WorldWideScience

Sample records for bovine host defense

  1. Proteomic analyses of host and pathogen responses during bovine mastitis.

    Science.gov (United States)

    Boehmer, Jamie L

    2011-12-01

    The pursuit of biomarkers for use as clinical screening tools, measures for early detection, disease monitoring, and as a means for assessing therapeutic responses has steadily evolved in human and veterinary medicine over the past two decades. Concurrently, advances in mass spectrometry have markedly expanded proteomic capabilities for biomarker discovery. While initial mass spectrometric biomarker discovery endeavors focused primarily on the detection of modulated proteins in human tissues and fluids, recent efforts have shifted to include proteomic analyses of biological samples from food animal species. Mastitis continues to garner attention in veterinary research due mainly to affiliated financial losses and food safety concerns over antimicrobial use, but also because there are only a limited number of efficacious mastitis treatment options. Accordingly, comparative proteomic analyses of bovine milk have emerged in recent years. Efforts to prevent agricultural-related food-borne illness have likewise fueled an interest in the proteomic evaluation of several prominent strains of bacteria, including common mastitis pathogens. The interest in establishing biomarkers of the host and pathogen responses during bovine mastitis stems largely from the need to better characterize mechanisms of the disease, to identify reliable biomarkers for use as measures of early detection and drug efficacy, and to uncover potentially novel targets for the development of alternative therapeutics. The following review focuses primarily on comparative proteomic analyses conducted on healthy versus mastitic bovine milk. However, a comparison of the host defense proteome of human and bovine milk and the proteomic analysis of common veterinary pathogens are likewise introduced.

  2. Immunobiotics for the Bovine Host: Their Interaction with Intestinal Epithelial Cells and Their Effect on Antiviral Immunity

    Directory of Open Access Journals (Sweden)

    Julio Villena

    2018-03-01

    Full Text Available The scientific community has reported several cases of microbes that exhibit elevated rates of antibiotic resistance in different regions of the planet. Due to this emergence of antimicrobial resistant microorganisms, the use of antibiotics as promoters of livestock animals’ growth is being banned in most countries around the world. One of the challenges of agricultural immunology therefore is to find alternatives by modulating the immune system of animals in drug-independent safe food production systems. In this regard, in an effort to supplant antibiotics from bovine feeds, several alternatives were proposed including the use of immunomodulatory probiotics (immunobiotics. The purpose of this review is to provide an update of the status of the modulation of intestinal antiviral innate immunity of the bovine host by immunobiotics, and the beneficial impact of immunobiotics on viral infections, focused on intestinal epithelial cells (IECs. The results of our group, which demonstrate the capacity of immunobiotic strains to beneficially modulate Toll-like receptor 3-triggered immune responses in bovine IECs and improve the resistance to viral infections, are highlighted. This review provides comprehensive information on the innate immune response of bovine IECs against virus, which can be further investigated for the development of strategies aimed to improve defenses in the bovine host.

  3. Carp erythrodermatitis : host defense-pathogen interaction

    OpenAIRE

    Pourreau, C.N.

    1990-01-01

    The outcome of a bacterial infection depends on the interaction between pathogen and host. The ability of the microbe to survive in the host depends on its invasive potential (i.e. spreading and multiplication), and its ability to obtain essential nutrients and to resist the host's defense system. On the other hand, the host's resistance to a bacterial attack depends on its physiological state, the intensity of the bacterial attack and the efficacy of the defense system to ...

  4. Anticancer activities of bovine and human lactoferricin-derived peptides

    NARCIS (Netherlands)

    Arias, M.; Hilchie, A.L.; Haney, E.F.; Bolscher, J.G.M.; Hyndman, M.E.; Hancock, R.E.W.; Vogel, H.J.

    2017-01-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits

  5. Killing of trypanosomatid parasites by a modified bovine host defense peptide, BMAP-18.

    Directory of Open Access Journals (Sweden)

    Lee R Haines

    Full Text Available BACKGROUND: Tropical diseases caused by parasites continue to cause socioeconomic devastation that reverberates worldwide. There is a growing need for new control measures for many of these diseases due to increasing drug resistance exhibited by the parasites and problems with drug toxicity. One new approach is to apply host defense peptides (HDP; formerly called antimicrobial peptides to disease control, either to treat infected hosts, or to prevent disease transmission by interfering with parasites in their insect vectors. A potent anti-parasite effector is bovine myeloid antimicrobial peptide-27 (BMAP-27, a member of the cathelicidin family. Although BMAP-27 is a potent inhibitor of microbial growth, at higher concentrations it also exhibits cytotoxicity to mammalian cells. We tested the anti-parasite activity of BMAP-18, a truncated peptide that lacks the hydrophobic C-terminal sequence of the BMAP-27 parent molecule, an alteration that confers reduced toxicity to mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS: BMAP-18 showed strong growth inhibitory activity against several species and life cycle stages of African trypanosomes, fish trypanosomes and Leishmania parasites in vitro. When compared to native BMAP-27, the truncated BMAP-18 peptide showed reduced cytotoxicity on a wide variety of mammalian and insect cells and on Sodalis glossindius, a bacterial symbiont of the tsetse vector. The fluorescent stain rhodamine 123 was used in immunofluorescence microscopy and flow cytometry experiments to show that BMAP-18 at low concentrations rapidly disrupted mitochondrial potential without obvious alteration of parasite plasma membranes, thus inducing death by apoptosis. Scanning electron microscopy revealed that higher concentrations of BMAP-18 induced membrane lesions in the parasites as early as 15 minutes after exposure, thus killing them by necrosis. In addition to direct killing of parasites, BMAP-18 was shown to inhibit LPS

  6. Kupffer cell complement receptor clearance function and host defense.

    Science.gov (United States)

    Loegering, D J

    1986-01-01

    Kupffer cells are well known to be important for normal host defense function. The development of methods to evaluate the in vivo function of specific receptors on Kupffer cells has made it possible to assess the role of these receptors in host defense. The rationale for studying complement receptors is based on the proposed important role of these receptors in host defense and on the observation that the hereditary deficiency of a complement receptor is associated with recurrent severe bacterial infections. The studies reviewed here demonstrate that forms of injury that are associated with depressed host defense including thermal injury, hemorrhagic shock, trauma, and surgery also cause a decrease in complement receptor clearance function. This decrease in Kupffer cell receptor clearance function was shown not to be the result of depressed hepatic blood flow or depletion of complement components. Complement receptor function was also depressed following the phagocytosis of particulates that are known to depress Kupffer cell host defense function. Endotoxemia and bacteremia also were associated with a depression of complement receptor function. Complement receptor function was experimentally depressed in uninjured animals by the phagocytosis of IgG-coated erythrocytes. There was a close association between the depression of complement receptor clearance function and increased susceptibility to the lethal effects of endotoxin and bacterial infection. These studies support the hypotheses that complement receptors on Kupffer cells are important for normal host defense and that depression of the function of these receptors impairs host defense.

  7. The Inflammasome in Host Defense

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2009-12-01

    Full Text Available Nod-like receptors have emerged as an important family of sensors in host defense. These receptors are expressed in macrophages, dendritic cells and monocytes and play an important role in microbial immunity. Some Nod-like receptors form the inflammasome, a protein complex that activates caspase-1 in response to several stimuli. Caspase-1 activation leads to processing and secretion of pro-inflammatory cytokines such as interleukin (IL-1β and IL-18. Here, we discuss recent advances in the inflammasome field with an emphasis on host defense. We also compare differential requirements for inflammasome activation in dendritic cells, macrophages and monocytes.

  8. Evasion of host immune defenses by human papillomavirus.

    Science.gov (United States)

    Westrich, Joseph A; Warren, Cody J; Pyeon, Dohun

    2017-03-02

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. CXCR1 regulates pulmonary anti-Pseudomonas host defense

    Science.gov (United States)

    Carevic, M.; Öz, H.; Fuchs, K.; Laval, J.; Schroth, C.; Frey, N.; Hector, A.; Bilich, T.; Haug, M.; Schmidt, A.; Autenrieth, S. E.; Bucher, K.; Beer-Hammer, S.; Gaggar, A.; Kneilling, M.; Benarafa, C.; Gao, J.; Murphy, P.; Schwarz, S.; Moepps, B.; Hartl, D.

    2016-01-01

    Pseudomonas aeruginosa is a key opportunistic pathogen causing disease in cystic fibrosis (CF) and other lung diseases such as chronic obstructive pulmonary disease (COPD). However, the pulmonary host defense mechanisms regulating anti-Pseudomonas aeruginosa immunity remain incompletely understood. Here we demonstrate, by studying an airway Pseudomonas aeruginosa infection model, in vivo bioluminescence imaging, neutrophil effector responses and human airway samples, that the chemokine receptor CXCR1 regulates pulmonary host defense against Pseudomonas aeruginosa. Mechanistically, CXCR1 regulated anti-Pseudomonas neutrophil responses through modulation of reactive oxygen species and interference with toll-like receptor 5 expression. These studies define CXCR1 as a novel non-canonical chemokine receptor that regulates pulmonary anti-Pseudomonas host defense with broad implications for CF, COPD and other infectious lung diseases. PMID:26950764

  10. Salt, chloride, bleach, and innate host defense

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  11. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  12. Histophilus somni biofilm formation in cardiopulmonary tissue of the bovine host following respiratory challenge

    DEFF Research Database (Denmark)

    Sandal, Indra; Shao, Jian Q.; Annadata, Satish

    2009-01-01

    Biofilms form in a variety of host sites following infection with many bacterial species. However, the study of biofilms in a host is hindered due to the lack of protocols for the proper experimental investigation of biofilms in vivo. Histophilus somni is an agent of respiratory and systemic...... diseases in bovines, and readily forms biofilms in vitro. In the present study the capability of H. somni to form biofilms in cardiopulmonary tissue following experimental respiratory infection in the bovine host was examined by light microscopy, transmission electron microscopy, immunoelectron microscopy...... haemagglutinin (FHA), predicted to be involved in attachment. Thus, this investigation demonstrated that H. somni is capable of forming a biofilm in its natural host, that such a biofilm may be capable of harboring other bovine respiratory disease pathogens, and that the genes responsible for biofilm formation...

  13. Identification of Host Defense-Related Proteins Using Label-Free Quantitative Proteomic Analysis of Milk Whey from Cows with Staphylococcus aureus Subclinical Mastitis

    Directory of Open Access Journals (Sweden)

    Shaimaa Abdelmegid

    2017-12-01

    Full Text Available Staphylococcus aureus is the most common contagious pathogen associated with bovine subclinical mastitis. Current diagnosis of S. aureus mastitis is based on bacteriological culture of milk samples and somatic cell counts, which lack either sensitivity or specificity. Identification of milk proteins that contribute to host defense and their variable responses to pathogenic stimuli would enable the characterization of putative biomarkers of subclinical mastitis. To accomplish this, milk whey samples from healthy and mastitic dairy cows were analyzed using a label-free quantitative proteomics approach. In total, 90 proteins were identified, of which 25 showed significant differential abundance between healthy and mastitic samples. In silico functional analyses indicated the involvement of the differentially abundant proteins in biological mechanisms and signaling pathways related to host defense including pathogen-recognition, direct antimicrobial function, and the acute-phase response. This proteomics and bioinformatics analysis not only facilitates the identification of putative biomarkers of S. aureus subclinical mastitis but also recapitulates previous findings demonstrating the abundance of host defense proteins in intramammary infection. All mass spectrometry data are available via ProteomeXchange with identifier PXD007516.

  14. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system.

    Science.gov (United States)

    Endara, María-José; Coley, Phyllis D; Ghabash, Gabrielle; Nicholls, James A; Dexter, Kyle G; Donoso, David A; Stone, Graham N; Pennington, R Toby; Kursar, Thomas A

    2017-09-05

    Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore-host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead "chase" hosts based on the herbivore's own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution.

  15. Impact of Childhood Malnutrition on Host Defense and Infection.

    Science.gov (United States)

    Ibrahim, Marwa K; Zambruni, Mara; Melby, Christopher L; Melby, Peter C

    2017-10-01

    The global impact of childhood malnutrition is staggering. The synergism between malnutrition and infection contributes substantially to childhood morbidity and mortality. Anthropometric indicators of malnutrition are associated with the increased risk and severity of infections caused by many pathogens, including viruses, bacteria, protozoa, and helminths. Since childhood malnutrition commonly involves the inadequate intake of protein and calories, with superimposed micronutrient deficiencies, the causal factors involved in impaired host defense are usually not defined. This review focuses on literature related to impaired host defense and the risk of infection in primary childhood malnutrition. Particular attention is given to longitudinal and prospective cohort human studies and studies of experimental animal models that address causal, mechanistic relationships between malnutrition and host defense. Protein and micronutrient deficiencies impact the hematopoietic and lymphoid organs and compromise both innate and adaptive immune functions. Malnutrition-related changes in intestinal microbiota contribute to growth faltering and dysregulated inflammation and immune function. Although substantial progress has been made in understanding the malnutrition-infection synergism, critical gaps in our understanding remain. We highlight the need for mechanistic studies that can lead to targeted interventions to improve host defense and reduce the morbidity and mortality of infectious diseases in this vulnerable population. Copyright © 2017 American Society for Microbiology.

  16. Central importance of immunoglobulin A in host defense against Giardia spp.

    Science.gov (United States)

    Langford, T Dianne; Housley, Michael P; Boes, Marianne; Chen, Jianzhu; Kagnoff, Martin F; Gillin, Frances D; Eckmann, Lars

    2002-01-01

    The protozoan pathogen Giardia is an important cause of parasitic diarrheal disease worldwide. It colonizes the lumen of the small intestine, suggesting that effective host defenses must act luminally. Immunoglobulin A (IgA) antibodies are presumed to be important for controlling Giardia infection, but direct evidence for this function is lacking. B-cell-independent effector mechanisms also exist and may be equally important for antigiardial host defense. To determine the importance of the immunoglobulin isotypes that are transported into the intestinal lumen, IgA and IgM, for antigiardial host defense, we infected gene-targeted mice lacking IgA-expressing B-cells, IgM-secreting B-cells, or all B-cells as controls with Giardia muris or Giardia lamblia GS/M-83-H7. We found that IgA-deficient mice could not eradicate either G. muris or G. lamblia infection, demonstrating that IgA is required for their clearance. Furthermore, although neither B-cell-deficient nor IgA-deficient mice could clear G. muris infections, IgA-deficient mice controlled infection significantly better than B-cell-deficient mice, suggesting the existence of B-cell-dependent but IgA-independent antigiardial defenses. In contrast, mice deficient for secreted IgM antibodies cleared G. muris infection normally, indicating that they have no unique functions in antigiardial host defense. These data, together with the finding that B-cell-deficient mice have some, albeit limited, residual capacity to control G. muris infection, show that IgA-dependent host defenses are central for eradicating Giardia spp. Moreover, B-cell-dependent but IgA-independent and B-cell-independent antigiardial host defenses exist but are less important for controlling infection.

  17. Interaction of bovine peripheral blood polymorphonuclear cells and Leptospira species; innate responses in the natural bovine reservoir host.

    Directory of Open Access Journals (Sweden)

    Jennifer H Wilson-Welder

    2016-07-01

    Full Text Available Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and can also be reservoir hosts of other Leptospira species such as L. kirschneri, and L. interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murine neutrophils have shown activation of neutrophil extracellular trap or NET formation, and upregulation of inflammatory mediators by neutrophils in the presence of Leptospira. Humans, companion animals and most widely studied models of Leptospirosis are of acute infection, hallmarked by systemic inflammatory response, neutrophilia and septicemia. In contrast, cattle exhibit chronic infection with few outward clinical signs aside from reproductive failure. Taking into consideration that there is host species variation in innate immunity, especially in pathogen recognition and response, the interaction of bovine peripheral blood polymorphonuclear cells (PMNs and several Leptospira strains was evaluated. Studies including bovine-adapted strains, human pathogen strains, a saprophyte and inactivated organisms. Incubation of PMNs with Leptospira did induce slight activation of neutrophil NETs, greater than unstimulated cells but less than the quantity from E. coli P4 stimulated PMNs. Very low but significant from non-stimulated, levels of reactive oxygen peroxides were produced in the presence of all Leptospira strains and E. coli P4. Similarly, significant levels of reactive nitrogen intermediaries (NO2 was produced from PMNs when incubated with the Leptospira strains and greater quantities in the presence of E. coli P4. PMNs incubated with Leptospira induced RNA transcripts of IL-1β, MIP-1α, and TNF-α, with greater amounts induced by live organisms when compared to heat-inactivated leptospires. Transcript for inflammatory cytokine IL-8 was also induced, at similar levels regardless of Leptospira strain or viability. However, incubation of

  18. Insights from human studies into the host defense against candidiasis.

    Science.gov (United States)

    Filler, Scott G

    2012-04-01

    Candida spp. are the most common cause of mucosal and disseminated fungal infections in humans. Studies using mutant strains of mice have provided initial information about the roles of dectin-1, CARD9, and Th17 cytokines in the host defense against candidiasis. Recent technological advances have resulted in the identification of mutations in specific genes that predispose humans to develop candidal infection. The analysis of individuals with these mutations demonstrates that dectin-1 is critical for the host defense against vulvovaginal candidiasis and candidal colonization of the gastrointestinal tract. They also indicate that CARD9 is important for preventing both mucosal and disseminated candidiasis, whereas the Th17 response is necessary for the defense against mucocutaneous candidiasis. This article reviews the recent studies of genetic defects in humans that result in an increased susceptibility to candidiasis and discusses how these studies provide new insight into the host defense against different types of candidal infections. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Quantotypic Properties of QconCAT Peptides Targeting Bovine Host Response to Streptococcus uberis

    DEFF Research Database (Denmark)

    Bislev, Stine Lønnerup; Kusebauch, Ulrike; Codrea, Marius Cosmin

    2012-01-01

    with host response to pathogens remains a challenging task. In this paper we present a targeted proteome analysis of a panel of 20 proteins that are widely believed to be key players and indicators of bovine host response to mastitis pathogens. Stable isotope labeled variants of two concordant proteotypic...

  20. Host adaptation of bovine Staphylococcus aureus seems associated with bacteriological cure after lactational antimicrobial treatment

    NARCIS (Netherlands)

    Borne, van den B.H.P.; Nielen, M.; Schaik, van G.; Melchior, M.B.; Lam, T.J.G.M.; Zadoks, R.N.

    2010-01-01

    Staphylococcus aureus causes a wide range of diseases in multiple species. Some sequence types (ST) are observed in a variety of hosts, whereas other strains are mainly associated with bovine mastitis, suggesting host adaptation. We propose that host adaptation of Staph. aureus may influence

  1. Host Defense Mechanisms against Bark Beetle Attack Differ between Ponderosa and Lodgepole Pines

    Directory of Open Access Journals (Sweden)

    Daniel R. West

    2016-10-01

    Full Text Available Conifer defenses against bark beetle attack include, but are not limited to, quantitative and qualitative defenses produced prior to attack. Our objective was to assess host defenses of lodgepole pine and ponderosa pine from ecotone stands. These stands provide a transition of host species for mountain pine beetle (Dendroctonus ponderosae; MPB. We asked two questions: (1 do the preformed quantitative host defenses (amount of resin and (2 the preformed qualitative host defenses (monoterpene constituents differ between lodgepole and ponderosa pines. We collected oleoresins at three locations in the Southern Rocky Mountains from 56 pairs of the pine species of similar size and growing conditions. The amount of preformed-ponderosa pine oleoresins exuded in 24 h (mg was almost four times that of lodgepole pine. Total qualitative preformed monoterpenes did not differ between the two hosts, though we found differences in all but three monoterpenes. No differences were detected in α-pinene, γ-terpinene, and bornyl acetate. We found greater concentrations of limonene, β-phellandrene, and cymene in lodgepole pines, whereas β-pinene, 3-carene, myrcene, and terpinolene were greater in ponderosa pine. Although we found differences both in quantitative and qualitative preformed oleoresin defenses, the ecological relevance of these differences to bark beetle susceptibility have not been fully tested.

  2. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment.

    Directory of Open Access Journals (Sweden)

    Brett Williams

    2011-06-01

    Full Text Available Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA. Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT or potassium oxalate (KOA restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue

  3. DMPD: The interferon regulatory factor family in host defense: mechanism of action. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502370 The interferon regulatory factor family in host defense: mechanism of acti....html) (.csml) Show The interferon regulatory factor family in host defense: mechanism of action. PubmedID 1...7502370 Title The interferon regulatory factor family in host defense: mechanism

  4. Host origin determines pH tolerance of Tritrichomonas foetus isolates from the feline gastrointestinal and bovine urogenital tracts.

    Science.gov (United States)

    Morin-Adeline, Victoria; Fraser, Stuart T; Stack, Colin; Šlapeta, Jan

    2015-10-01

    The ability for protozoan parasites to tolerate pH fluctuations within their niche is critical for the establishment of infection and require the parasite to be capable of adapting to a distinct pH range. We used two host adapted Tritrichomonas foetus isolates, capable of infecting either the digestive tract (pH 5.3-6.6) of feline hosts or the reproductive tract (pH 7.4-7.8) of bovine hosts to address their adaptability to changing pH. Using flow cytometry, we investigated the pH tolerance of the bovine and feline T. foetus isolates over a range of physiologically relevant pH in vitro. Following exposure to mild acid stress (pH 6), the bovine T. foetus isolates showed a significant decrease in cell viability and increased cytoplasmic granularity (p-value  0.7). In contrast, the feline genotype displayed an enhanced capacity to maintain cell morphology and viability (p-value > 0.05). Microscopic assessment revealed that following exposure to a weak acidic stress (pH 6), the bovine T. foetus transformed into rounded parasites with extended cell volumes and displays a decrease in viability. The higher tolerance for acidic extracellular environment of the feline isolate compared to the bovine isolate suggests that pH could be a critical factor in regulating T. foetus infections and host-specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Host defense, dendritic cells and the human lung

    NARCIS (Netherlands)

    J.M.W. van Haarst (Jan Maarten)

    1995-01-01

    textabstractHost defense mechanisms protect the body against microorganisms and other foreign structures. These mechanisms can be divided in nonspecific, or innate, and specific, or acquired, immunity. In both branches of immunity the several types of leukocytes (white blood cells) play a dominant

  6. Progranulin Plays a Central Role in Host Defense during Sepsis by Promoting Macrophage Recruitment.

    Science.gov (United States)

    Song, Zhixin; Zhang, Xuemei; Zhang, Liping; Xu, Fang; Tao, Xintong; Zhang, Hua; Lin, Xue; Kang, Lihua; Xiang, Yu; Lai, Xaiofei; Zhang, Qun; Huang, Kun; Dai, Yubing; Yin, Yibing; Cao, Ju

    2016-11-15

    Progranulin, a widely expressed protein, has multiple physiological functions. The functional role of progranulin in the host response to sepsis remains unknown. To assess the role of progranulin in the host response to sepsis. Effects of progranulin on host response to sepsis were determined. Progranulin concentrations were significantly elevated in adult (n = 74) and pediatric (n = 26) patients with sepsis relative to corresponding healthy adult (n = 36) and pediatric (n = 17) control subjects, respectively. By using a low-lethality model of nonsevere sepsis, we observed that progranulin deficiency not only increased mortality but also decreased bacterial clearance during sepsis. The decreased host defense to sepsis in progranulin-deficient mice was associated with reduced macrophage recruitment, with correspondingly impaired chemokine CC receptor ligand 2 (CCL2) production in peritoneal lavages during the early phase of sepsis. Progranulin derived from hematopoietic cells contributed to host defense in sepsis. Therapeutic administration of recombinant progranulin not only rescued impaired host defense in progranulin-deficient mice after nonsevere sepsis but also protected wild-type mice against a high-lethality model of severe sepsis. Progranulin-mediated protection against sepsis was closely linked to improved peritoneal macrophage recruitment. In addition, CCL2 treatment of progranulin-deficient mice improved survival and decreased peritoneal bacterial loads during sepsis, at least in part through promotion of peritoneal macrophage recruitment. This proof-of-concept study supports a central role of progranulin-dependent macrophage recruitment in host defense to sepsis, opening new opportunities to host-directed therapeutic strategy that manipulate host immune response in the treatment of sepsis.

  7. PCR assay with host specific internal control forStaphylococcus aureus from bovine milk samples

    Directory of Open Access Journals (Sweden)

    Zafer Cantekin

    2015-03-01

    Full Text Available Staphylococcus aureus is considered as one of the most important and common pathogens of bovine mastitis. Polymerase Chain Reaction is frequently proposed in the diagnosis of S. aureus directly from milk samples instead of classical culture. However, false-negative results may occur in the polymerase chain reaction analysis performed directly from clinical material. For the purpose of disclosing the false negative results, the use of internal amplification controls can be beneficial. Therefore, in this study a new polymerase chain reaction technique with host specific internal amplification control was developed by optimizing S. aureus-specific primers in combination with bovine specific primers. The effectiveness of the developed technique in this study was attempted in milk samples from bovine subclinical mastitis. This technique has the potential to detect S. aureus from bovine milk samples or dairy products.

