UV1 cells.

    Science.gov (United States)

    Gajewska, Małgorzata; Motyl, Tomasz

    2004-10-01

    TGF-beta 1 is an antiproliferative and apoptogenic factor for mammary epithelial cells (MEC) acting in an auto/paracrine manner and thus considered an important local regulator of mammary tissue involution. However, the apoptogenic signaling pathway induced by this cytokine in bovine MEC remains obscure. The present study was focused on identification of molecules involved in apoptogenic signaling of transforming growth factor-beta 1 (TGF-beta 1) in the model of bovine mammary epithelial cell line (BME-UV1). Laser scanning cytometry (LSC), Western blot and electrophoretic mobility shift assay (EMSA) were used for analysis of expression and activity of TGF-beta 1-related signaling molecules. The earliest response occurring within 1-2 h after TGF-beta 1 administration was an induction and activation of R-Smads (Smad2 and Smad3) and Co-Smad (Smad4). An evident formation of Smad-DNA complexes began from 2nd hour after MEC exposure to TGF-beta 1. Similarly to Smads, proteins of AP1 complex: phosphorylated c-Jun and JunD appeared to be early reactive molecules; however, an increase in their expression was detected only in cytosolic fraction. In the next step, an increase of IGF binding protein-3 (IGFBP-3) and IGFBP-4 expression was observed from 6th hour followed by a decrease in the activity of protein kinase B (PKB/Akt), which occurred after 24 h of MEC exposure to TGF-beta 1. The decrease in PKB/Akt activity coincided in time with the decline of phosphorylated Bad expression (inactive form). Present study supported additional evidence that stimulation of insulin-like growth factor I (IGF-I) was associated with complete abrogation of TGF-beta 1-induced activation of Bad and Bax and in the consequence protection against apoptosis. In conclusion, apoptotic effect of TGF-beta 1 in bovine MEC is mediated by IGFBPs and occurs through IGF-I sequestration, resulting in inhibition of PKB/Akt-dependent survival pathway. PMID:15556067

  18. Mammary epithelial cell

    DEFF Research Database (Denmark)

    Kass, Laura; Erler, Janine Terra; Dembo, Micah;

    2007-01-01

    a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation...... in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal...... responses to regulate processes including branching morphogenesis and alveolar differentiation. Malignant transformation of the breast is also associated with significant matrix remodeling and a progressive stiffening of the stroma that can enhance mammary epithelial cell growth, perturb breast tissue...

  19. Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage

    Science.gov (United States)

    Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin

    2016-01-01

    Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis. PMID:27433029

  20. Anti-Inflammatory and Antimicrobial Effects of Estradiol in Bovine Mammary Epithelial Cells during Staphylococcus aureus Internalization

    Science.gov (United States)

    Medina-Estrada, Ivan; López-Meza, Joel E.

    2016-01-01

    17β-Estradiol (E2), the predominant sexual hormone in females, is associated with the modulation of the innate immune response (IIR), and changes in its levels at parturition are related to intramammary infections, such as mastitis. In bovine mammary epithelial cells (bMECs), E2 regulates differentiation and proliferation, but its immunomodulatory functions have not been explored. Staphylococcus aureus is the predominant pathogen causing mastitis, which can persist intracellularly in bMECs. The aim of this work was to analyze whether E2 modulates the IIR of bMECs during S. aureus internalization. bMECs treated with E2 (50 pg/mL, 24 h) reduced bacteria internalization (~50%). The host receptors α5β1 and TLR2 do not participate in this reduction. However, E2 activates ERα and modulates the IIR reducing the S. aureus induced-mRNA expression of TNF-α (~50%) and IL-1β (90%). E2 also decreased the secretion of these cytokines as well as IL-6 production; however, in infected bMECs, E2 induced the secretion of IL-1β. Furthermore, E2 upregulates the expression of the antimicrobial peptides DEFB1, BNBD5, and psoriasin S100A7 (~5-, 3-, and 6-fold, resp.). In addition, E2 induced the production of antimicrobial compounds in bMEC culture medium, which, together with the modulation of the IIR, could be related to the reduction of S. aureus internalization. PMID:27034592

  1. Defensin γ-thionin from Capsicum chinense has immunomodulatory effects on bovine mammary epithelial cells during Staphylococcus aureus internalization.

    Science.gov (United States)

    Díaz-Murillo, Violeta; Medina-Estrada, Ivan; López-Meza, Joel E; Ochoa-Zarzosa, Alejandra

    2016-04-01

    β-Defensins are members of the antimicrobial peptide superfamily that are produced in various species from different kingdoms, including plants. Plant defensins exhibit primarily antifungal activities, unlike those from animals that exhibit a broad-spectrum antimicrobial action. Recently, immunomodulatory roles of mammal β-defensins have been observed to regulate inflammation and activate the immune system. Similar roles for plant β-defensins remain unknown. In addition, the regulation of the immune system by mammalian β-defensins has been studied in humans and mice models, particularly in immune cells, but few studies have investigated these peptides in epithelial cells, which are in intimate contact with pathogens. The aim of this work was to evaluate the effect of the chemically synthesized β-defensin γ-thionin from Capsicum chinense on the innate immune response of bovine mammary epithelial cells (bMECs) infected with Staphylococcus aureus, the primary pathogen responsible for bovine mastitis, which is capable of living within bMECs. Our results indicate that γ-thionin at 0.1 μg/ml was able to reduce the internalization of S. aureus into bMECs (∼50%), and it also modulates the innate immune response of these cells by inducing the mRNA expression (∼5-fold) and membrane abundance (∼3-fold) of Toll-like receptor 2 (TLR2), as well as by inducing genes coding for the pro-inflammatory cytokines TNF-α and IL-1β (∼14 and 8-fold, respectively) before and after the bacterial infection. γ-Thionin also induces the expression of the mRNA of anti-inflammatory cytokine IL-10 (∼12-fold). Interestingly, the reduction in bacterial internalization coincides with the production of other antimicrobial products by bMECs, such as NO before infection, and the secretion into the medium of the endogenous antimicrobial peptide DEFB1 after infection. The results from this work support the potential use of β-defensins from plants as immunomodulators of the mammalian

  2. Functional Interactions between 17β-Estradiol and Progesterone Regulate Autophagy during Acini Formation by Bovine Mammary Epithelial Cells in 3D Cultures

    Directory of Open Access Journals (Sweden)

    Katarzyna Zielniok

    2014-01-01

    Full Text Available Mammary gland epithelium forms a network of ducts and alveolar units under control of ovarian hormones: 17-beta-estradiol (E2 and progesterone (P4. Mammary epithelial cells (MECs cultured on reconstituted basement membrane (rBM form three-dimensional (3D acini composed of polarized monolayers surrounding a lumen. Using the 3D culture of BME-UV1 bovine MECs we previously demonstrated that autophagy was induced in the centrally located cells of developing spheroids, and sex steroids increased this process. In the present study we showed that E2 and P4 enhanced the expression of ATG3, ATG5, and BECN1 genes during acini formation, and this effect was accelerated in the presence of both hormones together. The stimulatory action of E2 and P4 was also reflected by increased levels of Atg5, Atg3, and LC3-II proteins. Additionally, the activity of kinases involved in autophagy regulation, Akt, ERK, AMPK, and mTOR, was examined. E2 + P4 slightly increased the level of phosphorylated AMPK but diminished phosphorylated Akt and mTOR on day 9 of 3D culture. Thus, the synergistic actions of E2 and P4 accelerate the development of bovine mammary acini, which may be connected with stimulation of ATGs expression, as well as regulation of signaling pathways (PI3K/Akt/mTOR; AMPK/mTOR involved in autophagy induction.

  3. Can widely used cell type markers predict the suitability of immortalized or primary mammary epithelial cell models?

    OpenAIRE

    Ontsouka, Edgar; Bertschi, Janique Sabina; Huang, Xiao; Lüthi, Michael; Müller, Stefan Jürg; Albrecht, Christiane

    2016-01-01

    BACKGROUND Mammary cell cultures are convenient tools for in vitro studies of mammary gland biology. However, the heterogeneity of mammary cell types, e.g., glandular milk secretory epithelial or myoepithelial cells, often complicates the interpretation of cell-based data. The present study was undertaken to determine the relevance of bovine primary mammary epithelial cells isolated from American Holstein (bMECUS) or Swiss Holstein-Friesian (bMECCH) cows, and of primary bovine mammary alv...

  4. Can widely used cell type markers predict the suitability of immortalized or primary mammary epithelial cell models?

    OpenAIRE

    Ontsouka, Edgar Corneille; Bertschi, Janique Sabina; Huang, Xiao; Lüthi, Michael; Müller, Stefan; Albrecht, Christiane

    2016-01-01

    Background Mammary cell cultures are convenient tools for in vitro studies of mammary gland biology. However, the heterogeneity of mammary cell types, e.g., glandular milk secretory epithelial or myoepithelial cells, often complicates the interpretation of cell-based data. The present study was undertaken to determine the relevance of bovine primary mammary epithelial cells isolated from American Holstein (bMECUS) or Swiss Holstein–Friesian (bMECCH) cows, and of primary bovine mammary alveola...

  5. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    International Nuclear Information System (INIS)

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth

  6. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, Gat, E-mail: gat.rauner@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel); The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem (Israel); Barash, Itamar, E-mail: itamar.barash@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel)

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.

  7. Autophagy mediated by arginine depletion activation of the nutrient sensor GCN2 contributes to interferon-γ-induced malignant transformation of primary bovine mammary epithelial cells

    Science.gov (United States)

    Xia, X-j; Gao, Y-y; Zhang, J; Wang, L; Zhao, S; Che, Y-y; Ao, C-j; Yang, H-j; Wang, J-q; Lei, L-c

    2016-01-01

    Autophagy has been linked to the regulation of both the prevention and progression of cancer. IFN-γ has been shown to induce autophagy in multiple cell lines in vitro. However, whether IFN-γ can induce autophagy and whether autophagy promotes malignant transformation in healthy lactating bovine mammary epithelial cells (BMECs) remain unclear. Here, we provide the first evidence of the correlation between IFN-γ treatment, autophagy and malignant transformation and of the mechanism underlying IFN-γ-induced autophagy and subsequent malignant transformation in primary BMECs. IFN-γ levels were significantly increased in cattle that received normal long-term dietary corn straw (CS) roughage supplementation. In addition, an increase in autophagy was clearly observed in the BMECs from the mammary tissue of cows expressing high levels of IFN-γ. In vitro, autophagy was clearly induced in primary BMECs by IFN-γ within 24 h. This induced autophagy could subsequently promote dramatic primary BMEC transformation. Furthermore, we found that IFN-γ promoted arginine depletion, activated the general control nonderepressible-2 kinase (GCN2) signalling pathway and resulted in an increase in autophagic flux and the amount of autophagy in BMECs. Overall, our findings are the first to demonstrate that arginine depletion and kinase GCN2 expression mediate IFN-γ-induced autophagy that may promote malignant progression and that immunometabolism, autophagy and cancer are strongly correlated. These results suggest new directions and paths for preventing and treating breast cancer in relation to diet. PMID:27551491

  8. Antibacterial activity and immunomodulatory effects on a bovine mammary epithelial cell line exerted by nisin A-producing Lactococcus lactis strains.

    Science.gov (United States)

    Malvisi, M; Stuknytė, M; Magro, G; Minozzi, G; Giardini, A; De Noni, I; Piccinini, R

    2016-03-01

    Twenty-nine strains of mastitis pathogens were used to study the antibacterial activity of the cell-free supernatants (CFS) of 25 strains of Lactococcus lactis ssp. lactis. Out of the tested strains, only the CFS of L. lactis LL11 and SL153 were active, inhibiting and killing most of the pathogens. By means of ultra-performance liquid chromatography/high resolution mass spectrometry, they were shown to produce nisin A, a class I bacteriocin. A variable sensitivity to nisin A-containing CFS was observed among Streptococcus uberis and Enterococcus faecalis strains. Nonetheless, Streptococcus agalactiae, Strep. uberis, and E. faecalis displayed high minimum inhibitory concentration values, reaching 384 arbitrary units/mL. Interestingly, the minimum inhibitory values and the bactericidal concentrations were almost identical among them for each of the 2 stains, LL11 and SL153. Staphylococci were, on average, less sensitive than streptococci, but the 2 CFS inhibited and killed, at different dilutions, strains of methicillin-resistant Staphylococcus aureus. The immune response to nisin A-containing CFS was tested using the bovine mammary epithelial cell line BME-UV1. Application of CFS did not damage epithelial integrity, as demonstrated by the higher activity of N-acetyl-β-d-glucosaminidase (NAGase) and lysozyme inside the cells, in both treated and control samples. On the other hand, the increase of released NAGase after 15 to 24h of treatment with LL11 or SL153 live cultures demonstrated an inflammatory response of epithelial cells. Similarly, a significantly higher lysozyme activity was detected in the cells treated with LL11 live culture confirming the stimulation of lysosomal activity. The treatment of epithelial cells with SL153 live culture induced a significant tumor necrosis factor-α downregulation in the cells, but did not influence IL-8 expression. The control of tumor necrosis factor-α release could be an interesting approach to reduce the symptoms linked

  9. Development of Foreign Mammary Epithelial Morphology in the Stroma of Immunodeficient Mice

    OpenAIRE

    Gat Rauner; Amos Leviav; Eliezer Mavor; Itamar Barash

    2013-01-01

    Systemic growth and branching stimuli, and appropriate interactions with the host stroma are essential for the development of foreign epithelia in the mammary gland of immunodeficient mice. These factors were manipulated to promote and investigate the generation of representative bovine epithelial morphology in the transplanted mouse mammary stroma. The bovine mammary epithelium is unique in its commitment to rapid proliferation and high rate of differentiation. Its morphological organization...

  10. Effect of the ratios of unsaturated fatty acids on the expressions of genes related to fat and protein in the bovine mammary epithelial cells.

    Science.gov (United States)

    Sheng, R; Yan, S M; Qi, L Z; Zhao, Y L

    2015-04-01

    The objective of this study was to evaluate the effects of the different ratios of unsaturated fatty acids (UFAs) (oleic acid, linoleic acid, and linolenic acid) on the cell viability and triacylglycerol (TAG) content, as well as the mRNA expression of the genes related to lipid and protein synthesis in bovine mammary epithelial cells (BMECs). Primary cells were isolated from the mammary glands of Holstein dairy cows and were passaged twice. Afterward, the cells were randomly allocated to six treatments, five UFA-treated groups, and one control group. For all of the treatments, the the fetal bovine serum in the culture solution was replaced with fatty acid-free BSA (1 g/L), and the cells were treated with different ratios of oleic, linoleic, and linolenic acids (0.75:4:1, 1.5:10:1, 2:13.3:1, 3:20:1, and 4:26.7:1) for 48 h, which were group 1 to group 5. The control culture solution contained only fatty acid-free BSA without UFAs (0 μM). The results indicated that the cell viability was not affected by adding different ratios of UFAs, but the accumulation of TAG was significantly influenced by supplementing with different ratios of UFAs. Adding different ratios of UFAs suppressed the expression of ACACA and FASN but had the opposite effect on the abundances of FABP3 and CD36 mRNA. The expression levels of PPARG, SPEBF1, CSN1S1, and CSN3 mRNA in the BMECs were affected significantly after adding different ratios of UFAs. Our results suggested that groups 1, 2, and 3 (0.75:4:1, 1.5:10:1, and 2:13.3:1) had stronger auxo-action on fat synthesis in the BMECs, where group 3 (2:13.3:1) was the best, followed by group 4 (3:20:1). However, group 5 (4:26.7:1) was the worst. Genes related to protein synthesis in the BMECs were better promoted in groups 2 and 3, and group 3 had the strongest auxo-action, whereas the present study only partly examined the regulation of protein synthesis at the transcriptional level; more studies on translation level are needed in the future

  11. Deep Sequencing and Screening of Differentially Expressed MicroRNAs Related to Milk Fat Metabolism in Bovine Primary Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Binglei Shen

    2016-02-01

    Full Text Available Milk fat is a key factor affecting milk quality and is also a major trait targeted in dairy cow breeding. To determine how the synthesis and the metabolism of lipids in bovine milk is regulated at the miRNA level, primary mammary epithelial cells (pMEC derived from two Chinese Holstein dairy cows that produced extreme differences in milk fat percentage were cultured by the method of tissue nubbles culture. Small RNA libraries were constructed from each of the two pMEC groups, and Solexa sequencing and bioinformatics analysis were then used to determine the abundance of miRNAs and their differential expression pattern between pMECs. Target genes and functional prediction of differentially expressed miRNAs by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analysis illustrated their roles in milk fat metabolism. Results show that a total of 292 known miRNAs and 116 novel miRNAs were detected in both pMECs. Identification of known and novel miRNA candidates demonstrated the feasibility and sensitivity of sequencing at the cellular level. Additionally, 97 miRNAs were significantly differentially expressed between the pMECs. Finally, three miRNAs including bta-miR-33a, bta-miR-152 and bta-miR-224 whose predicted target genes were annotated to the pathway of lipid metabolism were screened and verified by real-time qPCR and Western-blotting experiments. This study is the first comparative profiling of the miRNA transcriptome in pMECs that produce different milk fat content.

  12. Non-classical effects of prolactin on the innate immune response of bovine mammary epithelial cells: Implications during Staphylococcus aureus internalization.

    Science.gov (United States)

    Medina-Estrada, Ivan; Alva-Murillo, Nayeli; López-Meza, Joel E; Ochoa-Zarzosa, Alejandra

    2015-12-01

    Staphylococcus aureus has the ability to invade mammary epithelial cells (bMECs) causing mastitis. This event depends primarily on the α5β1 integrin in the host cell. In addition, bMECs are a target for the hormone prolactin (PRL), which can regulate β1 integrin-dependent actions related to differentiation and lactation. Previously, we demonstrated that bovine PRL (bPRL, 5 ng/ml) stimulates S. aureus internalization into bMECs. TLR2 is important during S. aureus infections, but its activation by PRL has not yet been established. The objective of this study was to determine the role of α5β1 integrin and TLR2 during S. aureus internalization into bMECs stimulated with bPRL. We demonstrated that the prolactin-stimulated internalization of S. aureus decreases in response to the blockage of α5β1 integrin (∼ 80%) and TLR2 (∼ 80%). bPRL increases the membrane abundance (MA) of α5β1 integrin (∼ 20%) and induces TLR2 MA (∼ 2-fold). S. aureus reduces the α5β1 integrin MA in bMECs treated with bPRL (∼ 75%) but induces TLR2 MA in bMECs (∼ 3-fold). Bacteria and bPRL did not modify TLR2 MA compared with the hormone alone. S. aureus induces the activation of the transcription factor AP-1, which was inhibited in bMECs treated with bPRL and infected. In general, bPRL induces both pro- and anti-inflammatory responses in bMECs, which are abated in response to bacterial challenge. Interestingly, the canonical Stat-5 transcription factor was not activated in the challenged bMECs and/or treated with bPRL. Taken together, these results support novel functions of prolactin as a modulator of the innate immune response that do not involve the classical prolactin pathway.

  13. Deep sequencing-based transcriptional analysis of bovine mammary epithelial cells gene expression in response to in vitro infection with Staphylococcus aureus stains.

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    Full Text Available Staphylococcus aureus (S. aureus is an important etiological organism in chronic and subclinical mastitis in lactating cows. Given the fundamental role the primary bovine mammary epithelial cells (pBMECs play as a major first line of defense against invading pathogens, their interactions with S. aureus was hypothesized to be crucial to the establishment of the latter's infection process. This hypothesis was tested by investigating the global transcriptional responses of pBMECs to three S. aureus strains (S56,S178 and S36 with different virulent factors, using a tag-based high-throughput transcriptome sequencing technique. Approximately 4.9 million total sequence tags were obtained from each of the three S. aureus-infected libraries and the control library. Referenced to the control, 1720, 219, and 427 differentially expressed unique genes were identified in the pBMECs infected with S56, S178 and S36 S. aureus strains respectively. Gene ontology (GO and pathway analysis of the S56-infected pBMECs referenced to those of the control revealed that the differentially expressed genes in S56-infected pBMECs were significantly involved in inflammatory response, cell signalling pathways and apoptosis. In the same vein, the clustered GO terms of the differentially expressed genes of the S178-infected pBMECs were found to comprise immune responses, metabolism transformation, and apoptosis, while those of the S36-infected pBMECs were primarily involved in cell cycle progression and immune responses. Furthermore, fundamental differences were observed in the levels of expression of immune-related genes in response to treatments with the three S. aureus strains. These differences were especially noted for the expression of important pro-inflammatory molecules, including IL-1α, TNF, EFNB1, IL-8, and EGR1. The transcriptional changes associated with cellular signaling and the inflammatory response in this study may reflect different immunomodulatory mechanisms

  14. Enrichment for Repopulating Cells and Identification of Differentiation Markers in the Bovine Mammary Gland.

    Science.gov (United States)

    Rauner, Gat; Barash, Itamar

    2016-06-01

    Elucidating cell hierarchy in the mammary gland is fundamental for understanding the mechanisms governing its normal development and malignant transformation. There is relatively little information on cell hierarchy in the bovine mammary gland, despite its agricultural potential and relevance to breast cancer research. Challenges in bovine-to-mouse xenotransplantation and difficulties obtaining bovine-compatible antibodies hinder the study of mammary stem-cell dynamics in this species. In-vitro indications of distinct bovine mammary epithelial cell populations, sorted according to CD24 and CD49f expression, have been provided. Here, we successfully transplanted these bovine populations into the cleared fat pads of immunocompromised mice, providing in-vivo evidence for the multipotency and self-renewal capabilities of cells that are at the top of the cell hierarchy (termed mammary repopulating units). Additional outgrowths from transplantation, composed exclusively of myoepithelial cells, were indicative of unipotent basal stem cells or committed progenitors. Sorting luminal cells according to E-cadherin revealed three distinct populations: luminal progenitors, and early- and late-differentiating cells. Finally, miR-200c expression was negatively correlated with differentiation levels in both the luminal and basal branches of the bovine mammary cell hierarchy. Together, these experiments provide further evidence for the presence of a regenerative entity in the bovine mammary gland and for the multistage differentiation process within the luminal lineage. PMID:26615610

  15. Development of Foreign Mammary Epithelial Morphology in the Stroma of Immunodeficient Mice.

    Directory of Open Access Journals (Sweden)

    Gat Rauner

    Full Text Available Systemic growth and branching stimuli, and appropriate interactions with the host stroma are essential for the development of foreign epithelia in the mammary gland of immunodeficient mice. These factors were manipulated to promote and investigate the generation of representative bovine epithelial morphology in the transplanted mouse mammary stroma. The bovine mammary epithelium is unique in its commitment to rapid proliferation and high rate of differentiation. Its morphological organization within a fibrotic stroma resembles that of the human breast, and differs significantly from the rudimentary ductal network that penetrates a fatty stroma in mice. Transplantation of bovine mammary epithelial cells into the cleared mammary fat pad of NOD-SCID mice led to continuous growth of epithelial structures. Multilayered hollow spheres developed within fibrotic areas, but in contrast to mice, no epithelial organization was formed between adipocytes. The multilayered spheres shared characteristics with the heifer gland's epithelium, including lumen size, cell proliferation, cytokeratin orientation, estrogen/progesterone receptor expression and localization, and milk protein synthesis. However, they did not extend into the mouse fat pad via ductal morphology. Pre-transplantation of fibroblasts increased the number of spheres, but did not promote extension of bovine morphology. The bovine cells preserved their fate and rarely participated in chimeric mouse-bovine outgrowths. Nevertheless, a single case of terminal ductal lobuloalveolar unit (TDLU development was recorded in mice treated with estrogen and progesterone, implying the feasibility of this representative bovine morphology's development. In vitro extension of these studies revealed paracrine inhibition of bovine epithelial mammosphere development by adipocytes, which was also generalized to breast epithelial mammosphere formation. The rescue of mammosphere development by fibroblast growth factor

  16. Arginine Supplementation Recovered the IFN-γ-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2α Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells.

    Science.gov (United States)

    Xia, Xiaojing; Che, Yanyi; Gao, Yuanyuan; Zhao, Shuang; Ao, Changjin; Yang, Hongjian; Liu, Juxiong; Liu, Guowen; Han, Wenyu; Wang, Yuping; Lei, Liancheng

    2016-05-31

    During the lactation cycle of the bovine mammary gland, autophagy is induced in bovine mammary epithelial cells (BMECs) as a cellular homeostasis and survival mechanism. Interferon gamma (IFN-γ) is an important antiproliferative and apoptogenic factor that has been shown to induce autophagy in multiple cell lines in vitro. However, it remains unclear whether IFN-γ can induce autophagy and whether autophagy affects milk synthesis in BMECs. To understand whether IFN-γ affects milk synthesis, we isolated and purified primary BMECs and investigated the effect of IFN-γ on milk synthesis in primary BMECs in vitro. The results showed that IFN-γ significantly inhibits milk synthesis and that autophagy was clearly induced in primary BMECs in vitro within 24 h. Interestingly, autophagy was observed following IFN-γ treatment, and the inhibition of autophagy can improve milk protein and milk fat synthesis. Conversely, upregulation of autophagy decreased milk synthesis. Furthermore, mechanistic analysis confirmed that IFN-γ mediated autophagy by depleting arginine and inhibiting the general control nonderepressible-2 kinase (GCN2)/eukaryotic initiation factor 2α (eIF2α) signaling pathway in BMECs. Then, it was found that arginine supplementation could attenuate IFN-γ-induced autophagy and recover milk synthesis to some extent. These findings may not only provide a novel measure for preventing the IFN-γ-induced decrease in milk quality but also a useful therapeutic approach for IFN-γ-associated breast diseases in other animals and humans.

  17. Adipose and mammary epithelial tissue engineering.

    Science.gov (United States)

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  18. Oxytocin binding sites in bovine mammary tissue

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  19. Comparative 2D-DIGE Proteomic Analysis of Bovine Mammary Epithelial Cells during Lactation Reveals Protein Signatures for Lactation Persistency and Milk Yield

    Science.gov (United States)

    Janjanam, Jagadeesh; Singh, Surender; Jena, Manoj K.; Varshney, Nishant; Kola, Srujana; Kumar, Sudarshan; Kaushik, Jai K.; Grover, Sunita; Dang, Ajay K.; Mukesh, Manishi; Prakash, B. S.; Mohanty, Ashok K.

    2014-01-01

    Mammary gland is made up of a branching network of ducts that end with alveoli which surrounds the lumen. These alveolar mammary epithelial cells (MEC) reflect the milk producing ability of farm animals. In this study, we have used 2D-DIGE and mass spectrometry to identify the protein changes in MEC during immediate early, peak and late stages of lactation and also compared differentially expressed proteins in MEC isolated from milk of high and low milk producing cows. We have identified 41 differentially expressed proteins during lactation stages and 22 proteins in high and low milk yielding cows. Bioinformatics analysis showed that a majority of the differentially expressed proteins are associated in metabolic process, catalytic and binding activity. The differentially expressed proteins were mapped to the available biological pathways and networks involved in lactation. The proteins up-regulated during late stage of lactation are associated with NF-κB stress induced signaling pathways and whereas Akt, PI3K and p38/MAPK signaling pathways are associated with high milk production mediated through insulin hormone signaling. PMID:25111801

  20. ABC- and SLC-Transporters in Murine and Bovine Mammary Epithelium--Effects of Prochloraz.

    Directory of Open Access Journals (Sweden)

    Yagmur Yagdiran

    Full Text Available Some chemicals are ligands to efflux transporters which may result in high concentrations in milk. Limited knowledge is available on the influence of maternal exposure to chemicals on the expression and function of transporters in the lactating mammary gland. We determined gene expression of ABC and SLC transporters in murine mammary tissue of different gestation and lactation stages, in murine mammary cells (HC11 featuring resting and secreting phenotypes and in bovine mammary tissue and cells (BME-UV. Effects on transporter expression and function of the imidazole fungicide prochloraz, previously reported to influence BCRP in mammary cells, was investigated on transporter expression and function in the two cell lines. Transporters studied were BCRP, MDR1, MRP1, OATP1A5/OATP1A2, OCTN1 and OCT1. Gene expressions of BCRP and OCT1 in murine mammary glands were increased during gestation and lactation, whereas MDR1, MRP1, OATP1A5 and OCTN1 were decreased, compared to expressions in virgins. All transporters measured in mammary glands of mice were detected in bovine mammary tissue and in HC11 cells, while only MDR1 and MRP1 were detected in BME-UV cells. Prochloraz treatment induced MDR1 gene and protein expression in both differentiated HC11 and BME-UV cells and increased protein function in HC11 cells, resulting in decreased accumulation of the MDR1 substrate digoxin. In conclusion, our results demonstrate that murine (HC11 and bovine (BME-UV mammary epithelial cells can be applied to characterize expression and function of transporters as well as effects of contaminants on the mammary transporters. An altered expression, induced by a drug or toxic chemical, on any of the transporters expressed in the mammary epithelial cells during lactation may modulate the well-balanced composition of nutrients and/or secretion of contaminants in milk with potential adverse effects on breast-fed infants and dairy consumers.

  1. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes.

    Science.gov (United States)

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment. PMID:27272504

  2. Bovine natural killer cells are present in Escherichia coli infected mammary gland tissue and show antimicrobial activity in vitro.

    Science.gov (United States)

    Sipka, Anja; Pomeroy, Brianna; Klaessig, Suzanne; Schukken, Ynte

    2016-10-01

    Natural killer (NK) cells are early responders in bacterial infections but their role in bovine mastitis has not been characterized. For the first time, we show the presence of NK cells (NKp46(+)/CD3(-)) in bovine mammary gland tissue after an intramammary challenge with Escherichia (E.) coli. A small number of NK cells was detected in milk from quarters before and during an E. coli challenge. In vitro cultures of primary bovine mammary gland epithelial cells stimulated with UV irradiated E. coli induced significant migration of peripheral blood NK cells (pbNK) within 2h. Furthermore, pbNK cells significantly reduced counts of live E. coli in vitro within 2h of culture. The results show that bovine NK cells have the capacity to migrate to the site of infection and produce antibacterial mediators. These findings introduce NK cells as a leukocyte population in the mammary gland with potential functions in the innate immune response in bovine mastitis. PMID:27638120

  3. Bovine mammary stem cells: Cell biology meets production agriculture

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  4. Bovine mammary stem cells: new perspective for dairy science.

    Science.gov (United States)

    Martignani, E; Cravero, D; Miretti, S; Accornero, P; Baratta, M

    2014-01-01

    Mammary stem cells provide opportunities for the cyclic remodelling of the bovine mammary gland. Therefore, understanding the character and regulation of mammary stem cells is important for increasing animal health and productivity. The exciting possibility that stem cell expansion can influence milk production is currently being investigated by several researchers. In fact, appropriate regulation of mammary stem cells could hopefully benefit milk yield, persistency of lactation, dry period management and tissue repair. Accordingly, we and others have attempted to characterize and regulate the function of bovine mammary stem cells. However, research on mammary stem cells requires tissue biopsies, which represents a limitation for the management of animal welfare. Interestingly, different studies recently reported the identification of putative mammary stem cells in human breast milk. The possible identification of primitive cell types within cow's milk may provide a non-invasive source of relevant mammary cells for a wide range of applications. In this review, we have summarized the main achievements in this field for dairy cow science and described the interesting perspectives open to manipulate milk persistency during lactation and to cope with oxidative stress during the transition period by regulating mammary stem cells.

  5. Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-κB and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells.

    Science.gov (United States)

    Wang, Jingjing; Guo, Changming; Wei, Zhengkai; He, Xuexiu; Kou, Jinhua; Zhou, Ershun; Yang, Zhengtao; Fu, Yunhe

    2016-04-01

    Morin, a flavonoid isolated from Chinese herbs of the Moraceae family, has been reported to possess antiinflammatory activity. However, the effects of morin on mastitis have not been investigated. The present study was conducted to elucidate the antiinflammatory properties of morin on lipopolysaccharide (LPS)-stimulated primary bovine mammary epithelial cells (bMEC). The viability of bMEC was analyzed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium] assay. Subsequently, bMEC were stimulated with LPS in the presence or absence of morin. Gene expression of proinflammatory cytokines was determined by quantitative real-time PCR (qRT-PCR). Nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα) protein, extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) were detected by Western blotting. The results showed that cell viability was not affected by morin. Moreover, morin inhibited the gene expression of tumor necrosis factor-α (TNF-α), IL-6, and IL-1β in LPS-stimulated bMEC in a dose-dependent manner. Western blot analysis showed that morin suppressed the phosphorylation of IκBα, NF-κB unit p65, ERK, p38, and JNK in LPS-stimulated bMEC. In conclusion, the protective effects of morin on LPS-induced inflammatory response in bMEC may be due to its ability to suppress NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. These findings suggest that morin may be used as antiinflammatory drug for mastitis.

  6. File list: DNS.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.20.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  7. File list: Unc.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  8. File list: DNS.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.10.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  9. File list: Oth.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithelia...l cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  10. File list: His.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX403485,SRX396749,SRX403486,SRX031075,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  11. File list: Oth.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithelia...l cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  12. File list: His.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  13. File list: Pol.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.50.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  14. File list: His.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  15. File list: Unc.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.20.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  16. File list: Unc.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  17. File list: DNS.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.50.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  18. File list: DNS.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.05.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  19. File list: Pol.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.20.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  20. File list: Pol.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.05.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  1. File list: Oth.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithelia...l cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  2. File list: His.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  3. File list: Unc.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.05.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  4. File list: Oth.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithelia...l cells SRX424872,SRX330635,SRX330636 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  5. File list: Pol.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.10.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  6. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  7. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo. CONCLUSIONS/SIGNIFICANCE: Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  8. Lactoferrin affects the adherence and invasion of Streptococcus dysgalactiae ssp. dysgalactiae in mammary epithelial cells.

    Science.gov (United States)

    O'Halloran, Fiona; Beecher, Christine; Chaurin, Valerie; Sweeney, Torres; Giblin, Linda

    2016-06-01

    Streptococcus dysgalactiae ssp. dysgalactiae is an important causative agent of bovine mastitis worldwide. Lactoferrin is an innate immune protein that is associated with many functions including immunomodulatory, antiproliferative, and antimicrobial properties. This study aimed to investigate the interactions between lactoferrin and a clinical bovine mastitis isolate, Strep. dysgalactiae ssp. dysgalactiae DPC5345. Initially a deliberate in vivo bovine intramammary challenge was performed with Strep. dysgalactiae DPC5345. Results demonstrated a significant difference in lactoferrin mRNA levels in milk cells between the control and infused quarters 7h postinfusion. Milk lactoferrin levels in the Strep. dysgalactiae DPC5345 infused quarters were significantly increased compared with control quarters at 48h postinfusion. In vitro studies demonstrated that lactoferrin had a bacteriostatic effect on the growth of Strep. dysgalactiae DPC5345 and significantly decreased the ability of the bacteria to internalize into HC-11 mammary epithelial cells. Confocal microscopy images of HC-11 cells exposed to Strep. dysgalactiae and lactoferrin further supported this effect by demonstrating reduced invasion of bacteria to HC-11 cells. The combined data suggest that a bovine immune response to Strep. dysgalactiae infection includes a significant increase in lactoferrin expression in vivo, and based on in vitro data, lactoferrin limits mammary cell invasion of this pathogen by binding to the bacteria and preventing its adherence. PMID:27016824

  9. File list: ALL.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.Mammary_epithelial_cells mm9 All antigens Breast Mammary epithelia...SRX396750,SRX031066,SRX031214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  10. File list: ALL.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.Mammary_epithelial_cells mm9 All antigens Breast Mammary epithelia...SRX031066,SRX031214,SRX396750 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  11. File list: ALL.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.Mammary_epithelial_cells mm9 All antigens Breast Mammary epithelia...SRX396750,SRX031066,SRX031214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  12. The major bovine mastitis pathogens have different cell tropisms in cultures of bovine mammary gland cells

    NARCIS (Netherlands)

    Lammers, A.; Vorstenbosch, van C.J.; Erkens, J.H.F.; Smith, H.E.

    2001-01-01

    We previously showed that Staphylococcus aureus cells adhered mainly to an elongated cell type, present in cultures of bovine mammary gland cells. Moreover. we showed that this adhesion was mediated by binding to fibronectin. The same in vitro model was used here, to study adhesion of other importan

  13. File list: NoD.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.20.AllAg.Mammary_epithelial_cells mm9 No description Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  14. File list: InP.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.10.AllAg.Mammary_epithelial_cells mm9 Input control Breast Mammary epithelia...l cells SRX424873,SRX031066,SRX031214,SRX396750,SRX403487 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  15. File list: InP.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.50.AllAg.Mammary_epithelial_cells mm9 Input control Breast Mammary epithelia...l cells SRX424873,SRX403487,SRX396750,SRX031066,SRX031214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  16. File list: InP.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.05.AllAg.Mammary_epithelial_cells mm9 Input control Breast Mammary epithelia...l cells SRX424873,SRX403487,SRX031066,SRX031214,SRX396750 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  17. File list: NoD.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.05.AllAg.Mammary_epithelial_cells mm9 No description Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  18. File list: InP.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.20.AllAg.Mammary_epithelial_cells mm9 Input control Breast Mammary epithelia...l cells SRX424873,SRX403487,SRX396750,SRX031066,SRX031214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  19. File list: NoD.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.10.AllAg.Mammary_epithelial_cells mm9 No description Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  20. File list: NoD.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.50.AllAg.Mammary_epithelial_cells mm9 No description Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  1. Mammary epithelial cells isolated from milk are a valuable, non-invasive source of mammary transcripts

    Directory of Open Access Journals (Sweden)

    Marion eBoutinaud

    2015-10-01

    Full Text Available Milk is produced in the udder by mammary epithelial cells (MEC. Milk contains MEC, which are gradually exfoliated from the epithelium during lactation. Isolation of MEC from milk using immunomagnetic separation may be a useful non-invasive method to investigate transcriptional regulations in ruminants’ udder. This review aims to describe the process of isolating MEC from milk, to provide an overview on the studies that use this method to analyze gene expression by qRT PCR and to evaluate the validity of this method by analysing and comparing the results between studies. In several goat and cow studies, consistent reductions in alpha-lactalbumin mRNA levels during once-daily milking (ODM and in SLC2A1 mRNA level during feed restriction are observed. The effect of ODM on alpha-lactalbumin mRNA level was similarly observed in milk isolated MEC and mammary biopsy. Moreover, we and others showed decreasing alpha-lactalbumin and increasing BAX mRNA levels with advanced stages of lactation in dairy cows and buffalo. The relevance of using the milk-isolated MEC method to analyze mammary gene expression is proven, as the transcript variations were also consistent with milk yield and composition variations under the effect of different factors such as prolactin inhibition or photoperiod. . However, the RNA from milk-isolated MEC is particularly sensitive to degradation. This could explain the differences obtained between milk-isolated MEC and mammary biopsy in two studies where gene expression was compared using qRT-PCR or RNA Sequencing analyses. As a conclusion, when the RNA quality is conserved, MEC isolated from milk are a valuable, non-invasive source of mammary mRNA to study various factors that impact milk yield and composition (ODM, feeding level, endocrine status, photoperiod modulation and stage of lactation.

  2. Impact of let-7g on Proliferation and Lactation of Mouse Mammary Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Feng Li; Li Qing-zhang; Cui Wei; Ding Wei

    2012-01-01

    let-7g, a member of the let-7 family, regulates gene expression at the post-transcriptional level. The study explored a series of biological effects of mouse mammary epithelial cells that let-7g was produced. The differential expression of let-7g was detected by qRT-PCR in different developmental stages of the mouse mammary gland, let-7g expression and impact of let-7g on mouse mammary epithelial cells were analyzed by CASY-technology, qRT-PCR, Western blotting and HPLC inhibited let-7g expression of mouse mammary epithelial ceils through gene silencing. The results showed that qRT-PCR identified let-7g as being down-regulated in mouse mammary epithelial cells after it was inhibited. Mouse mammary epithelial cells with low expression of let-7g displayed higher expression of TGFβR I protein than those with high expression of let-7g, suggesting that low let-7g expression contributed to TGFβR I over-expression. Finally, the expression of let-7g was down-regulated, which significantly enhanced the proliferation of mouse mammary epithelial cells, and increased expression of β-Casein. The data indicated that let-7g could negatively regulate the expression of target Tgfbrl by complementary combination in mouse mammary epithelial cells, and then regulate the cell proliferation and expression of β-Casein by suppressing the TGFβR I expression.

  3. Radiogenic transformation of human mammary epithelial cells in vitro

    Science.gov (United States)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  4. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells

    Science.gov (United States)

    Chen, Qike K.; Lee, KangAe; Radisky, Derek C.; Nelson, Celeste M.

    2013-01-01

    Mouse mammary epithelial cells undergo transdifferentiation via epithelial-mesenchymal transition (EMT) upon treatment with matrix metalloproteinase-3 (MMP3). In rigid microenvironments, MMP3 upregulates expression of Rac1b, which translocates to the cell membrane to promote induction of reactive oxygen species and EMT. Here we examine the role of the extracellular matrix (ECM) in this process. Our data show that the basement membrane protein laminin suppresses the EMT response in MMP3-treated cells, whereas fibronectin promotes EMT. These ECM proteins regulate EMT via interactions with their specific integrin receptors. α6-integrin sequesters Rac1b from the membrane and is required for inhibition of EMT by laminin. In contrast, α5-integrin maintains Rac1b at the membrane and is required for the promotion of EMT by fibronectin. Understanding the regulatory role of the ECM will provide insight into mechanisms underlying normal and pathological development of the mammary gland. PMID:23660532

  5. Tenascin is a Stromal Marker for Epithelial Malignancy in the Mammary Gland

    Science.gov (United States)

    Mackie, Eleanor J.; Chiquet-Ehrismann, Ruth; Adams Pearson, Carolyn; Inaguma, Yutaka; Taya, Koji; Kawarada, Yoshifumi; Sakakura, Teruyo

    1987-07-01

    Tenascin is an extracellular matrix glycoprotein that is not present in the normal mature rat mammary gland. The distribution of tenascin was examined by immunohistochemistry in mammary tumors from carcinogen-treated and untreated rats, in virus-induced mammary tumors from mice, and in a variety of mammary gland lesions from humans. Tenascin was detectable in the stroma of the malignant but not of the benign tumors from all species. An inhibition ELISA, testing homogenates of rat tumors, confirmed that tenascin was present in malignant but not in benign tumors. Thus, tenascin was consistently found to be a stromal marker for epithelial malignancy in the mammary gland. It is concluded that tenascin may be involved in the interactions between the epithelial and mesenchyme-derived (stromal) components of the mammary gland, which are known to influence epithelial carcinogenesis in this organ.

  6. Binding of transcobalamin II by human mammary epithelial cells.

    Science.gov (United States)

    Adkins, Y; Lönnerdal, B

    2001-01-01

    The presence of nutrient binders in milk may have an important role during milk production and may influence the nutrient's bioavailability to the infant. Human milk and plasma contain at least two types of vitamin B12 binders: transcobalamin II (TCII) and haptocorrin (Hc). Vitamin B12 in milk is exclusively bound to Hc (Hc-B12). In plasma, the major vitamin B12 binding protein that is responsible for delivering absorbed vitamin B12 to most tissues and cells is TCII (TCII-B12). Currently, little is known about the route of secretion of vitamin B12 into human milk. It is possible that a receptor-mediated pathway is involved, since maternal vitamin B12 supplementation increases the amount of the vitamin secreted into human milk if the mother's vitamin B12 consumption is low, but remains unchanged if her intake is adequate. In this study, we investigated the process by which the mammary gland acquires vitamin B12 from maternal circulation, whether as a free vitamin or as a Hc-B12 or TCII-B12 complex. TCII was purified from plasma incubated with [57Co]vit B12 (B12*), while Hc was purified from whey incubated with B12*. Both proteins were separated by fast protein liquid chromatography using gel filtration and anion-exchange columns. Purity of the separated proteins was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Binding studies were carried out on a monolayer of normal human mammary epithelial cells (HMEC) at 4 degrees C using free B12* and TCII-B12* and Hc-B12* complexes. Minimal binding of free B12* and Hc-B12* to HMEC was observed; however, HMEC exhibited a high affinity for the TCII-B12* complex. This study suggests that a specific cell surface receptor for the TCII-B12 complex exists in the mammary gland. It is possible that once vitamin B12 is in the mammary gland it is transferred to Hc (which may be synthesized by the mammary gland) and then secreted into milk as a Hc-B12 complex. PMID:11787717

  7. Paclitaxel resistance in untransformed human mammary epithelial cells is associated with an aneuploidy-prone phenotype

    OpenAIRE

    Bouchet, B P; Bertholon, J; Falette, N; Audoynaud, C; Lamblot, C; Puisieux, A; Galmarini, C M

    2007-01-01

    Despite its increasing clinical use, almost no data are currently available about paclitaxel effects on non-cancerous mammary epithelial cells. We have previously established paclitaxel-resistant sub-cell lines (paclitaxel-surviving populations, PSPs; n=20), and sensitive controls (control clones, CCs; n=10), from the untransformed human mammary epithelial cell line HME1. In this study, we aimed to establish whether paclitaxel resistance was associated with a modified sensitivity to paclitaxe...

  8. Epithelial cell differentiation regulated by MicroRNA-200a in mammary glands.

    Directory of Open Access Journals (Sweden)

    Kentaro Nagaoka

    Full Text Available Mammary gland epithelial cells undergo periodic cycles of proliferation, differentiation, and involution. Many studies have reported that miRNAs, which are small, non-coding RNAs, influence a variety of biological processes during posttranscriptional regulation. Here, we found that one miRNA, miR-200a, was relatively highly expressed in epithelial cell-rich organs such as mammary glands, lung, and kidney in mice. In mammary glands, miR-200a expression increased during mid-pregnancy through lactation; its expression was stimulated by lactogenic hormone treatment of mammary epithelial cells. Lactogenic hormone also induced the expression of milk protein ß-casein mRNA (a marker of cell differentiation and E-cadherin mRNA (a marker of epithelial cells. However, knockdown of miR-200a prevented increases in ß-casein and E-cadherin mRNA expression. Protein analysis revealed that E-cadherin signal was decreased and ZEB1 (a marker of EMT was increased following miR-200a knockdown. Finally, in a three-dimensional culture system modeling lumen-containing mammary ducts, miR-200a knockdown decreased the cavity formation rate and suppressed claudin-3 and par-6b expression, indicating reduced epithelial cell polarity. These observations suggest that miR-200a is important for maintaining the epithelial cell phenotype, which contributes to lactogenic hormone induction of cellular differentiation in mammary glands.

  9. Cloning of 5’ regulatory element of bovine β-lactoglobulin gene and its utilization in generation of mammary bioreactors

    Institute of Scientific and Technical Information of China (English)

    杨国庆; 戴蕴平; 朱宝利; 陈永福; 齐顺章

    1996-01-01

    To obtain a regulatory element for generating mammary bioreactors. a DNA fragment derived from bovine β-lactoglobulin (BLG) gene was cloned, which consisted of a 650-bp 5’ flanking sequence, exon Ⅰ, intron Ⅰ and exon Ⅱ. A 661-bp region of the cloned fragment, consisting of the 650-bp 5’ flanking sequence and a non-coding sequence of 11 bp downstream of the transcription initiation site, was used as a regulatory element to combine with human growth hormone (hGH) gene to generate a bovine BLG/hGH fusion construct, which was then introduced into cultured primary mammary epithelial cells of goat for transient expression of hGH gene. It was demonstrated that the hGH gene was able to express following hormone induction and the expressed product was able to be secreted into the medium. The bovine BLG/hGH fusion construct was also used to generate transgenic mice by microinjection. Subsequently, five transgenic mice were generated. The hGH in milk by one transgenic female mouse was 420μg/mL, while the cont

  10. Molecular mechanisms involved in casein gene expression and secretion in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Mouse mammary epithelial cells (MMEC) secrete a group of milk-specific proteins including various caseins and whey proteins. Dissociated mammary epithelial cells maintain expression of most of their differentiated functions only if cells are plated on a suitable substratum. Casein production and section, cell morphology, and production of α-lactalbumin have been used as markers to assess the degree of differentiation of mammary cells in culture. The general consensus is that cells express their differentiated properties at high levels and for longer periods of time on such substrata. In this paper, the authors demonstrate that modulation of the expression of caseins by floating collagen gels is manifested at several regulatory points

  11. PUMA Cooperates with p21 to Regulate Mammary Epithelial Morphogenesis and Epithelial-To-Mesenchymal Transition.

    Directory of Open Access Journals (Sweden)

    Yanhong Zhang

    Full Text Available Lumen formation is essential for mammary morphogenesis and requires proliferative suppression and apoptotic clearance of the inner cells within developing acini. Previously, we showed that knockdown of p53 or p73 leads to aberrant mammary acinus formation accompanied with decreased expression of p53 family targets PUMA and p21, suggesting that PUMA, an inducer of apoptosis, and p21, an inducer of cell cycle arrest, directly regulate mammary morphogenesis. To address this, we generated multiple MCF10A cell lines in which PUMA, p21, or both were stably knocked down. We found that morphogenesis of MCF10A cells was altered modestly by knockdown of either PUMA or p21 alone but markedly by knockdown of both PUMA and p21. Moreover, we found that knockdown of PUMA and p21 leads to loss of E-cadherin expression along with increased expression of epithelial-to-mesenchymal transition (EMT markers. Interestingly, we found that knockdown of ΔNp73, which antagonizes the ability of wide-type p53 and TA isoform of p73 to regulate PUMA and p21, mitigates the abnormal morphogenesis and EMT induced by knockdown of PUMA or p21. Together, our data suggest that PUMA cooperates with p21 to regulate normal acinus formation and EMT.

  12. 茶皂素对奶牛乳腺上皮细胞增殖及乳脂合成关键酶的影响%Effects of Tea Saponin on Proliferation and Milk Fat Synthesis Key Enzymes of Bovine Mammary Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    严淑红; 邢文丽; 方洛云; 王俊杰; 刘续航; 蒋林树

    2015-01-01

    This experiment was conducted to study the effects of tea saponin on proliferation and milk fat syn⁃thesis key enzymes of bovine mammary epithelial cells. Mammary epithelial cells were obtained by the method of enzyme digestion. After immunofluorescence identification was done, mammary epithelial cells were cul⁃tured in tea saponin solution of different concentrations [0 (control), 0.05, 0.25, 0.50, 1.00, 5.00, 10.00, 20.00, 40.00, 60.00, 80.00 and 100.00 μg/mL]. 1) Thiazolyl blue tetrazolium bromide (MTT) method was used to detect the effects of tea saponin on the proliferation of cells. 2) Enzyme⁃linked immunosorbent as⁃say ( ELISA) kit was used to measure acetyl⁃CoA carboxylase ( ACACA) , fatty acid synthase ( FASN) and stearoyl⁃coenzyme A desaturase ( SCD ) contents in cells. 3 ) Fluorescence⁃based quantitative real⁃time PCR method was used to measure the relative expression level of mRNA of ACACA, FASN and SCD. The results showed as follows:1) compared with control group, there was no significant effect of tea saponin at concen⁃tration of 0.05 to 5.00 μg/mL ( P>0.05) , but the cell proliferation was significantly inhibited by tea saponin at concentration of 10.00 to 100.00 μg/mL ( P0.05); 3) compared with control group, the relative expression level of SCD mRNA in 0. 50, 5. 00 and 20.00 μg/mL concentration groups was significantly decreased ( P<0.05) . In conclusion, tea saponin plays a role in inhibition of proliferation and the relative expression level of fat synthesis key enzyme gene SCD mRNA of bovine mammary epithelial cells.%本试验旨在研究茶皂素对乳腺上皮细胞增殖、乳脂合成关键酶的影响。采用酶消化法分离获取乳腺上皮细胞,经免疫荧光鉴定后,分别添加不同浓度[0(对照)、0.05、0.25、0.50、1.00、5.00、10.00、20.00、40.00、60.00、80.00、100.00μg/mL]的茶皂素溶液培养,然后进行如下操作:1)采用噻唑蓝( MTT)法

  13. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  14. Radiation-induced chromosomal instability in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  15. Effect of ionizing radiation on nitric oxide production in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Full text: Nitric oxide (NO) is an important biological molecule with a wide variety of functions in physiological and pathophysiological events. We reported previously the presence of nitric oxide synthase (NOS) isoforms such as inducible, endothelial and neuronal types in the rat mammary glands. In addition, we demonstrated that a selective inhibitor of inducible NOS and NO-specific scavenger prevent radiation-induced rat mammary tumors, and that radiation-induced NO might contribute to tumor initiation of mammary glands in rat. However, the production and action of NO in the epithelium of mammary glands after the exposure of radiation are still unclear. In this current study we, therefore, examined the effects of ionizing radiation on a mouse mammary epithelial cell line (HC11) to provide a concrete evidence regarding the production of NO in the mammary epithelial cells after irradiation. The HC11 cells, established from COMMA-1D mouse mammary epithelial cell line, were cultured in RPMI-1640 growth medium containing 10% FCS, EGF and insulin until become confluence, then irradiated by X-ray with a dose at 10 or 30 Gy (1 Gy/min). After the irradiation, NO produced and secreted by HC11 cells into culture medium was estimated by the measurement of nitrite concentration in the culture medium with a Griess assay. HC11 cells produced NO spontaneously, and NO concentration was gradually increased during the experimented period. On the other hand, NO production was transiently enhanced immediately after irradiation of the cells in a dose-dependent manner. It, then, descended in an hour after irradiation, and returned to a basal level in 24 hours. These indicate that NO production was undoubtedly increased by irradiation in mammary epithelial cells, and support our previous propose that radiation-induced NO might contribute to initiation of tumorigenesis of mammary glands

  16. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Twite, Nicolas [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Andrei, Graciela [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Kummert, Caroline [ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Donner, Catherine [Department of Obstetrics and Gynecology, Erasme Hospital, Route de Lennik 808, 1070 Brussels (Belgium); Perez-Morga, David [Laboratory of Molecular Parasitology, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, Gosselies (Belgium); De Vos, Rita [Pathology Department, U.Z. Leuven, Minderbroedersstraat 12, Leuven (Belgium); Snoeck, Robert, E-mail: Robert.Snoeck@Rega.kuleuven.be [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Marchant, Arnaud, E-mail: arnaud.marchant@ulb.ac.be [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium)

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  17. Primary cilia distribution and orientation during involution of the bovine mammary gland.

    Science.gov (United States)

    Biet, J; Poole, C A; Stelwagen, K; Margerison, J K; Singh, K

    2016-05-01

    The regulation of mammary gland involution occurs through multiple levels including environmental factors, hormones, and local intramammary signals. Primary cilia (PC) are signaling organelles that sense biochemical and biophysical extracellular stimuli and are vital for cellular and tissue function. The aim of this study was to examine the distribution, incidence, and orientation of PC. Furthermore, we determined changes in expression levels of the signal transducer and activator of transcription (STAT)6 at the onset of bovine mammary gland involution. Mammary tissue was collected from pasture-fed, primiparous, nonpregnant Friesian dairy cows at mid lactation (n=5 per group) killed 6-h after milking (lactating controls) and during involution after 7 and 28 d of nonmilking (NM). Fluorescent immunohistochemistry and confocal microscopy of tissue sections showed that PC were present on luminal secretory epithelial cells (SEC), myoepithelial cells (MEC), and stromal fibroblast cells (SFC). Furthermore, in all 3 experimental groups, different PC positions or orientations relative to the cell surface were identified on SEC and MEC, which projected toward the lumen and were either straight, bent, or deflected against the apical cell surface, whereas PC in SFC were confined to the interalveolar space. However, by 28-d NM, fewer PC projected into the luminal space and most appeared deflected or projected toward the interalveolar space. Furthermore, by 28-d NM, with the increase in stromal connective tissue, more PC were detected within the interalveolar and interlobular stroma. At 28-d NM, we observed a decrease in luminal cilia relative to the total number of cilia. The number of ciliated cells in the total fraction (SEC, MEC, and SFC) was the same for all 3 groups, although in the luminal fraction (SEC and MEC), PC per nuclei increased by 28-d NM relative to lactation. At all 3 stages, we detected variations in shape and orientation of PC within the same alveolus, with

  18. Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Brian W., E-mail: brbooth@clemson.edu [Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC 29634 (United States); Boulanger, Corinne A.; Anderson, Lisa H. [Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Jimenez-Rojo, Lucia; Brisken, Cathrin [Ecole polytechnique federale de Lausanne (EPFL), ISREC-Swiss Institute for Experimental Research, NCCR Molecular Oncology, SV.832 Station 19 CH-1015, Lausanne (Switzerland); Smith, Gilbert H., E-mail: gs4d@nih.gov [Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2010-02-01

    Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D {beta}-geo (CD{beta}geo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CD{beta}geo cells and that the mitogen activated protein kinase signaling pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG{sup -/-} mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro.

  19. Characterization of primary cilia distribution and morphology during lactation, stasis, and involution in the bovine mammary gland.

    Science.gov (United States)

    Millier, Melanie J; Singh, Kuljeet; Poole, C Anthony

    2013-12-01

    Primary cilia are small, sensory organelles projecting from virtually all cells and are vital for cellular and tissue function. Their distribution in bovine mammary tissue has not previously been assessed, despite the potential for these organelles to provide specialized perceptive and regulatory functions to this acutely responsive and adaptive gland. The research objectives were to assess ciliary distribution and morphology during active lactation, milk stasis, and early involution using tissue samples obtained following the abrupt cessation of milk removal in nonpregnant, Friesian dairy cows at mid-lactation. Routinely processed tissue sections were obtained at intervals from 6 to 192 hr after the last milking (N = 3 animals per group) and assigned to active lactation (6-12 hr), milk stasis (18-36 hr), and early involution (72-192 hr). Primary cilia were observed in luminal secretory epithelial cells (SECs), myoepithelial cells, and stromal cells following fluorescent immunohistochemistry and confocal microscopy. In SECs, some primary cilia appeared deflected against the apical cell membrane. The proportion of those deflected was greater during milk stasis than active lactation. Data show that primary cilia were suitably placed in three important cell types to potentially coordinate various forms of signal transduction relying on both mechanosensation and chemosensation, according to the physical and physiological state of the gland. Their cell-type distribution and morphology provide new directions in the study of mammary regulation to enhance the understanding of how various mammary-specific cellular responses may be initiated by biochemical or local biophysical factors. PMID:24155176

  20. Regulation of lipid droplet size in mammary epithelial cells by remodeling of membrane lipid composition-a potential mechanism.

    Directory of Open Access Journals (Sweden)

    Bat-Chen Cohen

    Full Text Available Milk fat globule size is determined by the size of its precursors-intracellular lipid droplets-and is tightly associated with its composition. We examined the relationship between phospholipid composition of mammary epithelial cells and the size of both intracellular and secreted milk fat globules. Primary culture of mammary epithelial cells was cultured in medium without free fatty acids (control or with 0.1 mM free capric, palmitic or oleic acid for 24 h. The amount and composition of the cellular lipids and the size of the lipid droplets were determined in the cells and medium. Mitochondrial quantity and expression levels of genes associated with mitochondrial biogenesis and polar lipid composition were determined. Cells cultured with oleic and palmitic acids contained similar quantities of triglycerides, 3.1- and 3.8-fold higher than in controls, respectively (P 3 μm and phosphatidylethanolamine concentration was higher by 23 and 63% compared with that in the control and palmitic acid treatments, respectively (P < 0.0001. In the presence of palmitic acid, only 4% of the cells contained large lipid droplets and the membrane phosphatidylcholine concentration was 22% and 16% higher than that in the control and oleic acid treatments, respectively (P < 0.0001. In the oleic acid treatment, approximately 40% of the lipid droplets were larger than 5 μm whereas in that of the palmitic acid treatment, only 16% of the droplets were in this size range. Triglyceride secretion in the oleic acid treatment was 2- and 12-fold higher compared with that in the palmitic acid and control treatments, respectively. Results imply that membrane composition of bovine mammary epithelial cells plays a role in controlling intracellular and secreted lipid droplets size, and that this process is not associated with cellular triglyceride content.

  1. Proteins are secreted by both constitutive and regulated secretory pathways in lactating mouse mammary epithelial cells

    OpenAIRE

    1992-01-01

    Lactating mammary epithelial cells secrete high levels of caseins and other milk proteins. The extent to which protein secretion from these cells occurs in a regulated fashion was examined in experiments on secretory acini isolated from the mammary glands of lactating mice at 10 d postpartum. Protein synthesis and secretion were assayed by following the incorporation or release, respectively, of [35S]methionine-labeled TCA-precipitable protein. The isolated cells incorporated [35S]methionine ...

  2. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    Science.gov (United States)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  3. Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells

    Science.gov (United States)

    Goepfert, T. M.; McCarthy, M.; Kittrell, F. S.; Stephens, C.; Ullrich, R. L.; Brinkley, B. R.; Medina, D.

    2000-01-01

    Mammary epithelial cells from p53 null mice have been shown recently to exhibit an increased risk for tumor development. Hormonal stimulation markedly increased tumor development in p53 null mammary cells. Here we demonstrate that mammary tumors arising in p53 null mammary cells are highly aneuploid, with greater than 70% of the tumor cells containing altered chromosome number and a mean chromosome number of 56. Normal mammary cells of p53 null genotype and aged less than 14 wk do not exhibit aneuploidy in primary cell culture. Significantly, the hormone progesterone, but not estrogen, increases the incidence of aneuploidy in morphologically normal p53 null mammary epithelial cells. Such cells exhibited 40% aneuploidy and a mean chromosome number of 54. The increase in aneuploidy measured in p53 null tumor cells or hormonally stimulated normal p53 null cells was not accompanied by centrosome amplification. These results suggest that normal levels of progesterone can facilitate chromosomal instability in the absence of the tumor suppressor gene, p53. The results support the emerging hypothesis based both on human epidemiological and animal model studies that progesterone markedly enhances mammary tumorigenesis.

  4. Effects of N-acetylimidazole on oxytocin binding in bovine mammary tissue

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.; Gorewit, R.C.; Currie, W.B. (Cornell Univ., Ithaca NY (USA))

    1990-01-01

    The effects of N-acetylimidazole on specific binding of oxytocin to microsomal fractions of bovine mammary gland were studied. N-acetylimidazole suppressed oxytocin binding, with time and concentration dependence. Decreased oxytocin binding activity appeared to be due to decreased affinity of the hormone for its receptor. Acetylation of oxytocin, rather than of oxytocin receptors, seemed to be responsible for the decreased binding.

  5. Time-lapse Imaging of Primary Preneoplastic Mammary Epithelial Cells Derived from Genetically Engineered Mouse Models of Breast Cancer

    OpenAIRE

    Nakles, Rebecca E.; Millman, Sarah L.; Cabrera, M. Carla; Johnson, Peter; Mueller, Susette; Hoppe, Philipp S.; Schroeder, Timm; Furth, Priscilla A.

    2013-01-01

    Time-lapse imaging can be used to compare behavior of cultured primary preneoplastic mammary epithelial cells derived from different genetically engineered mouse models of breast cancer. For example, time between cell divisions (cell lifetimes), apoptotic cell numbers, evolution of morphological changes, and mechanism of colony formation can be quantified and compared in cells carrying specific genetic lesions. Primary mammary epithelial cell cultures are generated from mammary glands without...

  6. Optimization and characterization of an in vitro bovine mammary cell culture system to study regulation of milk protein synthesis and mammary differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Talhouk, R.S.

    1988-01-01

    A long term bovine mammary cell culture system that maintains normal mammary cell function was established and optimized to study milk protein synthesis and secretion and mammary differentiation. This culture system used bovine mammary acini isolated from developing or lactating mammary gland by enzymatic dissociation, and cryopreserved until thawed and plated for growth in vitro for these studies. Cells in M199 with lactogenic hormones {plus minus} fetal calf serum (FCS) were cultured on plastic, 100ul and 500ul type I collagen, and Matrigel, or embedded within type I collagen. Cell morphology, cell number, and total TCA-precipitable {sup 35}S-labelled proteins were monitored. Milk protein ({alpha}{sub s,1}-casein, lactoferrin (LF), {alpha}-lactalbumin, and {beta}-lactoglobulin) secretion and intracellular levels were determined by an ELISA assay.

  7. Conditionally reprogrammed normal and transformed mouse mammary epithelial cells display a progenitor-cell-like phenotype.

    Directory of Open Access Journals (Sweden)

    Francisco R Saenz

    Full Text Available Mammary epithelial (ME cells cultured under conventional conditions senesce after several passages. Here, we demonstrate that mouse ME cells isolated from normal mammary glands or from mouse mammary tumor virus (MMTV-Neu-induced mammary tumors, can be cultured indefinitely as conditionally reprogrammed cells (CRCs on irradiated fibroblasts in the presence of the Rho kinase inhibitor Y-27632. Cell surface progenitor-associated markers are rapidly induced in normal mouse ME-CRCs relative to ME cells. However, the expression of certain mammary progenitor subpopulations, such as CD49f+ ESA+ CD44+, drops significantly in later passages. Nevertheless, mouse ME-CRCs grown in a three-dimensional extracellular matrix gave rise to mammary acinar structures. ME-CRCs isolated from MMTV-Neu transgenic mouse mammary tumors express high levels of HER2/neu, as well as tumor-initiating cell markers, such as CD44+, CD49f+, and ESA+ (EpCam. These patterns of expression are sustained in later CRC passages. Early and late passage ME-CRCs from MMTV-Neu tumors that were implanted in the mammary fat pads of syngeneic or nude mice developed vascular tumors that metastasized within 6 weeks of transplantation. Importantly, the histopathology of these tumors was indistinguishable from that of the parental tumors that develop in the MMTV-Neu mice. Application of the CRC system to mouse mammary epithelial cells provides an attractive model system to study the genetics and phenotype of normal and transformed mouse epithelium in a defined culture environment and in vivo transplant studies.