  8. The role of viral population diversity in adaptation of bovine coronavirus to new host environments.

    Directory of Open Access Journals (Sweden)

    Monica K Borucki

    Full Text Available The high mutation rate of RNA viruses enables a diverse genetic population of viral genotypes to exist within a single infected host. In-host genetic diversity could better position the virus population to respond and adapt to a diverse array of selective pressures such as host-switching events. Multiple new coronaviruses, including SARS, have been identified in human samples just within the last ten years, demonstrating the potential of coronaviruses as emergent human pathogens. Deep sequencing was used to characterize genomic changes in coronavirus quasispecies during simulated host-switching. Three bovine nasal samples infected with bovine coronavirus were used to infect human and bovine macrophage and lung cell lines. The virus reproduced relatively well in macrophages, but the lung cell lines were not infected efficiently enough to allow passage of non lab-adapted samples. Approximately 12 kb of the genome was amplified before and after passage and sequenced at average coverages of nearly 950×(454 sequencing and 38,000×(Illumina. The consensus sequence of many of the passaged samples had a 12 nucleotide insert in the consensus sequence of the spike gene, and multiple point mutations were associated with the presence of the insert. Deep sequencing revealed that the insert was present but very rare in the unpassaged samples and could quickly shift to dominate the population when placed in a different environment. The insert coded for three arginine residues, occurred in a region associated with fusion entry into host cells, and may allow infection of new cell types via heparin sulfate binding. Analysis of the deep sequencing data indicated that two distinct genotypes circulated at different frequency levels in each sample, and support the hypothesis that the mutations present in passaged strains were "selected" from a pre-existing pool rather than through de novo mutation and subsequent population fixation.

  9. Histones as mediators of host defense, inflammation and thrombosis

    NARCIS (Netherlands)

    Hoeksema, Marloes; Eijk, Martin van; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that

  10. Genome-wide association study for host response to bovine leukemia virus in Holstein cows.

    Science.gov (United States)

    Brym, P; Bojarojć-Nosowicz, B; Oleński, K; Hering, D M; Ruść, A; Kaczmarczyk, E; Kamiński, S

    2016-07-01

    The mechanisms of leukemogenesis induced by bovine leukemia virus (BLV) and the processes underlying the phenomenon of differential host response to BLV infection still remain poorly understood. The aim of the study was to screen the entire cattle genome to identify markers and candidate genes that might be involved in host response to bovine leukemia virus infection. A genome-wide association study was performed using Holstein cows naturally infected by BLV. A data set included 43 cows (BLV positive) and 30 cows (BLV negative) genotyped for 54,609 SNP markers (Illumina Bovine SNP50 BeadChip). The BLV status of cows was determined by serum ELISA, nested-PCR and hematological counts. Linear Regression Analysis with a False Discovery Rate and kinship matrix (computed on the autosomal SNPs) was calculated to find out which SNP markers significantly differentiate BLV-positive and BLV-negative cows. Nine markers reached genome-wide significance. The most significant SNPs were located on chromosomes 23 (rs41583098), 3 (rs109405425, rs110785500) and 8 (rs43564499) in close vicinity of a patatin-like phospholipase domain containing 1 (PNPLA1); adaptor-related protein complex 4, beta 1 subunit (AP4B1); tripartite motif-containing 45 (TRIM45) and cell division cycle associated 2 (CDCA2) genes, respectively. Furthermore, a list of 41 candidate genes was composed based on their proximity to significant markers (within a distance of ca. 1 Mb) and functional involvement in processes potentially underlying BLV-induced pathogenesis. In conclusion, it was demonstrated that host response to BLV infection involves nine sub-regions of the cattle genome (represented by 9 SNP markers), containing many genes which, based on the literature, could be involved to enzootic bovine leukemia progression. New group of promising candidate genes associated with the host response to BLV infection were identified and could therefore be a target for future studies. The functions of candidate genes

  11. Microbial Pathogenesis and Host Defense.

    Science.gov (United States)

    1998-03-01

    such diseases as toxic shock syndrome and bovine mastitis . S. aureus cells exhibited dose-dependent invasion of epithelial cells and intracellular...Idaho, Moscow: The internalization of S. aureus by bovine mammary epithelial cells leads to the induction of apoptosis. 130 Drynda, A.,’ Kbnig, B...Microbiology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 The primary virulence factor of the gram-negative, bovine

  12. Chronic pyelonephritis: Modulation of host defenses by cyclosporin A

    International Nuclear Information System (INIS)

    Findon, G.; Miller, T.E.

    1989-01-01

    Chronic experimental pyelonephritis is characterized by a stable level of infection, which persists for many months. Administration of cyclosporin A (CsA) reactivated previously healed renal lesions and caused a marked increase in bacterial numbers in the kidney. Studies were then carried out to compare the effects of CsA, and the nonselective cytodepletive agents irradiation and cyclophosphamide, on both host defenses and the bacteriologic status of chronically infected kidneys. Two different responses were observed. In animals treated with CsA, bacterial numbers increased markedly, although circulating neutrophil numbers were relatively unaffected. This observation was in contrast to the severe ablation of leukocyte numbers and competence needed to achieve an equivalent effect when irradiation and cyclophosphamide were used. One possible explanation for the adverse effect of CsA on the host-parasite balance in chronic pyelonephritis is that CsA affects mediators that control the inflammatory response or induces a qualitative change in a critical cellular defense compartment

  13. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum.

    Directory of Open Access Journals (Sweden)

    Jose C Garcia-Garcia

    2009-06-01

    Full Text Available Intracellular bacteria have evolved mechanisms that promote survival within hostile host environments, often resulting in functional dysregulation and disease. Using the Anaplasma phagocytophilum-infected granulocyte model, we establish a link between host chromatin modifications, defense gene transcription and intracellular bacterial infection. Infection of THP-1 cells with A. phagocytophilum led to silencing of host defense gene expression. Histone deacetylase 1 (HDAC1 expression, activity and binding to the defense gene promoters significantly increased during infection, which resulted in decreased histone H3 acetylation in infected cells. HDAC1 overexpression enhanced infection, whereas pharmacologic and siRNA HDAC1 inhibition significantly decreased bacterial load. HDAC2 does not seem to be involved, since HDAC2 silencing by siRNA had no effect on A. phagocytophilum intracellular propagation. These data indicate that HDAC up-regulation and epigenetic silencing of host cell defense genes is required for A. phagocytophilum infection. Bacterial epigenetic regulation of host cell gene transcription could be a general mechanism that enhances intracellular pathogen survival while altering cell function and promoting disease.

  14. The C-terminal sequence of several human serine proteases encodes host defense functions.

    Science.gov (United States)

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Walse, Björn; Svensson, Bo; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2011-01-01

    Serine proteases of the S1 family have maintained a common structure over an evolutionary span of more than one billion years, and evolved a variety of substrate specificities and diverse biological roles, involving digestion and degradation, blood clotting, fibrinolysis and epithelial homeostasis. We here show that a wide range of C-terminal peptide sequences of serine proteases, particularly from the coagulation and kallikrein systems, share characteristics common with classical antimicrobial peptides of innate immunity. Under physiological conditions, these peptides exert antimicrobial effects as well as immunomodulatory functions by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, selected peptides are protective against lipopolysaccharide-induced shock. Moreover, these S1-derived host defense peptides exhibit helical structures upon binding to lipopolysaccharide and also permeabilize liposomes. The results uncover new and fundamental aspects on host defense functions of serine proteases present particularly in blood and epithelia, and provide tools for the identification of host defense molecules of therapeutic interest. Copyright © 2011 S. Karger AG, Basel.

  15. The antibody response in the bovine mammary gland is influenced by the adjuvant and the site of subcutaneous vaccination

    NARCIS (Netherlands)

    Boerhout, Eveline M.; Koets, Ad P.; Mols-Vorstermans, Tanja G.T.; Nuijten, Piet J.M.; Hoeijmakers, Mathieu J.H.; Rutten, Victor P.M.G.; Bijlsma, Jetta J.E.

    2018-01-01

    Intramammary infections in cattle resulting in mastitis have detrimental effects on cows' well-being, lifespan and milk production. In the host defense against S. aureus mastitis antibodies are thought to play an important role. To explore potential ways to increase antibody titers in the bovine

  16. Time resolved bovine host reponse to virulence factors mapped in milk by selected reaction monitoring

    DEFF Research Database (Denmark)

    Bislev, Stine Lønnerup; Kusebauch, Ulrike; Codrea, Marius Cosmin

    . In this study, we present a sensitive selected reaction monitoring (SRM) proteomics approach, targeting proteins suggested to play key roles in the bovine host response to mastitis. 17 biomarker candidates related to inflammatory response and mastitis were selected. The 17 candidate proteins were quantified......TIME RESOLVED BOVINE HOST RESPONSE TO VIRULENCE FACTORS, MAPPED IN MILK BY SELECTED REACTION MONITORING S.L. Bislev1, U. Kusebauch2, M.C. Codrea1, R. Moritz2, C.M. Røntved1, E. Bendixen1 1 Department of Animal Science, Faculty of Science and Technology, Aarhus University, Tjele, Denmark; 2...... Institute for Systems Biology, Seattle, Washington, USA Mastitis is beyond doubt the largest health problem in modern milk production. Many different pathogens can cause infections in the mammary gland, and give rise to severe toll on animal welfare, economic gain as well as on excessive use of antibiotics...

  17. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants.

    Science.gov (United States)

    Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W

    2016-06-01

    Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.

  18. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus.

    Science.gov (United States)

    Franzin, Alessandra Mara; Maruyama, Sandra Regina; Garcia, Gustavo Rocha; Oliveira, Rosane Pereira; Ribeiro, José Marcos Chaves; Bishop, Richard; Maia, Antônio Augusto Mendes; Moré, Daniela Dantas; Ferreira, Beatriz Rossetti; Santos, Isabel Kinney Ferreira de Miranda

    2017-01-31

    Ticks attach to and penetrate their hosts' skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more

  19. Acute radiation syndrome (ARS – treatment of the reduced host defense

    Directory of Open Access Journals (Sweden)

    Heslet L

    2012-01-01

    Full Text Available Lars Heslet1, Christiane Bay2, Steen Nepper-Christensen31Serendex ApS, Gentofte; 2University of Copenhagen, Medical Faculty, Copenhagen; 3Department of Head and Neck Surgery, Otorhinolaryngology, Køge University Hospital, Køge, DenmarkBackground: The current radiation threat from the Fukushima power plant accident has prompted rethinking of the contingency plan for prophylaxis and treatment of the acute radiation syndrome (ARS. The well-documented effect of the growth factors (granulocyte colony-stimulating factor [G-CSF] and granulocyte-macrophage colony-stimulating factor [GM-CSF] in acute radiation injury has become standard treatment for ARS in the United States, based on the fact that growth factors increase number and functions of both macrophages and granulocytes.Methods: Review of the current literature.Results: The lungs have their own host defense system, based on alveolar macrophages. After radiation exposure to the lungs, resting macrophages can no longer be transformed, not even during systemic administration of growth factors because G-CSF/GM-CSF does not penetrate the alveoli. Under normal circumstances, locally-produced GM-CSF receptors transform resting macrophages into fully immunocompetent dendritic cells in the sealed-off pulmonary compartment. However, GM-CSF is not expressed in radiation injured tissue due to defervescence of the macrophages. In order to maintain the macrophage’s important role in host defense after radiation exposure, it is hypothesized that it is necessary to administer the drug exogenously in order to uphold the barrier against exogenous and endogenous infections and possibly prevent the potentially lethal systemic infection, which is the main cause of death in ARS.Recommendation: Preemptive treatment should be initiated after suspected exposure of a radiation dose of at least ~2 Gy by prompt dosing of 250–400 µg GM-CSF/m2 or 5 µg/kg G-CSF administered systemically and concomitant inhalation of

  20. Reed Warbler Hosts Fine-Tune their Defenses to Track Three Decades of Cuckoo Decline

    Science.gov (United States)

    Thorogood, Rose; Davies, Nicholas B

    2013-01-01

    Interactions between avian hosts and brood parasites can provide a model for how animals adapt to a changing world. Reed warbler (Acrocephalus scirpaceus) hosts employ costly defenses to combat parasitism by common cuckoos (Cuculus canorus). During the past three decades cuckoos have declined markedly across England, reducing parasitism at our study site (Wicken Fen) from 24% of reed warbler nests in 1985 to 1% in 2012. Here we show with experiments that host mobbing and egg rejection defenses have tracked this decline in local parasitism risk: the proportion of reed warbler pairs mobbing adult cuckoos (assessed by responses to cuckoo mounts and models) has declined from 90% to 38%, and the proportion rejecting nonmimetic cuckoo eggs (assessed by responses to model eggs) has declined from 61% to 11%. This is despite no change in response to other nest enemies or mimetic model eggs. Individual variation in both defenses is predicted by parasitism risk during the host’s egg-laying period. Furthermore, the response of our study population to temporal variation in parasitism risk can also explain spatial variation in egg rejection behavior in other populations across Europe. We suggest that spatial and temporal variation in parasitism risk has led to the evolution of plasticity in reed warbler defenses. PMID:24299407

  1. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mohammed Saeed-Zidane

    Full Text Available Various environmental insults including diseases, heat and oxidative stress could lead to abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth and oocyte maturation. Despite the fact that cells exposed to oxidative stress are responding transcriptionally, the potential release of transcripts associated with oxidative stress response into extracellular space through exosomes is not yet determined. Therefore, here we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspirated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells were treated with 5 μM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Furthermore, gene and protein expression analysis were performed in H2O2-challenged versus control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocytochemistry assay, respectively. Moreover, exosomes were isolated from spent media using ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In the second experiment, exosomes released by granulosa cells under oxidative stress (StressExo or those released by granulosa cells without oxidative stress (NormalExo were co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of defense molecules from exosomes to granulosa cells and investigate any phenotype changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS, reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant genes (both mRNA and protein, altered the cell cycle transitions and induced cellular apoptosis. Granulosa cells

  2. Histones as mediators of host defense, inflammation and thrombosis.

    Science.gov (United States)

    Hoeksema, Marloes; van Eijk, Martin; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of animal hosts. In addition, histones can trigger inflammatory responses in some cases acting through Toll-like receptors or inflammasome pathways. Extracellular histones mediate organ injury (lung, liver), sepsis physiology, thrombocytopenia and thrombin generation and some proteins can bind histones and reduce these potentially harmful effects.

  3. DMPD: Toll-like receptors and the host defense against microbial pathogens: bringingspecificity to the innate-immune system. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15075354 Toll-like receptors and the host defense against microbial pathogens: brin...oc Biol. 2004 May;75(5):749-55. Epub 2004 Jan 14. (.png) (.svg) (.html) (.csml) Show Toll-like receptors and the host defense again...immune system. PubmedID 15075354 Title Toll-like receptors and the host defense against microbial pathogens:

  4. Salivary mucins in host defense and disease prevention

    Directory of Open Access Journals (Sweden)

    Erica Shapiro Frenkel

    2015-12-01

    Full Text Available Mucus forms a protective coating on wet epithelial surfaces throughout the body that houses the microbiota and plays a key role in host defense. Mucins, the primary structural components of mucus that creates its viscoelastic properties, are critical components of the gel layer that protect against invading pathogens. Altered mucin production has been implicated in diseases such as ulcerative colitis, asthma, and cystic fibrosis, which highlights the importance of mucins in maintaining homeostasis. Different types of mucins exist throughout the body in various locations such as the gastrointestinal tract, lungs, and female genital tract, but this review will focus on mucins in the oral cavity. Salivary mucin structure, localization within the oral cavity, and defense mechanisms will be discussed. These concepts will then be applied to present what is known about the protective function of mucins in oral diseases such as HIV/AIDS, oral candidiasis, and dental caries.

  5. Early-Life Diet Affects Host Microbiota and Later-Life Defenses Against Parasites in Frogs.

    Science.gov (United States)

    Knutie, Sarah A; Shea, Lauren A; Kupselaitis, Marinna; Wilkinson, Christina L; Kohl, Kevin D; Rohr, Jason R

    2017-10-01

    Food resources can affect the health of organisms by altering their symbiotic microbiota and affecting energy reserves for host defenses against parasites. Different diets can vary in their macronutrient content and therefore they might favor certain bacterial communities of the host and affect the development and maintenance of the immune system, such as the inflammatory or antibody responses. Thus, testing the effect of diet, especially for animals with wide diet breadths, on host-associated microbiota and defenses against parasites might be important in determining infection and disease risk. Here, we test whether the early-life diet of Cuban tree frogs (Osteopilus septentrionalis) affects early- and later-life microbiota as well as later-life defenses against skin-penetrating, gut worms (Aplectana hamatospicula). We fed tadpoles two ecologically common diets: a diet of conspecifics or a diet of algae (Arthrospira sp.). We then: (1) characterized the gut microbiota of tadpoles and adults; and (2) challenged adult frogs with parasitic worms and measured host resistance (including the antibody-mediated immune response) and tolerance of infections. Tadpole diet affected bacterial communities in the guts of tadpoles but did not have enduring effects on the bacterial communities of adults. In contrast, tadpole diet had enduring effects on host resistance and tolerance of infections in adult frogs. Frogs that were fed a conspecific-based diet as tadpoles were more resistant to worm penetration compared with frogs that were fed an alga-based diet as tadpoles, but less resistant to worm establishment, which may be related to their suppressed antibody response during worm establishment. Furthermore, frogs that were fed a conspecific-based diet as tadpoles were more tolerant to the effect of parasite abundance on host mass during worm establishment. Overall, our study demonstrates that the diet of Cuban tree frog tadpoles affects the gut microbiota and defenses against

  6. Proteolytic activation transforms heparin cofactor II into a host defense molecule.

    Science.gov (United States)

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Tollefsen, Douglas M; Malmsten, Martin; Mörgelin, Matthias; Schmidtchen, Artur

    2013-06-15

    The abundant serine proteinase inhibitor heparin cofactor II (HCII) has been proposed to inhibit extravascular thrombin. However, the exact physiological role of this plasma protein remains enigmatic. In this study, we demonstrate a previously unknown role for HCII in host defense. Proteolytic cleavage of the molecule induced a conformational change, thereby inducing endotoxin-binding and antimicrobial properties. Analyses employing representative peptide epitopes mapped these effects to helices A and D. Mice deficient in HCII showed increased susceptibility to invasive infection by Pseudomonas aeruginosa, along with a significantly increased cytokine response. Correspondingly, decreased levels of HCII were observed in wild-type animals challenged with bacteria or endotoxin. In humans, proteolytically cleaved HCII forms were detected during wounding and in association with bacteria. Thus, the protease-induced uncovering of cryptic epitopes in HCII, which transforms the molecule into a host defense factor, represents a previously unknown regulatory mechanism in HCII biology and innate immunity.

  7. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    Science.gov (United States)

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  8. Histones as mediators of host defense, inflammation and thrombosis

    OpenAIRE

    Hoeksema, Marloes; van Eijk, Martin; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of ani...

  9. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment

    Directory of Open Access Journals (Sweden)

    Stephen eWikel

    2013-11-01

    Full Text Available Ticks are unique among hematophagous arthropods by continuous attachment to host skin and blood feeding for days; complexity and diversity of biologically active molecules differentially expressed in saliva of tick species; their ability to modulate the host defenses of pain and itch, hemostasis, inflammation, innate and adaptive immunity, and wound healing; and, the diverse array of infectious agents they transmit. All of these interactions occur at the cutaneous interface in a complex sequence of carefully choreographed host defense responses and tick countermeasures resulting in an environment that facilitates successful blood feeding and establishment of tick-borne infectious agents within the host. Here, we examine diverse patterns of tick attachment to host skin, blood feeding mechanisms, salivary gland transcriptomes, bioactive molecules in tick saliva, timing of pathogen transmission, and host responses to tick bite. Ticks engage and modulate cutaneous and systemic immune defenses involving keratinocytes, natural killer cells, dendritic cells, T cell subpopulations (Th1, Th2, Th17, Treg , B cells, neutrophils, mast cells, basophils, endothelial cells, cytokines, chemokines, complement, and extracellular matrix. A framework is proposed that integrates tick induced changes of skin immune effectors with their ability to respond to tick-borne pathogens. Implications of these changes are addressed. What are the consequences of tick modulation of host cutaneous defenses? Does diversity of salivary gland transcriptomes determine differential modulation of host inflammation and immune defenses and therefore, in part, the clades of pathogens effectively transmitted by different tick species? Do ticks create an immunologically modified cutaneous environment that enhances specific pathogen establishment? Can tick saliva molecules be used to develop vaccines that block pathogen transmission?

  10. Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense

    Directory of Open Access Journals (Sweden)

    Philipp Wiemann

    2017-05-01

    Full Text Available The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs, and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically or enhancement of copper-exporting activity (CrpA in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.

  11. Toxoplasma gondii GRA7-Targeted ASC and PLD1 Promote Antibacterial Host Defense via PKCα.

    Science.gov (United States)

    Koh, Hyun-Jung; Kim, Ye-Ram; Kim, Jae-Sung; Yun, Jin-Seung; Jang, Kiseok; Yang, Chul-Su

    2017-01-01

    Tuberculosis is a global health problem and at least one-third of the world's population is infected with Mycobacterium tuberculosis (MTB). MTB is a successful pathogen that enhances its own intracellular survival by inhibiting inflammation and arresting phago-lysosomal fusion. We previously demonstrated that Toxoplasma gondii (T. gondii) dense granule antigen (GRA) 7 interacts with TNF receptor-associated factor 6 via Myeloid differentiation primary response gene 88, enabling innate immune responses in macrophages. To extend these studies, we found that GRA7 interacts with host proteins involved in antimicrobial host defense mechanisms as a therapeutic strategy for tuberculosis. Here, we show that protein kinase C (PKC)α-mediated phosphorylation of T. gondii GRA7-I (Ser52) regulates the interaction of GRA7 with PYD domain of apoptosis-associated speck-like protein containing a carboxy-terminal CARD, which is capable of oligomerization and inflammasome activation can lead to antimicrobial defense against MTB. Furthermore, GRA7-III interacted with the PX domain of phospholipase D1, facilitating its enzyme activity, phago-lysosomal maturation, and subsequent antimicrobial activity in a GRA7-III (Ser135) phosphorylation-dependent manner via PKCα. Taken together, these results underscore a previously unrecognized role of GRA7 in modulating antimicrobial host defense mechanism during mycobacterial infection.

  12. Toxoplasma gondii GRA7-Targeted ASC and PLD1 Promote Antibacterial Host Defense via PKCα.

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Koh

    2017-01-01

    Full Text Available Tuberculosis is a global health problem and at least one-third of the world's population is infected with Mycobacterium tuberculosis (MTB. MTB is a successful pathogen that enhances its own intracellular survival by inhibiting inflammation and arresting phago-lysosomal fusion. We previously demonstrated that Toxoplasma gondii (T. gondii dense granule antigen (GRA 7 interacts with TNF receptor-associated factor 6 via Myeloid differentiation primary response gene 88, enabling innate immune responses in macrophages. To extend these studies, we found that GRA7 interacts with host proteins involved in antimicrobial host defense mechanisms as a therapeutic strategy for tuberculosis. Here, we show that protein kinase C (PKCα-mediated phosphorylation of T. gondii GRA7-I (Ser52 regulates the interaction of GRA7 with PYD domain of apoptosis-associated speck-like protein containing a carboxy-terminal CARD, which is capable of oligomerization and inflammasome activation can lead to antimicrobial defense against MTB. Furthermore, GRA7-III interacted with the PX domain of phospholipase D1, facilitating its enzyme activity, phago-lysosomal maturation, and subsequent antimicrobial activity in a GRA7-III (Ser135 phosphorylation-dependent manner via PKCα. Taken together, these results underscore a previously unrecognized role of GRA7 in modulating antimicrobial host defense mechanism during mycobacterial infection.

  13. Interaction between bovine-associated coagulase-negative staphylococci species and strains and bovine mammary epithelial cells reflects differences in ecology and epidemiological behavior.

    Science.gov (United States)

    Souza, F N; Piepers, S; Della Libera, A M M P; Heinemann, M B; Cerqueira, M M O P; De Vliegher, S

    2016-04-01

    Bacteria adherence seems to be an essential first stage for the internalization of bacteria into the cytoplasm of the host cell, which is considered an important virulence strategy enabling bacteria to occupy a microenvironment separated from host defense mechanisms. Thus, this study aimed to explore the difference in the capacity of 4 bovine-associated staphylococci species or strains to adhere to and internalize into bovine mammary epithelial cells (MEC). Three different isolates of coagulase-negative staphylococci (CNS) were used: one strain of Staphylococcus fleurettii isolated from sawdust and considered an environmental opportunistic bacterium, and 2 dissimilar Staphylococcus chromogenes isolates, one cultured from a heifer's teat apex (Staph. chromogenes TA) and the other originating from a chronic intramammary infection (Staph. chromogenes IM). Also, one well-characterized strain of Staphylococcus aureus (Newbould 305) was used for comparison with a major mastitis pathogen. The CNS species and strains adhered to and internalized into MEC slower than did Staph. aureus. Still, we observed high variation in adhesion and internalization capacity among the different CNS, with Staph. chromogenes IM showing a greater ability to adhere to and internalize into MEC than the 2 CNS strains isolated from extramammary habitats. In conclusion, the 3 well-characterized bovine-associated CNS species and strains originating from distinct habitats showed clear differences in their capacity to adhere to and internalize into MEC. The observed differences might be related to their diversity in ecology and epidemiological behavior. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Ficolins Promote Fungal Clearance in vivo and Modulate the Inflammatory Cytokine Response in Host Defense against Aspergillus fumigatus

    DEFF Research Database (Denmark)

    Genster, N; Cramer, E Præstekjær; Rosbjerg, A

    2016-01-01

    the lectin pathway of complement. Previous in vitro studies reported that ficolins bind to A. fumigatus, but their part in host defense against fungal infections in vivo is unknown. In this study, we used ficolin-deficient mice to investigate the role of ficolins during lung infection with A. fumigatus......-mediated complement activation in ficolin knockout mice and wild-type mice. In conclusion, this study demonstrates that ficolins are important in initial innate host defense against A. fumigatus infections in vivo....