  8. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells.

    Science.gov (United States)

    Cho, Kyoung Bin; Cho, Min Kyong; Lee, Won Young; Kang, Keon Wook

    2010-07-28

    The c-myc gene is frequently overexpressed in human breast cancer and its target genes are involved in tumorigenesis. Epithelial mesenchymal transitions (EMT), where cells undergo a developmental switch from a polarized epithelial phenotype to a highly motile mesenchymal phenotype, are associated with invasion and motility of cancer cells. Basal E-cadherin expression was down-regulated in c-myc overexpressing MCF10A (c-myc-MCF10A) cells compared to GFP-overexpressing MCF10A (GFP-MCF10A) cells, while N-cadherin was distinctly increased in c-myc-MCF10A cells. Given that glycogen synthase kinase-3beta (GSK-3beta) and the snail axis have key roles in E-cadherin deregulation during EMT, we investigated the role of GSK-3beta/snail signaling pathways in the induction of EMT by c-myc overexpression. In contrast to GFP-MCF10A cells, both the transcriptional activity and the ubiquitination-dependent protein stability of snail were enhanced in c-myc-MCF10A cells, and this was reversed by GSK-3beta overexpression. We also found that c-myc overexpression inhibits GSK-3beta activity through activation of extracellular signal-regulated kinase (ERK). Inhibition of ERK by dominant negative mutant transfection or chemical inhibitor significantly suppressed snail gene transcription. These results suggest that c-myc overexpression during transformation of mammary epithelial cells (MEC) is involved in EMTs via ERK-dependent GSK-3beta inactivation and subsequent snail activation.

  9. Microarray analysis of gene expression profiles in the bovine mammary gland during lactation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Mammary glands undergo functional and metabolic changes during virgin,lactation and dry periods.A total of 122 genes were identified as differentially expressed,including 79 up-regulated and 43 down-regulated genes during lactation compared with virgin and dry periods.Gene ontology analysis showed the functional classification of the up-regulated genes in lactation,including transport,biosynthetic process,signal transduction,catalytic activity,immune system process,cell death,and positive regulation of the developmental process.Microarray data clarified molecular events in bovine mammary gland lactation.

  10. Embryonic stem cells are redirected to non-tumorigenic epithelial cell fate by interaction with the mammary microenvironment.

    Directory of Open Access Journals (Sweden)

    Corinne A Boulanger

    Full Text Available Experiments were conducted to redirect mouse Embryonic Stem (ES cells from a tumorigenic phenotype to a normal mammary epithelial phenotype in vivo. Mixing LacZ-labeled ES cells with normal mouse mammary epithelial cells at ratios of 1:5 and 1:50 in phosphate buffered saline and immediately inoculating them into epithelium-divested mammary fat pads of immune-compromised mice accomplished this. Our results indicate that tumorigenesis occurs only when normal mammary ductal growth is not achieved in the inoculated fat pads. When normal mammary gland growth occurs, we find ES cells (LacZ+ progeny interspersed with normal mammary cell progeny in the mammary epithelial structures. We demonstrate that these progeny, marked by LacZ expression, differentiate into multiple epithelial subtypes including steroid receptor positive luminal cells and myoepithelial cells indicating that the ES cells are capable of epithelial multipotency in this context but do not form teratomas. In addition, in secondary transplants, ES cell progeny proliferate, contribute apparently normal mammary progeny, maintain their multipotency and do not produce teratomas.

  11. Effect of Staphylococcus aureus and Streptococcus uberis on apoptosis of bovine mammary gland lymphocytes.

    Science.gov (United States)

    Slama, Petr; Sladek, Zbysek; Rysanek, Dusan; Langrova, Tereza

    2009-10-01

    The aim of this study was to determine whether lymphocyte apoptosis is modulated by infections caused by Staphylococcus aureus and Streptococcus uberis. Samples of cell populations were obtained by lavage of the mammary glands at 4 intervals (24, 48, 72 and 168 h) following infection. The percentage of apoptotic lymphocytes peaked at 168 h after challenge with S. aureus or S. uberis. Subsequent experiments focused on in vitro cultivation of mammary gland lymphocytes with S. aureus and S. uberis. These experiments showed a lower percentage of apoptotic lymphocytes following 3h of cultivating cells with bacteria than after cultivation without bacteria. The results demonstrate that during both experimental infection of bovine mammary glands with S. aureus or S. uberis and during in vitro cultivation of lymphocytes with S. aureus or S. uberis, apoptosis of lymphocytes is delayed.

  12. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice.

    Directory of Open Access Journals (Sweden)

    Jimena Laporta

    Full Text Available Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood into the ductal lumen (milk. Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1, which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2 and basolateral (CaSR, ORAI-1 membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2. Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2 are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation.

  13. PUMA Cooperates with p21 to Regulate Mammary Epithelial Morphogenesis and Epithelial-To-Mesenchymal Transition

    OpenAIRE

    Zhang, Yanhong; Yan, Wensheng; Jung, Yong Sam; Chen, Xinbin

    2013-01-01

    Lumen formation is essential for mammary morphogenesis and requires proliferative suppression and apoptotic clearance of the inner cells within developing acini. Previously, we showed that knockdown of p53 or p73 leads to aberrant mammary acinus formation accompanied with decreased expression of p53 family targets PUMA and p21, suggesting that PUMA, an inducer of apoptosis, and p21, an inducer of cell cycle arrest, directly regulate mammary morphogenesis. To address this, we generated multipl...

  14. Bovine natural killer cells are present in Escherichia coli infected mammary gland tissue and show antimicrobial activity in vitro

    NARCIS (Netherlands)

    Sipka, Anja; Pomeroy, Brianna; Klaessig, Suzanne; Schukken, Ynte

    2016-01-01

    Natural killer (NK) cells are early responders in bacterial infections but their role in bovine mastitis has not been characterized. For the first time, we show the presence of NK cells (NKp46+/CD3) in bovine mammary gland tissue after an intramammary challenge with Escheri

  15. Effects of Prolactin and Leptin on Gene Expressions of Milk Proteins and Key Factors Related to Milk Protein Synthesis of Bovine Mammary Epithelial Cells%催乳素和瘦素对奶牛乳腺上皮细胞乳蛋白及乳蛋白合成信号通路关键因子基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    杜瑞平; 王春艳; 张兴夫; 高民

    2015-01-01

    protein synthesis of bovine mammary epithelial cells under pri-mary culture condition. The primary bovine mammary epithelial cells ( pBMECs) were cultured by collagenase digestion. The epithelial origin of pBMECs was identified by morphological observation, growth curve assay and specific milk protein gene expressions detection. There were four treatments with four concentrations of prolactin (0, 0.1, 1.0 and 10.0μg/mL, respectively), leptin concentration was the same (100 ng/mL), and each treatment had six replicates. Thiazole blue ( MTT) assay was used to detected the effects of prolactin and leptin on cells proliferation, and real time PCR was used to assay the effects of prolactin and leptin on gene ex-pressions of main milk proteins [α-casein,β-casein,κ-casein andβ-lactoglobulin (β-LGB) ] , Janus kinase 2 ( JAK2) , signal transduction and transcription activator 5 ( STAT5 ) and mammalian target of rapamycin ( mTOR) . The results showed that based on certain concentration of leptin ( 100 ng/mL ) , compared with 0 μg/mL prolactin treatment: the treatments of 0.1 and 1.0 μg/mL prolactin significantly promoted pBMECs proliferation (P<0.05); the treatments of 0.1 and 10.0 μg/mL prolactin significantly decreased the gene ex-pressions of αs1-casein, αs2-casein, β-casein and β-LGB(P<0.05); the treatment of 1.0 μg/mL prolactin significantly increased the gene expressions ofαs1-casein,κ-casein,β-LGB ( P<0.05);all supplemental treat-ments of prolactin exerted promotion effects on JAK2 gene expression ( P<0. 05 ); only the treatment of 1.0 μg/mL prolactin significantly increased STAT5 and mTOR gene expressions ( P<0. 05 ) . In conclusion, based on 100 ng/mL leptin in culture medium, positive effects of prolactin on gene expressions of milk pro-teins and key factors related to milk protein synthesis are observed, but the concentration should be limited in a certain range (0.1 to 1.0 μg/mL), and reverse inhibition effects emerge with high or low concentration

  16. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Simian, M.; Harail, Y.; Navre, M.; Werb, Z.; Lochter, A.; Bissell, M.J.

    2002-03-06

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP-3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a critical role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland.

  17. CLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation.

    Directory of Open Access Journals (Sweden)

    Grace Ramena

    Full Text Available CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT. To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1 and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS. The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines.

  18. Increased mammogram-induced DNA damage in mammary epithelial cells aged in vitro.

    Directory of Open Access Journals (Sweden)

    Laia Hernández

    Full Text Available Concerned about the risks of mammography screening in the adult population, we analyzed the ability of human mammary epithelial cells to cope with mammogram-induced DNA damage. Our study shows that an X-ray dose of 20 mGy, which is the standard dose received by the breast surface per two-view mammogram X-ray exploration, induces increased frequencies of DNA double-strand breaks to in vitro aged-but not to young-human mammary epithelial cells. We provide evidence that aged epithelial breast cells are more radiosensitive than younger ones. Our studies point to an inefficient damage response of aged cells to low-dose radiation, this being due to both delayed and incomplete mobilization of repair proteins to DNA strand breaks. This inefficient damage response is translated into an important delay in double-strand break disappearance and consequent accumulation of unrepaired DNA breaks. The result of this is a significant increase in micronuclei frequency in the in vitro aged mammary epithelial cells exposed to doses equivalent to a single mammogram X-ray exploration. Since our experiments were carried out in primary epithelial cell cultures in which cells age at the same time as they undergo replication-dependent telomere shortening, we needed to determine the contribution of these two factors to their phenotype. In this paper, we report that the exogenous expression of human telomerase retrotranscriptase in late population doubling epithelial cells does not rescue its delayed repair phenotype. Therefore, retarded DNA break repair is a direct consequence of cellular aging itself, rather than a consequence of the presence of dysfunctional telomeres. Our findings of long-lasting double strand breaks and incomplete DNA break repair in the in vitro aged epithelial cells are in line with the increased carcinogenic risks of radiation exposures at older ages revealed by epidemiologic studies.

  19. 奶牛乳腺体外培养模型应用研究进展%Research Progress on Application of in Vitro Cultured Lactating Bovine Mammary Gland Model

    Institute of Scientific and Technical Information of China (English)

    周苗苗; 崔景香

    2014-01-01

    奶牛乳腺上皮细胞(BMEC)具有分泌乳汁的特殊功能,体外培养的奶牛乳腺细胞是研究乳成分合成调控和乳腺生理代谢的良好模型。近年来,奶牛乳腺体外培养模型受到越来越多的关注,其应用也更广泛。本文主要从奶牛乳腺体外培养模型在乳成分合成调控和乳腺生理代谢机制领域的应用两个方面进行简要综述。%Bovine mammary gland epithelial cells have special functions of synthesis and lactation, and lactating bovine mammary gland model cultured in vitro can be used to study the regulation of the synthesis of milk components and mammary gland physiological metabolism. In recent years, this model has attracted more and more attention, and its application is wider and wider. In this paper, cultural method and its application in regulation of milk composition synthesis and mammary physiological metabolism of in vitro cultured lactating bovine mammary gland model are reviewed.

  20. Transcriptomic response of goat mammary epithelial cells to Mycoplasma agalactiae challenge – a preliminary study

    DEFF Research Database (Denmark)

    Ogorevc, Jernej; Mihevc, Sonja Prpar; Hedegaard, Jakob;

    2015-01-01

    Mycoplasma agalactiae (Ma) is one of the main aetiological agents of intramammary infections in small ruminants, causing contagious agalactia. To better understand the underlying disease patterns a primary goat mammary epithelial cell (pgMEC) culture was established from the mammary tissue...... and challenged with Ma. High-throughput mRNA sequencing was performed to reveal differentially expressed genes (DEG) at different time-points (3 h, 12 h, and 24 h) post infection (PI). The pathway enrichment analysis of the DEG showed that infection significantly affected pathways associated with immune response...... of the complement system and apoptosis pathways, and expression of genes coding for antimicrobial molecules and peptides. In our study we attempted to interpret the detected transcriptomic changes in a biological context and infer mammary infection resistance candidate genes, interesting for further validation...

  1. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  2. Autophagy regulates keratin 8 homeostasis in mammary epithelial cells and in breast tumors

    Science.gov (United States)

    Kongara, Sameera; Kravchuk, Olga; Teplova, Irina; Lozy, Fred; Schulte, Jennifer; Moore, Dirk; Barnard, Nicola; Neumann, Carola A.; White, Eileen; Karantza, Vassiliki

    2010-01-01

    Autophagy is activated in response to cellular stressors and mediates lysosomal degradation and recycling of cytoplasmic material and organelles as a temporary cell survival mechanism. Defective autophagy is implicated in human pathology, as disruption of protein and organelle homeostasis enables disease-promoting mechanisms such as toxic protein aggregation, oxidative stress, genomic damage and inflammation. We previously showed that autophagy-defective immortalized mouse mammary epithelial cells (iMMECs) are susceptible to metabolic stress, DNA damage and genomic instability. We now report that autophagy deficiency was associated with ER and oxidative stress, and deregulation of p62-mediated keratin homeostasis in mammary cells and allograft tumors and in mammary tissues from genetically engineered mice. In human breast tumors, high phospho(Ser73)-K8 levels inversely correlated with Beclin 1 expression. Thus, autophagy preserves cellular fitness by limiting ER and oxidative stress, a function potentially important in autophagy-mediated suppression of mammary tumorigenesis. Furthermore, autophagy regulates keratin homeostasis in the mammary gland via a p62-dependent mechanism. High phospho(Ser73)-K8 expression may be a marker of autophagy functional status in breast tumors and, as such, could have therapeutic implications for breast cancer patients. PMID:20530580

  3. Adipose triglyceride lipase regulates lipid metabolism in dairy goat mammary epithelial cells.

    Science.gov (United States)

    Li, Jun; Luo, Jun; Wang, Hui; Shi, Hengbo; Zhu, Jiangjiang; Sun, Yuting; Yu, Kang; Yao, Dawei

    2015-01-01

    Adipose triglyceride lipase (ATGL) catalyzes the initial step in the lipid lipolysis process, hydrolyzing triglyceride (TG) to produce diacylglycerol (DG) and free fatty acids (FFA). In addition, ATGL regulates lipid storage and release in adipocyte cells. However, its role in mammary gland tissue remains unclear. To assess the role of the ATGL gene in the goat mammary gland, this study analyzed the tissue distribution and expression of key genes together with lipid accumulation after knockdown of the ATGL gene. The mRNA of ATGL was highly expressed in subcutaneous adipose tissue, the lung and the mammary gland with a significant increase in expression during the lactation period compared with the dry period of the mammary gland. Knockdown of the ATGL gene in goat mammary epithelial cells (GMECs) using siRNA resulted in a significant decrease in both ATGL mRNA and protein levels. Silencing of the ATGL gene markedly increased lipid droplet accumulation and intracellular TG concentration (Pfat formation and secretion was down-regulated (PCD36 for fatty acid uptake (P<0.05). In conclusion, these data suggest that the ATGL gene plays an important role in triglyceride lipolysis in GMECs and provides the first experimental evidence that ATGL may be involved in lipid metabolism during lactation. PMID:25307872

  4. Effects of β-Hydroxybutyric Acid on Relative Expression Levels of Genes Related to Milk Fat Synthesis in Bovine Mammary Epithelial Cells%β-羟丁酸对奶牛乳腺上皮细胞内乳脂肪合成及其相关基因相对表达量的影响

    Institute of Scientific and Technical Information of China (English)

    常晨城; 齐利枝; 闫素梅; 生冉; 赵艳丽

    2015-01-01

    本试验主要研究了不同浓度的β-羟丁酸( BHBA)对奶牛乳腺上皮细胞( BMECs)活力、甘油三酯( TAG)含量、脂滴形成以及乳脂肪合成相关基因转录水平的影响。将传至第3代的BMECs悬液(1×105个/孔)接种于细胞培养板上,每孔加入含10%胎牛血清( FBS)的DMEM/F12培养液,于37℃的5%二氧化碳(CO2)培养箱培养48 h。再将培养48 h的BMECs随机分配到6个组,各组向培养孔中加入含不同浓度BHBA的DMEM/F12培养液,培养液中的FBS用1 g/L无脂肪酸的牛血清白蛋白( BSA)代替,并使反应体系中BHBA的最终浓度分别为0(对照)、0.58、1.16、2.32、4.64和9.28 mmol/L。置于37℃的5%CO2培养箱继续培养48 h。试验结果显示:随着BHBA浓度的增加,BMECs活力[(相对增殖率( RGR)]呈显著的二次曲线增加(P=0.041),其中BMECs活力以0.58~4.64 mmol/L BHBA组较高,9.28 mmol/L BHBA组较低;低浓度(0.58~2.32 mmol/L)的 BHBA 可促进 BMECs 内脂滴的形成,而较高浓度(4.64~9.28 mmol/L)的BHBA对脂滴形成的促进作用减弱;BHBA与TAG含量及乳脂肪合成相关基因脂肪酸合成酶( FASN )、乙酰辅酶 A 羧化酶α( ACACA )、硬脂酰辅酶 A 去饱和酶( SCD)、脂肪酸结合蛋白3( FABP3)、过氧化物酶体增殖物激活受体γ( PPARG)和分化抗原簇36(CD36)的相对表达量均无显著的一次线性或二次曲线关系(P>0.05)。综上,BHBA 对BMECs活力的促进作用呈显著的二次曲线增加,即BHBA对BMECs活力呈显著浓度依赖关系;BHBA对细胞内乳脂肪的合成有提高的趋势。%This study was conducted to determine the effects ofβ-hydroxybutyric acid ( BHBA) on cell viabili-ty, triacylglycerol ( TAG) content, lipid droplet formation and relative expression levels of genes related to milk fat synthesis in bovine mammary epithelial cells (BMECs). The 3th passage cells were plated 1×105 cells/well in culture plates and DMEM/F12 medium containing 10% fetal bovine serum ( FBS) was added to

  5. Trichostatin A Inhibits β-Casein Expression in Mammary Epithelial Cells

    Science.gov (United States)

    Pujuguet, Philippe; Radisky, Derek; Levy, Dinah; Lacza, Charlemagne; Bissell, Mina J.

    2010-01-01

    Many aspects of cellular behavior are defined by the content of information provided by association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein β-casein. We have previously found that the minimal ECM- and Prl-responsive enhancer element BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous β-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of β-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM mediated rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types. PMID:11746508

  6. Trichostatin A inhibits beta-casein expression in mammary epithelial cells

    International Nuclear Information System (INIS)

    Many aspects of cellular behavior are affected by information derived from association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein beta-casein. Previously, we defined the minimal ECM- and Prl-responsive enhancer element BCE-1 from the upstream region of the beta-casein gene. We also found that BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous b-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of b-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM could mediate rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types

  7. Trichostatin A inhibits beta-casein expression in mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pujuguet, Philippe; Radisky, Derek; Levy, Dinah; Lacza, Charlemagne; Bissell, Mina J.

    2002-02-22

    Many aspects of cellular behavior are affected by information derived from association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein beta-casein. Previously, we defined the minimal ECM- and Prl-responsive enhancer element BCE-1 from the upstream region of the beta-casein gene. We also found that BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous b-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of b-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM could mediate rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types.

  8. The Cain and Abl of epithelial-mesenchymal transition and transforming growth factor-β in mammary epithelial cells.

    Science.gov (United States)

    Allington, Tressa M; Schiemann, William P

    2011-01-01

    Transforming growth factor-β (TGF-β) normally inhibits breast cancer development by preventing mammary epithelial cell (MEC) proliferation, by inducing MEC apoptosis, and by creating cell microenvironments that maintain MEC homeostasis and prevent their uncontrolled growth and motility. Mammary tumorigenesis elicits dramatic alterations in MEC architecture and microenvironment integrity, which collectively counteract the tumor-suppressing activities of TGF-β and enable its stimulation of breast cancer invasion and metastasis. How malignant MECs overcome the cytostatic actions imposed by normal microenvironments and TGF-β, and how abnormal microenvironments conspire with TGF-β to stimulate the development and progression of mammary tumors remains largely undefined. These knowledge gaps have prevented science and medicine from implementing treatments effective in simultaneously targeting abnormal cellular microenvironments, and in antagonizing the oncogenic activities of TGF-β in developing and progressing breast cancers. c-Abl is a ubiquitously expressed nonreceptor protein tyrosine kinase that essentially oversees all aspects of cell physiology, including the regulation of cell proliferation, migration and adhesion, as well as that of cell survival. Thus, the biological functions of c-Abl are highly reminiscent of those attributed to TGF-β, including the ability to function as either a suppressor or promoter of tumorigenesis. Interestingly, while dysregulated Abl activity clearly promotes tumorigenesis in hematopoietic cells, an analogous role for c-Abl in regulating solid tumor development, including those of the breast, remains controversial. Here, we review the functions of c-Abl in regulating breast cancer development and progression, and in alleviating the oncogenic activities of TGF-β and its stimulation of epithelial-mesenchymal transition during mammary tumorigenesis.

  9. Immunochemical, biomolecular and biochemical characterization of bovine epithelial intestinal primocultures

    Directory of Open Access Journals (Sweden)

    Mainil Jacques

    2005-12-01

    Full Text Available Abstract Background Cultures of enterocytes and colonocytes represent valuable tools to study growth and differentiation of epithelial cells. In vitro models may be used to evaluate passage or toxicity of drugs, interactions of enteropathogenes bacteria strains with intestinal epithelium and other physiologic or pathologic phenomenon involving the digestive tract. Results Cultures of bovine colonocytes and jejunocytes were obtained from organoid-enriched preparations, using a combination of enzymatic and mechanical disruption of the intestine epithelium, followed by an isopicnic centrifugation discarding most single cells. Confluent cell monolayers arising from plated organoids exhibited epithelium typical features, such as the pavement-like structure, the presence of apical microvilli and tight junctions. Accordingly, cells expressed several markers of enterocyte brush border (i.e. maltase, alkaline phosphatase and fatty acid binding protein as well as an epithelial cytoskeleton component (cytokeratin 18. However, enterocyte primocultures were also positive for the vimentin immunostaining (mesenchyme marker. Vimentin expression studies showed that this gene is constitutively expressed in bovine enterocytes. Comparison of the vimentin expression profile with the pattern of brush border enzymes activities, suggested that the decrease of cell differentiation level observed during the enterocyte isolation procedure and early passages of the primoculture could result from a post-transcriptional de-repression of vimentin synthesis. The low differentiation level of bovine enterocytes in vitro could partly be counteracted adding butyrate (1–2 mM or using a glucose-deprived culture medium. Conclusion The present study describes several complementary approaches to characterize bovine primary cultures of intestinal cells. Cultured cells kept their morphologic and functional characteristics during several generations.

  10. Metabolic history impacts mammary tumor epithelial hierarchy and early drug response in mice.

    Science.gov (United States)

    Montales, Maria Theresa E; Melnyk, Stepan B; Liu, Shi J; Simmen, Frank A; Liu, Y Lucy; Simmen, Rosalia C M

    2016-09-01

    The emerging links between breast cancer and metabolic dysfunctions brought forth by the obesity pandemic predict a disproportionate early disease onset in successive generations. Moreover, sensitivity to chemotherapeutic agents may be influenced by the patient's metabolic status that affects the disease outcome. Maternal metabolic stress as a determinant of drug response in progeny is not well defined. Here, we evaluated mammary tumor response to doxorubicin in female mouse mammary tumor virus-Wnt1 transgenic offspring exposed to a metabolically compromised environment imposed by maternal high-fat diet. Control progeny were from dams consuming diets with regular fat content. Maternal high-fat diet exposure increased tumor incidence and reduced tumor latency but did not affect tumor volume response to doxorubicin, compared with control diet exposure. However, doxorubicin-treated tumors from high-fat-diet-exposed offspring demonstrated higher proliferation status (Ki-67), mammary stem cell-associated gene expression (Notch1, Aldh1) and basal stem cell-like (CD29(hi)CD24(+)) epithelial subpopulation frequencies, than tumors from control diet progeny. Notably, all epithelial subpopulations (CD29(hi)CD24(+), CD29(lo)CD24(+), CD29(hi)CD24(+)Thy1(+)) in tumors from high-fat-diet-exposed offspring were refractory to doxorubicin. Further, sera from high-fat-diet-exposed offspring promoted sphere formation of mouse mammary tumor epithelial cells and of human MCF7 cells. Untargeted metabolomics analyses identified higher levels of kynurenine and 2-hydroxyglutarate in plasma of high-fat diet than control diet offspring. Kynurenine/doxorubicin co-treatment of MCF7 cells enhanced the ability to form mammosphere and decreased apoptosis, relative to doxorubicin-only-treated cells. Maternal metabolic dysfunctions during pregnancy and lactation may be targeted to reduce breast cancer risk and improve early drug response in progeny, and may inform clinical management of disease

  11. Regulation of functional cytodifferentiation and histogenesis in mammary epithelial cells: Role of the extracellular matrix

    International Nuclear Information System (INIS)

    Primary mammary epithelial cells provide a versatile system for the study of hormone and extracellular matrix (ECM) influences on tissue-specific gene expression. The authors have characterized the formation of aveolarlike morphogenesis and mammary-specific functional differentiation that occur when these cells are cultured on a reconstituted basement membrane (EHS). Cells cultured on EHS exhibit many ultrastructural and biochemical features indicative of polarized and functionally differentiated mammary epithelium in vivo. The increased expression and specific vectorial secretion of milk proteins into lumina formed in culture are accompanied by large increases in milk protein mRNA expression. However, when individual ECM components are tested, smaller increases in milk protein mRNA are measured on heparan sulfate proteoglycan (HSPG) and laminin, and these responses are not associated with full functional cytodifferentiation or histotypic configuration. This indicates that multiple levels of regulation are involved in mammary-specific gene expression, and that in addition to individual ligand requirements cooperative interactions between various ECM molecules and cells are necessary for functional differentiation in culture. They have also shown that endogenous production of ECM molecules and changes in cell geometry are correlated with changes in functional and histogenic gene expression. They have previously proposed a model of cell-ECM interactions that is consistent with these data

  12. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chanson, L. [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. of Bioengineering; Brownfield, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Univ. of California, Berkeley, CA (United States). Dept. of Bioengineering; Garbe, J. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Kuhn, I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Stampfer, M. R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Bissell, M. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; LaBarge, M. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.

    2011-02-07

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells.

  13. Stromal regulation of embryonic and postnatal mammary epithelial development and differentiation.

    Science.gov (United States)

    Howard, Beatrice A; Lu, Pengfei

    2014-01-01

    The stroma, which is composed of supporting cells and connective tissue, comprises a large component of the local microenvironment of many epithelial cell types, and influences several fundamental aspects of cell behaviour through both tissue interactions and niche regulation. The significance of the stroma in development and disease has been increasingly recognised. Whereas normal stroma is essential for various developmental processes during vertebrate organogenesis, it can be deregulated and become abnormal, which in turn can initiate or promote a disease process, including cancer. The mouse mammary gland has emerged in recent years as an excellent model system for understanding stromal function in both developmental and cancer biology. Here, we take a systematic approach and focus on the dynamic interactions that the stroma engages with the epithelium during mammary specification, cell differentiation, and branching morphogenesis of both the embryonic and postnatal development of the mammary gland. Similar stromal-epithelial interactions underlie the aetiology of breast cancer, making targeting the cancer stroma an increasingly important and promising therapeutic strategy to pursue for breast cancer treatment.

  14. Detection of Infectious Bovine Rhinotracheitis and Bovine Viral Diarrhea Viruses in the Nasal Epithelial Cells by the Direct Immunofluorescence Technique

    OpenAIRE

    Silim, A.; Elazhary, M. A. S. Y.

    1983-01-01

    Nasal epithelial cells were collected by cotton swabs for the diagnosis in experimental and field cases of infectious bovine rhinotracheitis and field cases of bovine viral diarrhea in calves. A portion of the cells was washed twice in phosphate buffered saline and a 25 µL drop was placed on microscope slides. The cells were dried, fixed and stained according to the direct fluorescent antibody technique. Another portion of the same specimen was inoculated onto primary bovine skin cell culture...

  15. Age-Related Dysfunction in Mechanotransduction Impairs Differentiation of Human Mammary Epithelial Progenitors

    Directory of Open Access Journals (Sweden)

    Fanny A. Pelissier

    2014-06-01

    Full Text Available Dysfunctional progenitor and luminal cells with acquired basal cell properties accumulate during human mammary epithelial aging for reasons not understood. Multipotent progenitors from women aged 55 years is unaffected by physiological stiffness changes. Efficient activation of Hippo pathway transducers YAP and TAZ is required for the modulus-dependent myoepithelial/basal bias in younger progenitors. In older progenitors, YAP and TAZ are activated only when stressed with extraphysiologically stiff matrices, which bias differentiation towards luminal-like phenotypes. In vivo YAP is primarily active in myoepithelia of younger breasts, but localization and activity increases in luminal cells with age. Thus, aging phenotypes of mammary epithelia may arise partly because alterations in Hippo pathway activation impair microenvironment-directed differentiation and lineage specificity.

  16. STAT5 transcriptional activity is impaired by LIF in a mammary epithelial cell line.

    Science.gov (United States)

    Granillo, Agustina Rodriguez; Boffi, Juan Carlos; Barañao, Lino; Kordon, Edith; Pecci, Adali; Guberman, Alejandra

    2007-05-11

    Gene regulation mediated by STAT factors has been implicated in cellular functions with relevance to a variety of processes. Particularly, STAT5 and STAT3 play a crucial role in mammary epithelium displaying reciprocal activation kinetics during pregnancy, lactation and involution. Here, we show that LIF treatment of mammary epithelial HC11 cells reduces the phosphorylation levels and transcriptional activity of p-STAT5 in correlation with STAT3 phosphorylation. We have also found that STAT5 activity is negatively modulated by this cytokine, both on a gene whose expression is induced, as well as on a promoter repressed by STAT5. Besides, our results show that lactogenic hormones increase LIF effect on gene induction without modifying STAT3 phosphorylation state. Our findings strongly suggest that there is crosstalk between STAT5 and STAT3 pathways that could modulate their ability to regulate gene expression.

  17. Paracrine-acting adiponectin promotes mammary epithelial differentiation and synergizes with genistein to enhance transcriptional response to estrogen receptor beta signaling

    Science.gov (United States)

    Mammary stromal adipocytes constitute an active site for the synthesis of the adipokine adiponectin (APN) that may influence the mammary epithelial microenvironment. The relationship between 'local', mammary tissue-derived APN and breast cancer risk is poorly understood. Herein, we identify a novel ...

  18. Change in Cell Shape Is Required for Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition of Mammary Epithelial Cells

    Science.gov (United States)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2010-01-01

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a “cuboidal” epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-β-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents. PMID:18506791

  19. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  20. Functional analyse of GLUT1 and GLUT12 in glucose uptake in goat mammary gland epithelial cells.

    Directory of Open Access Journals (Sweden)

    Qinghua Yu

    Full Text Available Glucose transport, mediated by glucose transporters, is necessary for mammary gland development and lactation. GLUT1 and GLUT12 could both be expressed in the pregnant and lactating mammary gland to participate in the glucose uptake process. In this study, the goat GLUT1 and GLUT12 genes were cloned from Saanen dairy goats and transfected into goat mammary gland epithelial cells to assess their biological functions and distributions. The results showed that both goat GLUT1 and GLUT12 had 12 predicted membrane-spanning helices. Goat GLUT1 and GLUT12 each influenced the mRNA expression of the other transporter and increased the glucose consumption and lactose yield in GLUT1- and GLUT12-transfected goat mammary gland epithelial cells, respectively. The overexpression of GLUT1 or GLUT12 also increased the expression of amino acid transporters SLC1A5, SLC3A2 and SLC7A5 and affected genes expressions in GMGE cells. Using immunofluorescence staining, GLUT1 was detected throughout the cytoplasm and localized to the Golgi apparatus around the nuclear membrane, whereas GLUT12 was mainly distributed in the perinuclear region and cytoplasm. This study contributes to the understanding of how GLUT1 and GLUT12 cooperate in the incorporation of nutrient uptake into mammary gland epithelial cells and the promotion of milk synthesis in the goat mammary gland during lactation.

  1. Neither bovine somatotropin nor growth hormone-releasing factor alters expression of thyroid hormone receptors in liver and mammary tissues.

    Science.gov (United States)

    Capuco, A V; Binelli, M; Tucker, H A

    2011-10-01

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

  2. 乙酸钠和β-羟丁酸钠对奶牛乳腺上皮细胞乳脂和乳蛋白合成相关基因表达的影响%Effects of Sodium Acetate and Sodium β-Hydroxybutyrate on ExPressions of Genes Involved in Milk Fat and Protein Synthesis in Bovine Mammary EPithelial Cells

    Institute of Scientific and Technical Information of China (English)

    塔娜; 李红磊; 侯先志; 考桂兰; 高民; 李大彪

    2014-01-01

    本试验旨在研究乙酸钠和β-羟丁酸钠对奶牛乳腺上皮细胞(BMECs)乳脂和乳蛋白合成相关基因表达的影响。试验分2部分,均采用单因子完全随机试验设计。第1部分,单独添加试验,乙酸钠的添加浓度分别为0(对照)、6.00、9.00、12.00和15.00 mmol/ L,β-羟丁酸钠的添加浓度分别为0(对照)、0.80、1.60和2.40 mmol/ L。第2部分,混合添加试验,以单独添加试验得出的乙酸钠和β-羟丁酸钠的适宜浓度,二者之和为总添加浓度,设定3种不同配比,即乙酸钠∶β-羟丁酸钠分别为1∶1、2∶1和4∶1,对照组不添加乙酸钠和β-羟丁酸钠。结果表明:1)与对照组相比,12.00 mmol/ L 乙酸钠能够显著提高 BMECs 乙酰辅酶 A 羧化酶( ACC)、脂肪酸合成酶(FAS)、二酰甘油酰基转移酶( DGAT)、乙酰辅酶 A 合成酶2( ACSS2)、过氧化物酶体增殖物激活受体(PPARG)、κ酪蛋白(CSN3)和雷帕霉素靶蛋白( mTOR)基因的表达量及甘油三酯(TAG)的含量( P <0.05)。2)与对照组相比,2.40 mmol/ L 的β-羟丁酸钠能够显著提高BMECs ACC、FAS、ACSS2、PPARG、mTOR 基因表达量及 TAG 含量(P<0.05)。3)添加不同配比的乙酸钠和β-羟丁酸钠均不同程度地促进了乳脂合成相关基因的表达,乙酸钠∶β-羟丁酸钠为2∶1和4∶1时,BMECs 中 TAG 含量显著高于为1∶1时和对照组( P<0.05)。综合各项指标,以9.60 mmol/ L乙酸钠和4.80 mmol/ L β-羟丁酸钠混合添加对奶牛乳腺上皮细胞乳脂和乳蛋白合成的促进效果较好。%The aim of this study was to determine the effects of sodium acetate and sodium β-hydroxybutyrate on expressions of genes involved in milk fat and protein synthesis in bovine mammary epithelial cells (BMECs). The study was consisted of two parts,and completely random single-factor designs were adopted. Part

  3. Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence

    Science.gov (United States)

    Tlsty, T. D.; Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Haupt, L. M.; Crawford, Y. G.

    2001-01-01

    The genomic changes that foster cancer can be either genetic or epigenetic in nature. Early studies focused on genetic changes and how mutational events contribute to changes in gene expression. These point mutations, deletions and amplifications are known to activate oncogenes and inactivate tumor suppressor genes. More recently, multiple epigenetic changes that can have a profound effect on carcinogenesis have been identified. These epigenetic events, such as the methylation of promoter sequences in genes, are under active investigation. In this review we will describe a methylation event that occurs during the propagation of human mammary epithelial cells (HMEC) in culture and detail the accompanying genetic alterations that have been observed.

  4. Transcriptome MicroRNA Profiling of Bovine Mammary Glands Infected with Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Rui Li

    2015-03-01

    Full Text Available MicroRNAs are small non-coding RNA molecules that are important regulators of gene expression at the post-transcriptional level. miRNAs impact the processes of cell proliferation, differentiation and apoptosis. Thus, the regulation of miRNA expression profiles associated with mastitis will be conducive for its control. In this study, Staphylococcus aureus (S. aureus was administered to the mammary gland of Chinese Holstein cows to construct a bacteria-type mastitis model. Total RNA was isolated from bovine mammary gland tissue samples from the S. aureus-induced mastitis group and controls. miRNAs were analyzed using Solexa sequencing and bioinformatics processing for the experimental group and control group. Two miRNA libraries were constructed respectively. A total of 370 known bovine miRNAs and 341 novel mi RNAs were detected for the S. aureus and 358 known bovine miRNAs and 232 novel miRNAs for control groups. A total of 77 miRNAs in the S. aureus group showed significant differences compared to the control group. GO (Gene Ontology analysis showed these target genes were involved in the regulation of cells, binding, etc., while KEGG (Kyoto Encyclopedia of Genes and Genomes analysis showed that these genes were enriched in endocytosis, and olfactory transduction pathways involved in cancer. These results provide an experimental basis to reveal the cause and regulatory mechanism of mastitis and also suggest the potential of miRNAs to serve as biomarkers for the diagnosis of mastitis in dairy cows.

  5. Quantification of epithelial cell differentiation in mammary glands and carcinomas from DMBA- and MNU-exposed rats.

    Directory of Open Access Journals (Sweden)

    Deepak Sharma

    Full Text Available Rat mammary carcinogenesis models have been used extensively to study breast cancer initiation, progression, prevention, and intervention. Nevertheless, quantitative molecular data on epithelial cell differentiation in mammary glands of untreated and carcinogen-exposed rats is limited. Here, we describe the characterization of rat mammary epithelial cells (RMECs by multicolor flow cytometry using antibodies against cell surface proteins CD24, CD29, CD31, CD45, CD49f, CD61, Peanut Lectin, and Thy-1, intracellular proteins CK14, CK19, and FAK, along with phalloidin and Hoechst staining. We identified the luminal and basal/myoepithelial populations and actively dividing RMECs. In inbred rats susceptible to mammary carcinoma development, we quantified the changes in differentiation of the RMEC populations at 1, 2, and 4 weeks after exposure to mammary carcinogens DMBA and MNU. DMBA exposure did not alter the percentage of basal or luminal cells, but upregulated CD49f (Integrin α6 expression and increased cell cycle activity. MNU exposure resulted in a temporary disruption of the luminal/basal ratio and no CD49f upregulation. When comparing DMBA- or MNU-induced mammary carcinomas, the RMEC differentiation profiles are indistinguishable. The carcinomas compared with mammary glands from untreated rats, showed upregulation of CD29 (Integrin β1 and CD49f expression, increased FAK (focal adhesion kinase activation especially in the CD29hi population, and decreased CD61 (Integrin β3 expression. This study provides quantitative insight into the protein expression phenotypes underlying RMEC differentiation. The results highlight distinct RMEC differentiation etiologies of DMBA and MNU exposure, while the resulting carcinomas have similar RMEC differentiation profiles. The methodology and data will enhance rat mammary carcinogenesis models in the study of the role of epithelial cell differentiation in breast cancer.

  6. The Mammary Epithelial Cell Secretome and its Regulation by Signal Transduction Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jon M.; Waters, Katrina M.; Kathmann, Loel E.; Camp, David G.; Wiley, H. S.; Smith, Richard D.; Thrall, Brian D.

    2008-02-01

    Extracellular proteins released by mammary epithelial cells are critical mediators of cell communication, proliferation and organization, yet the actual spectrum of proteins released by any given cell (the secretome) is poorly characterized. To define the set of proteins secreted by human mammary epithelial cells (HMEC), we combined analytical and computational approaches to define a secretome protein set based upon probable biological significance. Analysis of HMEC-conditioned medium by liquid chromatography-mass spectrometry resulted in identification of 889 unique proteins, of which 151 were found to be specifically enriched in the extracellular compartment when compared with a database of proteins expressed in whole HMEC lysates. Additional high mass accuracy analysis revealed 36 proteins whose extracellular abundance increased after treatment with phorbol ester (PMA), a protein kinase C agonist and general secretagogue. Many of the PMA stimulated proteins have been reported to be aberrantly expressed in human cancers and appear to be co-regulated as multigene clusters. By inhibiting PMA-mediated transactivation of the epidermal growth factor receptor (EGFR), a pathway critically required for normal HMEC function, we found that the secretion of specific matrix metalloproteases were also coordinately regulated through EGFR transactivation. This study demonstrates a tiered strategy by which extracellular proteins can be identified and progressively assigned to classes of increasing confidence and regulatory importance.

  7. Immunohistochemical identification of myoepithelial, epithelial, and connective tissue cells in canine mammary tumors.

    Science.gov (United States)

    Destexhe, E; Lespagnard, L; Degeyter, M; Heymann, R; Coignoul, F

    1993-03-01

    Fifty-eight formalin-fixed paraffin-embedded canine mammary tumors, 19 malignant and 39 benign, were used in this study. Tumors were obtained from dogs submitted for surgical resection of lesions at private veterinary practices in Brussels or from the surgery unit of the Faculty of Veterinary Medicine, University of Liège. Immunohistochemical evaluation was performed, using monoclonal antibodies directed against keratins 8-18 and 19, vimentin, desmin, and alpha-actin and polyclonal antibodies directed against high-molecular-weight keratins and S-100 protein. The main cell types, epithelial, myoepithelial, and connective, were identified, and myoepithelial cells represented the major component of most tumors, both benign and malignant. Myoepithelial cells had five patterns: resting and proliferative suprabasal cells, spindle and star-shaped interstitial cells, and cartilage. Reactivity to keratin 19, vimentin, alpha-actin, and S-100 protein suggested a progressive transformation from resting cells to cartilage. Epithelial cell reactivities were limited to keratins; only keratinized cells were positive for polyclonal keratins. Myofibroblasts were positive for both vimentin and alpha-actin, and connective tissue cells were positive for vimentin. Myoepithelial cells appeared to be the major component of carcinomas, justifying reevaluation and simplification of histomorphologic classifications, with a "pleomorphic carcinoma" group including all carcinomas except squamous, mucinous, and comedo carcinomas. Immunohistochemical evaluation, in addition to routine hematoxylin and eosin histopathologic evaluation is recommended for precise classification of canine mammary tumors. PMID:7682367

  8. Differential expression and localization of lipid transporters in the bovine mammary gland during the pregnancy-lactation cycle

    DEFF Research Database (Denmark)

    Mani, O; Sørensen, M T; Sejrsen, K;

    2009-01-01

    The transport of lipids across mammary gland epithelial cells (MEC) determines milk lipid content and composition. We investigated the expression of lipid transporters and their regulators in comparison to blood metabolites during lactation and dry period (DP) in dairy cows. Repeated mammary gland...... the functional stages of the mammary gland. The ABCA1 protein was localized in MEC and showed differential activity between DP and lactation suggesting a role of ABCA1 in the removal of excess cellular cholesterol from MEC during the DP. The expression profiles of ABCA7 and NPC1 may reflect a role...... of these transporters in the clearance of apoptotic cells and the intracellular redistribution of cholesterol, respectively. Regulation of lipid transporters in the mammary gland is partially associated with transcription factors that control lipid homeostasis....

  9. Time-lapse imaging of primary preneoplastic mammary epithelial cells derived from genetically engineered mouse models of breast cancer.

    Science.gov (United States)

    Nakles, Rebecca E; Millman, Sarah L; Cabrera, M Carla; Johnson, Peter; Mueller, Susette; Hoppe, Philipp S; Schroeder, Timm; Furth, Priscilla A

    2013-01-01

    Time-lapse imaging can be used to compare behavior of cultured primary preneoplastic mammary epithelial cells derived from different genetically engineered mouse models of breast cancer. For example, time between cell divisions (cell lifetimes), apoptotic cell numbers, evolution of morphological changes, and mechanism of colony formation can be quantified and compared in cells carrying specific genetic lesions. Primary mammary epithelial cell cultures are generated from mammary glands without palpable tumor. Glands are carefully resected with clear separation from adjacent muscle, lymph nodes are removed, and single-cell suspensions of enriched mammary epithelial cells are generated by mincing mammary tissue followed by enzymatic dissociation and filtration. Single-cell suspensions are plated and placed directly under a microscope within an incubator chamber for live-cell imaging. Sixteen 650 μm x 700 μm fields in a 4x4 configuration from each well of a 6-well plate are imaged every 15 min for 5 days. Time-lapse images are examined directly to measure cellular behaviors that can include mechanism and frequency of cell colony formation within the first 24 hr of plating the cells (aggregation versus cell proliferation), incidence of apoptosis, and phasing of morphological changes. Single-cell tracking is used to generate cell fate maps for measurement of individual cell lifetimes and investigation of cell division patterns. Quantitative data are statistically analyzed to assess for significant differences in behavior correlated with specific genetic lesions. PMID:23425702

  10. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    Energy Technology Data Exchange (ETDEWEB)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.; Shyamala, G.; Moses, Harold L.; Barcellos-Hoff, Mary Helen

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha} co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.

  11. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  12. Construction of Antibacterial Peptide CecropinB Eukaryotic Recombinant Vector and Its Expression in Dairy Goat Mammary Gland Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    GAO Xuejun; TONG Huili; YIN Deyun; ZHANG Li

    2008-01-01

    To investigate the expression of antibacterial peptide CecropinB eDNA in dairy goat mammary gland epithelial cells, the CecropinB gene was eloned and was inserted into a eukaryotic vector pECFP-Cl to construct the recombinant plasmid pECFP-B by genetic engineering technique. Recombinant plasmid pECFP-B was transfected into dairy goat mammary gland epithelial to detect the bactericidal activity of CeeropinB. The expression of CecropinB was also detected. The result of RT-PCR demonstrated CecropinB gene was expressed in transfeeted cells. CecropinB recombinant plasmid DNA was injected into udders and CecropinB was expressed in mammary gland, exhibiting bactericidal activity to Staphylococcus aureus in vivo experiments.

  13. EFFECTS OF ATRAZINE AND AN ATRAZINE METABOLITE MIXTURE ON DIFFERENTIATED MAMMARY EPITHELIAL CELL MILK PROTEIN PRODUCTION IN CULTURE

    Science.gov (United States)

    Effects of Atrazine and an Atrazine Metabolite Mixture on Differentiated Mammary Epithelial Cell Milk Protein Production in CultureE.P. Hines, R. Barbee, M. Blanton, M.S. Pooler, and S.E. Fenton. US EPA, ORD/NHEERL, RTD, RTP, NC, 27711, USA.Previous studies have ...

  14. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    Science.gov (United States)

    Prolactin-Induced Tyrosine Phosphorylation, Activation and ReceptorAssociation of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells. Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental ProtectionAgency, MD-72, Research Triangle Park, NC 27711, and

  15. Enhanced growth medium and method for culturing human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R. (7290 Sayre Dr., Oakland, CA 94611); Smith, Helene S. (5693 Cabot Dr., Oakland, CA 94611); Hackett, Adeline J. (82 Evergreen Dr., Orinda, CA 94563)

    1983-01-01

    Methods are disclosed for isolating and culturing human mammary epithelial cells of both normal and malignant origin. Tissue samples are digested with a mixture including the enzymes collagenase and hyaluronidase to produce clumps of cells substantially free from stroma and other undesired cellular material. Growing the clumps of cells in mass culture in an enriched medium containing particular growth factors allows for active cell proliferation and subculture. Clonal culture having plating efficiencies of up to 40% or greater may be obtained using individual cells derived from the mass culture by plating the cells on appropriate substrates in the enriched media. The clonal growth of cells so obtained is suitable for a quantitative assessment of the cytotoxicity of particular treatment. An exemplary assay for assessing the cytotoxicity of the drug adriamycin is presented.

  16. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  17. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    International Nuclear Information System (INIS)

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.

  18. Construction of a recombinant human insulin expression vector for mammary gland-specific expression in buffalo (Bubalus bubalis) mammary epithelial cell line.

    Science.gov (United States)

    Kaushik, Ramakant; Singh, Karn Pratap; Kumari, Archana; Rameshbabu, K; Singh, Manoj Kumar; Manik, Radhey Shyam; Palta, Prabhat; Singla, Suresh Kumar; Chauhan, Manmohan Singh

    2014-09-01

    The aim of the present study was construction of mammary gland specific expression vector for high level of human insulin (hINS) expression in transgenic buffalo for therapeutic use. We have constructed mammary gland specific vector containing human insulin gene and there expression efficiency was checked into in vitro cultured buffalo mammary epithelial cells (BuMECs). Human pro-insulin coding region was isolated from human genomic DNA by intron skipping PCR primer and furin cleavage site was inserted between B-C and C-A chain of human insulin by overlap extension PCR. A mammary gland-specific buffalo beta-lactoglobulin promoter was isolated from buffalo DNA and used for human insulin expression in BuMEC cells. The construct was transfected into BuMECs by lipofection method and positive transgene cell clones were obtained by G418 selection after 3 weeks. Expression of hINS in transfected cells were confirmed by RT-PCR, Immunocytochemistry, Western Blotting and ELISA. The pAcISUBC insulin-expressing clones secreted insulin at varying levels between 0.18 - 1.43 ng/ml/24 h/2.0 × 10(6) cells. PMID:24969480

  19. Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.

    Directory of Open Access Journals (Sweden)

    Alka A Potdar

    Full Text Available BACKGROUND: Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells that exist in multi-cellular organisms (humans follow a bimodal correlated random walk (BCRW. METHODOLOGY/PRINCIPAL FINDINGS: Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation. CONCLUSIONS/SIGNIFICANCE: Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.

  20. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes

    Science.gov (United States)

    Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Stampfer, M. R.; Haupt, L. M.; Tlsty, T. D.

    2001-01-01

    Senescence and genomic integrity are thought to be important barriers in the development of malignant lesions. Human fibroblasts undergo a limited number of cell divisions before entering an irreversible arrest, called senescence. Here we show that human mammary epithelial cells (HMECs) do not conform to this paradigm of senescence. In contrast to fibroblasts, HMECs exhibit an initial growth phase that is followed by a transient growth plateau (termed selection or M0; refs 3-5), from which proliferative cells emerge to undergo further population doublings (approximately 20-70), before entering a second growth plateau (previously termed senescence or M1; refs 4-6). We find that the first growth plateau exhibits characteristics of senescence but is not an insurmountable barrier to further growth. HMECs emerge from senescence, exhibit eroding telomeric sequences and ultimately enter telomere-based crisis to generate the types of chromosomal abnormalities seen in the earliest lesions of breast cancer. Growth past senescent barriers may be a pivotal event in the earliest steps of carcinogenesis, providing many genetic changes that predicate oncogenic evolution. The differences between epithelial cells and fibroblasts provide new insights into the mechanistic basis of neoplastic transformation.

  1. Inflammatory responses in epithelia: endotoxin-induced IL-6 secretion and iNOS/NO production are differentially regulated in mouse mammary epithelial cells

    OpenAIRE

    2010-01-01

    Background IL-6 is a pro-inflammatory cytokine that signals via binding to a soluble or membrane bound receptor, while nitric oxide (NO), an oxidative stress molecule, diffuses through the cell membrane without a receptor. Both mediators signal through different mechanisms, yet they are dependent on NFκB. We proposed that both mediators are co-induced and co-regulated in inflamed mammary epithelial cells. Methods SCp2 mammary epithelial cells were treated with bacterial endotoxin (ET) for dif...

  2. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yuka; Hagiwara, Natsumi [Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan (Japan); Radisky, Derek C. [Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32225 (United States); Hirai, Yohei, E-mail: y-hirai@kwansei.ac.jp [Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan (Japan)

    2014-09-10

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination.

  3. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination

  4. EGF stimulates Mg{sup 2+} influx in mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Trapani, Valentina; Arduini, Daniela; Luongo, Francesca; Wolf, Federica I., E-mail: federica.wolf@rm.unicatt.it

    2014-11-28

    Highlights: • EGF stimulation potentiates Mg{sup 2+} influx into epithelial cells. • EGF-induced Mg{sup 2+} influx does not depend on the concomitantly induced Ca{sup 2+} signal. • EGF-induced Ca{sup 2+} signal is dependent on the presence of extracellular Mg{sup 2+}. • New players in EGF-mediated signaling might be exploited as therapeutic targets. - Abstract: Magnesium is well established as a fundamental factor that regulates cell proliferation. However, the molecular mechanisms linking mitogenic signals, extracellular magnesium availability and intracellular effectors are still largely unknown. In the present study we sought to determine whether EGF regulates magnesium homeostasis in normal HC11 mammary epithelial cells. To this end, we measured Mg{sup 2+} and Ca{sup 2+} fluxes by confocal imaging in live cells loaded with specific fluorescent ion indicators (Mag-Fluo-4 and Fluo-4, respectively). EGF stimulation induces a rapid and sustained increase in intracellular Mg{sup 2+}, concomitantly with a rise in intracellular calcium. The increase in intracellular Mg{sup 2+} derives from an influx from the extracellular compartment, and does not depend on Ca{sup 2+}. On the contrary, the increase in intracellular Ca{sup 2+} derives from intracellular stores, and is impaired in the absence of extracellular magnesium. Inhibition of the EGF receptor tyrosine kinase by Tyrphostin AG1478 markedly inhibits EGF-induced Mg{sup 2+} and Ca{sup 2+} signals. These findings demonstrate that not only does Mg{sup 2+} influx represent an important step in the physiological response of epithelial cells to EGF, but unexpectedly the EGF-induced Mg{sup 2+} influx is essential for the Ca{sup 2+} signal to occur.

  5. Purification and characterization of glycoprotein processing enzyme α-glucosidase II from bovine mammary tissue

    International Nuclear Information System (INIS)

    α-Glucosidase II removes the two inner (α1-3) linked glucose residues of glycoprotein precursor Glc3Man9(GlcNAc)2.α-Glucosidase II has been purified to homogeneity from bovine mammary tissue. Briefly, purification involved solubilization of glucosidase II with Triton X-100 from microsomes followed by 20-60% (NH4)2SO4 fractionation, Con-A Sepharose 4B, hydroxylapatite and DEAE-Sephacel column chromatography. The purified glucosidase II showed single band on 10% non-denaturing PAGE and enzyme activity band on visualization with fluorogenic substrate 4-methylumbelliferyl (MUF) α-D-glucopyranoside. The purified enzyme exhibited broad pH optima (6.0-7.5). The enzyme hydrolyzed MUFα-D-glucoside (K/sub m/ = 13 μM) but was inactive against the corresponding D-glucoside and the α-D-mannoside. Cleavage of MUF α-glucoside was enhanced by mannose and starch and was inhibited by maltose, turanose and glucose. The enzyme released glucose residues from [3H]Glc2Man9(GlcNAc)2 but did not release glucose from [3H]Glc3Man9(GlcNAc)2. Reductive SDS-PAGE revealed two closely associated major bands showing mol. wt. of 66 and 64 ksSa. These bands also showed PAS-positive staining. Gel filtration revealed a molecular size of 290 kDa for purified enzyme

  6. The role of maintenance proteins in the preservation of epithelial cell identity during mammary gland remodeling and breast cancer initiation

    Institute of Scientific and Technical Information of China (English)

    Danila Coradini; Saro Oriana

    2014-01-01

    During normal postnatal mammary gland development and adult remodeling related to the menstrual cycle, pregnancy, and lactation, ovarian hormones and peptide growth factors contribute to the delineation of a definite epithelial cellidentity. This identity is maintained during cellreplication in a heritable but DNA-independent manner. The preservation of cellidentity is fundamental, especialy when cels must undergo changes in response to intrinsic and extrinsic signals. The maintenance proteins, which are required for cellidentity preservation, act epigenetically by regulating gene expression through DNA methylation, histone modification, and chromatin remodeling. Among the maintenance proteins, the Trithorax (TrxG) and Polycomb (PcG) group proteins are the best characterized. In this review, we summarize the structures and activities of the TrxG and PcG complexes and describe their pivotal roles in nuclear estrogen receptor activity. In addition, we provide evidence that perturbations in these epigenetic regulators are involved in disrupting epithelial cellidentity, mammary gland remodeling, and breast cancer initiation.

  7. Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model.

    Science.gov (United States)

    Wei, Wang; Dejie, Liang; Xiaojing, Song; Tiancheng, Wang; Yongguo, Cao; Zhengtao, Yang; Naisheng, Zhang

    2015-02-01

    Mastitis comprises an inflammation of the mammary gland, which is almost always linked with bacterial infection. The treatment of mastitis concerns antimicrobial substances, but not very successful. On the other hand, anti-inflammatory therapy with Chinese traditional medicine becomes an effective way for treating mastitis. Magnolol is a polyphenolic binaphthalene compound extracted from the stem bark of Magnolia sp., which has been shown to exert a potential for anti-inflammatory activity. The purpose of this study was to investigate the protective effects of magnolol on inflammation in lipopolysaccharide (LPS)-induced mastitis mouse model in vivo and the mechanism of this protective effects in LPS-stimulated mouse mammary epithelial cells (MMECs) in vitro. The damage of tissues was determined by histopathology and myeloperoxidase (MPO) assay. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and Toll-like receptor 4 (TLR4) were determined by Western blot. The results showed that magnolol significantly inhibit the LPS-induced TNF-α, IL-6, and IL-1β production both in vivo and vitro. Magnolol declined the phosphorylation of IκBα, p65, p38, ERK, and JNK in LPS-stimulated MMECs. Furthermore, magnolol inhibited the expression of TLR4 in LPS-stimulated MMECs. In vivo study, it was also observed that magnolol attenuated the damage of mastitis tissues in the mouse models. These findings demonstrated that magnolol attenuate LPS-stimulated inflammatory response by suppressing TLR4/NF-κB/mitogen-activated protein kinase (MAPK) signaling system. Thereby, magnolol may be a therapeutic agent against mastitis.

  8. Prolactin-induced Subcellular Targeting of GLUT1 Glucose Transporter in Living Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Arieh Riskin

    2015-10-01

    Full Text Available Background: Studying the biological pathways involved in mammalian milk production during lactation could have many clinical implications. The mammary gland is unique in its requirement for transport of free glucose into the cell for the synthesis of lactose, the primary carbohydrate in milk. Objective: To study GLUT1 trafficking and subcellular targeting in living mammary epithelial cells (MEC in culture. Methods: Immunocytochemistry was used to study GLUT1 hormonally regulated subcellular targeting in human MEC (HMEC. To study GLUT1 targeting and recycling in living mouse MEC (MMEC in culture, we constructed fusion proteins of GLUT1 and green fluorescent protein (GFP and expressed them in CIT3 MMEC. Cells were maintained in growth medium (GM, or exposed to secretion medium (SM, containing prolactin. Results: GLUT1 in HMEC localized primarily to the plasma membrane in GM. After exposure to prolactin for 4 days, GLUT1 was targeted intracellularly and demonstrated a perinuclear distribution, co-localizing with lactose synthetase. The dynamic trafficking of GFP-GLUT1 fusion proteins in CIT3 MMEC suggested a basal constitutive GLUT1 recycling pathway between an intracellular pool and the cell surface that targets most GLUT1 to the plasma membrane in GM. Upon exposure to prolactin in SM, GLUT1 was specifically targeted intracellularly within 90–110 minutes. Conclusions: Our studies suggest intracellular targeting of GLUT1 to the central vesicular transport system upon exposure to prolactin. The existence of a dynamic prolactin-induced sorting machinery for GLUT1 could be important for transport of free glucose into the Golgi for lactose synthesis during lactation.

  9. Canine Mammary Cancer Stem Cells are Radio- and Chemo-Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype

    International Nuclear Information System (INIS)

    Canine mammary carcinoma is the most common cancer among female dogs and is often fatal due to the development of distant metastases. In humans, solid tumors are made up of heterogeneous cell populations, which perform different roles in the tumor economy. A small subset of tumor cells can hold or acquire stem cell characteristics, enabling them to drive tumor growth, recurrence and metastasis. In veterinary medicine, the molecular drivers of canine mammary carcinoma are as yet undefined. Here we report that putative cancer stem cells (CSCs) can be isolated form a canine mammary carcinoma cell line, REM134. We show that these cells have an increased ability to form tumorspheres, a characteristic of stem cells, and that they express embryonic stem cell markers associated with pluripotency. Moreover, canine CSCs are relatively resistant to the cytotoxic effects of common chemotherapeutic drugs and ionizing radiation, indicating that failure of clinical therapy to eradicate canine mammary cancer may be due to the survival of CSCs. The epithelial to mesenchymal transition (EMT) has been associated with cancer invasion, metastasis, and the acquisition of stem cell characteristics. Our results show that canine CSCs predominantly express mesenchymal markers and are more invasive than parental cells, indicating that these cells have a mesenchymal phenotype. Furthermore, we show that canine mammary cancer cells can be induced to undergo EMT by TGFβ and that these cells have an increased ability to form tumorspheres. Our findings indicate that EMT induction can enrich for cells with CSC properties, and provide further insight into canine CSC biology

  10. Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland.

    Directory of Open Access Journals (Sweden)

    Perinaaz R Wadia

    Full Text Available Exposure of rodent fetuses to low doses of the endocrine disruptor bisphenol A (BPA causes subtle morphological changes in the prenatal mammary gland and results in pre-cancerous and cancerous lesions during adulthood. To examine whether the BPA-induced morphological alterations of the fetal mouse mammary glands are a associated with changes in mRNA expression reflecting estrogenic actions and/or b dependent on the estrogen receptor α (ERα, we compared the transcriptomal effects of BPA and the steroidal estrogen ethinylestradiol (EE2 on fetal mammary tissues of wild type and ERα knock-out mice. Mammary glands from fetuses of dams exposed to vehicle, 250 ng BPA/kg BW/d or 10 ng EE2/kg BW/d from embryonic day (E 8 were harvested at E19. Transcriptomal analyses on the ductal epithelium and periductal stroma revealed altered expression of genes involved in the focal adhesion and adipogenesis pathways in the BPA-exposed stroma while genes regulating the apoptosis pathway changed their expression in the BPA-exposed epithelium. These changes in gene expression correlated with previously reported histological changes in matrix organization, adipogenesis, and lumen formation resulting in enhanced maturation of the fat-pad and delayed lumen formation in the epithelium of BPA-exposed fetal mammary glands. Overall similarities in the transcriptomal effects of BPA and EE2 were more pronounced in the epithelium, than in the stroma. In addition, the effects of BPA and EE2 on the expression of various genes involved in mammary stromal-epithelial interactions were suppressed in the absence of ERα. These observations support a model whereby BPA and EE2 act directly on the stroma, which expresses ERα, ERβ and GPR30 in fetal mammary glands, and that the stroma, in turn, affects gene expression in the epithelium, where ERα and ERβ are below the level of detection at this stage of development.

  11. Low-Dose BPA Exposure Alters the Mesenchymal and Epithelial Transcriptomes of the Mouse Fetal Mammary Gland

    Science.gov (United States)

    Wadia, Perinaaz R.; Cabaton, Nicolas J.; Borrero, Michael D.; Rubin, Beverly S.; Sonnenschein, Carlos; Shioda, Toshi; Soto, Ana M.

    2013-01-01

    Exposure of rodent fetuses to low doses of the endocrine disruptor bisphenol A (BPA) causes subtle morphological changes in the prenatal mammary gland and results in pre-cancerous and cancerous lesions during adulthood. To examine whether the BPA-induced morphological alterations of the fetal mouse mammary glands are a) associated with changes in mRNA expression reflecting estrogenic actions and/or b) dependent on the estrogen receptor α (ERα), we compared the transcriptomal effects of BPA and the steroidal estrogen ethinylestradiol (EE2) on fetal mammary tissues of wild type and ERα knock-out mice. Mammary glands from fetuses of dams exposed to vehicle, 250 ng BPA/kg BW/d or 10 ng EE2/kg BW/d from embryonic day (E) 8 were harvested at E19. Transcriptomal analyses on the ductal epithelium and periductal stroma revealed altered expression of genes involved in the focal adhesion and adipogenesis pathways in the BPA-exposed stroma while genes regulating the apoptosis pathway changed their expression in the BPA-exposed epithelium. These changes in gene expression correlated with previously reported histological changes in matrix organization, adipogenesis, and lumen formation resulting in enhanced maturation of the fat-pad and delayed lumen formation in the epithelium of BPA-exposed fetal mammary glands. Overall similarities in the transcriptomal effects of BPA and EE2 were more pronounced in the epithelium, than in the stroma. In addition, the effects of BPA and EE2 on the expression of various genes involved in mammary stromal-epithelial interactions were suppressed in the absence of ERα. These observations support a model whereby BPA and EE2 act directly on the stroma, which expresses ERα, ERβ and GPR30 in fetal mammary glands, and that the stroma, in turn, affects gene expression in the epithelium, where ERα and ERβ are below the level of detection at this stage of development. PMID:23704952

  12. Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells.