  15. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Guolong Zhang

    2014-02-01

    Full Text Available Host defense peptides (HDPs are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens.

  16. Effect of the Ketone Body Beta-Hydroxybutyrate on the Innate Defense Capability of Primary Bovine Mammary Epithelial Cells

    OpenAIRE

    Hillreiner, Maria;Flinspach, Claudia;Pfaffl, Michael W.;Kliem, Heike

    2017-01-01

    Negative energy balance and ketosis are thought to cause impaired immune function and to increase the risk of clinical mastitis in dairy cows. The present in vitro study aimed to investigate the effect of elevated levels of the predominant ketone body β-hydroxybutyrate on the innate defense capability of primary bovine mammary epithelial cells (pbMEC) challenged with the mastitis pathogen Escherichia coli (E. coli). Therefore, pbMEC of healthy dairy cows in mid- lactation were isolated from m...

  17. A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP.

    Science.gov (United States)

    Spanò, Stefania; Gao, Xiang; Hannemann, Sebastian; Lara-Tejero, María; Galán, Jorge E

    2016-02-10

    Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is counteracted by two Salmonella effectors. Mice lacking Rab-32 or its nucleotide exchange factor BLOC-3 are permissive to S. Typhi infection and exhibit increased susceptibility to S. Typhimurium. S. Typhimurium counters this defense pathway by delivering two type III secretion effectors, SopD2, a Rab32 GAP, and GtgE, a specific Rab32 protease. An S. Typhimurium mutant strain lacking these two effectors exhibits markedly reduced virulence, which is fully restored in BLOC-3-deficient mice. These results demonstrate that a cell-autonomous, Rab32-dependent host defense pathway plays a central role in the defense against vacuolar pathogens and describe a mechanism evolved by a bacterial pathogen to counter it. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The Role of Dectin-2 for Host Defense Against Disseminated Candidiasis.

    Science.gov (United States)

    Ifrim, Daniela C; Quintin, Jessica; Courjol, Flavie; Verschueren, Ineke; van Krieken, J Han; Koentgen, Frank; Fradin, Chantal; Gow, Neil A R; Joosten, Leo A B; van der Meer, Jos W M; van de Veerdonk, Frank; Netea, Mihai G

    2016-04-01

    Despite the fact that Candida albicans is an important human fungal pathogen and Dectin-2 is a major pattern recognition receptor for fungi, our knowledge regarding the role of Dectin-2 for the host defense against disseminated candidiasis is limited. Dectin-2 deficient (Dectin-2(-/-)) mice were more susceptible to systemic candidiasis, and the susceptibility was mirrored by an elevated fungal load in the kidneys that correlated with the presence of large inflammatory foci. Phagocytosis of Candida by the macrophages lacking the Dectin-2 receptor was moderately decreased, while production of most of the macrophage-derived cytokines from Dectin-2(-/-) mice with systemic candidiasis was decreased. No striking differences among several Candida mutants defective in mannans could be detected between naïve wild-type and Dectin-2(-/-) mice, apart from the β-mannan-deficient bmt1Δ/bmt2Δ/bmt5Δ triple mutant, suggesting that β-mannan may partially mask α-mannan detection, which is the major fungal structure recognized by Dectin-2. Deciphering the mechanisms responsible for host defense against the majority of C. albicans strains represents an important step in understanding the pathophysiology of systemic candidiasis, which might lead to the development of novel immunotherapeutic strategies.

  19. Coronavirus gene 7 counteracts host defenses and modulates virus virulence.

    Directory of Open Access Journals (Sweden)

    Jazmina L G Cruz

    2011-06-01

    Full Text Available Transmissible gastroenteritis virus (TGEV genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7. Both the mutant and the parental (rTGEV-wt viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c, a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the

  20. Suppression of Plant Defenses by Herbivorous Mites Is Not Associated with Adaptation to Host Plants

    Directory of Open Access Journals (Sweden)

    Jéssica T. Paulo

    2018-06-01

    Full Text Available Some herbivores suppress plant defenses, which may be viewed as a result of the coevolutionary arms race between plants and herbivores. However, this ability is usually studied in a one-herbivore-one-plant system, which hampers comparative studies that could corroborate this hypothesis. Here, we extend this paradigm and ask whether the herbivorous spider-mite Tetranychus evansi, which suppresses the jasmonic-acid pathway in tomato plants, is also able to suppress defenses in other host plants at different phylogenetic distances from tomatoes. We test this using different plants from the Solanales order, namely tomato, jimsonweed, tobacco, and morning glory (three Solanaceae and one Convolvulaceae, and bean plants (Fabales. First, we compare the performance of T. evansi to that of the other two most-commonly found species of the same genus, T. urticae and T. ludeni, on several plants. We found that the performance of T. evansi is higher than that of the other species only on tomato plants. We then showed, by measuring trypsin inhibitor activity and life history traits of conspecific mites on either clean or pre-infested plants, that T. evansi can suppress plant defenses on all plants except tobacco. This study suggests that the suppression of plant defenses may occur on host plants other than those to which herbivores are adapted.

  1. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Derrick R Samuelson

    2017-06-01

    Full Text Available Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis. To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein

  2. Variation in the Early Host-Pathogen Interaction of Bovine Macrophages with Divergent Mycobacterium bovis Strains in the United Kingdom.

    Science.gov (United States)

    Jensen, Kirsty; Gallagher, Iain J; Johnston, Nicholas; Welsh, Michael; Skuce, Robin; Williams, John L; Glass, Elizabeth J

    2018-03-01

    Bovine tuberculosis has been an escalating animal health issue in the United Kingdom since the 1980s, even though control policies have been in place for over 60 years. The importance of the genetics of the etiological agent, Mycobacterium bovis , in the reemergence of the disease has been largely overlooked. We compared the interaction between bovine monocyte-derived macrophages (bMDM) and two M. bovis strains, AF2122/97 and G18, representing distinct genotypes currently circulating in the United Kingdom. These M. bovis strains exhibited differences in survival and growth in bMDM. Although uptake was similar, the number of viable intracellular AF2122/97 organisms increased rapidly, while G18 growth was constrained for the first 24 h. AF2122/97 infection induced a greater transcriptional response by bMDM than G18 infection with respect to the number of differentially expressed genes and the fold changes measured. AF2122/97 infection induced more bMDM cell death, with characteristics of necrosis and apoptosis, more inflammasome activation, and a greater type I interferon response than G18. In conclusion, the two investigated M. bovis strains interact in significantly different ways with the host macrophage. In contrast to the relatively silent infection by G18, AF2122/97 induces greater signaling to attract other immune cells and induces host cell death, which may promote secondary infections of naive macrophages. These differences may affect early events in the host-pathogen interaction, including granuloma development, which could in turn alter the progression of the disease. Therefore, the potential involvement of M. bovis genotypes in the reemergence of bovine tuberculosis in the United Kingdom warrants further investigation. Copyright © 2018 Jensen et al.

  3. Host plant invests in growth rather than chemical defense when attacked by a specialist herbivore.

    Science.gov (United States)

    Arab, Alberto; Trigo, José Roberto

    2011-05-01

    Plant defensive compounds may be a cost rather than a benefit when plants are attacked by specialist insects that may overcome chemical barriers by strategies such as sequestering plant compounds. Plants may respond to specialist herbivores by compensatory growth rather than chemical defense. To explore the use of defensive chemistry vs. compensatory growth we studied Brugmansia suaveolens (Solanaceae) and the specialist larvae of the ithomiine butterfly Placidina euryanassa, which sequester defensive tropane alkaloids (TAs) from this host plant. We investigated whether the concentration of TAs in B. suaveolens was changed by P. euryanassa damage, and whether plants invest in growth, when damaged by the specialist. Larvae feeding during 24 hr significantly decreased TAs in damaged plants, but they returned to control levels after 15 days without damage. Damaged and undamaged plants did not differ significantly in leaf area after 15 days, indicating compensatory growth. Our results suggest that B. suaveolens responds to herbivory by the specialist P. euryanassa by investing in growth rather than chemical defense.

  4. Modification of host erythrocyte membranes by trypsin and chymotrypsin treatments and effects on the in vitro growth of bovine and equine Babesia parasites.

    Science.gov (United States)

    Okamura, Masashi; Yokoyama, Naoaki; Takabatake, Noriyuki; Okubo, Kazuhiro; Ikehara, Yuzuru; Igarashi, Ikuo

    2007-02-01

    In the present study, we investigated the effects of protease pretreatments of host erythrocytes (RBC) on the in vitro growth of bovine Babesia parasites (Babesia bovis and B. bigemina) and equine Babesia parasites (B. equi and B. caballi). The selected proteases, trypsin and chymotrypsin, clearly modified several membrane proteins of both bovine and equine RBC, as demonstrated by SDS-PAGE analysis; however, the protease treatments also modified the sialic acid content exclusively in bovine RBC, as demonstrated by lectin blot analysis. An in vitro growth assay using the protease-treated RBC showed that the trypsin-treated bovine RBC, but not the chymotrypsin-treated ones, significantly reduced the growth of B. bovis and B. bigemina as compared to the control. In contrast, the growth of B. equi and B. caballi was not affected by any of these proteases. Thus, the bovine, but not the equine, Babesia parasites require the trypsin-sensitive membrane (sialoglyco) proteins to infect the RBC.

  5. Family matters: effect of host plant variation in chemical and mechanical defenses on a sequestering specialist herbivore.

    Science.gov (United States)

    Dimarco, Romina D; Nice, Chris C; Fordyce, James A

    2012-11-01

    Insect herbivores contend with various plant traits that are presumed to function as feeding deterrents. Paradoxically, some specialist insect herbivores might benefit from some of these plant traits, for example by sequestering plant chemical defenses that herbivores then use as their own defense against natural enemies. Larvae of the butterfly species Battus philenor (L.) (Papilionidae) sequester toxic alkaloids (aristolochic acids) from their Aristolochia host plants, rendering larvae and adults unpalatable to a broad range of predators. We studied the importance of two putative defensive traits in Aristolochia erecta: leaf toughness and aristolochic acid content, and we examined the effect of intra- and interplant chemical variation on the chemical phenotype of B. philenor larvae. It has been proposed that genetic variation for sequestration ability is "invisible to natural selection" because intra- and interindividual variation in host-plant chemistry will largely eliminate a role for herbivore genetic variation in determining an herbivore's chemical phenotype. We found substantial intra- and interplant variation in leaf toughness and in the aristolochic acid chemistry in A. erecta. Based on field observations and laboratory experiments, we showed that first-instar larvae preferentially fed on less tough, younger leaves and avoided tougher, older leaves, and we found no evidence that aristolochic acid content influenced first-instar larval foraging. We found that the majority of variation in the amount of aristolochic acid sequestered by larvae was explained by larval family, not by host-plant aristolochic acid content. Heritable variation for sequestration is the predominant determinant of larval, and likely adult, chemical phenotype. This study shows that for these highly specialized herbivores that sequester chemical defenses, traits that offer mechanical resistance, such as leaf toughness, might be more important determinants of early-instar larval

  6. Parasitism by Cuscuta pentagona attenuates host plant defenses against insect herbivores.

    Science.gov (United States)

    Runyon, Justin B; Mescher, Mark C; De Moraes, Consuelo M

    2008-03-01

    Considerable research has examined plant responses to concurrent attack by herbivores and pathogens, but the effects of attack by parasitic plants, another important class of plant-feeding organisms, on plant defenses against other enemies has not been explored. We investigated how attack by the parasitic plant Cuscuta pentagona impacted tomato (Solanum lycopersicum) defenses against the chewing insect beet armyworm (Spodoptera exigua; BAW). In response to insect feeding, C. pentagona-infested (parasitized) tomato plants produced only one-third of the antiherbivore phytohormone jasmonic acid (JA) produced by unparasitized plants. Similarly, parasitized tomato, in contrast to unparasitized plants, failed to emit herbivore-induced volatiles after 3 d of BAW feeding. Although parasitism impaired antiherbivore defenses, BAW growth was slower on parasitized tomato leaves. Vines of C. pentagona did not translocate JA from BAW-infested plants: amounts of JA in parasite vines grown on caterpillar-fed and control plants were similar. Parasitized plants generally contained more salicylic acid (SA), which can inhibit JA in some systems. Parasitized mutant (NahG) tomato plants deficient in SA produced more JA in response to insect feeding than parasitized wild-type plants, further suggesting cross talk between the SA and JA defense signaling pathways. However, JA induction by BAW was still reduced in parasitized compared to unparasitized NahG, implying that other factors must be involved. We found that parasitized plants were capable of producing induced volatiles when experimentally treated with JA, indicating that resource depletion by the parasite does not fully explain the observed attenuation of volatile response to herbivore feeding. Collectively, these findings show that parasitic plants can have important consequences for host plant defense against herbivores.

  7. Important role for Toll-like receptor 9 in host defense against meningococcal sepsis

    DEFF Research Database (Denmark)

    Sjölinder, Hong; Mogensen, Trine; Kilian, Mogens

    2008-01-01

    have been reported to be involved in the host response to N. meningitidis. While TLR4 has been suggested to play an important role in early containment of infection, the roles of TLR2 and TLR9 in meningococcal disease are not well described. Using a model for meningococcal sepsis, we report that TLR9...... and induction of cytokine gene expression were independent of TLR2 or TLR9 in macrophages and conventional dendritic cells. In contrast, plasmacytoid dendritic cells relied entirely on TLR9 to induce these activities. Thus, our data demonstrate an important role for TLR9 in host defense against N. meningitidis....

  8. Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore.

    Science.gov (United States)

    Martins, Carlos H Z; Cunha, Beatriz P; Solferini, Vera N; Trigo, José R

    2015-01-01

    Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina), and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves) which is reflected in the adult defense.

  9. Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore.

    Directory of Open Access Journals (Sweden)

    Carlos H Z Martins

    Full Text Available Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae sequester N-oxides of pyrrolizidine alkaloids (PAs from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina, and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves which is reflected in the adult defense.

  10. A novel approach to probe host-pathogen interactions of bovine digital dermatitis, a model of a complex polymicrobial infection

    DEFF Research Database (Denmark)

    Marcatili, Paolo; Weiss Nielsen, Martin; Sicheritz-Pontén, Thomas

    2016-01-01

    Polymicrobial infections represent a great challenge for the clarification of disease etiology and the development of comprehensive diagnostic or therapeutic tools, particularly for fastidious and difficult-to-cultivate bacteria. Using bovine digital dermatitis (DD) as a disease model, we introduce...... a novel strategy to study the pathogenesis of complex infections. The strategy combines meta-transcriptomics with high-density peptide-microarray technology to screen for in vivo-expressed microbial genes and the host antibody response at the site of infection. Bacterial expression patterns supported....... The extraordinary diversity observed in bacterial expression, antigens and host antibody responses between individual cows pointed toward microbial variability as a hallmark of DD. Persistence of infection and DD reinfection in the same individual is common; thus, high microbial diversity may undermine the host...

  11. Shigella infection of intestinal epithelium and circumvention of the host innate defense system.

    Science.gov (United States)

    Ashida, Hiroshi; Ogawa, Michinaga; Mimuro, Hitomi; Sasakawa, Chihiro

    2009-01-01

    Shigella, Gram-negative bacteria closely related to Escherichia coli, are highly adapted human pathogens that cause bacillary dysentery. Although Shigella have neither adherence factors nor flagella required for attaching or accessing the intestinal epithelium, Shigella are capable of colonizing the intestinal epithelium by exploiting epithelial-cell functions and circumventing the host innate immune response. During Shigella infection, they deliver many numbers of effectors through the type III secretion system into the surrounding space and directly into the host-cell cytoplasm. The effectors play pivotal roles from the onset of bacterial infection through to the establishment of the colonization of the intestinal epithelium, such as bacterial invasion, intracellular survival, subversion of the host immune defense response, and maintenance of the infectious foothold. These examples suggest that Shigella have evolved highly sophisticated infectious and intracellular strategies to establish replicative niches in the intestinal epithelium.

  12. Transcriptome analysis reveals the host response to Schmallenberg virus in bovine cells and antagonistic effects of the NSs protein.

    Science.gov (United States)

    Blomström, Anne-Lie; Gu, Quan; Barry, Gerald; Wilkie, Gavin; Skelton, Jessica K; Baird, Margaret; McFarlane, Melanie; Schnettler, Esther; Elliott, Richard M; Palmarini, Massimo; Kohl, Alain

    2015-04-19

    Schmallenberg virus (SBV) is a member of the Orthobunyavirus genus (Bunyaviridae family) causing malformations and abortions in ruminants. Although, as for other members of this family/genus, the non-structural protein NSs has been shown to be an interferon antagonist, very little is known regarding the overall inhibitory effects and targets of orthobunyavirus NSs proteins on host gene expression during infection. Therefore, using RNA-seq this study describes changes to the transcriptome of primary bovine cells following infection with Schmallenberg virus (SBV) or with a mutant lacking the non-structural protein NSs (SBVdelNSs) providing a detailed comparison of the effect of NSs expression on the host cell. The sequence reads from all samples (uninfected cells, SBV and SBVdelNSs) assembled well to the bovine host reference genome (on average 87.43% of the reads). During infection with SBVdelNSs, 649 genes were differentially expressed compared to uninfected cells (78.7% upregulated) and many of these were known antiviral and IFN-stimulated genes. On the other hand, only nine genes were differentially expressed in SBV infected cells compared to uninfected control cells, demonstrating the strong inhibitory effect of NSs on cellular gene expression. However, the majority of the genes that were expressed during SBV infection are involved in restriction of viral replication and spread indicating that SBV does not completely manage to shutdown the host antiviral response. In this study we show the effects of SBV NSs on the transcriptome of infected cells as well as the cellular response to wild type SBV. Although NSs is very efficient in shutting down genes of the host innate response, a number of possible antiviral factors were identified. Thus the data from this study can serve as a base for more detailed mechanistic studies of SBV and other orthobunyaviruses.

  13. Differential activity of innate defense antimicrobial peptides against Nocardia species.

    Science.gov (United States)

    Rieg, Siegbert; Meier, Benjamin; Fähnrich, Eva; Huth, Anja; Wagner, Dirk; Kern, Winfried V; Kalbacher, Hubert

    2010-02-23

    Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs) in innate defense against Nocardia, the activity of human alpha-defensins human neutrophil peptides (HNPs) 1-3, human beta-defensin (hBD)-3 and cathelicidin LL-37 as well as bovine beta-defensins lingual and tracheal antimicrobial peptides (LAP, TAP) and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human alpha-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  14. Differential activity of innate defense antimicrobial peptides against Nocardia species

    Directory of Open Access Journals (Sweden)

    Wagner Dirk

    2010-02-01

    Full Text Available Abstract Background Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs in innate defense against Nocardia, the activity of human α-defensins human neutrophil peptides (HNPs 1-3, human β-defensin (hBD-3 and cathelicidin LL-37 as well as bovine β-defensins lingual and tracheal antimicrobial peptides (LAP, TAP and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Results Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human α-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Conclusion Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  15. The Role of NLR-related Protein 3 Inflammasome in Host Defense and Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Chul-Su Yang

    2012-03-01

    Full Text Available Among a number of innate receptors, the nucleotide-binding domain leucine-rich repeat containing (NLR nucleotide oligomerization domain (NOD-like receptor families are involved in the recognition of cytosolic pathogen- or danger-associated molecules. Activation of these specific sets of receptors leads to the assembly of a multiprotein complex, the inflammasome, leading to the activation of caspase-1 and maturation of the cytokines interleukin (IL-1β, IL-18, and IL-33. Among NLRs, NLR-related protein 3 (NLRP3 is one of the best-characterized receptors that activates the inflammasome. There is no doubt that NLRP3 inflammasome activation is important for host defense and effective pathogen clearance against fungal, bacterial, and viral infection. In addition, mounting evidence indicates that the NLRP3 inflammasome plays a role in a variety of inflammatory diseases, including gout, atherosclerosis, and type II diabetes, as well as under conditions of cellular stress or injury. Here, we review recent advances in our understanding of the role of the NLRP3 inflammasome in host defense and various inflammatory diseases.

  16. Opposing roles of Toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense.

    Directory of Open Access Journals (Sweden)

    Philip O Scumpia

    2017-07-01

    Full Text Available Successful host defense against pathogens requires innate immune recognition of the correct pathogen associated molecular patterns (PAMPs by pathogen recognition receptors (PRRs to trigger the appropriate gene program tailored to the pathogen. While many PRR pathways contribute to the innate immune response to specific pathogens, the relative importance of each pathway for the complete transcriptional program elicited has not been examined in detail. Herein, we used RNA-sequencing with wildtype and mutant macrophages to delineate the innate immune pathways contributing to the early transcriptional response to Staphylococcus aureus, a ubiquitous microorganism that can activate a wide variety of PRRs. Unexpectedly, two PRR pathways-the Toll-like receptor (TLR and Stimulator of Interferon Gene (STING pathways-were identified as dominant regulators of approximately 95% of the genes that were potently induced within the first four hours of macrophage infection with live S. aureus. TLR signaling predominantly activated a pro-inflammatory program while STING signaling activated an antiviral/type I interferon response with live but not killed S. aureus. This STING response was largely dependent on the cytosolic DNA sensor cyclic guanosine-adenosine synthase (cGAS. Using a cutaneous infection model, we found that the TLR and STING pathways played opposite roles in host defense to S. aureus. TLR signaling was required for host defense, with its absence reducing interleukin (IL-1β production and neutrophil recruitment, resulting in increased bacterial growth. In contrast, absence of STING signaling had the opposite effect, enhancing the ability to restrict the infection. These results provide novel insights into the complex interplay of innate immune signaling pathways triggered by S. aureus and uncover opposing roles of TLR and STING in cutaneous host defense to S. aureus.

  17. Bovine origin Staphylococcus aureus: A new zoonotic agent?

    Science.gov (United States)

    Rao, Relangi Tulasi; Jayakumar, Kannan; Kumar, Pavitra

    2017-10-01

    The study aimed to assess the nature of animal origin Staphylococcus aureus strains. The study has zoonotic importance and aimed to compare virulence between two different hosts, i.e., bovine and ovine origin. Conventional polymerase chain reaction-based methods used for the characterization of S. aureus strains and chick embryo model employed for the assessment of virulence capacity of strains. All statistical tests carried on R program, version 3.0.4. After initial screening and molecular characterization of the prevalence of S. aureus found to be 42.62% in bovine origin samples and 28.35% among ovine origin samples. Meanwhile, the methicillin-resistant S. aureus prevalence is found to be meager in both the hosts. Among the samples, only 6.8% isolates tested positive for methicillin resistance. The biofilm formation quantified and the variation compared among the host. A Welch two-sample t -test found to be statistically significant, t=2.3179, df=28.103, and p=0.02795. Chicken embryo model found effective to test the pathogenicity of the strains. The study helped to conclude healthy bovines can act as S. aureus reservoirs. Bovine origin S. aureus strains are more virulent than ovine origin strains. Bovine origin strains have high probability to become zoonotic pathogen. Further, gene knock out studies may be conducted to conclude zoonocity of the bovine origin strains.

  18. Shedding light on the role of photosynthesis in pathogen colonization and host defense

    KAUST Repository

    Garavaglia, Betiana S.; Thomas, Ludivine; Gottig, Natalia; Zimaro, Tamara; Garofalo, Cecilia G.; Gehring, Christoph A; Ottado, Jorgelina

    2010-01-01

    The role of photosynthesis in plant defense is a fundamental question awaiting further molecular and physiological elucidation. To this end we investigated host responses to infection with the bacterial pathogen Xanthomonas axonopodis pv. citri, the pathogen responsible for citrus canker. This pathogen encodes a plant-like natriuretic peptide (XacPNP) that is expressed specifically during the infection process and prevents deterioration of the physiological condition of the infected tissue. Proteomic assays of citrus leaves infected with a XacPNP deletion mutant (DeltaXacPNP) resulted in a major reduction in photosynthetic proteins such as Rubisco, Rubisco activase and ATP synthase as a compared with infection with wild type bacteria. In contrast, infiltration of citrus leaves with recombinant XacPNP caused an increase in these host proteins and a concomitant increase in photosynthetic efficiency as measured by chlorophyll fluorescence assays. Reversion of the reduction in photosynthetic efficiency in citrus leaves infected with DeltaXacPNP was achieved by the application of XacPNP or Citrus sinensis PNP lending support to a case of molecular mimicry. Finally, given that DeltaXacPNP infection is less successful than infection with the wild type, it appears that reducing photosynthesis is an effective plant defense mechanism against biotrophic pathogens.

  19. Shedding light on the role of photosynthesis in pathogen colonization and host defense

    KAUST Repository

    Garavaglia, Betiana S.

    2010-09-01

    The role of photosynthesis in plant defense is a fundamental question awaiting further molecular and physiological elucidation. To this end we investigated host responses to infection with the bacterial pathogen Xanthomonas axonopodis pv. citri, the pathogen responsible for citrus canker. This pathogen encodes a plant-like natriuretic peptide (XacPNP) that is expressed specifically during the infection process and prevents deterioration of the physiological condition of the infected tissue. Proteomic assays of citrus leaves infected with a XacPNP deletion mutant (DeltaXacPNP) resulted in a major reduction in photosynthetic proteins such as Rubisco, Rubisco activase and ATP synthase as a compared with infection with wild type bacteria. In contrast, infiltration of citrus leaves with recombinant XacPNP caused an increase in these host proteins and a concomitant increase in photosynthetic efficiency as measured by chlorophyll fluorescence assays. Reversion of the reduction in photosynthetic efficiency in citrus leaves infected with DeltaXacPNP was achieved by the application of XacPNP or Citrus sinensis PNP lending support to a case of molecular mimicry. Finally, given that DeltaXacPNP infection is less successful than infection with the wild type, it appears that reducing photosynthesis is an effective plant defense mechanism against biotrophic pathogens.

  20. S1P dependent inter organ trafficking of group 2 innate lymphoid cells suppots host defense

    Science.gov (United States)

    Innate lymphoid cells (ILCs) are considered to be the innate counterparts of adaptive T lymphocytes and play important roles in host defense, tissue repair, metabolic homeostasis, and inflammatory diseases. ILCs are generally thought of as tissue-resident cells, but whether ILCs strictly behave in a...

  1. Parasitism by Cuscuta pentagona Attenuates Host Plant Defenses against Insect Herbivores1

    Science.gov (United States)

    Runyon, Justin B.; Mescher, Mark C.; De Moraes, Consuelo M.

    2008-01-01

    Considerable research has examined plant responses to concurrent attack by herbivores and pathogens, but the effects of attack by parasitic plants, another important class of plant-feeding organisms, on plant defenses against other enemies has not been explored. We investigated how attack by the parasitic plant Cuscuta pentagona impacted tomato (Solanum lycopersicum) defenses against the chewing insect beet armyworm (Spodoptera exigua; BAW). In response to insect feeding, C. pentagona-infested (parasitized) tomato plants produced only one-third of the antiherbivore phytohormone jasmonic acid (JA) produced by unparasitized plants. Similarly, parasitized tomato, in contrast to unparasitized plants, failed to emit herbivore-induced volatiles after 3 d of BAW feeding. Although parasitism impaired antiherbivore defenses, BAW growth was slower on parasitized tomato leaves. Vines of C. pentagona did not translocate JA from BAW-infested plants: amounts of JA in parasite vines grown on caterpillar-fed and control plants were similar. Parasitized plants generally contained more salicylic acid (SA), which can inhibit JA in some systems. Parasitized mutant (NahG) tomato plants deficient in SA produced more JA in response to insect feeding than parasitized wild-type plants, further suggesting cross talk between the SA and JA defense signaling pathways. However, JA induction by BAW was still reduced in parasitized compared to unparasitized NahG, implying that other factors must be involved. We found that parasitized plants were capable of producing induced volatiles when experimentally treated with JA, indicating that resource depletion by the parasite does not fully explain the observed attenuation of volatile response to herbivore feeding. Collectively, these findings show that parasitic plants can have important consequences for host plant defense against herbivores. PMID:18165323

  2. Overexpression of stress-related genes in Cuscuta campestris in response to host defense reactions

    Directory of Open Access Journals (Sweden)

    Hamed Rezaei

    2017-07-01

    Full Text Available Herb dodder ( Cuscuta spp. is one of the most important parasitic plants that can severely affect crop yields in the world. So far, interactions of this parasitic plant with hosts were not investigated adequately. Here, we conducted a differential expression analyzes and identified a number of genes that were differentially expressed in haustorium tissue compared with the stem of Cuscuta campestris growing on Alfalfa. We obtained 439 cDNA fragments from haustoria (parasite-host connection zone and stems (25 cm away from connections zones using the cDNA-AFLP (Amplified Fragment Length Polymorphism method with eight different primer combinations. Of 439 transcript-derived fragments (TDFs that were detected, 145 fragments were identified as differentially expressed genes. Five TDF sequences were similar to known functional genes involved in signal transduction, metabolism, respiration, and stress responses. Genes encoding DEAD-box ATP-dependent RNA helicase, potential heme-binding protein, lysine-specific demethylase 5A were selected for qRT-PCR. The qRT-PCR analyzes confirmed the results obtained using cDNA-AFLP. Our findings shed light on the elicitation of dodder defense responses in the connection zone to overcome plant defense reactions.

  3. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells.

    Science.gov (United States)

    Upadhyay, Vaibhav; Fu, Yang-Xin

    2014-04-01

    The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Interface Molecules of Angiostrongylus cantonensis: Their Role in Parasite Survival and Modulation of Host Defenses

    Directory of Open Access Journals (Sweden)

    Alessandra L. Morassutti

    2012-01-01

    Full Text Available Angiostrongylus cantonensis is a nematode parasite that causes eosinophilic meningoencephalitis in humans. Disease presents following the ingestion of third-stage larvae residing in the intermediate mollusk host and disease manifests as an acute inflammation of the meninges characterized by eosinophil infiltrates which release a battery of proinflammatory and cytotoxic agents in response to the pathogen. As a mechanism of neutralizing these host defenses, A. cantonensis expresses different molecules with immunomodulatory properties that are excreted or secreted (ES. In this paper we discuss the role of ES proteins on disease exacerbation and their potential use as therapeutic targets.

  5. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.

    Science.gov (United States)

    Yuen, Grace J; Ausubel, Frederick M

    2018-12-31

    The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.

  6. Activation of bovine neutrophils by Brucella spp.

    Science.gov (United States)

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense.

    NARCIS (Netherlands)

    Vos, J.B.; Sterkenburg, M.A. van; Rabe, K.F.; Schalkwijk, J.; Hiemstra, P.S.; Datson, N.A.

    2005-01-01

    The airway epithelium responds to microbial exposure by altering expression of a variety of genes to increase innate host defense. We aimed to delineate the early transcriptional response in human primary bronchial epithelial cells exposed for 6 h to a mixture of IL-1beta and TNF-alpha or

  8. Immune defense and host life history.

    Science.gov (United States)

    Zuk, Marlene; Stoehr, Andrew M

    2002-10-01

    Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.

  9. Emerging Roles for MAS-Related G Protein-Coupled Receptor-X2 in Host Defense Peptide, Opioid, and Neuropeptide-Mediated Inflammatory Reactions.

    Science.gov (United States)

    Ali, Hydar

    2017-01-01

    Mast cells (MCs) are tissue-resident immune cells that contribute to host defense but are best known for their roles in allergic and inflammatory diseases. In humans, MCs are divided into two subtypes based on the protease content of their secretory granules. Thus, human lung MCs contain only tryptase and are known as MC T , whereas skin MCs contain both tryptase and chymase and are known as MC TC . Patients with severe asthma display elevated MCs in the lung, which undergo phenotypic change from MC T to MC TC . Although the human genome contains four Mas related G protein coupled receptor X (MRGPRX) genes, an important feature of MC TC is that they selectively express MRGPRX2. It is activated by antimicrobial host defense peptides such as human β-defensins and the cathelicidin LL-37 and likely contributes to host defense. MRGPRX2 is also a receptor for the neuropeptide substance P, major basic protein, eosinophil peroxidase, opioids, and many FDA-approved cationic drugs. Increased expression of MRGPRX2 or enhanced downstream signaling likely contributes to chronic inflammatory diseases such as rosacea, atopic dermatitis, chronic urticaria, and severe asthma. In this chapter, I will discuss the expression profile and function of MRGPRX1-4 and review the emerging roles of MRGPRX2 on host defense, chronic inflammatory diseases, and drug-induced pseudoallergic reactions. I will also examine the novel aspects of MRGPRX2 signaling in MCs as it related to degranulation and review the mechanisms of its regulation. © 2017 Elsevier Inc. All rights reserved.

  10. Characterization of a proteolytically stable multifunctional host defense peptidomimetic

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Haney, Evan F; Franzyk, Henrik

    2013-01-01

    The in vitro activity of a host defense peptidomimetic (HDM-4) was investigated. The compound exhibited an antimicrobial activity profile against a range of Gram-negative bacteria. HDM-4 permeabilized the outer membrane and partly depolarized the inner membrane at its minimal inhibitory...... concentration (MIC). Moreover, it was demonstrated that HDM-4 was distributed widely in the bacterial cell at lethal concentrations, and that it could bind to DNA. It was confirmed that the multimodal action of HDM-4 resulted in it being less likely to lead to resistance development as compared to single......-target antibiotics. HDM-4 exhibited multispecies anti-biofilm activity at sub-MIC levels. Furthermore, HDM-4 modulated the immune response by inducing the release of the chemoattractants interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1), and MCP-3 from human peripheral blood mononuclear cells. In addition...

  11. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Science.gov (United States)

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  12. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    Full Text Available The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12 and an expansin-like protein (GrEXPB2, suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  13. Bovine Tuberculosis, A Zoonotic Disease

    Directory of Open Access Journals (Sweden)

    Tarmudji

    2008-12-01

    Full Text Available Bovine tuberculosis is caused by the infection of Mycobacterium tuberculosis var. bovis (M. bovis. This species is one of Mycobacterium tuberculosis complex, can infect wide range of hosts: cattle and other domesticated animals, wild mammals and humans (zoonotic. M. bovis bacterium from infected hosts can be transmitted to other susceptible animals and humans through respiratory excretes and secretion materials. Humans can be infected with M. bovis by ingested M. bovis contaminated animal products, unpasteurised milk from tuberculosis cows or through respiratory route of contaminated aerosol. Bovine tuberculosis at the first stage does not show any clinical sign but as the disease progress in the next stage which may take several months or years, clinical signs may arise, suh as: fluctuative body temperature, anorexia, lost body weight, coughing, oedema of lymph nodes, increased respiratory frequencies. Pathological lesion of bovine tuberculosis is characterised by the formation of granulomas (tubercles, in which bacterial cells have been localised, most in lymph nodes and pulmonum, but can occur in other organs. The granulomas usually arise in small nodules or tubercles appear yellowish either caseus, caseo-calcareus or calcified. In Indonesia, bovine tuberculosis occurred in dairy cattle since 1905 through the imported dairy cows from Holland and Australian. It was unfortunate that until recently, there were not many research and surveilances of bovine tuberculosis conducted in this country, so the distribution of bovine tuberculosis is unknown. Early serological diagnosis can be done on live cattle by means of tuberculin tests under field conditions. Confirmation can be done by isolation and identification of excreted and secreted samples from the slaughter house. Antibiotic treatment and vaccination were uneffective, therefore the effective control of bovine tuberculosis is suggested by tuberculin tests and by slaughtering the selected

  14. Anticancer activities of bovine and human lactoferricin-derived peptides.

    Science.gov (United States)

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  15. Effect of the Ketone Body Beta-Hydroxybutyrate on the Innate Defense Capability of Primary Bovine Mammary Epithelial Cells.

    Science.gov (United States)

    Hillreiner, Maria; Flinspach, Claudia; Pfaffl, Michael W; Kliem, Heike

    2016-01-01

    Negative energy balance and ketosis are thought to cause impaired immune function and to increase the risk of clinical mastitis in dairy cows. The present in vitro study aimed to investigate the effect of elevated levels of the predominant ketone body β-hydroxybutyrate on the innate defense capability of primary bovine mammary epithelial cells (pbMEC) challenged with the mastitis pathogen Escherichia coli (E. coli). Therefore, pbMEC of healthy dairy cows in mid- lactation were isolated from milk and challenged in culture with 3 mM BHBA and E. coli. pbMEC stimulated with E. coli for 6 h or 30 h showed an up-regulation of several innate immune genes, whereas co-stimulation of pbMEC with 3 mM BHBA and E. coli resulted in the down-regulation of CCL2, SAA3, LF and C3 gene expression compared to the challenge with solely the bacterial stimulus. These results indicated that increased BHBA concentrations may be partially responsible for the higher mastitis susceptibility of dairy cows in early lactation. Elevated levels of BHBA in blood and milk during negative energy balance and ketosis are likely to impair innate immune function in the bovine mammary gland by attenuating the expression of a broad range of innate immune genes.

  16. Effect of the Ketone Body Beta-Hydroxybutyrate on the Innate Defense Capability of Primary Bovine Mammary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Maria Hillreiner

    Full Text Available Negative energy balance and ketosis are thought to cause impaired immune function and to increase the risk of clinical mastitis in dairy cows. The present in vitro study aimed to investigate the effect of elevated levels of the predominant ketone body β-hydroxybutyrate on the innate defense capability of primary bovine mammary epithelial cells (pbMEC challenged with the mastitis pathogen Escherichia coli (E. coli. Therefore, pbMEC of healthy dairy cows in mid- lactation were isolated from milk and challenged in culture with 3 mM BHBA and E. coli. pbMEC stimulated with E. coli for 6 h or 30 h showed an up-regulation of several innate immune genes, whereas co-stimulation of pbMEC with 3 mM BHBA and E. coli resulted in the down-regulation of CCL2, SAA3, LF and C3 gene expression compared to the challenge with solely the bacterial stimulus. These results indicated that increased BHBA concentrations may be partially responsible for the higher mastitis susceptibility of dairy cows in early lactation. Elevated levels of BHBA in blood and milk during negative energy balance and ketosis are likely to impair innate immune function in the bovine mammary gland by attenuating the expression of a broad range of innate immune genes.

  17. Long-term healing of mildly cross-linked decellularized bovine pericardial aortic patch.

    Science.gov (United States)

    Umashankar, P R; Sabareeswaran, A; Shenoy, Sachin J

    2017-10-01

    Glutaraldehyde treated bovine pericardium is extensively used in cardiovascular surgery. However, frequent occurrence of failure modes, such as calcification and structural failure, has hard pressed the need for finding an alternate technology. Decellularized bovine pericardium is an emerging technology. Mildly cross-linked decellularized bovine pericardium promotes positive remodeling with insignificant calcification and acute inflammation. In the present study, mildly cross-linked decellularized bovine pericardium was evaluated as a cardiovascular patch by studying mechanical strength as well as graft remodeling, resistance to calcific degeneration and inflammatory response using long duration porcine aortic implantation. It was observed that decellularized bovine pericardium, although thinner and less elastic had equivalent tensile properties such as tensile strength and stiffness when compared to commercially available glutaraldehyde-treated bovine pericardium. It showed the potential for site appropriate remodeling evidenced by host cell incorporation, thinner neointima, graft degradation, and neocollagenisation making it suitable for vascular patch application, whereas glutaraldehyde-treated pericardium failed to integrate with host tissue through timely degradation and host cell incorporation or neocollagenization. Conversely, it elicited persistent acute inflammation and produced calcification. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2145-2152, 2017. © 2016 Wiley Periodicals, Inc.

  18. Lipooligosaccharide structure is an important determinant in the resistance of Neisseria gonorrhoeae to antimicrobial agents of innate host defense

    Directory of Open Access Journals (Sweden)

    Jacqueline T Balthazar

    2011-02-01

    Full Text Available The strict human pathogen Neisseria gonorrhoeae has caused the sexually transmitted infection termed gonorrhea for thousands of years. Over the millennia, the gonococcus has likely evolved mechanisms to evade host defense systems that operate on the genital mucosal surfaces in both males and females. Past research has shown that the presence or modification of certain cell envelope structures can significantly impact levels of gonococcal susceptibility to host-derived antimicrobial compounds that bathe genital mucosal surfaces and participate in innate host defense against invading pathogens. In order to facilitate the identification of gonococcal genes that are important in determining levels of bacterial susceptibility to mediators of innate host defense, we used the Himar I mariner in vitro mutagenesis system to construct a transposon insertion library in strain F62. As proof of principle that this strategy would be suitable for this purpose, we screened the library for mutants expressing decreased susceptibility to the bacteriolytic action of normal human serum (NHS. We found that a transposon insertion in the lgtD gene, which encodes an N-acetylgalactosamine transferase involved in the extension of the α-chain of lipooligosaccharide (LOS, could confer decreased susceptibility of strain F62 to complement-mediated killing by NHS. By complementation and chemical analyses, we demonstrated both linkage of the transposon insertion to the NHS-resistance phenotype and chemical changes in LOS structure that resulted from loss of LgtD production. Further truncation of the LOS α-chain or loss of phosphoethanolamine (PEA from the lipid A region of LOS also impacted levels of NHS-resistance. PEA decoration of lipid A also increased gonococcal resistance to the model cationic antimicrobial polymyxin B. Taken together, we conclude that the Himar I mariner in vitro mutagenesis procedure can facilitate studies on structures involved in gonococcal

  19. A Diverse Family of Host-Defense Peptides (Piscidins Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    Directory of Open Access Journals (Sweden)

    Scott A Salger

    Full Text Available Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis. In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3 show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7 primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5 have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture.

  20. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    Science.gov (United States)

    Salger, Scott A; Cassady, Katherine R; Reading, Benjamin J; Noga, Edward J

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture.

  1. Host-pathogen interactions between the human innate immune system and Candida albicans—understanding and modeling defense and evasion strategies

    Science.gov (United States)

    Dühring, Sybille; Germerodt, Sebastian; Skerka, Christine; Zipfel, Peter F.; Dandekar, Thomas; Schuster, Stefan

    2015-01-01

    The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given. PMID:26175718

  2. Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli

    DEFF Research Database (Denmark)

    Bommarius, B.; Jenssen, Håvard; Elliott, M.

    2010-01-01

    Cationic antimicrobial host defense peptides (HDPs) combat infection by directly killing a wide variety of microbes, and/or modulating host immunity. HDPs have great therapeutic potential against antibioticresistant bacteria, viruses and even parasites, but there are substantial roadblocks......, we describe (i) a method, using fusions to SUMO, for producing high yields of intact recombinant HDPs in bacteria without significant toxicity and (ii) a simplified 2-step purification method appropriate for industrial use. We have used this method to produce seven HDPs to date (IDR1, MX226, LL37......, CRAMP, HHC-10, E5 and E6). Using this technology, pilot-scale fermentation (10 L) was performed to produce large quantities of biologically active cationic peptides. Together, these data indicate that this new method represents a cost-effective means to enable commercial enterprises to produce HDPs...

  3. Exploration of Phage-Host Interactions in Fish Pathogen Vibrio anguillarum and Anti-Phage Defense Strategies

    DEFF Research Database (Denmark)

    Tan, Demeng

    The disease vibriosis is caused by the bacterial pathogen Vibrio anguillarum and results in large losses in aquaculture both in Denmark and around the world. Antibiotics have been widely used in antimicrobial prophylaxis and treatment of vibriosis. Recently, numerous multidrug-resistant strains...... of V. anguillarum have been isolated, indicating that antibiotic use has to be restricted and alternatives have to be developed. Lytic phages have been demonstrated to play an essential role in preventing bacterial infection. However, phages are also known to play a critical role in the evolution...... of bacterial pathogenicity development. Therefore, successful application of phage therapy in the treatment of vibriosis requires a detailed understanding of phage-host interactions, especially with regards to anti-phage defense mechanisms in the host. Part I. As a first approach, 24 V. anguillarum and 13...

  4. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  5. Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  6. Peripheral blood leukocyte count as an index of defense status in the leukopenic host

    International Nuclear Information System (INIS)

    Cawley, S.; Findon, G.; Miller, T.E.

    1988-01-01

    These experimental studies have investigated the reliability of the peripheral blood leukocyte count to predict whether the leukopenic host can contain or eliminate infection. Additionally, we have investigated the possibility that determination of leukocyte recruitment, supplementary to peripheral blood leukocyte counts, might allow individuals with neutropenia at risk from serious infection to be distinguished with greater certainty. Varying doses of radiation, cyclophosphamide, and methylprednisolone were used to induce distinct levels of leukopenia in rats. Leukocyte recruitment was measured by quantifying the response of neutropenic animals to evocative, subcutaneous stimuli, and the results of this assay were then compared with circulating leukocyte counts in the same individuals. Six models of experimentally induced infection were used to compare circulating and recruitable leukocytes as indicators of the susceptibility of the leukopenic host to infection. Response curves relating leukocyte numbers to host resistance were similar when circulating or recruitable leukocytes were used as an index of defense capability. These findings support the use of peripheral blood leukocyte numbers as an index of resistance to infection in individuals with leukopenia and suggest that functional analyses such as leukocyte recruitment are unlikely to provide additional information

  7. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis.

    Science.gov (United States)

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Mörgelin, Matthias; van der Plas, Mariena J A; Rydengård, Victoria; Malmsten, Martin; Albiger, Barbara; Schmidtchen, Artur

    2012-01-01

    Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin in vitro and in vivo. Furthermore, they interfere with coagulation by modulating contact activation and tissue factor-mediated clotting in vitro, leading to normalization of coagulation responses in vivo, a previously unknown function of host defense peptides. In a mouse model of Pseudomonas aeruginosa sepsis, the peptide GKY25, while mediating a modest antimicrobial effect, significantly inhibited the pro-inflammatory response, decreased fibrin deposition and leakage in the lungs, as well as reduced mortality. Taken together, the capacity of such thrombin-derived peptides to simultaneously modulate bacterial levels, pro-inflammatory responses, and coagulation, renders them attractive therapeutic candidates for the treatment of invasive infections and sepsis.

  8. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis.

    Directory of Open Access Journals (Sweden)

    Martina Kalle

    Full Text Available Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin in vitro and in vivo. Furthermore, they interfere with coagulation by modulating contact activation and tissue factor-mediated clotting in vitro, leading to normalization of coagulation responses in vivo, a previously unknown function of host defense peptides. In a mouse model of Pseudomonas aeruginosa sepsis, the peptide GKY25, while mediating a modest antimicrobial effect, significantly inhibited the pro-inflammatory response, decreased fibrin deposition and leakage in the lungs, as well as reduced mortality. Taken together, the capacity of such thrombin-derived peptides to simultaneously modulate bacterial levels, pro-inflammatory responses, and coagulation, renders them attractive therapeutic candidates for the treatment of invasive infections and sepsis.

  9. Reindeer as hosts for nematode parasites of sheep and cattle.

    Science.gov (United States)

    Hrabok, J T; Oksanen, A; Nieminen, M; Rydzik, A; Uggla, A; Waller, P J

    2006-03-31

    The reindeer husbandry range of Scandinavia overlaps with sheep, goat, and cattle pastures. The aim of this study was to determine whether reindeer are suitable hosts for ovine or bovine nematode parasites, and thus may spread these parasites into the reindeer husbandry regions. To render worm-free, twelve 4-month-old male reindeer calves, six lambs, and six bovine calves were given ivermectin at 200 microg/kg body weight. Five weeks post-treatment, six reindeer calves were each artificially dosed with 10,000 third-stage larvae (L3) of gastrointestinal nematodes derived from sheep, and an additional six reindeer with L3 derived from cattle. Lambs and bovine calves received the same dose of ovine and bovine larvae as reindeer, from the same larval source, respectively. Faecal samples collected on five occasions after the larval dosing revealed that by the fourth week, all reindeer calves, lambs, and bovine calves were infected. Animals were slaughtered on days 40 (reindeer) or 47 (lambs and bovine calves) after the larval dosing. Reindeer calves were most susceptible to L3 derived from sheep. The overall mean intensity of Haemochus contortus, Trichostrongylus axei, and Teladorsagia circumcincta, did not differ between reindeer and sheep; however, early fourth-stage larvae of H. contortus were more abundant in reindeer (p = 0.002). The establishment of bovine-derived Ostertagia ostertagi was similar in reindeer (62%) and bovine calves (57%), but larval inhibition was much higher in reindeer (91%, p bovine derived Cooperia oncophora was recorded in reindeer calves (2%) compared with bovine calves (59%). These results show that young reindeer are susceptible hosts to the important gastrointestinal parasites of sheep (T. circumcincta, H. contortus) and cattle (O. ostertagi), as well as being a suitable host for T. axei.

  10. Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections.

    Directory of Open Access Journals (Sweden)

    Nadine T Nehme

    2011-03-01

    Full Text Available Two NF-kappaB signaling pathways, Toll and immune deficiency (imd, are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense.In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus, we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival--independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response.Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen.

  11. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells.