    OpenAIRE

    Band, V; De Caprio, J A; Delmolino, L; Kulesa, V; Sager, R

    1991-01-01

    We have shown previously that introduction of the human papillomavirus type 16 (HPV16) or HPV18 genome into human mammary epithelial cells induces their immortalization. These immortalized cells have reduced growth factor requirements. We report here that transfection with a single HPV16 gene E6 is sufficient to immortalize these cells and reduce their growth factor requirements. The RB protein is normal in these cells, but the p53 protein is sharply reduced, as shown by immunoprecipitation w...

  13. INSULIN ANALOGUES: ANALYSIS OF PROLIFERATIVE POTENCY AND CHARACTERIZATION OF RECEPTORS AND SIGNALLING PATHWAYS ACTIVATED IN HUMAN MAMMARY EPITHELIAL CELLS

    OpenAIRE

    Shukla, Ashish

    2009-01-01

    Insulin analogues have been developed with the aim to provide better glycaemic control to diabetic patients. They are generated by modifying the insulin backbone which, however, may alter relevant biochemical characteristics such as the affinity to insulin receptor and type I insulin-like growth factor receptor (IGF-IR), and the insulin receptor dissociation rate. As a result insulin analogues may exhibit stronger mitogenic potency than regular insulin. Normal mammary epithelial cells show hi...

  14. Alternative splicing regulated by butyrate in bovine epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sitao Wu

    Full Text Available As a signaling molecule and an inhibitor of histone deacetylases (HDACs, butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT and control (CT groups. 201,326 potential splicing junctions detected were supported by ≥ 3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG while ~3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001 at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor and Exon#11 (Acceptor in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC

  15. IL-10 release by bovine epithelial cells cultured with Trichomonas vaginalis and Tritrichomonas foetus

    Directory of Open Access Journals (Sweden)

    Ricardo Chaves Vilela

    2013-02-01

    Full Text Available Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells.

  16. Characterization of MCF mammary epithelial cells overexpressing the Arylhydrocarbon receptor (AhR

    Directory of Open Access Journals (Sweden)

    Matsumura Fumio

    2009-07-01

    Full Text Available Abstract Background Recent reports indicate the existence of breast cancer cells expressing very high levels of the Arylhydrocarbon receptor (AhR, a ubiquitous intracellular receptor best known for mediating toxic action of dioxin and related pollutants. Positive correlation between the degree of AhR overexpression and states of increasing transformation of mammary epithelial cells appears to occur in the absence of any exogenous AhR ligands. These observations have raised many questions such as why and how AhR is overexpressed in breast cancer and its physiological roles in the progression to advanced carcinogenic transformation. To address those questions, we hypothesized that AhR overexpression occurs in cells experiencing deficiencies in normally required estrogen receptor (ER signaling, and the basic role of AhR in such cases is to guide the affected cells to develop orchestrated cellular changes aimed at substituting the normal functions of ER. At the same time, the AhR serves as the mediator of the cell survival program in the absence of ER signaling. Methods We subjected two lines of Michigan Cancer Foundation (MCF mammary epithelial cells to 3 different types ER interacting agents for a number of passages and followed the changes in the expression of AhR mRNA. The resulting sublines were analyzed for phenotypical changes and unique molecular characteristics. Results MCF10AT1 cells continuously exposed to 17-beta-estradiol (E2 developed sub-lines that show AhR overexpression with the characteristic phenotype of increased proliferation, and distinct resistance to apoptosis. When these chemically selected cell lines were treated with a specific AhR antagonist, 3-methoxy-4-nitroflavone (MNF, both of the above abnormal cellular characteristics disappeared, indicating the pivotal role of AhR in expressing those cellular phenotypes. The most prominent molecular characteristics of these AhR overexpressing MCF cells were found to be

  17. PTX3 is up-regulated in epithelial mammary cells during S. aureus intramammary infection in goat

    Directory of Open Access Journals (Sweden)

    Joel Fernando Soares Filipe

    2015-07-01

    mammary gland epithelial cells, and in macrophages. During S. aureus infection PTX3 was up-regulated by epithelial cells. Macrophages and mammary secretum didn’t show PTX3 modulation, but PMNs recruited during infection were variably intensely positive.PTX3 mRNA expression was low in healthy organs and tissues of goats as has been reported indeed the molecules commonly induced after pro-inflammatory stimulation. As expected, PTX3 was constitutively expressed in bone marrow, rich in PMNs and monocytes, in aorta covered by endothelium and in the skin.PTX3 was up-regulated in epithelial mammary cells and in milk cells after S. aureus infection, demonstrating that it represents a first line of immune defense in goat udder. No modulation was observed in macrophages, in the secretum and in the ductal epithelial cells.Further experiments are needed to elucidate the role of PTX3 in the pathogenesis of S. aureus infection.

  18. Human breast cancer cells are redirected to mammary epithelial cells upon interaction with the regenerating mammary gland microenvironment in-vivo.

    Directory of Open Access Journals (Sweden)

    Karen M Bussard

    Full Text Available Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display 'normal' behavior when placed into 'normal' ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for 'normal' gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo.

  19. Cytogenetic characterization and H-ras associated transformation of immortalized human mammary epithelial cells

    Directory of Open Access Journals (Sweden)

    Larivee Siobhan

    2006-05-01

    Full Text Available Abstract Introduction Immortalization is a key step in malignant transformation, but immortalization alone is insufficient for transformation. Human mammary epithelial cell (HMEC transformation is a complex process that requires additional genetic changes beyond immortalization and can be accomplished in vitro by accumulation of genetic changes and expression of H-ras. Methods HMEC were immortalized by serial passaging and transduction with the catalytic subunit of the human telomerase gene (hTERT. The immortalized cells were passaged in vitro and studied by a combination of G- banding and Spectral Karyotyping (SKY. H-ras transduced, hTERT immortalized cells were cloned in soft agar and injected into nude mice. Extensive analysis was performed on the tumors that developed in nude mice, including immunohistochemistry and western blotting. Results Immortal HMEC alone were not tumorigenic in γ-irradiated nude mice and could not grow in soft agar. Late passage hTERT immortalized HMEC from a donor transduced with a retroviral vector containing the mutant, autoactive, human H-ras61L gene acquired anchorage independent growth properties and the capacity for tumorigenic growth in vivo. The tumors that developed in the nude mice were poorly differentiated epithelial carcinomas that continued to overexpress ras. These cells were resistant to doxorubicin mediated G1/S phase arrest but were sensitive to treatment with a farnesyltransferase inhibitor. Conclusion Some of the cytogenetic changes are similar to what is observed in premalignant and malignant breast lesions. Despite these changes, late passage immortal HMEC are not tumorigenic and could only be transformed with overexpression of a mutant H-ras oncogene.

  20. Alpha-ketoglutarate enhances milk protein synthesis by porcine mammary epithelial cells.

    Science.gov (United States)

    Jiang, Qian; He, Liuqin; Hou, Yongqing; Chen, Jiashun; Duan, Yehui; Deng, Dun; Wu, Guoyao; Yin, Yulong; Yao, Kang

    2016-09-01

    Alpha-ketoglutarate (AKG), a key intermediate in the Krebs cycle, has been reported to promote protein synthesis through activating mechanistic targeting of rapamycin (mTOR) in enterocytes. The study tested the hypothesis that AKG may enhance growth and milk protein synthesis in porcine mammary epithelial cells (PMECs). PMECs were cultured for 96 h in Dulbecco's modified Eagle's-F12 Ham medium (DMEM-F12) containing prolactin (2 µg/ml) and AKG (0 or 1.5 mM). At the end of 96-h culture, the abundance of apoptosis-related proteins (caspase-3, caspase-9), milk-specific proteins (α-lactalbumin and β-casein), mTOR signaling proteins (mTOR, p-mTOR, PERK, p-PERK, eIF2a, P70S6K and p-P70S6K), and endoplasmic reticulum stress (ERS)-associated proteins (BiP and CHOP) in PMEC were determined. Addition of AKG dose-dependently enhanced cell viability in the absence or presence of prolactin, with optimal concentrations of AKG being at 1.0 and 1.5 mM, respectively. In the presence of prolactin, addition of 1.5 mM AKG: (1) decreased (P milk protein and lactose, while relieving (P milk protein production by modulating mTOR and ERS signaling pathways in PMECs. PMID:27188418

  1. Function of SREBP1 in the Milk Fat Synthesis of Dairy Cow Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Nan Li

    2014-09-01

    Full Text Available Sterol regulatory element-binding proteins (SREBPs belong to a family of nuclear transcription factors. The question of which is the most important positive regulator in milk fat synthesis in dairy cow mammary epithelial cells (DCMECs between SREBPs or other nuclear transcription factors, such as peroxisome proliferator-activated receptor γ (PPARγ, remains a controversial one. Recent studies have found that mTORC1 (the mammalian target of rapamycin C1 regulates SREBP1 to promote fat synthesis. Thus far, however, the interaction between the SREBP1 and mTOR (the mammalian target of rapamycin pathways in the regulation of milk fat synthesis remains poorly understood. This study aimed to identify the function of SREBP1 in milk fat synthesis and to characterize the relationship between SREBP1 and mTOR in DCMECs. The effects of SREBP1 overexpression and gene silencing on milk fat synthesis and the effects of stearic acid and serum on SREBP1 expression in the upregulation of milk fat synthesis were investigated in DCMECs using immunostaining, Western blotting, real-time quantitative PCR, lipid droplet staining, and detection kits for triglyceride content. SREBP1 was found to be a positive regulator of milk fat synthesis and was shown to be regulated by stearic acid and serum. These findings indicate that SREBP1 is the key positive regulator in milk fat synthesis.

  2. X-ray radiation-induced effects in human mammary epithelial cells investigated by Raman microspectroscopy

    Science.gov (United States)

    Risi, R.; Manti, L.; Perna, G.; Lasalvia, M.; Capozzi, V.; Delfino, I.; Lepore, M.

    2012-06-01

    Micro-Raman technique can be particularly useful to investigate the chemical changes induced in structure, protein, nucleic acid, lipid, and carbohydrate contents of cells. The aim of this work is to inspect the possibility to employ Raman microspectroscopy to detect biochemical modifications in human mammary epithelial cells after exposure to different Xray doses. The samples consisted of cells cultured on polylysine-coated glass coverslips. After the exposition, control and treated cells were washed in phosphate-buffered saline (PBS) and then fixed in paraformaldehyde 3.7%. They were examined using a confocal micro-Raman system equipped with a He-Ne laser (λ = 632.8 nm; power on the sample= 3.5mW). Differences in the intensity ratio of specific Raman vibrational markers commonly assigned to phenylalanine and tyrosine amino acids (at 1000, 1030, 1618 cm-1), DNA bases (787, 1090, 1305 cm-1), and amide III (1237, and 1265 cm-1) with respect a reference peak (the one of lipids at 1450 cm-1) were evidenced between control and exposed cells. These differences may be indicative of damage in exposed cells as the fragmentation of individual amino acids and DNA bases, crosslink effects in molecular structure of DNA and protein conformational change that especially tend to "unwind" the protein due to the breaking of hydrogen bonds between peptide chains.

  3. Ethanolamine requirement of mammary epithelial cells is due to reduced activity of base exchange enzyme

    International Nuclear Information System (INIS)

    Epithelial cells and some of their transformed derivatives require ethanolamine (Etn) to proliferate normally in defined culture medium. The amount of cellular phosphatidylethanolamine (PtdEtn) is considerably reduced when these cells are cultured without Etn. Using Etn-responsive and -nonresponsive rat mammary carcinoma cell lines, the biochemical mechanism of Etn-responsiveness of investigated. The incorporation of [3H]serine into phosphatidylserine (PtdSer) and PtdEtn in Etn-responsive cells was 60 and 37%, respectively, of those in Etn-nonresponsive cells. There was no significant difference between the two cell types in the activities of enzymes involved in PtdEtn synthesis via CDP-Etn. The activity of PtdSer decarboxylase was also very similar in these two cell types. When these cells were cultured in the presence of [32P]PtdEtn, the rate of accumulation of [32P]-labeled PtdSer from the radioactive PtdEtn was considerably reduced in Etn-responsive cells as compared to Etn-nonresponsive cells. Whereas there was no significant difference in the accumulation of the labeled PtdSer from [32P]phosphatidylcholine. These results demonstrate that the Etn-responsiveness is due to a limited ability to synthesize PtdSer resulting from a limited base exchange activity utilizing PtdEtn

  4. The nuclear factor YY1 participates in repression of the beta-casein gene promoter in mammary epithelial cells and is counteracted by mammary gland factor during lactogenic hormone induction.

    OpenAIRE

    Meier, V S; Groner, B.

    1994-01-01

    Expression of the beta-casein milk protein gene in the mammary epithelial cell line HC11 is primarily regulated at the transcriptional level. A 338-bp segment of promoter sequence 5' of the transcription start site is sufficient to confer inducibility by the lactogenic hormones insulin, glucocorticoid hormone, and prolactin. Positively and negatively acting promoter elements and specific DNA binding proteins have been identified. The binding of the mammary gland factor MGF to a site between -...

  5. Variant innate immune responses of mammary epithelial cells to challenge by Staphylococcus aureus, Escherichia coli and the regulating effect of taurine on these bioprocesses.

    Science.gov (United States)

    Zheng, Liuhai; Xu, Yuanyuan; Lu, Jinye; Liu, Ming; Bin Dai; Miao, Jinfeng; Yin, Yulong

    2016-07-01

    Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are important pathogens causing subclinical and clinical bovine mastitis, respectively. Taurine, an organic acid found in animal tissues, has been used for the treatment of various superficial infections and chronic inflammations. We challenged a bovine mammary epithelial cell (MEC) line (MAC-T) or a mouse mammary epithelial cell line (EpH4-Ev) with either E. coli or S. aureus and compared the responses of MECs to these 2 pathogens. We also examined the regulatory effects of taurine on these responses. Receptor analyses showed that both TLR2 and TLR4 are upregulated upon exposure to either E. coli or S. aureus. Taurine pre-treatment dampened upregulation to some extent. E. coli and S. aureus stimulated comparable levels of ROS, which could be inhibited by taurine pre-treatment. E. coli infection elicited a dramatic change in iNOS expression. Taurine significantly decreased iNOS expression in the S. aureus challenged group. Protein microarray demonstrated that 32/40 and 8/40 inflammatory molecules/mediators were increased after E. coli or S. aureus challenge, respectively. The fold changes of most molecules were higher in the E. coli infection group than that in the S. aureus infection group. Taurine negatively regulated the inflammatory profile in both bacterial infections. Pro-inflammatory cytokines (such as TNF-α) connected with TLR activation were down-regulated by taurine pre-treatment. The influence of TAK-242 and OxPAPC on cytokine/molecule expression profiles to E. coli challenge are different than to S. aureus. Some important factors (MyD88, TNF-α, IL-1β, iNOS and IL-6) mediated by TLR activation were suppressed either in protein microarray or special assay (PCR/kits) or both. TAK-242 restrained ROS production and NAGase activity similar to the effect of taurine in E. coli challenge groups. The detection of 3 indices (T-AOC, SOD and MDA) reflecting oxidative stress in vivo, showed that

  6. Variant innate immune responses of mammary epithelial cells to challenge by Staphylococcus aureus, Escherichia coli and the regulating effect of taurine on these bioprocesses.

    Science.gov (United States)

    Zheng, Liuhai; Xu, Yuanyuan; Lu, Jinye; Liu, Ming; Bin Dai; Miao, Jinfeng; Yin, Yulong

    2016-07-01

    Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are important pathogens causing subclinical and clinical bovine mastitis, respectively. Taurine, an organic acid found in animal tissues, has been used for the treatment of various superficial infections and chronic inflammations. We challenged a bovine mammary epithelial cell (MEC) line (MAC-T) or a mouse mammary epithelial cell line (EpH4-Ev) with either E. coli or S. aureus and compared the responses of MECs to these 2 pathogens. We also examined the regulatory effects of taurine on these responses. Receptor analyses showed that both TLR2 and TLR4 are upregulated upon exposure to either E. coli or S. aureus. Taurine pre-treatment dampened upregulation to some extent. E. coli and S. aureus stimulated comparable levels of ROS, which could be inhibited by taurine pre-treatment. E. coli infection elicited a dramatic change in iNOS expression. Taurine significantly decreased iNOS expression in the S. aureus challenged group. Protein microarray demonstrated that 32/40 and 8/40 inflammatory molecules/mediators were increased after E. coli or S. aureus challenge, respectively. The fold changes of most molecules were higher in the E. coli infection group than that in the S. aureus infection group. Taurine negatively regulated the inflammatory profile in both bacterial infections. Pro-inflammatory cytokines (such as TNF-α) connected with TLR activation were down-regulated by taurine pre-treatment. The influence of TAK-242 and OxPAPC on cytokine/molecule expression profiles to E. coli challenge are different than to S. aureus. Some important factors (MyD88, TNF-α, IL-1β, iNOS and IL-6) mediated by TLR activation were suppressed either in protein microarray or special assay (PCR/kits) or both. TAK-242 restrained ROS production and NAGase activity similar to the effect of taurine in E. coli challenge groups. The detection of 3 indices (T-AOC, SOD and MDA) reflecting oxidative stress in vivo, showed that

  7. TGF-β1 promotes bovine mammary fibroblast proliferation through the ERK 1/2 signalling pathway.

    Science.gov (United States)

    Gao, Yuanyuan; Wang, Yuping; Li, Yingying; Xia, Xiaojing; Zhao, Shuang; Che, Yanyi; Sun, Yingying; Lei, Liancheng

    2016-07-01

    The abnormal proliferation of bovine mammary fibroblasts (BMFBs) impairs mammary gland development and lactation. Severe manifestations develop into breast fibrosis, leading to the culling of cows and causing serious losses to the dairy industry. Transforming growth factor β1 (TGF-β1) is an important modulator of cell proliferation and extracellular matrix formation; however, limited information is available on BMFBs. In this study, a convenient and stable culture method for BMFBs was established. Treatment with 5 ng/mL of TGF-β1 significantly promoted the proliferation of BMFBs and accelerated the cell cycle. TGF-β1 stimulation for up to 12 h significantly increased the relative ERK1/2 mRNA expression and enhanced the protein expression of p-ERK1/2 and cyclin D1. Conversely, the ERK1/2 inhibitor PD98059 blocked these TGF-β1 effects. Further exploration using a mouse model showed that TGF-β1 significantly increased the proportion of fibroblasts and accelerating the cell transition from the G1 to G2/M phases. In addition, TGF-β1 enhanced the expression of fibrosis markers, α-SMA and I Collagen, which could be blocked efficiently by the PD98059 in mouse mammary gland. Finally, immunofluorescence analysis confirmed that TGF-β1 promoted fibroblast proliferation in healthy dairy cows after normal long-term dietary corn straw roughage supplementation. It is suggested that the diet may promote mammary fibroblast proliferation by raising the level of TGF-β1. Our study provides new insights into how nutrition causes undesirable changes in mammary gland structure.

  8. GLUCOSE METABOLITE PATTERNS AS MARKERS OF FUNCTIONAL DIFFERENTIATION IN FRESHLY ISOLATED AND CULTURED MOUSE MAMMARY EPITHELIAL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Emerman, J.T.; Bartley, J.C.; Bissell, M.J.

    1980-06-01

    In the mammary gland of nonruminant animals, glucose is utilized in a characteristic and unique way during lactation. We have measured the incorporation of glucose carbon from [U-{sup 14}C] glucose into intermediary metabolites and metabolic products in mammary epithelial cells from virgin, pregnant, and lactating mice and demonstrate that glucose metabolite patterns can be used to recognize stages of differentiated function. For these cells, the rates of synthesis of glycogen and lactose, the ratio of lactate to alanine, and the ratio of citrate to malate were important parameters in identifying the degree of expression of differentiation. We further show that these patterns can be used as markers to determine the differentiated state of cultured mammary epithelial cells. Cells maintained on plastic substrates lose their distinctive glucose metabolite patterns while those on floating collagen gels do not. Cells from pregnant mice have a pattern similar to freshly isolated cells from pregnant mice. The pattern of cells from lactating mice is different from that of the cells of origin, and resembles that of the cells from pregnant mice. Our findings suggest that the floating collagen gels under the culture conditions used in these experiments provide an environment for the functional expression of the pregnant state, while additional factors are needed for the expression of the lactating state.

  9. Suppression of prolactin signaling by pyrrolidine dithiocarbamate is alleviated by N-acetylcysteine in mammary epithelial cells.

    Science.gov (United States)

    Wang, Jen-Hsing; Du, Jyun-Yi; Wu, Yi-Ying; Chen, Meng-Chi; Huang, Chun-Hao; Shen, Hsin-Ju; Lee, Chin-Feng; Lin, Ting-Hui; Lee, Yi-Ju

    2014-09-01

    Prolactin is the key hormone to stimulate milk synthesis in mammary epithelial cells. It signals through the Jak2-Stat5 pathway to induce the expression of β-casein, a milk protein which is often used as a marker for mammary differentiation. Here we examined the effect of pyrrolidine dithiocarbamate (PDTC) on prolactin signaling. Our results show that PDTC downregulates prolactin receptor levels, and inhibits prolactin-induced Stat5 tyrosine phosphorylation and β-casein expression. This is not due to its inhibitory action on NF-κB since application of another NF-κB inhibitor, BAY 11-7082, and overexpression of I-κBα super-repressor do not lead to the same results. Instead, the pro-oxidant activity of PDTC is involved as inclusion of the antioxidant N-acetylcysteine restores prolactin signaling. PDTC triggers great extents of activation of ERK and JNK in mammary epithelial cells. These do not cause suppression of prolactin signaling but confer serine phosphorylation of insulin receptor substrate-1, thereby perturbing insulin signal propagation. As insulin facilitates optimal β-casein expression, blocking insulin signaling by PDTC might pose additional impediment to β-casein expression. Our results thus imply that lactation will be compromised when the cellular redox balance is dysregulated, such as during mastitis.

  10. Thyroid hormone responsive (THRSP) promotes the synthesis of medium-chain fatty acids in goat mammary epithelial cells.

    Science.gov (United States)

    Yao, D W; Luo, J; He, Q Y; Wu, M; Shi, H B; Wang, H; Wang, M; Xu, H F; Loor, J J

    2016-04-01

    In nonruminants, thyroid hormone responsive (THRSP) is a crucial protein for cellular de novo lipogenesis. However, the role of THRSP in regulating the synthesis of milk fatty acid composition in goat mammary gland remains unknown. In the present study, we compared gene expression of THRSP among different goat tissues. Results revealed that THRSP had the highest expression in subcutaneous fat, and expression was higher during lactation compared with the dry period. Overexpression of THRSP upregulated the expression of fatty acid synthase (FASN), stearoyl-coenzyme A desaturase 1 (SCD1), diacylglycerol acyltransferase 2 (DGAT2), and glycerol-3-phosphate acyltransferase (GPAM) in goat mammary epithelial cells. In contrast, overexpression of THRSP led to downregulation of thrombospondin receptor (CD36) and had no effect on the expression of acetyl-coenzyme A carboxylase α (ACACA) and sterol regulatory element binding transcription factor1 (SREBF1). In addition, overexpressing THRSP in vitro resulted in a significant increase in triacylglycerol (TAG) concentration and the concentrations of C12:0 and C14:0. Taken together, these results highlight an important role of THRSP in regulating lipogenesis in goat mammary epithelial cells. PMID:26851858

  11. Gene expression profiling of di-n-butyl phthalate in normal human mammary epithelial cells.

    Science.gov (United States)

    Gwinn, Maureen R; Whipkey, Diana L; Tennant, Lora B; Weston, Ainsley

    2007-01-01

    Studies show that female workers in the personal-care industry have an increased risk of developing cancer believed to be the result of increased exposure to toxic and/or carcinogenic chemicals found in cosmetics, hair dyes, and nail polish. One chemical found in multiple personal-care products, di-n-butyl phthalate (DBP), is a known endocrine disruptor and has been found in increased levels in women of childbearing age. The goal of this study was to elucidate mechanisms of phthalate toxicity in normal human cells to provide information concerning interindividual variation and gene-environment interactions. Normal human mammary epithelial cell strains were obtained from discarded tissues following reduction mammoplasty [Cooperative Human Tissue Network (sponsors: NCI/NDRI)]. Gene transcription in each cell strain was analyzed using high-density oligonucleotide DNA microarrays (U133A, Affymetrix) and changes in the expression of selected genes were verified by real-time polymerase chain reaction (PCR) (ABI). DNA microarrays were hybridized with total RNA that was collected after DBP treatment for 5 hr and 10 hr. RNA was harvested from the vehicle control (acetone) at 10 hr. Data Mining Tool software (Affymetrix) was used to separate genes in clusters based on their expression patterns over time. Only 57 genes were found to be altered in all four cell strains following exposure to DBP. These included genes involved in fertility (inhibin, placental growth factor), immune response (tumor necrosis factor induced protein), and antioxidant status (glutathione peroxidase). Data from this study will help clarify the role of DBP in reproductive toxicity, and yield biomarkers of exposure for future epidemiology studies.

  12. HER/ErbB Receptor Interactions and Signaling Patterns in Human Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi; Opresko, Lee K.; Shankaran, Harish; Chrisler, William B.; Wiley, H. S.; Resat, Haluk

    2009-10-31

    Knowledge about signaling pathways is typically compiled based on data gathered using different cell lines. This approach implicitly assumes that cell line dependence is not important, which can be misleading because different cell lines do not always respond to a particular stimulus in the same way. The lack of coherent data collected from closely related cellular systems can be detrimental to the efforts to understand the regulation of biological processes. In this study, we report the development of a library of human mammary epithelial (HME) cell lines which express endogenous levels of the cell surface receptor EGFR/HER1, and different levels of HER2 and HER3. Using our clone library, we have quantified the interactions among the HER1-3 receptors and systematically investigated the existing hypotheses about their interaction patterns. Contrary to earlier suggestions, we find that lateral interactions with HER2 do not lead to strong transactivation between EGFR and HER3. Our study identified HER2 as the dominant dimerization partner for both EGFR and HER3, and revealed that EGFR and HER3 activations are only weakly linked in HME cells. We have also quantified the time-dependent activation patterns of the downstream effectors Erk and Akt. We found that HER3 signaling makes the strongest contribution to Akt activation and that, stimulation of either EGFR or HER3 pathways activate Erk at significant levels. Our study shows that cell libraries formed from closely related clones can be a powerful resource for pursuing the quantitative investigations that are necessary for developing a systems level understanding of cell signaling.

  13. The Effect of Storage Temperature and Time on the Concentrations of Bovine Serum Amyloid A and Its Mammary Associated Isoform

    Directory of Open Access Journals (Sweden)

    Csilla Tóthová

    2012-01-01

    Full Text Available The objective of this study was to evaluate the effect of storage under various conditions on the concentrations of major bovine acute phase protein—serum amyloid A, and its mammary isoform. Blood samples were taken from seven clinically healthy calves, and milk samples from six clinically healthy dairy cows. The harvested blood serum and the milk samples were fractioned into aliquots. One aliquot was analyzed on the day of collection without storage. The second aliquots were stored at 4°C for 1 day, the remaining aliquots were kept frozen at −18°C for 2, 7, 14, and 21 days, and then analyzed. Blood serum was analyzed for serum amyloid A (SAA. The concentrations of mammary isoform of SAA (M-SAA were measured in milk samples. Over time, the concentrations of SAA in serum showed a tendency of significant decrease during storage at −18°C (P<0.01. Similarly, the values of M-SAA decreased significantly in samples maintained at freezer temperatures (P<0.001. In the refrigerated samples, we found non-significantly lower values of SAA, as well as M-SAA. Presented results indicate that the storage temperature and duration may markedly affect the concentrations of bovine SAA and M-SAA.

  14. Basal but not luminal mammary epithelial cells require PI3K/mTOR signaling for Ras-driven overgrowth.

    Science.gov (United States)

    Plichta, Kristin A; Mathers, Jessica L; Gestl, Shelley A; Glick, Adam B; Gunther, Edward J

    2012-11-15

    The mammary ducts of humans and mice are comprised of two main mammary epithelial cell (MEC) subtypes: a surrounding layer of basal MECs and an inner layer of luminal MECs. Breast cancer subtypes show divergent clinical behavior that may reflect properties inherent in their MEC compartment of origin. How the response to a cancer-initiating genetic event is shaped by MEC subtype remains largely unexplored. Using the mouse mammary gland, we designed organotypic three-dimensional culture models that permit challenge of discrete MEC compartments with the same oncogenic insult. Mammary organoids were prepared from mice engineered for compartment-restricted coexpression of oncogenic H-RAS(G12V) together with a nuclear fluorescent reporter. Monitoring of H-RAS(G12V)-expressing MECs during extended live cell imaging permitted visualization of Ras-driven phenotypes via video microscopy. Challenging either basal or luminal MECs with H-RAS(G12V) drove MEC proliferation and survival, culminating in aberrant organoid overgrowth. In each compartment, Ras activation triggered modes of collective MEC migration and invasion that contrasted with physiologic modes used during growth factor-initiated branching morphogenesis. Although basal and luminal Ras activation produced similar overgrowth phenotypes, inhibitor studies revealed divergent use of Ras effector pathways. Blocking either the phosphoinositide 3-kinase or the mammalian target of rapamycin pathway completely suppressed Ras-driven invasion and overgrowth of basal MECs, but only modestly attenuated Ras-driven phenotypes in luminal MECs. We show that MEC subtype defines signaling pathway dependencies downstream of Ras. Thus, cells-of-origin may critically determine the drug sensitivity profiles of mammary neoplasia. PMID:23010075

  15. Production and release of antimicrobial and immune defense proteins by mammary epithelial cells following Streptococcus uberis infection of sheep.

    Science.gov (United States)

    Addis, Maria Filippa; Pisanu, Salvatore; Marogna, Gavino; Cubeddu, Tiziana; Pagnozzi, Daniela; Cacciotto, Carla; Campesi, Franca; Schianchi, Giuseppe; Rocca, Stefano; Uzzau, Sergio

    2013-09-01

    Investigating the innate immune response mediators released in milk has manifold implications, spanning from elucidation of the role played by mammary epithelial cells (MECs) in fighting microbial infections to the discovery of novel diagnostic markers for monitoring udder health in dairy animals. Here, we investigated the mammary gland response following a two-step experimental infection of lactating sheep with the mastitis-associated bacterium Streptococcus uberis. The establishment of infection was confirmed both clinically and by molecular methods, including PCR and fluorescent in situ hybridization of mammary tissues. Proteomic investigation of the milk fat globule (MFG), a complex vesicle released by lactating MECs, enabled detection of enrichment of several proteins involved in inflammation, chemotaxis of immune cells, and antimicrobial defense, including cathelicidins and calprotectin (S100A8/S100A9), in infected animals, suggesting the consistent involvement of MECs in the innate immune response to pathogens. The ability of MECs to produce and release antimicrobial and immune defense proteins was then demonstrated by immunohistochemistry and confocal immunomicroscopy of cathelicidin and the calprotectin subunit S100A9 on mammary tissues. The time course of their release in milk was also assessed by Western immunoblotting along the course of the experimental infection, revealing the rapid increase of these proteins in the MFG fraction in response to the presence of bacteria. Our results support an active role of MECs in the innate immune response of the mammary gland and provide new potential for the development of novel and more sensitive tools for monitoring mastitis in dairy animals. PMID:23774600

  16. Sox10 Regulates Stem/Progenitor and Mesenchymal Cell States in Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Christopher Dravis

    2015-09-01

    Full Text Available To discover mechanisms that mediate plasticity in mammary cells, we characterized signaling networks that are present in the mammary stem cells responsible for fetal and adult mammary development. These analyses identified a signaling axis between FGF signaling and the transcription factor Sox10. Here, we show that Sox10 is specifically expressed in mammary cells exhibiting the highest levels of stem/progenitor activity. This includes fetal and adult mammary cells in vivo and mammary organoids in vitro. Sox10 is functionally relevant, as its deletion reduces stem/progenitor competence whereas its overexpression increases stem/progenitor activity. Intriguingly, we also show that Sox10 overexpression causes mammary cells to undergo a mesenchymal transition. Consistent with these findings, Sox10 is preferentially expressed in stem- and mesenchymal-like breast cancers. These results demonstrate a signaling mechanism through which stem and mesenchymal states are acquired in mammary cells and suggest therapeutic avenues in breast cancers for which targeted therapies are currently unavailable.

  17. Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland.

    Science.gov (United States)

    Boras-Granic, Kata; Chang, Hong; Grosschedl, Rudolf; Hamel, Paul A

    2006-07-01

    Inductive reciprocal signaling between mesenchymal and adjacent epithelia gives rise to skin appendages such as hair follicles and mammary glands. Lef1-mediated canonical Wnt signaling is required for morphogenesis of these skin appendages during embryogenesis. In order to define the role of canonical Wnt signaling during early embryonic mammary gland development, we determined the temporal and spatial changes in Wnt signaling during embryogenesis in wild-type and Lef1-deficient embryos harboring a Tcf/Lef1-betagal reporter (TOPGAL) transgene. In contrast to previous studies using TOPGAL mice from a distinct founder, we observe that Wnt signaling acts initially on mesenchymal cells associated with the sequential appearance of mammary placodes. As placode development progresses between 12.5 and 15.5 dpc, Wnt signaling progressively accumulates in the mammary epithelial compartment. By 18.5 dpc, betagal activity is confined to mesenchymal and epithelial cells near the nipple region. In Lef1-deficient embryos, the transition of Wnt signaling from mesenchyme to the mammary epithelia is blocked for placodes #1, 4 and 5 despite the expression of Tcf1 in epithelial cells. These placodes ultimately disappear by 15.5 dpc, while placodes 2 and 3 typically did not form in the absence of Lef1. Progressive loss of placodes 1, 4, and 5 is accompanied by increased apoptosis in mesenchymal cells adjacent to the mammary epithelial placodes. While factors important for embryonic mammary gland development, such as FGF7, are expressed normally in Lef1-deficient animals, one mediator of the Hedgehog (Hh)-signaling pathway is aberrantly expressed. Specifically, Shh, Ihh, and Gli2 are expressed in mammary epithelial cells at levels in Lef1-deficient animals similar to wild-type littermates. However, the signal for Ptc-1 is strongly reduced in mesenchymal cells surrounding the mammary placode in Lef1 mutants relative to wild-type embryos. The loss of Ptc-1, both a receptor for and

  18. Microphysiometry Studies of Rapid Binding of Insulin-Like Growth Factor I by Parental and Transfected Mammary Epithelial Cell Lines

    OpenAIRE

    Robinson, Rose Marie

    1998-01-01

    Breast cancer is a leading cause of cancer death of women in the U.S. today. Members of the family of insulin-like growth factors (IGFs) are proposed to play a major role in the development and subsequent uncontrolled proliferation of breast cancer cells. Insulin-like growth factor-I (IGF-I) is known to be a potent mitogen for mammary epithelial cells. IGF-I acts by binding to cell surface receptors, thereby stimulating a cascade of events leading to cell division. In the interest of inte...

  19. Matrix Metalloproteinase Stromelysin-1 Triggers a Cascade of Molecular Alterations that leads to stable epithelial-to-Mesenchymal Conversion and a Premalignant Phenotype in Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, A.; Galosy, S.; Muschler, J.; Freedman, N.; Werb, Z.; Bissell, M.J.

    1997-08-11

    Matrix metalloproteinases (MMPs) regulate ductal morphogenesis, apoptosis, and neoplastic progression in mammary epithelial cells. To elucidate the direct effects of MMPs on mammary epithelium, we generated functionally normal cells expressing an inducible autoactivating stromelysin-1 (SL-1) transgene. Induction of SL-1 expression resulted in cleavage of E-cadherin, and triggered progressive phenotypic conversion characterized by disappearance of E-cadherin and catenins from cell-cell contacts, downregulation of cytokeratins, upregulation of vimentin, induction of keratinocyte growth factor expression and activation, and upregulation of endogenous MMPs. Cells expressing SL-1 were unable to undergo lactogenic differentiation and became invasive. Once initiated, this phenotypic conversion was essentially stable, and progressed even in the absence of continued SL-1 expression. These observations demonstrate that inappropriate expression of SL-1 initiates a cascade of events that may represent a coordinated program leading to loss of the differentiated epithelial phenotype and gain of some characteristics of tumor cells. Our data provide novel insights into how MMPs function in development and neoplastic conversion.

  20. TDAG51 is an ERK signaling target that opposes ERK-mediated HME16C mammary epithelial cell transformation

    Directory of Open Access Journals (Sweden)

    Ward Yvona

    2008-07-01

    Full Text Available Abstract Introduction Signaling downstream of Ras is mediated by three major pathways, Raf/ERK, phosphatidylinositol 3 kinase (PI3K, and Ral guanine nucleotide exchange factor (RalGEF. Ras signal transduction pathways play an important role in breast cancer progression, as evidenced by the frequent over-expression of the Ras-activating epidermal growth factor receptors EGFR and ErbB2. Here we investigated which signal transduction pathways downstream of Ras contribute to EGFR-dependent transformation of telomerase-immortalized mammary epithelial cells HME16C. Furthermore, we examined whether a highly transcriptionally regulated ERK pathway target, PHLDA1 (TDAG51, suggested to be a tumor suppressor in breast cancer and melanoma, might modulate the transformation process. Methods Cellular transformation of human mammary epithelial cells by downstream Ras signal transduction pathways was examined using anchorage-independent growth assays in the presence and absence of EGFR inhibition. TDAG51 protein expression was down-regulated by interfering small hairpin RNA (shRNA, and the effects on cell proliferation and death were examined in Ras pathway-transformed breast epithelial cells. Results Activation of both the ERK and PI3K signaling pathways was sufficient to induce cellular transformation, which was accompanied by up-regulation of EGFR ligands, suggesting autocrine EGFR stimulation during the transformation process. Only activation of the ERK pathway was sufficient to transform cells in the presence of EGFR inhibition and was sufficient for tumorigenesis in xenografts. Up-regulation of the PHLDA1 gene product, TDAG51, was found to correlate with persistent ERK activation and anchorage-independent growth in the absence or presence of EGFR inhibition. Knockdown of this putative breast cancer tumor-suppressor gene resulted in increased ERK pathway activation and enhanced matrix-detached cellular proliferation of Ras/Raf transformed cells. Conclusion

  1. TRAM-Derived Decoy Peptides inhibits the inflammatory response in mouse mammary epithelial cells and a mastitis model in mice.

    Science.gov (United States)

    Hu, Xiaoyu; Tian, Yuan; Wang, Tiancheng; Zhang, Wenlong; Wang, Wei; Gao, Xuejiao; Qu, Shihui; Cao, Yongguo; Zhang, Naisheng

    2015-10-01

    It has been proved that TRAM-Derived Decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRAM-Derived decoy peptide (TM6), belongs to TRAM TIR domain, of which sequence is "N"-RQIKIWFQNRRMKWK, KENFLRDTWCNFQFY-"C" and evaluated the effects of TM6 on lipopolysaccharide-induced mastitis in mice. In vivo, LPS-induced mice mastitis model was established by injection of LPS through the duct of mammary gland. TM6 was injected 1h before or after LPS treatment. In vitro, primary mouse mammary epithelial cells were used to investigate the effects of TM6 on LPS-induced inflammatory responses. The results showed that TM6 inhibited LPS-induced mammary gland histopathologic changes, MPO activity, and TNF-α, IL-1β and IL-6 production in mice. In vitro, TM6 significantly inhibited LPS-induced TNF-α and IL-6 production, as well as NF-κB and MAPKs activation. In conclusion, this study demonstrated that TM6 had protective effects on LPS-mastitis and may be a promising therapeutic reagent for mastitis treatment.

  2. Aurora A Kinase Regulates Mammary Epithelial Cell Fate by Determining Mitotic Spindle Orientation in a Notch-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Joseph L. Regan

    2013-07-01

    Full Text Available Cell fate determination in the progeny of mammary epithelial stem/progenitor cells remains poorly understood. Here, we have examined the role of the mitotic kinase Aurora A (AURKA in regulating the balance between basal and luminal mammary lineages. We find that AURKA is highly expressed in basal stem cells and, to a lesser extent, in luminal progenitors. Wild-type AURKA expression promoted luminal cell fate, but expression of an S155R mutant reduced proliferation, promoted basal fate, and inhibited serial transplantation. The mechanism involved regulation of mitotic spindle orientation by AURKA and the positioning of daughter cells after division. Remarkably, this was NOTCH dependent, as NOTCH inhibitor blocked the effect of wild-type AURKA expression on spindle orientation and instead mimicked the effect of the S155R mutant. These findings directly link AURKA, NOTCH signaling, and mitotic spindle orientation and suggest a mechanism for regulating the balance between luminal and basal lineages in the mammary gland.

  3. Alpha-ketoglutarate enhances milk protein synthesis by porcine mammary epithelial cells.

    Science.gov (United States)

    Jiang, Qian; He, Liuqin; Hou, Yongqing; Chen, Jiashun; Duan, Yehui; Deng, Dun; Wu, Guoyao; Yin, Yulong; Yao, Kang

    2016-09-01

    Alpha-ketoglutarate (AKG), a key intermediate in the Krebs cycle, has been reported to promote protein synthesis through activating mechanistic targeting of rapamycin (mTOR) in enterocytes. The study tested the hypothesis that AKG may enhance growth and milk protein synthesis in porcine mammary epithelial cells (PMECs). PMECs were cultured for 96 h in Dulbecco's modified Eagle's-F12 Ham medium (DMEM-F12) containing prolactin (2 µg/ml) and AKG (0 or 1.5 mM). At the end of 96-h culture, the abundance of apoptosis-related proteins (caspase-3, caspase-9), milk-specific proteins (α-lactalbumin and β-casein), mTOR signaling proteins (mTOR, p-mTOR, PERK, p-PERK, eIF2a, P70S6K and p-P70S6K), and endoplasmic reticulum stress (ERS)-associated proteins (BiP and CHOP) in PMEC were determined. Addition of AKG dose-dependently enhanced cell viability in the absence or presence of prolactin, with optimal concentrations of AKG being at 1.0 and 1.5 mM, respectively. In the presence of prolactin, addition of 1.5 mM AKG: (1) decreased (P < 0.05) the abundance of caspase-3 and caspase-9 by 21 and 39 %; (2) enhanced (P < 0.05) the phosphorylation of p-mTOR and p-P70S6K by 39 and 89 %, respectively; (3) increased (P < 0.05) the production of β-casein and α-lactalbumin by 16 and 20 %, respectively; (4) attenuated (P < 0.05) the expression of CHOP by 34 % but promoted (P < 0.05) the expression of BiP by 46 %; (5) increased (P < 0.05) the secretion of lactose by 15 %, when compared to the 0 mM AKG group. Rapamycin (50 nM; an inhibitor of mTOR) attenuated (P < 0.05) the stimulatory effect of AKG on mTOR signaling and syntheses of milk protein and lactose, while relieving (P < 0.05) an inhibitory effect of AKG on expression of proteins related to ERS. Collectively, our results indicate that AKG enhances milk protein production by modulating mTOR and ERS signaling pathways in PMECs.

  4. Effects of interferon-tau and steroids on cytochrome P450 activity in bovine endometrial epithelial cells

    Science.gov (United States)

    The objective of the current study was to examine cyclooxygenase (COX), cytochrome P450 1A (CYP1A) and 2C (CYP2C) activity in bovine endometrial cell cultures following exposure to oxytocin (OT), interferon-t (IFN), estradiol (E2) and/or progesterone (P4). Bovine endometrial epithelial cells were tr...

  5. The 18-kDa translocator protein (TSPO disrupts mammary epithelial morphogenesis and promotes breast cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Xiaoting Wu

    Full Text Available Mitochondria play important roles in cancer progression and have emerged as viable targets for cancer therapy. Increasing levels of the outer mitochondrial membrane protein, 18-kDa translocator protein (TSPO, are associated with advancing breast cancer stage. In particular, higher TSPO levels are found in estrogen receptor (ER-negative breast tumors, compared with ER-positive tumors. In this study, we sought to define the roles of TSPO in the acquisition of breast cancer malignancy. Using a three-dimensional Matrigel culture system, we determined the impact of elevated TSPO levels on mammary epithelial morphogenesis. Our studies demonstrate that stable overexpression of TSPO in mammary epithelial MCF10A acini drives proliferation and provides partial resistance to luminal apoptosis, resulting in enlarged acinar structures with partially filled lumen that resemble early stage breast lesions leading to breast cancer. In breast cancer cell lines, TSPO silencing or TSPO overexpression significantly altered the migratory activity. In addition, we found that combination treatment with the TSPO ligands (PK 11195 or Ro5-4864 and lonidamine, a clinical phase II drug targeting mitochondria, decreased viability of ER-negative breast cancer cell lines. Taken together, these data demonstrate that increases in TSPO levels at different stages of breast cancer progression results in the acquisition of distinct properties associated with malignancy. Furthermore, targeting TSPO, particularly in combination with other mitochondria-targeting agents, may prove useful for the treatment of ER-negative breast cancer.

  6. The effects of Brazilian propolis on etiological agents of mastitis and the viability of bovine mammary gland explants.

    Science.gov (United States)

    Fiordalisi, Samira A L; Honorato, Luciana A; Loiko, Márcia R; Avancini, César A M; Veleirinho, Maria B R; Machado Filho, Luiz C P; Kuhnen, Shirley

    2016-03-01

    The objective of this study was to evaluate in vitro the antimicrobial activity of Brazilian propolis from Urupema, São Joaquim, and Agua Doce (Santa Catarina State) and green propolis from Minas Gerais State, and the effects of propolis on bovine mammary gland explant viability. The propolis samples differed in flavonoid content and antioxidant activity. Green propolis showed the highest content of flavonoids, followed by the sample from São Joaquim. The propolis from Urupema showed the lowest flavonoid content along with the lowest antioxidant activity. The total phenolics were similar across all studied samples. Despite phytochemical differences, the propolis samples from Minas Gerais, São Joaquim, and Urupema presented the same level of antimicrobial activity against Staphylococcus aureus strains. The reduction in S. aureus growth was, on average, 1.5 and 4 log10 times at 200 and 500 μg/mL, respectively. At concentrations of 1,000 μg/mL, all propolis reduced bacterial growth to zero. On the other hand, when the propolis were tested against strains of Escherichia coli, the samples presented weak antimicrobial activity. Mammary explants were maintained in culture for 96h without a loss in viability, demonstrating the applicability of the model in evaluating the toxicity of propolis. The origin and chemical composition of the propolis had an effect on mammary explant viability. We encountered inhibitory concentrations of 272.4, 171.8, 63.85, and 13.26 μg/mL for the propolis from Água Doce, Urupema, São Joaquim, and Mina Gerais, respectively. A clear association between greater antimicrobial activity and toxicity for mammary explants was observed. Of all propolis tested, the Urupema sample was noteworthy, as it showed antimicrobial activity at less toxic concentrations than the other samples, reducing bacterial growth to an average of 9.3 × 10(2) cfu/mL after 6h of contact using 200 μg/mL of extract. The results demonstrate the potential for Brazilian

  7. The effects of Brazilian propolis on etiological agents of mastitis and the viability of bovine mammary gland explants.

    Science.gov (United States)

    Fiordalisi, Samira A L; Honorato, Luciana A; Loiko, Márcia R; Avancini, César A M; Veleirinho, Maria B R; Machado Filho, Luiz C P; Kuhnen, Shirley

    2016-03-01

    The objective of this study was to evaluate in vitro the antimicrobial activity of Brazilian propolis from Urupema, São Joaquim, and Agua Doce (Santa Catarina State) and green propolis from Minas Gerais State, and the effects of propolis on bovine mammary gland explant viability. The propolis samples differed in flavonoid content and antioxidant activity. Green propolis showed the highest content of flavonoids, followed by the sample from São Joaquim. The propolis from Urupema showed the lowest flavonoid content along with the lowest antioxidant activity. The total phenolics were similar across all studied samples. Despite phytochemical differences, the propolis samples from Minas Gerais, São Joaquim, and Urupema presented the same level of antimicrobial activity against Staphylococcus aureus strains. The reduction in S. aureus growth was, on average, 1.5 and 4 log10 times at 200 and 500 μg/mL, respectively. At concentrations of 1,000 μg/mL, all propolis reduced bacterial growth to zero. On the other hand, when the propolis were tested against strains of Escherichia coli, the samples presented weak antimicrobial activity. Mammary explants were maintained in culture for 96h without a loss in viability, demonstrating the applicability of the model in evaluating the toxicity of propolis. The origin and chemical composition of the propolis had an effect on mammary explant viability. We encountered inhibitory concentrations of 272.4, 171.8, 63.85, and 13.26 μg/mL for the propolis from Água Doce, Urupema, São Joaquim, and Mina Gerais, respectively. A clear association between greater antimicrobial activity and toxicity for mammary explants was observed. Of all propolis tested, the Urupema sample was noteworthy, as it showed antimicrobial activity at less toxic concentrations than the other samples, reducing bacterial growth to an average of 9.3 × 10(2) cfu/mL after 6h of contact using 200 μg/mL of extract. The results demonstrate the potential for Brazilian

  8. Age and the means of bypassing stasis are determinants of the intrinsic subtypes of immortalized human mammary epithelial cells

    Directory of Open Access Journals (Sweden)

    Jonathan K Lee

    2015-03-01

    Full Text Available Based on molecular features, breast cancers are grouped into intrinsic subtypes that have different prognoses and therapeutic response profiles. With increasing age, breast cancer incidence increases, with hormone receptor-positive and other luminal-like subtype tumors comprising a majority of cases. It is not known at what stage of tumor progression subtype specification occurs, nor how the process of aging affects the intrinsic subtype. We examined subtype markers in immortalized human mammary epithelial cell lines established following exposure of primary cultured cell strains to a two-step immortalization protocol that targets the two main barriers to immortality: stasis (stress-associated senescence and replicative senescence. Cell lines derived from epithelial cells obtained from non-tumorous pre- and post-menopausal breast surgery tissues were compared. Additionally, comparisons were made between lines generated using two different genetic interventions to bypass stasis: transduction of either an shRNA that down-regulated p16INK4A, or overexpressed constitutive active cyclin D1/CDK2. In all cases, the replicative senescence barrier was bypassed by transduction of c-Myc. Cells from all resulting immortal lines exhibited normal karyotypes. Immunofluorescence, flow cytometry, and gene expression analyses of lineage-specific markers were used to categorize the intrinsic subtypes of the immortalized lines. Bypassing stasis with p16 shRNA in young strains generated cell lines that were invariably basal-like, but the lines examined from older strains exhibited some luminal features such as keratin 19 and estrogen receptor expression. Overexpression of cyclin D1/CDK2 resulted in keratin 19 positive, luminal-like cell lines from both young and old strains, and the lines examined from older strains exhibited estrogen receptor expression. Thus age and the method of bypassing stasis are independent determinants of subtype in immortalized human

  9. Age and the means of bypassing stasis influence the intrinsic subtype of immortalized human mammary epithelial cells.

    Science.gov (United States)

    Lee, Jonathan K; Garbe, James C; Vrba, Lukas; Miyano, Masaru; Futscher, Bernard W; Stampfer, Martha R; LaBarge, Mark A

    2015-01-01

    Based on molecular features, breast cancers are grouped into intrinsic subtypes that have different prognoses and therapeutic response profiles. With increasing age, breast cancer incidence increases, with hormone receptor-positive and other luminal-like subtype tumors comprising a majority of cases. It is not known at what stage of tumor progression subtype specification occurs, nor how the process of aging affects the intrinsic subtype. We examined subtype markers in immortalized human mammary epithelial cell lines established following exposure of primary cultured cell strains to a two-step immortalization protocol that targets the two main barriers to immortality: stasis (stress-associated senescence) and replicative senescence. Cell lines derived from epithelial cells obtained from non-tumorous pre- and post-menopausal breast surgery tissues were compared. Additionally, comparisons were made between lines generated using two different genetic interventions to bypass stasis: transduction of either an shRNA that down-regulated p16(INK4A), or overexpressed constitutive active cyclin D1/CDK2. In all cases, the replicative senescence barrier was bypassed by transduction of c-Myc. Cells from all resulting immortal lines exhibited normal karyotypes. Immunofluorescence, flow cytometry, and gene expression analyses of lineage-specific markers were used to categorize the intrinsic subtypes of the immortalized lines. Bypassing stasis with p16 shRNA in young strains generated cell lines that were invariably basal-like, but the lines examined from older strains exhibited some luminal features such as keratin 19 and estrogen receptor expression. Overexpression of cyclin D1/CDK2 resulted in keratin 19 positive, luminal-like cell lines from both young and old strains, and the lines examined from older strains exhibited estrogen receptor expression. Thus age and the method of bypassing stasis independently influence the subtype of immortalized human mammary epithelial cells

  10. The Integrin-Mediated ILK-Parvin-αPix Signaling Axis Controls Differentiation in Mammary Epithelial Cells.

    Science.gov (United States)

    Rooney, Nicholas; Wang, Pengbo; Brennan, Keith; Gilmore, Andrew P; Streuli, Charles H

    2016-11-01

    Epithelial cell adhesion to the surrounding extracellular matrix is necessary for their proper behavior and function. During pregnancy and lactation, mammary epithelial cells (MECs) receive signals from their interaction with laminin via β1-integrin (β1-itg) to establish apico-basal polarity and to differentiate in response to prolactin. Downstream of β1-itg, the scaffold protein Integrin Linked Kinase (ILK) has been identified as the key signal transducer that is required for both lactational differentiation and the establishment of apico-basal polarity. ILK is an adaptor protein that forms the IPP complex with PINCH and Parvins, which are central to its adaptor functions. However, it is not known how ILK and its interacting partners control tissue-specific gene expression. Expression of ILK mutants, which weaken the interaction between ILK and Parvin, revealed that Parvins have a role in mammary epithelial differentiation. This conclusion was supported by shRNA-mediated knockdown of the Parvins. In addition, shRNA knockdown of the Parvin-binding guanine nucleotide exchange factor αPix prevented prolactin-induced differentiation. αPix depletion did not disrupt focal adhesions, MEC proliferation, or polarity. This suggests that αPix represents a differentiation-specific bifurcation point in β1-itg-ILK adhesive signaling. In summary, this study has identified a new role for Parvin and αPix downstream of the integrin-ILK signaling axis for MEC differentiation. J. Cell. Physiol. 231: 2408-2417, 2016. © 2016 Wiley Periodicals, Inc. PMID:27019299

  11. c-Myc Transforms Human Mammary Epithelial Cells through Repression of the Wnt Inhibitors DKK1 and SFRP1▿ †

    Science.gov (United States)

    Cowling, Victoria H.; D'Cruz, Celina M.; Chodosh, Lewis A.; Cole, Michael D.

    2007-01-01

    c-myc is frequently amplified in breast cancer; however, the mechanism of myc-induced mammary epithelial cell transformation has not been defined. We show that c-Myc induces a profound morphological transformation in human mammary epithelial cells and anchorage-independent growth. c-Myc suppresses the Wnt inhibitors DKK1 and SFRP1, and derepression of DKK1 or SFRP1 reduces Myc-dependent transforming activity. Myc-dependent repression of DKK1 and SFRP1 is accompanied by Wnt target gene activation and endogenous T-cell factor activity. Myc-induced mouse mammary tumors have repressed SFRP1 and increased expression of Wnt target genes. DKK1 and SFRP1 inhibit the transformed phenotype of breast cancer cell lines, and DKK1 inhibits tumor formation. We propose a positive feedback loop for activation of the c-myc and Wnt pathways in breast cancer. PMID:17485441

  12. Dietary suppression of the mammary CD29(hi)CD24(+) epithelial subpopulation and its cytokine/chemokine transcriptional signatures modifies mammary tumor risk in MMTV-Wnt1 transgenic mice.

    Science.gov (United States)

    Rahal, Omar M; Machado, Heather L; Montales, Maria Theresa E; Pabona, John Mark P; Heard, Melissa E; Nagarajan, Shanmugam; Simmen, Rosalia C M

    2013-11-01

    Diet is highly linked to breast cancer risk, yet little is known about its influence on mammary epithelial populations with distinct regenerative and hence, tumorigenic potential. To investigate this, we evaluated the relative frequency of lineage-negative CD29(hi)CD24(+), CD29(lo)CD24(+) and CD29(hi)Thy1(+)CD24(+) epithelial subpopulations in pre-neoplastic mammary tissue of adult virgin MMTV-Wnt1-transgenic mice fed either control (Casein) or soy-based diets. We found that mammary epithelial cells exposed to soy diet exhibited a lower percentage of CD29(hi)CD24(+)Lin(-) population, decreased ability to form mammospheres in culture, lower mammary outgrowth potential when transplanted into cleared fat pads, and reduced appearance of tumor-initiating CD29(hi)Thy1(+)CD24(+) cells, than in those of control diet-fed mice. Diet had no comparable influence on the percentage of the CD29(lo)CD24(+)Lin(-) population. Global gene expression profiling of the CD29(hi)CD24(+)subpopulation revealed markedly altered expression of genes important to inflammation, cytokine and chemokine signaling, and proliferation. Soy-fed relative to casein-fed mice showed lower mammary tumor incidence, shorter tumor latency, and reduced systemic levels of estradiol 17-β, progesterone and interleukin-6. Our results provide evidence for the functional impact of diet on specific epithelial subpopulations that may relate to breast cancer risk and suggest that diet-regulated cues can be further explored for breast cancer risk assessment and prevention.

  13. Measuring bovine mammary gland blood flow using a transit time ultrasonic flow probe.

    Science.gov (United States)

    Gorewit, R C; Aromando, M C; Bristol, D G

    1989-07-01

    Lactating cattle were used to validate a transit time ultrasonic blood flow metering system for measuring mammary gland arterial blood flow. Blood flow probes were surgically placed around the right external pudic artery. An electromagnetic flow probe was implanted in tandem with the ultrasonic probe in two cows for comparative measurements. The absolute accuracy of the implanted flow probes was assessed in vivo by mechanical means on anesthetized cows after 2 to 3 wk of implantation. The zero offset of the ultrasonic probes ranged from -12 to 8 ml/min. When the ultrasonic probe was properly implanted, the slopes of the calibration curves were linear and ranged from .92 to .95, tracking absolute flow to within 8%. The transit time instrument's performance was examined under a variety of physiological conditions. These included milking and hormone injections. The transit time ultrasonic flow meter accurately measured physiological changes in mammary arterial blood flow in chronically prepared conscious cattle. Blood flow increased 29% during milking. Epinephrine decreased mammary blood flow by 90 to 95%. Oxytocin doses increased mammary blood flow by 15 to 24%. PMID:2674232

  14. Proteomics data in support of the quantification of the changes of bovine milk proteins during mammary gland involution.

    Science.gov (United States)

    Boggs, Irina; Hine, Brad; Smolenksi, Grant; Hettinga, Kasper; Zhang, Lina; Wheeler, Thomas T

    2016-09-01

    Here we provide data from three proteomics techniques; two-dimensional electrophoresis (2-DE) followed by identification of selected spots using PSD MALDI-TOF MS/MS, one-dimensional gel electrophoresis followed by LC-MS/MS analysis of gel slices (GeLC) and dimethyl isotopic labelling of tryptic peptides followed by Orbitrap MS/MS (DML), to quantify the changes in the repertoire of bovine milk proteins that occurs after drying off. We analysed skim milk and whey sampled at day 0 and either day 3 or day 8 after drying off. These analyses identified 45 spots by MALDI-TOF, 51 proteins by GeLC and 161 proteins by DML, for which the detailed data work-up is presented as three Excel files. The data supplied in this article supports the accompanying publication "Changes in the repertoire of bovine milk proteins during mammary involution" (Boggs et al., 2015) [1]. Data are available via ProteomeXchange with identifiers ProteomeXchange: PXD003110 and ProteomeXchange: PXD003011. PMID:27274532

  15. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2009-04-20

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

  16. ABC- and SLC-Transporters in Murine and Bovine Mammary Epithelium

    DEFF Research Database (Denmark)

    Yagdiran, Yagmur; Oskarsson, Agneta; Knight, Christopher H.;

    2016-01-01

    Some chemicals are ligands to efflux transporters which may result in high concentrations in milk. Limited knowledge is available on the influence of maternal exposure to chemicals on the expression and function of transporters in the lactating mammary gland. We determined gene expression of ABC ...... of nutrients and/or secretion of contaminants in milk with potential adverse effects on breastfed infants and dairy consumers....

  17. Inhibitory effect of fluvoxamine on β-casein expression via a serotonin-independent mechanism in human mammary epithelial cells.

    Science.gov (United States)

    Chiba, Takeshi; Maeda, Tomoji; Kimura, Soichiro; Morimoto, Yasunori; Sanbe, Atsushi; Ueda, Hideo; Kudo, Kenzo

    2015-11-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used as a first-line therapy in postpartum depression. The objective of this study was to determine the mechanism underlying the inhibitory effects of the SSRI, fluvoxamine, on β-casein expression, an indicator of lactation, in MCF-12A human mammary epithelial cells. Expression levels of serotonin (5-hydroxytryptamine; 5-HT) transporter, an SSRI target protein, and tryptophan hydroxylase 1, a rate-limiting enzyme in 5-HT biosynthesis, were increased in MCF-12A cells by prolactin treatment. Treatment with 1 μM fluvoxamine for 72 h significantly decreased protein levels of β-casein and phosphorylated signal transducer and activator transcription 5 (pSTAT5). Extracellular 5-HT levels were significantly increased after exposure to 1 μM fluvoxamine, in comparison with those of untreated and vehicle-treated cells; however, extracellular 5-HT had little effect on the decrease in β-casein expression. Expression of glucose-related protein 78/binding immunoglobulin protein, a regulator of endoplasmic reticulum (ER) stress, was significantly increased after treatment with 1 μM fluvoxamine for 48 h. Exposure to tunicamycin, an inducer of ER stress, also decreased expression of β-casein and pSTAT5 in a manner similar to fluvoxamine. Our results indicate that fluvoxamine suppresses β-casein expression in MCF-12A cells via inhibition of STAT5 phosphorylation caused by induction of ER stress. Further studies are required to confirm the effect of fluvoxamine on the function of mammary epithelial cells. PMID:26415980

  18. Adenosine-5'-triphosphate release by Mannheimia haemolytica, lipopolysaccharide, and interleukin-1 stimulated bovine pulmonary epithelial cells.

    Science.gov (United States)

    Craddick, Michael; Patel, Rakhi; Lower, Amanda; Highlander, Sarah; Ackermann, Mark; McClenahan, David

    2012-09-15

    Mannheimia haemolytica, one of the agents associated with bovine respiratory disease complex, can cause severe lung pathology including the leakage of vascular products into the airways and alveoli. Previous work by this laboratory has demonstrated that bovine lung endothelial and epithelial cells undergo dramatic permeability increases when exposed to adenosine-5'-triphosphate (ATP). Therefore, we wanted to determine if ATP levels were elevated in bronchoalveolar lavage (BAL) samples from calves experimentally infected with M. haemolytica. In addition, cultured bovine pulmonary epithelial (BPE) cells were stimulated with heat-killed and live M. haemolytica bacteria, lipopolysaccharide (LPS), lipoteichoic acid (LTA), interleukin-1 (IL-1), and zymosan activated plasma (ZAP) to determine whether they might release extracellular ATP during in vitro infection. Calves experimentally exposed to M. haemolytica had an approximately 2-fold higher level of ATP in their BAL samples compared to control. BPE cells exposed to increasing numbers of heat-killed or live M. haemolytica had significantly increased levels of ATP release as compared to time-matched controls. Finally, BPE cells treated with several concentrations of LPS and IL-1 had increases in ATP release as compared to time-matched controls. This increase appeared to be a result of active ATP secretion by the cells, as cell viability was similar between treated and non-treated cells. Neither ZAP nor LTA induced any ATP release by the cells. In conclusion, ATP levels are elevated in lung secretions from calves infected with M. haemolytica. In addition, lung epithelial cells can actively release ATP when exposed to heat-killed or live M. haemolytica, LPS or IL-1. PMID:22771196

  19. Old and new stories: revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle.

    Directory of Open Access Journals (Sweden)

    Massimo Bionaz

    Full Text Available The cow mammary transcriptome was explored at -30, -15, 1, 15, 30, 60, 120, 240, and 300 d relative to parturition. A total of 6,382 differentially expressed genes (DEG at a false discovery rate ≤ 0.001 were found throughout lactation. The greatest number of DEG (>3,500 DEG was observed at 60 and 120 d vs. -30 d with the largest change between consecutive time points observed at -15 vs. 1 d and 120 vs. 240 d. Functional analysis of microarray data was performed using the Dynamic Impact Approach (DIA. The DIA analysis of KEGG pathways uncovered as the most impacted and induced 'Galactose metabolism', 'Glycosylphosphatidylinositol (GPI-anchor biosynthesis', and 'PPAR signaling'; whereas, 'Antigen processing and presentation' was among the most inhibited. The integrated interpretation of the results suggested an overall increase in metabolism during lactation, particularly synthesis of carbohydrates and lipid. A marked degree of utilization of amino acids as energy source, an increase of protein export, and a decrease of the protein synthesis machinery as well cell cycle also were suggested by the DIA analysis. The DIA analysis of Gene Ontology and other databases uncovered an induction of Golgi apparatus and angiogenesis, and the inhibition of both immune cell activity/migration and chromosome modifications during lactation. All of the highly-impacted and activated functions during lactation were evidently activated at the onset of lactation and inhibited when milk production declined. The overall analysis indicated that the bovine mammary gland relies heavily on a coordinated transcriptional regulation to begin and end lactation. The functional analysis using DIA underscored the importance of genes associated with lactose synthesis, lipid metabolism, protein synthesis, Golgi, transport, cell cycle/death, epigenetic regulation, angiogenesis, and immune function during lactation.

  20. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    C Lin

    Full Text Available Our previous studies showed that bovine respiratory syncytial virus (BRSV followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2 epithelial cells with H. somni concentrated culture supernatant (CCS stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2--RSAD2 and ISG15 (IFN-stimulated gene 15--ubiquitin-like modifier were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo.

  1. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Marcia V.; Fata, Jimmie E.; Martin, Katherine J.; Yaswen, Paul; Bissell, Mina J.

    2009-06-03

    PTEN is a dual function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two non-malignant human mammary epithelial cell lines (HMECs) that form polarized, growth-arrested structures (acini) when cultured in 3-dimensional laminin-rich extracellular matrix gels (3D lrECM). As acini begin to form, PTEN accumulates in both the cytoplasm, and at cell-cell contacts where it colocalizes with E-cadherin/{beta}-catenin complex. Reduction of PTEN levels by shRNA in lrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in SKBR3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in 3D lrECM indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus appears to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells.

  2. A gene expression programme induced by bovine colostrum whey promotes growth and wound-healing processes in intestinal epithelial cells

    OpenAIRE

    Blais, M.; Pouliot, Y.; Gauthier, S; Boutin, Y.; Lessard, M.

    2014-01-01

    Bovine colostrum is well known for its beneficial properties on health and development. It contains a wide variety of bioactive ingredients that are known to promote a number of cellular processes. Therefore the use of colostrum whey as a feed additive to promote intestinal health has been proposed, yet little is known about mechanisms implicated in its beneficial properties on intestinal epithelial cells. In the present paper, casein were removed from bovine colostrum and the remaining liqui...

  3. Biophysical and immunological studies on bovine immune globulins with evidence for selective transport within the mammary gland from maternal plasma to colostrum

    Science.gov (United States)

    Pierce, A. E.; Feinstein, A.

    1965-01-01

    Three immune globulins in maternal serum and colostrum and newly born calf serum, have been characterized and compared. An examination was made to determine first, which of the maternal serum immune globulins accumulate in the circulation of the calf and secondly, the selectivity of the mammary gland for these proteins compared with the intestinal mucosa of the newly born calf. By difference in their electrophoretic mobilities three antigenically related immune globulins were isolated from bovine serum. The immune lactoglobulins in bovine colostrum were qualitatively similar to those in serum. However, marked differences were observed between the relative concentrations in serum and colostrum of the three immune globulins. An electrophoretically fast immune globulin (C1), present in colostrum at high concentration, was shown to be antigenically similar to an immune globulin (S1) present in the maternal serum at low concentration. These findings indicate that the mammary gland showed a highly selective preference for, and hence ability to concentrate in, colostrum, the electrophoretically fastest serum immune globulin. The slowest serum immune globulin and the component with intermediate electrophoretic mobility (S3 and S2 respectively) were both present at high concentration in bovine maternal serum, but were transmitted at different rates into the colostrum, so that the slowest serum immune globulin (S3) was present in the colostrum as a comparatively minor component (C3). In contrast to the mammary gland, the intestine of the newly born calf (permeable to undegraded protein during the first 24 hours of life) showed no selectivity. Immune globulins showing the three electrophoretic mobilities were absorbed equally readily. Thus, while the bovine mammary gland showed a highly selective preference for certain electrophoretically different serum proteins, no comparable selectivity was shown by the intestinal mucosa of the newly born calf. The results emphasize the

  4. Comparative Analysis of KnockOut™ Serum with Fetal Bovine Serum for the In Vitro Long-Term Culture of Human Limbal Epithelial Cells

    OpenAIRE

    Shaokun Zhang; Zaoxia Liu; Guanfang Su; Hong Wu

    2016-01-01

    The limbal epithelial cells can be maintained on 3T3 feeder layer with fetal bovine serum supplemented culture medium, and these cells have been used to successfully treat limbal stem cell deficiency. However, fetal bovine serum contains unknown components and displays quantitative and qualitative lot-to-lot variations. To improve the culture condition, the defined KnockOut serum replacement was investigated to replace fetal bovine serum for culturing human limbal epithelial cell. Human prima...

  5. Inflammatory responses in epithelia: endotoxin-induced IL-6 secretion and iNOS/NO production are differentially regulated in mouse mammary epithelial cells

    Directory of Open Access Journals (Sweden)

    Talhouk Rabih S

    2010-11-01

    Full Text Available Abstract Background IL-6 is a pro-inflammatory cytokine that signals via binding to a soluble or membrane bound receptor, while nitric oxide (NO, an oxidative stress molecule, diffuses through the cell membrane without a receptor. Both mediators signal through different mechanisms, yet they are dependent on NFκB. We proposed that both mediators are co-induced and co-regulated in inflamed mammary epithelial cells. Methods SCp2 mammary epithelial cells were treated with bacterial endotoxin (ET for different time periods and analyzed for induction of IL-6 secretion and NO production by ELISA and Griess reaction, respectively. The expression of IL-6 and induced NO synthase (iNOS was assayed by real time PCR and/or western immunoblots, and the activation of NFκB was assayed by immunobinding assay. To investigate the role of mammary cell microenvironment (cell-substratum or interaction of mammary epithelial cell types; critical to mammary development, function, and disease in modulation of the inflammatory response, SCp2 cells were cultured with or without extracellular matrix (EHS or in coculture with their myoepithelial counterpart (SCg6, and assayed for ET-induced IL-6 and NO. Results Endotoxin induced NFκB activation at 1 h after ET application. IL-6 secretion and NO production were induced, but with unexpected delay in expression of mRNA for iNOS compared to IL-6. NFκB/p65 activation was transient but NFκB/p50 activation persisted longer. Selective inhibition of NFκB activation by Wedelolactone reduced ET-induced expression of IL-6 mRNA and protein but not iNOS mRNA or NO production, suggesting differences in IL-6 and iNOS regulation via NFκB. SCp2 cells in coculture with SCg6 but not in presence of EHS dramatically induced IL-6 secretion even in the absence of ET. ET-induced NO production was blunted in SCp2/SCg6 cocultures compared to that in SCp2 alone. Conclusions The differential regulation of IL-6 and iNOS together with the

  6. The Proliferative Activity of Mammary Epithelial Cells in Normal Tissue Predicts Breast Cancer Risk in Premenopausal Women.

    Science.gov (United States)

    Huh, Sung Jin; Oh, Hannah; Peterson, Michael A; Almendro, Vanessa; Hu, Rong; Bowden, Michaela; Lis, Rosina L; Cotter, Maura B; Loda, Massimo; Barry, William T; Polyak, Kornelia; Tamimi, Rulla M

    2016-04-01

    The frequency and proliferative activity of tissue-specific stem and progenitor cells are suggested to correlate with cancer risk. In this study, we investigated the association between breast cancer risk and the frequency of mammary epithelial cells expressing p27, estrogen receptor (ER), and Ki67 in normal breast tissue. We performed a nested case-control study of 302 women (69 breast cancer cases, 233 controls) who had been initially diagnosed with benign breast disease according to the Nurses' Health Studies. Immunofluorescence for p27, ER, and Ki67 was performed on tissue microarrays constructed from benign biopsies containing normal mammary epithelium and scored by computational image analysis. We found that the frequency of Ki67(+) cells was positively associated with breast cancer risk among premenopausal women [OR = 10.1, 95% confidence interval (CI) = 2.12-48.0]. Conversely, the frequency of ER(+) or p27(+) cells was inversely, but not significantly, associated with subsequent breast cancer risk (ER(+): OR = 0.70, 95% CI, 0.33-1.50; p27(+): OR = 0.89, 95% CI, 0.45-1.75). Notably, high Ki67(+)/low p27(+) and high Ki67(+)/low ER(+) cell frequencies were significantly associated with a 5-fold higher risk of breast cancer compared with low Ki67(+)/low p27(+) and low Ki67(+)/low ER(+) cell frequencies, respectively, among premenopausal women (Ki67(hi)/p27(lo): OR = 5.08, 95% CI, 1.43-18.1; Ki67(hi)/ER(lo): OR = 4.68, 95% CI, 1.63-13.5). Taken together, our data suggest that the fraction of actively cycling cells in normal breast tissue may represent a marker for breast cancer risk assessment, which may therefore impact the frequency of screening procedures in at-risk women. Cancer Res; 76(7); 1926-34. ©2016 AACR.

  7. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers

    Science.gov (United States)

    Yagdiran, Yagmur; Tallkvist, Jonas; Artursson, Karin

    2016-01-01

    Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7–0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on

  8. The effect of oxythioquinox exposure on normal human mammary epithelial cell gene expression: A microarray analysis study

    Directory of Open Access Journals (Sweden)

    Weston Ainsley

    2004-09-01

    Full Text Available Abstract Background Inter-individual variation in normal human mammary epithelial cells in response to oxythioquinox (OTQ is reported. Gene expression signatures resulting from chemical exposures are generally created from analysis of exposures in rat, mouse or other genetically similar animal models, limiting information about inter-individual variations. This study focused on the effect of inter-individual variation in gene expression signatures. Methods Gene expression was studied in primary normal human mammary epithelial cells (NHMECs derived from four women undergoing reduction mammoplasty [Cooperative Human Tissue Network (National Cancer Institute and National Disease Research Interchange]. Gene transcription in each cell strain was analyzed using high-density oligonucleotide DNA microarrays (HuGeneFL, Affymetrix™ and changes in the expression of selected genes were verified by real-time polymerase chain reaction at extended time points (ABI. DNA microarrays were hybridized to materials prepared from total RNA that was collected after OTQ treatment for 15, 60 and 120 min. RNA was harvested from the vehicle control (DMSO at 120 min. The gene expression profile included all genes altered by at least a signal log ratio (SLR of ± 0.6 and p value ≤ 0.05 in three of four cell strains analyzed. Results RNA species were clustered in various patterns of expression highlighting genes with altered expression in one or more of the cell strains, including metabolic enzymes and transcription factors. Of the clustered RNA species, only 36 were found to be altered at one time point in three or more of the cell strains analyzed (13 up-regulated, 23 down-regulated. Cluster analysis examined the effects of OTQ on the cells with specific p53 polymorphisms. The two strains expressing the major variant of p53 had 83 common genes altered (35 increased, 48 decreased at one or more time point by at least a 0.6 signal log ratio (SLR. The intermediate variant

  9. Milk fatty acid composition and mammary lipogenic genes expression in bovine cloned and control cattle

    OpenAIRE

    Bernard, Laurence; Richard, Christophe; Gelin, Valerie; Leroux, Christine; Heyman, Yvan

    2015-01-01

    In order to understand the effect of nuclear transfer technology on the physiology of lactation and milk fatty acid composition in dairy cattle (Holstein breed), the present study compares the milk yield and composition from bovine somatic cell cloned (n=5) and control animals (n=5) at 180 days in milk (DIM) maintained together under the same conditions. All cows were offered the same total mixed ration ad libitum. At 180 DIM, the cloned had a higher body weight (BW; P<0.01) compared with ...

  10. Isolation and Culture of Bovine Oviductal Epithelial Cells for Use in the Anatomy and Physiology Laboratory and Undergraduate Research

    Science.gov (United States)

    Way, Amy L.

    2006-01-01

    This article presents methods for the isolation and culture of epithelial cells from the bovine oviduct for use in both research and the teaching laboratory and provides examples of ways that an oviductal cell culture can be incorporated into an undergraduate research program. Cow reproductive tracts are readily available from area butchers, and…

  11. Mammary epithelial tubes elongate through MAPK-dependent coordination of cell migration.

    Science.gov (United States)

    Huebner, Robert J; Neumann, Neil M; Ewald, Andrew J

    2016-03-15

    Mammary branching morphogenesis is regulated by receptor tyrosine kinases (RTKs). We sought to determine how these RTK signals alter proliferation and migration to accomplish tube elongation in mouse. Both behaviors occur but it has been difficult to determine their relative contribution to elongation in vivo, as mammary adipocytes scatter light and limit the depth of optical imaging. Accordingly, we utilized 3D culture to study elongation in an experimentally accessible setting. We first used antibodies to localize RTK signals and discovered that phosphorylated ERK1/2 (pERK) was spatially enriched in cells near the front of elongating ducts, whereas phosphorylated AKT was ubiquitous. We next observed a gradient of cell migration speeds from rear to front of elongating ducts, with the front characterized by both high pERK and the fastest cells. Furthermore, cells within elongating ducts oriented both their protrusions and their migration in the direction of tube elongation. By contrast, cells within the organoid body were isotropically protrusive. We next tested the requirement for proliferation and migration. Early inhibition of proliferation blocked the creation of migratory cells, whereas late inhibition of proliferation did not block continued duct elongation. By contrast, pharmacological inhibition of either MEK or Rac1 signaling acutely blocked both cell migration and duct elongation. Finally, conditional induction of MEK activity was sufficient to induce collective cell migration and ductal elongation. Our data suggest a model for ductal elongation in which RTK-dependent proliferation creates motile cells with high pERK, the collective migration of which acutely requires both MEK and Rac1 signaling.

  12. Programmed Cell-to-Cell Variability in Ras Activity Triggers Emergent Behaviors during Mammary Epithelial Morphogenesis

    Directory of Open Access Journals (Sweden)

    Jennifer S. Liu

    2012-11-01

    Full Text Available Variability in signaling pathway activation between neighboring epithelial cells can arise from local differences in the microenvironment, noisy gene expression, or acquired genetic changes. To investigate the consequences of this cell-to-cell variability in signaling pathway activation on coordinated multicellular processes such as morphogenesis, we use DNA-programmed assembly to construct three-dimensional MCF10A microtissues that are mosaic for low-level expression of activated H-Ras. We find two emergent behaviors in mosaic microtissues: cells with activated H-Ras are basally extruded or lead motile multicellular protrusions that direct the collective motility of their wild-type neighbors. Remarkably, these behaviors are not observed in homogeneous microtissues in which all cells express the activated Ras protein, indicating that heterogeneity in Ras activity, rather than the total amount of Ras activity, is critical for these processes. Our results directly demonstrate that cell-to-cell variability in pathway activation within local populations of epithelial cells can drive emergent behaviors during epithelial morphogenesis.

  13. Short communication: Altered expression of specificity protein 1 impairs milk fat synthesis in goat mammary epithelial cells.

    Science.gov (United States)

    Zhu, J J; Luo, J; Xu, H F; Wang, H; Loor, J J

    2016-06-01

    Specificity protein 1 (encoded by SP1) is a novel transcription factor important for the regulation of lipid metabolism and the normal function of various hormones in model organisms. Its potential role, if any, on ruminant milk fat is unknown. Despite the lower expression of the lipolysis-related gene ATGL (by 44 and 37% respectively), both the adenoviral overexpression and the silencing of SP1 [via short interfering (si)RNA] markedly reduced cellular triacylglycerol (TAG) content (by 28 and 25%, respectively), at least in part by decreasing the expression of DGAT1 (-36% in adenovirus treatment) and DGAT2 (-81 and -87%, respectively) that are involved in TAG synthesis. Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47 by 19 and 32%, and ADFP by 25 and 25%, respectively), cellular lipid droplet content was also decreased sharply, by 9 and 8.5%, respectively, after adenoviral overexpression of SP1 or its silencing via siRNA. Overall, the results underscored a potentially important role of SP1 in maintaining milk-fat droplet synthesis in goat mammary epithelial cells.

  14. EGF-Receptor-Mediated Mammary Epithelial Cell Migration is Driven by Sustained ERK Signaling from Autocrine Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Joslin, Elizabeth J.; Opresko, Lee; Wells, Alan; Wiley, H. S.; Lauffenburger, Douglas A.

    2007-10-15

    Aberrant expression of epidermal growth factor (EGF) receptor family ligands, as well as the receptors themselves, has been implicated in various types of cancers. EGF family ligands are synthesized as membrane-anchored proteins requiring proteolytic release to form the mature soluble factor. Despite the pathophysiological importance of autocrine systems, how the rate of protease-mediated ligand release quantitatively influences receptor-mediated signaling and consequent cell behavior is poorly understood. Therefore, we explored the relationship between autocrine EGF release rates and receptor-mediated ERK activation and migration in human mammary epithelial cells. A quantitative spectrum of EGF release rates was achieved using a set of chimeric transmembrane EGF ligand precursors modulated by the addition of the metalloprotease inhibitor batimastat. We found that ERK activation increased with increasing ligand release rates despite concomitant EGF receptor downregulation. Cell migration speed depended linearly on the steady-state phospho-ERK level obtained from either autocrine or exogenous ligand, but was much greater at any given phospho-ERK level for autocrine compared to exogenous stimulation. In contrast, cell proliferation rates were relatively constant across the various treatment conditions. Thus, in these cells, ERK-mediated migration stimulated by EGF receptor signaling is most sensitively regulated by autocrine ligand control mechanisms.

  15. Preparation and Amplification of Colony of Goat Transgenic Fetal Fibroblast and Mammary Gland Epithelial Cell with Human Lactoferrin Gene

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-ling; LIU Feng-jun; ZHANG Yong

    2009-01-01

    [Objective] The aim was to explore technical system of making single transgenic positive cells become colony cells by amplification culture. [Method] Fetal fibroblasts and mammary gland epithelial cells of single goat fetus of pBLM-C1 which specifically expressed human lactoferrin were cloned. Single cell colony of single transfection cell was prepared with 3 concentrations of 0%, 50% and 100% conditioned culture media. Transfection cell and non-transfection cell were carried out amplification culture by con-culture, neo gene was as screened gene, genome DNA of transfection cell was detected by PCR method. Chromosome karyotype analysis of single colony cell was tested. [Result] Compared with non-conditioned culture medium, 100% conditioned culture medium could greatly increase survived rate of single colony cells (FF: 53.33% vs. 10.00%; MGE: 33.33% vs. 6.67%). Compared with control, con-culture of transfection cell and non-transfection cell could greatly increase rate of transfection cell single colony after amplification culture (FF: 53.33% vs. 10.00%;MGE: 33.33% vs. 6.67%), confluence time of amplification culture was significantly decreased (20-30 d). The result of PCR showed that the colony cell obtained by above method contained hLF target gene. The result of karyotype analysis showed that most cloned cell chromosomes were normal. [Conclusion] The study provides a reliable method for separating transgenic cell, inserting and diagnosing ideal vector, and can save expense and time for transgenic animal production.

  16. Comparative Analysis of KnockOut™ Serum with Fetal Bovine Serum for the In Vitro Long-Term Culture of Human Limbal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Shaokun Zhang

    2016-01-01

    Full Text Available The limbal epithelial cells can be maintained on 3T3 feeder layer with fetal bovine serum supplemented culture medium, and these cells have been used to successfully treat limbal stem cell deficiency. However, fetal bovine serum contains unknown components and displays quantitative and qualitative lot-to-lot variations. To improve the culture condition, the defined KnockOut serum replacement was investigated to replace fetal bovine serum for culturing human limbal epithelial cell. Human primary limbal epithelial cells were cultured in KnockOut serum and fetal bovine serum supplemented medium, respectively. The cell growth rate, gene expression, and maintenance of limbal epithelial stem cells were studied and compared between these two groups. Human primary limbal epithelial cells were isolated and successfully serially cultivated in this novel KnockOut serum supplemented medium; the cell proliferation and stem cell maintenance were similar to those of cells grown in fetal bovine serum supplemented medium. These data suggests that this KnockOut serum supplemented medium is an efficient replacement to traditional fetal bovine serum supplemented medium for limbal epithelial cell culture, and this medium has great potential for long term maintenance of limbal epithelial cells, limbal epithelial stem cells transplantation, and tissue regeneration.

  17. The Balance of Cell Surface and Soluble Type III TGF-β Receptor Regulates BMP Signaling in Normal and Cancerous Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Catherine E. Gatza

    2014-06-01

    Full Text Available Bone morphogenetic proteins (BMPs are members of the TGF-β superfamily that are over-expressed in breast cancer, with context dependent effects on breast cancer pathogenesis. The type III TGF-β receptor (TβRIII mediates BMP signaling. While TβRIII expression is lost during breast cancer progression, the role of TβRIII in regulating BMP signaling in normal mammary epithelium and breast cancer cells has not been examined. Restoring TβRIII expression in a 4T1 murine syngeneic model of breast cancer suppressed Smad1/5/8 phosphorylation and inhibited the expression of the BMP transcriptional targets, Id1 and Smad6, in vivo. Similarly, restoring TβRIII expression in human breast cancer cell lines or treatment with sTβRIII inhibited BMP-induced Smad1/5/8 phosphorylation and BMP-stimulated migration and invasion. In normal mammary epithelial cells, shRNA-mediated silencing of TβRIII, TβRIII over-expression, or treatment with sTβRIII inhibited BMP-mediated phosphorylation of Smad1/5/8 and BMP induced migration. Inhibition of TβRIII shedding through treatment with TAPI-2 or expression of a non-shedding TβRIII mutant rescued TβRIII mediated inhibition of BMP induced Smad1/5/8 phosphorylation and BMP induced migration and/or invasion in both in normal mammary epithelial cells and breast cancer cells. Conversely, expression of a TβRIII mutant, which exhibited increased shedding, significantly reduced BMP-mediated Smad1/5/8 phosphorylation, migration, and invasion. These data demonstrate that TβRIII regulates BMP-mediated signaling and biological effects, primarily through the ligand sequestration effects of sTβRIII in normal and cancerous mammary epithelial cells and suggest that the ratio of membrane bound versus sTβRIII plays an important role in mediating these effects.

  18. Chitosan modification of adenovirus to modify transfection efficiency in bovine corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    I-Jong Wang

    Full Text Available BACKGROUND: The purpose of this study is to modulate the transfection efficiency of adenovirus (Ad on the cornea by the covalent attachment of chitosan on adenoviral capsids via a thioether linkage between chitosan modified with 2-iminothiolane and Ad cross-linked with N-[gamma-maleimidobutyryloxy]succinimide ester (GMBS. METHODOLOGY/PRINCIPAL FINDINGS: Modified Ad was obtained by reaction with the heterobifunctional crosslinking reagent, GMBS, producing maleimide-modified Ad (Ad-GMBS. Then, the chitosan-SH was conjugated to Ad-GMBS via a thioether bond at different ratios of Ad to GMBS to chitosan-SH. The sizes and zeta potentials of unmodified Ad and chitosan-modified Ads were measured, and the morphologies of the virus particles were observed under transmission electron microscope. Primary cultures of bovine corneal epithelial cells were transfected with Ads and chitosan-modified Ads in the absence or presence of anti-adenovirus antibodies. Chitosan modification did not significantly change the particle size of Ad, but the surface charge of Ad increased significantly from -24.3 mV to nearly neutral. Furthermore, primary cultures of bovine corneal epithelial cells were transfected with Ad or chitosan-modified Ad in the absence or presence of anti-Ad antibodies. The transfection efficiency was attenuated gradually with increasing amounts of GMBS. However, incorporation of chitosan partly restored transfection activity and rendered the modified antibody resistant to antibody neutralization. CONCLUSIONS/SIGNIFICANCE: Chitosan can provide a platform for chemical modification of Ad, which offers potential for further in vivo applications.

  19. Effects of Cooling and Supplemental Bovine Somatotropin on Milk Production relating to Body Glucose Metabolism and Utilization of Glucose by the Mammary Gland in Crossbred Holstein Cattle

    Directory of Open Access Journals (Sweden)

    Siravit Sitprija

    2010-01-01

    Full Text Available Problem statement: The low milk yield and shorter persistency of lactation of dairy cattle is the major problem for the dairy practices in the tropics. High environmental temperatures and rapid decline of plasma growth hormone level can influence milk production. Regulation of the milk yield of animals is mainly based on the mechanisms governing the quantity of glucose extracted by the mammary gland for lactose biosynthetic pathways. The mechanism(s underlying the effects of cooling and supplemental bovine somatotropin on milk production relating to body glucose metabolism and intracellular metabolism of glucose in the mammary gland of crossbred Holstein cattle in the tropics have not been investigated to date. Approach: Ten crossbred 87.5% Holstein cows were divided into two groups of five animals each. Animals were housed in Normal Shade barn (NS as non-cooled cows and cows in the second group were housed in barn which was equipped with a two Misty-Fan cooling system (MF as cooled cows. Supplementation of recombinant bovine Somatotropin (rbST (POSILAC, 500 mg per cow were performed in both groups to study body glucose metabolism and the utilization of glucose in the mammary gland using a continuous infusion of [3-3H] glucose and [U- 14C] glucose as markers in early, mid and late stages of lactation. Results: Milk yield significantly increased in both groups during supplemental rbST with a high level of mammary blood flow. Body glucose turnover rates were not significant different between cooled and non-cooled cows whether supplemental rbST or not. The glucose taken up by the mammary gland of both non-cooled and cooled cows increased flux through the lactose synthesis and the pentose cycle pathway with significant increases in NADPH formation for fatty acid synthesis during rbST supplementation. The utilization of glucose carbon incorporation into milk appeared to increase in milk lactose and milk triacylglycerol but not for

  20. In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis

    DEFF Research Database (Denmark)

    Buitenhuis, Albert Johannes; Rontved, Christine M.; Edwards, Stefan McKinnon;

    2011-01-01

    Background Bovine mastitis is one of the most costly and prevalent diseases affecting dairy cows worldwide. In order to develop new strategies to prevent Escherichia coli-induced mastitis, a detailed understanding of the molecular mechanisms underlying the host immune response to an E. coli...... to the pro-inflammatory response and APR, but also identified significant representation of two unexpected pathways: natural killer cell-mediated cytotoxicity pathway (KEGG04650) and the Rig-I-like receptor signalling pathway (KEGG04622). Conclusions In E. coli-induced mastitis, infected mammary gland tissue...

  1. Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides.

    Science.gov (United States)

    Lane, Jonathan A; O'Callaghan, John; Carrington, Stephen D; Hickey, Rita M

    2013-12-01

    Human milk oligosaccharides (HMO) have been shown to interact directly with immune cells. However, large quantities of HMO are required for intervention or clinical studies, but these are unavailable in most cases. In this respect, bovine milk is potentially an excellent source of commercially viable analogues of these unique molecules. In the present study, we compared the transcriptional response of colonic epithelial cells (HT-29) to the entire pool of HMO and bovine colostrum oligosaccharides (BCO) to determine whether the oligosaccharides from bovine milk had effects on gene expression that were similar to those of their human counterparts. Gene set enrichment analysis of the transcriptional data revealed that there were a number of similar biological processes that may be influenced by both treatments including a response to stimulus, signalling, locomotion, and multicellular, developmental and immune system processes. For a more detailed insight into the effects of milk oligosaccharides, the effect on the expression of immune system-associated glycogenes was chosen as a case study when performing validation studies. Glycogenes in the current context are genes that are directly or indirectly regulated in the presence of glycans and/or glycoconjugates. RT-PCR analysis revealed that HMO and BCO influenced the expression of cytokines (IL-1β, IL-8, colony-stimulating factor 2 (granulocyte-macrophage) (GM-CSF2), IL-17C and platelet factor 4 (PF4)), chemokines (chemokine (C-X-C motif) ligand 1 (CXCL1), chemokine (C-X-C motif) ligand 3 (CXCL3), chemokine (C-C motif) ligand 20 (CCL20), chemokine (C-X-C motif) ligand 2 (CXCL2), chemokine (C-X-C motif) ligand 6 (CXCL6), chemokine (C-C motif) ligand 5 (CCL5), chemokine (C-X3-C motif) ligand 1 (CX3CL1) and CXCL2) and cell surface receptors (interferon γ receptor 1 (IFNGR1), intercellular adhesion molecule-1 (ICAM-1), intercellular adhesion molecule-2 (ICAM-2) and IL-10 receptor α (IL10RA)). The present study suggests

  2. Strain-dependent susceptibility to radiation-induced mammary cancer is a result of differences in epithelial cell sensitivity to transformation.

    Science.gov (United States)

    Ullrich, R L; Bowles, N D; Satterfield, L C; Davis, C M

    1996-09-01

    Variations in sensitivity to radiation-induced mammary cancer among different strains of mice are well known. However, the reasons for these variations have not been determined. In the present study, the cell dissociation assay was used to determine the radiation-induced transformation frequencies in sensitive BALB/c mice and resistant C57BL mice as well as the resistant hybrid B6CF1 independent of host environment. The influence of host environment on the progression of transformed cells to the neoplastic phenotype was also examined. Results demonstrated that the variations in sensitivity among these sensitive and resistant mice are a result of inherent differences in the sensitivity of the mammary epithelial cells to radiation-induced transformation. Under the conditions used, host environment played no role in the initiation of transformed cells by radiation or in the progression of these cells to the neoplastic phenotype.

  3. Strain-dependent susceptibiltiy to radiation-induced mammary cancer is a result of differences in epithelial cell sensitivity to transformation

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, R.L.; Davis, C.M. [Univ. of Texas Medical Branch, Galveston, TX (United States); Bowles, N.D.; Satterfield, L.C. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    1996-09-01

    Variations in sensitivity to radiation-induced mammary cancer among different strains of mice are well known. However, the reasons for these variations have not been determined. In the present study, the cell dissociation assay was used to determine the radiation-induced transformation frequencies in sensitive BALB/c mice and resistant C57BL mice as well as the resistant hybrid B6Cf{sub 1} independent of host environment. The influence of host environment on the progression of transformed cells to the neoplastic phenotype was also examined. Results demonstrated that the variations in sensitivity among these sensitive and resistant mice are a result of inherent differences in the sensitivity of the mammary epithelial cells to radiation-induced transformation. Under the conditions used, host environment played no role in the initiation of transformed cells by radiation or in the progression of these cells to the neoplastic phenotype. 19 refs., 1 tab.

  4. EGFR Signaling Regulates Maspin/SerpinB5 Phosphorylation and Nuclear Localization in Mammary Epithelial Cells

    Science.gov (United States)

    Reina, Jeffrey; Morais Freitas, Vanessa

    2016-01-01

    Maspin (SerpinB5) is a non-inhibitory serpin (serine protease inhibitor) with very diverse biological activities including regulation of cell adhesion, migration, death, control of gene expression and oxidative stress response. Initially described as a tumor and metastasis suppressor, clinical data brought controversies to the field, as some studies reported no correlation between SerpinB5 expression and prognosis value. These data underscore the importance of understanding SerpinB5 function in a normal physiological context and the molecular mechanism involved. Several SerpinB5 phosphoforms have been detected in different cell lines, but the signaling pathways involved and the biological significance of this post-translational modification in vivo remains to be explored. In this study we investigated SerpinB5 expression, subcellular localization and phosphorylation in different stages of the mouse mammary gland development and the signaling pathway involved. Here we show that SerpinB5 is first detected in late pregnancy, reaches its highest levels in lactation and remains at constant levels during post-lactational regression (involution). Using high resolution isoelectric focusing followed but immunoblot, we found at least 8 different phosphoforms of SerpinB5 during lactation, which decreases steadily at the onset of involution. In order to investigate the signaling pathway involved in SerpinB5 phosphorylation, we took advantage of the non-transformed MCF-10A model system, as we have previously observed SerpinB5 phosphorylation in these cells. We detected basal levels of SerpinB5 phosphorylation in serum- and growth factor-starved cells, which is due to amphiregulin autocrine activity on MCF-10A cells. EGF and TGF alpha, two other EGFR ligands, promote important SerpinB5 phosphorylation. Interestingly, EGF treatment is followed by SerpinB5 nuclear accumulation. Altogether, these data indicate that SerpinB5 expression and phosphorylation are developmentally

  5. Mapping of ESE-1 subdomains required to initiate mammary epithelial cell transformation via a cytoplasmic mechanism

    Directory of Open Access Journals (Sweden)

    Tentler John J

    2011-08-01

    regulating its subcellular localization and function, and that an intact SAR domain mediates MEC transformation exclusively in the cytoplasm, via a novel nontranscriptional mechanism, whereby the SAR motif is accessible for ligand and/or protein interactions. These findings are significant, since they provide novel molecular insights into the functions of ETS transcription factors in mammary cell transformation.

  6. Transforming growth factor-alpha abrogates glucocorticoid-stimulated tight junction formation and growth suppression in rat mammary epithelial tumor cells.

    Science.gov (United States)

    Buse, P; Woo, P L; Alexander, D B; Cha, H H; Reza, A; Sirota, N D; Firestone, G L

    1995-03-24

    The glucocorticoid and transforming growth factor-alpha (TGF-alpha) regulation of growth and cell-cell contact was investigated in the Con8 mammary epithelial tumor cell line derived from a 7,12-dimethylbenz(alpha)anthracene-induced rat mammary adenocarcinoma. In Con8 cell monolayers cultured on permeable filter supports, the synthetic glucocorticoid, dexamethasone, coordinately suppressed [3H]thymidine incorporation, stimulated monolayer transepithelial electrical resistance (TER), and decreased the paracellular leakage of [3H]inulin or [14C]mannitol across the monolayer. These processes dose dependently correlated with glucocorticoid receptor occupancy and function. Constitutive production of TGF-alpha in transfected cells or exogenous treatment with TGF-alpha prevented the glucocorticoid growth suppression response and disrupted tight junction formation without affecting glucocorticoid responsiveness. Treatment with hydroxyurea or araC demonstrated that de novo DNA synthesis is not a requirement for the growth factor disruption of tight junctions. Immunofluorescence analysis revealed that the ZO-1 tight junction protein is localized exclusively at the cell periphery in dexamethasone-treated cells and that TGF-alpha caused-ZO-1 to relocalize from the cell periphery back to a cytoplasmic compartment. Taken together, our results demonstrate that glucocorticoids can coordinately regulate growth inhibition and cell-cell contact of mammary tumor cells and that TGF-alpha, can override both effects of glucocorticoids. These results have uncovered a novel functional "cross-talk" between glucocorticoids and TGF-alpha which potentially regulates the proliferation and differentiation of mammary epithelial cells.

  7. Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells.

    Science.gov (United States)

    Severson, Paul L; Vrba, Lukas; Stampfer, Martha R; Futscher, Bernard W

    2014-12-01

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes. PMID:25435355

  8. Bovine colostrum supports the serum-free proliferation of epithelial cells but not of fibroblasts in long-term culture

    OpenAIRE

    Klagsbrun, M

    1980-01-01

    Medium lacking serum but supplemented with milk will support the growth of sparse cells in culture. Milk obtained within 8 h after the birth of a calf (day 1 colostrum) is the most effective in supporting proliferation. In mixed cultures of early-passage bovine embryonic kidney (BEK) or early-passage calf kidney (CK) cells, both epithelial cells and fibroblasts grow in Dulbecco’s modified eagle’s medium (DMEM) supplemented with serum. However, only cells that appear to be epithelial-like grow...

  9. Tobacco-specific Carcinogen 4-(Methylnitrosoamino)-1-(3-pyridyl )-1-butanone(NNK) Activating ERK1/2 MAP Kinases and Stimulating Proliferation of Hmnan Mammary Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cigarette smoking is correlated with the development of various cancers. 4 - (Methylnitrosoamino) -1 - ( 3 -pyridyl) -1-butanone (NNK) is one of the major tobacco-specific carcinogens in the cigarette smoke, which increases the risk of breast cancer. In the present study, it was demonstrated that NNK rapidly activated ERK1 and ERK2 MAP kinases in human normal mammary epithelial cells. It was found that there are two different routes for the activation of ERK1/2with NNK. One is from nicotinic receptor nAchR to MEK1/2, and the other is from tyrosine kinase containing receptor to MEK1/2. The tobacco-specific carcinogen NNK shows a strong proliferative effect on normal human mammary epithelial cells and cancer mammary epithelial cells.

  10. The MicroRNA 424/503 Cluster Reduces CDC25A Expression during Cell Cycle Arrest Imposed by Transforming Growth Factor β in Mammary Epithelial Cells

    Science.gov (United States)

    Rodriguez-Barrueco, Ruth; de la Iglesia-Vicente, Janis; Olivan, Mireia; Castro, Veronica; Saucedo-Cuevas, Laura; Marshall, Netonia; Putcha, Preeti; Castillo-Martin, Mireia; Bardot, Evan; Ezhkova, Elena; Iavarone, Antonio; Cordon-Cardo, Carlos

    2014-01-01

    Recently, we demonstrated that the microRNA 424(322)/503 [miR-424(322)/503] cluster is transcriptionally controlled by transforming growth factor β (TGF-β) in the mammary epithelium. Induction of this microRNA cluster impacts mammary epithelium fate by regulating apoptosis and insulin-like growth factor 1 (IGF1) signaling. Here, we expanded our finding to demonstrate that miR-424(322)/503 is an integral component of the cell cycle arrest mediated by TGF-β. Mechanistically, we showed that after TGF-β exposure, increased levels of miR-424(322)/503 reduce the expression of the cell cycle regulator CDC25A. miR-424(322)/503-dependent posttranscriptional downregulation of CDC25A cooperates with previously described transcriptional repression of the CDC25A promoter and proteasome-mediated degradation to reduce the levels of CDC25A expression and to induce cell cycle arrest. We also provide evidence that the TGF-β/miR-424(322)/503 axis is part of the mechanism that regulates the proliferation of hormone receptor-positive (HR+) mammary epithelial cells in vivo. PMID:25266660

  11. Canine mammary tumors: a review and consensus of standard guidelines on epithelial and myoepithelial phenotype markers, HER2, and hormone receptor assessment using immunohistochemistry.

    Science.gov (United States)

    Peña, L; Gama, A; Goldschmidt, M H; Abadie, J; Benazzi, C; Castagnaro, M; Díez, L; Gärtner, F; Hellmén, E; Kiupel, M; Millán, Y; Miller, M A; Nguyen, F; Poli, A; Sarli, G; Zappulli, V; de las Mulas, J Martín

    2014-01-01

    Although there have been several studies on the use of immunohistochemical biomarkers of canine mammary tumors (CMTs), the results are difficult to compare. This article provides guidelines on the most useful immunohistochemical markers to standardize their use and understand how outcomes are measured, thus ensuring reproducibility of results. We have reviewed the biomarkers of canine mammary epithelial and myoepithelial cells and identified those biomarkers that are most useful and those biomarkers for invasion and lymph node micrometastatic disease. A 10% threshold for positive reaction for most of these markers is recommended. Guidelines on immunolabeling for HER2, estrogen receptors (ERs), and progesterone receptors (PRs) are provided along with the specific recommendations for interpretation of the results for each of these biomarkers in CMTs. Only 3+ HER2-positive tumors should be considered positive, as found in human breast cancer. The lack of any known response to adjuvant endocrine therapy of ER- and PR-positive CMTs prevents the use of the biological positive/negative threshold used in human breast cancer. Immunohistochemistry results of ER and PR in CMTs should be reported as the sum of the percentage of positive cells and the intensity of immunolabeling (Allred score). Incorporation of these recommendations in future studies, either prospective or retrospective, will provide a mechanism for the direct comparison of studies and will help to determine whether these biomarkers have prognostic significance. Finally, these biomarkers may ascertain the most appropriate treatment(s) for canine malignant mammary neoplasms. PMID:24227007

  12. ERK and PI3K regulate different aspects of the epithelial to mesenchymal transition of mammary tumor cells induced by truncated MUC1

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Galit; Gaziel, Avital [Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); The Alec and Myra Marmot Hybridoma Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Wreschner, Daniel H. [Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Biomodifying LLC, San Diego, CA 92122 (United States); Smorodinsky, Nechama I., E-mail: nechama@post.tau.ac.il [Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); The Alec and Myra Marmot Hybridoma Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Ehrlich, Marcelo [Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2009-05-01

    Epithelial to mesenchymal transition (EMT) integrates changes to cell morphology and signaling pathways resulting from modifications to the cell's transcriptional response. Different combinations of stimuli ignite this process in the contexts of development or tumor progression. The human MUC1 gene encodes multiple alternatively spliced forms of a polymorphic oncoprotein that is aberrantly expressed in epithelial malignancies. MUC1 is endowed with various signaling modules and has the potential to mediate proliferative and morphological changes characteristic of the progression of epithelial tumors. The tyrosine-rich cytoplasmic domain and the heavily glycosylated extracellular domain both play a role in MUC1-mediated signal transduction. However, the attribution of function to specific domains of MUC1 is difficult due to the concomitant presence of multiple forms of the protein, which stem from alternative splicing and proteolytic cleavage. Here we show that DA3 mouse mammary tumor cells stably transfected with a truncated genomic fragment of human MUC1 undergo EMT. In their EMT, these cells demonstrate altered [i] morphology, [ii] signaling pathways and [iii] expression of epithelial and mesenchymal markers. Similarly to well characterized human breast cancer cell lines, cells transfected with truncated MUC1 show an ERK-dependent increased spreading on fibronectin, and a PI3K-dependent enhancement of their proliferative rate.

  13. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation

    Science.gov (United States)

    Baumstark-Khan, C.; Heilmann, J.; Rink, H.

    The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV μ -1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of non

  14. The influence of protein fractions from bovine colostrum digested in vivo and in vitro on human intestinal epithelial cell proliferation.

    Science.gov (United States)

    Morgan, Alison J; Riley, Lisa G; Sheehy, Paul A; Wynn, Peter C

    2014-02-01

    Colostrum consists of a number of biologically active proteins and peptides that influence physiological function and development of a neonate. The present study investigated the biological activity of peptides released from first day bovine colostrum through in vitro and in vivo enzymatic digestion. This was assessed for proliferative activity using a human intestinal epithelial cell line, T84. Digestion of the protein fraction of bovine colostrum in vitro was conducted with the enzymes pepsin, chymosin and trypsin. Pepsin and chymosin digests yielded protein fractions with proliferative activity similar to that observed with undigested colostrum and the positive control foetal calf serum (FCS). In contrast trypsin digestion significantly (P<0·05) decreased colostral proliferative activity when co-cultured with cells when compared with undigested colostrum. The proliferative activity of undigested colostrum protein and abomasal whey protein digesta significantly increased (P<0·05) epithelial cell proliferation in comparison to a synthetic peptide mix. Bovine colostrum protein digested in vivo was collected from different regions of the gastrointestinal tract (GIT) in newborn calves fed either once (n=3 calves) or three times at 12-h intervals (n=3 calves). Digesta collected from the distal duodenum, jejunum and colon of calves fed once, significantly (P<0·05) stimulated cell proliferation in comparison with comparable samples collected from calves fed multiple times. These peptide enriched fractions are likely to yield candidate peptides with potential application for gastrointestinal repair in mammalian species. PMID:24433585

  15. Insulin-like growth factor-I and insulin-like growth factor binding proteins in the bovine mammary gland: Receptors, endogenous secretion, and appearance in milk

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, P.G.

    1988-01-01

    This is the first study to characterize both insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins (IGFBPs) in bovine milk, to characterize the IGF-I receptor in the dry and lactating mammary gland, and to report de novo synthesis and secretion of IGF-I and IGFBP from normal mammary tissue. Immunoreactive IGF-I was principally associated with 45 kDa IGFBP in milk. Multiparous cows had a higher IGF-I concentration of 307 ng/ml than primiparous cows at 147 ng/ml. IGF-I concentration on day 56 of lactation was 34 ng/ml for combined parity groups. At parturition, IGF-I mass in blood and milk pools was 1.4 and 1.2 mg, respectively. Binding of {sup 125}I-IGF-I was specific for IGF-I with anIC{sub 50} of 2.2 ng which was a 10- and 1273-fold greater affinity than IGF-II and insulin, respectively. Association constants, as determined by Scatchard analysis, were similar for both pregnant and lactating cows at 3.5 and 4.0 L/nM, respectively. In addition, estimated mean receptor concentration was 0.25 and 0.23 pM/mg protein for pregnant and lactating cows, respectively. In a survey of mammary microscomes prepared from 48 cows, {sup 125}I-IGF-I binding declined with progressing lactation and a similar trend was observed during pregnancy.

  16. Bovine colostrum supports the serum-free proliferation of epithelial cells but not of fibroblasts in long-term culture

    Science.gov (United States)

    Klagsbrun, M

    1980-01-01

    Medium lacking serum but supplemented with milk will support the growth of sparse cells in culture. Milk obtained within 8 h after the birth of a calf (day 1 colostrum) is the most effective in supporting proliferation. In mixed cultures of early-passage bovine embryonic kidney (BEK) or early-passage calf kidney (CK) cells, both epithelial cells and fibroblasts grow in Dulbecco’s modified eagle’s medium (DMEM) supplemented with serum. However, only cells that appear to be epithelial-like grow in DMEM supplemented with colostrum. Sparse cultures of early-passage human and rat fibroblasts that grow readily in DMEM supplemented with serum do not grow in DMEM supplemented with colostrum. Canine kidney epithelial cells (MDCK), when plated sparsely, grow exponentially in DMEM supplemented with day 1 bovine colostrum. The generation time is 26 h, the same growth rate as in DMEM supplemented with calf serum. The MDCK cells can be subcultured and regrown to confluence repeatedly in colostrum-supplemented DMEM. Growth in DMEM supplemented with colostrum does not alter the morphological characteristics of the MDCK cells, which are polygonal, contain microvilli at the apical surface, and are connected by tight junctions and desmosomes. MDCK cells do not proliferate in DMEM supplemented with milk obtained 1 wk after the birth of a calf. PMID:7358799

  17. Plasma transport and mammary uptake of trans fatty acids in dairy cows

    OpenAIRE

    Vargas Bello Pérez, Einar

    2011-01-01

    In this thesis, aspects of metabolism of lipids in dairy cows were studied, particularly 18:1 trans fatty acid (tFA) concentrations in plasma and lipoprotein fractions, and transportation of FA in epithelial mammary gland cell cultures. Two in vivo studies were conducted to elucidate which lipoprotein fractions were involved in bovine plasma transport of tFA by infusing oils that induced different plasma tFA profiles. Fatty acid profiles of plasma and lipoprotein fractions [high (HDL), l...

  18. Computational analysis of bovine milk exosomal miRNAs profiles derived from uninfected and Streptococcus uberis infected mammary gland

    Science.gov (United States)

    The dairy cattle industry in the U.S. contributes an estimated 7 billion dollars to the agribusiness economy. Bacterial infections that cause disease like mastitis, affect health of the lactating mammary gland, and negatively impacts milk production and milk quality, costing producers an estimated 2...

  19. MicroRNA content in milk exosomes as a phenotypic indicator of Staphylococcus aureus infection in the bovine mammary gland

    Science.gov (United States)

    Previous gene mapping research to understand the host genetic response to mammary infection based on somatic cell score has been unsuccessful due to the poor correlation of this confounding trait with mastitis, a disease costing the dairy industry an estimated $2 billion in annual costs. Recently, ...

  20. Sclerotium rolfsii Lectin Induces Stronger Inhibition of Proliferation in Human Breast Cancer Cells than Normal Human Mammary Epithelial Cells by Induction of Cell Apoptosis

    Science.gov (United States)

    Savanur, Mohammed Azharuddin; Eligar, Sachin M.; Pujari, Radha; Chen, Chen; Mahajan, Pravin; Borges, Anita; Shastry, Padma; Ingle, Arvind.; Kalraiya, Rajiv D.; Swamy, Bale M.; Rhodes, Jonathan M.; Yu, Lu-Gang; Inamdar, Shashikala R.

    2014-01-01

    Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent. PMID:25364905

  1. Effects of bovine mammary gland biopsy and increased milking frequency on post-procedure udder health, histology, and milk yield.

    Science.gov (United States)

    Lima, J A M; Ruas, J R M; Vasconcelos, A C; Silper, B F; Lana, A M Q; Gheller, V A; Saturnino, H M; Reis, R B; Coelho, S G

    2016-05-01

    Sixteen cows in early lactation were randomly distributed into two groups in order to evaluate the effects of mammary biopsies and increased milking frequency on tissue characteristics, post-biopsy udder health and histology. One group was milked twice a day (2×) starting on the 2nd day after calving, until 28 days in milk (DIM). The other group was milked four times a day (4×) from two to 21 DIM, and twice a day (2×) from 22 to 28 DIM. On days 2, 7, 14, 21, and 28 postpartum, one fragment of secretory tissue was collected from one mammary quarter at a time. Collections were alternated between the four mammary quarters per collection day. A total of 80 mammary tissue samples were collected. Qualitative and quantitative analyses of the tissues were conducted by histologic examination. Animal health was assessed by observation of feed intake behavior immediately after biopsy, and weight and body condition score before and one week after biopsy. Udder health was assessed daily from calving to 60 DIM with California Mastitis Test (CMT) and by noting alterations in the milk such as blood, milk clots, blood clots, clinical signs of mastitis. Milk composition and somatic cell count (SCC) were analyzed before and after the biopsies. Milk production was evaluated before biopsy, on the day of biopsy, and after the biopsy. An average of 10 fields at 40× magnification was obtained from each sample. There were no evident changes in mammary morphology as a result of milking two or four times/day at any of the evaluated time points. Biopsy wounds healed rapidly without infection. Intramammary bleeding and CMT alterations were observed in 96% and 75% of the biopsied mammary quarters, respectively. Clinical mastitis was diagnosed in 12% of the biopsied quarters. Different milking frequencies had no effect on the frequency and duration of post-biopsy alterations. Milk production decreased after biopsies done on days 2 for 2× and 4× groups, but it returned to pre-biopsy values

  2. Effects of bovine mammary gland biopsy and increased milking frequency on post-procedure udder health, histology, and milk yield.

    Science.gov (United States)

    Lima, J A M; Ruas, J R M; Vasconcelos, A C; Silper, B F; Lana, A M Q; Gheller, V A; Saturnino, H M; Reis, R B; Coelho, S G

    2016-05-01

    Sixteen cows in early lactation were randomly distributed into two groups in order to evaluate the effects of mammary biopsies and increased milking frequency on tissue characteristics, post-biopsy udder health and histology. One group was milked twice a day (2×) starting on the 2nd day after calving, until 28 days in milk (DIM). The other group was milked four times a day (4×) from two to 21 DIM, and twice a day (2×) from 22 to 28 DIM. On days 2, 7, 14, 21, and 28 postpartum, one fragment of secretory tissue was collected from one mammary quarter at a time. Collections were alternated between the four mammary quarters per collection day. A total of 80 mammary tissue samples were collected. Qualitative and quantitative analyses of the tissues were conducted by histologic examination. Animal health was assessed by observation of feed intake behavior immediately after biopsy, and weight and body condition score before and one week after biopsy. Udder health was assessed daily from calving to 60 DIM with California Mastitis Test (CMT) and by noting alterations in the milk such as blood, milk clots, blood clots, clinical signs of mastitis. Milk composition and somatic cell count (SCC) were analyzed before and after the biopsies. Milk production was evaluated before biopsy, on the day of biopsy, and after the biopsy. An average of 10 fields at 40× magnification was obtained from each sample. There were no evident changes in mammary morphology as a result of milking two or four times/day at any of the evaluated time points. Biopsy wounds healed rapidly without infection. Intramammary bleeding and CMT alterations were observed in 96% and 75% of the biopsied mammary quarters, respectively. Clinical mastitis was diagnosed in 12% of the biopsied quarters. Different milking frequencies had no effect on the frequency and duration of post-biopsy alterations. Milk production decreased after biopsies done on days 2 for 2× and 4× groups, but it returned to pre-biopsy values

  3. Interactions between exosomes from breast cancer cells and primary mammary epithelial cells leads to generation of reactive oxygen species which induce DNA damage response, stabilization of p53 and autophagy in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sujoy Dutta

    Full Text Available Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive "niches". Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7, representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs. Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment.

  4. Leucyl-tRNA Synthetase Regulates Lactation and Cell Proliferation via mTOR Signaling in Dairy Cow Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Lina Wang

    2014-04-01

    Full Text Available The role of LeuRS, an aminoacyl-tRNA synthetase, as an intracellular l-leucine sensor for the mTORC1 pathway has been the subject of much research recently. Despite this, the association between LeuRS and lactation in dairy cow mammary epithelial cells (DCMECs remains unknown. In this study, we found that LeuRS expression in mammary gland tissue was significantly higher during lactation than pregnancy. Moreover, our data demonstrates that LeuRS is localized in the cytoplasm. Treatment with leucine increased DCMECs viability and proliferation, as well as mammalian target of rapamycin (mTOR, p-mTOR, ribosomal protein S6 kinase 1 (S6K1, p-S6K1, β-Casein, sterol regulatory element binding protein 1c (SREBP-1c, glucose transporter 1 (GLUT1, and Cyclin D1 mRNA and protein expression. Secretion of lactose and triglyceride were also increased. siRNA-mediated knockdown of LeuRS led to reduction in all of these processes. Based on these data, LeuRS up-regulates the mTOR pathway to promote proliferation and lactation of DCMECs in response to changes in the intracellular leucine concentration.

  5. Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation

    Directory of Open Access Journals (Sweden)

    Li Zhen

    2012-12-01

    Full Text Available Abstract Background MicroRNAs (miRNAs have been implicated in the regulation of milk protein synthesis and development of the mammary gland (MG. However, the specific functions of miRNAs in these regulations are not clear. Therefore, the elucidation of miRNA expression profiles in the MG is an important step towards understanding the mechanisms of lactogenesis. Results Two miRNA libraries were constructed from MG tissues taken from a lactating and a non-lactating Holstein dairy cow, respectively, and the short RNA sequences (18–30 nt in these libraries were sequenced by Solexa sequencing method. The libraries included 885 pre-miRNAs encoding for 921 miRNAs, of which 884 miRNAs were unique sequences and 544 (61.5% were expressed in both periods. A custom-designed microarray assay was then performed to compare miRNA expression patterns in the MG of lactating and non-lactating dairy cows. A total of 56 miRNAs in the lactating MG showed significant differences in expression compared to non-lactating MG (P Conclusion Our study provides a broad view of the bovine MG miRNA expression profile characteristics. Eight hundred and eighty-four miRNAs were identified in bovine MG. Differences in types and expression levels of miRNAs were observed between lactating and non-lactating bovine MG. Systematic predictions aided in the identification of lactation-related miRNAs, providing insight into the types of miRNAs and their possible mechanisms in regulating lactation.

  6. Longitudinal study of mammary epithelial and fibroblast co-cultures using optical coherence tomography reveals morphological hallmarks of pre-malignancy.

    Directory of Open Access Journals (Sweden)

    Raghav K Chhetri

    Full Text Available The human mammary gland is a complex and heterogeneous organ, where the interactions between mammary epithelial cells (MEC and stromal fibroblasts are known to regulate normal biology and tumorigenesis. We aimed to longitudinally evaluate morphology and size of organoids in 3D co-cultures of normal (MCF10A or pre-malignant (MCF10DCIS.com MEC and hTERT-immortalized fibroblasts from reduction mammoplasty (RMF. This co-culture model, based on an isogenic panel of cell lines, can yield insights to understand breast cancer progression. However, 3D cultures pose challenges for quantitative assessment and imaging, especially when the goal is to measure the same organoid structures over time. Using optical coherence tomography (OCT as a non-invasive method to longitudinally quantify morphological changes, we found that OCT provides excellent visualization of MEC-fibroblast co-cultures as they form ductal acini and remodel over time. Different concentrations of fibroblasts and MEC reflecting reported physiological ratios [1] were evaluated, and we found that larger, hollower, and more aspherical acini were formed only by pre-malignant MEC (MCF10DCIS.com in the presence of fibroblasts, whereas in comparable conditions, normal MEC (MCF10A acini remained smaller and less aspherical. The ratio of fibroblast to MEC was also influential in determining organoid phenotypes, with higher concentrations of fibroblasts producing more aspherical structures in MCF10DCIS.com. These findings suggest that stromal-epithelial interactions between fibroblasts and MEC can be modeled in vitro, with OCT imaging as a convenient means of assaying time dependent changes, with the potential for yielding important biological insights about the differences between benign and pre-malignant cells.

  7. SOX4 Mediates TGF-beta-Induced Expression of Mesenchymal Markers during Mammary Cell Epithelial to Mesenchymal Transition

    NARCIS (Netherlands)

    Vervoort, Stephin J.; Lourenco, Ana Rita; van Boxtel, Ruben; Coffer, Paul J.

    2013-01-01

    The epithelial to mensenchymal transition program regulates various aspects of embryonic development and tissue homeostasis, but aberrant activation of this pathway in cancer contributes to tumor progression and metastasis. TGF-beta potently induces an epithelial to mensenchymal transition in cancer

  8. Staphylococcus aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB transcription factors in bovine mammary gland fibroblasts.

    Science.gov (United States)

    Wu, Jianmei; Ding, Yulin; Bi, Yannan; Wang, Yi; Zhi, Yu; Wang, Jinling; Wang, Fenglong

    2016-06-01

    Staphylococcus aureus is a common Gram-positive pathogen that causes bovine mastitis, a persistent infection of the bovine mammary gland. To better understand the importance of bovine mammary fibroblasts (BMFBs) and the roles of the TLR-NF-κB and TLR-AP-1 signaling pathways in the regulation of S. aureus-associated mastitis and mammary fibosis, BMFBs cultured in vitro were stimulated with different concentrations of heat-inactivated S. aureus to analyze the gene and protein expression of toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), transforming growth factor beta 1 (TGF-β1), basic fibroblast growth factor (bFGF) as well as the protein expression of nuclear factor-kappa B (NF-κB) and activation protein-1 (AP-1) by means of quantitative polymerase chain reaction (qPCR) and western blotting, respectively. Specific NF-κB and AP-1 inhibitors were also used to investigate their effects on the regulation of TGF-β1 and bFGF expression. The results indicated that, in addition to increasing mRNA and protein expression of TLR2 and TLR4, S. aureus could also upregulate TGF-β1 and bFGF mRNA expression and secretion through the activation of NF-κB and AP-1. The increase in TGF-β1 and bFGF expression was shown to be inhibited by AP-1- and NF-κB-specific inhibitors. Taken together, S. aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB in BMFBs. This information offers new potential targets for the treatment of bovine mammary fibrosis. PMID:26948281

  9. Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Victor O Okoh

    Full Text Available The purpose of this study was to investigate the effects of 17-β-estradiol (E2-induced reactive oxygen species (ROS on the induction of mammary tumorigenesis. We found that ROS-induced by repeated exposures to 4-hydroxy-estradiol (4-OH-E2, a predominant catechol metabolite of E2, caused transformation of normal human mammary epithelial MCF-10A cells with malignant growth in nude mice. This was evident from inhibition of estrogen-induced breast tumor formation in the xenograft model by both overexpression of catalase as well as by co-treatment with Ebselen. To understand how 4-OH-E2 induces this malignant phenotype through ROS, we investigated the effects of 4-OH-E2 on redox-sensitive signal transduction pathways. During the malignant transformation process we observed that 4-OH-E2 treatment increased AKT phosphorylation through PI3K activation. The PI3K-mediated phosphorylation of AKT in 4-OH-E2-treated cells was inhibited by ROS modifiers as well as by silencing of AKT expression. RNA interference of AKT markedly inhibited 4-OH-E2-induced in vitro tumor formation. The expression of cell cycle genes, cdc2, PRC1 and PCNA and one of transcription factors that control the expression of these genes - nuclear respiratory factor-1 (NRF-1 was significantly up-regulated during the 4-OH-E2-mediated malignant transformation process. The increased expression of these genes was inhibited by ROS modifiers as well as by silencing of AKT expression. These results indicate that 4-OH-E2-induced cell transformation may be mediated, in part, through redox-sensitive AKT signal transduction pathways by up-regulating the expression of cell cycle genes cdc2, PRC1 and PCNA, and the transcription factor - NRF-1. In summary, our study has demonstrated that: (i 4-OH-E2 is one of the main estrogen metabolites that induce mammary tumorigenesis and (ii ROS-mediated signaling leading to the activation of PI3K/AKT pathway plays an important role in the generation of 4-OH-E2

  10. The ETS Transcription Factor ESE-1 Transforms MCF-12A Human Mammary Epithelial Cells via a Novel Cytoplasmic Mechanism

    OpenAIRE

    Prescott, Jason D.; Koto, Karen S. N.; Singh, Meenakshi; Gutierrez-Hartmann, Arthur

    2004-01-01

    Several different transcription factors, including estrogen receptor, progesterone receptor, and ETS family members, have been implicated in human breast cancer, indicating that transcription factor-induced alterations in gene expression underlie mammary cell transformation. ESE-1 is an epithelium-specific ETS transcription factor that contains two distinguishing domains, a serine- and aspartic acid-rich (SAR) domain and an AT hook domain. ESE-1 is abundantly expressed in human breast cancer ...

  11. A gene expression programme induced by bovine colostrum whey promotes growth and wound-healing processes in intestinal epithelial cells.

    Science.gov (United States)

    Blais, M; Pouliot, Y; Gauthier, S; Boutin, Y; Lessard, M

    2014-01-01

    Bovine colostrum is well known for its beneficial properties on health and development. It contains a wide variety of bioactive ingredients that are known to promote a number of cellular processes. Therefore the use of colostrum whey as a feed additive to promote intestinal health has been proposed, yet little is known about mechanisms implicated in its beneficial properties on intestinal epithelial cells. In the present paper, casein were removed from bovine colostrum and the remaining liquid, rich in bioactive compounds, was evaluated for its capacity to modulate cellular processes in porcine intestinal epithelial cell line IPEC-J2 and human colon adenocarcinoma cell line Caco-2/15. First, we verified the effect of colostrum whey and cheese whey on processes involved in intestinal wound healing, including cell proliferation, attachment, morphology and migration. Our results showed that colostrum whey promoted proliferation and migration, and decreased specifically the attachment of Caco-2/15 cells on the culture dish. On the other hand, cheese whey induced proliferation and morphological changes in IPEC-J2 cells, but failed to induce migration. The gene expression profile of IPEC-J2 cells following colostrum whey treatment was evaluated by microarray analysis. Results revealed that the expression of a significant number of genes involved in cell migration, adhesion and proliferation was indeed affected in colostrum whey-treated cells. In conclusion, colostrum specific bioactive content could be beneficial for intestinal epithelial cell homoeostasis by controlling biological processes implicated in wound healing through a precise gene expression programme. PMID:26101625

  12. Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2010-05-01

    Full Text Available Abstract Background The neonatal bovine mammary fat pad (MFP surrounding the mammary parenchyma (PAR is thought to exert proliferative effects on the PAR through secretion of local modulators of growth induced by systemic hormones. We used bioinformatics to characterize transcriptomics differences between PAR and MFP from ~65 d old Holstein heifers. Data were mined to uncover potential crosstalk through the analyses of signaling molecules preferentially expressed in one tissue relative to the other. Results Over 9,000 differentially expressed genes (DEG; False discovery rate ≤ 0.05 were found of which 1,478 had a ≥1.5-fold difference between PAR and MFP. Within the DEG highly-expressed in PAR vs. MFP (n = 736 we noted significant enrichment of functions related to cell cycle, structural organization, signaling, and DNA/RNA metabolism. Only actin cytoskeletal signaling was significant among canonical pathways. DEG more highly-expressed in MFP vs. PAR (n = 742 belong to lipid metabolism, signaling, cell movement, and immune-related functions. Canonical pathways associated with metabolism and signaling, particularly immune- and metabolism-related were significantly-enriched. Network analysis uncovered a central role of MYC, TP53, and CTNNB1 in controlling expression of DEG highly-expressed in PAR vs. MFP. Similar analysis suggested a central role for PPARG, KLF2, EGR2, and EPAS1 in regulating expression of more highly-expressed DEG in MFP vs. PAR. Gene network analyses revealed putative inter-tissue crosstalk between cytokines and growth factors preferentially expressed in one tissue (e.g., ANGPTL1, SPP1, IL1B in PAR vs. MFP; ADIPOQ, IL13, FGF2, LEP in MFP vs. PAR with DEG preferentially expressed in the other tissue, particularly transcription factors or pathways (e.g., MYC, TP53, and actin cytoskeletal signaling in PAR vs. MFP; PPARG and LXR/RXR Signaling in MFP vs. PAR. Conclusions Functional analyses underscored a reciprocal influence in

  13. Regulation of leptin in involution of mammary gland

    Institute of Scientific and Technical Information of China (English)

    LI Meng; LI Qingzhang

    2007-01-01

    Leptin, a protein hormone produced and secreted predominantly by white adipose tissue, has a critical role in the regulation and coordination of energy metabolism. Leptin is produced in the mammary gland by the fat tissue or by the mammary epithelium. In vitro study has shown that leptin triggers apoptosis in mammary epithelial cells. Mammary gland involution is characterized by extensive apoptosis of the epithelial cells. At the onset of involution, STAT3 is specifically activated. Various studies show that leptin act as a paracrine and autocrin factor to influence mammary epithelial cell proliferation and differentiation. This paper reviewed the function of leptin to the involution of mammary gland.