    Science.gov (United States)

    Yang, Zhengtao; Fu, Yunhe; Gong, Pengtao; Zheng, Jingtong; Liu, Li; Yu, Yuqiang; Li, Jianhua; Li, He; Yang, Ju; Zhang, Xichen

    2015-08-01

    Cryptosporidium parvum (C. parvum) is an intestinal parasite that causes diarrhea in neonatal calves. It results in significant morbidity of neonatal calves and economic losses for producers worldwide. Innate resistance against C. parvum is thought to depend on engagement of pattern recognition receptors. However, the role of innate responses to C. parvum has not been elucidated in bovine. The aim of this study was to evaluate the role of TLRs in host-cell responses during C. parvum infection of cultured bovine intestinal epithelial cells. The expressions of TLRs in bovine intestinal epithelial cells were detected by qRT-PCR. To determine which, if any, TLRs may play a role in the response of bovine intestinal epithelial cells to C. parvum, the cells were stimulated with C. parvum and the expression of TLRs were tested by qRT-PCR. The expression of NF-κB was detected by western blotting. Further analyses were carried out in bovine TLRs transfected HEK293 cells and by TLRs-DN transfected bovine intestinal epithelial cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs. The expression of TLR2 and TLR4 were up-regulated when bovine intestinal epithelial cells were treated with C. parvum. Meanwhile, C. parvum induced IL-8 production in TLR2 or TLR4/MD-2 transfected HEK293 cells. Moreover, C. parvum induced NF-κB activation and cytokine expression in bovine intestinal epithelial cells. The induction of NF-κB activation and cytokine expression by C. parvum were reduced in TLR2-DN and TLR4-DN transfected cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs, and bovine intestinal epithelial cells recognized and responded to C. parvum via TLR2 and TLR4. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. High Prevalence of Schistosoma japonicum and Fasciola gigantica in Bovines from Northern Samar, the Philippines

    Science.gov (United States)

    Gordon, Catherine A.; Acosta, Luz P.; Gobert, Geoffrey N.; Jiz, Mario; Olveda, Remigio M.; Ross, Allen G.; Gray, Darren J.; Williams, Gail M.; Harn, Donald; Li, Yuesheng; McManus, Donald P.

    2015-01-01

    The cause of zoonotic schistosomiasis in the Philippines is Schistosoma japonicum, which infects up to 46 mammalian hosts, including humans and bovines. In China, water buffaloes have been identified as major reservoir hosts for schistosomiasis japonica, contributing up to 75% of human transmission. In the Philippines, water buffaloes (carabao; Bubalus bubalis carabanesis) have, historically, been considered unimportant reservoirs. We therefore revisited the possible role of bovines in schistosome transmission in the Philippines, using the recently described formalin-ethyl acetate sedimentation (FEA-SD) technique and a qPCR assay to examine fecal samples from 153 bovines (both carabao and cattle) from six barangays in Northern Samar. A high prevalence of S. japonicum was found using qPCR and FEA-SD in both cattle (87.50% and 77.08%, respectively) and carabao (80.00% and 55.24%, respectively). The average daily egg output for each bovine was calculated at 195,000. High prevalence and infection intensity of F. gigantica was also found in the bovines by qPCR and FEA-SD (95.33% and 96.00%, respectively). The identification of bovines as major reservoir hosts for S. japonicum transmission suggests that bovine treatment and/or vaccination, as one becomes available, should be included in any future control program that aims to reduce the disease burden due to schistosomiasis in the Philippines. PMID:25643317

  13. High prevalence of Schistosoma japonicum and Fasciola gigantica in bovines from Northern Samar, the Philippines.

    Directory of Open Access Journals (Sweden)

    Catherine A Gordon

    2015-02-01

    Full Text Available The cause of zoonotic schistosomiasis in the Philippines is Schistosoma japonicum, which infects up to 46 mammalian hosts, including humans and bovines. In China, water buffaloes have been identified as major reservoir hosts for schistosomiasis japonica, contributing up to 75% of human transmission. In the Philippines, water buffaloes (carabao; Bubalus bubalis carabanesis have, historically, been considered unimportant reservoirs. We therefore revisited the possible role of bovines in schistosome transmission in the Philippines, using the recently described formalin-ethyl acetate sedimentation (FEA-SD technique and a qPCR assay to examine fecal samples from 153 bovines (both carabao and cattle from six barangays in Northern Samar. A high prevalence of S. japonicum was found using qPCR and FEA-SD in both cattle (87.50% and 77.08%, respectively and carabao (80.00% and 55.24%, respectively. The average daily egg output for each bovine was calculated at 195,000. High prevalence and infection intensity of F. gigantica was also found in the bovines by qPCR and FEA-SD (95.33% and 96.00%, respectively. The identification of bovines as major reservoir hosts for S. japonicum transmission suggests that bovine treatment and/or vaccination, as one becomes available, should be included in any future control program that aims to reduce the disease burden due to schistosomiasis in the Philippines.

  14. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeanne A Robert

    Full Text Available The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.

  15. Trans-suppression of defense DEFB1 gene in intestinal epithelial cells following Cryptosporidium parvum infection is associated with host delivery of parasite Cdg7_FLc_1000 RNA.

    Science.gov (United States)

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Dolata, Courtney E; Chen, Xian-Ming

    2018-03-01

    To counteract host immunity, Cryptosporidium parvum has evolved multiple strategies to suppress host antimicrobial defense. One such strategy is to reduce the production of the antimicrobial peptide beta-defensin 1 (DEFB1) by host epithelial cells but the underlying mechanisms remain unclear. Recent studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of intestinal cryptosporidiosis, in this study, we analyzed the expression profile of host beta-defensin genes in host cells following infection. We found that C. parvum infection caused a significant downregulation of the DEFB1 gene. Interestingly, downregulation of DEFB1 gene was associated with host delivery of Cdg7_FLc_1000 RNA transcript, a C. parvum RNA that has previously demonstrated to be delivered into the nuclei of infected host cells. Knockdown of Cdg7_FLc_1000 in host cells could attenuate the trans-suppression of host DEFB1 gene and decreased the parasite burden. Therefore, our data suggest that trans-suppression of DEFB1 gene in intestinal epithelial cells following C. parvum infection involves host delivery of parasite Cdg7_FLc_1000 RNA, a process that may be relevant to the epithelial defense evasion by C. parvum at the early stage of infection.

  16. Carp erythrodermatitis : host defense-pathogen interaction

    NARCIS (Netherlands)

    Pourreau, C.N.

    1990-01-01

    The outcome of a bacterial infection depends on the interaction between pathogen and host. The ability of the microbe to survive in the host depends on its invasive potential (i.e. spreading and multiplication), and its ability to obtain essential nutrients and to resist the

  17. Bioprospecting the American alligator (Alligator mississippiensis host defense peptidome.

    Directory of Open Access Journals (Sweden)

    Barney M Bishop

    Full Text Available Cationic antimicrobial peptides and their therapeutic potential have garnered growing interest because of the proliferation of bacterial resistance. However, the discovery of new antimicrobial peptides from animals has proven challenging due to the limitations associated with conventional biochemical purification and difficulties in predicting active peptides from genomic sequences, if known. As an example, no antimicrobial peptides have been identified from the American alligator, Alligator mississippiensis, although their serum is antimicrobial. We have developed a novel approach for the discovery of new antimicrobial peptides from these animals, one that capitalizes on their fundamental and conserved physico-chemical properties. This sample-agnostic process employs custom-made functionalized hydrogel microparticles to harvest cationic peptides from biological samples, followed by de novo sequencing of captured peptides, eliminating the need to isolate individual peptides. After evaluation of the peptide sequences using a combination of rational and web-based bioinformatic analyses, forty-five potential antimicrobial peptides were identified, and eight of these peptides were selected to be chemically synthesized and evaluated. The successful identification of multiple novel peptides, exhibiting antibacterial properties, from Alligator mississippiensis plasma demonstrates the potential of this innovative discovery process in identifying potential new host defense peptides.

  18. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms

    Science.gov (United States)

    Radulovic, Marko; Godovac-Zimmermann, Jasminka

    2014-01-01

    The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms. PMID:21329431

  19. APOBEC3G: a Double Agent in Defense

    OpenAIRE

    Smith, Harold C.

    2011-01-01

    APOBEC3G (A3G) is an effective cellular host defense factor under experimental conditions in which a functional form of the HIV-encoded protein Vif cannot be expressed. Wild type Vif targets A3G for proteasomal degradation and along with it, any host defense advantage A3G might provide is severely diminished or lost. Recent evidence cast doubt on the potency of A3G in host defense and suggested that it could, under some circumstances, promote the emergence of more virulent HIV strains. In thi...

  20. Bovine coronavirus antibody titers at weaning negatively correlate with incidence of bovine respiratory disease in the feed yard

    Science.gov (United States)

    Bovine respiratory disease complex (BRDC) is a multifactorial disease caused by complex interactions among viral and bacterial pathogens, stressful management practices and host genetic variability. Although vaccines and antibiotic treatments are readily available to prevent and treat infection caus...

  1. Novel Synthetic, Host-defense Peptide Protects Against Organ Injury/Dysfunction in a Rat Model of Severe Hemorrhagic Shock.

    Science.gov (United States)

    Yamada, Noriaki; Martin, Lukas B; Zechendorf, Elisabeth; Purvis, Gareth S D; Chiazza, Fausto; Varrone, Barbara; Collino, Massimo; Shepherd, Joanna; Heinbockel, Lena; Gutsmann, Thomas; Correa, Wilmar; Brandenburg, Klaus; Marx, Gernot; Schuerholz, Tobias; Brohi, Karim; Thiemermann, Christoph

    2017-03-10

    To evaluate (1) levels of the host-defense/antimicrobial peptide LL-37 in patients with trauma and hemorrhagic shock (HS) and (2) the effects of a synthetic host-defense peptide; Pep19-4LF on multiple organ failure (MOF) associated with HS. HS is a common cause of death in severely injured patients. There is no specific therapy that reduces HS-associated MOF. (1) LL-37 was measured in 47 trauma/HS patients admitted to an urban major trauma center. (2) Male Wistar rats were submitted to HS (90 min, target mean arterial pressure: 27-32 mm Hg) or sham operation. Rats were treated with Pep19-4LF [66 (n = 8) or 333 μg/kg · h (n = 8)] or vehicle (n = 12) for 4 hours following resuscitation. Plasma LL-37 was 12-fold higher in patients with trauma/HS compared to healthy volunteers. HS rats treated with Pep19-4LF (high dose) had a higher mean arterial pressure at the end of the 4-hour resuscitation period (79 ± 4 vs 54 ± 5 mm Hg) and less renal dysfunction, liver injury, and lung inflammation than HS rats treated with vehicle. Pep19-4LF enhanced (kidney/liver) the phosphorylation of (1) protein kinase B and (2) endothelial nitric oxide synthase. Pep19-4LF attenuated the HS-induced (1) translocation of p65 from cytosol to nucleus, (2) phosphorylation of IκB kinase on Ser, and (3) phosphorylation of IκBα on Ser resulting in inhibition of nuclear factor kappa B and formation of proinflammatory cytokines. Pep19-4LF prevented the release of tumor necrosis factor alpha caused by heparan sulfate in human mononuclear cells by binding to this damage-associated molecular pattern. Trauma-associated HS results in release of LL-37. The synthetic host-defense/antimicrobial peptide Pep19-4LF attenuates the organ injury/dysfunction associated with HS.

  2. The host defense peptide beta-defensin 1 confers protection against Bordetella pertussis in newborn piglets.

    Science.gov (United States)

    Elahi, Shokrollah; Buchanan, Rachelle M; Attah-Poku, Sam; Townsend, Hugh G G; Babiuk, Lorne A; Gerdts, Volker

    2006-04-01

    Innate immunity plays an important role in protection against respiratory infections in humans and animals. Host defense peptides such as beta-defensins represent major components of innate immunity. We recently developed a novel porcine model of pertussis, an important respiratory disease of young children and infants worldwide. Here, we investigated the role of porcine beta-defensin 1 (pBD-1), a porcine defensin homologue of human beta-defensin 2, in conferring protection against respiratory infection with Bordetella pertussis. In this model, newborn piglets were fully susceptible to infection and developed severe bronchopneumonia. In contrast, piglets older than 4 weeks of age were protected against infection with B. pertussis. Protection was associated with the expression of pBD-1 in the upper respiratory tract. In fact, pBD-1 expression was developmentally regulated, and the absence of pBD-1 was thought to contribute to the increased susceptibility of newborn piglets to infection with B. pertussis. Bronchoalveolar lavage specimens collected from older animals as well as chemically synthesized pBD-1 displayed strong antimicrobial activity against B. pertussis in vitro. Furthermore, in vivo treatment of newborn piglets with only 500 mug pBD-1 at the time of challenge conferred protection against infection with B. pertussis. Interestingly, pBD-1 displayed no bactericidal activity in vitro against Bordetella bronchiseptica, a closely related natural pathogen of pigs. Our results demonstrate that host defense peptides play an important role in protection against pertussis and are essential in modulating innate immune responses against respiratory infections.

  3. Host-pathogen interactions in bovine mammary epithelial cells and HeLa cells by Staphylococcus aureus isolated from subclinical bovine mastitis.

    Science.gov (United States)

    Castilho, Ivana G; Dantas, Stéfani Thais Alves; Langoni, Hélio; Araújo, João P; Fernandes, Ary; Alvarenga, Fernanda C L; Maia, Leandro; Cagnini, Didier Q; Rall, Vera L M

    2017-08-01

    Staphylococcus aureus is a common pathogen that causes subclinical bovine mastitis due to several virulence factors. In this study, we analyzed S. aureus isolates collected from the milk of cows with subclinical mastitis that had 8 possible combinations of bap, icaA, and icaD genes, to determine their capacity to produce biofilm on biotic (bovine primary mammary epithelial cells and HeLa cells) and abiotic (polystyrene microplates) surfaces, and their ability to adhere to and invade these cells. We also characterized isolates for microbial surface components recognizing adhesive matrix molecules (MSCRAMM) and agr genes, and for their susceptibility to cefquinome sulfate in the presence of biofilm. All isolates adhered to and invaded both cell types, but invasion indexes were higher in bovine primary mammary epithelial cells. Using tryptic soy broth + 1% glucose on abiotic surfaces, 5 out of 8 isolates were biofilm producers, but only the bap + icaA + icaD + isolate was positive in Dulbecco's Modified Eagle's medium. The production of biofilm on biotic surfaces occurred only with this isolate and only on HeLa cells, because the invasion index for bovine primary mammary epithelial cells was too high, making it impossible to use these cells in this assay. Of the 5 biofilm producers in tryptic soy broth + 1% glucose, 4 presented with the bap/fnbA/clfA/clfB/eno/fib/ebpS combination, and all were protected from cefquinome sulfate. We found no predominance of any agr group. The high invasive potential of S. aureus made it impossible to observe biofilm in bovine primary mammary epithelial cells, and we concluded that cells with lower invasion rates, such as HeLa cells, were more appropriate for this assay. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-06-01

    Full Text Available Host defense peptides (HDPs are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs.

  5. Budesonide suppresses pulmonary antibacterial host defense by down-regulating cathelicidin-related antimicrobial peptide in allergic inflammation mice and in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Wang Peng

    2013-02-01

    Full Text Available Abstract Background Glucocorticoids are widely regarded as the most effective treatment for asthma. However, the direct impact of glucocorticoids on the innate immune system and antibacterial host defense during asthma remain unclear. Understanding the mechanisms underlying this process is critical to the clinical application of glucocorticoids for asthma therapy. After sensitization and challenge with ovalbumin (OVA, BALB/c mice were treated with inhaled budesonide and infected with Pseudomonas aeruginosa (P. aeruginosa. The number of viable bacteria in enflamed lungs was evaluated, and levels of interleukin-4 (IL-4 and interferon-γ (IFN-γ in serum were measured. A lung epithelial cell line was pretreated with budesonide. Levels of cathelicidin-related antimicrobial peptide (CRAMP were measured by immunohistochemistry and western blot analysis. Intracellular bacteria were observed in lung epithelial cells. Results Inhaled budesonide enhanced lung infection in allergic mice exposed to P. aeruginosa and increased the number of viable bacteria in lung tissue. Higher levels of IL-4 and lower levels of IFN-γ were observed in the serum. Budesonide decreased the expression of CRAMP, increased the number of internalized P. aeruginosa in OVA-challenged mice and in lung epithelial cell lines. These data indicate that inhaled budesonide can suppress pulmonary antibacterial host defense by down-regulating CRAMP in allergic inflammation mice and in cells in vitro. Conclusions Inhaled budesonide suppressed pulmonary antibacterial host defense in an asthmatic mouse model and in lung epithelium cells in vitro. This effect was dependent on the down-regulation of CRAMP.

  6. Genome-wide analysis of codon usage bias in Bovine Coronavirus

    OpenAIRE

    Castells, Mat?as; Victoria, Mat?as; Colina, Rodney; Musto, H?ctor; Cristina, Juan

    2017-01-01

    Background Bovine coronavirus (BCoV) belong to the genus Betacoronavirus of the family Coronaviridae. BCoV are widespread around the world and cause enteric or respiratory infections among cattle, leading to important economic losses to the beef and dairy industry worldwide. To study the relation of codon usage among viruses and their hosts is essential to understand host-pathogen interaction, evasion from host?s immune system and evolution. Methods We performed a comprehensive analysis of co...

  7. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model

    Directory of Open Access Journals (Sweden)

    Grassian Vicki H

    2011-09-01

    Full Text Available Abstract Background Human exposure to nanoparticles (NPs and environmental bacteria can occur simultaneously. NPs induce inflammatory responses and oxidative stress but may also have immune-suppressive effects, impairing macrophage function and altering epithelial barrier functions. The purpose of this study was to assess the potential pulmonary effects of inhalation and instillation exposure to copper (Cu NPs using a model of lung inflammation and host defense. Methods We used Klebsiella pneumoniae (K.p. in a murine lung infection model to determine if pulmonary bacterial clearance is enhanced or impaired by Cu NP exposure. Two different exposure modes were tested: sub-acute inhalation (4 hr/day, 5 d/week for 2 weeks, 3.5 mg/m3 and intratracheal instillation (24 hr post-exposure, 3, 35, and 100 μg/mouse. Pulmonary responses were evaluated by lung histopathology plus measurement of differential cell counts, total protein, lactate dehydrogenase (LDH activity, and inflammatory cytokines in bronchoalveolar lavage (BAL fluid. Results Cu NP exposure induced inflammatory responses with increased recruitment of total cells and neutrophils to the lungs as well as increased total protein and LDH activity in BAL fluid. Both inhalation and instillation exposure to Cu NPs significantly decreased the pulmonary clearance of K.p.-exposed mice measured 24 hr after bacterial infection following Cu NP exposure versus sham-exposed mice also challenged with K.p (1.4 × 105 bacteria/mouse. Conclusions Cu NP exposure impaired host defense against bacterial lung infections and induced a dose-dependent decrease in bacterial clearance in which even our lowest dose demonstrated significantly lower clearance than observed in sham-exposed mice. Thus, exposure to Cu NPs may increase the risk of pulmonary infection.

  8. Aggregatibacter actinomycetemcomitans, a potent immunoregulator of the periodontal host defense system and alveolar bone homeostasis

    Science.gov (United States)

    Herbert, Bethany A.; Novince, Chad M.; Kirkwood, Keith L.

    2015-01-01

    Summary Aggregatibacter actinomycetemcomitans is a perio-pathogenic bacteria that has long been associated with localized aggressive periodontitis. The mechanisms of its pathogenicity have been studied in humans and pre-clinical experimental models. Although different serotypes of A. actinomycetemcomitans have differential virulence factor expression, A. actinomycetemcomitans cytolethal distending toxin (CDT), leukotoxin, and lipopolysaccharide (LPS) have been most extensively studied in the context of modulating the host immune response. Following colonization and attachment in the oral cavity, A. actinomycetemcomitans employs CDT, leukotoxin, and LPS to evade host innate defense mechanisms and drive a pathophysiologic inflammatory response. This supra-physiologic immune response state perturbs normal periodontal tissue remodeling/turnover and ultimately has catabolic effects on periodontal tissue homeostasis. In this review, we have divided the host response into two systems: non-hematopoietic and hematopoietic. Non-hematopoietic barriers include epithelium and fibroblasts that initiate the innate immune host response. The hematopoietic system contains lymphoid and myeloid-derived cell lineages that are responsible for expanding the immune response and driving the pathophysiologic inflammatory state in the local periodontal microenvironment. Effector systems and signaling transduction pathways activated and utilized in response to A. actinomycetemcomitans will be discussed to further delineate immune cell mechanisms during A. actinomycetemcomitans infection. Finally, we will discuss the osteo-immunomodulatory effects induced by A. actinomycetemcomitans and dissect the catabolic disruption of balanced osteoclast-osteoblast mediated bone remodeling, which subsequently leads to net alveolar bone loss. PMID:26197893

  9. Bovine herpesvirus 1 interferes with TAP-dependent peptide transport and intracellular trafficking of MHC class I molecules in human cells

    NARCIS (Netherlands)

    Koppers-Lalic, D.; Rychlowski, M.; Leeuwen, D.; Rijsewijk, F.A.M.; Ressing, M.E.; Neefjes, J.J.; Bienkowska-Szewczyk, K.; Wiertz, E.

    2003-01-01

    Bovine herpesvirus 1 (BoHV-1), the cause of infectious bovine rhinotracheitis and infectious pustular vulvovaginitis in cattle, establishes a lifelong infection, despite the presence of antiviral immunity in the host. BoHV-1 has been shown to elude the host immune system, but the viral gene products

  10. Cyto-adherence of Mycoplasma mycoides subsp. mycoides to bovine lung epithelial cells.

    Science.gov (United States)

    Aye, Racheal; Mwirigi, Martin Kiogora; Frey, Joachim; Pilo, Paola; Jores, Joerg; Naessens, Jan

    2015-02-07

    Mycoplasma mycoides subsp. mycoides (Mmm) is the causative agent of contagious bovine pleuropneumonia (CBPP), a respiratory disease of cattle, whereas the closely related Mycoplasma mycoides subsp. capri (Mmc) is a goat pathogen. Cyto-adherence is a crucial step in host colonization by mycoplasmas and subsequent pathogenesis. The aim of this study was to investigate the interactions between Mmm and mammalian host cells by establishing a cyto-adherence flow cytometric assay and comparing tissue and species specificity of Mmm and Mmc strains. There were little significant differences in the adherence patterns of eight different Mmm strains to adult bovine lung epithelial cells. However, there was statistically significant variation in binding to different host cells types. Highest binding was observed with lung epithelial cells, intermediate binding with endothelial cells and very low binding with fibroblasts, suggesting the presence of effective adherence of Mmm on cells lining the airways of the lung, which is the target organ for this pathogen, possibly by high expression of a specific receptor. However, binding to bovine fetal lung epithelial cells was comparably low; suggesting that the lack of severe pulmonary disease seen in many infected young calves can be explained by reduced expression of a specific receptor. Mmm bound with high efficiency to adult bovine lung cells and less efficiently to calves or goat lung cells. The data show that cyto-adherence of Mmm is species- and tissue- specific confirming its role in colonization of the target host and subsequent infection and development of CBPP.

  11. IL-10 release by bovine epithelial cells cultured with Trichomonas vaginalis and Tritrichomonas foetus

    Directory of Open Access Journals (Sweden)

    Ricardo Chaves Vilela

    2013-02-01

    Full Text Available Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells.

  12. 77 FR 29914 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2012-05-21

    ... Spongiform Encephalopathy; Importation of Bovines and Bovine Products AGENCY: Animal and Plant Health... derived from bovines with regard to bovine spongiform encephalopathy. This action will allow interested... importation of live bovines and products derived from bovines with regard to bovine spongiform encephalopathy...

  13. Synthetic analogues of bovine bactenecin dodecapeptide reduce herpes simplex virus type 2 infectivity in mice

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Shestakov, Andrey; Hancock, Robert E. W

    2013-01-01

    We have evaluated the potential of four synthetic peptides (denoted HH-2, 1002, 1006, 1018) with a distant relationship to the host defense peptide bovine bactenecin dodecapeptide for their ability to prevent genital infections with herpes simplex virus type 2 (HSV-2) in mice. All four peptides...... infectious doses of HSV-2. These data show that peptides HH-2 and 1018 have antiviral properties and can be used to prevent genital herpes infection in mice. (C) 2013 Elsevier B.V. All rights reserved....... was introduced in human semen. Two of the peptides proved especially effective in reducing HSV-2 infection also in vivo. When admixed with virus prior to inoculation, both HH-2 and 1018 reduced viral replication and disease development in a genital model of HSV-2 infection in mice, and also when using very high...

  14. Aggregatibacter actinomycetemcomitans, a potent immunoregulator of the periodontal host defense system and alveolar bone homeostasis.

    Science.gov (United States)

    Herbert, B A; Novince, C M; Kirkwood, K L

    2016-06-01

    Aggregatibacter actinomycetemcomitans is a perio-pathogenic bacteria that has long been associated with localized aggressive periodontitis. The mechanisms of its pathogenicity have been studied in humans and preclinical experimental models. Although different serotypes of A. actinomycetemcomitans have differential virulence factor expression, A. actinomycetemcomitans cytolethal distending toxin (CDT), leukotoxin, and lipopolysaccharide (LPS) have been most extensively studied in the context of modulating the host immune response. Following colonization and attachment in the oral cavity, A. actinomycetemcomitans employs CDT, leukotoxin, and LPS to evade host innate defense mechanisms and drive a pathophysiologic inflammatory response. This supra-physiologic immune response state perturbs normal periodontal tissue remodeling/turnover and ultimately has catabolic effects on periodontal tissue homeostasis. In this review, we have divided the host response into two systems: non-hematopoietic and hematopoietic. Non-hematopoietic barriers include epithelium and fibroblasts that initiate the innate immune host response. The hematopoietic system contains lymphoid and myeloid-derived cell lineages that are responsible for expanding the immune response and driving the pathophysiologic inflammatory state in the local periodontal microenvironment. Effector systems and signaling transduction pathways activated and utilized in response to A. actinomycetemcomitans will be discussed to further delineate immune cell mechanisms during A. actinomycetemcomitans infection. Finally, we will discuss the osteo-immunomodulatory effects induced by A. actinomycetemcomitans and dissect the catabolic disruption of balanced osteoclast-osteoblast-mediated bone remodeling, which subsequently leads to net alveolar bone loss. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis

    DEFF Research Database (Denmark)

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath

    2012-01-01

    Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here...... present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin...