  14. Survey of bovine mycotic mastitis in different mammary gland statuses in two north-eastern regions of Algeria.

    Science.gov (United States)

    Ksouri, Samir; Djebir, Somia; Hadef, Youcef; Benakhla, Ahmed

    2015-04-01

    The aim of this study was to evaluate the prevalence of mycotic mastitis in different mammary gland statuses. The study was conducted on 304 dairy cows from ten farms in two north-eastern regions in Algeria; Guelma and Souk Ahras with 922 and 199 samples, respectively, forming thus a total number of 1,121 milk samples. A total of 321 milk samples were collected from clinical mastitis, 544 milk samples from subclinical mastitis and 256 milk samples from healthy mammary glands. Mycological analyses revealed that 10.17% of the treated samples were positive recording 114 species of fungi including 88 yeasts and 26 moulds. The most frequent species was Candida kefyr followed by C. albicans, C. guilliermondii, C. famata, C. tropicalis, C. colliculosa, C. krusei, C. rugosa, C. glabrata, C. parapsilosis, C. inconspicua, Trichosporon sp., Rhodotorula glutinis and Saccharomyces fragilis. Mould species have also been isolated from samples of both healthy milk and clinical mastitis milk. Aspergillus amstelodami (from glaucus group), A. fumigatus and Geotrichum candidum were identified, while the other species including Penicillium sp. and Cladosporium sp. were not identified. PMID:25481847

  15. Cloned embryos from semen. Part 2: Intergeneric nuclear transfer of semen-derived eland (Taurotragus oryx) epithelial cells into bovine oocytes

    Science.gov (United States)

    Nel-Themaat, L.; Gomez, M.C.; Pope, C.E.; Lopez, M.; Wirtu, G.; Jenkins, J.A.; Cole, A.; Dresser, B.L.; Bondioli, K.R.; Godke, R.A.

    2008-01-01

    The production of cloned offspring by nuclear transfer (NT) of semen-derived somatic cells holds considerable potential for the incorporation of novel genes into endangered species populations. Because oocytes from endangered species are scarce, domestic species oocytes are often used as cytoplasts for interspecies NT. In the present study, epithelial cells isolated from eland semen were used for intergeneric transfer (IgNT) into enucleated bovine oocytes and compared with bovine NT embryos. Cleavage rates of bovine NT and eland IgNT embryos were similar (80 vs. 83%, respectively; p > 0.05); however, development to the morula and blastocyst stage was higher for bovine NT embryos (38 and 21%, respectively; p bovine NT or eland IgNT cybrids before activation, but in 75 and 70% of bovine NT and eland igNT embryos, respectively, cell-cycle resumption was observed at 16 h postactivation (hpa). For eland IgNT embryos, 13% had ???8 cells at 84 hpa, while 32% of the bovine NT embryos had ???8 cells at the same interval. However, 100 and 66% of bovine NT and eland IgNT embryos, respectively, that had ???8 cells synthesized DNA. From these results we concluded that (1) semen-derived epithelial cell nuclei can interact and be transcriptionally controlled by bovine cytoplast, (2) the first cell-cycle occurred in IgNT embryos, (3) a high frequency of developmental arrest occurs before the eight-cell stage in IgNT embryos, and (4) IgNT embryos that progress through the early cleavage stage arrest can (a) synthesize DNA, (b) progress through subsequent cell cycles, and (c) may have the potential to develop further. ?? 2008 Mary Ann Liebert, Inc.

  16. Evaluation of the Rapid Mastitis Test for identification of Staphylococcus aureus and Streptococcus agalactiae isolated from bovine mammary glands.

    OpenAIRE

    Watts, J L; Owens, W E

    1988-01-01

    A latex agglutination test system (Rapid Mastitis Test [RMT]; Immucell, Portland, Maine) containing reagents for the identification of Staphylococcus aureus and Streptococcus agalactiae from bovine intramammary infections was evaluated with 527 staphylococcal and 267 streptococcal isolates. The RMT Staphylococcus aureus reagent detected 94.2% of 242 Staphylococcus aureus isolates, 80% of 25 Staphylococcus intermedius isolates, and 42.8% of 21 tube coagulase-positive Staphylococcus hyicus isol...

  17. Homology with vesicle fusion mediator syntaxin-1a predicts determinants ofepimorphin/syntaxin-2 function in mammary epithelial morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Connie S.; Nelson, Celeste M.; Khauv, Davitte; Bennett, Simone; Radisky, Evette S.; Hirai, Yohei; Bissell, Mina J.; Radisky, Derek C.

    2009-06-03

    We have shown that branching morphogenesis of mammary ductal structures requires the action of the morphogen epimorphin/syntaxin-2. Epimorphin, originally identified as an extracellular molecule, is identical to syntaxin-2, an intracellular molecule that is a member of the extensively investigated syntaxin family of proteins that mediate vesicle trafficking. We show here that although epimorphin/syntaxin-2 is highly homologous to syntaxin-1a, only epimorphin/syntaxin-2 can stimulate mammary branching morphogenesis. We construct a homology model of epimorphin/syntaxin-2 based on the published structure of syntaxin-1a, and we use this model to identify the structural motif responsible for the morphogenic activity. We identify four residues located within the cleft between helices B and C that differ between syntaxin-1a and epimorphin/syntaxin-2; through site-directed mutagenesis of these four amino acids, we confer the properties of epimorphin for cell adhesion, gene activation, and branching morphogenesis onto the inactive syntaxin-1a template. These results provide a dramatic demonstration of the use of structural information about one molecule to define a functional motif of a second molecule that is related at the sequence level but highly divergent functionally.

  18. Mediation analysis to estimate direct and indirect milk losses associated with bacterial load in bovine subclinical mammary infections.

    Science.gov (United States)

    Detilleux, J; Theron, L; Duprez, J-N; Reding, E; Moula, N; Detilleux, M; Bertozzi, C; Hanzen, C; Mainil, J

    2016-08-01

    Milk losses associated with mastitis can be attributed to either effects of pathogens per se (i.e. direct losses) or to effects of the immune response triggered by the presence of mammary pathogens (i.e. indirect losses). Test-day milk somatic cell counts (SCC) and number of bacterial colony forming units (CFU) found in milk samples are putative measures of the level of immune response and of the bacterial load, respectively. Mediation models, in which one independent variable affects a second variable which, in turn, affects a third one, are conceivable models to estimate direct and indirect losses. Here, we evaluated the feasibility of a mediation model in which test-day SCC and milk were regressed toward bacterial CFU measured at three selected sampling dates, 1 week apart. We applied this method on cows free of clinical signs and with records on up to 3 test-days before and after the date of the first bacteriological samples. Most bacteriological cultures were negative (52.38%), others contained either staphylococci (23.08%), streptococci (9.16%), mixed bacteria (8.79%) or were contaminated (6.59%). Only losses mediated by an increase in SCC were significantly different from null. In cows with three consecutive bacteriological positive results, we estimated a decreased milk yield of 0.28 kg per day for each unit increase in log2-transformed CFU that elicited one unit increase in log2-transformed SCC. In cows with one or two bacteriological positive results, indirect milk loss was not significantly different from null although test-day milk decreased by 0.74 kg per day for each unit increase of log2-transformed SCC. These results highlight the importance of milk losses that are mediated by an increase in SCC during mammary infection and the feasibility of decomposing total milk loss into its direct and indirect components. PMID:26923826

  19. Oxidized LDL triggers pro-oncogenic signaling in human breast mammary epithelial cells partly via stimulation of MiR-21.

    Science.gov (United States)

    Khaidakov, Magomed; Mehta, Jawahar L

    2012-01-01

    Dyslipidemia and obesity are primary risk factors for the development of atherosclerosis and are also epidemiologically linked to increased susceptibility to a variety of cancers including breast cancer. One of the prominent features of dyslipidemia is enhanced production of oxidized LDL (ox-LDL), which has been shown to be implicated in key steps of atherogenesis including inflammatory signaling and proliferation of vascular cells. In this study we analyzed the effects of ox-LDL in human mammary epithelial cells (MCF10A). MCF10A cells avidly internalized dil-ox-LDL and exhibited increased proliferative response to ox-LDL within the range of 1-50 µg/ml in a dose-dependent manner. Treatment of cells with 20 µg/ml ox-LDL for 2 and 12 hours was associated with upregulation of LOX-1 and CD36 scavenger receptors while MSR1 and CXLC16 receptors did not change. Ox-LDL-treated cells displayed significant upregulation of NADPH oxidases (subunits P22(phox) and P47(phox)), lipoxygenases-12 and -15, and cytoplasmic, but not mitochondrial, SOD. Ox-LDL also triggered phosphorylation of IκBα coupled with nuclear translocation of NF-κB and stimulated p44/42 MAPK, PI3K and Akt while intracellular PTEN (PI3K/Akt pathway inhibitor and target of miR-21) declined. Quantitative PCR revealed increased expression of hsa-miR-21 in ox-LDL treated cells coupled with inhibition of miR-21 target genes. Further, transfection of MCF10A cells with miR-21 inhibitor prevented ox-LDL mediated stimulation of PI3K and Akt. We conclude that, similarly to vascular cells, mammary epithelial cells respond to ox-LDL by upregulation of proliferative and pro-inflammatory signaling. We also report for the first time that part of ox-LDL triggered reactions in MCF10A cells is mediated by oncogenic hsa-miR-21 through inhibition of its target gene PTEN and consequent activation of PI3K/Akt pathway.

  20. Oxidized LDL triggers pro-oncogenic signaling in human breast mammary epithelial cells partly via stimulation of MiR-21.

    Directory of Open Access Journals (Sweden)

    Magomed Khaidakov

    Full Text Available Dyslipidemia and obesity are primary risk factors for the development of atherosclerosis and are also epidemiologically linked to increased susceptibility to a variety of cancers including breast cancer. One of the prominent features of dyslipidemia is enhanced production of oxidized LDL (ox-LDL, which has been shown to be implicated in key steps of atherogenesis including inflammatory signaling and proliferation of vascular cells. In this study we analyzed the effects of ox-LDL in human mammary epithelial cells (MCF10A. MCF10A cells avidly internalized dil-ox-LDL and exhibited increased proliferative response to ox-LDL within the range of 1-50 µg/ml in a dose-dependent manner. Treatment of cells with 20 µg/ml ox-LDL for 2 and 12 hours was associated with upregulation of LOX-1 and CD36 scavenger receptors while MSR1 and CXLC16 receptors did not change. Ox-LDL-treated cells displayed significant upregulation of NADPH oxidases (subunits P22(phox and P47(phox, lipoxygenases-12 and -15, and cytoplasmic, but not mitochondrial, SOD. Ox-LDL also triggered phosphorylation of IκBα coupled with nuclear translocation of NF-κB and stimulated p44/42 MAPK, PI3K and Akt while intracellular PTEN (PI3K/Akt pathway inhibitor and target of miR-21 declined. Quantitative PCR revealed increased expression of hsa-miR-21 in ox-LDL treated cells coupled with inhibition of miR-21 target genes. Further, transfection of MCF10A cells with miR-21 inhibitor prevented ox-LDL mediated stimulation of PI3K and Akt. We conclude that, similarly to vascular cells, mammary epithelial cells respond to ox-LDL by upregulation of proliferative and pro-inflammatory signaling. We also report for the first time that part of ox-LDL triggered reactions in MCF10A cells is mediated by oncogenic hsa-miR-21 through inhibition of its target gene PTEN and consequent activation of PI3K/Akt pathway.

  1. Identification and characterization of CCAAT/Enhancer Binding proteindelta (C/EBPdelta target genes in G0 growth arrested mammary epithelial cells

    Directory of Open Access Journals (Sweden)

    Huang Tim

    2008-10-01

    Full Text Available Abstract Background CCAAT/Enhancer Binding Proteinδ (C/EBPδ is a member of the highly conserved C/EBP family of leucine zipper (bZIP proteins. C/EBPδ is highly expressed in G0 growth arrested mammary epithelial cells (MECs and "loss of function" alterations in C/EBPδ have been associated with impaired contact inhibition, increased genomic instability and increased cell migration. Reduced C/EBPδ expression has also been reported in breast cancer and acute myeloid leukemia (AML. C/EBPδ functions as a transcriptional activator, however, only a limited number of C/EBPδ target genes have been reported. As a result, the role of C/EBPδ in growth control and the potential mechanisms by which "loss of function" alterations in C/EBPδ contribute to tumorigenesis are poorly understood. The goals of the present study were to identify C/EBPδ target genes using Chromatin Immunoprecipitation coupled with a CpG Island (HCG12K Array gene chip ("ChIP-chip" assay and to assess the expression and potential functional roles of C/EBPδ target genes in growth control. Results ChIP-chip assays identified ~100 C/EBPδ target gene loci which were classified by gene ontology (GO into cell adhesion, cell cycle regulation, apoptosis, signal transduction, intermediary metabolism, gene transcription, DNA repair and solute transport categories. Conventional ChIP assays validated the ChIP-chip results and demonstrated that 14/14 C/EBPδ target loci were bound by C/EBPδ in G0 growth arrested MCF-12A MECs. Gene-specific RT-PCR analysis also demonstrated C/EBPδ-inducible expression of 14/14 C/EBPδ target genes in G0 growth arrested MCF-12A MECs. Finally, expression of endogenous C/EBPδ and selected C/EBPδ target genes was also demonstrated in contact-inhibited G0 growth arrested nontransformed human MCF-10A MECs and in mouse HC11 MECs. The results demonstrate consistent activation and downstream function of C/EBPδ in growth arrested human and murine MECs. Conclusion

  2. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    Li CongJun

    2006-09-01

    Full Text Available Abstract Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Discovery Rate (FDR = 0 % were identified. The majority of these genes were repressed by butyrate and associated with cell cycle control. The expression levels of 30 selected genes identified by the microarray were confirmed using real-time PCR. The results from real-time PCR positively correlated (R = 0.867 with the results from the microarray. Conclusion This study presented the genes related to multiple signal pathways such as cell cycle control and apoptosis. The profound changes in gene expression elucidate the molecular basis for the pleiotropic effects of butyrate on biological processes. These findings enable better recognition of the full range of beneficial roles butyrate may play during cattle energy metabolism, cell growth and proliferation, and possibly in fighting gastrointestinal pathogens.

  3. Developmental stage-specific contribution of LGR5(+) cells to basal and luminal epithelial lineages in the postnatal mammary gland

    NARCIS (Netherlands)

    de Visser, K.E.; Ciampricotti, M.; Michalak, E.M.; Tan, D.W.; Speksnijder, E.N.; Hau, C.S.; Clevers, H.; Barker, N.; Jonkers, J.

    2012-01-01

    The leucine-rich repeat-containing heterotrimeric guanine nucleotide-binding protein-coupled receptor 5 (LGR5) has been identified as a marker of cycling stem cells in several epithelial tissues, including small intestine, colon, stomach and hair follicle. To investigate whether LGR5 also marks mamm

  4. Expression of Putative Stem Cell Marker, Hepatocyte Nuclear Factor 4 Alpha, in Mammary Gland of Water Buffalo.

    Science.gov (United States)

    Choudhary, Ratan K; Choudhary, Shanti; Kaur, Harmanjot; Pathak, Devendra

    2016-01-01

    Buffaloes account for more than 56% of total milk production in India. Cyclic remodeling of mammary glands of human, mice, cow, sheep, and goat is determined by mammary stem cells. It is logical to assume that buffalo mammary gland will have mammary stem/progenitor cells. Thus far, no report exists on identification of buffalo mammary stem cells. Hepatocyte nuclear factor 4 alpha (HNF4A) is a candidate marker for hepatic progenitor cells and has recently been suggested as a marker of bovine mammary stem/progenitor cells. We hypothesized that ( 1 ) HNF4A identifies putative buffalo mammary stem/progenitor cells and ( 2 ) the number of HNF4A-positive cells increases during mastitis. Sixteen buffalo mammary samples were collected from a local slaughterhouse. Hematoxylin and eosin staining were performed on 5-micron thick sections and on the basis of gross examination and histomorphology of the mammary glands, physiological stages of the animals were estimated as non-lactating (n = 4), mastitis (n = 9), and prepubertal (n = 3). In total, 24048 cells were counted (5-10 microscopic fields/animal; n = 16 animals) of which, 40% cells were mammary epithelial cells (MEC) and 60% cells were the stromal cells. The percentage of MEC in non-lactating animals was higher compared to mastitic animals (47.3% vs. 37.3%), which was likely due to loss of MEC in mastitis. HNF4A staining was observed in nuclei of MEC of ducts, alveoli, and stromal cells. Basal location and low frequency of HNF4A-positive MEC (ranges from 0.4-4.5%) were consistent with stem cell characteristics. Preliminary study showed coexpression of HNF4A with MSI1 (a mammary stem cell marker in sheep), suggesting HNF4A was likely to be a putative mammary stem/progenitor cell marker in buffalo. HNF4A-positive MEC (basal and luminal; light and dark stained) tended to be higher in non-lactating than the mastitic animals (8.73 ± 1.71% vs. 4.29 ± 1.19%; P = 0.07). The first hypothesis that HNF4A identify

  5. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2.

    Science.gov (United States)

    Chua, H L; Bhat-Nakshatri, P; Clare, S E; Morimiya, A; Badve, S; Nakshatri, H

    2007-02-01

    The transcription factor nuclear factor kappa B (NF-kappaB) is constitutively active in both cancer cells and stromal cells of breast cancer; however, the precise role of activated NF-kappaB in cancer progression is not known. Using parental MCF10A cells and a variant that expresses the myoepithelial marker p63 stably overexpressing the constitutively active p65 subunit of NF-kappaB (MCF10A/p65), we show that NF-kappaB suppresses the expression of epithelial specific genes E-cadherin and desmoplakin and induces the expression of the mesenchymal specific gene vimentin. P65 also suppressed the expression of p63 and the putative breast epithelial progenitor marker cytokeratin 5/6. MCF10A/p65 cells were phenotypically similar to cells undergoing epithelial to mesenchymal transition (EMT). MCF10A/p65 cells failed to form characteristic acini in three-dimensional Matrigel. Analysis of parental and MCF10A/p65 cells for genes previously shown to be involved in EMT revealed elevated expression of ZEB-1 and ZEB-2 in MCF10A/p65 cells compared to parental cells. In transient transfection assays, p65 increased ZEB-1 promoter activity. Furthermore, MCF10A cells overexpressing ZEB-1 showed reduced E-cadherin and p63 expression and displayed an EMT phenotype. The siRNA against ZEB-1 or ZEB-2 reduced the number of viable MCF10A/p65 but not parental cells, suggesting the dependence of MCF10A/p65 cells to ZEB-1 and ZEB-2 for cell cycle progression or survival. MCF10A cells chronically exposed to tumor necrosis factor alpha (TNFalpha), a potent NF-kappaB inducer, also exhibited the EMT-like phenotype and ZEB-1/ZEB-2 induction, both of which were reversed following TNFalpha withdrawal.

  6. Constitutive CCND1/CDK2 activity substitutes for p53 loss, or MYC or oncogenic RAS expression in the transformation of human mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Damian J Junk

    Full Text Available Cancer develops following the accumulation of genetic and epigenetic alterations that inactivate tumor suppressor genes and activate proto-oncogenes. Dysregulated cyclin-dependent kinase (CDK activity has oncogenic potential in breast cancer due to its ability to inactivate key tumor suppressor networks and drive aberrant proliferation. Accumulation or over-expression of cyclin D1 (CCND1 occurs in a majority of breast cancers and over-expression of CCND1 leads to accumulation of activated CCND1/CDK2 complexes in breast cancer cells. We describe here the role of constitutively active CCND1/CDK2 complexes in human mammary epithelial cell (HMEC transformation. A genetically-defined, stepwise HMEC transformation model was generated by inhibiting p16 and p53 with shRNA, and expressing exogenous MYC and mutant RAS. By replacing components of this model, we demonstrate that constitutive CCND1/CDK2 activity effectively confers anchorage independent growth by inhibiting p53 or replacing MYC or oncogenic RAS expression. These findings are consistent with several clinical observations of luminal breast cancer sub-types that show elevated CCND1 typically occurs in specimens that retain wild-type p53, do not amplify MYC, and contain no RAS mutations. Taken together, these data suggest that targeted inhibition of constitutive CCND1/CDK2 activity may enhance the effectiveness of current treatments for luminal breast cancer.

  7. Transcriptional profiling of ErbB signalling in mammary luminal epithelial cells - interplay of ErbB and IGF1 signalling through IGFBP3 regulation

    Directory of Open Access Journals (Sweden)

    Worthington Jenny

    2010-09-01

    Full Text Available Abstract Background Members of the ErbB family of growth factor receptors are intricately linked with epithelial cell biology, development and tumourigenesis; however, the mechanisms involved in their downstream signalling are poorly understood. Indeed, it is unclear how signal specificity is achieved and the relative contribution each receptor has to specific gene expression. Methods Gene expression profiling of a human mammary luminal epithelial cell model of ErbB2-overexpression was carried out using cDNA microarrays with a common RNA reference approach to examine long-term overlapping and differential responses to EGF and heregulin beta1 treatment in the context of ErbB2 overexpression. Altered gene expression was validated using quantitative real time PCR and/or immunoblotting. One gene of interest was targeted for further characterisation, where the effects of siRNA-mediated silencing on IGF1-dependent signalling and cellular phenotype were examined and compared to the effects of loss of ErbB2 expression. Results 775 genes were differentially expressed and clustered in terms of their growth factor responsiveness. As well as identifying uncharacterized genes as novel targets of ErbB2-dependent signalling, ErbB2 overexpression augmented the induction of multiple genes involved in proliferation (e.g. MYC, MAP2K1, MAP2K3, autocrine growth factor signalling (VEGF, PDGF and adhesion/cytoskeletal regulation (ZYX, THBS1, VCL, CNN3, ITGA2, ITGA3, NEDD9, TAGLN, linking them to the hyper-poliferative and altered adhesive phenotype of the ErbB2-overexpressing cells. We also report ErbB2-dependent down-regulation of multiple interferon-stimulated genes that may permit ErbB2-overexpressing cells to resist the anti-proliferative action of interferons. Finally, IGFBP3 was unique in its pattern of regulation and we further investigated a possible role for IGFBP3 down-regulation in ErbB2-dependent transformation through suppressed IGF1 signalling. We show

  8. Transcriptional profiling of ErbB signalling in mammary luminal epithelial cells - interplay of ErbB and IGF1 signalling through IGFBP3 regulation

    International Nuclear Information System (INIS)

    Members of the ErbB family of growth factor receptors are intricately linked with epithelial cell biology, development and tumourigenesis; however, the mechanisms involved in their downstream signalling are poorly understood. Indeed, it is unclear how signal specificity is achieved and the relative contribution each receptor has to specific gene expression. Gene expression profiling of a human mammary luminal epithelial cell model of ErbB2-overexpression was carried out using cDNA microarrays with a common RNA reference approach to examine long-term overlapping and differential responses to EGF and heregulin beta1 treatment in the context of ErbB2 overexpression. Altered gene expression was validated using quantitative real time PCR and/or immunoblotting. One gene of interest was targeted for further characterisation, where the effects of siRNA-mediated silencing on IGF1-dependent signalling and cellular phenotype were examined and compared to the effects of loss of ErbB2 expression. 775 genes were differentially expressed and clustered in terms of their growth factor responsiveness. As well as identifying uncharacterized genes as novel targets of ErbB2-dependent signalling, ErbB2 overexpression augmented the induction of multiple genes involved in proliferation (e.g. MYC, MAP2K1, MAP2K3), autocrine growth factor signalling (VEGF, PDGF) and adhesion/cytoskeletal regulation (ZYX, THBS1, VCL, CNN3, ITGA2, ITGA3, NEDD9, TAGLN), linking them to the hyper-poliferative and altered adhesive phenotype of the ErbB2-overexpressing cells. We also report ErbB2-dependent down-regulation of multiple interferon-stimulated genes that may permit ErbB2-overexpressing cells to resist the anti-proliferative action of interferons. Finally, IGFBP3 was unique in its pattern of regulation and we further investigated a possible role for IGFBP3 down-regulation in ErbB2-dependent transformation through suppressed IGF1 signalling. We show that IGF1-dependent signalling and proliferation were

  9. GSK3β Regulates Milk Synthesis in and Proliferation of Dairy Cow Mammary Epithelial Cells via the mTOR/S6K1 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    2014-07-01

    Full Text Available Glycogen synthase kinase 3 (GSK3 is a serine/threonine kinase, whose activity is inhibited by AKT phosphorylation. This inhibitory phosphorylation of GSK3β can in turn play a regulatory role through phosphorylation of several proteins (such as mTOR, elF2B to promote protein synthesis. mTOR is a key regulator in protein synthesis and cell proliferation, and recent studies have shown that both GSK3β and mTORC1 can regulate SREBP1 to promote fat synthesis. Thus far, however, the cross talk between GSK3β and the mTOR pathway in the regulation of milk synthesis and associated cell proliferation is not well understood. In this study the interrelationship between GSK3β and the mTOR/S6K1 signaling pathway leading to milk synthesis and proliferation of dairy cow mammary epithelial cells (DCMECs was analyzed using techniques including GSK3β overexpression by transfection, GSK3β inhibition, mTOR inhibition and methionine stimulation. The analyses revealed that GSK3β represses the mTOR/S6K1 pathway leading to milk synthesis and cell proliferation of DCMECs, whereas GSK3β phosphorylation enhances this pathway. Conversely, the activated mTOR/S6K1 signaling pathway downregulates GSK3β expression but enhances GSK3β phosphorylation to increase milk synthesis and cell proliferation, whereas inhibition of mTOR leads to upregulation of GSK3β and repression of GSK3β phosphorylation, which in turn decreases milk synthesis, and cell proliferation. These findings indicate that GSK3β and phosphorylated GSK3β regulate milk synthesis and proliferation of DCMECs via the mTOR/S6K1 signaling pathway. These findings provide new insight into the mechanisms of milk synthesis.

  10. Differential gene expression pattern in human mammary epithelial cells induced by realistic organochlorine mixtures described in healthy women and in women diagnosed with breast cancer.

    Science.gov (United States)

    Rivero, Javier; Henríquez-Hernández, Luis Alberto; Luzardo, Octavio P; Pestano, José; Zumbado, Manuel; Boada, Luis D; Valerón, Pilar F

    2016-03-30

    Organochlorine pesticides (OCs) have been associated with breast cancer development and progression, but the mechanisms underlying this phenomenon are not well known. In this work, we evaluated the effects exerted on normal human mammary epithelial cells (HMEC) by the OC mixtures most frequently detected in healthy women (H-mixture) and in women diagnosed with breast cancer (BC-mixture), as identified in a previous case-control study developed in Spain. Cytotoxicity and gene expression profile of human kinases (n=68) and non-kinases (n=26) were tested at concentrations similar to those described in the serum of those cases and controls. Although both mixtures caused a down-regulation of genes involved in the ATP binding process, our results clearly indicate that both mixtures may exert a very different effect on the gene expression profile of HMEC. Thus, while BC-mixture up-regulated the expression of oncogenes associated to breast cancer (GFRA1 and BHLHB8), the H-mixture down-regulated the expression of tumor suppressor genes (EPHA4 and EPHB2). Our results indicate that the composition of the OC mixture could play a role in the initiation processes of breast cancer. In addition, the present results suggest that subtle changes in the composition and levels of pollutants involved in environmentally relevant mixtures might induce very different biological effects, which explain, at least partially, why some mixtures seem to be more carcinogenic than others. Nonetheless, our findings confirm that environmentally relevant pollutants may modulate the expression of genes closely related to carcinogenic processes in the breast, reinforcing the role exerted by environment in the regulation of genes involved in breast carcinogenesis.

  11. WISP3 (CCN6) Regulates Milk Protein Synthesis and Cell Growth Through mTOR Signaling in Dairy Cow Mammary Epithelial Cells.

    Science.gov (United States)

    Jiang, Nan; Wang, Yu; Yu, Zhiqiang; Hu, Lijun; Liu, Chaonan; Gao, Xueli; Zheng, Shimin

    2015-08-01

    The mTOR/S6K1 signaling pathway is the primary regulator of milk protein synthesis. While mTOR is known to be regulated at the translational level by amino acids, the mechanism by which mTOR accepts the amino acid signal is not yet clear. In this study, we describe the discovery of WISP3 as a potentially novel signaling factor that connects mTOR and amino acids. Treatment of dairy cow mammary epithelial cells with amino acids (lysine or methionine) increased both cell growth and the expression of β-casein (CSN2), WISP3, mTOR, and phospho-mTOR (p-mTOR). Notably, overexpressing WISP3 in these cells also increased both cell growth and the expression of CSN2, mTOR, and p-mTOR and decreased the expression of glycogen synthase kinase 3β (GSK3β), while repressing WISP3 had the opposite effect. The increase of the expression of CSN2, mTOR, and p-mTOR mediated by amino acid could be inhibited by repressing WISP3. The increase of the expression of CSN2, mTOR, and p-mTOR mediated by WISP3 overexpression could be inhibited by overexpressing GSK3β, and vice versa. Taken together, these results reveal that through its amino acid-mediated regulation of the mTOR pathway, WISP3 is an important regulatory factor involved in the amino acid-mediated regulation of milk protein synthesis and cell growth. PMID:26061139

  12. Genetic susceptibility to S. aureus mastitis in sheep: differential expression of mammary epithelial cells in response to live bacteria or supernatant.

    Science.gov (United States)

    Bonnefont, Cécile M D; Rainard, Pascal; Cunha, Patricia; Gilbert, Florence B; Toufeer, Mehdi; Aurel, Marie-Rose; Rupp, Rachel; Foucras, Gilles

    2012-04-01

    Staphylococcus aureus is a prevalent pathogen for mastitis in dairy ruminants and is responsible for both clinical and subclinical mastitis. Mammary epithelial cells (MEC) represent not only a physical barrier against bacterial invasion but are also active players of the innate immune response permitting infection clearance. To decipher their functions in general and in animals showing different levels of genetic predisposition to Staphylococcus in particular, MEC from ewes undergoing a divergent selection on milk somatic cell count were stimulated by S. aureus. MEC response was also studied according to the stimulation condition with live bacteria or culture supernatant. The early MEC response was studied during a 5 h time course by microarray to identify differentially expressed genes with regard to the host genetic background and as a function of the conditions of stimulation. In both conditions of stimulation, metabolic processes were altered, the apoptosis-associated pathways were considerably modified, and inflammatory and immune responses were enhanced with the upregulation of il1a, il1b, and tnfa and several chemokines known to enhance neutrophil (cxcl8) or mononuclear leukocyte (ccl20) recruitment. Genes associated with oxidative stress were increased after live bacteria stimulation, whereas immune response-related genes were higher after supernatant stimulation in the early phase. Only 20 genes were differentially expressed between Staphylococcus spp-mastitis resistant and susceptible animals without any clearly defined role on the control of infection. To conclude, this suggests that MEC may not represent the cell type at the origin of the difference of mastitis susceptibility, at least as demonstrated in our genetic model. Supernatant or heat-killed S. aureus produce biological effects that are essentially different from those induced by live bacteria. PMID:22337903

  13. S100A7 (Psoriasin), highly expressed in Ductal Carcinoma In Situ (DCIS), is regulated by IFN-gamma in mammary epithelial cells

    International Nuclear Information System (INIS)

    The aim of the present work was to explore signal transduction pathways used in the regulation of S100A7 (psoriasin). Members of the S100 gene family participate in many important cellular functions. Psoriasin, S100A8 (calgranulin A) and S100A9 (calgranulin B) are expressed in ductal carcinoma in situ (DCIS), as well as in the hyperproliferative skin disease, psoriasis. In the latter condition, a disturbance in the STAT pathway has recently been reported. This pathway is implicated in the regulation of IFN-gamma, widely recognized as a key cytokine in psoriasis. IFN-gamma also exerts anti-tumor action in a number of tumor cell types, including breast cancer. We therefore examined the effect of IFN-gamma and STAT-signaling on the psoriasin expression. We established a TAC2 mouse mammary epithelial cell line with tetracycline-inducible psoriasin expression (Tet-Off). Viability in cell culture was estimated using MTS assay. Protein and gene expression were evaluated by Western blotting and quantitative real-time PCR. Statistical analyses were assessed using a one-tailed, paired t-test. We report the downregulation of psoriasin by IFN-gamma in the MDA-MB-468 breast cancer cell line, as well as the downregulation of psoriasin induced by anoikis in cell lines derived from different epithelial tissues. In contrast, IFN-gamma had no suppressive effect on calgranulin A or calgranulin B. IFN-gamma is an important activator of the STAT1 pathway and we confirmed an active signaling pathway in the cell lines that responded to IFN-gamma treatment. In contrast, in the SUM190 breast carcinoma cell line, IFN-gamma did not suppress the expression of endogenous psoriasin. Moreover, a reduced phosphorylation of the STAT1 protein was observed. We showed that IFN-gamma treatment and the inhibition of the transcription factor NFkappaB had a synergistic effect on psoriasin levels. Finally, in TAC2 cells with tetracycline-induced psoriasin expression, we observed the increased viability of

  14. Role of 3'-5'-cyclic adenosine monophosphate on the epidermal growth factor dependent survival in mammary epithelial cells.

    Science.gov (United States)

    Grinman, Diego Y; Romorini, Leonardo; Presman, Diego M; Rocha-Viegas, Luciana; Coso, Omar A; Davio, Carlos; Pecci, Adali

    2016-01-01

    Epidermal growth factor (EGF) has been suggested to play a key role in the maintenance of epithelial cell survival during lactation. Previously, we demonstrated that EGF dependent activation of PI3K pathway prevents apoptosis in confluent murine HC11 cells cultured under low nutrient conditions. The EGF protective effect is associated with increased levels of the antiapoptotic protein Bcl-XL. Here, we identify the EGF-dependent mechanism involved in cell survival that converges in the regulation of bcl-X expression by activated CREB. EGF induces Bcl-XL expression through activation of a unique bcl-X promoter, the P1; being not only the PI3K/AKT signaling pathway but also the increase in cAMP levels and the concomitant PKA/CREB activation necessary for both bcl-XL upregulation and apoptosis avoidance. Results presented in this work suggest the existence of a novel connection between the EGF receptor and the adenylate cyclase that would have an impact in preventing apoptosis under low nutrient conditions.

  15. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    Distinct subsets of cells, including cells with stem cell-like properties, have been proposed to exist in normal human breast epithelium and breast carcinomas. The cellular origins of epithelial cells contributing to gland development, tissue homeostasis and cancer are, however, still poorly...... understood. The mouse is a widely used model of mammary gland development, both directly by studying the mouse mammary epithelial cells themselves and indirectly, by studying development, morphogenesis, differentiation and carcinogenesis of xenotransplanted human breast epithelium in vivo. While in early...... studies, human or mouse epithelium was implanted as fragments into the mouse gland, more recent technical progress has allowed the self-renewal capacity and differentiation potential of distinct cell populations or even individual cells to be interrogated. Here, we review and discuss similarities...

  16. The transcription factor ATF3 acts as an oncogene in mouse mammary tumorigenesis

    International Nuclear Information System (INIS)

    Overexpression of the bZip transcription factor, ATF3, in basal epithelial cells of transgenic mice under the control of the bovine cytokeratin-5 (CK5) promoter has previously been shown to induce epidermal hyperplasia, hair follicle anomalies and neoplastic lesions of the oral mucosa including squamous cell carcinomas. CK5 is known to be expressed in myoepithelial cells of the mammary gland, suggesting the possibility that transgenic BK5.ATF3 mice may exhibit mammary gland phenotypes. Mammary glands from nulliparous mice in our BK5.ATF3 colony, both non-transgenic and transgenic, were examined for anomalies by histopathology and immunohistochemistry. Nulliparous and biparous female mice were observed for possible mammary tumor development, and suspicious masses were analyzed by histopathology and immunohistochemistry. Human breast tumor samples, as well as normal breast tissue, were similarly analyzed for ATF3 expression. Transgenic BK5.ATF3 mice expressed nuclear ATF3 in the basal layer of the mammary ductal epithelium, and often developed squamous metaplastic lesions in one or more mammary glands by 25 weeks of age. No progression to malignancy was seen in nulliparous BK5.ATF3 or non-transgenic mice held for 16 months. However, biparous BK5.ATF3 mice developed mammary carcinomas with squamous metaplasia between 6 months and one year of age, reaching an incidence of 67%. Cytokeratin expression in the tumors was profoundly disturbed, including expression of CK5 and CK8 (characteristic of basal and luminal cells, respectively) throughout the epithelial component of the tumors, CK6 (potentially a stem cell marker), CK10 (a marker of interfollicular epidermal differentiation), and mIRSa2 and mIRSa3.1 (markers of the inner root sheath of hair follicles). Immunohistochemical studies indicated that a subset of human breast tumors exhibit high levels of nuclear ATF3 expression. Overexpression of ATF3 in CK5-expressing cells of the murine mammary gland results in the

  17. Isolation and characterization of a spontaneously immortalized bovine retinal pigmented epithelial cell line

    Directory of Open Access Journals (Sweden)

    Griffiths T Daniel

    2009-05-01

    Full Text Available Abstract Background The Retinal Pigmented Epithelium (RPE is juxtaposed with the photoreceptor outer segments of the eye. The proximity of the photoreceptor cells is a prerequisite for their survival, as they depend on the RPE to remove the outer segments and are also influenced by RPE cell paracrine factors. RPE cell death can cause a progressive loss of photoreceptor function, which can diminish vision and, over time, blindness ensues. Degeneration of the retina has been shown to induce a variety of retinopathies, such as Stargardt's disease, Cone-Rod Dystrophy (CRD, Retinitis Pigmentosa (RP, Fundus Flavimaculatus (FFM, Best's disease and Age-related Macular Degeneration (AMD. We have cultured primary bovine RPE cells to gain a further understanding of the mechanisms of RPE cell death. One of the cultures, named tRPE, surpassed senescence and was further characterized to determine its viability as a model for retinal diseases. Results The tRPE cell line has been passaged up to 150 population doublings and was shown to be morphologically similar to primary cells. They have been characterized to be of RPE origin by reverse transcriptase PCR and immunocytochemistry using the RPE-specific genes RPE65 and CRALBP and RPE-specific proteins RPE65 and Bestrophin. The tRPE cells are also immunoreactive to vimentin, cytokeratin and zonula occludens-1 antibodies. Chromosome analysis indicates a normal diploid number. The tRPE cells do not grow in suspension or in soft agar. After 3H thymidine incorporation, the cells do not appear to divide appreciably after confluency. Conclusion The tRPE cells are immortal, but still exhibit contact inhibition, serum dependence, monolayer growth and secrete an extra-cellular matrix. They retain the in-vivo morphology, gene expression and cell polarity. Additionally, the cells endocytose exogenous melanin, A2E and purified lipofuscin granules. This cell line may be a useful in-vitro research model for retinal

  18. Generation and characterization of a breast carcinoma model by PyMT overexpression in mammary epithelial cells of tree shrew, an animal close to primates in evolution.

    Science.gov (United States)

    Ge, Guang-Zhe; Xia, Hou-Jun; He, Bao-Li; Zhang, Hai-Lin; Liu, Wen-Jing; Shao, Ming; Wang, Chun-Yan; Xiao, Ji; Ge, Fei; Li, Fu-Bing; Li, Yi; Chen, Ceshi

    2016-02-01

    The tree shrew is becoming an attractive experimental animal model for human breast cancer owing to a closer relationship to primates/humans than rodents. Tree shrews are superior to classical primates because tree shrew are easier to manipulate, maintain and propagate. It is required to establish a high-efficiency tree shrew breast cancer model for etiological research and drug assessment. Our previous studies suggest that 7,12-dimethylbenz(a)anthracene (DMBA) and medroxyprogesterone acetate (MPA) induce breast tumors in tree shrews with a low frequency (<50%) and long latency (∼ 7-month), making these methods less than ideal. We induced mammary tumors in tree shrew (Tupaia belangeri chinensis) by injection of lentivirus expressing the PyMT oncogene into mammary ducts of 22 animals. Most tree shrews developed mammary tumors with a latency of about three weeks, and by 7 weeks all injected tree shrews had developed mammary tumors. Among these, papillary carcinoma is the predominant tumor type. One case showed lymph node and lung metastasis. Interestingly, the expression levels of phosphorylated AKT, ERK and STAT3 were elevated in 41-68% of PyMT-induced mammary tumors, but not all tumors. Finally, we observed that the growth of PyMT-induced tree shrew mammary tumors was significantly inhibited by Cisplatin and Epidoxorubicin. PyMT-induced tree shrew mammary tumor model may be suitable for further breast cancer research and drug development, due to its high efficiency and short latency. PMID:26296387

  19. Role of Oligopeptide Transporter 2 in Bovine Mammary Gland Phenylalanine Dipeptide Uptake%小肽转运载体2在奶牛乳腺小肽摄取中的作用研究

    Institute of Scientific and Technical Information of China (English)

    周苗苗; 吴跃明; 刘红云; 赵珂; 刘建新

    2011-01-01

    This experiment was conducted to study the role of oligopeptide transporter 2 in small peptides uptake and milk protein synthesis in bovine mammary gland. Different doses of Phe dipeptide (0 and 11. 7 |xg/mL)and DEPC (0, 0.01, 0.1, 0. 5 and 1 mmol/L) were added to the culture medium of bovine mammary gland tissues. After incubated in the experimental medium, mammary tissues and medium were collected and used for gene expression and milk protein determination, respectively. The results showed that l) Phe dipeptide increased oligopeptide transporter 2 and αsl -casein gene expression and milk protein quantity in the medium (P0.05) in free Phe group. These results indicate that Phe dipeptide can be used for synthesis of milk protein by bovine mammary gland while PepT2 may play an important role in small peptides uptake by bovine mammary gland. [Chinese Journal of Animal Nutrition, 2011, 23(8):1303-1308]%本试验旨在研究2型小肽转运载体(oligopeptide transporter 2,PepT 2)在奶牛乳腺组织吸收利用小肽合成乳蛋白过程中的作用.在体外培养的奶牛乳腺组织培养液中分别添加不同浓度的苯丙氨酸二肽( Phe-Phe)(0和11.7 μg/mL)和/或焦碳酸二乙酯(DEPC)(0、0.01、0.1、0.5和1.0 mmol/L)进行培养,试验结束后收集乳腺组织和培养液分别用于基因表达和乳蛋白合成的检测.结果表明,Phe-Phe促进了PepT 2和αs1-酪蛋白基因表达及乳蛋白合成(P<0.05);随DEPC添加浓度的升高,αs1-酪蛋白基因表达(P<0.01)和乳蛋白合成(P<0.05)显著降低;0.5 mmol/L DEPC显著降低了Phe-Phe组αs1-酪蛋白的基因表达(P<0.05)和乳蛋白合成(P<0.01)以及不添加小肽组乳蛋白合成(P<0.05),但不影响不添加小肽组αs1-酪蛋白基因表达(P>0.05).结果提示,奶牛乳腺能摄取Phe-Phe用于乳蛋白的合成,PepT 2可能在乳腺小肽摄取过程中发挥重要作用.

  20. An active form of Vav1 induces migration of mammary epithelial cells by stimulating secretion of an epidermal growth factor receptor ligand

    Directory of Open Access Journals (Sweden)

    Moores Sheri L

    2006-05-01

    Full Text Available Abstract Background Vav proteins are guanine nucleotide exchange factors (GEF for Rho family GTPases and are activated following engagement of membrane receptors. Overexpression of Vav proteins enhances lamellipodium and ruffle formation, migration, and cell spreading, and augments activation of many downstream signaling proteins like Rac, ERK and Akt. Vav proteins are composed of multiple structural domains that mediate their GEF function and binding interactions with many cellular proteins. In this report we examine the mechanisms responsible for stimulation of cell migration by an activated variant of Vav1 and identify the domains of Vav1 required for this activity. Results We found that expression of an active form of Vav1, Vav1Y3F, in MCF-10A mammary epithelial cells increases cell migration in the absence or presence of EGF. Vav1Y3F was also able to drive Rac1 activation and PAK and ERK phosphorylation in MCF-10A cells in the absence of EGF stimulation. Mutations in the Dbl homology, pleckstrin homology, or cysteine-rich domains of Vav1Y3F abolished Rac1 or ERK activation in the absence of EGF and blocked the migration-promoting activity of Vav1Y3F. In contrast, mutations in the SH2 and C-SH3 domains did not affect Rac activation by Vav1Y3F, but reduced the ability of Vav1Y3F to induce EGF-independent migration and constitutive ERK phosphorylation. EGF-independent migration of MCF-10A cells expressing Vav1Y3F was abolished by treatment of cells with an antibody that prevents ligand binding to the EGF receptor. In addition, conditioned media collected from Vav1Y3F expressing cells stimulated migration of parental MCF-10A cells. Lastly, treatment of cells with the EGF receptor inhibitory antibody blocked the Vav1Y3F-induced, EGF-independent stimulation of ERK phosphorylation, but had no effect on Rac1 activation or PAK phosphorylation. Conclusion Our results indicate that increased migration of active Vav1 expressing cells is dependent on

  1. Adeno-associated virus type 2 infection activates caspase dependent and independent apoptosis in multiple breast cancer lines but not in normal mammary epithelial cells

    Directory of Open Access Journals (Sweden)

    Tandon Apurva

    2011-08-01

    Full Text Available Abstract Background In normal cells proliferation and apoptosis are tightly regulated, whereas in tumor cells the balance is shifted in favor of increased proliferation and reduced apoptosis. Anticancer agents mediate tumor cell death via targeting multiple pathways of programmed cell death. We have reported that the non-pathogenic, tumor suppressive Adeno-Associated Virus Type 2 (AAV2 induces apoptosis in Human Papillomavirus (HPV positive cervical cancer cells, but not in normal keratinocytes. In the current study, we examined the potential of AAV2 to inhibit proliferation of MCF-7 and MDA-MB-468 (both weakly invasive, as well as MDA-MB-231 (highly invasive human breast cancer derived cell lines. As controls, we used normal human mammary epithelial cells (nHMECs isolated from tissue biopsies of patients undergoing breast reduction surgery. Results AAV2 infected MCF-7 line underwent caspase-independent, and MDA-MB-468 and MDA-MB-231 cell lines underwent caspase-dependent apoptosis. Death of MDA-MB-468 cells was marked by caspase-9 activation, whereas death of MDA-MB-231 cells was marked by activation of both caspase-8 and caspase-9, and resembled a mixture of apoptotic and necrotic cell death. Cellular demise was correlated with the ability of AAV2 to productively infect and differentially express AAV2 non-structural proteins: Rep78, Rep68 and Rep40, dependent on the cell line. Cell death in the MCF-7 and MDA-MB-231 lines coincided with increased S phase entry, whereas the MDA-MB-468 cells increasingly entered into G2. AAV2 infection led to decreased cell viability which correlated with increased expression of proliferation markers c-Myc and Ki-67. In contrast, nHMECs that were infected with AAV2 failed to establish productive infection or undergo apoptosis. Conclusion AAV2 regulated enrichment of cell cycle check-point functions in G1/S, S and G2 phases could create a favorable environment for Rep protein expression. Inherent Rep associated

  2. Resident macrophages influence stem cell activity in the mammary gland

    OpenAIRE

    Gyorki, D.E.; Asselin-Labat, M.L.; Rooijen, van, J.; Lindeman, G J; Visvader, J E

    2009-01-01

    Introduction Macrophages in the mammary gland are essential for morphogenesis of the ductal epithelial tree and have been implicated in promoting breast tumor metastasis. Although it is well established that macrophages influence normal mammopoiesis, the mammary cell types that these accessory cells influence have not been determined. Here we have explored a role for macrophages in regulating mammary stem cell (MaSC) activity, by assessing the ability of MaSCs to reconstitute a mammary gland ...

  3. Lgr5-Expressing Cells Are Sufficient and Necessary for Postnatal Mammary Gland Organogenesis

    OpenAIRE

    Vicki Plaks; Audrey Brenot; Devon A. Lawson; Linnemann, Jelena R.; Eline C. Van Kappel; Karren C. Wong; Frederic de Sauvage; Ophir D. Klein; Zena Werb

    2013-01-01

    Mammary epithelial stem cells are vital to tissue expansion and remodeling during various phases of postnatal mammary development. Basal mammary epithelial cells are enriched in Wnt-responsive cells and can reconstitute cleared mammary fat pads upon transplantation into mice. Lgr5 is a Wnt-regulated target gene and was identified as a major stem cell marker in the small intestine, colon, stomach, and hair follicle, as well as in kidney nephrons. Here, we demonstrate the outstanding regenerati...

  4. Amino acids and mammary gland development: nutritional implications for milk production and neonatal growth

    OpenAIRE

    Rezaei, Reza; Wu, Zhenlong; Hou, Yongqing; Bazer, Fuller W.; Wu, Guoyao

    2016-01-01

    Milk is synthesized by mammary epithelial cells of lactating mammals. The synthetic capacity of the mammary gland depends largely on the number and efficiency of functional mammary epithelial cells. Structural development of the mammary gland occurs during fetal growth, prepubertal and post-pubertal periods, pregnancy, and lactation under the control of various hormones (particularly estrogen, growth hormone, insulin-like growth factor-I, progesterone, placental lactogen, and prolactin) in a ...

  5. Epithelial and endothelial expression of the green fluorescent protein reporter gene under the control of bovine prion protein (PrP) gene regulatory sequences in transgenic mice

    Science.gov (United States)

    Lemaire-Vieille, Catherine; Schulze, Tobias; Podevin-Dimster, Valérie; Follet, Jérome; Bailly, Yannick; Blanquet-Grossard, Françoise; Decavel, Jean-Pierre; Heinen, Ernst; Cesbron, Jean-Yves

    2000-05-01

    The expression of the cellular form of the prion protein (PrPc) gene is required for prion replication and neuroinvasion in transmissible spongiform encephalopathies. The identification of the cell types expressing PrPc is necessary to understanding how the agent replicates and spreads from peripheral sites to the central nervous system. To determine the nature of the cell types expressing PrPc, a green fluorescent protein reporter gene was expressed in transgenic mice under the control of 6.9 kb of the bovine PrP gene regulatory sequences. It was shown that the bovine PrP gene is expressed as two populations of mRNA differing by alternative splicing of one 115-bp 5' untranslated exon in 17 different bovine tissues. The analysis of transgenic mice showed reporter gene expression in some cells that have been identified as expressing PrP, such as cerebellar Purkinje cells, lymphocytes, and keratinocytes. In addition, expression of green fluorescent protein was observed in the plexus of the enteric nervous system and in a restricted subset of cells not yet clearly identified as expressing PrP: the epithelial cells of the thymic medullary and the endothelial cells of both the mucosal capillaries of the intestine and the renal capillaries. These data provide valuable information on the distribution of PrPc at the cellular level and argue for roles of the epithelial and endothelial cells in the spread of infection from the periphery to the brain. Moreover, the transgenic mice described in this paper provide a model that will allow for the study of the transcriptional activity of the PrP gene promoter in response to scrapie infection.

  6. Influence of Isoflavones on the Proliferation and Lactation of Mammary Epithelial Cells in Dairy Cow%大豆异黄酮对奶牛乳腺上皮细胞增殖及泌乳性能的影响

    Institute of Scientific and Technical Information of China (English)

    穆莹; 江连洲

    2013-01-01

    通过体外细胞培养方法研究大豆异黄酮对奶牛乳腺上皮细胞增殖及泌乳性能的影响.取对数生长期的奶牛乳腺上皮细胞,用无血清培养基培养24 h,使细胞同步化后分组试验.试验分空白对照组(0 mg/L大豆异黄酮)和添加不同浓度大豆异黄酮(1、10、100、1000 mg/L)组,培养48 h后,采用CASY细胞计数仪检测细胞增殖能力与活力,高效液相色谱检测β-酪蛋白和乳糖,甘油三酯检测试剂盒检测甘油三酯的分泌情况.结果表明,与对照组相比,10、100、1000 mg/L大豆异黄酮组奶牛乳腺上皮细胞的增殖能力与活力显著增强(P<0.05);细胞分泌β-酪蛋白、乳糖和甘油三酯的能力也显著提高(P<0.05).因此,添加10、100、1000 mg/L大豆异黄酮均能促进奶牛乳腺上皮细胞增殖及提高其泌乳性能,且呈一定的浓度依赖性.%Effect of isoflavones on the proliferation and lactation of mammary epithelial cell of dairy cow were determined in vitro. The mammary epithelial cells during the logarithm growing period were cultured with serum-free medium for 24 h and synchronized. The experiments were assigned into 5 groups(0,1,10,100 and 1000 mg/L isoflavones). After 48 h treated with different concentration of isoflavones, the proliferations and viabilities of cells were determined by CASY cell count technology. The secretion of β-casein and lactose of cells were determined by high efficiency liquid chromatography(HPLC) and the secretion of triglyceride of cells were determined by triglyceride test kit. The results showed that 10,100 and 1000 mg/L isoflavones significantly improved dairy cow mammary epithelial cell proliferation(P<0. 05) and the secretion of β-casein, lactose and triglyceride compared with the control group(P<0. 05). Therefore, 10,100 and 1000 mg/L of isoflavones could advance the proliferation and lactation of mammary epithelial cell of dairy cow,and it was concentration-dependent.

  7. Salivary α-amylase exhibits antiproliferative effects in primary cell cultures of rat mammary epithelial cells and human breast cancer cells

    OpenAIRE

    Bertram Catharina; Hass Ralf; Fedrowitz Maren; Löscher Wolfgang

    2011-01-01

    Abstract Background Breast cancer is one of the most diagnosed cancers in females, frequently with fatal outcome, so that new strategies for modulating cell proliferation in the mammary tissue are urgently needed. There is some, as yet inconclusive evidence that α-amylase may constitute a novel candidate for affecting cellular growth. Methods The present investigation aimed to examine if salivary α-amylase, an enzyme well known for the metabolism of starch and recently introduced as a stress ...

  8. In vitro replication activity of bovine viral diarrhea virus in an epithelial cell line and in bovine peripheral blood mononuclear cells.

    Science.gov (United States)

    Turin, Lauretta; Lucchini, Barbara; Bronzo, Valerio; Luzzago, Camilla

    2012-11-01

    The present study focused on the in vitro infection of Madin-Darby bovine kidney (MDBK) cells and bovine peripheral blood mononuclear cells (PBMCs) from naÏve animals with non-cytopathic (ncp, BVDV-1b NY-1) and cytopathic (cp, BVDV-1a NADL) strains. Infections with 0.1 and 1 multiplicity of infections (MOI) and incubation times of 18 and 36 hr were compared. Twelve BVDV naÏve heifers were enrolled to collect PBMCs. The viral loads in MDBK cells and in PBMCs after in vitro infections were measured by real-time polymerase chain reaction (PCR) assays. The highest viral loads were measured at 1 MOI and 36 hr post infection in both cell systems and the lowest at 0.1 MOI and 18 hr with the exception of the cp strain NADL in PBMCs, for which the highest viral load was observed at 0.1 MOI and 36 hr. Viral load mean values were higher for the cp strain than the ncp strain irrespective of the extent of the infection period and MOI. The models of infection studied uncovered different replication activities respectively according to the biotype of virus, the cell substrate and the duration of infection. Replication tends to be higher in PBMCs, particularly at low MOIs and for the ncp strain.

  9. Enhanced Expression of Integrin αvβ3 Induced by TGF-β Is Required for the Enhancing Effect of Fibroblast Growth Factor 1 (FGF1 in TGF-β-Induced Epithelial-Mesenchymal Transition (EMT in Mammary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Seiji Mori

    Full Text Available Epithelial-to-mesenchymal transition (EMT plays a critical role in cancer metastasis, and is regulated by growth factors such as transforming growth factor β (TGF-β and fibroblast growth factors (FGF secreted from the stromal and tumor cells. However, the role of growth factors in EMT has not been fully established. Several integrins are upregulated by TGF-β1 during EMT. Integrins are involved in growth factor signaling through integrin-growth factor receptor crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and the interaction was required for FGF1 functions such as cell proliferation and migration. We studied the role of αvβ3 induced by TGF-β on TGF-β-induced EMT. Here, we describe that FGF1 augmented EMT induced by TGF-β1 in MCF10A and MCF12A mammary epithelial cells. TGF-β1 markedly amplified integrin αvβ3 and FGFR1 (but not FGFR2. We studied if the enhancing effect of FGF1 on TGF-β1-induced EMT requires enhanced levels of both integrin αvβ3 expression and FGFR1. Knockdown of β3 suppressed the enhancement by FGF1 of TGF-β1-induced EMT in MCF10A cells. Antagonists to FGFR suppressed the enhancing effect of FGF1 on EMT. Integrin-binding defective FGF1 mutant did not augment TGF-β1-induced EMT in MCF10A cells. These findings suggest that enhanced integrin αvβ3 expression in addition to enhanced FGFR1 expression is critical for FGF1 to augment TGF-β1-induced EMT in mammary epithelial cells.

  10. Antibodies against invasive phenotype-specific antigens increase Mycobacterium avium subspecies paratuberculosis translocation across a polarized epithelial cell model and enhance killing by bovine macrophages.

    Science.gov (United States)

    Everman, Jamie L; Bermudez, Luiz E

    2015-01-01

    Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a severe chronic enteritis which affects large populations of ruminants globally. Prevention strategies to combat the spread of Johne's disease among cattle herds involve adhering to strict calving practices to ensure young susceptible animals do not come in contact with MAP-contaminated colostrum, milk, or fecal material. Unfortunately, the current vaccination options available are associated with high cost and suboptimal efficacy. To more successfully combat the spread of Johne's disease to young calves, an efficient method of protection is needed. In this study, we examined passive immunization as a mode of introducing protective antibodies against MAP to prevent the passage of the bacterium to young animals via colostrum and milk. Utilizing the infectious MAP phenotype developed after bacterial exposure to milk, we demonstrate that in vitro opsonization with serum from Johne's-positive cattle results in enhanced translocation across a bovine MDBK polarized epithelial cell monolayer. Furthermore, immune serum opsonization of MAP results in a rapid host cell-mediated killing by bovine macrophages in an oxidative-, nitrosative-, and extracellular DNA trap-independent manner. This study illustrates that antibody opsonization of MAP expressing an infectious phenotype leads to the killing of the bacterium during the initial stage of macrophage infection. PMID:26301206

  11. Mammary leptin synthesis, milk leptin and their putative physiological roles

    OpenAIRE

    Bonnet, Muriel; Delavaud, Carole; Laud, Karine; Gourdou, Isabelle; Leroux, Christine; Djiane, Jean; Chilliard, Yves

    2002-01-01

    International audience This paper reviews data on mammary leptin and leptin receptor gene expression as well as on blood and milk leptin levels during the pregnancy-lactation cycle in humans, rodents and ruminants, with the aim of better understanding milk leptin origin and functions. The few published papers report that leptin may be produced by different cell types in the mammary tissue, and may act as a paracrine factor on mammary epithelial cell proliferation, differentiation and/or ap...

  12. Mammary development and breast cancer: the role of stem cells

    OpenAIRE

    Ercan, C.; J. van Diest, P.; Vooijs, M.

    2011-01-01

    The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation and involution, a process controlled by stem cells. The last decade much progress has been made in the identification of signaling pathways that function in these stem cells to control self-renewal, lineage commitment and epithelial differentiation in the normal mammary gland. The same signaling pathways that control physiological mammary development and homeostasis are also often fou...

  13. PTEN Loss in E-Cadherin-Deficient Mouse Mammary Epithelial Cells Rescues Apoptosis and Results in Development of Classical Invasive Lobular Carcinoma.

    Science.gov (United States)

    Boelens, Mirjam C; Nethe, Micha; Klarenbeek, Sjoerd; de Ruiter, Julian R; Schut, Eva; Bonzanni, Nicola; Zeeman, Amber L; Wientjens, Ellen; van der Burg, Eline; Wessels, Lodewyk; van Amerongen, Renée; Jonkers, Jos

    2016-08-23

    Invasive lobular carcinoma (ILC) is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary epithelium, we generated a mouse model of classical ILC (CLC), the main histological ILC subtype. While loss of E-cadherin induced cell dissemination and apoptosis, additional PTEN inactivation promoted cell survival and rapid formation of invasive mammary tumors that recapitulate the histological and molecular features, estrogen receptor (ER) status, growth kinetics, metastatic behavior, and tumor microenvironment of human CLC. Combined inactivation of E-cadherin and PTEN is sufficient to cause CLC development. These CLCs showed significant tumor regression upon BEZ235-mediated inhibition of PI3K signaling. In summary, this mouse model provides important insights into CLC development and suggests inhibition of phosphatidylinositol 3-kinase (PI3K) signaling as a potential therapeutic strategy for targeting CLC. PMID:27524621

  14. Expression of growth hormone in canine mammary tissue and mammary tumors. Evidence for a potential autocrine/paracrine stimulatory loop.

    OpenAIRE

    Van Garderen, E.; Wit, M. de; Voorhout, W F; Rutteman, G. R.; Mol, J.A.; Nederbragt, H; Misdorp, W.

    1997-01-01

    The role of progestins in the pathogenesis of breast cancer in women remains controversial. To advance this discussion, we report the demonstration and localization of progestin-induced biosynthesis of growth hormone (GH) in canine mammary gland tissue. Nontumorous mammary tissues and tumors, both benign and malignant, were obtained from private household dogs. Immunoreactive GH was localized in mammary epithelial cells and correlated with the presence of GH mRNA. Local synthesis of GH was al...

  15. 奶山羊乳腺上皮细胞的体外培养及形态观察%Study on the cultivation and morphological observation of dairy goat's mammary gland epithelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    杨雪峰; 姜金庆; 孙红武; 欧阳五庆

    2011-01-01

    【Objective】 The aim of this paper was to establish a method of the dairy goat mammary gland epithelial cells in vitro,and to observe the morphology of the cultured primary and passage cells.【Method】 Two cultural methods of the tissue and collagenase digestion were respectively used for culturing the primary mammary gland epithelial cells in vitro.The method of the trypsinization combining the repeat adherence was utilized for purifying the cells,and the immunohistochemistry method was used for identifying the cells.At the same time the morphology of the primary and the passage cells was observed by the inverted microscope.【Result】 The primary cells also could be cultured by the tissue and collagenase digestion cultural methods.The purified cells were orbicular-ovate or polygon,forming a typical cobblestone-like or slab stone-like appearance,and the cytokeratin detection was positive.After the high passage the cells could be differentiated into many morphous varieties,and the proliferative ability was still high.【Conclusion】 The culture method of the diary goat mammary gland epithelial cells was constructed in vitro.This method was simple,maneuverable,economic and pragmatic.%【目的】建立奶山羊乳腺上皮细胞体外培养方法,并对原代和传代细胞进行形态观察。【方法】分别采用组织块法和胶原酶消化法培养奶山羊原代乳腺上皮细胞,然后通过胰酶消化法结合反复贴壁法纯化细胞,免疫组化法鉴定细胞,并利用倒置显微镜观察细胞形态。【结果】组织块法和胶原酶消化法均能培养奶山羊原代乳腺上皮细胞;纯化获得的细胞呈卵圆形或多角形,形成典型的鹅卵石或铺路石样,且细胞角蛋白检测呈阳性;多次传代后乳腺上皮细胞出现分化现象,形态多样,增殖仍然旺盛。【结论】成功建立了一种简单易行、经济而实用的奶山羊乳腺上皮细胞体外培养方法。

  16. Resident macrophages influence stem cell activity in the mammary gland

    NARCIS (Netherlands)

    Gyorki, D.E.; Asselin-Labat, M.L.; Rooijen, van N.; Lindeman, G.J.; Visvader, J.E.

    2009-01-01

    Introduction Macrophages in the mammary gland are essential for morphogenesis of the ductal epithelial tree and have been implicated in promoting breast tumor metastasis. Although it is well established that macrophages influence normal mammopoiesis, the mammary cell types that these accessory cells

  17. Mammary remodeling in primiparous and multiparous dairy goats during lactation

    DEFF Research Database (Denmark)

    Safayi, Sina; Theil, Peter Kappel; Elbrønd, Vibeke Sødring;

    2010-01-01

    Milk production is generally lower but lactation persistency higher in primiparous (PP) than in multiparous (MP) goats. This may be related to differences in development and maintenance of mammary gland function, but the underlying mechanisms are not well understood. The present study aimed...... to elucidate whether differences in lactational performance between PP and MP mammary glands are related to the time course of development and maintenance, not only of the mammary epithelial cell (MEC) population, but also of the mammary vasculature that sustains synthetic activity. Mammary biopsies were...... obtained from both mammary glands of 3 PP and 6 MP (=2 parity) dairy goats at parturition (d 1), d 10, 60, and 180 of lactation. Gene transcription relating to MEC turnover and vascular function was quantified by real-time reverse transcription-PCR, mammary morphology was characterized (quantitative...

  18. Loss of vitamin D receptor signaling from the mammary epithelium or adipose tissue alters pubertal glandular development.

    Science.gov (United States)

    Johnson, Abby L; Zinser, Glendon M; Waltz, Susan E

    2014-10-15

    Vitamin D₃ receptor (VDR) signaling within the mammary gland regulates various postnatal stages of glandular development, including puberty, pregnancy, involution, and tumorigenesis. Previous studies have shown that vitamin D₃ treatment induces cell-autonomous growth inhibition and differentiation of mammary epithelial cells in culture. Furthermore, mammary adipose tissue serves as a depot for vitamin D₃ storage, and both epithelial cells and adipocytes are capable of bioactivating vitamin D₃. Despite the pervasiveness of VDR in mammary tissue, individual contributions of epithelial cells and adipocytes, as well as the VDR-regulated cross-talk between these two cell types during pubertal mammary development, have yet to be investigated. To assess the cell-type specific effect of VDR signaling during pubertal mammary development, novel mouse models with mammary epithelial- or adipocyte-specific loss of VDR were generated. Interestingly, loss of VDR in either cellular compartment accelerated ductal morphogenesis with increased epithelial cell proliferation and decreased apoptosis within terminal end buds. Conversely, VDR signaling specifically in the mammary epithelium modulated hormone-induced alveolar growth, as ablation of VDR in this cell type resulted in precocious alveolar development. In examining cellular cross-talk ex vivo, we show that ligand-dependent VDR signaling in adipocytes significantly inhibits mammary epithelial cell growth in part through the vitamin D₃-dependent production of the cytokine IL-6. Collectively, these studies delineate independent roles for vitamin D₃-dependent VDR signaling in mammary adipocytes and epithelial cells in controlling pubertal mammary gland development.

  19. Functional Characterization of Stem Cell Activity in the Mouse Mammary Gland

    OpenAIRE

    Bruno, Robert D.; Smith, Gilbert H.

    2011-01-01

    Any portion of the mouse mammary gland is capable of recapitulating a clonally derived complete and functional mammary tree upon transplantation into an epithelial divested mammary fat-pad of a recipient host. As such, it is an ideal model tissue for the study somatic stem cell function. This review will outline what is known regarding the function of stem/progenitor cells in the mouse mammary gland, including how progenitor populations can be functionally defined, the evidence for and potent...

  20. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    Science.gov (United States)

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-01

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1.

  1. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung-Hoon; Kim, Do-Hee [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Na, Hye-Kyung [Department of Food and Nutrition, Sungshin Women' s University, Seoul (Korea, Republic of); Kim, Jung-Hwan; Kim, Ha-Na [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Haegeman, Guy [LEGEST, University of Gent (Belgium); Surh, Young-Joon, E-mail: surh@snu.ac.kr [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2014-10-15

    Genistein, an isoflavone present in soy products, has chemopreventive effects on mammary carcinogenesis. In the present study, we have investigated the effects of genistein on phorbol ester-induced expression of cyclooxygenase-2 (COX-2) that plays an important role in the pathophysiology of inflammation-associated carcinogenesis. Pretreatment of cultured human breast epithelial (MCF10A) cells with genistein reduced COX-2 expression induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). There are multiple lines of evidence supporting that the induction of COX-2 is regulated by the eukaryotic transcription factor NF-κB. Genistein failed to inhibit TPA-induced nuclear translocation and DNA binding of NF-κB as well as degradation of IκB. However, genistein abrogated the TPA-induced transcriptional activity of NF-κB as determined by the luciferase reporter gene assay. Genistein inhibited phosphorylation of the p65 subunit of NF-κB and its interaction with cAMP regulatory element-binding protein-binding protein (CBP)/p300 and TATA-binding protein (TBP). TPA-induced NF-κB phosphorylation was abolished by pharmacological inhibition of extracellular signal-regulated kinase (ERK). Likewise, pharmacologic inhibition or dominant negative mutation of ERK suppressed phosphorylation of p65. The above findings, taken together, suggest that genistein inhibits TPA-induced COX-2 expression in MCF10A cells by blocking ERK-mediated phosphorylation of p65 and its subsequent interaction with CBP and TBP.

  2. P-Cadherin Expression in Feline Mammary Tissues

    Directory of Open Access Journals (Sweden)

    Ana Catarina Figueira

    2012-01-01

    Full Text Available The search for molecular markers in the feline mammary gland, namely, the adhesion molecules belonging to the cadherin family, is useful in the understanding of the development of mammary carcinomas in felines and humans. To study P-cadherin expression in the feline mammary gland, 61 samples of normal (n=4, hyperplastic (n=12, and neoplastic (n=45 feline mammary tissues were examined. In both normal and hyperplastic mammary tissues as well as in benign tumours, P-cadherin immunolabelling was restricted to myoepithelial cells. In malignant tumours, however, there was an aberrant epithelial P-cadherin immunoexpression in 64.1% (n=25 of cases, with a membranous and/or cytoplasmic pattern of distribution. A statistically significant relationship was seen between epithelial P-cadherin expression and malignant mammary lesions (P=0.0001. In malignant mammary tumours, there was likewise a statistically significant relationship between aberrant P-cadherin immunoexpression and histological grade (P=0.0132. Aberrant epithelial P-cadherin expression seems to be related to malignancy in the feline mammary gland. To confirm the results of this investigation, further studies with larger samples and follow-up studies are warranted.

  3. Imunidade inata da glândula mamária bovina: resposta à infecção Innate immunity of the bovine mammary gland: response to infection

    Directory of Open Access Journals (Sweden)

    Deolinda Maria Vieira Filha Carneiro

    2009-09-01

    infection's site by numerous stimulations, and these answers are not enhanced by repeated exposure to the same agent. The first obstacle to be faced by the agent is the barrier represented by the teat sphincter and the keratin plug. When the pathogenic agent crosses the teat canal and reaches the teat cistern, starts to act the humoral factors and the phagocytic cells starts do act. Among the humoral mediators there are the lactoperoxidase, complement, cytokines, lactoferrin, lysozyme and NAGase. The non-specific cellular defenses are represented by neutrophils, macrophages and natural killer cells. If these mechanisms have been functioning adequately, the majority of pathogens will be eliminated in a short time, before the specific immune system be activated. The fast elimination of the microorganisms will not allow these alterations in the amount or quality of produced milk. The best understanding of the defense mechanisms of the mammary gland and its alterations during the critical periods of infection, is an useful tool in devising and developing methods to control the mastitis, the major illness of dairy ruminants. This paper overviewed the most important aspects of the innate immunity of bovine mammary gland.

  4. The effect of DDT and its metabolite (DDE) on prostaglandin secretion from epithelial cells and on contractions of the smooth muscle of the bovine oviduct in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wrobel, Michal H.; Mlynarczuk, Jaroslaw; Kotwica, Jan, E-mail: janko@pan.olsztyn.pl

    2012-03-01

    The insecticide DDT and its metabolite (DDE), due to their lipolytic nature and resistance to biodegradation, are accumulated in the living tissues. In cows, DDT and DDE were found to affect prostaglandin (PG) secretion from the endometrium and contractions of the myometrium. In this study, the impact of both xenobiotics (0.1, 1, 10 or 100 ng/ml) on the function of epithelial cells and muscle strips of bovine oviducts from 1 to 5 day of the oestrous cycle was examined. Therefore the concentration of PGE2 and PGFM (a metabolite of PGF2α) in culture media, mRNA expression of genes involved in PGs synthesis in epithelial cells and the force and amplitude of strips contractions were measured after 2 and 24 or 48 h of incubation. Neither DDT nor DDE affected the viability of cells after 48 h (P > 0.05). Both DDT and DDE increased the concentrations of PGFM in culture medium and secretion of PGE2 after only 2 h of cell culture (P < 0.05). Similar effects were seen for the influence of DDE on amount of PGFM after 48 h, while DDT decreased secretion of PGE2 (P < 0.05). DDT after 2 h increased (P < 0.05) mRNA expression of PGF2α synthase (PGFS), while both xenobiotics decreased (P < 0.05) mRNA expression of cyclooxygenase-2 (COX-2) after 24 h. DTT also increased the force of isthmus contractions after 2 h, as did both xenobiotics after 48 h (P < 0.05). Moreover, after 2 and 48 h, DDE stimulated the amplitude of contractions of the isthmus as well as the ampulla, (P < 0.05). The effect of both compounds on oviduct contractions was diminished by indomethacin, which blocks PG synthesis. We conclude that oviductal secretion of prostaglandins is affected, by DDT and DDE. The influence of these xenobiotics on PGF2α and PGE2 secretion and ratio may be part of the mechanism by which both DDT and its metabolite disturb the contractions of oviductal muscle. -- Highlights: ► DDT and its metabolite – DDE are accumulated in the living tissues. ► The insecticides affected PGF2

  5. Clock circadian regulator (CLOCK) gene network expression patterns in bovine adipose, liver, and mammary gland at 3 time points during the transition from pregnancy into lactation.

    Science.gov (United States)

    Wang, M; Zhou, Z; Khan, M J; Gao, J; Loor, J J

    2015-07-01

    The transition from late gestation to early lactation is the most critical phase of the lactation cycle for mammals. Research in rodents has revealed changes in the clock circadian regulator (CLOCK) gene network expression around parturition. However, their expression profiles and putative functions during the periparturient period in ruminants remain to be determined. The present study aimed to investigate the expression pattern of the CLOCK network and selected metabolic genes simultaneously in mammary gland (MG), liver (LIV), and subcutaneous adipose tissue (AT). Seven dairy cows were biopsied at -10 (±2), 7, and 21 d relative to parturition. A day × tissue interaction was observed for ARNTL, CRY1, and PER2 due to upregulation at 7 and 21 d postpartum, with their expression being greater in AT and MG compared with LIV. No interaction was detected for CLOCK, CRY2, PER1, and PER3. In general, the expression of NPAS2, NR1D1, NR2F2, ALAS1, FECH, FBXW11, CCRN4L, PPARA, PPARGC1A, and FGF21 was lower at -10 d but increased postpartum in all tissues. The interaction detected for CSNK1D was associated with increased expression postpartum in AT and MG but not LIV. The interaction detected for CPT1A was due to upregulation in AT and LIV postpartum without a change in MG. In contrast, the interaction for PPARG was due to upregulation in AT and MG postpartum but a downregulation in LIV. Leptin was barely detectable in LIV, but there was an interaction effect in AT and MG associated with upregulation postpartum in MG and downregulation in AT. Together, these results suggest that the control of metabolic adaptations in LIV, MG, and AT around parturition might be partly regulated through the CLOCK gene network. Although the present study did not specifically address rhythmic control of tissue metabolism via the CLOCK gene network, the difference in expression of genes studied among tissues confirms that the behavior of circadian-controlled metabolic genes around parturition

  6. Persistence of gamma-H2AX and 53BP1 foci in proliferating and nonproliferating human mammary epithelial cells after exposure to gamma-rays or iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Groesser, Torsten; Chang, Hang; Fontenay, Gerald; Chen, James; Costes, Sylvain V.; Barcellos-Hoff, Mary Helen; Parvin, Bahram; Rydberg, Bjorn

    2010-12-22

    To investigate {gamma}-H2AX (phosphorylated histone H2AX) and 53BP1 (tumour protein 53 binding protein No. 1) foci formation and removal in proliferating and non-proliferating human mammary epithelial cells (HMEC) after exposure to sparsely and densely ionizing radiation under different cell culture conditions. HMEC cells were grown either as monolayers (2D) or in extracellular matrix to allow the formation of acinar structures in vitro (3D). Foci numbers were quantified by image analysis at various time points after exposure. Our results reveal that in non-proliferating cells under 2D and 3D cell culture conditions, iron-ion induced {gamma}-H2AX foci were still present at 72 h after exposure, although 53BP1 foci returned to control levels at 48 h. In contrast in proliferating HMEC, both {gamma}-H2AX and 53BP1 foci decreased to control levels during the 24-48 h time interval after irradiation under 2D conditions. Foci numbers decreased faster after {gamma}-ray irradiation and returned to control levels by 12 h regardless of marker, cell proliferation status, and cell culture condition. Conclusions: The disappearance of radiation induced {gamma}-H2AX and 53BP1 foci in HMEC have different dynamics that depend on radiation quality and proliferation status. Notably, the general patterns do not depend on the cell culture condition (2D versus 3D). We speculate that the persistent {gamma}-H2AX foci in iron-ion irradiated non-proliferating cells could be due to limited availability of double strand break (DSB) repair pathways in G0/G1-phase, or that repair of complex DSB requires replication or chromatin remodeling.

  7. Juvenile mammary papillomatosis; Papilomatosis juvenil mamaria

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, M.; Jimenez, A. V. [Hospital Reina Sofia. Cordoba (Spain)

    2001-07-01

    Juvenile mammary papillomatosis is a benign proliferative disease of young patients, generally under 30 years of age. The most frequent clinical presentation is the existence of an elastic and mobile lymph node of the breast. Anatomopathologically, it is characterized because it presents ductal epithelial hyperplasia, sometimes with marked atypia, and there are numerous cysts having different sizes among the findings. It has been associated with an increase in the incidence of breast cancer, both in the patient herself as well as her family. We review the literature on the subject and present the mammographic and ultrasonographic findings of a 22 year old woman diagnosed of juvenile mammary papillomatosis. (Author) 12 refs.

  8. Role of JNK in mammary gland development and breast cancer

    OpenAIRE

    Cellurale, Cristina; Girnius, Nomeda; Jiang, Feng; Cavanagh-Kyros, Julie; Lu, Shaolei; Garlick, David S.; Mercurio, Arthur M.; Davis, Roger J

    2011-01-01

    JNK signaling has been implicated in the developmental morphogenesis of epithelial organs. In this study we employed a compound deletion of the murine Jnk1 and Jnk2 genes in the mammary gland to evaluate the requirement for these ubiquitously expressed genes in breast development and tumorigenesis. JNK1/2 was not required for breast epithelial cell proliferation or motility. However, JNK1/2 deficiency caused increased branching morphogenesis and defects in the clearance of lumenal epithelial ...

  9. Establishment of Mouse Mammary Epithelial Cell Culture System and Study on the Modulation of Heregulin-a Factor%小鼠乳腺上皮细胞培养体系的建立及Heregulin-α的调控作用

    Institute of Scientific and Technical Information of China (English)

    耿丽晶; 张以涛; 林叶; 李庆章

    2011-01-01

    This study amis to establish and perfect the mouse mammary epithelial cell culture system, and to discuss the effect of Heregulin-α (HRG-α) on the mammary epithelial cell proliferation and metabolism within this cell system. It provides important theoretical basis for further research on mammary epithelial cell morphology, structure and function, and reveals the effect and laws of HRG-α in mouse mammary gland development. By comparing the mouse mammary cell growth in different culture media of different pH, serum concentration ratio, we have found that the culture medium of pH 7.4, supplemented with 10% serum was the best conditions for the growth of mammary epithelial cells. Through the use of phase contrast microscopy technology, MTr assay, and other techniques and research methods, this study compared mammary epithelial cell morphology, inoculation survival rate, doubling time, growth curves of biological characteristics at different periods derived. We have found that the good breast cells from the period was the 15 d pregnant mouse mammary. On this basis, important cell marker protein keratin-18 was detected by immunohistochemistry and RT-PCR, to further identify the cells obtained by mammary epithelial cells. Mouse mammary epithelial cells (MMECs) were successfully established in vitro culture system. By liquid chromatography and MTT, the study discusses the effects of HRG-α on MMECs in the established cell culture system in vitro. The result showes that MMECs' cell growth and total secretion proteins and lactose were significantly promoted by the appropriate amount of HRG-α. 0.1~20 ng/mL HRG-α could promote MMECs to proliferate and total proteins and lactose content to increase. The maximum value was HRG-α at the concentration of 20 ng/mL. 50 ng/mL, 100 ng/mL HRG-α inhibited the proliferation of MMECs, and decreased the total proteins and lactose content of MMECs.%旨在建立完善的小鼠乳腺上皮细胞体外培养体系,探讨Heregulin-

  10. Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARγ signaling as potential mechanism for the negative relationships between immune response and lipid metabolism

    OpenAIRE

    Rodriguez-Zas Sandra L; Bionaz Massimo; Morin Dawn E; Drackley James K; Moyes Kasey M; Everts Robin E; Lewin Harris A; Loor Juan J

    2009-01-01

    Abstract Background Information generated via microarrays might uncover interactions between the mammary gland and Streptococcus uberis (S. uberis) that could help identify control measures for the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare, and decrease economic losses to dairy farmers. The main objective of this study was to determine the most affected gene networks and pathways in mammary tissue in response to an intramammary infection...

  11. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis

    Science.gov (United States)

    Karantza-Wadsworth, Vassiliki; Patel, Shyam; Kravchuk, Olga; Chen, Guanghua; Mathew, Robin; Jin, Shengkan; White, Eileen

    2007-01-01

    Autophagy is a catabolic process involving self-digestion of cellular organelles during starvation as a means of cell survival; however, if it proceeds to completion, autophagy can lead to cell death. Autophagy is also a haploinsufficient tumor suppressor mechanism for mammary tumorigenesis, as the essential autophagy regulator beclin1 is monoallelically deleted in breast carcinomas. However, the mechanism by which autophagy suppresses breast cancer remains elusive. Here we show that allelic loss of beclin1 and defective autophagy sensitized mammary epithelial cells to metabolic stress and accelerated lumen formation in mammary acini. Autophagy defects also activated the DNA damage response in vitro and in mammary tumors in vivo, promoted gene amplification, and synergized with defective apoptosis to promote mammary tumorigenesis. Therefore, we propose that autophagy limits metabolic stress to protect the genome, and that defective autophagy increases DNA damage and genomic instability that ultimately facilitate breast cancer progression. PMID:17606641

  12. 14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Lixin Liu

    2015-07-01

    Full Text Available As a protective factor for lipopolysaccharide (LPS-induced injury, 14-3-3γ has been the subject of recent research. Nevertheless, whether 14-3-3γ can regulate lactation in dairy cow mammary epithelial cells (DCMECs induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3γ in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3γ overexpression significantly inhibited the mRNA expression of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, interleukin-1β (IL-1β and inducible nitric oxide synthase (iNOS. Enzyme-linked immunosorbent assay (ELISA analysis revealed that 14-3-3γ overexpression also suppressed the production of TNF-α and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3γ overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3γ overexpression promoted the secretion of triglycerides and lactose and the synthesis of β-casein. Furthermore, the expression of genes relevant to nuclear factor-κB (NF-κB and mitogen-activated protein kinase (MAPKs and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3γ overexpression inactivated the NF-κB and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK, p38 mitogen-activated protein kinase (p38MAPK and inhibitor of NF-κB (IκB phosphorylation levels, as well as by inhibiting NF-κB translocation. Meanwhile, 14-3-3γ overexpression enhanced the expression levels of β-casein, mammalian target of rapamycin (mTOR, ribosomal protein S6 kinase 1 (S6K1, serine/threonine protein kinase Akt 1 (AKT1, sterol regulatory element binding protein 1 (SREBP1 and peroxisome proliferator-activated receptor gamma

  13. Signalling pathways implicated in early mammary gland morphogenesis and breast cancer.

    Directory of Open Access Journals (Sweden)

    Beatrice Howard

    2006-08-01

    Full Text Available Specification of mammary epithelial cell fate occurs during embryogenesis as cells aggregate to form the mammary anlage. Within the embryonic mammary bud, a population of epithelial cells exists that will subsequently proliferate to form a ductal tree filling the stromal compartment, and which can produce milk upon terminal differentiation after birth. Subsequently, these structures can be remodelled and returned to a basal state after weaning before regenerating in future pregnancies. The plasticity of the mammary epithelial cell, and its responsiveness to hormone receptors, facilitates this amazing biological feat, but aberrant signalling may also result in unintended consequences in the form of frequent malignancies. Reflecting this intimate connection, a considerable number of signalling pathways have been implicated in both mammary gland morphogenesis and carcinogenesis.

  14. Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture

    OpenAIRE

    Talhouk, Rabih S.; CHIN, JENNIE R.; UNEMORI, ELAINE N.; Werb, Zena; Bissell, Mina J.

    1991-01-01

    The extracellular matrix (ECM) is an important regulator of mammary epithelial cell function both in vivo and in culture. Substantial remodeling of ECM accompanies the structural changes in the mammary gland during gestation, lactation and involution. However, little is known about the nature of the enzymes and the processes involved. We have characterized and studied the regulation of cell-associated and secreted mammary gland proteinases active at neutral pH that may be involved in degradat...

  15. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways

    OpenAIRE

    Lund, Leif R.; Rømer, John; Thomasset, Nicole; Solberg, Helene; Pyke, Charles; Bissell, Mina J.; Danø, Keld; Werb, Zena

    1996-01-01

    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when ...

  16. Study on apoptosis of bovine mammary gland in different development stages%奶牛不同发育时期乳腺细胞凋亡规律的研究

    Institute of Scientific and Technical Information of China (English)

    肖阳; 李庆章; 张莉

    2012-01-01

    为系统地研究奶牛乳腺不同发育时期细胞凋亡的规律,应用TUNEL法对奶牛不同发育时期正常乳腺组织(冰冻切片)的乳腺细胞凋亡进行了系统检测.结果表明,青春期乳腺发育缓慢,结构变化较小,乳腺细胞凋亡量相对较少;妊娠期乳腺导管持续发育,凋亡量上升,其中妊娠初期2月,乳腺腺泡大量出现,脂肪细胞凋亡随之增加,出现了一个高峰;泌乳期乳腺的结构和功能最为完善,乳腺结构变化很小,细胞凋亡量维持在很低水平;退化期腺泡瓦解,大量细胞发生凋亡,其中退化初期乳腺细胞凋亡持续增加,退化3d达到最大值,之后凋亡量逐渐降低,退化30 d后乳腺已经基本恢复到青春期状态,凋亡细胞量也随之减少.%The purpose is to explore the regulation of apoptosis at different developmental stages in dairy cow mammary gland. Normal cow mammary gland tissues of different developmental stages were sliced in frozen. TUNEL was used to detect the apoptosis of mammary cell. The results showed that the virgin mammary gland developed slowly, little changes in mammary gland, and at this time, no apoptosis was detected. In pregnancy, mammary gland ductal continued to grow, and apoptosis increased. In initial pregnancy 2m, there were a lot of gland alveolus and simultaneously adipocyte apoptosis began to increase, and appearing a secondary apoptosis peak. In lactation, the structure and function of mammary gland were most complete, no changes in mammary gland structure and apoptosis level was low. In involution, gland alveolus collapsed and a lot of cells were apoptosis. In involution 3d, the apoptosis was highest and then decreased. In involution 30d, the mammary gland was recovered and apoptosis decreased.

  17. Mammary stem cells: Novel markers and novel approaches to increase lactation efficiency

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue r...

  18. Lineage associated expression of virulence traits in bovine-adapted Staphylococcus aureus.

    Science.gov (United States)

    Budd, Kathleen E; Mitchell, Jennifer; Keane, Orla M

    2016-06-30

    Bovine mastitis is the most costly disease to the dairy industry worldwide with Staphylococcus aureus commonly associated with intramammary infections that are persistent and refractory to treatment. The strains of S. aureus that cause mastitis predominantly belong to a number of well-described bovine-adapted lineages. The objective of this study was to determine if a variety of potential virulence traits were associated with lineage. Bovine-adapted S. aureus isolates (n=120), belonging to lineages CC97, CC151 and ST136, were tested for their ability to adhere to and internalise within cultured bovine mammary epithelial cells (bMEC), to bind bovine fibronectin, to form a biofilm in TSB, TSB+1% glucose and TSB+4% NaCl, and to induce an immune response from bMEC. There were no significant differences between the lineages in ability to adhere to or internalise within bMEC although there were significant differences between individual isolates. For lineages CC97 and ST136, mammalian cell adherence was correlated with the ability to bind bovine fibronectin, however isolates from CC151 could not bind bovine fibronectin in vitro, but adhered to bMEC in a fibronectin-independent manner. There were significant differences between the lineages in ability to form a biofilm in all three growth media with ST136 forming the strongest biofilm while CC151 formed the weakest biofilm. Lineages also differed in their ability to elicit an immune response from bMEC with CC97 eliciting a stronger immune response than CC151 and ST136. These data indicate the potential for both lineage and strain-specific virulence and a strain-specific response to infection in vivo and caution against extrapolating an effect from a single strain of S. aureus to draw conclusions regarding virulence or the host response to infection in unrelated lineages. PMID:27259823

  19. BOVINE VIRAL DIARRHEA VIRUSES

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is an umbrella term for two species of viruses, BVDV1 and BVDV2, within the Pestivirus genus of the Flavivirus family. BVDV viruses are further subclassified as cytopathic and noncytopathic based on their activity in cultured epithelial cells. Noncytopathic BVDV p...

  20. Pharmacokinetics and pharmacodynamics of gamithromycin in pulmonary epithelial lining fluid in naturally occurring bovine respiratory disease in multisource commingled feedlot cattle

    Science.gov (United States)

    The overall objectives of this study were to determine if a correlation exists between individual pharmacokinetic parameters and treatment outcome when feeder cattle were diagnosed with bovine respiratory disease (BRD) and treated with gamithromycin (Zactran®) at the label dose, and if there was a s...

  1. Prolactin Suppression of Gonadotropin-Releasing Hormone Initiation of Mammary Gland Involution in Female Rats.

    Science.gov (United States)

    Rieanrakwong, Duangjai; Laoharatchatathanin, Titaree; Terashima, Ryota; Yonezawa, Tomohiro; Kurusu, Shiro; Hasegawa, Yoshihisa; Kawaminami, Mitsumori

    2016-07-01

    It has been demonstrated that mammary gland involution after lactation is initiated by accumulation of milk in alveoli after weaning. Here, we report that involution is also dependent on mammary GnRH expression that is suppressed by PRL during lactation. Reduction of plasma prolactin (PRL) by the withdrawal of suckling stimuli increased GnRH and annexin A5 (ANXA5) expression in the mammary tissues after lactation with augmentation of epithelial apoptosis. Intramammary injection of a GnRH antagonist suppressed ANXA5 expression and apoptosis of epithelial cells after forcible weaning at midlactation, whereas local administration of GnRH agonist (GnRHa) caused apoptosis of epithelial cells with ANXA5 augmentation in lactating rats. The latter treatment also decreased mammary weight, milk production, and casein accumulation. Mammary mast cells were strongly immunopositive for GnRH and the number increased in the mammary tissues after weaning. GnRHa was shown to be a chemoattractant for mast cells by mammary local administration of GnRHa and Boyden chamber assay. PRL suppressed the mammary expression of both ANXA5 and GnRH mRNA. It also decreased mast cell numbers in the gland after lactation. These results are the first to demonstrate that GnRH, synthesized locally in the mammary tissues, is required for mammary involution after lactation. GnRH is also suggested to introduce mast cells into the regressing mammary gland and would be in favor of tissue remodeling. The suppression of these processes by PRL is a novel physiological function of PRL. PMID:27175971

  2. In vitro adherence patterns of Shigella serogroups to bovine recto-anal junction squamous epithelial (RSE) cells are similar to those of Escherichia coli O157

    Science.gov (United States)

    The aim of this study was to determine whether Shigella species, which are human gastrointestinal pathogens, can adhere to cattle recto-anal junction squamous epithelial (RSE) cells using a recently standardized adherence assay, and to compare their adherence patterns to that of Escherichia coli O15...

  3. Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition

    OpenAIRE

    Anne-Pierre Morel; Marjory Lièvre; Clémence Thomas; George Hinkal; Stéphane Ansieau; Alain Puisieux

    2008-01-01

    Recently, two novel concepts have emerged in cancer biology: the role of so-called "cancer stem cells" in tumor initiation, and the involvement of an epithelial-mesenchymal transition (EMT) in the metastatic dissemination of epithelial cancer cells. Using a mammary tumor progression model, we show that cells possessing both stem and tumorigenic characteristics of "cancer stem cells" can be derived from human mammary epithelial cells following the activation of the Ras-MAPK pathway. The acquis...

  4. Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARγ signaling as potential mechanism for the negative relationships between immune response and lipid metabolism

    Directory of Open Access Journals (Sweden)

    Rodriguez-Zas Sandra L

    2009-11-01

    Full Text Available Abstract Background Information generated via microarrays might uncover interactions between the mammary gland and Streptococcus uberis (S. uberis that could help identify control measures for the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare, and decrease economic losses to dairy farmers. The main objective of this study was to determine the most affected gene networks and pathways in mammary tissue in response to an intramammary infection (IMI with S. uberis and relate these with other physiological measurements associated with immune and/or metabolic responses to mastitis challenge with S. uberis O140J. Results Streptococcus uberis IMI resulted in 2,102 (1,939 annotated differentially expressed genes (DEG. Within this set of DEG, we uncovered 20 significantly enriched canonical pathways (with 20 to 61 genes each, the majority of which were signaling pathways. Among the most inhibited were LXR/RXR Signaling and PPARα/RXRα Signaling. Pathways activated by IMI were IL-10 Signaling and IL-6 Signaling which likely reflected counter mechanisms of mammary tissue to respond to infection. Of the 2,102 DEG, 1,082 were up-regulated during IMI and were primarily involved with the immune response, e.g., IL6, TNF, IL8, IL10, SELL, LYZ, and SAA3. Genes down-regulated (1,020 included those associated with milk fat synthesis, e.g., LPIN1, LPL, CD36, and BTN1A1. Network analysis of DEG indicated that TNF had positive relationships with genes involved with immune system function (e.g., CD14, IL8, IL1B, and TLR2 and negative relationships with genes involved with lipid metabolism (e.g., GPAM, SCD, FABP4, CD36, and LPL and antioxidant activity (SOD1. Conclusion Results provided novel information into the early signaling and metabolic pathways in mammary tissue that are associated with the innate immune response to S. uberis infection. Our study indicated that IMI challenge with S. uberis (strain O140J elicited

  5. Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell profileration and inhibition of PPARγ signaling as potential mechanism for the negative relationships between immune response and lipid metabolism

    DEFF Research Database (Denmark)

    Moyes, Kasey M; Drackley, James K; Morin, Dawn E;

    2009-01-01

    Background Information generated via microarrays might uncover interactions between the mammary gland and Streptococcus uberis (S. uberis) that could help identify control measures for the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare, and....../or metabolic responses to mastitis challenge with S. uberis O140J. Results Streptococcus uberis IMI resulted in 2,102 (1,939 annotated) differentially expressed genes (DEG). Within this set of DEG, we uncovered 20 significantly enriched canonical pathways (with 20 to 61 genes each), the majority of which were...

  6. Lgr5-expressing cells are sufficient and necessary for postnatal mammary gland organogenesis.

    Science.gov (United States)

    Plaks, Vicki; Brenot, Audrey; Lawson, Devon A; Linnemann, Jelena R; Van Kappel, Eline C; Wong, Karren C; de Sauvage, Frederic; Klein, Ophir D; Werb, Zena

    2013-01-31

    Mammary epithelial stem cells are vital to tissue expansion and remodeling during various phases of postnatal mammary development. Basal mammary epithelial cells are enriched in Wnt-responsive cells and can reconstitute cleared mammary fat pads upon transplantation into mice. Lgr5 is a Wnt-regulated target gene and was identified as a major stem cell marker in the small intestine, colon, stomach, and hair follicle, as well as in kidney nephrons. Here, we demonstrate the outstanding regenerative potential of a rare population of Lgr5-expressing (Lgr5(+)) mammary epithelial cells (MECs). We found that Lgr5(+) cells reside within the basal population, are superior to other basal cells in regenerating functional mammary glands (MGs), are exceptionally efficient in reconstituting MGs from single cells, and exhibit regenerative capacity in serial transplantations. Loss-of-function and depletion experiments of Lgr5(+) cells from transplanted MECs or from pubertal MGs revealed that these cells are not only sufficient but also necessary for postnatal mammary organogenesis. PMID:23352663

  7. Nuclear repartitioning of galectin-1 by an extracellular glycan switch regulates mammary morphogenesis.

    Science.gov (United States)

    Bhat, Ramray; Belardi, Brian; Mori, Hidetoshi; Kuo, Peiwen; Tam, Andrew; Hines, William C; Le, Quynh-Thu; Bertozzi, Carolyn R; Bissell, Mina J

    2016-08-16

    Branching morphogenesis in the mammary gland is achieved by the migration of epithelial cells through a microenvironment consisting of stromal cells and extracellular matrix (ECM). Here we show that galectin-1 (Gal-1), an endogenous lectin that recognizes glycans bearing N-acetyllactosamine (LacNAc) epitopes, induces branching migration of mammary epithelia in vivo, ex vivo, and in 3D organotypic cultures. Surprisingly, Gal-1's effects on mammary patterning were independent of its glycan-binding ability and instead required localization within the nuclei of mammary epithelia. Nuclear translocation of Gal-1, in turn, was regulated by discrete cell-surface glycans restricted to the front of the mammary end buds. Specifically, α2,6-sialylation of terminal LacNAc residues in the end buds masked Gal-1 ligands, thereby liberating the protein for nuclear translocation. Within mammary epithelia, Gal-1 localized within nuclear Gemini bodies and drove epithelial invasiveness. Conversely, unsialylated LacNAc glycans, enriched in the epithelial ducts, sequestered Gal-1 in the extracellular environment, ultimately attenuating invasive potential. We also found that malignant breast cells possess higher levels of nuclear Gal-1 and α2,6-SA and lower levels of LacNAc than nonmalignant cells in culture and in vivo and that nuclear localization of Gal-1 promotes a transformed phenotype. Our findings suggest that differential glycosylation at the level of tissue microanatomy regulates the nuclear function of Gal-1 in the context of mammary gland morphogenesis and in cancer progression. PMID:27496330

  8. Redirection of Human Cancer Cells upon the Interaction with the Regenerating Mouse Mammary Gland Microenvironment

    Directory of Open Access Journals (Sweden)

    Sonia M. Rosenfield

    2013-01-01

    Full Text Available Tumorigenesis is often described as a result of accumulated mutations that lead to growth advantage and clonal expansion of mutated cells. There is evidence in the literature that cancer cells are influenced by the microenvironment. Our previous studies demonstrated that the mouse mammary gland is capable of redirecting mouse cells of non-mammary origins as well as Mouse Mammary Tumor Virus (MMTV-neu transformed cells toward normal mammary epithelial cell fate during gland regeneration. Interestingly, the malignant phenotype of MMTV-neu transformed cells was suppressed during serial transplantation experiments. Here, we discuss our studies that demonstrated the potential of the regenerating mouse mammary gland to redirect cancer cells of different species into a functional tumor-free mammary epithelial cell progeny. Immunochemistry for human specific CD133, mitochondria, cytokeratins as well as milk proteins and FISH for human specific probe identified human epithelial cell progeny in ducts, lobules, and secretory acini. Fluorescent In Situ Hybridization (FISH for human centromeric DNA and FACS analysis of propidium iodine staining excluded the possibility of mouse-human cell fusion. To our knowledge this is the first evidence that human cancer cells of embryonic or somatic origins respond to developmental signals generated by the mouse mammary gland microenvironment during gland regeneration in vivo.

  9. Lgr5-Expressing Cells Are Sufficient and Necessary for Postnatal Mammary Gland Organogenesis

    Directory of Open Access Journals (Sweden)

    Vicki Plaks

    2013-01-01

    Full Text Available Mammary epithelial stem cells are vital to tissue expansion and remodeling during various phases of postnatal mammary development. Basal mammary epithelial cells are enriched in Wnt-responsive cells and can reconstitute cleared mammary fat pads upon transplantation into mice. Lgr5 is a Wnt-regulated target gene and was identified as a major stem cell marker in the small intestine, colon, stomach, and hair follicle, as well as in kidney nephrons. Here, we demonstrate the outstanding regenerative potential of a rare population of Lgr5-expressing (Lgr5+ mammary epithelial cells (MECs. We found that Lgr5+ cells reside within the basal population, are superior to other basal cells in regenerating functional mammary glands (MGs, are exceptionally efficient in reconstituting MGs from single cells, and exhibit regenerative capacity in serial transplantations. Loss-of-function and depletion experiments of Lgr5+ cells from transplanted MECs or from pubertal MGs revealed that these cells are not only sufficient but also necessary for postnatal mammary organogenesis.

  10. 果香味剂对奶牛乳腺上皮细胞培养液中乳成分含量及风味影响的研究%Study on Effects of Mixed Fruit Flavor Meal on Milk Composition Content and Flavor inDairy Cow Mammary Epithelial Cell Culture Liquid

    Institute of Scientific and Technical Information of China (English)

    马燕芬; 高民; 卢德勋

    2011-01-01

    试验旨在研究果香味剂对奶牛乳腺上皮细胞培养液中乳成分含量及培养液风味的影响。试验选用自制的奶牛乳腺上皮细胞,设5个处理组,果香味剂的添加剂量分别为0、5、10、15和20μg/mL。结果表明:①当培养基中果香味剂添加量为15μg/mL时,乳腺上皮细胞培养液中总蛋白水平、甘油三酯及乳糖含量均达到最高,其中对脂肪含量影响显著(P〈0.05),而对蛋白和乳糖含量影响不显著(P〉0.05),之后呈下降趋势,说明果香味剂可能会诱导奶牛乳腺上皮细胞乳蛋白、乳脂和乳糖分泌水平的升高;②运用PT/GC-MS分析乳腺培养液中的风味成分,与对照组相比,各试验组中除具有原有乳腺培养液的风味外,还有乙酸异丁酯、乙酸异戊酯、丙酸异戊酯、丙酸戊酯、丁酸异丁酯、丁酸戊酯、丁酸乙酯、邻苯二甲酸二异丁酯等物质成分,而这些物质成分正好是果香味剂中进入到乳腺培养液中的风味物质,且当添加剂量为15μg/mL时,各物质成分含量为最高(P〈0.05),之后呈下降趋势。果香味剂能显著影响奶牛乳腺上皮培养液中乳成分含量和风味。%The effects of mixed fruit flavor meal on milk composition content and flavor in dairy cow mammary epithelium cell culture liquid were studied.The dairy cow mammary epithelial cells were home-made in this trial.There were 5 groups including 1 control group and 4 treatment groups.The mixed fruit flavor meal dosage in culture liguid of mammary epithelial cell was 0,5,10,15 and 20 μg/mL,respectively.The result indicated:① The milk total protein,fat and lactose contents were highest for 15 μg/mL dosage group,the total protein and lactose contents were not affected significantly(P 0.05),but fat content was affected significantly by adding the mixed fruit flavor meal(P0.05).The milk composition content was gradually declining with the mixed fruit flavor meal dosage

  11. Expression and function of leptin and its receptor in mouse mammary gland

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Leptin is an autocrine and paracrine factor which affects the development of duct, formation of gland alveolus, expression of milk protein gene and onset involution of mammary gland. In order to know the function and mechanism of leptin in mammary gland, the protein expression and localization of leptin and its long form receptor (OB-Rb) were detected by a confocal laser scanning microscope. To study the impacts of leptin on mammary gland and leptin signal transduction pathway in pregnancy-, lactation- and involution-stage mammary gland, explants were cultured and Western blotting was used. The results showed that in the whole development cycle of mammary gland, the expression of leptin and OB-Rb was in positive correlation. In virgin the leptin expression was the highest and then decreased in pregnancy. In lactation the expression of leptin was low and upgraded in involution, and recovered to the original level about virgin on involution 13 d. The localization of leptin and OB-Rb revealed that leptin induced the expression of OB-Rb specifically and controlled the development and physiological function of the mammary gland by binding to OB-Rb. In pregnancy stage, leptin stimulated proliferation and differentiation of ductal epithelial cells by JAK-MAPK signal pathway. In lactation, leptin induced gene expression of β-casein by JAK-STAT5 signal pathway, and in involution leptin induced mammary epithelial cell apoptosis and mammary gland restitution by JAK-STAT3 signal pathway.

  12. Tubulopapillary carcinoma of the mammary gland in a maned wolf (Chrysocyon brachyurus: histopathological and immunophenotypical analysis

    Directory of Open Access Journals (Sweden)

    C.O. Gamba

    2011-12-01

    Full Text Available A maned female wolf (Chrysocyon brachyurus showed nodules in the inguinal and left abdominal cranial mammary glands. The mammary gland was surgically excised, and microscopic analysis revealed epithelial cell proliferation in a tubular and papillary pattern; delicate fibrovascular stalks presenting numerous layers of moderately pleomorfic epithelial cells were observed. This histologic appearance was compatible with a diagnosis of mammary tubulopapillary carcinoma. The immunohistochemical profile revealed nuclear positivity for estrogen (70% and progesterone (at least 90% of the neoplastic cells. The myoepithelium-associated with neoplastic cells lacked integrity, as evidenced by failed smooth muscle alpha actin reactivity in microinvasive areas. A low proliferation index was observed (3.4%. To the authors' knowledge, the present case represents the first finding of female tubulopapillary carcinoma in a mammary gland in this species.

  13. Expression of a 50 kDa putative receptor for bovine viral diarrhea virus in bovine fetal tissues.

    OpenAIRE

    Zheng, L; Zhang, S.; W. Xue; Kapil, S; Minocha, H C

    1998-01-01

    The expression of a 50 kDa bovine viral diarrhea virus putative receptor in different bovine fetal tissues from 3-month old fetuses was studied. The receptor expression was examined by immunocytochemical staining and by immunoblotting using antiidiotypic probe (anti-D89). Intense specific staining in enterocytes of the small and large intestines, cortical tubular epithelial cells of kidneys, respiratory epithelial cells of the trachea and esophageal mucosal epithelial cells was observed, demo...

  14. Metabolomic Changes Accompanying Transformation and Acquisition of Metastatic Potential in a Syngeneic Mouse Mammary Tumor Model*

    OpenAIRE

    Lu, Xin; Bennet, Bryson; Mu, Euphemia; Rabinowitz, Joshua; Kang, Yibin

    2010-01-01

    Breast cancer is the most common cancer type for women in the western world. Despite decades of research, the molecular processes associated with breast cancer progression are still inadequately defined. Here, we focus on the systematic alteration of metabolism by using the state of the art metabolomic profiling techniques to investigate the changes of 157 metabolites during the progression of normal mouse mammary epithelial cells to an isogenic series of mammary tumor cell lines with increas...

  15. Embryonic mammary signature subsets are activated in Brca1-/- and basal-like breast cancers

    OpenAIRE

    Zvelebil, Marketa; Oliemuller, Erik; Gao, Qiong; Wansbury, Olivia; Mackay, Alan; Kendrick, Howard; Matthew J Smalley; Reis-Filho, Jorge S.; Howard, Beatrice A

    2013-01-01

    Introduction Cancer is often suggested to result from development gone awry. Links between normal embryonic development and cancer biology have been postulated, but no defined genetic basis has been established. We recently published the first transcriptomic analysis of embryonic mammary cell populations. Embryonic mammary epithelial cells are an immature progenitor cell population, lacking differentiation markers, which is reflected in their very distinct genetic profiles when compared with ...

  16. Expression and function of heregulin-α and its receptors in the mouse mammary gland

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Heregulin-α (HRGα) is a cytokine secreted by the mammary mesenchyme, adjacent to lobuloalveolar structures. To understand the role of HRGα and its receptors in mammary glands, and the underlying mechanisms, we performed this study to determine the expression and localization of HRGα and its receptors ErbB2 and ErbB3. We also determined the role of HRGα in the development of mammary glands, β-casein expression and secretion, Rab3A protein expression and the phosphorylation of HRGα signaling molecules using confocal laser scanning microscopy, tissue culture, capillary electrophoresis, Western blotting and enzyme-linked immunosorbent assays. We found that a peak was on pregnancy day 15. Changes of ErbB2 and ErbB3 expression were positively and linearly correlated with HRGα, indicating that HRGα positively regulates ErbB2 and ErbB3 expression. During pregnancy, HRGα enhanced the phosphorylation of STAT5, p42/p44, p38, PKC and Rab3A protein expression, stimulated the proliferation and differentiation of the ductal epithelial cells of mammary glands, and increased and maintained the expression and secretion of β-casein. During lactation, HRGα enhanced the phosphorylation of STAT5 and p38, inhibited the phosphorylation of PKC and Rab3A protein expression, maintained the morphology of the mammary glands and increased the secretion of lactoprotein to reduce the expression of β-casein in mammary epithelial cells. During involution, HRGα induced the phosphorylation of STAT3 and Rab3A protein expression, and inhibited the phosphorylation of PKC to stimulate the degeneration of mammary epithelial cells. It also inhibited the secretion of β-casein, resulting in increased levels of β-casein in mammary epithelial cells.

  17. Correlation of hypothetical virulence traits of two Streptococcus uberis strains with the clinical manifestation of bovine mastitis.

    Science.gov (United States)

    Tassi, Riccardo; McNeilly, Tom N; Sipka, Anja; Zadoks, Ruth N

    2015-01-01

    Streptococcus uberis is a common cause of clinical and subclinical mastitis in dairy cattle. Several virulence mechanisms have been proposed to contribute to the species' ability to cause disease. Here, virulence characteristics were compared between S. uberis strains FSL Z1-048, which consistently caused clinical mastitis in a challenge model, and FSL Z1-124, which consistently failed to cause disease in the same model, to ascertain whether in vitro virulence characteristics were related to clinical outcome. Macrophages derived from bovine blood monocytes failed to kill FSL Z1-048 whilst reducing survival of FSL Z1-124 by 42.5%. Conversely, blood derived polymorphonuclear cells caused more reduction (67.1 vs. 44.2%, respectively) in the survival of FSL Z1-048 than in survival of FSL Z1-124. After 3 h of coincubation with bovine mammary epithelial cell line BME-UV1, 1000-fold higher adherence was observed for FSL Z1-048 compared to FSL Z1-124, despite presence of a frame shift mutation in the sua gene of FSL Z1-048 that resulted in predicted truncation of the S. uberis Adhesion Molecule (SUAM) protein. In contrast, FSL Z1-124 showed higher ability than FSL Z1-048 to invade BME-UV1 cells. Finally, observed biofilm formation by FSL Z1-124 was significantly greater than for FSL Z1-048. In summary, for several hypothetical virulence characteristics, virulence phenotype in vitro did not match disease phenotype in vivo. Evasion of macrophage killing and adhesion to mammary epithelial cells were the only in vitro traits associated with virulence in vivo, making them attractive targets for further research into pathogenesis and control of S. uberis mastitis. PMID:26497306

  18. Redefining the expression and function of the inhibitor of differentiation 1 in mammary gland development.

    Directory of Open Access Journals (Sweden)

    Radhika Nair

    Full Text Available The accumulation of poorly differentiated cells is a hallmark of breast neoplasia and progression. Thus an understanding of the factors controlling mammary differentiation is critical to a proper understanding of breast tumourigenesis. The Inhibitor of Differentiation 1 (Id1 protein has well documented roles in the control of mammary epithelial differentiation and proliferation in vitro and breast cancer progression in vivo. However, it has not been determined whether Id1 expression is sufficient for the inhibition of mammary epithelial differentiation or the promotion of neoplastic transformation in vivo. We now show that Id1 is not commonly expressed by the luminal mammary epithelia, as previously reported. Generation and analysis of a transgenic mouse model of Id1 overexpression in the mammary gland reveals that Id1 is insufficient for neoplastic progression in virgin animals or to prevent terminal differentiation of the luminal epithelia during pregnancy and lactation. Together, these data demonstrate that there is no luminal cell-autonomous role for Id1 in mammary epithelial cell fate determination, ductal morphogenesis and terminal differentiation.

  19. Laminin Mediates Tissue-specific Gene Expression in Mammary Epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Streuli, Charles H; Schmidhauser, Christian; Bailey, Nina; Yurchenco, Peter; Skubitz, Amy P. N.; Roskelley, Calvin; Bissell, Mina J

    1995-04-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional differentiation. On tissue culture plastic, mammary cells respond to soluble basement membrane or purified laminin, but not other extracellular matrix components, by synthesizing beta-casein. In mammary cells transfected with chloramphenicol acetyl transferase reporter constructs, laminin activates transcription from the beta-casein promoter through a specific enhancer element. The inductive effect of laminin on casein expression was specifically blocked by the E3 fragment of the carboxy terminal region of the alpha 1 chain of laminin, by antisera raised against the E3 fragment, and by a peptide corresponding to a sequence within this region. Our results demonstrate that laminin can direct tissue-specific gene expression in epithelial cells through its globular domain.

  20. Immunoglobins in mammary secretions

    DEFF Research Database (Denmark)

    Hurley, W L; Theil, Peter Kappel

    2013-01-01

    Immunoglobulins secreted in colostrum and milk by the lactating mammal are major factors providing immune protection to the newborn. Immunoglobulins in mammary secretions represent the cumulative immune response of the lactating animal to exposure to antigenic stimulation that occurs through inte...

  1. Radiogenic neoplasia in thyroid and mammary clonogens

    International Nuclear Information System (INIS)

    We have developed rat thyroid and mammary clonogen transplantation systems for the study of radiogenic cancer induction at the target cell level in vivo. The epithelial cell populations of both glands contain small subpopulations of cells which are capable of giving rise to monoclonal glandular structures when transplanted and stimulated with appropriate hormones. During the end of the last grant year and the first half of the current grant year, we have completed analyses and summarized for publication: investigations on the relationship between grafted thyroid cell number and the rapidity and degree of reestablishment of the thyroid-hypothalamicpituitary axis in thyroidectomized rats maintained on a normal diet or an iodine deficient diet; studies of the persistence of, and the differentiation potential and functional characteristics of, the TSH- (thyrotropin-) responsive sub-population of clonogens during goitrogenesis, the plateau-phase of goiter growth, and goiter involution; studies of changes in the size of the clonogen sub-population during goitrogenesis, goiter involution and the response to goitrogen rechallenge; and the results of the large carcinogenesis experiment on the nature of the grafted thyroid cell number-dependent suppression of promotion/progression to neoplasia in grafts of radiation-initiated thyroid cells. We are testing new techniques for the culture, cytofluorescent analysis and characterization mammary epithelial cells and of clonogens in a parallel project, and plan to apply similar technology to the thyroid epithelial cells and clonogen population. Data from these studies will be used in the design of future carcinogenesis experiments on neoplastic initiation by high and low LET radiations and on cells interactions during the neoplastic process

  2. Radiogenic neoplasia in thyroid and mammary clonogens

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, K.H.

    1991-05-31

    We have developed rat thyroid and mammary clonogen transplantation systems for the study of radiogenic cancer induction at the target cell level in vivo. The epithelial cell populations of both glands contain small subpopulations of cells which are capable of giving rise to monoclonal glandular structures when transplanted and stimulated with appropriate hormones. During the end of the last grant year and the first half of the current grant year, we have completed analyses and summarized for publication: investigations on the relationship between grafted thyroid cell number and the rapidity and degree of reestablishment of the thyroid-hypothalamicpituitary axis in thyroidectomized rats maintained on a normal diet or an iodine deficient diet; studies of the persistence of, and the differentiation potential and functional characteristics of, the TSH- (thyrotropin-) responsive sub-population of clonogens during goitrogenesis, the plateau-phase of goiter growth, and goiter involution; studies of changes in the size of the clonogen sub-population during goitrogenesis, goiter involution and the response to goitrogen rechallenge; and the results of the large carcinogenesis experiment on the nature of the grafted thyroid cell number-dependent suppression of promotion/progression to neoplasia in grafts of radiation-initiated thyroid cells. We are testing new techniques for the culture, cytofluorescent analysis and characterization mammary epithelial cells and of clonogens in a parallel project, and plan to apply similar technology to the thyroid epithelial cells and clonogen population. Data from these studies will be used in the design of future carcinogenesis experiments on neoplastic initiation by high and low LET radiations and on cells interactions during the neoplastic process.

  3. Twist基因逆转录病毒载体的构建及其诱导正常乳腺上皮细胞发生上皮间质转化%Construction of retroviral vector carrying Twist gene and its induction of epithelialmesenchymal transition in human mammary epithelial cells

    Institute of Scientific and Technical Information of China (English)

    杨佳佳; 胡萍; 周明莉; 黄杰涛; 柳满然

    2013-01-01

    Objective To construct a retroviral vector carrying Twist gene and investigate its effect on human mammary MCF10A epithelial cells.Methods Myc-Twist was digested from pcDNA3/myc-Twist and subcloned into the retroviral vector pBABE-puro to construct a recombinant plasmid (pBABE-myc-Twist).The inserted Twist gene was confirmed by restriction enzyme digestion and DNA sequencing.The plasmid pBABE-myc-Twist and the packaging plasmid pAmpho were co-transfected into HEK293T cells for packaging of retrovirus.Meanwhile,the control plasmid pBABE-puro and the packaging plasmid were co-transfected into the other HEK293T cells as a control group.Human mammary MCF10A epithelial cells were infected with the retroviruses carrying Twist gene or the controls,and selected by puromycin.The expression of Twist in the MCF10A-Twist and MCF10A-Vector cells was determined by RT-PCR and Westem blotting.The expressions of epithelial-mesenchymal transition (EMT) marker proteins induced by Twist in MCF10A cells were detected using immunofluorescence cytochemistry and Westem blotting.Cell migration and invasion abilities were analyzed by Transwell(R) assay.Results The myc-tagged Twist gene was correctly inserted into the retroviral expression vector as a recombinant plasmid (pBABE-myc-Twist) as identified by restriction analysis and DNA sequencing.The Twist gene was efficiently delivered into human mammary MCF10A epithelial cells by the retrovirus,resulting in the stable expression of Twist mRNA and myc-tagged Twist protein as shown by RT-PCR and Western blotting,respectively.The expression of the epithelial biomarker E-cadherin was downregulated whereas,the mesenchymal marker vimentin upregulated in MCF10A-Twist cells as shown by immunofluorescence cytochemistry and Western blotting.Cell migration and invasion abilities were enhanced notably in MCF10A-Twist cells as compared with MCF10A-Vector control cells (P <0.01).Conclusion Twist induces EMT of MCF10A cells and plays an important role in

  4. Chronic social isolation is associated with metabolic gene expression changes specific to mammary adipose tissue.

    Science.gov (United States)

    Volden, Paul A; Wonder, Erin L; Skor, Maxwell N; Carmean, Christopher M; Patel, Feenalie N; Ye, Honggang; Kocherginsky, Masha; McClintock, Martha K; Brady, Matthew J; Conzen, Suzanne D

    2013-07-01

    Chronic social isolation is linked to increased mammary tumor growth in rodent models of breast cancer. In the C3(1)/SV40 T-antigen FVB/N (TAg) mouse model of "triple-negative" breast cancer, the heightened stress response elicited by social isolation has been associated with increased expression of metabolic genes in the mammary gland before invasive tumors develop (i.e., during the in situ carcinoma stage). To further understand the mechanisms underlying how accelerated mammary tumor growth is associated with social isolation, we separated the mammary gland adipose tissue from adjacent ductal epithelial cells and analyzed individual cell types for changes in metabolic gene expression. Specifically, increased expression of the key metabolic genes Acaca, Hk2, and Acly was found in the adipocyte, rather than the epithelial fraction. Surprisingly, metabolic gene expression was not significantly increased in visceral adipose depots of socially isolated female mice. As expected, increased metabolic gene expression in the mammary adipocytes of socially isolated mice coincided with increased glucose metabolism, lipid synthesis, and leptin secretion from this adipose depot. Furthermore, application of media that had been cultured with isolated mouse mammary adipose tissue (conditioned media) resulted in increased proliferation of mammary cancer cells relative to group-housed-conditioned media. These results suggest that exposure to a chronic stressor (social isolation) results in specific metabolic reprogramming in mammary gland adipocytes that in turn contributes to increased proliferation of adjacent preinvasive malignant epithelial cells. Metabolites and/or tumor growth-promoting proteins secreted from adipose tissue could identify biomarkers and/or targets for preventive intervention in breast cancer.

  5. Lactobacillus rhamnosus GR-1 Limits Escherichia coli-Induced Inflammatory Responses via Attenuating MyD88-Dependent and MyD88-Independent Pathway Activation in Bovine Endometrial Epithelial Cells.

    Science.gov (United States)

    Liu, Mingchao; Wu, Qiong; Wang, Mengling; Fu, Yunhe; Wang, Jiufeng

    2016-08-01

    Intrauterine Escherichia coli infection after calving reduces fertility and causes major economic losses in the dairy industry. We investigated the protective effect of the probiotic Lactobacillus rhamnosus GR-1 on E. coli-induced cell damage and inflammation in primary bovine endometrial epithelial cells (BEECs). L. rhamnosus GR-1 reduced ultrastructure alterations and the percentage of BEECs apoptosis after E. coli challenge. Increased messenger RNA (mRNA) expression of immune response indicators, including pattern recognition receptors (toll-like receptor [TLR]2, TLR4, nucleotide-binding oligomerization domain [NOD]1, and NOD2), inflammasome proteins (NOD-like receptor family member pyrin domain-containing protein 3, apoptosis-associated speck-like protein, and caspase-1), TLR4 downstream adaptor molecules (myeloid differentiation antigen 88 [MyD88], toll-like receptor adaptor molecule 2 [TICAM2]), nuclear transcription factor kB (NF-kB), and the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-18, and interferon (IFN)-β, was observed following E. coli challenge. However, these increases were attenuated by L. rhamnosus GR-1 pretreatment. Our data indicate that L. rhamnosus GR-1 ameliorates the E. coli-induced disruption of cellular ultrastructure, subsequently reducing the percentage of BEECs apoptosis and limiting inflammatory responses, partly via attenuation of MyD88-dependent and MyD88-independent pathway activation. Certain probiotics could potentially prevent postpartum uterine diseases in dairy cows, ultimately reducing the use of antibiotics. PMID:27236308

  6. Peptidomic analysis of healthy and subclinically mastitic bovine milk

    NARCIS (Netherlands)

    Guerrero, A.; Dallas, D.C.; Contreras, S.; Bhandari, A.; Canovas, A.; Islas-Trejo, A.; Medrano, J.F.; Parker, E.A.; Wang, M.; Hettinga, K.A.; Chee, S.; German, J.B.; Barile, D.; Lebrilla, C.B.

    2015-01-01

    A variety of proteases release hundreds of endogenous peptide fragments from intact bovine milk proteins. Mass spectrometry-based peptidomics allows for high throughput sequence assignment of a large number of these peptides. Mastitis is known to result in increased protease activity in the mammary

  7. The mammary stem cell hierarchy: a looking glass into heterogeneous breast cancer landscapes.

    Science.gov (United States)

    Sreekumar, Amulya; Roarty, Kevin; Rosen, Jeffrey M

    2015-12-01

    The mammary gland is a dynamic organ that undergoes extensive morphogenesis during the different stages of embryonic development, puberty, estrus, pregnancy, lactation and involution. Systemic and local cues underlie this constant tissue remodeling and act by eliciting an intricate pattern of responses in the mammary epithelial and stromal cells. Decades of studies utilizing methods such as transplantation and lineage-tracing have identified a complex hierarchy of mammary stem cells, progenitors and differentiated epithelial cells that fuel mammary epithelial development. Importantly, these studies have extended our understanding of the molecular crosstalk between cell types and the signaling pathways maintaining normal homeostasis that often are deregulated during tumorigenesis. While several questions remain, this research has many implications for breast cancer. Fundamental among these are the identification of the cells of origin for the multiple subtypes of breast cancer and the understanding of tumor heterogeneity. A deeper understanding of these critical questions will unveil novel breast cancer drug targets and treatment paradigms. In this review, we provide a current overview of normal mammary development and tumorigenesis from a stem cell perspective.

  8. A tool for the quantitative spatial analysis of mammary gland epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz de Solorzano, Carlos; Fernandez-Gonzalez, Rodrigo

    2004-04-09

    In this paper we present a method for the spatial analysis of complex cellular systems based on a multiscale study of neighborhood relationships. A function to measure those relationships, M, is introduced. The refined Relative Neighborhood Graph is then presented as a method to establish vicinity relationships within layered cellular structures, and particularized to epithelial cell nuclei in the mammary gland. Finally, the method is illustrated with two examples that show interactions within one population of epithelial cells and between two different populations.

  9. Association of cellular and molecular responses in the rat mammary gland to 17β-estradiol with susceptibility to mammary cancer

    International Nuclear Information System (INIS)

    We are using ACI and BN rats, which differ markedly in their susceptibility to 17β-estradiol (E2)-induced mammary cancer, to identify genetic variants and environmental factors that determine mammary cancer susceptibility. The objective of this study was to characterize the cellular and molecular responses to E2 in the mammary glands of ACI and BN rats to identify qualitative and quantitative phenotypes that associate with and/or may confer differences in susceptibility to mammary cancer. Female ACI and BN rats were treated with E2 for 1, 3 or 12 weeks. Mammary gland morphology and histology were examined by whole mount and hematoxylin and eosin (H&E) staining. Cell proliferation and epithelial density were evaluated by quantitative immunohistochemistry. Apoptosis was evaluated by quantitative western blotting and flow cytometry. Mammary gland differentiation was examined by immunohistochemistry. Gene expression was evaluated by microarray, qRT-PCR and quantitative western blotting assays. Extracellular matrix (ECM) associated collagen was evaluated by Picrosirius Red staining and Second Harmonic Generation (SHG) microscopy. The luminal epithelium of ACI rats exhibited a rapid and sustained proliferative response to E2. By contrast, the proliferative response exhibited by the mammary epithelium of BN rats was restrained and transitory. Moreover, the epithelium of BN rats appeared to undergo differentiation in response to E2, as evidenced by production of milk proteins as well as luminal ectasia and associated changes in the ECM. Marked differences in expression of genes that encode proteins with well-defined roles in mammary gland development (Pgr, Wnt4, Tnfsf11, Prlr, Stat5a, Areg, Gata3), differentiation and milk production (Lcn2, Spp1), regulation of extracellular environment (Mmp7, Mmp9), and cell-cell or cell-ECM interactions (Cd44, Cd24, Cd52) were observed. We propose that these cellular and molecular phenotypes are heritable and may underlie, at least in

  10. Estrogens in the wrong place at the wrong time: fetal BPA exposure and mammary cancer

    Science.gov (United States)

    Paulose, Tessie; Speroni, Lucia; Sonnenschein, Carlos; Soto, Ana M

    2014-01-01

    Iatrogenic gestational exposure to diethylstilbestrol (DES) induced alterations of the genital tract and predisposed individuals to develop clear cell carcinoma of the vagina as well as breast cancer later in life. Gestational exposure of rodents to a related compound, the xenoestrogen bisphenol-A (BPA) increases the propensity to develop mammary cancer during adulthood, long after cessation of exposure. Exposure to BPA during gestation induces morphological alterations in both the stroma and the epithelium of the fetal mammary gland at 18 days of age. We postulate that the primary target of BPA is the fetal stroma, the only mammary tissue expressing estrogen receptors during fetal life. BPA would then alter the reciprocal stroma-epithelial interactions that mediate mammogenesis. In addition to this direct effect on the mammary gland, BPA is postulated to affect the hypothalamus and thus in turn affect the regulation of mammotropic hormones at puberty and beyond. PMID:25277313

  11. p130Cas over-expression impairs mammary branching morphogenesis in response to estrogen and EGF.

    Directory of Open Access Journals (Sweden)

    Maria del Pilar Camacho Leal

    Full Text Available p130Cas adaptor protein regulates basic processes such as cell cycle control, survival and migration. p130Cas over-expression has been related to mammary gland transformation, however the in vivo consequences of p130Cas over-expression during mammary gland morphogenesis are not known. In ex vivo mammary explants from MMTV-p130Cas transgenic mice, we show that p130Cas impairs the functional interplay between Epidermal Growth Factor Receptor (EGFR and Estrogen Receptor (ER during mammary gland development. Indeed, we demonstrate that p130Cas over-expression upon the concomitant stimulation with EGF and estrogen (E2 severely impairs mammary morphogenesis giving rise to enlarged multicellular spherical structures with altered architecture and absence of the central lumen. These filled acinar structures are characterized by increased cell survival and proliferation and by a strong activation of Erk1/2 MAPKs and Akt. Interestingly, antagonizing the ER activity is sufficient to re-establish branching morphogenesis and normal Erk1/2 MAPK activity. Overall, these results indicate that high levels of p130Cas expression profoundly affect mammary morphogenesis by altering epithelial architecture, survival and unbalancing Erk1/2 MAPKs activation in response to growth factors and hormones. These results suggest that alteration of morphogenetic pathways due to p130Cas over-expression might prime mammary epithelium to tumorigenesis.

  12. Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia

    DEFF Research Database (Denmark)

    Garbe, James C; Pepin, Francois; Pelissier, Fanny A;

    2012-01-01

    of the cellular and molecular mechanisms that underlies these observations is lacking. In this study, we generated a large collection of normal human mammary epithelial cell strains from women ages 16 to 91 years, derived from primary tissues, to investigate the molecular changes that occur in aging breast cells...