  16. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host.

    Science.gov (United States)

    Zhuang, Huifu; Li, Juan; Song, Juan; Hettenhausen, Christian; Schuman, Meredith C; Sun, Guiling; Zhang, Cuiping; Li, Jing; Song, Dunlun; Wu, Jianqiang

    2018-06-01

    Dodders (Cuscuta spp.) are shoot holoparasites, whose haustoria penetrate host tissues to enable fusion between the parasite and host vascular systems, allowing Cuscuta to extract water, nutrients and other molecules from hosts. Aphids are piercing-sucking herbivores that use specialized stylets to feed on phloem sap. Aphids are known to feed on Cuscuta, but how Cuscuta and its host plant respond to aphids attacking the parasite was unknown. Phytohormone quantification, transcriptomic analysis and bioassays were performed to determine the responses of Cuscuta australis and its soybean (Glycine max) hosts to the feeding of green peach aphid (GPA; Myzus persicae) on C. australis. Decreased salicylic acid levels and 172 differentially expressed genes (DEGs) were found in GPA-attacked C. australis, and the soybean hosts exhibited increased jasmonic acid contents and 1015 DEGs, including > 100 transcription factor genes. Importantly, GPA feeding on C. australis increased the resistance of the soybean host to subsequent feeding by the leafworm Spodoptera litura and soybean aphid Aphis glycines, resulting in 21% decreased leafworm mass and 41% reduced aphid survival rate. These data strongly suggest that GPA feeding on Cuscuta induces a systemic signal, which is translocated to hosts and activates defense against herbivores. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  17. diagnosis of bovine cysticercosis in Kenyan cattle

    African Journals Online (AJOL)

    A total of 55 cattle divided into two groups of experimentally (n =30) and naturally ... sensitive than meat inspection in the diagnosis of bovine cysticercosis, detecting .... The second group of 15 calves was ... ined for the presence of C. bovis. .... variable and pour ' ..... appropriate intermediate host is dependent on:- the state.

  18. Dynamic defense workshop :

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Sean Michael; Doak, Justin E.; Haas, Jason Juedes.; Helinski, Ryan; Lamb, Christopher C.

    2013-02-01

    On September 5th and 6th, 2012, the Dynamic Defense Workshop: From Research to Practice brought together researchers from academia, industry, and Sandia with the goals of increasing collaboration between Sandia National Laboratories and external organizations, de ning and un- derstanding dynamic, or moving target, defense concepts and directions, and gaining a greater understanding of the state of the art for dynamic defense. Through the workshop, we broadened and re ned our de nition and understanding, identi ed new approaches to inherent challenges, and de ned principles of dynamic defense. Half of the workshop was devoted to presentations of current state-of-the-art work. Presentation topics included areas such as the failure of current defenses, threats, techniques, goals of dynamic defense, theory, foundations of dynamic defense, future directions and open research questions related to dynamic defense. The remainder of the workshop was discussion, which was broken down into sessions on de ning challenges, applications to host or mobile environments, applications to enterprise network environments, exploring research and operational taxonomies, and determining how to apply scienti c rigor to and investigating the eld of dynamic defense.

  19. Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility.

    Directory of Open Access Journals (Sweden)

    Iovanna Pandelova

    Full Text Available Pyrenophora tritici-repentis (Ptr, a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA and Ptr ToxB (ToxB, are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death.

  20. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense.

    Science.gov (United States)

    Walters, Edgar T

    2014-08-01

    Neuropathic pain after spinal cord injury (SCI) is common, often intractable, and can be severely debilitating. A number of mechanisms have been proposed for this pain, which are discussed briefly, along with methods for revealing SCI pain in animal models, such as the recently applied conditioned place preference test. During the last decade, studies of animal models have shown that both central neuroinflammation and behavioral hypersensitivity (indirect reflex measures of pain) persist chronically after SCI. Interventions that reduce neuroinflammation have been found to ameliorate pain-related behavior, such as treatment with agents that inhibit the activation states of microglia and/or astroglia (including IL-10, minocycline, etanercept, propentofylline, ibudilast, licofelone, SP600125, carbenoxolone). Reversal of pain-related behavior has also been shown with disruption by an inhibitor (CR8) and/or genetic deletion of cell cycle-related proteins, deletion of a truncated receptor (trkB.T1) for brain-derived neurotrophic factor (BDNF), or reduction by antisense knockdown or an inhibitor (AMG9810) of the activity of channels (TRPV1 or Nav1.8) important for electrical activity in primary nociceptors. Nociceptor activity is known to drive central neuroinflammation in peripheral injury models, and nociceptors appear to be an integral component of host defense. Thus, emerging results suggest that spinal and systemic effects of SCI can activate nociceptor-mediated host defense responses that interact via neuroinflammatory signaling with complex central consequences of SCI to drive chronic pain. This broader view of SCI-induced neuroinflammation suggests new targets, and additional complications, for efforts to develop effective treatments for neuropathic SCI pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses

    Directory of Open Access Journals (Sweden)

    Ala E. Tabor

    2017-12-01

    Full Text Available Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites, blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding, infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also

  2. Dual RNA-seq reveals no plastic transcriptional response of the coccidian parasite Eimeria falciformis to host immune defenses.

    Science.gov (United States)

    Ehret, Totta; Spork, Simone; Dieterich, Christoph; Lucius, Richard; Heitlinger, Emanuel

    2017-09-05

    Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized ("hard wired") program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing

  3. Immune recognition of salivary proteins from the cattle tick Rhipicephalus microplus differs according to the genotype of the bovine host.

    Science.gov (United States)

    Garcia, Gustavo Rocha; Maruyama, Sandra Regina; Nelson, Kristina T; Ribeiro, José Marcos Chaves; Gardinassi, Luiz Gustavo; Maia, Antonio Augusto Mendes; Ferreira, Beatriz Rossetti; Kooyman, Frans N J; de Miranda Santos, Isabel K F

    2017-03-14

    -specific antibodies were not directly correlated with infestation phenotypes. However, in spite of receiving apparently lower amounts of tick saliva, tick-resistant bovines recognized more tick salivary proteins. These reactive salivary proteins are putatively involved in several functions of parasitism and blood-feeding. Our results indicate that neutralization by host antibodies of tick salivary proteins involved in parasitism is essential to control tick infestations.

  4. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  5. Profiling microRNA expression in bovine alveolar macrophages using RNA-seq.

    Science.gov (United States)

    Vegh, Peter; Foroushani, Amir B K; Magee, David A; McCabe, Matthew S; Browne, John A; Nalpas, Nicolas C; Conlon, Kevin M; Gordon, Stephen V; Bradley, Daniel G; MacHugh, David E; Lynn, David J

    2013-10-01

    MicroRNAs (miRNAs) are important regulators of gene expression and are known to play a key role in regulating both adaptive and innate immunity. Bovine alveolar macrophages (BAMs) help maintain lung homeostasis and constitute the front line of host defense against several infectious respiratory diseases, such as bovine tuberculosis. Little is known, however, about the role miRNAs play in these cells. In this study, we used a high-throughput sequencing approach, RNA-seq, to determine the expression levels of known and novel miRNAs in unchallenged BAMs isolated from lung lavages of eight different healthy Holstein-Friesian male calves. Approximately 80 million sequence reads were generated from eight BAM miRNA Illumina sequencing libraries, and 80 miRNAs were identified as being expressed in BAMs at a threshold of at least 100 reads per million (RPM). The expression levels of miRNAs varied over a large dynamic range, with a few miRNAs expressed at very high levels (up to 800,000RPM), and the majority lowly expressed. Notably, many of the most highly expressed miRNAs in BAMs have known roles in regulating immunity in other species (e.g. bta-let-7i, bta-miR-21, bta-miR-27, bta-miR-99b, bta-miR-146, bta-miR-147, bta-miR-155 and bta-miR-223). The most highly expressed miRNA in BAMs was miR-21, which has been shown to regulate the expression of antimicrobial peptides in Mycobacterium leprae-infected human monocytes. Furthermore, the predicted target genes of BAM-expressed miRNAs were found to be statistically enriched for roles in innate immunity. In addition to profiling the expression of known miRNAs, the RNA-seq data was also analysed to identify potentially novel bovine miRNAs. One putatively novel bovine miRNA was identified. To the best of our knowledge, this is the first RNA-seq study to profile miRNA expression in BAMs and provides an important reference dataset for investigating the regulatory roles miRNAs play in this important immune cell type. Copyright

  6. Macrophage Migration Inhibitory Factor Contributes to Host Defense against Acute Trypanosoma cruzi Infection

    Science.gov (United States)

    Reyes, José L.; Terrazas, Luis I.; Espinoza, Bertha; Cruz-Robles, David; Soto, Virgilia; Rivera-Montoya, Irma; Gómez-García, Lorena; Snider, Heidi; Satoskar, Abhay R.; Rodríguez-Sosa, Miriam

    2006-01-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is involved in the host defense against several pathogens. Here we used MIF−/− mice to determine the role of endogenous MIF in the regulation of the host immune response against Trypanosoma cruzi infection. MIF−/− mice displayed high levels of blood and tissue parasitemia, developed severe heart and skeletal muscle immunopathology, and succumbed to T. cruzi infection faster than MIF+/+ mice. The enhanced susceptibility of MIF−/− mice to T. cruzi was associated with reduced levels of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-12 (IL-12), IL-18, gamma interferon (IFN-γ), and IL-1β, in their sera and reduced production of IL-12, IFN-γ, and IL-4 by spleen cells during the early phase of infection. At all time points, antigen-stimulated splenocytes from MIF+/+ and MIF−/− mice produced comparable levels of IL-10. MIF−/− mice also produced significantly less Th1-associated antigen-specific immunoglobulin G2a (IgG2a) throughout the infection, but both groups produced comparable levels of Th2-associated IgG1. Lastly, inflamed hearts from T. cruzi-infected MIF−/− mice expressed increased transcripts for IFN-γ, but fewer for IL-12 p35, IL-12 p40, IL-23, and inducible nitric oxide synthase, compared to MIF+/+ mice. Taken together, our findings show that MIF plays a role in controlling acute T. cruzi infection. PMID:16714544

  7. The Road from Host-Defense Peptides to a New Generation of Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Alicia Boto

    2018-02-01

    Full Text Available Host-defense peptides, also called antimicrobial peptides (AMPs, whose protective action has been used by animals for millions of years, fulfill many requirements of the pharmaceutical industry, such as: (1 broad spectrum of activity; (2 unlike classic antibiotics, they induce very little resistance; (3 they act synergically with conventional antibiotics; (4 they neutralize endotoxins and are active in animal models. However, it is considered that many natural peptides are not suitable for drug development due to stability and biodisponibility problems, or high production costs. This review describes the efforts to overcome these problems and develop new antimicrobial drugs from these peptides or inspired by them. The discovery process of natural AMPs is discussed, as well as the development of synthetic analogs with improved pharmacological properties. The production of these compounds at acceptable costs, using different chemical and biotechnological methods, is also commented. Once these challenges are overcome, a new generation of versatile, potent and long-lasting antimicrobial drugs is expected.

  8. CHAOS: An SDN-Based Moving Target Defense System

    Directory of Open Access Journals (Sweden)

    Yuan Shi

    2017-01-01

    Full Text Available Moving target defense (MTD has provided a dynamic and proactive network defense to reduce or move the attack surface that is available for exploitation. However, traditional network is difficult to realize dynamic and active security defense effectively and comprehensively. Software-defined networking (SDN points out a brand-new path for building dynamic and proactive defense system. In this paper, we propose CHAOS, an SDN-based MTD system. Utilizing the programmability and flexibility of SDN, CHAOS obfuscates the attack surface including host mutation obfuscation, ports obfuscation, and obfuscation based on decoy servers, thereby enhancing the unpredictability of the networking environment. We propose the Chaos Tower Obfuscation (CTO method, which uses the Chaos Tower Structure (CTS to depict the hierarchy of all the hosts in an intranet and define expected connection and unexpected connection. Moreover, we develop fast CTO algorithms to achieve a different degree of obfuscation for the hosts in each layer. We design and implement CHAOS as an application of SDN controller. Our approach makes it very easy to realize moving target defense in networks. Our experimental results show that a network protected by CHAOS is capable of decreasing the percentage of information disclosure effectively to guarantee the normal flow of traffic.

  9. Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM).

    Science.gov (United States)

    Modi, Bhavi P; Teves, Maria E; Pearson, Laurel N; Parikh, Hardik I; Haymond-Thornburg, Hannah; Tucker, John L; Chaemsaithong, Piya; Gomez-Lopez, Nardhy; York, Timothy P; Romero, Roberto; Strauss, Jerome F

    2017-11-01

    Twin studies have revealed a significant contribution of the fetal genome to risk of preterm birth. Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm delivery. Infection and inflammation of the fetal membranes is commonly found associated with PPROM. We carried out whole exome sequencing (WES) of genomic DNA from neonates born of African-American mothers whose pregnancies were complicated by PPROM (76) or were normal term pregnancies (N = 43) to identify mutations in 35 candidate genes involved in innate immunity and host defenses against microbes. Targeted genotyping of mutations in the candidates discovered by WES was conducted on an additional 188 PPROM cases and 175 controls. We identified rare heterozygous nonsense and frameshift mutations in several of the candidate genes, including CARD6, CARD8, DEFB1, FUT2, MBL2, NLP10, NLRP12, and NOD2. We discovered that some mutations (CARD6, DEFB1, FUT2, MBL2, NLRP10, NOD2) were present only in PPROM cases. We conclude that rare damaging mutations in innate immunity and host defense genes, the majority being heterozygous, are more frequent in neonates born of pregnancies complicated by PPROM. These findings suggest that the risk of preterm birth in African-Americans may be conferred by mutations in multiple genes encoding proteins involved in dampening the innate immune response or protecting the host against microbial infection and microbial products. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  10. Host-pathogen interactions between the human innate immune system and Candida albicans - Understanding and modeling defense and evasion strategies

    Directory of Open Access Journals (Sweden)

    Sybille eDühring

    2015-06-01

    Full Text Available The diploid, polymorphic yeast Candida albicans is one of the most important humanpathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within thehuman host for a long time. Alterations in the host environment, however, can render C. albicansvirulent. In this review, we describe the immunological cross-talk between C. albicans and thehuman innate immune system. We give an overview in form of pairs of human defense strategiesincluding immunological mechanisms as well as general stressors such as nutrient limitation,pH, fever etc. and the corresponding fungal response and evasion mechanisms. FurthermoreComputational Systems Biology approaches to model and investigate these complex interactionare highlighted with a special focus on game-theoretical methods and agent-based models. Anoutlook on interesting questions to be tackled by Systems Biology regarding entangled defenseand evasion mechanisms is given.

  11. Replication and Transmission of the Novel Bovine Influenza D Virus in a Guinea Pig Model.

    Science.gov (United States)

    Sreenivasan, Chithra; Thomas, Milton; Sheng, Zizhang; Hause, Ben M; Collin, Emily A; Knudsen, David E B; Pillatzki, Angela; Nelson, Eric; Wang, Dan; Kaushik, Radhey S; Li, Feng

    2015-12-01

    Influenza D virus (FLUDV) is a novel influenza virus that infects cattle and swine. The goal of this study was to investigate the replication and transmission of bovine FLUDV in guinea pigs. Following direct intranasal inoculation of animals, the virus was detected in nasal washes of infected animals during the first 7 days postinfection. High viral titers were obtained from nasal turbinates and lung tissues of directly inoculated animals. Further, bovine FLUDV was able to transmit from the infected guinea pigs to sentinel animals by means of contact and not by aerosol dissemination under the experimental conditions tested in this study. Despite exhibiting no clinical signs, infected guinea pigs developed seroconversion and the viral antigen was detected in lungs of animals by immunohistochemistry. The observation that bovine FLUDV replicated in the respiratory tract of guinea pigs was similar to observations described previously in studies of gnotobiotic calves and pigs experimentally infected with bovine FLUDV but different from those described previously in experimental infections in ferrets and swine with a swine FLUDV, which supported virus replication only in the upper respiratory tract and not in the lower respiratory tract, including lung. Our study established that guinea pigs could be used as an animal model for studying this newly emerging influenza virus. Influenza D virus (FLUDV) is a novel emerging pathogen with bovine as its primary host. The epidemiology and pathogenicity of the virus are not yet known. FLUDV also spreads to swine, and the presence of FLUDV-specific antibodies in humans could indicate that there is a potential for zoonosis. Our results showed that bovine FLUDV replicated in the nasal turbinate and lungs of guinea pigs at high titers and was also able to transmit from an infected animal to sentinel animals by contact. The fact that bovine FLUDV replicated productively in both the upper and lower respiratory tracts of guinea pigs

  12. Impairments of mecA gene detection in bovine Staphylococcus spp.

    Directory of Open Access Journals (Sweden)

    Dayanne Araújo de Melo

    2014-09-01

    Full Text Available Staphylococcus aureus antimicrobial resistance, especially to beta-lactams, favors treatment failures and its persistence in herd environment. This work aimed to develop a more specific primer for mecA gene detection based on the comparison of the conserved regions from distinct host origins and also investigated the presence of homologue mecA LGA251 in bovine strains. A total of 43 Staphylococcus spp. were included in this study, comprising 38 bovine S. aureus, two human and three equine coagulase-negative staphylococci (CNS. Phenotypical methicillin-resistance detection was performed through oxacillin agar-screening and cefoxitin disk-diffusion test. None isolate tested positive for mecA LGA251 gene. For mecA gene PCR, new primers were designed based on the sequences of human S. aureus (HE681097 and bovine S. sciuri (AY820253 mecA. The new primers based on the S. aureus mecA sequence amplified fragments of human and equine CNS and the ones based on S. sciuri mecA sequence only yielded fragments for S. aureus bovine strains. Multiples alignments of mecA gene sequences from bovine, human and equine revealed punctual but significant differences in bovine strains that can lead to the mecA gene detection impairment. The observed divergences of mecA gene sequences are not a matter of animal or human origin, it is a specificity of bovine samples.

  13. Bovine mastitis may be associated with the deprivation of gut Lactobacillus.

    Science.gov (United States)

    Ma, C; Zhao, J; Xi, X; Ding, J; Wang, H; Zhang, H; Kwok, L Y

    2016-02-01

    Bovine mastitis is an economical important microbial disease in dairy industry. Some recent human clinical trials have shown that oral probiotics supplementation could effectively control clinical mastitis, suggesting that the mechanism of mastitis protection might be achieved via the host gut microbiota. We aimed to test our hypothesis that bovine mastitis was related to changes in both the mammary and gut microbial profiles. By quantitative PCR, the milk and faecal microbial profiles of cows with low (1×10 6 cells/ml) somatic cell count (SCC) were compared. Firstly, we observed drastic differences in both the milk and faecal microbial compositions at genus and Lactobacillus-species levels between the two groups. Secondly, the pattern of faecal microbial community changes of mastitis cows was similar to that of the milk, characterised by a general increase in the mastitis pathogens (Enterococcus, Streptococcus and Staphylococcus) and deprivation of Lactobacillus and its members (L. salivarius, L. sakei, L. ruminis, L. delbrueckii, L. buchneri, and L. acidophilus). Thirdly, only the faecal lactobacilli, but not bifidobacteria correlated with the milk microbial communities and SCC. Our data together hint to a close association between bovine mastitis, the host gut and milk microbiota.

  14. Mechanistic and structural basis of bioengineered bovine Cathelicidin-5 with optimized therapeutic activity

    Science.gov (United States)

    Sahoo, Bikash R.; Maruyama, Kenta; Edula, Jyotheeswara R.; Tougan, Takahiro; Lin, Yuxi; Lee, Young-Ho; Horii, Toshihiro; Fujiwara, Toshimichi

    2017-03-01

    Peptide-drug discovery using host-defense peptides becomes promising against antibiotic-resistant pathogens and cancer cells. Here, we customized the therapeutic activity of bovine cathelicidin-5 targeting to bacteria, protozoa, and tumor cells. The membrane dependent conformational adaptability and plasticity of cathelicidin-5 is revealed by biophysical analysis and atomistic simulations over 200 μs in thymocytes, leukemia, and E. coli cell-membranes. Our understanding of energy-dependent cathelicidin-5 intrusion in heterogeneous membranes aided in designing novel loss/gain-of-function analogues. In vitro findings identified leucine-zipper to phenylalanine substitution in cathelicidin-5 (1-18) significantly enhance the antimicrobial and anticancer activity with trivial hemolytic activity. Targeted mutants of cathelicidin-5 at kink region and N-terminal truncation revealed loss-of-function. We ensured the existence of a bimodal mechanism of peptide action (membranolytic and non-membranolytic) in vitro. The melanoma mouse model in vivo study further supports the in vitro findings. This is the first structural report on cathelicidin-5 and our findings revealed potent therapeutic application of designed cathelicidin-5 analogues.

  15. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  16. The multifunctional host defense peptide SPLUNC1 is critical for homeostasis of the mammalian upper airway.

    Directory of Open Access Journals (Sweden)

    Glen McGillivary

    2010-10-01

    Full Text Available Otitis media (OM is a highly prevalent pediatric disease caused by normal flora of the nasopharynx that ascend the Eustachian tube and enter the middle ear. As OM is a disease of opportunity, it is critical to gain an increased understanding of immune system components that are operational in the upper airway and aid in prevention of this disease. SPLUNC1 is an antimicrobial host defense peptide that is hypothesized to contribute to the health of the airway both through bactericidal and non-bactericidal mechanisms. We used small interfering RNA (siRNA technology to knock down expression of the chinchilla ortholog of human SPLUNC1 (cSPLUNC1 to begin to determine the role that this protein played in prevention of OM. We showed that knock down of cSPLUNC1 expression did not impact survival of nontypeable Haemophilus influenzae, a predominant causative agent of OM, in the chinchilla middle ear under the conditions tested. In contrast, expression of cSPLUNC1 was essential for maintenance of middle ear pressure and efficient mucociliary clearance, key defense mechanisms of the tubotympanum. Collectively, our data have provided the first in vivo evidence that cSPLUNC1 functions to maintain homeostasis of the upper airway and, thereby, is critical for protection of the middle ear.

  17. Influenza A Virus-Host Protein Interactions Control Viral Pathogenesis.

    Science.gov (United States)

    Zhao, Mengmeng; Wang, Lingyan; Li, Shitao

    2017-08-01

    The influenza A virus (IAV), a member of the Orthomyxoviridae family, is a highly transmissible respiratory pathogen and represents a continued threat to global health with considerable economic and social impact. IAV is a zoonotic virus that comprises a plethora of strains with different pathogenic profiles. The different outcomes of viral pathogenesis are dependent on the engagement between the virus and the host cellular protein interaction network. The interactions may facilitate virus hijacking of host molecular machinery to fulfill the viral life cycle or trigger host immune defense to eliminate the virus. In recent years, much effort has been made to discover the virus-host protein interactions and understand the underlying mechanisms. In this paper, we review the recent advances in our understanding of IAV-host interactions and how these interactions contribute to host defense and viral pathogenesis.

  18. Strategic variation in mobbing as a front line of defense against brood parasitism.

    Science.gov (United States)

    Welbergen, Justin A; Davies, Nicholas B

    2009-02-10

    Coevolutionary arms races, where adaptations in one party select for counter-adaptations in another and vice versa, are fundamental to interactions between organisms and their predators, pathogens, and parasites [1]. Avian brood parasites and their hosts have emerged as model systems for studying such reciprocal coevolutionary processes [2, 3]. For example, hosts have evolved changes in egg appearance and rejection of foreign eggs in response to brood parasitism from cuckoos, and cuckoos have evolved host-egg mimicry as a counter-response [4-6]. However, the host's front line of defense is protecting the nest from being parasitized in the first place [7-10], yet little is known about the effectiveness of nest defense as an antiparasite adaptation, and its coevolutionary significance remains poorly understood [10]. Here we show first that mobbing of common cuckoos Cuculus canorus by reed warblers Acrocephalus scirpaceus is an effective defense against parasitism. Second, mobbing of cuckoos is a phenotypically plastic trait that is modified strategically according to local parasitism risk. This supports the view that hosts use a "defense in-depth strategy," with successive flexible lines of defense that coevolve with corresponding offensive lines of the parasite. This highlights the need for more holistic research into the coevolutionary consequences when multiple adaptations and counter-adaptations evolve in concert [11].