  13. Emerging evidence of the physiological role of hypoxia in mammary development and lactation

    Institute of Scientific and Technical Information of China (English)

    Yong Shao; Feng-Qi Zhao

    2014-01-01

    Hypoxia is a physiological or pathological condition of a deficiency of oxygen supply in the body as a whole or within a tissue. During hypoxia, tissues undergo a series of physiological responses to defend themselves against a low oxygen supply, including increased angiogenesis, erythropoiesis, and glucose uptake. The effects of hypoxia are mainly mediated by hypoxia-inducible factor 1 (HIF-1), which is a heterodimeric transcription factor consisting ofαandβsubunits. HIF-1βis constantly expressed, whereas HIF-1αis degraded under normal oxygen conditions. Hypoxia stabilizes HIF-1αand the HIF complex, and HIF then translocates into the nucleus to initiate the expression of target genes. Hypoxia has been extensively studied for its role in promoting tumor progression, and emerging evidence also indicates that hypoxia may play important roles in physiological processes, including mammary development and lactation. The mammary gland exhibits an increasing metabolic rate from pregnancy to lactation to support mammary growth, lactogenesis, and lactation. This process requires increasing amounts of oxygen consumption and results in localized chronic hypoxia as confirmed by the binding of the hypoxia marker pimonidazole HCl in mouse mammary gland. We hypothesized that this hypoxic condition promotes mammary development and lactation, a hypothesis that is supported by the following several lines of evidence:i) Mice with an HIF-1αdeletion selective for the mammary gland have impaired mammary differentiation and lipid secretion, resulting in lactation failure and striking changes in milk compositions;ii) We recently observed that hypoxia significantly induces HIF-1α-dependent glucose uptake and GLUT1 expression in mammary epithelial cells, which may be responsible for the dramatic increases in glucose uptake and GLUT1 expression in the mammary gland during the transition period from late pregnancy to early lactation;and ii ) Hypoxia and HIF-1αincrease the

  14. Interrogation of the rat mammary gland using intraductal impedance spectroscopy

    International Nuclear Information System (INIS)

    Extant technologies for the detection of breast cancer exploit changes in the morphology of the mammary ductal epithelial network and can involve ionizing radiation. Intraductal surveillance of mammary epithelium has the potential to allow for earlier detection based on changes in function of the epithelium. This study investigated the feasibility of using intraductal impedance spectroscopy (IIS) to assess changes in resistance in the mammary epithelium in a small group of female rats in resting, pregnant and ultimately lactating states. In resting rats, intraductal surveillance was able to detect only a single resistive capacitance (RC). In pregnant animals, a second RC became evident in the frequency range between 1 and 190 Hz. The real resistance of this low frequency RC increased when measurements were made after the animals had begun lactating. Equivalent circuit modeling revealed this increase to be a 1.7-fold change from pregnancy to lactation. A model of tight junction closure in the context of ductal expansion is proposed. These results suggest that physiologic measurements can be made in rodent mammary epithelium using this technique allowing for assessment of function in normal and disease states

  15. Experimental manipulation of radiographic density in mouse mammary gland

    International Nuclear Information System (INIS)

    Extensive mammographic density in women is associated with increased risk for breast cancer. Mouse models provide a powerful approach to the study of human diseases, but there is currently no model that is suited to the study of mammographic density. We performed individual manipulations of the stromal, epithelial and matrix components of the mouse mammary gland and examined the alterations using in vivo and ex vivo radiology, whole mount staining and histology. Areas of density were generated that resembled densities in mammographic images of the human breast, and the nature of the imposed changes was confirmed at the cellular level. Furthermore, two genetic models, one deficient in epithelial structure (Pten conditional tissue specific knockout) and one with hyperplastic epithelium and mammary tumors (MMTV-PyMT), were used to examine radiographic density. Our data show the feasibility of altering and imaging mouse mammary gland radiographic density by experimental and genetic means, providing the first step toward modelling the biological processes that are responsible for mammographic density in the mouse

  16. Automatic segmentation of histological structures in mammary gland tissue sections

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Gonzalez, Rodrigo; Deschamps, Thomas; Idica, Adam K.; Malladi, Ravikanth; Ortiz de Solorzano, Carlos

    2004-02-17

    Real-time three-dimensional (3D) reconstruction of epithelial structures in human mammary gland tissue blocks mapped with selected markers would be an extremely helpful tool for breast cancer diagnosis and treatment planning. Besides its clear clinical application, this tool could also shed a great deal of light on the molecular basis of breast cancer initiation and progression. In this paper we present a framework for real-time segmentation of epithelial structures in two-dimensional (2D) images of sections of normal and neoplastic mammary gland tissue blocks. Complete 3D rendering of the tissue can then be done by surface rendering of the structures detected in consecutive sections of the blocks. Paraffin embedded or frozen tissue blocks are first sliced, and sections are stained with Hematoxylin and Eosin. The sections are then imaged using conventional bright field microscopy and their background is corrected using a phantom image. We then use the Fast-Marching algorithm to roughly extract the contours of the different morphological structures in the images. The result is then refined with the Level-Set method which converges to an accurate (sub-pixel) solution for the segmentation problem. Finally, our system stacks together the 2D results obtained in order to reconstruct a 3D representation of the entire tissue block under study. Our method is illustrated with results from the segmentation of human and mouse mammary gland tissue samples.

  17. MicroRNA regulation of bovine monocyte inflammatory and metabolic networks in an in vivo infection model

    Science.gov (United States)

    Bovine mastitis is an inflammation-driven disease of the bovine mammary gland that costs the global dairy industry several billion dollars per annum. Because disease susceptibility is a multi-factorial complex phenotype, a multi-omic integrative biology approach is required to dissect the multilayer...

  18. Characterization and regulation of the bovine stearoyl-CoA desaturase gene promoter

    International Nuclear Information System (INIS)

    The bovine stearoyl-CoA desaturase (Scd) gene plays an important role in the bovine mammary gland where substrates such as stearic and vaccenic acids are converted to oleic acid and conjugated linoleic acid (CLA), respectively. Up to 90% of the CLA in bovine milk is formed due to the action of this enzyme in the mammary gland. The areas of the bovine promoter of importance in regulating this key enzyme were examined and an area of 36 bp in length was identified as having a critical role in transcriptional activation and is designated the Scd transcriptional enhancer element (STE). Electrophoretic mobility shift assay detected three binding complexes on this area in Mac-T cell nuclear extracts. Treatment of cells with CLA caused a significant reduction in transcriptional activity, with this effect being mediated through the STE region. The bovine Scd gene promoter was up-regulated by insulin and down-regulated by oleic acid

  19. Insufficiency of transformation by simian virus 40, polyomavirus, EJ-ras, or v-myc oncogenes for conversion of ethanolamine-responsive mammary cells to ethanolamine-nonresponsive cells.

    OpenAIRE

    Kano-Sueoka, T; King, D M

    1988-01-01

    Normal mammary epithelial cells (ethanolamine responsive) require ethanolamine to enable them to grow in defined culture medium because they cannot synthesize de novo a sufficient amount of phosphatidylethanolamine. Mammary tumor cells which retain properties of the normal tissue are also likely to be ethanolamine responsive, whereas dedifferentiated, highly tumorigenic mammary tumor cells are ethanolamine nonresponsive. The nonresponsive tumor cells are able to synthesize the necessary amoun...

  20. Ocular melanoma and mammary mucinous carcinoma in an African lion

    Directory of Open Access Journals (Sweden)

    Cagnini Didier Q

    2012-09-01

    Full Text Available Abstract Background Reports of neoplasms in Panthera species are increasing, but they are still an uncommon cause of disease and death in captive wild felids. The presence of two or more primary tumor in large felids is rarely reported, and there are no documented cases of ocular melanoma and mammary mucinous carcinoma in African lions. Case presentation An ocular melanoma and a mammary mucinous carcinoma are described in an African lion (Panthera leo. The first tumour was histologically characterized by the presence of epithelioid and fusiform melanocytes, while the latter was composed of mucus-producing cells with an epithelial phenotype that contained periodic acid-Schiff (PAS and Alcian blue staining mucins. Metastases of both tumor were identified in various organs and indirect immunohistochemistry was used to characterize them. Peribiliary cysts were observed in the liver. Conclusions This is the first description of these tumor in African lions.

  1. Intracellular behaviour of samarium and europium in lactating mammary gland

    Institute of Scientific and Technical Information of China (English)

    Ayadi Ahlem; Maghraoui Samira; El Hili Ali; Galle Pierre; Tekaya Leila

    2012-01-01

    The subcellular localization of samarium and europium,two rare-earths,increasingly used in both medical and industrial fields,has been studied in several organs such as liver and kidney but never in the mammary gland despite of its importance in the biology of lactation and nutrition domains.The intracellular behaviour of samarium and europium after their intra-peritoneal administration in the lactating mammary gland cells was investigated.The results showed the presence of very electron dense deposits in the glandular epithelial cell lysosomes.These particular lysosomes were never observed in the marnrnary cell lysosomes of control rats.These intralysosomal deposits were probably composed of insoluble samarium or europium phosphates by analogy with previous studies,the transmission electron microscopy,the ion mass microscopy and the electron probe microanalysis,and other techniques allowing the identification of the chemical structure of the intralysosomal deposits.

  2. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  3. Mammary tuberculosis: percutaneous treatment of a mammary tuberculous abscess

    Energy Technology Data Exchange (ETDEWEB)

    Romero, C.; Carreira, C.; Cereceda, C.; Pinto, J. [Servicio de Radiologia, Hospital Virgen de la Salud, Toledo (Spain); Lopez, R.; Bolanos, F. [Servicio de Cirugia, Hospital Virgen de la Salud, Toledo (Spain)

    2000-03-01

    It is currently very rare to find mammary involvement in cases of tuberculosis, in either primary or secondary form. Diagnosis is classically clinical and microbiological, and the basic techniques used in imaging diagnosis are mammography and ultrasound. Computed tomography may define the involvement of the thoracic wall in those cases which present as mammary masses adhering to deep levels, and is also able to evaluate accompanying pulmonary disease, if it is present. Traditionally, treatment has consisted of quadrantectomy and specific antibiotic therapy. We present a case of tuberculous mammary abscess secondary to pulmonary disease, which was treated by percutaneous drainage controlled by CT and specific antibiotic therapy. We revise the diagnosis, differential diagnosis and treatment of mammary tuberculosis. (orig.)

  4. Expression of tissue factor in canine mammary tumours and correlation with grade, stage and markers of haemostasis and inflammation

    DEFF Research Database (Denmark)

    Andreasen, Eva Bartholin; Nielsen, Ole Lerberg; Tranholm, M.;

    2016-01-01

    Tissue factor (TF) expression in human cancers has been associated with a procoagulant state and facilitation of metastasis. This study was conducted in order to evaluate if TF was expressed in canine mammary tumours. Forty epithelial mammary tumours from 28 dogs were included. TF expression...... to the cytoplasmic membrane of neoplastic luminal epithelial cells and/or diffusely in the cytoplasm. No association was found between TF expression and stage or grade of disease. A significant association between TF expression and antithrombin and plasminogen was found, and extensive TF expression was seen...

  5. Identification of ABCA1 and ABCG1 in milk fat globules and mammary cells - Implications for milk cholesterol secretion

    DEFF Research Database (Denmark)

    Mani, O; Körner, M; Ontsouka, C E;

    2011-01-01

    The ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 play an important role in cellular cholesterol homeostasis, but their function in mammary gland (MG) tissue remains elusive. A bovine MG model that allows repeated MG sampling in identical animals at different functional stages was used...

  6. Cdk2-Null Mice Are Resistant to ErbB-2-Induced Mammary Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Dipankar Ray

    2011-05-01

    Full Text Available The concept of targeting G1 cyclin-dependent kinases (CDKs in breast cancer treatments is supported by the fact that the genetic ablation of Cdk4 had minimal impacts on normal cell proliferation in majority of cell types, resulting in near-normal mouse development, whereas such loss of Cdk4 completely abrogated ErbB-2/neu-induced mammary tumorigenesis in mice. In most human breast cancer tissues, another G1-regulatory CDK, CDK2, is also hyperactivated by various mechanisms and is believed to be an important therapeutic target. In this report, we provide genetic evidence that CDK2 is essential for proliferation and oncogenesis of murine mammary epithelial cells. We observed that 87% of Cdk2-null mice were protected from ErbB-2-induced mammary tumorigenesis. Mouse embryonic fibroblasts isolated from Cdk2-null mouse showed resistance to various oncogene-induced transformation. Previously, we have reported that hemizygous loss of Cdc25A, the major activator of CDK2, can also protect mice from ErbB-2-induced mammary tumorigenesis [Cancer Res (2007 67(14: 6605–11]. Thus, we propose that CDC25A-CDK2 pathway is critical for the oncogenic action of ErbB-2 in mammary epithelial cells, in a manner similar to Cyclin D1/CDK4 pathway.

  7. Global Changes in the Mammary Epigenome Are Induced by Hormonal Cues and Coordinated by Ezh2

    Directory of Open Access Journals (Sweden)

    Bhupinder Pal

    2013-02-01

    Full Text Available The mammary epithelium is a dynamic, highly hormone-responsive tissue. To explore chromatin modifications underlying its lineage specification and hormone responsiveness, we determined genome-wide histone methylation profiles of mammary epithelial subpopulations in different states. The marked differences in H3K27 trimethylation between subpopulations in the adult gland suggest that epithelial cell-fate decisions are orchestrated by polycomb-complex-mediated repression. Remarkably, the mammary epigenome underwent highly specific changes in different hormonal contexts, with a profound change being observed in the global H3K27me3 map of luminal cells during pregnancy. We therefore examined the role of the key H3K27 methyltransferase Ezh2 in mammary physiology. Its expression and phosphorylation coincided with H3K27me3 modifications and peaked during pregnancy, driven in part by progesterone. Targeted deletion of Ezh2 impaired alveologenesis during pregnancy, preventing lactation, and drastically reduced stem/progenitor cell numbers. Taken together, these findings reveal that Ezh2 couples hormonal stimuli to epigenetic changes that underpin progenitor activity, lineage specificity, and alveolar expansion in the mammary gland.

  8. Overexpression of miR-30b in the developing mouse mammary gland causes a lactation defect and delays involution.

    Directory of Open Access Journals (Sweden)

    Sandrine Le Guillou

    Full Text Available BACKGROUND: MicroRNA (miRNA are negative regulators of gene expression, capable of exerting pronounced influences upon the translation and stability of mRNA. They are potential regulators of normal mammary gland development and of the maintenance of mammary epithelial progenitor cells. This study was undertaken to determine the role of miR-30b on the establishment of a functional mouse mammary gland. miR-30b is a member of the miR-30 family, composed of 6 miRNA that are highly conserved in vertebrates. It has been suggested to play a role in the differentiation of several cell types. METHODOLOGY/PRINCIPAL FINDINGS: The expression of miR-30b was found to be regulated during mammary gland development. Transgenic mice overexpressing miR-30b in mammary epithelial cells were used to investigate its role. During lactation, mammary histological analysis of the transgenic mice showed a reduction in the size of alveolar lumen, a defect of the lipid droplets and a growth defect of pups fed by transgenic females. Moreover some mammary epithelial differentiated structures persisted during involution, suggesting a delay in the process. The genes whose expression was affected by the overexpression of miR-30b were characterized by microarray analysis. CONCLUSION/SIGNIFICANCE: Our data suggests that miR-30b is important for the biology of the mammary gland and demonstrates that the deregulation of only one miRNA could affect lactation and involution.

  9. Tumor suppressor function of Syk in human MCF10A in vitro and normal mouse mammary epithelium in vivo.

    Directory of Open Access Journals (Sweden)

    You Me Sung

    Full Text Available The normal function of Syk in epithelium of the developing or adult breast is not known, however, Syk suppresses tumor growth, invasion, and metastasis in breast cancer cells. Here, we demonstrate that in the mouse mammary gland, loss of one Syk allele profoundly increases proliferation and ductal branching and invasion of epithelial cells through the mammary fat pad during puberty. Mammary carcinomas develop by one year. Syk also suppresses proliferation and invasion in vitro. siRNA or shRNA knockdown of Syk in MCF10A breast epithelial cells dramatically increased proliferation, anchorage independent growth, cellular motility, and invasion, with formation of functional, extracellular matrix-degrading invadopodia. Morphological and gene microarray analysis following Syk knockdown revealed a loss of luminal and differentiated epithelial features with epithelial to mesenchymal transition and a gain in invadopodial cell surface markers CD44, CD49F, and MMP14. These results support the role of Syk in limiting proliferation and invasion of epithelial cells during normal morphogenesis, and emphasize the critical role of Syk as a tumor suppressor for breast cancer. The question of breast cancer risk following systemic anti-Syk therapy is raised since only partial loss of Syk was sufficient to induce mammary carcinomas.

  10. Amino acids and mammary gland development: nutritional implications for milk production and neonatal growth.

    Science.gov (United States)

    Rezaei, Reza; Wu, Zhenlong; Hou, Yongqing; Bazer, Fuller W; Wu, Guoyao

    2016-01-01

    Milk is synthesized by mammary epithelial cells of lactating mammals. The synthetic capacity of the mammary gland depends largely on the number and efficiency of functional mammary epithelial cells. Structural development of the mammary gland occurs during fetal growth, prepubertal and post-pubertal periods, pregnancy, and lactation under the control of various hormones (particularly estrogen, growth hormone, insulin-like growth factor-I, progesterone, placental lactogen, and prolactin) in a species- and stage-dependent manner. Milk is essential for the growth, development, and health of neonates. Amino acids (AA), present in both free and peptide-bound forms, are the most abundant organic nutrients in the milk of farm animals. Uptake of AA from the arterial blood of the lactating dam is the ultimate source of proteins (primarily β-casein and α-lactalbumin) and bioactive nitrogenous metabolites in milk. Results of recent studies indicate extensive catabolism of branched-chain AA (leucine, isoleucine and valine) and arginine to synthesize glutamate, glutamine, alanine, aspartate, asparagine, proline, and polyamines. The formation of polypeptides from AA is regulated not only by hormones (e.g., prolactin, insulin and glucocorticoids) and the rate of blood flow across the lactating mammary gland, but also by concentrations of AA, lipids, glucose, vitamins and minerals in the maternal plasma, as well as the activation of the mechanistic (mammalian) target rapamycin signaling by certain AA (e.g., arginine, branched-chain AA, and glutamine). Knowledge of AA utilization (including metabolism) by mammary epithelial cells will enhance our fundamental understanding of lactation biology and has important implications for improving the efficiency of livestock production worldwide. PMID:27042295

  11. Mammary cells with active Wnt signaling resist ErbB2-induced tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Wen Bu

    Full Text Available Aberrant activation of Wnt signaling is frequent in human malignancies. In normal epithelial tissues, including the breast, Wnt signaling is active only in a subset of cells, but it is unknown whether this subset of Wnt signaling-active cells is at increased risk of carcinogenesis. We created transgenic mice (TOP-tva in which the synthetic Wnt-responsive promoter TOP controlled the gene encoding TVA, which confers susceptibility to infection by the retroviral vector RCAS. Thus, only cells in which Wnt signaling is active will express tva and be targeted by RCAS. Surprisingly, we found that RCAS-mediated delivery of cDNA encoding a constitutively activated version of ErbB2 (HER2/Neu into the small number of TVA+ mammary epithelial cells in TOP-tva mice failed to induce tumor, while the same virus readily induced mammary tumors after it was delivered into a comparable number of cells in our previously reported mouse line MMTV-tva, whose tva is broadly expressed in mammary epithelium. Furthermore, we could not even detect any early lesions or infected cells in TOP-tva mice at the time of necropsy. Therefore, we conclude that the Wnt pathway-active cell subset in the normal mammary epithelium does not evolve into tumors following ErbB2 activation-rather, they apparently die due to apoptosis, an anticancer "barrier" that we have reported to be erected in some mammary cells followed ErbB2 activation. In accord with these mouse model data, we found that unlike the basal subtype, ErbB2+ human breast cancers rarely involve aberrant activation of Wnt signaling. This is the first report of a defined sub-population of mammalian cells that is "protected" from tumorigenesis by a potent oncogene, and provides direct in vivo evidence that mammary epithelial cells are not equal in their response to oncogene-initiated transformation.

  12. The Expression of the IGF Family During Mouse Mammary Gland Development

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study was to determine the patterns and levels of IGF family members' expression during postnatal mammary gland development. The authors investigated the protein expression profile of the major components of the IGF axis in murine mammary glands. All the proteins examined, IGF- Ⅰ, IGF- Ⅱ, and IGF- Ⅰ receptor (IGF- Ⅰ R) were expressed at greatly different levels and displayed unique expression profiles. IGF- Ⅱ and IGF- Ⅰ R were always expressed at significantly higher levels than IGF- Ⅰ. IGF- Ⅰ was localized in adipocytes as well as the epithelial and stromal compartments, but just distinctly expressed where mammary cells aggregated to form ducts, in virgins. The IGF- Ⅱ was localized only on the basal layer epithelial cell membranes of ducts and alveoli, with a peak level on the initiation of lactation. The higher level of IGF- Ⅰ R compared with IGF- Ⅰ was also found in adipocytes as well as in the epithelial and stromal compartments, especially during pregnancy and late lactation. The IGF- Ⅰ R pathway was obviously significant for the development of the mammary parenchyma and stroma. Overall, the comparison of the expression profiles of these different proteins would strongly suggest that they were likely to have different functions throughout the mammary gland development, and it also highlighted the potential interactions and coregulation of the members of this axis. It seems that IGF- Ⅱ was the major local modulator rather than IGF- Ⅰ by an IGF- Ⅰ R-independent pathway, especially for initiation of lactation. This study has demonstrated the importance and complexity of the IGF axis during mammary gland development and provides a valuable resource for future research in this area.

  13. Characterization of microRNA profile in mammary tissue of dairy and beef breed heifers.

    Science.gov (United States)

    Wicik, Z; Gajewska, M; Majewska, A; Walkiewicz, D; Osińska, E; Motyl, T

    2016-02-01

    MicroRNAs (miRNAs) are small non-coding RNAs that participate in the regulation of gene expression. Their role during mammary gland development is still largely unknown. In this study, we performed a microarray analysis to identify miRNAs associated with high mammogenic potential of the bovine mammary gland. We identified 54 significantly differentially expressed miRNAs between the mammary tissue of dairy (Holstein-Friesian, HF) and beef (Limousin, LM) postpubertal heifers. Fifty-two miRNAs had higher expression in the mammary tissue of LM heifers. The expression of the top candidate miRNAs (bta-miR-10b, bta-miR-29b, bta-miR-101, bta-miR-375, bta-miR-2285t, bta-miR-146b, bta-let7b, bta-miR-107, bta-miR-1434-3p) identified in the microarray experiment was additionally evaluated by qPCR. Enrichment analyses for targeted genes revealed that the major differences between miRNA expression in the mammary gland of HF versus LM were associated with the regulation of signalling pathways that are crucial for mammary gland development, such as TGF-beta, insulin, WNT and inflammatory pathways. Moreover, a number of genes potentially targeted by significantly differentially expressed miRNAs were associated with the activity of mammary stem cells. These data indicate that the high developmental potential of the mammary gland in dairy cattle, leading to high milk productivity, depends also on a specific miRNA expression pattern. PMID:26060050

  14. Nidogen-1 regulates laminin-1-dependent mammary-specific gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Pujuguet, Philippe; Simian, Marina; Liaw, Jane; Timpl, Rupert; Werb, Zena; Bissell, Mina J..

    2000-02-01

    Nidogen-1 (entactin) acts as a bridge between the extracellular matrix molecules laminin-1 and type IV collagen, and thus participates in the assembly of basement membranes. To investigate the role of nidogen-1 in regulating cell-type-specific gene expression in mammary epithelium, we designed a culture microecosystem in which each component, including epithelial cells, mesenchymal cells, lactogenic hormones and extracellular matrix, could be controlled. We found that primary and established mesenchymal and myoepithelial cells synthesized and secreted nidogen-1, whereas expression was absent in primary and established epithelial cells. In an epithelial cell line containing mesenchymal cells, nidogen-1 was produced by the mesenchymal cells but deposited between the epithelial cells. In this mixed culture, mammary epithelial cells express b-casein in the presence of lactogenic hormones. Addition of either laminin-1 plus nidogen-1, or laminin-1 alone to mammary epithelial cells induced b- casein production. We asked whether recombinant nidogen-1 alone could signal directly for b-casein. Nidogen-1 did not induce b-casein synthesis in epithelial cells, but it augmented the inductive capacity of laminin-1. These data suggest that nidogen-1 can cooperate with laminin-1 to regulate b-casein expression. Addition of full length nidogen-1 to the mixed cultures had no effect on b-casein gene expression; however, a nidogen-1 fragment containing the laminin-1 binding domain, but lacking the type IV collagen-binding domain, had a dominant negative effect on b-casein expression. These data point to a physiological role for nidogen-1 in the basement membrane-induced gene expression by epithelial cells.

  15. Quantification of mammary organoid toxicant response and mammary tissue motility using OCT fluctuation spectroscopy (Conference Presentation)

    Science.gov (United States)

    Yu, Xiao; Blackmon, Richard L.; Carabas-Hernendez, Patricia; Fuller, Ashley; Troester, Melissa A.; Oldenburg, Amy L.

    2016-03-01

    Mammary epithelial cell (MEC) organoids in 3D culture recapitulate features of breast ducts in vivo. OCT has the ability to monitor the evolution of MEC organoids non-invasively and longitudinally. The anti-cancer drug Doxorubicin (Dox) is able to inhibit proliferation of cancer cells and has been widely used for chemotherapy of breast cancers; while environmental toxins implicated in breast cancer such as estrogen regulates mammary tumor growth and stimulates the proliferation and metastatic potential of breast cancers. Here we propose a quantitative method for measuring motility of breast cells in 3D cultures based upon OCT speckle fluctuation spectroscopy. The metrics of the inverse power-law exponent (α) and fractional modulation amplitude (M) were extracted from speckle fluctuation spectra. These were used to quantify the responses of MEC organoids to Dox, and estrogen. We investigated MEC organoids comprised of two different MEC lines: MCF10DCIS.com exposed to Dox, and MCF7 exposed to estrogen. We found an increase (pbreast cancer development and assessing anti-cancer drugs.

  16. Biological and genetic properties of the p53 null preneoplastic mammary epithelium

    Science.gov (United States)

    Medina, Daniel; Kittrell, Frances S.; Shepard, Anne; Stephens, L. Clifton; Jiang, Cheng; Lu, Junxuan; Allred, D. Craig; McCarthy, Maureen; Ullrich, Robert L.

    2002-01-01

    The absence of the tumor suppressor gene p53 confers an increased tumorigenic risk for mammary epithelial cells. In this report, we describe the biological and genetic properties of the p53 null preneoplastic mouse mammary epithelium in a p53 wild-type environment. Mammary epithelium from p53 null mice was transplanted serially into the cleared mammary fat pads of p53 wild-type BALB/c female to develop stable outgrowth lines. The outgrowth lines were transplanted for 10 generations. The outgrowths were ductal in morphology and progressed through ductal hyperplasia and ductal carcinoma in situ before invasive cancer. The preneoplastic outgrowth lines were immortal and exhibited activated telomerase activity. They are estrogen and progesterone receptor-positive, and aneuploid, and had various levels of tumorigenic potential. The biological and genetic properties of these lines are distinct from those found in most hyperplastic alveolar outgrowth lines, the form of mammary preneoplasia occurring in most traditional models of murine mammary tumorigenesis. These results indicate that the preneoplastic cell populations found in this genetically engineered model are similar in biological properties to a subset of precurser lesions found in human breast cancer and provide a unique model to identify secondary events critical for tumorigenicity and invasiveness.

  17. Transcript profiling of Elf5+/- mammary glands during pregnancy identifies novel targets of Elf5.

    Directory of Open Access Journals (Sweden)

    Renee L Rogers

    Full Text Available BACKGROUND: Elf5, an epithelial specific Ets transcription factor, plays a crucial role in the pregnancy-associated development of the mouse mammary gland. Elf5(-/- embryos do not survive, however the Elf5(+/- mammary gland displays a severe pregnancy-associated developmental defect. While it is known that Elf5 is crucial for correct mammary development and lactation, the molecular mechanisms employed by Elf5 to exert its effects on the mammary gland are largely unknown. PRINCIPAL FINDINGS: Transcript profiling was used to investigate the transcriptional changes that occur as a result of Elf5 haploinsufficiency in the Elf5(+/- mouse model. We show that the development of the mouse Elf5(+/- mammary gland is delayed at a transcriptional and morphological level, due to the delayed increase in Elf5 protein in these glands. We also identify a number of potential Elf5 target genes, including Mucin 4, whose expression, is directly regulated by the binding of Elf5 to an Ets binding site within its promoter. CONCLUSION: We identify novel transcriptional targets of Elf5 and show that Muc4 is a direct target of Elf5, further elucidating the mechanisms through which Elf5 regulates proliferation and differentiation in the mammary gland.

  18. Endocrine hormones and local signals during the development of the mouse mammary gland.

    Science.gov (United States)

    Brisken, Cathrin; Ataca, Dalya

    2015-01-01

    Most of mammary gland development occurs postnatally under the control of female reproductive hormones, which in turn interact with other endocrine factors. While hormones impinge on many tissues and trigger very complex biological responses, tissue recombination experiments with hormone receptor-deficient mammary epithelia revealed eminent roles for estrogens, progesterone, and prolactin receptor (PrlR) signaling that are intrinsic to the mammary epithelium. A subset of the luminal mammary epithelial cells expresses the estrogen receptor α (ERα), the progesterone receptor (PR), and the PrlR and act as sensor cells. These cells convert the detected systemic signals into local signals that are developmental stage-dependent and may be direct, juxtacrine, or paracrine. This setup ensures that the original input is amplified and that the biological responses of multiple cell types can be coordinated. Some key mediators of hormone action have been identified such as Wnt, EGFR, IGFR, and RANK signaling. Multiple signaling pathways such as FGF, Hedgehog, and Notch signaling participate in driving different aspects of mammary gland development locally but how they link to the hormonal control remains to be elucidated. An increasing number of endocrine factors are appearing to have a role in mammary gland development, the adipose tissue is increasingly recognized to play a role in endocrine regulation, and a complex role of the immune system with multiple different cell types is being revealed. For further resources related to this article, please visit the WIREs website.

  19. Identification of the bovine $\\alpha$1-acid glycoprotein in colostrum and milk

    OpenAIRE

    Ceciliani, Fabrizio; Pocacqua, Vanessa; Provasi, Elena; Comunian, Claudio; Bertolini, Alessandra; Bronzo, Valerio; Moroni, Paolo; Sartorelli, Paola

    2005-01-01

    International audience $\\alpha$1-acid glycoprotein (AGP) is an immunomodulatory protein expressed by hepatocytes in response to the systemic reaction that follows tissue damage caused by inflammation, infection or trauma. This paper presents the detection of bovine AGP (boAGP) in mammary secretions (colostrum and milk) and mammary gland tissue. Bovine AGP was detected by Western blotting in all the samples analysed, and could be quantified in colostrum at 162 (± 63.7) $\\mu$g/mL and 114.5 (...

  20. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    International Nuclear Information System (INIS)

    Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. These studies

  1. Chemoprevention of Radiation Induced Rat Mammary Neoplasms

    Science.gov (United States)

    Huso, David L.

    1999-01-01

    Radiations encountered in space include protons and heavy ions such as iron as well as their secondaries. The relative biological effect (RBE) of these ions is not known, particularly at the doses and dose-rates expected for planetary missions. Neutrons, are not particularly relevant to space travel, but have been found experimentally to have an increase in their RBE with decreasing dose. If a similar trend of increasing RBE with decreasing dose is present for heavy ions and protons during irradiation in space, the small doses received during space travel could potentially have substantial carcinogenic risk. Clearly more investigation of the effects of heavy ions and protons is needed before accurate risk assessment for prolonged travel in space can be done. One means to mitigate the increased risk of cancer due to radiation exposure in space is by developing effective countermeasures that can reduce the incidence of tumor development. Tamoxifen has recently been shown to be an effective chemopreventive agent in both animal models and humans for the prevention of mammary tumors. Tamoxifen is a unique drug, with a highly specific mechanism of action affecting a specific radiation-sensitive population of epithelial cells in the mammary gland. In human studies, the annual incidence of a primary tumor in the contralateral breast of women with previous breast cancer is about 8 per 1000, making them an exceedingly high-risk group for the development of breast cancer. In this high risk group, treated with tamoxifen, daily, for 2 years, the incidence of a new primary tumor in the contralateral breast was approximately one third of that noted in the non-tamoxifen treatment group. Tamoxifen antagonizes the action of estrogen by competing for the nuclear receptor complex thereby altering the association of the receptor complex and nuclear binding sites. Its effects in reducing the development of breast cancer could be accomplished by controlling clinically undetectable

  2. The Wnt receptor, Lrp5, is expressed by mouse mammary stem cells and is required to maintain the basal lineage.

    Directory of Open Access Journals (Sweden)

    Nisha M Badders

    Full Text Available BACKGROUND: Ectopic Wnt signaling induces increased stem/progenitor cell activity in the mouse mammary gland, followed by tumor development. The Wnt signaling receptors, Lrp5/6, are uniquely required for canonical Wnt activity. Previous data has shown that the absence of Lrp5 confers resistance to Wnt1-induced tumor development. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that all basal mammary cells express Lrp5, and co-express Lrp6 in a similar fashion. Though Wnt dependent transcription of key target genes is relatively unchanged in mammary epithelial cell cultures, the absence of Lrp5 specifically depletes adult regenerative stem cell activity (to less than 1%. Stem cell activity can be enriched by >200 fold (over 80% of activity, based on high Lrp5 expression alone. Though Lrp5 null glands have apparent normal function, the basal lineage is relatively reduced (from 42% basal/total epithelial cells to 22% and Lrp5-/- mammary epithelial cells show enhanced expression of senescence-associated markers in vitro, as measured by expression of p16(Ink4a and TA-p63. CONCLUSIONS/SIGNIFICANCE: This is the first single biomarker that has been demonstrated to be functionally involved in stem cell maintenance. Together, these results demonstrate that Wnt signaling through Lrp5 is an important component of normal mammary stem cell function.

  3. Single Colony Preparation and Amplification Culture of Fetal Fibroblast and Mammary Gland Epithelial Cell of Human Lactoferrin Transgene from Goat%山羊转人乳铁蛋白基因成纤维细胞和乳腺上皮细胞单克隆的制备及扩大培养

    Institute of Scientific and Technical Information of China (English)

    张玉玲; 刘凤军; 张涌

    2009-01-01

    [ Objective] The aim was to explore technical system of making single transgenic positive cells become colony cells by amplification culture. [Method] Fetal fibroblasts and mammary gland epithelial cells of single goat fetus of pBLM-C, which specifically expressed human lactoferrin were cloned. Single cell colony of single transfection cell was prepared with 3 concentrations of 0, 50% and 100% conditioned culture media. Transfection cell and non-transfection cell were carried out amplification culture by con-culture, neo gene was as screened gene, genome DNA of transfection cell was detected by PCR method. Chromosome karyotype analysis of single colony cell was tested. [ Result] Compared with non-conditioned culture medium, 100% conditioned culture medium could greatly increase survived rate of single colony cells. Compared with control, con-culture of transfection cell and non-transfection cell could greatly increase rate of transfection cell single colony after amplification culture ( FF: 53.33% vs. 10.00% ;MGE; 33. 33% vs. 6. 67% ) , confluence time of amplification culture was significantly decreased (20-30 d). The result of PCR showed that the colony cell obtained by above method contained hLF target gene. The result of karyotype analysis showed that most cloned cell chromosomes were normal. [ Conclusion] The study provides a reliable method for separating transgenic cell, inserting and diagnosing ideal vector, and can save expense and time for transgenic animal production.%[目的]为探索单个转基因阳性细胞快速扩大培养成为细胞克隆的技术体系.[方法]对转染人乳铁蛋白(Human lactoferrin,hLF)基因乳腺特异性表达载体pBLM-C1的单个山羊胎儿成纤维细胞(Fetal Fibroblasts,FF)和乳腺上皮细胞(Mammary Gland Epithelial,MGE)细胞进行克隆.在96孔板中,首先用3种浓度(V/V: 0 、50%和100%)的适应性条件培养基对单个转染细胞进行细胞单克隆的制备,进而把转染细胞单克隆与非转

  4. Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide

    OpenAIRE

    Vels Lotte; Røntved Christine; Sørensen Peter; Jiang Li; Ingvartsen Klaus L

    2008-01-01

    Abstract Background Liver plays a profound role in the acute phase response (APR) observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli). To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver tissue sampled at different time points before and after intra-mammary (IM) exposure to E. coli lipopolysaccharide (LPS) treatment. Results Approximately 20% target transcripts were d...

  5. Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide

    OpenAIRE

    Jiang, Li; Sørensen, Peter; Røntved, Christine; Vels, Lotte; Ingvartsen, Klaus L

    2008-01-01

    Background Liver plays a profound role in the acute phase response (APR) observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli). To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver tissue sampled at different time points before and after intra-mammary (IM) exposure to E. coli lipopolysaccharide (LPS) treatment. Results Approximately 20% target transcripts were differenti...

  6. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  7. Mammary carcinoma diagnostics and therapy; Diagnostik und Therapie des Mammakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Uwe; Baum, Friedemann (eds.) [Diagnostisches Brustzentrum Goettingen BZG, Goettingen(Germany)

    2014-11-01

    The book on mammary carcinoma diagnostics and therapy covers the following issues: development, anatomy and physiology of the mammary glands, pathology of benign and malign mammary gland changes, non-imaging diagnostics; mammography; ultrasonic mammography; magnetic resonance tomography of the mammary glands; imaging diagnostics findings; mammary interventions; examination concepts; operative therapy of the mammary carcinoma; chemotherapy of the mammary carcinoma; radio-oncological therapy of the mammary carcinoma; logistics in a medical center for mammary gland diseases; logistics in an interdisciplinary center for mammary diseases; dialogue conduction and psycho-social attendance.

  8. Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia

    Science.gov (United States)

    Holst, Charles R.; Nuovo, Gerard J.; Esteller, Manel; Chew, Karen; Baylin, Stephen B.; Herman, James G.; Tlsty, Thea D.

    2003-01-01

    Cultures of human mammary epithelial cells (HMECs) contain a subpopulation of variant cells with the capacity to propagate beyond an in vitro proliferation barrier. These variant HMECs, which contain hypermethylated and silenced p16(INK4a) (p16) promoters, eventually accumulate multiple chromosomal changes, many of which are similar to those detected in premalignant and malignant lesions of breast cancer. To determine the origin of these variant HMECs in culture, we used Luria-Delbruck fluctuation analysis and found that variant HMECs exist within the population before the proliferation barrier, thereby raising the possibility that variant HMECs exist in vivo before cultivation. To test this hypothesis, we examined mammary tissue from normal women for evidence of p16 promoter hypermethylation. Here we show that epithelial cells with methylation of p16 promoter sequences occur in focal patches of histologically normal mammary tissue of a substantial fraction of healthy, cancer-free women.

  9. A bcl-xS adenovirus selectively induces apoptosis in transformed cells compared to normal mammary cells.

    Science.gov (United States)

    Sumantran, V N; Lee, D S; Woods Ignatoski, K M; Ethier, S P; Wicha, M S

    2000-01-01

    Oncogenes which drive the cell cycle, such as c-myc, can sensitize cells to apoptosis. This suggests the possibility that the expression of genes such as bcl-2 or bcl-xL is required to inhibit apoptosis induced by oncogene expression. We hypothesized that inhibition of Bcl-2/Bcl-xL by the pro-apoptotic Bcl-xS protein, would result in selective induction of apoptosis in mammary carcinoma cells compared to their nontransformed counterparts. Therefore, we compared the effects of Bcl-xS expression delivered by a bcl-xS adenovirus (bcl-xS-Adv) vector, on viability and apoptosis of nontransformed versus transformed mammary epithelial cells. We report that c-myc-transformed murine mammary cells are extremely sensitive to apoptosis induced by the bcl-xS adenovirus (bcl-xS-Adv) vector, whereas immortalized, nontransformed murine mammary cells are relatively resistant to apoptosis induced by this vector. Likewise, human mammary epithelial cells transduced with c-erbB-2 were more sensitive to apoptosis induced by the bcl-xS vector than the nontransformed parental cells. Similar results were obtained when we tested the effects of bcl-xS adenoviral infection on primary normal human mammary epithelial cells and SUM-190 PT cells, (a c-erbB-2 over-expressing human mammary carcinoma cell line) grown on Matrigel. These data are consistent with the hypothesis that inhibition of Bcl-2/Bcl-xL can result in selective killing of cancer cells compared to their nontransformed counterparts.

  10. Akt1 is essential for postnatal mammary gland development, function, and the expression of Btn1a1.

    Directory of Open Access Journals (Sweden)

    Jessica LaRocca

    Full Text Available Akt1, a serine-threonine protein kinase member of the PKB/Akt gene family, plays critical roles in the regulation of multiple cellular processes, and has previously been implicated in lactation and breast cancer development. In this study, we utilized Akt1+/+ and Akt1-/- C57/Bl6 female mice to assess the role that Akt1 plays in normal mammary gland postnatal development and function. We examined postnatal morphology at multiple time points, and analyzed gene and protein expression changes that persist into adulthood. Akt1 deficiency resulted in several mammary gland developmental defects, including ductal outgrowth and defective terminal end bud formation. Adult Akt1-/- mammary gland composition remained altered, exhibiting fewer alveolar buds coupled with increased epithelial cell apoptosis. Microarray analysis revealed that Akt1 deficiency altered expression of genes involved in numerous biological processes in the mammary gland, including organismal development, cell death, and tissue morphology. Of particular importance, a significant decrease in expression of Btn1a1, a gene involved in milk lipid secretion, was observed in Akt1-/- mammary glands. Additionally, pseudopregnant Akt1-/- females failed to induce Btn1a1 expression in response to hormonal stimulation compared to their wild-type counterparts. Retroviral-mediated shRNA knockdown of Akt1 and Btn1a1 in MCF-7 human breast epithelial further illustrated the importance of Akt1 in mammary epithelial cell proliferation, as well as in the regulation of Btn1a1 and subsequent expression of ß-casein, a gene that encodes for milk protein. Overall these findings provide mechanistic insight into the role of Akt1 in mammary morphogenesis and function.

  11. Zinc Finger Homeodomain Factor Zfhx3 Is Essential for Mammary Lactogenic Differentiation by Maintaining Prolactin Signaling Activity.

    Science.gov (United States)

    Zhao, Dan; Ma, Gui; Zhang, Xiaolin; He, Yuan; Li, Mei; Han, Xueying; Fu, Liya; Dong, Xue-Yuan; Nagy, Tamas; Zhao, Qiang; Fu, Li; Dong, Jin-Tang

    2016-06-10

    The zinc finger homeobox 3 (ZFHX3, also named ATBF1 for AT motif binding factor 1) is a transcription factor that suppresses prostatic carcinogenesis and induces neuronal differentiation. It also interacts with estrogen receptor α to inhibit cell proliferation and regulate pubertal mammary gland development in mice. In the present study, we examined whether and how Zfhx3 regulates lactogenic differentiation in mouse mammary glands. At different stages of mammary gland development, Zfhx3 protein was expressed at varying levels, with the highest level at lactation. In the HC11 mouse mammary epithelial cell line, an in vitro model of lactogenesis, knockdown of Zfhx3 attenuated prolactin-induced β-casein expression and morphological changes, indicators of lactogenic differentiation. In mouse mammary tissue, knock-out of Zfhx3 interrupted lactogenesis, resulting in underdeveloped glands with much smaller and fewer alveoli, reduced β-casein expression, accumulation of large cytoplasmic lipid droplets in luminal cells after parturition, and failure in lactation. Mechanistically, Zfhx3 maintained the expression of Prlr (prolactin receptor) and Prlr-Jak2-Stat5 signaling activity, whereas knockdown and knock-out of Zfhx3 in HC11 cells and mammary tissues, respectively, decreased Prlr expression, Stat5 phosphorylation, and the expression of Prlr-Jak2-Stat5 target genes. These findings indicate that Zfhx3 plays an essential role in proper lactogenic development in mammary glands, at least in part by maintaining Prlr expression and Prlr-Jak2-Stat5 signaling activity. PMID:27129249

  12. Species distribution and resistance profiles of coagulase-negative staphylococci isolated from bovine mastitis in Switzerland

    OpenAIRE

    Moser, A.; Stephan, R.; DE ZIEGLER, D.; Johler, S.

    2013-01-01

    Coagulase-negative staphylococci (CNS) are the predominant cause of bovine intra-mammary infections. They can lead to chronic infections and were reported to significantly increase milk somatic cell counts. The goal of our study was to determine the species distribution and antimicrobial susceptibility profiles of CNS in bovine mastitis milk samples in Switzerland. Between March 2011 and February 2012, a total of 120 CNS were isolated from mastitis milk samples from 117 different animals at 7...

  13. Population structure and antimicrobial profile of Staphylococcus aureus strains associated with bovine mastitis in China.

    Science.gov (United States)

    Zhang, Lili; Li, Yuchen; Bao, Hongduo; Wei, Ruicheng; Zhou, Yan; Zhang, Hui; Wang, Ran

    2016-08-01

    Staphylococcus aureus is a significant bacterial pathogen associated with bovine mastitis. The aim of the present study was to investigate and characterize of S. aureus strains isolated from the milk of cows suffering from mastitis in the mid-east of China. Among the 200 milk samples analyzed, 58 were positive for S. aureus, of these isolates, 11 isolates were methicillin-resistant Staphylococcus aureus (MRSA). All of the 58 S. aureus strains were classified in agr group I, while seven different sequence type (ST) patterns were identified and among them the most common was ST630 followed by ST188. All of the S. aureus isolates belonging to ST630 were resistant to more than four antimicrobials, and 22.2% of isolates belonging to ST188 were resistant to eight antimicrobials. Interestingly, while strong biofilm producers demonstrated higher resistance to multiple antimicrobials, they exhibited lower intracellular survival rates. The results of this study illustrated the distribution, antimicrobial susceptibility profiles, genotype, and the ability of biofilm production and mammary epithelial cells invasion of these S. aureus isolates. This study can provide the basis for the development of a disease prevention program in dairy farms to reduce the potential risk in both animal and human health.

  14. Population structure and antimicrobial profile of Staphylococcus aureus strains associated with bovine mastitis in China.

    Science.gov (United States)

    Zhang, Lili; Li, Yuchen; Bao, Hongduo; Wei, Ruicheng; Zhou, Yan; Zhang, Hui; Wang, Ran

    2016-08-01

    Staphylococcus aureus is a significant bacterial pathogen associated with bovine mastitis. The aim of the present study was to investigate and characterize of S. aureus strains isolated from the milk of cows suffering from mastitis in the mid-east of China. Among the 200 milk samples analyzed, 58 were positive for S. aureus, of these isolates, 11 isolates were methicillin-resistant Staphylococcus aureus (MRSA). All of the 58 S. aureus strains were classified in agr group I, while seven different sequence type (ST) patterns were identified and among them the most common was ST630 followed by ST188. All of the S. aureus isolates belonging to ST630 were resistant to more than four antimicrobials, and 22.2% of isolates belonging to ST188 were resistant to eight antimicrobials. Interestingly, while strong biofilm producers demonstrated higher resistance to multiple antimicrobials, they exhibited lower intracellular survival rates. The results of this study illustrated the distribution, antimicrobial susceptibility profiles, genotype, and the ability of biofilm production and mammary epithelial cells invasion of these S. aureus isolates. This study can provide the basis for the development of a disease prevention program in dairy farms to reduce the potential risk in both animal and human health. PMID:27265679

  15. Methods in Mammary Gland Development and Cancer: the second ENDBC meeting - intravital imaging, genomics, modeling and metastasis

    OpenAIRE

    Stingl, John; Matthew J Smalley; Glukhova, Marina A.; Bentires-Alj, Mohamed

    2010-01-01

    The second meeting of the European Network for Breast Development and Cancer (ENBDC) on 'Methods in Mammary Gland Development and Cancer' was held in April 2010 in Weggis, Switzerland. The focus was on genomics and bioinformatics, extracellular matrix and stroma-epithelial cell interactions, intravital imaging, the search for metastasis founder cells and mouse models of breast cancer.

  16. Quantitative Assessment of Mouse Mammary Gland Morphology Using Automated Digital Image Processing and TEB Detection.

    Science.gov (United States)

    Blacher, Silvia; Gérard, Céline; Gallez, Anne; Foidart, Jean-Michel; Noël, Agnès; Péqueux, Christel

    2016-04-01

    The assessment of rodent mammary gland morphology is largely used to study the molecular mechanisms driving breast development and to analyze the impact of various endocrine disruptors with putative pathological implications. In this work, we propose a methodology relying on fully automated digital image analysis methods including image processing and quantification of the whole ductal tree and of the terminal end buds as well. It allows to accurately and objectively measure both growth parameters and fine morphological glandular structures. Mammary gland elongation was characterized by 2 parameters: the length and the epithelial area of the ductal tree. Ductal tree fine structures were characterized by: 1) branch end-point density, 2) branching density, and 3) branch length distribution. The proposed methodology was compared with quantification methods classically used in the literature. This procedure can be transposed to several software and thus largely used by scientists studying rodent mammary gland morphology. PMID:26910307

  17. Histological analysis of low dose NMU effects in the rat mammary gland

    Directory of Open Access Journals (Sweden)

    Sonnenschein Carlos

    2009-08-01

    Full Text Available Abstract Background Our objective was to assess the histological changes in mammary glands of the female Wistar-Furth rat as a result of low dose exposure to N-nitrosomethylurea (NMU. Methods Groups of 30–40 virgin female rats of between 49–58 days old received a single injection of 10, 20, 30 or 50 mg NMU/kg body weight (BW. A group of 10 control rats received 0.9% NaCl solution only. The formation of palpable mammary gland tumors was assessed weekly and, upon sacrifice at 12, 22 and 25–30 weeks after treatment, we performed a comprehensive histological analysis of all mammary gland lesions and tumors. Results Alongside the predicted increase in tumor number and decrease in tumor latency with increasing NMU dose, we observed a number of microscopic lesions and other epithelial abnormalities in the mammary glands for all NMU doses. Two types of non-neoplastic histological changes were observed in rats exposed to 10 or 20 mg NMU/kg BW: namely, (i an increase in the number of acinar structures often accompanied by secretion into the lumen which is normally associated with pregnancy and lactation, and (ii an increase in the number of epithelial cells sloughed into the lumen of the epithelial ducts. Conclusion This study establishes a baseline for low-dose exposure and defines the histological features in the mammary gland resulting from NMU exposure. Furthermore, this system provides an ideal platform for evaluating the relative susceptibility of animals protected from, or predisposed to, developing cancer through environmental influences.

  18. Estetrol is a weak estrogen antagonizing estradiol-dependent mammary gland proliferation.

    Science.gov (United States)

    Gérard, C; Blacher, S; Communal, L; Courtin, A; Tskitishvili, E; Mestdagt, M; Munaut, C; Noel, A; Gompel, A; Péqueux, C; Foidart, J M

    2015-01-01

    Estetrol (E4) is a natural estrogen produced exclusively by the human fetal liver during pregnancy. Its physiological activity remains unknown. In contrast to ethinyl estradiol and estradiol (E2), E4 has a minimal impact on liver cell activity and could provide a better safety profile in contraception or hormone therapy. The aim of this study was to delineate if E4 exhibits an activity profile distinct from that of E2 on mammary gland. Compared with E2, E4 acted as a low-affinity estrogen in both human in vitro and murine in vivo models. E4 was 100 times less potent than E2 to stimulate the proliferation of human breast epithelial (HBE) cells and murine mammary gland in vitro and in vivo respectively. This effect was prevented by fulvestrant and tamoxifen, supporting the notion that ERα (ESR1) is the main mediator of the estrogenic effect of E4 on the breast. Interestingly, when E4 was administered along with E2, it significantly antagonized the strong stimulatory effect of E2 on HBE cell proliferation and on the growth of mammary ducts. This study characterizes for the first time the impact of E4 on mammary gland. Our results highlight that E4 is less potent than E2 and exhibits antagonistic properties toward the proliferative effect of E2 on breast epithelial cells. These data support E4 as a potential new estrogen for clinical use with a reduced impact on breast proliferation. PMID:25359896

  19. Intramammary administration of platelet concentrate as an unconventional therapy in bovine mastitis: first clinical application.

    Science.gov (United States)

    Lange-Consiglio, A; Spelta, C; Garlappi, R; Luini, M; Cremonesi, F

    2014-10-01

    Bovine udder infections induce a variety of changes in gene expression of different growth factors that may suggest their possible role in glandular tissue protection or repair processes. Growth factors and also chemokines and cytokines may act synergistically to increase the infiltration of neutrophils and macrophages to promote angiogenesis, fibroplasia, matrix deposition, and, ultimately, re-epithelialization. Considering the vast applications, typically in human medicine, of platelet concentrate (PC) and its ease of preparation, the aim of our study was to evaluate an alternative therapy to stimulate the regeneration of glandular tissue, administering a concentration in excess of the growth factors contained in the PC. In each one of the 3 farms examined in the trial, PC was prepared from donor cows in good health, free from infections, and with no records of medications administered during the previous 2 mo. The platelet produced in one farm was used only for treating the cows of the same farm in a heterologous way. A total of 229 mastitic quarters were divided in 3 groups: antibiotic group (treated with intramammary antibiotic), antibiotic and PC group (treated intramammarily with antibiotics in association with PC), and PC group (treated with intramammary PC alone). The diagnosis of mastitis was based on somatic cell count and bacteriological evaluation of the milk from the affected quarter. Platelet concentrate, alone or in association with antibiotic, was used for 3 consecutive days as an unconventional therapy in bovine acute and chronic mastitis. Our data show that the associated action of antibiotic and PC performed significantly better than the antibiotic alone, either for the recovery of the affected mammary quarters or for somatic cell count reduction. In the same way, the association antibiotic plus PC showed significantly fewer relapses compared with the antibiotic alone, either for acute or chronic mastitis. The treatment with only PC did not show

  20. Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids.

    Science.gov (United States)

    Wang, Wenshan; Lv, Na; Zhang, Shasha; Shui, Guanghou; Qian, Hui; Zhang, Jingfeng; Chen, Yuanying; Ye, Jing; Xie, Yuansheng; Shen, Yuemao; Wenk, Markus R; Li, Peng

    2012-01-15

    Adequate lipid secretion by mammary glands during lactation is essential for the survival of mammalian offspring. However, the mechanism governing this process is poorly understood. Here we show that Cidea is expressed at high levels in lactating mammary glands and its deficiency leads to premature pup death as a result of severely reduced milk lipids. Furthermore, the expression of xanthine oxidoreductase (XOR), an essential factor for milk lipid secretion, is markedly lower in Cidea-deficient mammary glands. Conversely, ectopic Cidea expression induces the expression of XOR and enhances lipid secretion in vivo. Unexpectedly, as Cidea has heretofore been thought of as a cytoplasmic protein, we detected it in the nucleus and found it to physically interact with transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) in mammary epithelial cells. We also observed that Cidea induces XOR expression by promoting the association of C/EBPβ onto, and the dissociation of HDAC1 from, the promoter of the Xdh gene encoding XOR. Finally, we found that Fsp27, another CIDE family protein, is detected in the nucleus and interacts with C/EBPβ to regulate expression of a subset of C/EBPβ downstream genes in adipocytes. Thus, Cidea acts as a previously unknown transcriptional coactivator of C/EBPβ in mammary glands to control lipid secretion and pup survival.

  1. Histological and Morphometric Study of Regressive Changes in the Mammary Glands of Pigs during Regression

    Directory of Open Access Journals (Sweden)

    Svätoslav Hluchý

    2011-10-01

    Full Text Available The work deals with the histological and morphometric description of regressive changes in the mammary glands of swine after lactation. Samples of mammary glands of thoracic, abdominal and pubic udders were taken soon after they were killed. Samples were processed by histological and histochemical methods and evaluated by subjective and quantitative morphometrical methods. It was found that post-lactation increases the relative volume of connective stroma up to 75.10 ± 14.76 % of collagen in the tissue falls to 74.13 ± 14.87 % and the loose connective tissue, which was part of glandular parenchyma lobules accounts for only 0.97 ± 2.13%. Adipose tissue is 18.93 ± 14.93% of the udders volume.. Relative of glandular parenchyma fell to 5.97 ± 4.95% and mainly consists of a interlobular and lobar ducts and atrophic alveoli. Epithelium is generally in the mammary glands 4.22 ± 3.56% and lumen 1.75 ±1.81%. 1 cm3 of tissue in the mammary glands located 190745.52 tubuloalveolar structures. Alveoli reach an average size of 36.80 ± 11.57 μm. It was found relative volume of the walls (epithelium and cavities (lumen of each alveolus, the amount of epithelial cells and the nucleocytoplasmic ratio. The individual building components mammary glands were calculated correlation relations.

  2. Loss of Panx1 Impairs Mammary Gland Development at Lactation: Implications for Breast Tumorigenesis

    Science.gov (United States)

    Stewart, Michael K. G.; Plante, Isabelle; Penuela, Silvia; Laird, Dale W.

    2016-01-01

    Pannexin1 (Panx1) subunits oligomerize to form large-pore channels between the intracellular and extracellular milieu that have been shown to regulate proliferation, differentiation and cell death mechanisms. These key cellular responses are ultimately necessary for normal tissue development and function but the role of Panx1 in development, differentiation and function in many tissues remains unexplored, including that of the breast. Panx1 was identified to be expressed in the mammary gland through western blot and immunofluorescent analysis and is dynamically upregulated during pregnancy and lactation. In order to evaluate the role of Panx1 in the context of mammary gland development and function, Panx1-/- mice were evaluated in comparison to wild-type mice in the mammary glands of virgin, lactating and involuting mice. Our results revealed that Panx1 ablation did not affect virgin or involuting mammary glands following histological and whole mount analysis. Panx1 was necessary for timely alveolar development during early lactation based on a decreased number of alveolar lumen following histological analysis and reduced proliferation following Ki67 immunofluorescent labelling. Importantly, the loss of Panx1 in lactating mammary glands did not overtly affect epithelial or secretory differentiation of the mammary gland suggesting that Panx1 is not critical in normal mammary gland function. In addition, PANX1 mRNA expression was correlated with negative clinical outcomes in patients with breast cancer using in silico arrays. Together, our results suggest that Panx1 is necessary for timely alveolar development following the transition from pregnancy to lactation, which may have implications extending to patients with breast cancer. PMID:27099931

  3. Accelerated apoptosis in the Timp-3–deficient mammary gland

    OpenAIRE

    Fata, Jimmie E.; Leco, Kevin J.; Voura, Evelyn B.; Hoi-Ying E Yu; Waterhouse, Paul; Murphy, Gillian; Moorehead, Roger A.; Khokha, Rama

    2001-01-01

    The proapoptotic proteinase inhibitor TIMP-3 is the only molecule of this family thought to influence cell death. We examined epithelial apoptosis in TIMP-3–deficient mice during mammary gland involution. Lactation was not affected by the absence of TIMP-3, but glandular function, as measured by gland-to-body weight ratio and production of β-casein, was suppressed earlier during post-lactational involution than in controls. Histological examination revealed accelerated lumen collapse, alveola...

  4. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia

    Science.gov (United States)

    Alcaraz, Jordi; Xu, Ren; Mori, Hidetoshi; Nelson, Celeste M; Mroue, Rana; Spencer, Virginia A; Brownfield, Doug; Radisky, Derek C; Bustamante, Carlos; Bissell, Mina J

    2008-01-01

    In the mammary gland, epithelial cells are embedded in a ‘soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for β-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of β-casein expression required both laminin signalling and a ‘soft' extracellular matrix, as is the case in normal tissues in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of β-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues' unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis. PMID:18843297

  5. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Jordi; Xu, Ren; Mori, Hidetoshi; Nelson, Celeste M.; Mroue, Rana; Spencer, Virginia A.; Brownfield, Doug; Radisky, Derek C.; Bustamante, Carlos; Bissell, Mina J.

    2008-10-20

    In the mammary gland, epithelial cells are embedded in a 'soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for {beta}-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of {beta}-casein expression required both laminin signalling and a 'soft' extracellular matrix, as is the case in normal tissues in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of {beta}-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis.

  6. Rat mammary carcinogenesis induced by in situ expression of constitutive Raf kinase activity is prevented by tethering Raf to the plasma membrane.

    Science.gov (United States)

    McFarlin, Daniel R; Gould, Michael N

    2003-06-01

    Mammary carcinogenesis induced through expression of activated Raf was investigated using a model in which retroviral vectors were infused into the central ducts of rat mammary glands. This model allows efficient expression of experimental proteins in a small fraction of endogenous mammary epithelial cells in situ. We previously reported that Raf is the dominant oncogenic signaling pathway from activated Ras in rat mammary glands. We show here that mammary gland carcinogenesis is rapidly induced by the expression of c-Raf-1 kinase that is activated by N-terminal truncation (Delta-Raf). Interestingly, targeting Raf to the plasma membrane via C-terminal fusion with Ras membrane localization signals (Raf-Caax) induces Raf kinase activity that transforms 3T3 cells more frequently than Delta-Raf, yet in situ expression of Raf-Caax does not induce mammary carcinomas. To investigate these contrasting results and begin elucidating the mechanisms of Raf-induced mammary carcinogenesis, we combined both activating mutations (N-terminal truncation and C-terminal membrane localization motifs) in one Raf construct (Delta-Raf-Caax). While Delta-Raf-Caax transforms 3T3 cells more efficiently than Delta-Raf or Raf-Caax, in situ expression of Delta-Raf-Caax does not induce carcinomas in vivo, demonstrating that lipid modification on the C-terminus of Delta-Raf negates its oncogenic potential in rat mammary gland.

  7. Effects of feeding rapeseed oil, soybean oil, or linseed oil on stearoyl-CoA desaturase expression in the mammary gland of dairy cows

    NARCIS (Netherlands)

    Jacobs, A.A.A.; Baal, van J.; Smits, M.A.; Taweel, H.Z.H.; Hendriks, W.H.; Vuuren, van A.M.; Dijkstra, J.

    2011-01-01

    Stearoyl-CoA desaturase (SCD) is an important enzyme in the bovine mammary gland, and it introduces a double bond at the ¿(9) location of primarily myristoyl-, palmitoyl-, and stearoyl-CoA. The main objective of this study was to compare the effects of various fatty acids (FA) typically present in d

  8. Effect of bisphenol A on morphology, apoptosis and proliferation in the resting mammary gland of the adult albino rat.

    Science.gov (United States)

    Ibrahim, Marwa A A; Elbakry, Reda H; Bayomy, Naglaa A

    2016-02-01

    Bisphenol A (BPA) is a synthetic oestrogen that is extensively used in a wide range of daily used plastic products. This makes it one of the environmental chemicals that may have impact on human health. Due to its oestrogenic effect, BPA might affect the mammary gland. This study aimed to investigate the influence of BPA on the histological structure of the mammary gland of the adult female albino rat and its effect on epithelial cell proliferation and apoptosis status, in addition to its possible modulating effect on estrogen receptor expression. Thirty female adult albino rats were divided into control and experimental groups. The rats in the experimental group were gavaged with 5 mg/kg BPA daily for 8 weeks. The mammary glands were dissected and processed for histological and immunohistochemical stains for Ki-67, activated caspase-3 and estrogen receptor alpha (ER-α). BPA induced an increase in the number and size of the acini and ducts in the mammary gland of treated rats with hyperplasia of their lining epithelial cells. The collagen fibre content was significantly increased in the connective tissue stroma separating the ducts. Immunohistochemical results showed a significant increase in Ki-67 and caspase-3, but a non-significant increase in ER-α expression. Bisphenol A induced structural changes and affected the proliferation rate of mammary glands, so it might be one of the predisposing factors for breast cancer. PMID:26877094

  9. Antiviral effects of bovine interferons on bovine respiratory tract viruses.

    OpenAIRE

    Fulton, R W; Downing, M M; Cummins, J M

    1984-01-01

    The antiviral effects of bovine interferons on the replication of bovine respiratory tract viruses were studied. Bovine turbinate monolayer cultures were treated with bovine interferons and challenged with several bovine herpesvirus 1 strains, bovine viral diarrhea virus, parainfluenza type 3 virus, goat respiratory syncytial virus, bovine respiratory syncytial virus, bovine adenovirus type 7, or vesicular stomatitis virus. Treatment with bovine interferons reduced viral yield for each of the...

  10. 人凝血因子Ⅸ乳腺特异表达载体的构建及细胞转染%Construction of Human CoaguLation Factor Ⅸ Mammary Expression Vector and Transfection

    Institute of Scientific and Technical Information of China (English)

    韩雪洁; 萨日娜; 梁浩; 李雪玲; 李荣凤

    2014-01-01

    [Objective]Human coagulation factor Ⅸ (hFIX) plays a key role in blood coagulation and is important for clinical treatment of hemophilia. The objective of this study is to construct human coagulation factor Ⅸ (hFIX) mammary expression vector and test the expression of hFIX in porcine mammary epithelial, and obtain hFIX-transgenic porcine mammary epithelial and female porcine fetal fibroblast cells to prepare to produce hFIX mammary specific expression transgenic pigs .[Method]Total RNA was extracted from human fetal liver tissues and human coagulation factor Ⅸ (hFIX) cDNA was amplified by RT-PCR followed the instructions of RNAiso Reagent and Prime Script RT-PCR Kit from TAKARA. PCR was performed to amplify bovine growth hormone (BGH) polyA fragment. Both hFIX cDNA and BGH polyA fragments were cloned to pbCSN2-RC plasmid, located after the bovine beta-Casein (CSN2) promoter, to achieve mammary specific expression vector pbCSN2-hFIX-pA-RC with neomycin-resistance and red fluorescence genes. Porcine mammary epithelial cells were obtained by culturing 1mm3 mammary tissue cubes from the breast tissue of lactation pigs that slaughtered in the local slaughterhouse and purifying with time-controlled trypsinization. The chromosome analysis was performed on the derived cells, and the cells with normal number of chromosomes were transfected with pbCSN2-hFIX-pA-RC by lipofection technology. The transfected porcine mammary epithelial cells were screened by neomycin-resistance and red fluorescent expression. The expression of hFIX was further confirmed by real-time PCR. To only transfect the female fibroblasts, the SRY PCR was performed on the porcine fibroblasts cultured in the lab to determine the sex of the cells. Finally, the confirmed vector was transferred to porcine fetal fibroblast cells by lipofection technology. [Result] The results of PCR and restricted endonucleases digestion analysis showed that the hFIX cDNA and BGH PolyA were cloned into pbCSN2-RC, and the

  11. Paternal selenium deficiency but not supplementation during preconception alters mammary gland development and 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in female rat offspring.

    Science.gov (United States)

    Guido, Luiza N; Fontelles, Camile C; Rosim, Mariana P; Pires, Vanessa C; Cozzolino, Silvia M F; Castro, Inar A; Bolaños-Jiménez, Francisco; Barbisan, Luis F; Ong, Thomas P

    2016-10-15

    Breast cancer is a global public health problem and accumulating evidence indicates early-life exposures as relevant factors in the disease risk determination. Recent studies have shown that paternal nutrition can influence offspring health including breast cancer risk. Selenium is a micronutrient with essential role in central aspects of embryogenesis, male fertility and cancer and that has been extensively studied as a chemopreventive agent in several breast cancer experimental models. Thus, we designed an animal study to evaluate whether paternal selenium deficiency or supplementation during preconception could affect the female offspring mammary gland development and breast cancer susceptibility. Male Sprague-Dawley rats were fed AIN93-G diet containing 0.15 ppm (control diet), 0.05 ppm (deficient diet) or 1 ppm (supplemented diet) of selenium for 9 weeks and mated with control female rats. Mammary carcinogenesis was induced with 7,12-dimethylbenz[a]anthracene (DMBA) in their female offspring. Paternal selenium deficiency increased the number of terminal end buds, epithelial elongation and cell proliferation in the mammary gland of the female rat offspring and these effects were associated with higher susceptibility to DMBA-induced mammary tumors (increased incidence and higher grade tumors). On the other hand, paternal selenium supplementation did not influence any of these parameters. These results highlight the importance of father's nutrition including selenium status as a relevant factor affecting daughter's breast cancer risk and paternal preconception as a potential developmental stage to start disease preventive strategies. PMID:27270969

  12. Comparison of methods for the isolation of human breast epithelial and myoepithelial cells

    Directory of Open Access Journals (Sweden)

    Arantzazu eZubeldia-Plazaola

    2015-05-01

    Full Text Available Two lineages, epithelial and myoepithelial cells, are the main cell populations in the normal mammary gland and in breast cancer. Traditionally, cancer research has been performed using commercial cell lines, but primary cell cultures obtained from fresh breast tissue are a powerful tool to study more reliably new aspects of mammary gland biology, including normal and pathological conditions. Nevertheless, the methods described to date have some technical problems in terms of cell viability and yield, which hamper work with primary mammary cells. Therefore, there is a need to optimize technology for the proper isolation of epithelial and myoepithelial cells. For this reason, we compared four methods in an effort to improve the isolation and primary cell culture of different cell populations of human mammary epithelium. The samples were obtained from healthy tissue of patients who had undergone mammoplasty or mastectomy surgery. We based our approaches on previously described methods, and incorporated additional steps to ameliorate technical efficiency and increase cell survival. We determined cell growth and viability by phase-contrast images, growth curve analysis and cell yield, and identified cell-lineage specific markers by flow cytometry and immunofluorescence in 3D cell cultures. These techniques allowed us to better evaluate the functional capabilities of these two main mammary lineages, using CD227/K19 (epithelial cells and CD10/K14 (myoepithelial cells antigens. Our results show that slow digestion at low enzymatic concentration combined with the differential centrifugation technique is the method that best fits the main goal of the present study: protocol efficiency and cell survival yield. In summary, we propose some guidelines to establish primary mammary epithelial cell lines more efficiently and to provide us with a strong research instrument to better understand the role of different epithelial cell types in the origin of breast

  13. Columnar cell lesions of the canine mammary gland: pathological features and immunophenotypic analysis

    Directory of Open Access Journals (Sweden)

    Cassali Geovanni D

    2010-02-01

    Full Text Available Abstract Background It has been suggested that columnar cell lesions indicate an alteration of the human mammary gland involved in the development of breast cancer. They have not previously been described in canine mammary gland. The aim of this paper is describe the morphologic spectrum of columnar cell lesions in canine mammary gland specimens and their association with other breast lesions. Methods A total of 126 lesions were subjected to a comprehensive morphological review based upon the human breast classification system for columnar cell lesions. The presence of preinvasive (epithelial hyperplasia and in situ carcinoma and invasive lesions was determined and immunophenotypic analysis (estrogen receptor (ER, progesterone receptor (PgR, high molecular weight cytokeratin (34βE-12, E-cadherin, Ki-67, HER-2 and P53 was perfomed. Results Columnar cell lesions were identified in 67 (53.1% of the 126 canine mammary glands with intraepithelial alterations. They were observed in the terminal duct lobular units and characterized at dilated acini may be lined by several layers of columnar epithelial cells with elongated nuclei. Of the columnar cell lesions identified, 41 (61.2% were without and 26 (38.8% with atypia. Association with ductal hyperplasia was observed in 45/67 (67.1%. Sixty (89.5% of the columnar cell lesions coexisted with neoplastic lesions (20 in situ carcinomas, 19 invasive carcinomas and 21 benign tumors. The columnar cells were ER, PgR and E-cadherin positive but negative for cytokeratin 34βE-12, HER-2 and P53. The proliferation rate as measured by Ki-67 appeared higher in the lesions analyzed than in normal TDLUs. Conclusions Columnar cell lesions in canine mammary gland are pathologically and immunophenotypically similar to those in human breast. This may suggest that dogs are a suitable model for the comparative study of noninvasive breast lesions.

  14. A novel cell culture model for studying differentiation and apoptosis in the mouse mammary gland

    International Nuclear Information System (INIS)

    This paper describes the derivation and characterization of a novel, conditionally immortal mammary epithelial cell line named KIM-2. These cells were derived from mid-pregnant mammary glands of a mouse harbouring one to two copies of a transgene comprised of the ovine β-lactoglobulin milk protein gene promoter, driving expression of a temperature-sensitive variant of simian virus-40 (SV40) large T antigen (T-Ag). KIM-2 cells have a characteristic luminal epithelial cell morphology and a stable, nontransformed phenotype at the semipermissive temperature of 37°C. In contrast, at the permissive temperature of 33°C the cells have an elongated spindle-like morphology and become transformed after prolonged culture. Differentiation of KIM-2 cells at 37°C, in response to lactogenic hormones, results in the formation of polarized dome-like structures with tight junctions. This is accompanied by expression of the milk protein genes that encode β-casein and whey acidic protein (WAP), and activation of the prolactin signalling molecule, signal transducer and activator of transcription (STAT)5. Fully differentiated KIM-2 cultures at 37°C become dependent on lactogenic hormones for survival and undergo extensive apoptosis upon hormone withdrawal, as indicated by nuclear morphology and flow cytometric analysis. KIM-2 cells can be genetically modified by stable transfection and clonal lines isolated that retain the characteristics of untransfected cells. KIM-2 cells are a valuable addition, therefore, to currently available lines of mammary epithelial cells. Their capacity for extensive differentiation in the absence of exogenously added basement membrane, and ability to undergo apoptosis in response to physiological signals will provide an invaluable model system for the study of signal transduction pathways and transcriptional regulatory mechanisms that control differentiation and involution in the mammary gland

  15. Continuous lactation effects on mammary remodeling during late gestation and lactation in dairy goats.

    Science.gov (United States)

    Safayi, S; Theil, P K; Hou, L; Engbaek, M; Nørgaard, J V; Sejrsen, K; Nielsen, M O

    2010-01-01

    The present study aimed to 1) elucidate whether continuous milking during late gestation in dairy goats negatively affects mammary remodeling and hence milk production in the subsequent lactation, and 2) identify the regulatory factors responsible for changes in cell turnover and angiogenesis in the continuously lactating mammary gland. Nine multiparous dairy goats were used. One udder half was dried off approximately 9 wk prepartum (normal lactation; NL), and the other udder half of the same goat was milked continuously (continuous lactation; CL) until parturition or until the half-udder milk yields had dropped to below 50 g/d. Mammary biopsies were obtained from each udder half just before the NL gland was dried off (before dry period), within the first 2 wk after drying-off (early dry period, samples available only for NL glands), in the mid dry period, within the last 2 wk before parturition (late dry period), and at d 1 (the day of parturition), 3, 10, 60, and 180 of lactation. Mammary morphology was characterized in biopsies by quantitative histology, and cell turnover was determined by immunohistochemistry (terminal deoxynucleotidyl transferase dUTP nick end labeling and Ki-67). Transcription of genes encoding factors involved in mammary epithelial cell (MEC) turnover and vascular function was quantified by quantitative reverse transcription PCR. Results demonstrated that omitting the dry period was possible in goats but was not as easy as claimed before. Renewal of MEC was suppressed in CL glands, which resulted in a smaller MEC population in the subsequent lactation. At the time of parturition (and throughout lactation), the mammary glands subjected to CL had smaller alveoli, more fully differentiated MEC, and a substantially larger capillary fraction compared with NL glands. The continuously lactating gland thus resembled a normally lactating gland in an advanced stage of lactation. None of the studied genomic factors could account for these treatment

  16. Mammary renin-angiotensin system-regulating aminopeptidase activities are modified in rats with breast cancer.

    Science.gov (United States)

    del Pilar Carrera, Maria; Ramírez-Expósito, Maria Jesus; Mayas, Maria Dolores; García, Maria Jesus; Martínez-Martos, Jose Manuel

    2010-12-01

    Angiotensin II in particular and/or the local renin-angiotensin system in general could have an important role in epithelial tissue growth and modelling; therefore, it is possible that it may be involved in breast cancer. In this sense, previous works of our group showed a predominating role of angiotensin II in tumoral tissue obtained from women with breast cancer. However, although classically angiotensin II has been considered the main effector peptide of the renin-angiotensin system cascade, several of its catabolism products such as angiotensin III and angiotensin IV also possess biological functions. These peptides are formed through the activity of several proteolytic regulatory enzymes of the aminopeptidase type, also called angiotensinases. The aim of this work was to analyse several specific angiotensinase activities involved in the renin-angiotensin system cascade in mammary tissue from control rats and from rats with mammary tumours induced by N-methyl-nitrosourea (NMU), which may reflect the functional status of their target peptides under the specific conditions brought about by the tumoural process. The results show that soluble and membrane-bound specific aspartyl aminopeptidase activities and membrane-bound glutamyl aminopeptidase activity increased in mammary tissue from NMU-treated animals and soluble aminopeptidase N and aminopeptidase B activities significantly decreased in mammary tissue from NMU-treated rats. These changes support the existence of a local mammary renin-angiotensin system and that this system and its putative functions in breast tissue could be altered by the tumour process, in which we suggest a predominant role of angiotensin III. All described data about the renin-angiotensin system in mammary tissue support the idea that it must be involved in normal breast tissue functions, and its disruption could be involved in one or more steps of the carcinogenesis process.

  17. Inhibition of proliferation by PERK regulates mammary acinar morphogenesis and tumor formation.

    Directory of Open Access Journals (Sweden)

    Sharon J Sequeira

    Full Text Available Endoplasmic reticulum (ER stress signaling can be mediated by the ER kinase PERK, which phosphorylates its substrate eIF2alpha. This in turn, results in translational repression and the activation of downstream programs that can limit cell growth through cell cycle arrest and/or apoptosis. These responses can also be initiated by perturbations in cell adhesion. Thus, we hypothesized that adhesion-dependent regulation of PERK signaling might determine cell fate. We tested this hypothesis in a model of mammary acini development, a morphogenetic process regulated in part by adhesion signaling. Here we report a novel role for PERK in limiting MCF10A mammary epithelial cell proliferation during acinar morphogenesis in 3D Matrigel culture as well as in preventing mammary tumor formation in vivo. We show that loss of adhesion to a suitable substratum induces PERK-dependent phosphorylation of eIF2alpha and selective upregulation of ATF4 and GADD153. Further, inhibition of endogenous PERK signaling during acinar morphogenesis, using two dominant-negative PERK mutants (PERK-DeltaC or PERK-K618A, does not affect apoptosis but results instead in hyper-proliferative and enlarged lumen-filled acini, devoid of proper architecture. This phenotype correlated with an adhesion-dependent increase in translation initiation, Ki67 staining and upregulation of Laminin-5, ErbB1 and ErbB2 expression. More importantly, the MCF10A cells expressing PERKDeltaC, but not a vector control, were tumorigenic in vivo upon orthotopic implantation in denuded mouse mammary fat pads. Our results reveal that the PERK pathway is responsive to adhesion-regulated signals and that it is essential for proper acinar morphogenesis and in preventing mammary tumor formation. The possibility that deficiencies in PERK signaling could lead to hyperproliferation of the mammary epithelium and increase the likelihood of tumor formation, is of significance to the understanding of breast cancer.

  18. Perinatal exposure to bisphenol a increases adult mammary gland progesterone response and cell number.

    Science.gov (United States)

    Ayyanan, Ayyakkannu; Laribi, Ouahiba; Schuepbach-Mallepell, Sonia; Schrick, Christina; Gutierrez, Maria; Tanos, Tamara; Lefebvre, Gregory; Rougemont, Jacques; Yalcin-Ozuysal, Ozden; Brisken, Cathrin

    2011-11-01

    Bisphenol A [BPA, 2,2,-bis (hydroxyphenyl) propane] is one of the highest-volume chemicals produced worldwide. It is detected in body fluids of more than 90% of the human population. Originally synthesized as an estrogenic compound, it is currently utilized to manufacture food and beverage containers resulting in uptake with food and drinks. There is concern that exposure to low doses of BPA, defined as less than or equal to 5 mg/kg body weight /d, may have developmental effects on various hormone-responsive organs including the mammary gland. Here, we asked whether perinatal exposure to a range of low doses of BPA is sufficient to alter mammary gland hormone response later on in life, with a possible impact on breast cancer risk. To mimic human exposure, we added BPA to the drinking water of C57/Bl6 breeding pairs. Analysis of the mammary glands of their daughters at puberty showed that estrogen-dependent transcriptional events were perturbed and the number of terminal end buds, estrogen-induced proliferative structures, was altered in a dose-dependent fashion. Importantly, adult females showed an increase in mammary epithelial cell numbers comparable to that seen in females exposed to diethylbestrol, a compound exposure to which was previously linked to increased breast cancer risk. Molecularly, the mRNAs encoding Wnt-4 and receptor activator of nuclear factor κB ligand, two key mediators of hormone function implicated in control of mammary stem cell proliferation and carcinogenesis, showed increased induction by progesterone in the mammary tissue of exposed mice. Thus, perinatal exposure to environmentally relevant doses of BPA alters long-term hormone response that may increase the propensity to develop breast cancer.

  19. Radiogenic neoplasia in thyroid and mammary clonogens

    International Nuclear Information System (INIS)

    We have developed rat thyroid and mammary clonogen transplantation systems for the study of radiogenic cancer induction at the target cell level in vivo. The epithelial cell populations of both glands contain small subpopulations of cells which are capable of giving rise to monoclonal glandular structures when transplanted and stimulated with appropriate hormones. Previous results indicated that these clonogens are the precursor cells of radiogenic cancer, and that initiation, is common event at the clonegenic cell level. Detailed information on the physiologic control of clonogen proliferation, differentiation, and total numbers is thus essential to an understanding of the carcinogenic process. We report here studies on investigations on the relationships between grafted thyroid cell number and the rapidity and degree of reestablishment of the thyroid-hypothalamus-pituitary feedback axis in thyroidectomized rats maintained on a normal diet or an iodine deficient diet; studies of the persistence of, and the differentiation potential and functional characteristics of, the TSH-(thyrotropin-) responsive sub- population of clonogens during goitrogenesis, the plateau-phase of goiter growth, and goiter involution; studies of changes in the size of the clonogen sub-population during goitrogenesis, goiter involution and the response to goitrogen rechallenge; and a large carcinogenesis experiment on the nature of the grafted thyroid cell number-dependent suppression of promotion/progression to neoplasia in grafts of radiation-initiated thyroid cells. Data from these studies will be used in the design of future carcinogenesis experiments on neoplastic initiation by high and low LET radiations and on cell interactions during the neoplastic process

  20. Radiogenic neoplasia in thyroid and mammary clonogens

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, K.H.

    1992-05-20

    We have developed rat thyroid and mammary clonogen transplantation systems for the study of radiogenic cancer induction at the target cell level in vivo. The epithelial cell populations of both glands contain small subpopulations of cells which are capable of giving rise to monoclonal glandular structures when transplanted and stimulated with appropriate hormones. Previous results indicated that these clonogens are the precursor cells of radiogenic cancer, and that initiation, is common event at the clonegenic cell level. Detailed information on the physiologic control of clonogen proliferation, differentiation, and total numbers is thus essential to an understanding of the carcinogenic process. We report here studies on investigations on the relationships between grafted thyroid cell number and the rapidity and degree of reestablishment of the thyroid-hypothalamus-pituitary feedback axis in thyroidectomized rats maintained on a normal diet or an iodine deficient diet; studies of the persistence of, and the differentiation potential and functional characteristics of, the TSH-(thyrotropin-) responsive sub- population of clonogens during goitrogenesis, the plateau-phase of goiter growth, and goiter involution; studies of changes in the size of the clonogen sub-population during goitrogenesis, goiter involution and the response to goitrogen rechallenge; and a large carcinogenesis experiment on the nature of the grafted thyroid cell number-dependent suppression of promotion/progression to neoplasia in grafts of radiation-initiated thyroid cells. Data from these studies will be used in the design of future carcinogenesis experiments on neoplastic initiation by high and low LET radiations and on cell interactions during the neoplastic process.

  1. Multiphoton intravital microscopy setup to visualize the mouse mammary gland

    Science.gov (United States)

    Adur, Javier; Herrera Torres, Ana M.; Masedunskas, Andrius; Baratti, Mariana O.; de Thomaz, Andre A.; Pelegati, Vitor B.; Carvalho, Hernandes F.; Cesar, Carlos L.

    2013-06-01

    Recently, light microscopy-based techniques have been extended to live mammalian models leading to the development of a new imaging approach called intravital microscopy (IVM). Although IVM has been introduced at the beginning of the last century, its major advancements have occurred in the last twenty years with the development of non-linear microscopy that has enabled performing deep tissue imaging. IVM has been utilized to address many biological questions in basic research and is now a fundamental tool that provide information on tissues such as morphology, cellular architecture, and metabolic status. IVM has become an indispensable tool in numerous areas. This study presents and describes the practical aspects of IVM necessary to visualize epithelial cells of live mouse mammary gland with multiphoton techniques.

  2. Mammary hypertrophy in an ovariohysterectomized cat.

    Science.gov (United States)

    Pukay, B P; Stevenson, D A

    1983-05-01

    A four year old ovariohysterectomized domestic short-haired cat under treatment for behavioral urine spraying and idiopathic alopecia developed mammary gland hypertrophy following treatment with megestrol acetate. Withdrawal of the progestin and treatment with androgen failed to cause regression of the hypertrophy. The affected mammary gland was surgically excised and recovery was uneventful.

  3. Mammary Hypertrophy in an Ovariohysterectomized Cat

    OpenAIRE

    Pukay, B.P.; Stevenson, D.A.

    1983-01-01

    A four year old ovariohysterectomized domestic short-haired cat under treatment for behavioral urine spraying and idiopathic alopecia developed mammary gland hypertrophy following treatment with megestrol acetate. Withdrawal of the progestin and treatment with androgen failed to cause regression of the hypertrophy. The affected mammary gland was surgically excised and recovery was uneventful.

  4. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development.

    Science.gov (United States)

    Kitayama, Midori; Mizutani, Kiyohito; Maruoka, Masahiro; Mandai, Kenji; Sakakibara, Shotaro; Ueda, Yuki; Komori, Takahide; Shimono, Yohei; Takai, Yoshimi

    2016-03-11

    Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development. PMID:26757815

  5. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development.

    Science.gov (United States)

    Kitayama, Midori; Mizutani, Kiyohito; Maruoka, Masahiro; Mandai, Kenji; Sakakibara, Shotaro; Ueda, Yuki; Komori, Takahide; Shimono, Yohei; Takai, Yoshimi

    2016-03-11

    Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development.

  6. Rac1 Controls Both the Secretory Function of the Mammary Gland and Its Remodeling for Successive Gestations.

    Science.gov (United States)

    Akhtar, Nasreen; Li, Weiping; Mironov, Aleksander; Streuli, Charles H

    2016-09-12

    An important feature of the mammary gland is its ability to undergo repeated morphological changes during each reproductive cycle with profound tissue expansion in pregnancy and regression in involution. However, the mechanisms that determine the tissue's cyclic regenerative capacity remain elusive. We have now discovered that Cre-Lox ablation of Rac1 in mammary epithelia causes gross enlargement of the epithelial tree and defective alveolar regeneration in a second pregnancy. Architectural defects arise because loss of Rac1 disrupts clearance in involution following the first lactation. We show that Rac1 is crucial for mammary alveolar epithelia to switch from secretion to a phagocytic mode and rapidly remove dying neighbors. Moreover, Rac1 restricts the extrusion of dying cells into the lumen, thus promoting their eradication by live phagocytic neighbors while within the epithelium. Without Rac1, residual milk and cell corpses flood the ductal network, causing gross dilation, chronic inflammation, and defective future regeneration. PMID:27623383

  7. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Leif R; Romer, John; Thomasset, Nicole; Solberg, Helene; Pyke, Charles; Bissell, Mina J; Dano, Keld; Werb, Zena

    1996-01-01

    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when {beta}-casein gene expression was still high. Apoptotic cells were then seen at least up to day 8 of involution, when {beta}-casein gene expression was being extinguished. Expression of sulfated glycoprotein-2 (SGP-2), interleukin-1{beta} converting enzyme (ICE) and tissue inhibitor of metalloproteinases-1 was upregulated at day 2, when apoptotic cells were seen initially. Expression of the matrix metalloproteinases gelatinase A and stromelysin-1 and the serine proteinase urokinase-type plasminogen activator, which was low during lactation, was strongly upregulated in parallel starting at day 4 after weaning, coinciding with start of the collapse of the lobulo-alveolar structures and the intensive tissue remodeling in involution. The major sites of mRNA synthesis for these proteinases were fibroblast-like cells in the periductal stroma and stromal cells surrounding the collapsed alveoli, suggesting that the degradative phase of involution is due to a specialized mesenchymal-epithelial interaction. To elucidate the functional role of these proteinases during involution, at the onset of weaning we treated mice systemically with the glucocorticoid hydrocortisone, which is known to inhibit mammary gland involution. Although the initial wave of apoptotic cells appeared in the lumina of the gland, the dramatic regression and tissue remodeling usually evident by day 5 was substantially inhibited by systemic treatment with hydrocortisone. mRNA and protein for gelatinase A, stromelysin

  8. Epimorphin mediates mammary luminal morphogenesis through control of C/EBPbeta

    International Nuclear Information System (INIS)

    We have previously shown that epimorphin, a protein expressed on the surface of myoepithelial and fibroblast cells of the mammary gland, acts as a multifunctional morphogen of mammary epithelial cells. Here, we present the molecular mechanism by which epimorphin mediates luminal morphogenesis. Treatment of cells with epimorphin to induce lumen formation greatly increases the overall expression of transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) and alters the relative expression of its two principal isoforms, LIP and LAP. These alterations were shown to be essential for the morphogenetic activities, as constitutive expression of LIP was sufficient to produce lumen formation, while constitutive expression of LAP blocked epimorphin-mediated luminal morphogenesis. Furthermore, in a transgenic mouse model in which epimorphin expression was expressed in an apolar fashion on the surface of mammary epithelial cells, we found increased expression of C/EBPbeta, increased relative expression of LIP to LAP, and enlarged ductal lumina. Together, our studies demonstrate a role for epimorphin in luminal morphogenesis through control of C/EBPbeta expression

  9. Epimorphin mediates mammary luminal morphogenesis through control of C/EBPbeta

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Yohei; Radisky, Derek; Boudreau, Rosanne; Simian, Marina; Stevens, Mary E.; Oka, Yumiko; Takebe, Kyoko; Niwa, Shinichiro; Bissell, Mina J.

    2002-03-22

    We have previously shown that epimorphin, a protein expressed on the surface of myoepithelial and fibroblast cells of the mammary gland, acts as a multifunctional morphogen of mammary epithelial cells. Here, we present the molecular mechanism by which epimorphin mediates luminal morphogenesis. Treatment of cells with epimorphin to induce lumen formation greatly increases the overall expression of transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) and alters the relative expression of its two principal isoforms, LIP and LAP. These alterations were shown to be essential for the morphogenetic activities, as constitutive expression of LIP was sufficient to produce lumen formation, while constitutive expression of LAP blocked epimorphin-mediated luminal morphogenesis. Furthermore, in a transgenic mouse model in which epimorphin expression was expressed in an apolar fashion on the surface of mammary epithelial cells, we found increased expression of C/EBPbeta, increased relative expression of LIP to LAP, and enlarged ductal lumina. Together, our studies demonstrate a role for epimorphin in luminal morphogenesis through control of C/EBPbeta expression.

  10. Innate immune response to a bovine mastitis pathogen profiled in milk and blood monocytes using a systems biology approach

    Science.gov (United States)

    Bovine mastitis is an inflammatory condition of the mammary gland which leads to reduced milk yield and increased milk somatic cell counts (SCC) resulting in an estimated annual cost to the dairy industry worldwide of ~ 2 billion euros. Mastitis has a complex etiology, with pathogenic, host and envi...

  11. The mammary gland-specific marsupial ELP and eutherian CTI share a common ancestral gene

    Directory of Open Access Journals (Sweden)

    Pharo Elizabeth A

    2012-06-01

    Full Text Available Abstract Background The marsupial early lactation protein (ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation (Phase 2A. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine colostrum trypsin inhibitor (CTI protein. Although ELP and CTI both have a single bovine pancreatic trypsin inhibitor (BPTI-Kunitz domain and are secreted only during the early lactation phases, their evolutionary history is yet to be investigated. Results Tammar ELP was isolated from a genomic library and the fat-tailed dunnart and Southern koala ELP genes cloned from genomic DNA. The tammar ELP gene was expressed only in the mammary gland during late pregnancy (Phase 1 and early lactation (Phase 2A. The opossum and fat-tailed dunnart ELP and cow CTI transcripts were cloned from RNA isolated from the mammary gland and dog CTI from cells in colostrum. The putative mature ELP and CTI peptides shared 44.6%-62.2% similarity. In silico analyses identified the ELP and CTI genes in the other species examined and provided compelling evidence that they evolved from a common ancestral gene. In addition, whilst the eutherian CTI gene was conserved in the Laurasiatherian orders Carnivora and Cetartiodactyla, it had become a pseudogene in others. These data suggest that bovine CTI may be the ancestral gene of the Artiodactyla-specific, rapidly evolving chromosome 13 pancreatic trypsin inhibitor (PTI, spleen trypsin inhibitor (STI and the five placenta-specific trophoblast Kunitz domain protein (TKDP1-5 genes. Conclusions Marsupial ELP and eutherian CTI evolved from an ancestral therian mammal gene before the divergence of marsupials and eutherians between 130 and 160 million years ago. The retention of the ELP gene in marsupials suggests that this early lactation-specific milk protein may have an important role in the immunologically naïve young of these species.

  12. Differential expression of serotonin, tryptophan hydroxylase and monoamine oxidase A in the mammary gland of the Myotis velifer bat.

    Directory of Open Access Journals (Sweden)

    Cristián Vela Hinojosa

    Full Text Available The mammary gland has long drawn the attention of the scientific community due to the limited knowledge of some fundamental aspects involved in the control of its function. Myotis velifer, a microchiropteran species, provides an interesting model to study some of the regulatory factors involved in the control of the mammary gland cycle. Having an asynchronous, monoestrous reproductive pattern, female M. velifer bats undergo drastic morphological changes of the breast during the reproductive cycle. Current research on non-chiropteran mammals indicates that serotonin (5-HT plays a major role in the intraluminal volume homeostasis of the mammary gland during lactation; however, an analysis of both the expression and localization of the main components of the serotonergic system in the bat mammary gland is lacking. Thus, the objectives of the present study were: to describe the gross and histological anatomy of the mammary gland of M. velifer to establish the lactation period for this species; to analyze the distribution and expression of the main serotonergic components in the mammary tissues of these bats under the physiological conditions of lactation, involution and the resting phase; and to provide information on the involvement of 5-HT in the regulation of the physiological function of this organ. To assess the expression and localization of serotonergic components, multiple immunofluorescence, Western blot and HPLC methods were used. 5-HT and the enzyme that catalyzes its synthesis (TPH were located in both myoepithelial and luminal epithelial cells, while the enzyme responsible for the catabolism of this neurohormone (MAO A was found in luminal epithelial cells as well as in secreted products. We also found an increased expression of serotonergic components during lactation, indicating that elements of the serotonergic system may play an important role in lactation in this species of bat in a way similar to that of other mammal species.

  13. The antiprogestins mifepristone and onapristone reduce cell proliferation in the canine mammary carcinoma cell line CMT-U27.

    Science.gov (United States)

    Guil-Luna, Silvia; Hellmén, Eva; Sánchez-Céspedes, Raquel; Millán, Yolanda; Martín de las Mulas, Juana

    2014-07-01

    Canine mammary tumours (CMTs) represent nearly half of all tumours in female dogs and some 50% have malignant behaviour. Simple epithelial carcinomas have shorter disease free periods after surgery and a higher reduction of the proliferation index reduction after antiprogestin aglepristone treatment in vivo related to the expression of progesterone receptors (PR). These findings make simple carcinomas good candidates for endocrine therapy. To further explore this possibility, the effects of the antiprogestins mifepristone (RU486) and onapristone (ZK299) on cell viability and PR expression of the canine mammary carcinoma cell line isolated from a simple epithelial carcinoma CMT-U27 were studied. Twenty five percent of CMT-U27 control cells expressed PR. RU486 (ptest) at 24h but only the latter treatment reduced significantly PR expression in viable tumour cells at 24h of incubation. The results suggest that both RU486 and ZK299 induce a decrease in the number of viable CMT-U27 tumour cells with different effects on PR expression. The canine mammary carcinoma cell line CMT-U27 is sensitive to the effects of antiprogestins and may serve to further explore the role of these drugs in canine mammary carcinomas. PMID:24500783

  14. Mammary and extramammary Paget's disease*

    Science.gov (United States)

    Lopes, Lauro Lourival; Lopes, Ione Maria Ribeiro Soares; Lopes, Lauro Rodolpho Soares; Enokihara, Milvia M. S. S.; Michalany, Alexandre Osores; Matsunaga, Nobuo

    2015-01-01

    Paget's disease, described by Sir James Paget in 1874, is classified as mammary and extramammary. The mammary type is rare and often associated with intraductal cancer (93-100% of cases). It is more prevalent in postmenopausal women and it appears as an eczematoid, erythematous, moist or crusted lesion, with or without fine scaling, infiltration and inversion of the nipple. It must be distinguished from erosive adenomatosis of the nipple, cutaneous extension of breast carcinoma, psoriasis, atopic dermatitis, contact dermatitis, chronic eczema, lactiferous ducts ectasia, Bowen's disease, basal cell carcinoma, melanoma and intraductal papilloma. Diagnosis is histological and prognosis and treatment depend on the type of underlying breast cancer. Extramammary Paget's disease is considered an adenocarcinoma originating from the skin or skin appendages in areas with apocrine glands. The primary location is the vulvar area, followed by the perianal region, scrotum, penis and axillae. It starts as an erythematous plaque of indolent growth, with well-defined edges, fine scaling, excoriations, exulcerations and lichenification. In most cases it is not associated with cancer, although there are publications linking it to tumors of the vulva, vagina, cervix and corpus uteri, bladder, ovary, gallbladder, liver, breast, colon and rectum. Differential diagnoses are candidiasis, psoriasis and chronic lichen simplex. Histopathology confirms the diagnosis. Before treatment begins, associated malignancies should be investigated. Surgical excision and micrographic surgery are the best treatment options, although recurrences are frequent. PMID:25830993

  15. Mammary and extramammary Paget's disease.

    Science.gov (United States)

    Lopes Filho, Lauro Lourival; Lopes, Ione Maria Ribeiro Soares; Lopes, Lauro Rodolpho Soares; Enokihara, Milvia M S S; Michalany, Alexandre Osores; Matsunaga, Nobuo

    2015-01-01

    Paget's disease, described by Sir James Paget in 1874, is classified as mammary and extramammary. The mammary type is rare and often associated with intraductal cancer (93-100% of cases). It is more prevalent in postmenopausal women and it appears as an eczematoid, erythematous, moist or crusted lesion, with or without fine scaling, infiltration and inversion of the nipple. It must be distinguished from erosive adenomatosis of the nipple, cutaneous extension of breast carcinoma, psoriasis, atopic dermatitis, contact dermatitis, chronic eczema, lactiferous ducts ectasia, Bowen's disease, basal cell carcinoma, melanoma and intraductal papilloma. Diagnosis is histological and prognosis and treatment depend on the type of underlying breast cancer. Extramammary Paget's disease is considered an adenocarcinoma originating from the skin or skin appendages in areas with apocrine glands. The primary location is the vulvar area, followed by the perianal region, scrotum, penis and axillae. It starts as an erythematous plaque of indolent growth, with well-defined edges, fine scaling, excoriations, exulcerations and lichenification. In most cases it is not associated with cancer, although there are publications linking it to tumors of the vulva, vagina, cervix and corpus uteri, bladder, ovary, gallbladder, liver, breast, colon and rectum. Differential diagnoses are candidiasis, psoriasis and chronic lichen simplex. Histopathology confirms the diagnosis. Before treatment begins, associated malignancies should be investigated. Surgical excision and micrographic surgery are the best treatment options, although recurrences are frequent. PMID:25830993

  16. Mouse mammary tumor biology: a short history.

    Science.gov (United States)

    Cardiff, Robert D; Kenney, Nicholas

    2007-01-01

    For over a century, mouse mammary tumor biology and the associated Mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology, and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration, in 1984, that the mouse mammary gland could be molecularly targeted and used to test the oncogenicity of candidate human genes. Now, very few scientists can avoid using a mouse model to test the biology of their favorite gene. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skills to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this short history of mouse mammary tumor biology is to provide a historical perspective for the benefit of the newcomers. If Einstein was correct in that "we stand on the shoulders of giants," the neophytes should meet their giants. PMID:17433908

  17. Epidermal growth-factor-induced transcript isoform variation drives mammary cell migration.

    Directory of Open Access Journals (Sweden)

    Wolfgang J Köstler

    Full Text Available Signal-induced transcript isoform variation (TIV includes alternative promoter usage as well as alternative splicing and alternative polyadenylation of mRNA. To assess the phenotypic relevance of signal-induced TIV, we employed exon arrays and breast epithelial cells, which migrate in response to the epidermal growth factor (EGF. We show that EGF rapidly--within one hour--induces widespread TIV in a significant fraction of the transcriptome. Importantly, TIV characterizes many genes that display no differential expression upon stimulus. In addition, similar EGF-dependent changes are shared by a panel of mammary cell lines. A functional screen, which utilized isoform-specific siRNA oligonucleotides, indicated that several isoforms play essential, non-redundant roles in EGF-induced mammary cell migration. Taken together, our findings highlight the importance of TIV in the rapid evolvement of a phenotypic response to extracellular signals.

  18. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium

    Science.gov (United States)

    Chaudhuri, Ovijit; Koshy, Sandeep T.; Branco da Cunha, Cristiana; Shin, Jae-Won; Verbeke, Catia S.; Allison, Kimberly H.; Mooney, David J.

    2014-10-01

    In vitro models of normal mammary epithelium have correlated increased extracellular matrix (ECM) stiffness with malignant phenotypes. However, the role of increased stiffness in this transformation remains unclear because of difficulties in controlling ECM stiffness, composition and architecture independently. Here we demonstrate that interpenetrating networks of reconstituted basement membrane matrix and alginate can be used to modulate ECM stiffness independently of composition and architecture. We find that, in normal mammary epithelial cells, increasing ECM stiffness alone induces malignant phenotypes but that the effect is completely abrogated when accompanied by an increase in basement-membrane ligands. We also find that the combination of stiffness and composition is sensed through β4 integrin, Rac1, and the PI3K pathway, and suggest a mechanism in which an increase in ECM stiffness, without an increase in basement membrane ligands, prevents normal α6β4 integrin clustering into hemidesmosomes.

  19. Expression of Autoactivated Stromelysin-1 in Mammary Glands of Transgenic Mice Leads to a Reactive Stroma During Early Development

    Energy Technology Data Exchange (ETDEWEB)

    Thomasset, N.; Lochter, A.; Sympson, C.J.; Lund, L.R.; Williams, D.R.; Behrendtsen, O.; Werb, Z.; Bissell, M.J.

    1998-04-24

    Extracellular matrix and extracellular matrix-degrading matrix metalloproteinases play a key role in interactions between the epithelium and the mesenchyme during mammary gland development and disease. In patients with breast cancer, the mammary mesenchyme undergoes a stromal reaction, the etiology of which is unknown. We previously showed that targeting of an autoactivating mutant of the matrix metalloproteinase stromelysin-1 to mammary epithelia of transgenic mice resulted in reduced mammary function during pregnancy and development of preneoplastic and neoplastic lesions. Here we examine the cascade of alterations before breast tumor formation in the mammary gland stroma once the expression of the stromelysin-1 transgene commences. Beginning in postpubertal virgin animals, low levels of transgene expression in mammary epithelia led to increased expression of endogenous stromelysin-1 in stromal fibroblasts and up-regulation of other matrix metalloproteinases, without basement membrane disruption. These changes were accompanied by the progressive development of a compensatory reactive stroma, characterized by increased collagen content and vascularization in glands from virgin mice. This remodeling of the gland affected epithelial-mesenchymal communication as indicated by inappropriate expression of tenascin-C starting by day 6 of pregnancy. This, together with increased transgene expression, led to basement membrane disruption starting by day 15 of pregnancy. We propose that the highly reactive stroma provides a prelude to breast epithelial tumors observed in these animals. Epithelial development depends on an exquisite series of inductive and instructive interactions between the differentiating epithelium and the mesenchymal (stromal) compartment. The epithelium, which consists of luminal and myoepithelial cells, is separated from the stroma by a basement membrane (BM), which plays a central role in mammary gland homeostasis and gene expression. In vivo, stromal

  20. Mammary gland tumors in captive African hedgehogs.

    Science.gov (United States)

    Raymond, J T; Gerner, M

    2000-04-01

    From December 1995 to July 1999, eight mammary gland tumors were diagnosed in eight adult captive female African hedgehogs (Atelerix albiventris). The tumors presented as single or multiple subcutaneous masses along the cranial or caudal abdomen that varied in size for each hedgehog. Histologically, seven of eight (88%) mammary gland tumors were malignant. Tumors were classified as solid (4 cases), tubular (2 cases), and papillary (2 cases). Seven tumors had infiltrated into the surrounding stroma and three tumors had histologic evidence of neoplastic vascular invasion. Three hedgehogs had concurrent neoplasms. These are believed to be the first reported cases of mammary gland tumors in African hedgehogs. PMID:10813628

  1. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing

    Science.gov (United States)

    2014-01-01

    Background Recently, RNA sequencing (RNA-seq) has rapidly emerged as a major transcriptome profiling system. Elucidation of the bovine mammary gland transcriptome by RNA-seq is essential for identifying candidate genes that contribute to milk composition traits in dairy cattle. Results We used massive, parallel, high-throughput, RNA-seq to generate the bovine transcriptome from the mammary glands of four lactating Holstein cows with extremely high and low phenotypic values of milk protein and fat percentage. In total, we obtained 48,967,376–75,572,578 uniquely mapped reads that covered 82.25% of the current annotated transcripts, which represented 15549 mRNA transcripts, across all the four mammary gland samples. Among them, 31 differentially expressed genes (p < 0.05, false discovery rate q < 0.05) between the high and low groups of cows were revealed. Gene ontology and pathway analysis demonstrated that the 31 differently expressed genes were enriched in specific biological processes with regard to protein metabolism, fat metabolism, and mammary gland development (p < 0.05). Integrated analysis of differential gene expression, previously reported quantitative trait loci, and genome-wide association studies indicated that TRIB3, SAA (SAA1, SAA3, and M-SAA3.2), VEGFA, PTHLH, and RPL23A were the most promising candidate genes affecting milk protein and fat percentage. Conclusions This study investigated the complexity of the mammary gland transcriptome in dairy cattle using RNA-seq. Integrated analysis of differential gene expression and the reported quantitative trait loci and genome-wide association study data permitted the identification of candidate key genes for milk composition traits. PMID:24655368

  2. Loss of the BRCA1-interacting helicase BRIP1 results in abnormal mammary acinar morphogenesis.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Daino

    Full Text Available BRIP1 is a DNA helicase that directly interacts with the C-terminal BRCT repeat of the breast cancer susceptibility protein BRCA1 and plays an important role in BRCA1-dependent DNA repair and DNA damage-induced checkpoint control. Recent studies implicate BRIP1 as a moderate/low-penetrance breast cancer susceptibility gene. However, the phenotypic effects of BRIP1 dysfunction and its role in breast cancer tumorigenesis remain unclear. To explore the function of BRIP1 in acinar morphogenesis of mammary epithelial cells, we generated BRIP1-knockdown MCF-10A cells by short hairpin RNA (shRNA-mediated RNA interference and examined its effect in a three-dimensional culture model. Genome-wide gene expression profiling by microarray and quantitative RT-PCR were performed to identify alterations in gene expression in BRIP1-knockdown cells compared with control cells. The microarray data were further investigated using the pathway analysis and Gene Set Enrichment Analysis (GSEA for pathway identification. BRIP1 knockdown in non-malignant MCF-10A mammary epithelial cells by RNA interference induced neoplastic-like changes such as abnormal cell adhesion, increased cell proliferation, large and irregular-shaped acini, invasive growth, and defective lumen formation. Differentially expressed genes, including MCAM, COL8A1, WIPF1, RICH2, PCSK5, GAS1, SATB1, and ELF3, in BRIP1-knockdown cells compared with control cells were categorized into several functional groups, such as cell adhesion, polarity, growth, signal transduction, and developmental process. Signaling-pathway analyses showed dysregulation of multiple cellular signaling pathways, involving LPA receptor, Myc, Wnt, PI3K, PTEN as well as DNA damage response, in BRIP1-knockdown cells. Loss of BRIP1 thus disrupts normal mammary morphogenesis and causes neoplastic-like changes, possibly via dysregulating multiple cellular signaling pathways functioning in the normal development of mammary glands.

  3. Bovine CCL28 Mediates Chemotaxis via CCR10 and Demonstrates Direct Antimicrobial Activity against Mastitis Causing Bacteria.

    Directory of Open Access Journals (Sweden)

    Kyler B Pallister

    Full Text Available In addition to the well characterized function of chemokines in mediating the homing and accumulation of leukocytes to tissues, some chemokines also exhibit potent antimicrobial activity. Little is known of the potential role of chemokines in bovine mammary gland health and disease. The chemokine CCL28 has previously been shown to play a key role in the homing and accumulation of IgA antibody secreting cells to the lactating murine mammary gland. CCL28 has also been shown to act as an antimicrobial peptide with activity demonstrated against a wide range of pathogens including bacteria, fungi and protozoans. Here we describe the cloning and function of bovine CCL28 and document the concentration of this chemokine in bovine milk. Bovine CCL28 was shown to mediate cellular chemotaxis via the CCR10 chemokine receptor and exhibited antimicrobial activity against a variety of bovine mastitis causing organisms. The concentration of bovine CCL28 in milk was found to be highly correlated with the lactation cycle. Highest concentrations of CCL28 were observed soon after parturition, with levels decreasing over time. These results suggest a potential role for CCL28 in the prevention/resolution of bovine mastitis.

  4. Selenium in human mammary carcinogenesis

    DEFF Research Database (Denmark)

    Overvad, Kim; Grøn, P.; Langhoff, Otto;

    1991-01-01

    In a case-referent study on the possible role of selenium in human mammary carcinogenesis, serum selenium was found to be 79 +/- 12 micrograms/l in 66 cases and 81 +/- 12 micrograms/l in 93 referents. An internal trend in serum selenium was observed among cases (TNM stage I 81 +/- 11 micrograms....../l and TNM stage II 76 +/- 13 micrograms selenium/l), indicating disease-mediated changes. The evaluation of selenium as a risk indicator in human breast cancer was therefore restricted to TNM stage I patients (n = 36). Multiple logistic regression analyses including variables associated with selenium...... levels revealed no association between selenium levels and breast cancer risk....

  5. Cellular and molecular basis of mammary microcalcifications

    OpenAIRE

    Cox, Rachel

    2011-01-01

    Mammary microcalcifications represent one of the most reliable mammographic features of non-palpable breast cancer and are often the sole indicator of the disease. However, it is unknown whether these microcalcifications are a sign of degeneration or an active cellular process. The aims of this project were to establish and characterise an in vitro model of mammary mineralisation in monolayer, 3D scaffolds and in vivo and to investigate the molecular mechanisms involved in this process, focus...

  6. A novel mouse model for non-invasive single marker tracking of mammary stem cells in vivo reveals stem cell dynamics throughout pregnancy.

    Directory of Open Access Journals (Sweden)

    Benjamin J Tiede

    Full Text Available Mammary stem cells (MaSCs play essential roles for the development of the mammary gland and its remodeling during pregnancy. However, the precise localization of MaSCs in the mammary gland and their regulation during pregnancy is unknown. Here we report a transgenic mouse model for luciferase-based single marker detection of MaSCs in vivo that we used to address these issues. Single transgene expressing mammary epithelial cells were shown to reconstitute mammary glands in vivo while immunohistochemical staining identified MaSCs in basal and luminal locations, with preponderance towards the basal position. By quantifying luciferase expression using bioluminescent imaging, we were able to track MaSCs non-invasively in individual mice over time. Using this model to monitor MaSC dynamics throughout pregnancy, we found that MaSCs expand in both total number and percentage during pregnancy and then drop down to or below baseline levels after weaning. However, in a second round of pregnancy, this expansion was not as extensive. These findings validate a powerful system for the analysis of MaSC dynamics in vivo, which will facilitate future characterization of MaSCs during mammary gland development and breast cancer.

  7. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane

    Energy Technology Data Exchange (ETDEWEB)

    BARCELLOS-HOFF, M. H; AGGELER, J.; RAM, T. G; BISSELL, M. J

    1989-02-01

    An essential feature of mammary gland differentiation during pregnancy is the formation of alveoli composed of polarized epithelial cells, which, under the influence of lactogenic hormones, secrete vectorially and sequester milk proteins. Previous culture studies have described either organization of cells polarized towards lumina containing little or no demonstrable tissue-specific protein, or establishment of functional secretory cells exhibiting little or no glandular architecture. In this paper, we report that tissue-specific vectorial secretion coincides with the formation of functional alveoli-like structures by primary mammary epithelial cells cultured on a reconstituted basement membrane matrix (derived from Engelbreth-Holm-Swarm murine tumour). Morphogenesis of these unique three-dimensional structures was initiated by cell-directed remodelling of the exogenous matrix leading to reorganization of cells into matrixensheathed aggregates by 24 h after plating. The aggregates subsequently cavitated, so that by day 6 the cells were organized into hollow spheres in which apical cell surfaces faced lumina sealed by tight junctions and basal surfaces were surrounded by a distinct basal lamina. The profiles of proteins secreted into the apical (luminal) and basal (medium) compartments indicated that these alveoli-like structures were capable of an appreciable amount of vectorial secretion. Immunoprecipitation with a broad spectrum milk antiserum showed that more than 80% of caseins were secreted into the lumina, whereas iron-binding proteins (both lactoferrin and transferrin) were present in comparable amounts in each compartment. Thus, these mammary cells established protein targeting pathways directing milk-specific proteins to the luminal compartment. A time course monitoring secretory activity demonstrated that establishment of tissue-specific vectorial secretion and increased total and milk protein secretion coincided with functional alveolar

  8. The use of liposomally-entrapped gentamicin in the treatment of bovine Staphylococcus aureus mastitis.

    OpenAIRE

    MacLeod, D L; Prescott, J F

    1988-01-01

    The effect of incorporation of gentamicin in liposomes on intracellular killing of Staphylococcus aureus was studied in vitro in cultured bovine mammary macrophages, and in experimental bovine mastitis. Liposomes were prepared by reverse-phase evaporation and ranged in size from 0.1 to 1.0 micron in diameter (mean 0.51 micron), with an encapsulation efficiency of gentamicin of 27.4%. Liposomes were taken up by in vitro cultured macrophages but intracellular killing of S. aureus over 12 h was ...

  9. CCL28 Controls Immunoglobulin (Ig)A Plasma Cell Accumulation in the Lactating Mammary Gland and IgA Antibody Transfer to the Neonate

    OpenAIRE

    Wilson, Eric; Butcher, Eugene C.

    2004-01-01

    The accumulation of immunoglobulin (Ig)A antibody-secreting cells (ASCs) in the lactating mammary gland leads to secretion of antibodies into milk and their passive transfer to the suckling newborn. This transfer of IgA from mother to infant provides transient immune protection against a variety of gastrointestinal pathogens. Here we show that the mucosal epithelial chemokine CCL28 is up-regulated in the mammary gland during lactation and that IgA ASCs from this tissue express CCR10 and migra...

  10. 78 FR 72979 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2013-12-04

    ... risks of other livestock diseases, such as bovine viral diarrhea, foot-and-mouth disease, infectious... Products Derived from Bovines,'' published in the Federal Register on September 18, 2007 (72 FR 53314-53379... 92, 93, 94, et al. Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine...

  11. Camel and bovine chymosin

    DEFF Research Database (Denmark)

    Jensen, Jesper Langholm; Mølgaard, Anne; Poulsen, Jens-Christian Navarro;

    2013-01-01

    Bovine and camel chymosin are aspartic peptidases that are used industrially in cheese production. They cleave the Phe105-Met106 bond of the milk protein κ-casein, releasing its predominantly negatively charged C-terminus, which leads to the separation of the milk into curds and whey. Despite...... having 85% sequence identity, camel chymosin shows a 70% higher milk-clotting activity than bovine chymosin towards bovine milk. The activities, structures, thermal stabilities and glycosylation patterns of bovine and camel chymosin obtained by fermentation in Aspergillus niger have been examined...... differential scanning calorimetry revealed a slightly higher thermal stability of camel chymosin compared with bovine chymosin. The crystal structure of a doubly glycosylated variant of camel chymosin was determined at a resolution of 1.6 Å and the crystal structure of unglycosylated bovine chymosin...

  12. 牛输卵管上皮细胞转人胶原蛋白cDNA基因及转基因克隆胚胎%Bovine oviduct epithelial cells transfected with human collagen cDNA gene and transgenic cloning embryo

    Institute of Scientific and Technical Information of China (English)

    吕自力; 王亮; 刘婷婷; 石国庆

    2012-01-01

    Isolated bovine oviduct epithelial ceils by trypsin digestion from oviduct tissue of a 2-year-old dairy cow. Oviduct epithelial cells grow well in DMEM/F12 medium. The first generation oviduct epithelial cells were used as target cells to carry out electroporation transfection. Molecular size of the transfected genes is 31 085 bp. The gene is a plasmid that carry β-casein promoter,human collagen eDNA and EGFP,Neor as double marker. Electroporatioa experiment found that bovine oviduct epithelial cells can get positive-transfectant in hypotonic buffer. Among them,90 mOsm/kg is the best. For voltage,800 V is the best. High and low voltage are not conducive to the success of electroporation. Successfully transfected cells were screened with 800ug/ml of G418. on day 10, a larger cluster of positive cell clones were obtained. The cluster of positive clone cells were expanded to obtain a more pure cell line. Detected by flow cytomerty,the purity was 81.6% . This cell as a nuclear transfer donor carried out gene transfer experiments. The results showed that in transgenic cells and nontransgenic cells, their fusion rate of reconstructed embryos obtained significant difference(51.9 % vs 63.2 %), their morula/blastocyst rate of reconstructed embrys were not significantly different (20.3 % vs 25.5% ). DNA of the embryos displaying green fluorescence was analyzed,The results showed that the embryos was successfully transferred to the foreign gene and the genetic structure of the transfer was complete.%以2岁奶牛输卵管为材料,用胰酶消化法分离得到了牛输卵管上皮细胞。输卵管上皮细胞在DMEM/F12培养基中生长良好。用一代牛输卵管上皮细胞为靶细胞,对其进行了电穿孔转染,转染对象是分子大小为31085bp的以β-casein启动子为基础的含有人胶原蛋白cDNA基因和EGFP、Neor双标记基因的质粒。电穿孔试验发现,牛输卵管上皮细胞在低渗缓冲液中电转染可以获

  13. Cox-2 levels in canine mammary tumors, including inflammatory mammary carcinoma: clinicopathological features and prognostic significance.

    Science.gov (United States)

    Queiroga, Felisbina Luisa; Perez-Alenza, Maria Dolores; Silvan, Gema; Peña, Laura; Lopes, Carlos; Illera, Juan Carlos

    2005-01-01

    Cyclo-oxygenase (Cox-2) plays an important role in mammary carcinogenesis, nevertheless, its role in canine mammary tumors, and particularly in inflammatory mammary carcinoma (IMC), is unknown. Tumor Cox-2 levels were analyzed by enzyme immunoassay, in post-surgical tumor homogenates of 129 mammary tumors (62 dysplasias and benign tumors, 57 malignant non-IMC and 10 IMC) from 57 female dogs. The highest Cox-2 values were detected in the IMC group. In non-IMC malignant tumors, high values of Cox-2 were related to skin ulceration (p IMC cases could indicate a special role of Cox-2 in the inflammatory phenotype and open the possibility of additional new therapeutic approaches in this special type of mammary cancer in humans and dogs.

  14. An overview of bovine α-lactalbumin structure and functionality

    Directory of Open Access Journals (Sweden)

    Nicoleta STĂNCIUC

    2010-12-01

    Full Text Available α-Lactalbumin is the second major protein in bovine milk (2-5% of the total protein in bovine milk. The human variant has several physiologic functions in the neonatal period. In the mammary gland, itparticipates in lactose synthesis and facilitates milk production and secretion. α-Lactalbumin binds divalent cations (Ca2+, Zn2+ and may facilitate the absorption of essential minerals. Also, it provides awell-balanced supply of essential amino acids for the growing infant. During its digestion, peptides with antibacterial and imunostimulatory properties are formed, thereby possibly helping in the protection against infection. The protein fractions enriched with α-lactalbumin may be added to infant formula to provide some of the benefits of this protein. This article reviews a number of studies which may contribute to a more coherent understanding of the structure and some functional properties of α-lactalbumin.

  15. A colostrum trypsin inhibitor gene expressed in the Cape fur seal mammary gland during lactation.

    Science.gov (United States)

    Pharo, Elizabeth A; Cane, Kylie N; McCoey, Julia; Buckle, Ashley M; Oosthuizen, W H; Guinet, Christophe; Arnould, John P Y

    2016-03-01

    The colostrum trypsin inhibitor (CTI) gene and transcript were cloned from the Cape fur seal mammary gland and CTI identified by in silico analysis of the Pacific walrus and polar bear genomes (Order Carnivora), and in marine and terrestrial mammals of the Orders Cetartiodactyla (yak, whales, camel) and Perissodactyla (white rhinoceros). Unexpectedly, Weddell seal CTI was predicted to be a pseudogene. Cape fur seal CTI was expressed in the mammary gland of a pregnant multiparous seal, but not in a seal in its first pregnancy. While bovine CTI is expressed for 24-48 h postpartum (pp) and secreted in colostrum only, Cape fur seal CTI was detected for at least 2-3 months pp while the mother was suckling its young on-shore. Furthermore, CTI was expressed in the mammary gland of only one of the lactating seals that was foraging at-sea. The expression of β-casein (CSN2) and β-lactoglobulin II (LGB2), but not CTI in the second lactating seal foraging at-sea suggested that CTI may be intermittently expressed during lactation. Cape fur seal and walrus CTI encode putative small, secreted, N-glycosylated proteins with a single Kunitz/bovine pancreatic trypsin inhibitor (BPTI) domain indicative of serine protease inhibition. Mature Cape fur seal CTI shares 92% sequence identity with Pacific walrus CTI, but only 35% identity with BPTI. Structural homology modelling of Cape fur seal CTI and Pacific walrus trypsin based on the model of the second Kunitz domain of human tissue factor pathway inhibitor (TFPI) and porcine trypsin (Protein Data Bank: 1TFX) confirmed that CTI inhibits trypsin in a canonical fashion. Therefore, pinniped CTI may be critical for preventing the proteolytic degradation of immunoglobulins that are passively transferred from mother to young via colostrum and milk.

  16. Sialyl Lewis x expression in canine malignant mammary tumours: correlation with clinicopathological features and E-Cadherin expression

    Directory of Open Access Journals (Sweden)

    Carvalheira Júlio

    2007-07-01

    Full Text Available Abstract Background Sialyl Lewis x (sLex antigen is a carbohydrate antigen that is considered not only a marker for cancer but also implicated functionally in the malignant behaviour of cancer cells. Overexpression of sLex is associated with enhanced progression and metastases of many types of cancer including those of the mammary gland. Canine mammary tumours can invade and give rise to metastases via either lymphatic or blood vessels. E-Cadherin is specifically involved in epithelial cell-to-cell adhesion. In cancer, E-Cadherin underexpression is one of the alterations that characterizes the invasive phenotype and is considered an invasion/tumour suppressor gene. Partial or complete loss of E-Cadherin expression correlates with poor prognosis in canine malignant mammary cancer. The aim of this study was to analyse the sLex expression in canine malignant mammary tumours and to evaluate if the presence of sLex correlates with the expression of E-Cadherin and with clinicopathological features. Methods Fifty-three cases of canine mammary carcinomas were analysed immunohistochemically using monoclonal antibodies against sLex (IgM and E-Cadherin (IgG. The clinicopathological data were then assessed to determine whether there was a correlation with sLex tumour expression. Double labelled immunofluorescence staining was performed to analyse the combined expression of sLex and E-Cadherin. Results sLex expression was consistently demonstrated in all cases of canine mammary carcinomas with different levels of expression. We found a significant relationship between the levels of sLex expression and the presence of lymph node metastases. We also demonstrated that when E-Cadherin expression was increased sLex was reduced and vice-versa. The combined analysis of both adhesion molecules revealed an inverse relationship. Conclusion In the present study we demonstrate the importance of sLex in the malignant phenotype of canine malignant mammary tumours. Our

  17. Sialyl Lewis x expression in canine malignant mammary tumours: correlation with clinicopathological features and E-Cadherin expression

    International Nuclear Information System (INIS)

    Sialyl Lewis x (sLex) antigen is a carbohydrate antigen that is considered not only a marker for cancer but also implicated functionally in the malignant behaviour of cancer cells. Overexpression of sLex is associated with enhanced progression and metastases of many types of cancer including those of the mammary gland. Canine mammary tumours can invade and give rise to metastases via either lymphatic or blood vessels. E-Cadherin is specifically involved in epithelial cell-to-cell adhesion. In cancer, E-Cadherin underexpression is one of the alterations that characterizes the invasive phenotype and is considered an invasion/tumour suppressor gene. Partial or complete loss of E-Cadherin expression correlates with poor prognosis in canine malignant mammary cancer. The aim of this study was to analyse the sLex expression in canine malignant mammary tumours and to evaluate if the presence of sLex correlates with the expression of E-Cadherin and with clinicopathological features. Fifty-three cases of canine mammary carcinomas were analysed immunohistochemically using monoclonal antibodies against sLex (IgM) and E-Cadherin (IgG). The clinicopathological data were then assessed to determine whether there was a correlation with sLex tumour expression. Double labelled immunofluorescence staining was performed to analyse the combined expression of sLex and E-Cadherin. sLex expression was consistently demonstrated in all cases of canine mammary carcinomas with different levels of expression. We found a significant relationship between the levels of sLex expression and the presence of lymph node metastases. We also demonstrated that when E-Cadherin expression was increased sLex was reduced and vice-versa. The combined analysis of both adhesion molecules revealed an inverse relationship. In the present study we demonstrate the importance of sLex in the malignant phenotype of canine malignant mammary tumours. Our results support the use of sLex as a prognostic tumour marker in

  18. Prevalence of Glomerulopathies in Canine Mammary Carcinoma

    Science.gov (United States)

    2016-01-01

    The incidence and prevalence of paraneoplastic glomerulopathy, especially associated with carcinoma, are a matter of debate and the causal link between cancer and glomerular diseases remains unclear. The aim of this study was to evaluate renal biopsies of selected bitches with spontaneous mammary gland carcinoma. We hypothesized that dogs with mammary carcinomas would show histologic evidence of glomerular pathology. A prospective study was performed in dogs with naturally occurring mammary carcinoma that were undergoing tumor resection and ovariohysterectomy. We evaluated renal biopsies of 32 bitches with spontaneous mammary gland carcinoma and 11 control dogs without mammary gland neoplasia. Samples were obtained from the left kidney and the biopsy material was divided for light microscopy (LM), immunofluorescence (IF) and transmission electron microscopy (TEM). Light microscopy abnormalities were identified in 78.1% of dogs with mammary carcinoma (n = 25) and in none of the dogs in the control group. Focal glomerular mesangial matrix expansion was the most common alteration (n = 15, 60.0%), but mesangial cell proliferation (n = 9, 36.0%) and focal segmental glomerulosclerosis (n = 9, 36.0%), synechiae (n = 7, 28.0%), and globally sclerotic glomeruli (n = 6, 24.0%) were also frequent in dogs with malignancy. Immunofluorescence microscopy revealed strong IgM staining was demonstrated in 64.3% (n = 18) of carcinoma dogs. Transmission electron microscopy from dogs with carcinoma revealed slight changes, the most frequent of which was faint sub-endothelial and mesangial deposits of electron-dense material (78%). Mesangial cell interpositioning and segmental effacement of podocyte foot processes were identified in some specimens (45%). Changes in the glomerulus and proteinuria are common in dogs with naturally occurring mammary carcinoma and this condition appears to provide an excellent large animal model for cancer-associated glomerulopathy in humans. PMID:27764139

  19. 78 FR 73993 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2013-12-10

    ... Health Inspection Service 9 CFR Parts 92, 93, 94, 95, 96, and 98 RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products Corrections In rule document 2013-28228 appearing...

  20. 77 FR 20319 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2012-04-04

    ...; ] DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 9 CFR Part 93 RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products Correction In proposed rule...

  1. Invasiveness and Ploidy of Human Mammary Carcinomas in Short-Term Culture

    Science.gov (United States)

    Smith, Helene S.; Liotta, Lance A.; Hancock, Miriam C.; Wolman, Sandra R.; Hackett, Adeline J.

    1985-03-01

    Invasiveness and ploidy were examined in cultures of human epithelial cells derived from nonmalignant breast tissue, primary breast carcinomas, and breast cancer effusion metastases. Successful short-term culture was achieved from approximately 70% of the primary breast cancers. These primary cancers were essentially diploid by flow cytometry and karyotype in contrast to the effusion metastases, which were mostly aneuploid. The diploid tumor cells retained their malignant phenotype in culture as demonstrated by invasion into a denuded human amnion basement membrane. In contrast, epithelial cells cultured from nonmalignant mammary tissue did not invade the amnion. We suggest that the diploid carcinoma cultures may be useful for investigating the essential differences between normal and malignant cells and may complement information derived from studies of tumor cell lines with grossly aberrant karyotypes.

  2. Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition

    Science.gov (United States)

    van Baarsel, Eric D.; Metz, Patrick J.; Fisch, Kathleen; Widjaja, Christella E.; Kim, Stephanie H.; Lopez, Justine; Chang, Aaron N.; Geurink, Paul P.; Florea, Bogdan I.; Overkleeft, Hermen S.; Ovaa, Huib; Bui, Jack D.; Yang, Jing; Chang, John T.

    2016-01-01

    The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy. PMID:26930717

  3. Dietary fat, calories, and mammary gland tumorigenesis.

    Science.gov (United States)

    Welsch, C W

    1992-01-01

    In this communication, a vast array of studies designed to examine the relationship between dietary fat and experimental mammary gland tumorigenesis was reviewed and critiqued. It is clear, as reported by many laboratories, that as the fat content of the diet is increased from a low or standard level to a high level, a consistent and substantial increase in the development of rodent mammary gland tumors is observed. The longer the duration the high-fat diet is fed, the greater the enhancing effect on tumorigenesis. Furthermore, the stimulatory effect of a high-fat diet is observed even when fed commencing late in an animal's life. A multitude of studies also have provided evidence that the type of fat can markedly influence the development of rodent mammary gland tumors. In general, high dietary levels of unsaturated fats (e.g., corn oil, sunflower-seed oil) stimulate this tumorigenic process more than high levels of saturated fats (e.g., beef tallow, coconut oil); diets rich in certain fish oils (e.g., Menhaden oil, Max EPA) are often the most inhibitory to this tumorigenic process. Importantly, however, supplementation of saturated fat or fish oil diets with modest amounts of unsaturated fats, e.g., corn oil, often negates the mammary tumor inhibitory activities of these fats. Thus, rather extreme differences in the types of fat are required for a differential in mammary gland tumorigenesis; common proportionate blends of different fats of animal, plant, and/or fish origin are often unable to differentially influence this tumorigenic process. Diets rich in monoenoic fatty acids, e.g., those containing high levels of olive oil, have been examined in a number of studies; results from these studies have been inconsistent. A number of reports suggest that the increase in development of mammary tumors in rodents fed a high-fat diet, compared with those fed a low-fat diet, is due to specific metabolic activities of the fat per se, activities independent of a caloric

  4. Classification and grading of canine malignant mammary tumors

    OpenAIRE

    Abbas Tavasoly; Hannaneh Golshahi; Annahita Rezaie; Mohammad Farhadi

    2013-01-01

    Histological grading is a good parameter to stratify tumors according to their biological aggressiveness. The Elston and Ellis grading method in humans, invasive ductal breast carcinomas and other invasive tumors are routinely used. The aims of this study were classification of mammary gland tumors and also application of a human grading method in canine mammary carcinoma. The samples included 37 tumors of mammary glands. Mammary tumors were carcinomas (n = 32) and sarcomas (n = 5). The carci...

  5. Biomechanical Approaches for Studying Integration of Tissue Structure and Function in Mammary Epithelia

    Science.gov (United States)