  19. CD335 (NKp46+ T-Cell Recruitment to the Bovine Upper Respiratory Tract during a Primary Bovine Herpesvirus-1 Infection

    Directory of Open Access Journals (Sweden)

    Rahwa A. Osman

    2017-10-01

    Full Text Available Bovine natural killer (NK cells were originally defined by the NK activation receptor CD335 [natural killer cell p46-related protein (NKp46], but following the discovery of NKp46 expression on human T-cells, the definition of conventional bovine NK cells was modified to CD335+CD3− cells. Recently, a bovine T-cell population co-expressing CD335 was identified and these non-conventional T-cells were shown to produce interferon (IFN-γ and share functional properties with both conventional NK cells and T-cells. It is not known, however, if CD335+ bovine T-cells are recruited to mucosal surfaces and what chemokines play a role in recruiting this unique T-cell subpopulation. In this study, bovine herpesvirus-1 (BHV-1, which is closely related to herpes simplex virus-1, was used to investigate bovine lymphocyte cell populations recruited to the upper respiratory tract following a primary respiratory infection. Immunohistochemical staining with individual monoclonal antibodies revealed significant (P < 0.05 recruitment of CD335+, CD3+, and CD8+ lymphocyte populations to the nasal turbinates on day 5 following primary BHV-1 infection. Dual-color immunofluorescence revealed that cells recruited to nasal turbinates were primarily T-cells that co-expressed both CD335 and CD8. This non-conventional T-cell population represented 77.5% of CD355+ cells and 89.5% of CD8+ cells recruited to nasal turbinates on day 5 post-BHV-1 infection. However, due to diffuse IFN-γ staining of nasal turbinate tissue, it was not possible to directly link increased IFN-γ production following BHV-1 infection with the recruitment of non-conventional T-cells. Transcriptional analysis revealed CCL4, CCL5, and CXCL9 gene expression was significantly (P < 0.05 upregulated in nasal turbinate tissue following BHV-1 infection. Therefore, no single chemokine was associated with recruitment of non-conventional T-cells. In conclusion, the specific recruitment of CD335+ and CD8

  20. Antimicrobial potential of Eucalyptus globulus against biofilms of Staphylococcus aureus isolated from bovine mastitis

    OpenAIRE

    Gomes, F. I.; Martins, Natália; Ferreira, Isabel C. F. R.; Henriques, Mariana

    2016-01-01

    Staphylococcus aureus are among the most common species isolated from bovine mastitis. The pathogenesis of this bacterium is facilitated by a number of virulence factors, including the ability to adhere to abiotic surfaces and/or host tissues often leading to biofilms' formation. From the clinical perspective, the most important feature of Staphytococcus species' biofilms is their high tolerance to the conventional antimicrobial therapy. So, the increasing number of bovine m...

  1. Interaction of Coxiella burnetii Strains of Different Sources and Genotypes with Bovine and Human Monocyte-Derived Macrophages

    Directory of Open Access Journals (Sweden)

    Katharina Sobotta

    2018-01-01

    Full Text Available Most human Q fever infections originate from small ruminants. By contrast, highly prevalent shedding of Coxiella (C. burnetii by bovine milk rarely results in human disease. We hypothesized that primary bovine and human monocyte-derived macrophages (MDM represent a suitable in vitro model for the identification of strain-specific virulence properties at the cellular level. Twelve different C. burnetii strains were selected to represent different host species and multiple loci variable number of tandem repeat analysis (MLVA genotypes. Infection efficiency and replication of C. burnetii were monitored by cell culture re-titration and qPCR. Expression of immunoregulatory factors after MDM infection was measured by qRT-PCR and flow cytometry. Invasion, replication and MDM response differed between C. burnetii strains but not between MDMs of the two hosts. Strains isolated from ruminants were less well internalized than isolates from humans and rodents. Internalization of MLVA group I strains was lower compared to other genogroups. Replication efficacy of C. burnetii in MDM ranged from low (MLVA group III to high (MLVA group IV. Infected human and bovine MDM responded with a principal up-regulation of pro-inflammatory cytokines such as IL-1β, IL-12, and TNF-α. However, MLVA group IV strains induced a pronounced host response whereas infection with group I strains resulted in a milder response. C. burnetii infection marginally affected polarization of MDM. Only one C. burnetii strain of MLVA group IV caused a substantial up-regulation of activation markers (CD40, CD80 on the surface of bovine and human MDM. The study showed that replication of C. burnetii in MDM and the subsequent host cell response is genotype-specific rather than being determined by the host species pointing to a clear distinction in C. burnetii virulence between the genetic groups.

  2. Cooperative microbial tolerance behaviors in host-microbiota mutualism

    Science.gov (United States)

    Ayres, Janelle S.

    2016-01-01

    Animal defense strategies against microbes are most often thought of as a function of the immune system, the primary function of which is to sense and kill microbes through the execution of resistance mechanisms. However, this antagonistic view creates complications for our understanding of beneficial host-microbe interactions. Pathogenic microbes are described as employing a few common behaviors that promote their fitness at the expense of host health and fitness. Here, a complementary framework is proposed to suggest that in addition to pathogens, beneficial microbes have evolved behaviors to manipulate host processes in order to promote their own fitness and do so through the promotion of host health and fitness. In this Perspective, I explore the idea that patterns or behaviors traditionally ascribed to pathogenic microbes are also employed by beneficial microbes to promote host tolerance defense strategies. Such strategies would promote host health without having a negative impact on microbial fitness and would thereby yield cooperative evolutionary dynamics that are likely required to drive mutualistic co-evolution of hosts and microbes. PMID:27259146

  3. Interaction of bovine peripheral blood polymorphonuclear cells and Leptospira species; innate responses in the natural bovine reservoir host.

    Science.gov (United States)

    Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and also be reservoir hosts of other Leptospira species such as L. kirschneri, and L. interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murin...

  4. Risk factors for bovine tuberculosis (bTB) in cattle in Ethiopia

    NARCIS (Netherlands)

    Dejene, Sintayehu W.; Heitkonig, Ignas; Prins, Herbert H.T.; Lemma, Fitsum A.; Mekonnen, Daniel A.; Alemu, Zelalem E.; Kelkay, Tessema Z.; Boer, de Fred

    2016-01-01

    Bovine tuberculosis (bTB) infection is generally correlated with individual cattle's age, sex, body condition, and with husbandry practices such as herd composition, cattle movement, herd size, production system and proximity to wildlife - including bTB maintenance hosts. We tested the

  5. PREVALENCE OF BOVINE HERPESVIRUS-1,PARAINFLUENZA-3,BOVINE ROTAVIRUS, BOVINE VIRAL DIARRHEA, BOVINE ADENOVIRUS-7,BOVINE LEUKEMIA VIRUS AND BLUETONGUE VIRUS ANTIBODIES IN CATTLE IN MEXICO

    OpenAIRE

    SUZAN, Victor M.; ONUMA, Misao; AGUILAR, Romero E.; MURAKAMI, Yosuke

    1983-01-01

    Sera were collected from dairy and beef cattle in 19 different states of Mexico. These sera were tested for bovine herpesvirus-1 (BHV-1), parainfluenza-3 virus (PIV-3), bovine rotavirus (BRV), bovine leukemia virus (BLV), bovine adenovirus-7 (BAV-7), bluetongue virus (BTV) and bovine viral diarrhea virus (BVDV). Seropositive rates for each virus for dairy cattle tested were 158/277(57.0%) for BHV-1,217/286(75.0%) for PIV-3,541/1498(36.1%) for BLV, 134/144(93.1%) for BRV, 39/90(43.3%) for BTV,...

  6. Research on moving target defense based on SDN

    Science.gov (United States)

    Chen, Mingyong; Wu, Weimin

    2017-08-01

    An address mutation strategy was proposed. This strategy provided an unpredictable change in address, replacing the real address of the packet forwarding process and path mutation, thus hiding the real address of the host and path. a mobile object defense technology based on Spatio-temporal Mutation on this basis is proposed, Using the software Defined Network centralized control architecture advantage combines sFlow traffic monitoring technology and Moving Target Defense. A mutated time period which can be changed in real time according to the network traffic is changed, and the destination address is changed while the controller abruptly changes the address while the data packet is transferred between the switches to construct a moving target, confusing the host within the network, thereby protecting the host and network.

  7. Prevalence and associated risk factors for bovine tick infestation in two districts of lower Punjab, Pakistan.

    Science.gov (United States)

    Sajid, Muhammad Sohail; Iqbal, Zafar; Khan, Muhammad Nisar; Muhammad, Ghulam; Khan, Muhammad Kasib

    2009-12-01

    Bovine tick infestation is still a serious nuisance to livestock and the dairy industry of Pakistan. The current paper reports the prevalence and associated risk factors for bovine tick infestation in the districts Layyah and Muzaffargarh of lower Punjab, Pakistan. A questionnaire-based survey was conducted to identify and to quantify variation in the prevalence of bovine tick infestation with respect to host (age, species, sex, and breed) and environmental (geographical area and climate) determinants. Multiple stage cluster random sampling was used and 3500 cattle and buffaloes from the two districts were selected. Prevalence of bovine tick infestation was significantly higher (OR=1.95; p2025; 47.3%). Hyalomma anatolicum anatolicum was the major tick species (33.5%; 1173/3500), followed by Rhipicephalus sanguineus (13%; 456/3500). The highest monthly prevalence in both the districts was found in July. Ticks were not found in Layyah from November to March and in Muzaffargarh from December to March. The average number of ticks was proportional to the prevalence of infestation. Also, tick infestation in a 7cmx7cm dewlap of the animal was proportional to that of the rest of body. Prevalence of tick infestation was associated (p<0.05) with district, host species and breed. In cattle, prevalence of tick infestation was associated (p<0.05) with age and sex of host. The results of this study provide better understanding of disease epidemiology in the study districts, which will help for planning of control strategies.

  8. Frequency of Toxoplasma gondii antibodies in bovines in the state of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Neurisvan Ramos Guerra

    Full Text Available Toxoplasmosis is a parasitic disease caused by Toxoplasma gondii that affects homeothermic animals, including humans. Felines are considered the definitive host of this parasite, while other animals act as intermediate hosts. The purpose of this study was to assess the frequency of anti-T. gondii IgG antibodies in bovines in the state of Pernambuco, Brazil. Serum samples (n = 427 from animals in 13 municipalities of the coastal forest/plantation region of the state were analyzed using the immunofluorescent antibody test (IFAT. The overall results revealed a prevalence rate of 16.63% (27/427. High percentages of positivity were found among animals aged 25 to 36 months (28.57%; 30/42 and in males (22.22%; 2/9. The present findings suggest that bovine toxoplasmosis is endemic in the area under study.

  9. Defense.gov Special Report: A Nation's Gratitude

    Science.gov (United States)

    Department of Defense Submit Search 'A Nation's Gratitude' White House hosts dinner to honor veterans of nation's gratitude to the men and women who served in Operations Iraqi Freedom and New Dawn. Top Stories , First Lady Host Iraq War Veterans Iraq War Veterans Attend Reception More Photos A Nation's Gratitude

  10. Salmonella Typhi Colonization Provokes Extensive Transcriptional Changes Aimed at Evading Host Mucosal Immune Defense During Early Infection of Human Intestinal Tissue

    Directory of Open Access Journals (Sweden)

    K.P. Nickerson

    2018-05-01

    Full Text Available Commensal microorganisms influence a variety of host functions in the gut, including immune response, glucose homeostasis, metabolic pathways and oxidative stress, among others. This study describes how Salmonella Typhi, the pathogen responsible for typhoid fever, uses similar strategies to escape immune defense responses and survive within its human host. To elucidate the early mechanisms of typhoid fever, we performed studies using healthy human intestinal tissue samples and “mini-guts,” organoids grown from intestinal tissue taken from biopsy specimens. We analyzed gene expression changes in human intestinal specimens and bacterial cells both separately and after colonization. Our results showed mechanistic strategies that S. Typhi uses to rearrange the cellular machinery of the host cytoskeleton to successfully invade the intestinal epithelium, promote polarized cytokine release and evade immune system activation by downregulating genes involved in antigen sampling and presentation during infection. This work adds novel information regarding S. Typhi infection pathogenesis in humans, by replicating work shown in traditional cell models, and providing new data that can be applied to future vaccine development strategies. Keywords: Typhoid fever, Salmonella, Snapwell™ system, Human tissue, Terminal ileum, Immune system, Innate immunity, Immune evasion, Host-pathogen interaction, Vaccine development, Intestinal organoids, Organoid monolayer

  11. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Her, Charles-Henry; Comune, Michela; Moia, Claudia; Lopes, Alessandra; Porporato, Paolo E; Vanacker, Julie; Lam, Martin C; Steinstraesser, Lars; Sonveaux, Pierre; Zhu, Huijun; Ferreira, Lino S; Vandermeulen, Gaëlle; Préat, Véronique

    2014-11-28

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Poly (lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. LL37 is an endogenous human host defense peptide that modulates wound healing and angiogenesis and fights infection. Hence, we hypothesized that the administration of LL37 encapsulated in PLGA nanoparticles (PLGA-LL37 NP) promotes wound closure due to the sustained release of both LL37 and lactate. In full thickness excisional wounds, the treatment with PLGA-LL37 NP significantly accelerated wound healing compared to PLGA or LL37 administration alone. PLGA-LL37 NP-treated wounds displayed advanced granulation tissue formation by significant higher collagen deposition, re-epithelialized and neovascularized composition. PLGA-LL37 NP improved angiogenesis, significantly up-regulated IL-6 and VEGFa expression, and modulated the inflammatory wound response. In vitro, PLGA-LL37 NP induced enhanced cell migration but had no effect on the metabolism and proliferation of keratinocytes. It displayed antimicrobial activity on Escherichia coli. In conclusion, we developed a biodegradable drug delivery system that accelerated healing processes due to the combined effects of lactate and LL37 released from the nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks

    Science.gov (United States)

    Flentie, Kelly; Garner, Ashley L.

    2016-01-01

    Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress, M. tuberculosis is prepared for battle against the host defense and able to persist within the human population. PMID:26883824

  13. The pathogen-actin connection: A platform for defense signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Day, B; Henty, Jessica L; Porter, K J; Staiger, Chris J

    2011-09-08

    The cytoskeleton, a dynamic network of cytoplasmic polymers, plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. As a platform for innate immune responses in mammalian cells, the actin cytoskeleton is a central component in the organization and activation of host defenses, including signaling and cellular repair. In plants, our understanding of the genetic and biochemical responses in both pathogen and host that are required for virulence and resistance has grown enormously. Additional advances in live-cell imaging of cytoskeletal dynamics have markedly altered our view of actin turnover in plants. In this review, we outline current knowledge of host resistance following pathogen perception, both in terms of the genetic interactions that mediate defense signaling, as well as the biochemical and cellular processes that are required for defense signaling.

  14. Multitasking antimicrobial peptides, plant development, and host defense against biotic/abiotic stress

    Science.gov (United States)

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense system against pathogens including use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AM...

  15. Interplay between Candida albicans and the Mammalian Innate Host Defense

    Science.gov (United States)

    Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan

    2012-01-01

    Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867

  16. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    International Nuclear Information System (INIS)

    Mathapati, Santosh; Bishi, Dillip Kumar; Guhathakurta, Soma; Cherian, Kotturathu Mammen; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Verma, Rama Shanker

    2013-01-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  17. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mathapati, Santosh; Bishi, Dillip Kumar [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India); Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Guhathakurta, Soma [Departmet of Engineering Design, Indian Institute of Technology Madras, Chennai (India); Cherian, Kotturathu Mammen [Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Venugopal, Jayarama Reddy; Ramakrishna, Seeram [Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Verma, Rama Shanker, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India)

    2013-04-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  18. Avoid, attack or do both? Behavioral and physiological adaptations in natural enemies faced with novel hosts

    Directory of Open Access Journals (Sweden)

    Brown Sam P

    2005-11-01

    Full Text Available Abstract Background Confronted with well-defended, novel hosts, should an enemy invest in avoidance of these hosts (behavioral adaptation, neutralization of the defensive innovation (physiological adaptation or both? Although simultaneous investment in both adaptations may first appear to be redundant, several empirical studies have suggested a reinforcement of physiological resistance to host defenses with additional avoidance behaviors. To explain this paradox, we develop a mathematical model describing the joint evolution of behavioral and physiological adaptations on the part of natural enemies to their host defenses. Our specific goals are (i to derive the conditions that may favor the simultaneous investment in avoidance and physiological resistance and (ii to study the factors that govern the relative investment in each adaptation mode. Results Our results show that (i a simultaneous investment may be optimal if the fitness costs of the adaptive traits are accelerating and the probability of encountering defended hosts is low. When (i holds, we find that (ii the more that defended hosts are rare and/or spatially aggregated, the more behavioral adaptation is favored. Conclusion Despite their interference, physiological resistance to host defensive innovations and avoidance of these same defenses are two strategies in which it may be optimal for an enemy to invest in simultaneously. The relative allocation to each strategy greatly depends on host spatial structure. We discuss the implications of our findings for the management of invasive plant species and the management of pest resistance to new crop protectants or varieties.

  19. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  20. Role of Nucleotide-Binding Oligomerization Domain-Containing (NOD 2 in Host Defense during Pneumococcal Pneumonia.

    Directory of Open Access Journals (Sweden)

    Tijmen J Hommes

    Full Text Available Streptococcus (S. pneumoniae is the most common causative pathogen in community-acquired pneumonia. Nucleotide-binding oligomerization domain-containing (NOD 2 is a pattern recognition receptor located in the cytosol of myeloid cells that is able to detect peptidoglycan fragments of S. pneumoniae. We here aimed to investigate the role of NOD2 in the host response during pneumococcal pneumonia. Phagocytosis of S. pneumoniae was studied in NOD2 deficient (Nod2-/- and wild-type (Wt alveolar macrophages and neutrophils in vitro. In subsequent in vivo experiments Nod2-/- and Wt mice were inoculated with serotype 2 S. pneumoniae (D39, an isogenic capsule locus deletion mutant (D39Δcps or serotype 3 S. pneumoniae (6303 via the airways, and bacterial growth and dissemination and the lung inflammatory response were evaluated. Nod2-/- alveolar macrophages and blood neutrophils displayed a reduced capacity to internalize pneumococci in vitro. During pneumonia caused by S. pneumoniae D39 Nod2-/- mice were indistinguishable from Wt mice with regard to bacterial loads in lungs and distant organs, lung pathology and neutrophil recruitment. While Nod2-/- and Wt mice also had similar bacterial loads after infection with the more virulent S. pneumoniae 6303 strain, Nod2-/- mice displayed a reduced bacterial clearance of the normally avirulent unencapsulated D39Δcps strain. These results suggest that NOD2 does not contribute to host defense during pneumococcal pneumonia and that the pneumococcal capsule impairs recognition of S. pneumoniae by NOD2.

  1. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases.

    Science.gov (United States)

    Niyonsaba, François; Kiatsurayanon, Chanisa; Chieosilapatham, Panjit; Ogawa, Hideoki

    2017-11-01

    Host defense peptides/proteins (HDPs), also known as antimicrobial peptides/proteins (AMPs), are key molecules in the cutaneous innate immune system. AMPs/HDPs historically exhibit broad-spectrum killing activity against bacteria, enveloped viruses, fungi and several parasites. Recently, AMPs/HDPs were shown to have important biological functions, including inducing cell proliferation, migration and differentiation; regulating inflammatory responses; controlling the production of various cytokines/chemokines; promoting wound healing; and improving skin barrier function. Despite the fact that AMPs/HDPs protect our body, several studies have hypothesized that these molecules actively contribute to the pathogenesis of various skin diseases. For example, AMPs/HDPs play crucial roles in the pathological processes of psoriasis, atopic dermatitis, rosacea, acne vulgaris, systemic lupus erythematosus and systemic sclerosis. Thus, AMPs/HDPs may be a double-edged sword, promoting cutaneous immunity while simultaneously initiating the pathogenesis of some skin disorders. This review will describe the most common skin-derived AMPs/HDPs (defensins, cathelicidins, S100 proteins, ribonucleases and dermcidin) and discuss the biology and both the positive and negative aspects of these AMPs/HDPs in skin inflammatory/infectious diseases. Understanding the regulation, functions and mechanisms of AMPs/HDPs may offer new therapeutic opportunities in the treatment of various skin disorders. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Host Defence to Pulmonary Mycosis

    Directory of Open Access Journals (Sweden)

    Christopher H Mody

    1999-01-01

    Full Text Available OBJECTIVE: To provide a basic understanding of the mechanisms of host defense to pathogenic fungi. This will help physicians understand why some patients are predisposed to fungal infections and update basic scientists on how microbial immunology applies to fungal disease.

  3. Vaccines for bovine neosporosis: current status and key aspects for development.

    Science.gov (United States)

    Horcajo, P; Regidor-Cerrillo, J; Aguado-Martínez, A; Hemphill, A; Ortega-Mora, L M

    2016-12-01

    Bovine neosporosis is a worldwide concern due to its global distribution and great economic impact. Reproductive failure in cattle due to abortion leads to major economic losses associated with the disease. Currently, there is no treatment or vaccine available against abortion or transmission caused by Neospora caninum infection in cattle. However, vaccination is considered the best measure of control against bovine neosporosis. Several host and parasite factors can influence the dynamics of the infection in bovines. Moreover, the availability of well-defined infection models is a key factor for the evaluation of vaccine candidates. However, working with cattle is not easy due to difficult handling, facilities and costs, and therefore, 'more affordable' models could be used for screening of promising vaccines to establish proof of concept. So far, live-attenuated vaccines have shown good efficacy against exogenous transplacental transmission; however, they have relevant disadvantages and associated risks, which render inactivated or subunit vaccines the best way forward. The identification of novel potential targets and vaccines, and the application of innovative vaccine technologies in harmonized experimental animal models, will accelerate the development of an effective vaccine against bovine neosporosis. © 2016 John Wiley & Sons Ltd.

  4. The DNA Sensor AIM2 Maintains Intestinal Homeostasis via Regulation of Epithelial Antimicrobial Host Defense

    Directory of Open Access Journals (Sweden)

    Shuiqing Hu

    2015-12-01

    Full Text Available Microbial pattern molecules in the intestine play immunoregulatory roles via diverse pattern recognition receptors. However, the role of the cytosolic DNA sensor AIM2 in the maintenance of intestinal homeostasis is unknown. Here, we show that Aim2−/− mice are highly susceptible to dextran sodium sulfate-induced colitis that is associated with microbial dysbiosis as represented by higher colonic burden of commensal Escherichia coli. Colonization of germ-free mice with Aim2−/− mouse microbiota leads to higher colitis susceptibility. In-depth investigation of AIM2-mediated host defense responses reveals that caspase-1 activation and IL-1β and IL-18 production are compromised in Aim2−/− mouse colons, consistent with defective inflammasome function. Moreover, IL-18 infusion reduces E. coli burden as well as colitis susceptibility in Aim2−/− mice. Altered microbiota in inflammasome-defective mice correlate with reduced expression of several antimicrobial peptides in intestinal epithelial cells. Together, these findings implicate DNA sensing by AIM2 as a regulatory mechanism for maintaining intestinal homeostasis.

  5. Context Dependency of a Marine Defensive Symbiosis over a Wide Geographic Distribution

    Science.gov (United States)

    Lopanik, N.; Linneman, J.; Mathew, M.

    2016-02-01

    The invasive, temperate marine bryozoan Bugula neritina possesses an uncultured, vertically-transmitted bacterial symbiont that produces natural products known as bryostatins. These unpalatable polyketides protect the host larvae from predation. In the western Atlantic, two host genotypes were thought to be restricted to differing latitudes based on the presence of the defensive symbiont: undefended aposymbiotic Type N animals were found at high latitudes, while defended symbiotic Type S colonies were found at low latitudes, where predation pressure is higher. We found that the host genotypes are more widespread than previously thought, but that the symbiont appeared to be restricted to hosts at lower latitudes, regardless of host phylotype, leading to the question of what factors are involved in restricting the symbiont's range. We performed reciprocal transplant experiments of symbiotic and antibiotic-cured hosts, and measured host growth, a proxy for fitness. Our data indicate that possession of the symbiont appears to present a physiological cost to the host. This cost may be more pronounced at higher latitudes where the benefit of symbiosis is less apparent. In addition, preliminary evidence suggests that symbiont titer in a Type S colony from North Carolina transplanted to Virginia is reduced over a period of nearly 4 months. Taken together, these results suggest that a combination of factors may play a role in the distribution of the defensive symbiont: (i) hosts that possess the symbiont are outcompeted by aposymbiotic conspecifics at high latitude and reduced levels of predation pressure; and (ii) symbiont growth may be inhibited or sanctioned by the host at high latitudes. As defensive symbiosis is an important trait in marine habitats, understanding factors that affect the distribution of both the host and symbiont are necessary to fully appreciate the ecological impact of symbiosis.

  6. Comparative 'omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli

    Science.gov (United States)

    Malone, Kerri M.; Rue-Albrecht, Kévin; Magee, David A.; Conlon, Kevin; Schubert, Olga T.; Nalpas, Nicolas C.; Browne, John A.; Smyth, Alicia; Gormley, Eamonn; Aebersold, Ruedi; MacHugh, David E.; Gordon, Stephen V.

    2018-01-01

    Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection. PMID:29557774

  7. A cluster-randomised intervention trial against Schistosoma japonicum in the Peoples' Republic of China: bovine and human transmission.

    Directory of Open Access Journals (Sweden)

    Darren J Gray

    2009-06-01

    Full Text Available Zoonotic schistosomiasis japonica is a major public health problem in China. Bovines, particularly water buffaloes, are thought to play a major role in the transmission of schistosomiasis to humans in China. Preliminary results (1998-2003 of a praziquantel (PZQ-based pilot intervention study we undertook provided proof of principle that water buffaloes are major reservoir hosts for S. japonicum in the Poyang Lake region, Jiangxi Province.Here we present the results of a cluster-randomised intervention trial (2004-2007 undertaken in Hunan and Jiangxi Provinces, with increased power and more general applicability to the lake and marshlands regions of southern China. The trial involved four matched pairs of villages with one village within each pair randomly selected as a control (human PZQ treatment only, leaving the other as the intervention (human and bovine PZQ treatment. A sentinel cohort of people to be monitored for new infections for the duration of the study was selected from each village. Results showed that combined human and bovine chemotherapy with PZQ had a greater effect on human incidence than human PZQ treatment alone.The results from this study, supported by previous experimental evidence, confirms that bovines are the major reservoir host of human schistosomiasis in the lake and marshland regions of southern China, and reinforce the rationale for the development and deployment of a transmission blocking anti-S. japonicum vaccine targeting bovines.Australian New Zealand Clinical Trials Registry ACTRN12609000263291.

  8. Application of Pulsed-Field Gel Electrophoresis and Binary Typing as Tools in Veterinary Clinical Microbiology and Molecular Epidemiologic Analysis of Bovine and Human Staphylococcus aureus Isolates

    Science.gov (United States)

    Zadoks, Ruth; van Leeuwen, Willem; Barkema, Herman; Sampimon, Otlis; Verbrugh, Henri; Schukken, Ynte Hein; van Belkum, Alex

    2000-01-01

    Thirty-eight bovine mammary Staphylococcus aureus isolates from diverse clinical, temporal, and geographical origins were genotyped by pulsed-field gel electrophoresis (PFGE) after SmaI digestion of prokaryotic DNA and by means of binary typing using 15 strain-specific DNA probes. Seven pulsed-field types and four subtypes were identified, as were 16 binary types. Concordant delineation of genetic relatedness was documented by both techniques, yet based on practical and epidemiological considerations, binary typing was the preferable method. Genotypes of bovine isolates were compared to 55 previously characterized human S. aureus isolates through cluster analysis of binary types. Genetic clusters containing strains of both human and bovine origin were found, but bacterial genotypes were predominantly associated with a single host species. Binary typing proved an excellent tool for comparison of S. aureus strains, including methicillin-resistant S. aureus, derived from different host species and from different databases. For 28 bovine S. aureus isolates, detailed clinical observations in vivo were compared to strain typing results in vitro. Associations were found between distinct genotypes and severity of disease, suggesting strain-specific bacterial virulence. Circumstantial evidence furthermore supports strain-specific routes of bacterial dissemination. We conclude that PFGE and binary typing can be successfully applied for genetic analysis of S. aureus isolates from bovine mammary secretions. Binary typing in particular is a robust and simple method and promises to become a powerful tool for strain characterization, for resolution of clonal relationships of bacteria within and between host species, and for identification of sources and transmission routes of bovine S. aureus. PMID:10790124

  9. Experimental infection of pregnant goats with bovine viral diarrhea virus (BVDV)1 or 2

    Science.gov (United States)

    Infections with bovine viral diarrhea virus (BVDV) of the genus pestivirus, family Flaviviridae, are not limited to cattle but occur in various artiodactyls. Persistently infected (PI) cattle are the main source of BVDV. Persistent infections also occur in heterologous hosts such as sheep and deer. ...

  10. Website Fingerprinting Defenses at the Application Layer

    Directory of Open Access Journals (Sweden)

    Cherubin Giovanni

    2017-04-01

    Full Text Available Website Fingerprinting (WF allows a passive network adversary to learn the websites that a client visits by analyzing traffic patterns that are unique to each website. It has been recently shown that these attacks are particularly effective against .onion sites, anonymous web servers hosted within the Tor network. Given the sensitive nature of the content of these services, the implications of WF on the Tor network are alarming. Prior work has only considered defenses at the client-side arguing that web servers lack of incentives to adopt countermeasures. Furthermore, most of these defenses have been designed to operate on the stream of network packets, making practical deployment difficult. In this paper, we propose two application-level defenses including the first server-side defense against WF, as .onion services have incentives to support it. The other defense is a lightweight client-side defense implemented as a browser add-on, improving ease of deployment over previous approaches. In our evaluations, the server-side defense is able to reduce WF accuracy on Tor .onion sites from 69.6% to 10% and the client-side defense reduces accuracy from 64% to 31.5%.

  11. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    OpenAIRE

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Usin...

  12. Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection.

    Science.gov (United States)

    Hickling, Duane R; Sun, Tung-Tien; Wu, Xue-Ru

    2015-08-01

    The urinary tract exits to a body surface area that is densely populated by a wide range of microbes. Yet, under most normal circumstances, it is typically considered sterile, i.e., devoid of microbes, a stark contrast to the gastrointestinal and upper respiratory tracts where many commensal and pathogenic microbes call home. Not surprisingly, infection of the urinary tract over a healthy person's lifetime is relatively infrequent, occurring once or twice or not at all for most people. For those who do experience an initial infection, the great majority (70% to 80%) thankfully do not go on to suffer from multiple episodes. This is a far cry from the upper respiratory tract infections, which can afflict an otherwise healthy individual countless times. The fact that urinary tract infections are hard to elicit in experimental animals except with inoculum 3-5 orders of magnitude greater than the colony counts that define an acute urinary infection in humans (105 cfu/ml), also speaks to the robustness of the urinary tract defense. How can the urinary tract be so effective in fending off harmful microbes despite its orifice in a close vicinity to that of the microbe-laden gastrointestinal tract? While a complete picture is still evolving, the general consensus is that the anatomical and physiological integrity of the urinary tract is of paramount importance in maintaining a healthy urinary tract. When this integrity is breached, however, the urinary tract can be at a heightened risk or even recurrent episodes of microbial infections. In fact, recurrent urinary tract infections are a significant cause of morbidity and time lost from work and a major challenge to manage clinically. Additionally, infections of the upper urinary tract often require hospitalization and prolonged antibiotic therapy. In this chapter, we provide an overview of the basic anatomy and physiology of the urinary tract with an emphasis on their specific roles in host defense. We also highlight the

  13. Does chemical aposematic (warning) signaling occur between host plants and their potential parasitic plants?

    Science.gov (United States)

    Lev-Yadun, Simcha

    2013-07-01

    Aposematism (warning) signaling is a common defensive mechanism toward predatory or herbivorous animals, i.e., interactions between different trophic levels. I propose that it should be considered at least as a working hypothesis that chemical aposematism operates between certain host plants and their plant predators, parasitic plants, and that although they are also plants, they belong to a higher trophic level. Specific host plant genotypes emit known repelling chemical signals toward parasitic plants, which reduce the level of, slow the directional parasite growth (attack) toward the signaling hosts, or even cause parasitic plants to grow away from them in response to these chemicals. Chemical host aposematism toward parasitic plants may be a common but overlooked defense from parasitic plants.

  14. Antimicrobial Peptides Containing Unnatural Amino Acid Exhibit Potent Bactericidal Activity against ESKAPE Pathogens

    Science.gov (United States)

    2013-01-01

    class of living organisms as a host defense mechanism against invading microorganisms including bacteria, fungi, protozoa and parasites .22,23 AMPs have...taining FGM-2 bullet kit (Lonza) which contained 2% fetal bovine serum at 37 C in a CO2 incubator prior to exposure to various con- centrations of

  15. Comparison of Staphylococcus aureus genotypes recovered from cases of bovine, ovine, and caprine mastitis.

    Science.gov (United States)

    Mørk, T; Tollersrud, T; Kvitle, B; Jørgensen, H J; Waage, S

    2005-08-01

    Staphylococcus aureus is an important pathogen in domestic ruminants. The main objective of this study was to determine the similarity of epidemiologically unrelated S. aureus isolates from bovine, ovine, and caprine mastitis. By pulsed-field gel electrophoresis, 160 different pulsotypes (PTs) were identified among 905 isolates recovered from 588 herds in 12 counties in Norway. Based on estimates of similarity, using an 80% cluster cutoff, the isolates were assigned to 47 clusters. One cluster included 62% of all the isolates and more than 45% of the isolates from each host species. Twenty-three PTs included isolates from more than one host species; these 23 PTs represented 72% of all the isolates. The six most prevalent PTs included isolates from all host species and contained 45% of the bovine isolates, 54% of the ovine isolates, and 37% of the caprine isolates. Antimicrobial susceptibility testing of 373 of the isolates revealed resistance to penicillin in 2.9% and to streptomycin in 2.4%; only 1.9% were resistant to 1 of the other 11 antimicrobials tested. The results of this study suggest that a small number of closely related genotypes are responsible for a great proportion of S. aureus mastitis cases in cows, ewes, and goats in Norway and that these genotypes exhibit little or no host preference among these species. Selection due to antimicrobial resistance appears not to have contributed to the predominance of these genotypes.

  16. Identification of genetic loci required for Campylobacter resistance to fowlicidin-1, a chicken host defense peptide

    Directory of Open Access Journals (Sweden)

    Ky Van Hoang

    2012-03-01

    Full Text Available Antimicrobial peptides (AMPs are critical components of host defense limiting bacterial infections at the gastrointestinal mucosal surface. Bacterial pathogens have co-evolved with host innate immunity and developed means to counteract the effect of endogenous AMPs. However, molecular mechanisms of AMP resistance in Campylobacter, an important human food borne pathogen with poultry as a major reservoir, are still largely unknown. In this study, random transposon mutagenesis and targeted site-directed mutagenesis approaches were used to identify genetic loci contributing Campylobacter resistance to fowlicidin-1, a chicken AMP belonging to cathelicidin family. An efficient transposon mutagenesis approach (EZ::TNTM Transposome in conjunction with a microtiter plate screening identified three mutants whose susceptibilities to fowlicidin-1 were significantly increased. Backcrossing of the transposon mutations into parent strain confirmed that the AMP-sensitive phenotype in each mutant was linked to the specific transposon insertion. Direct sequencing showed that these mutants have transposon inserted in the genes encoding two-component regulator CbrR, transporter CjaB, and putative trigger factor Tig. Genomic analysis also revealed an operon (Cj1580c-1584c that is homologous to sapABCDF, an operon conferring resistance to AMP in other pathogens. Insertional inactivation of Cj1583c (sapB significantly increased susceptibility of Campylobacter to fowlicidin-1. The sapB as well as tig and cjaB mutants were significantly impaired in their ability to compete with their wild-type strain 81-176 to colonize the chicken cecum. Together, this study identified four genetic loci in Campylobacter that will be useful for characterizing molecular basis of Campylobacter resistance to AMPs, a significant knowledge gap in Campylobacter pathogenesis.

  17. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.

    Science.gov (United States)

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur

    2011-06-01

    Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.

  18. Pathogen-Induced Defense Signaling and Signal Crosstalk in Arabidopsis

    OpenAIRE

    Kariola, Tarja

    2006-01-01

    Erwinia carotovora subsp. carotovora is a bacterial phytopathogen that causes soft rot in various agronomically important crop plants. A genetically specified resistance to E. carotovora has not been defined, and plant resistance to this pathogen is established through nonspecific activation of basal defense responses. This, together with the broad host range, makes this pathogen a good model for studying the activation of plant defenses. Production and secretion of plant cell wall-degrading ...

  19. Comprehensive Phylogenetic Analysis of Bovine Non-aureus Staphylococci Species Based on Whole-Genome Sequencing

    Science.gov (United States)

    Naushad, Sohail; Barkema, Herman W.; Luby, Christopher; Condas, Larissa A. Z.; Nobrega, Diego B.; Carson, Domonique A.; De Buck, Jeroen

    2016-01-01

    Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity. PMID:28066335

  20. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    Science.gov (United States)

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  1. Proteomic Characterization of Host Response to Yersinia pestis

    Energy Technology Data Exchange (ETDEWEB)

    Chromy, B; Perkins, J; Heidbrink, J; Gonzales, A; Murhpy, G; Fitch, J P; McCutchen-Maloney, S

    2004-05-11

    Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Y. pseudotuberculosis and Y. enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct for the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.

  2. Parasitic Cuscuta factor(s) and the detection by tomato initiates plant defense.

    Science.gov (United States)

    Fürst, Ursula; Hegenauer, Volker; Kaiser, Bettina; Körner, Max; Welz, Max; Albert, Markus

    2016-01-01

    Dodders ( Cuscuta spp.) are holoparasitic plants that enwind stems of host plants and penetrate those by haustoria to connect to the vascular bundles. Having a broad host plant spectrum, Cuscuta spp infect nearly all dicot plants - only cultivated tomato as one exception is mounting an active defense specifically against C. reflexa . In a recent work we identified a pattern recognition receptor of tomato, "Cuscuta Receptor 1" (CuRe1), which is critical to detect a "Cuscuta factor" (CuF) and initiate defense responses such as the production of ethylene or the generation of reactive oxygen species. CuRe1 also contributes to the tomato resistance against C. reflexa . Here we point to the fact that CuRe1 is not the only relevant component for full tomato resistance but it requires additional defense mechanisms, or receptors, respectively, to totally fend off the parasite.

  3. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing

    2010-05-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host\\'s essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  4. Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions*

    Science.gov (United States)

    Canova, Marc J.; Molle, Virginie

    2014-01-01

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection. PMID:24554701

  5. Bacterial serine/threonine protein kinases in host-pathogen interactions.

    Science.gov (United States)

    Canova, Marc J; Molle, Virginie

    2014-04-04

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.

  6. Host response in bovine mastitis experimentally induced with Staphylococcus chromogenes.

    Science.gov (United States)

    Simojoki, H; Orro, T; Taponen, S; Pyörälä, S

    2009-02-16

    An experimental infection model was developed to study host response to intramammary infection in cows caused by Staphylococcus chromogenes. CNS intramammary infections have become very common in modern dairy herds, and they can remain persistent in the mammary gland. More information would be needed about the pathophysiology of CNS mastitis, and an experimental mastitis model is a means for this research. Six primiparous Holstein-Friesian cows were challenged with S. chromogenes 4 weeks after calving. One udder quarter of each cow was inoculated with 2.1 x 10(6)cfu of S. chromogenes. All cows became infected and clinical signs were mild. Milk production of the challenged quarter decreased on average by 16.3% during 7 days post-challenge. Cows eliminated bacteria in a few days, except for one cow which developed persistent mastitis. Milk indicators of inflammation, SCC and N-acetyl-beta-D-glucosaminidase (NAGase) returned to normal within a week. Milk NAGase activity increased moderately, which reflects minor tissue damage in the udder. Concentrations of serum amyloid A (SAA) and milk amyloid A (MAA) were both elevated at 12h PC. MAA was affected by the milking times, and was at its highest before the morning milking. In our experimental model, systemic acute phase protein response with SAA occurred as an on-off type reaction. In conclusion, this experimental model could be used to study host response in CNS mastitis caused by the main CNS species and also for comparison of the host response in a mild intramammary infection and in more severe mastitis models.

  7. Host-defense and trefoil factor family peptides in skin secretions of the Mawa clawed frog Xenopus boumbaensis (Pipidae).

    Science.gov (United States)

    Conlon, J Michael; Mechkarska, Milena; Kolodziejek, Jolanta; Leprince, Jérôme; Coquet, Laurent; Jouenne, Thierry; Vaudry, Hubert; Nowotny, Norbert; King, Jay D

    2015-10-01

    Peptidomic analysis of norepinephrine-stimulated skin secretions from the octoploid Mawa clawed frog Xenopus boumbaensis Loumont, 1983 led to the identification and characterization of 15 host-defense peptides belonging to the magainin (two peptides), peptide glycine-leucine-amide (PGLa; three peptides), xenopsin precursor fragment (XPF; three peptides), caerulein precursor fragment (CPF; two peptides), and caerulein precursor fragment-related peptide (CPF-RP; five peptides) families. In addition, caerulein and three peptides with structural similarity to the trefoil factor family (TFF) peptides, xP2 and xP4 from Xenopus laevis were also present in the secretions. Consistent with data from comparisons of the nucleotides sequence of mitochondrial and nuclear genes, the primary structures of the peptides suggest a close phylogenetic relationship between X. boumbaensis and the octoploid frogs Xenopus amieti and Xenopus andrei. As the three species occupy disjunct ranges within Cameroon, it is suggested that they diverged from a common ancestor by allopatric speciation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Evasion of Human Neutrophil-Mediated Host Defense during Toxoplasma gondii Infection.

    Science.gov (United States)

    Lima, Tatiane S; Gov, Lanny; Lodoen, Melissa B

    2018-02-13

    Neutrophils are a major player in host immunity to infection; however, the mechanisms by which human neutrophils respond to the intracellular protozoan parasite Toxoplasma gondii are still poorly understood. In the current study, we found that, whereas primary human monocytes produced interleukin-1beta (IL-1β) in response to T. gondii infection, human neutrophils from the same blood donors did not. Moreover, T. gondii inhibited lipopolysaccharide (LPS)-induced IL-1β synthesis in human peripheral blood neutrophils. IL-1β suppression required active parasite invasion, since heat-killed or mycalolide B-treated parasites did not inhibit IL-1β release. By investigating the mechanisms involved in this process, we found that T. gondii infection of neutrophils treated with LPS resulted in reduced transcript levels of IL-1β and NLRP3 and reduced protein levels of pro-IL-1β, mature IL-1β, and the inflammasome sensor NLRP3. In T. gondii -infected neutrophils stimulated with LPS, the levels of MyD88, TRAF6, IKKα, IKKβ, and phosphorylated IKKα/β were not affected. However, LPS-induced IκBα degradation and p65 phosphorylation were reduced in T. gondii- infected neutrophils, and degradation of IκBα was reversed by treatment with the proteasome inhibitor MG-132. Finally, we observed that T. gondii inhibited the cleavage and activity of caspase-1 in human neutrophils. These results indicate that T. gondii suppression of IL-1β involves a two-pronged strategy whereby T. gondii inhibits both NF-κB signaling and activation of the NLRP3 inflammasome. These findings represent a novel mechanism of T. gondii evasion of human neutrophil-mediated host defense by targeting the production of IL-1β. IMPORTANCE Toxoplasma gondii is an obligate intracellular parasite that infects approximately one-third of humans worldwide and can invade virtually any nucleated cell in the human body. Although it is well documented that neutrophils infiltrate the site of acute T

  9. Eimeria tenella: in vitro development in irradiated bovine kidney cells

    Energy Technology Data Exchange (ETDEWEB)

    Crane, M.St.J.; Schmatz, D.M.; Stevens, S.; Habbersett, M.C.; Murray, P.K. (Merck Sharp and Dohme Research Labs., Rahway, NJ (USA))

    1984-06-01

    The initial infection and first-generation development of Eimeria tenella was quantified using a cloned MDBK (Madin-Darby Bovine Kidney) cell line, irradiated with gamma radiation prior to infection, as the host cell. Irradiated cell cultures were found to be more susceptible to infection and had a greater capacity to support parasite development than non-irradiated cultures. It was suggested that the larger proportion of cells in the G/sub 2/ phase of the cell cycle, the larger individual cell size and the inhibition of cell division in the irradiated cultures were all factors contributing to the increased susceptibility to infection and capacity to support parasite growth and development. The application of this technique (host cell irradiation) to the cultivation of other intracellular, protozoan parasites is discussed.

  10. Eimeria tenella: in vitro development in irradiated bovine kidney cells

    International Nuclear Information System (INIS)

    Crane, M. St.J.; Schmatz, D.M.; Stevens, S.; Habbersett, M.C.; Murray, P.K.

    1984-01-01

    The initial infection and first-generation development of Eimeria tenella was quantified using a cloned MDBK (Madin-Darby Bovine Kidney) cell line, irradiated with gamma radiation prior to infection, as the host cell. Irradiated cell cultures were found to be more susceptible to infection and had a greater capacity to support parasite development than non-irradiated cultures. It was suggested that the larger proportion of cells in the G 2 phase of the cell cycle, the larger individual cell size and the inhibition of cell division in the irradiated cultures were all factors contributing to the increased susceptibility to infection and capacity to support parasite growth and development. The application of this technique (host cell irradiation) to the cultivation of other intracellular, protozoan parasites is discussed. (author)

  11. The Comparison of Streptococcus agalactiae Isolated from Fish and Bovine using Multilocus Sequence Typing

    Directory of Open Access Journals (Sweden)

    ANGELA MARIANA LUSIASTUTI

    2013-12-01

    Full Text Available Multilocus sequence typing (MLST has greater utility for determining the recent ancestral lineage and the relatedness of individual strains. Group B streptococci (GBS is one of the major causes of subclinical mastitis of dairy cattle in several countries. GBS also sporadically causes epizootic infections in fish. The aim of this study was to compare the evolutionary lineage of fish and bovine isolates in relation to the S. agalactiae global population as a whole by comparing the MLST profiles. Twenty S. agalactiae isolates were obtained from dairy cattle and fish. PCR products were amplified with seven different oligonucleotide primer pairs designed from the NEM316 GBS genome sequence. Clone complexes demonstrated that bovine and fish isolates were separate populations. These findings lead us to conclude that fish S. agalactiae is not a zoonotic agent for bovine. MLST could help clarify the emergence of pathogenic clones and to decide whether the host acts as a reservoir for another pathogenic lineage.

  12. Innate immune responses of calves during transient infection with a noncytopathic strain of bovine viral diarrhea virus

    DEFF Research Database (Denmark)

    Muller-Doblies, D.; Arquint, A.; Schaller, P.

    2004-01-01

    In this study, six immunocompetent calves were experimentally infected with a noncytopathic strain of bovine viral diarrhea virus (BVDV), and the effects of the viral infection on parameters of the innate immune response of the host were analyzed. Clinical and virological data were compared...

  13. Genetic relationship between the Echinococcus granulosus sensu stricto cysts located in lung and liver of hosts.

    Science.gov (United States)

    Oudni-M'rad, Myriam; Cabaret, Jacques; M'rad, Selim; Chaâbane-Banaoues, Raja; Mekki, Mongi; Zmantar, Sofien; Nouri, Abdellatif; Mezhoud, Habib; Babba, Hamouda

    2016-10-01

    G1 genotype of Echinococcus granulosus sensu stricto is the major cause of hydatidosis in Northern Africa, Tunisia included. The genetic relationship between lung and liver localization were studied in ovine, bovine and human hydatid cysts in Tunisia. Allozyme variation and single strand conformation polymorphism were used for genetic differentiation. The first cause of genetic differentiation was the host species and the second was the localization (lung or liver). The reticulated genetic relationship between the liver or the lung human isolates and isolates from bovine lung, is indicative of recombination (sexual reproduction) or lateral genetic transfer. The idea of two specialized populations (one for the lung one for the liver) that are more or less successful according to host susceptibility is thus proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. COMPARISON OF IN VITRO-CULTURED AND WILD-TYPE PERKINSUS MARINUS. II: DOSING METHODS AND HOST RESPONSE

    Science.gov (United States)

    Endoparasites must breach host barriers to establish infection and then must survive host internal defenses to cause disease. Such barriers may frustrate attempts to experimentally transmit parasites by ?natural' methods. In addition, the host's condition may affect a study's out...

  15. Molecular identification of Anaplasma marginale in two autochthonous South American wild species revealed an identical new genotype and its phylogenetic relationship with those of bovines.

    Science.gov (United States)

    Guillemi, Eliana C; de la Fourniere, Sofía; Orozco, Marcela; Peña Martinez, Jorge; Correa, Elena; Fernandez, Javier; Lopez Arias, Ludmila; Paoletta, Martina; Corona, Belkis; Pinarello, Valérie; Wilkowsky, Silvina E; Farber, Marisa D

    2016-05-26

    Anaplasma marginale is a well-known cattle pathogen of tropical and subtropical world regions. Even though, this obligate intracellular bacterium has been reported in other host species different than bovine, it has never been documented in Myrmecophaga tridactyla (giant anteater) or Hippocamelus antisense (taruca), which are two native endangered species. Samples from two sick wild animals: a Myrmecophaga tridactyla (blood) and a Hippocamelus antisense (blood and serum) were studied for the presence of A. marginale DNA through msp5 gene fragment amplification. Further characterization was done through MSP1a tandem repeats analysis and MLST scheme and the genetic relationship among previously characterized A. marginale sequences were studied by applying, eBURST algorithm and AMOVA analysis. Anaplasma marginale DNA was identified in the Myrmecophaga tridactyla and Hippocamelus antisense samples. Through molecular markers, we identified an identical genotype in both animals that was not previously reported in bovine host. The analysis through eBURST and AMOVA revealed no differentiation between the taruca/anteater isolate and the bovine group. In the present publication we report the identification of A. marginale DNA in a novel ruminant (Hippocamelus antisense) and non-ruminant (Myrmecophaga tridactyla) host species. Genotyping analysis of isolates demonstrated the close relatedness of the new isolate with the circulation population of A. marginale in livestock. Further analysis is needed to understand whether these two hosts contribute to the anaplasmosis epidemiology.

  16. Activity of Potent and Selective Host Defense Peptide Mimetics in Mouse Models of Oral Candidiasis

    Science.gov (United States)

    Ryan, Lisa K.; Freeman, Katie B.; Masso-Silva, Jorge A.; Falkovsky, Klaudia; Aloyouny, Ashwag; Markowitz, Kenneth; Hise, Amy G.; Fatahzadeh, Mahnaz; Scott, Richard W.

    2014-01-01

    There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis. PMID:24752272

  17. Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus).

    Science.gov (United States)

    Rasmann, Sergio; Agrawal, Anurag A

    2011-06-01

    Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.

  18. [Isolation and characterization of siphovirus phages infecting bovine Streptococcus agalactiae].

    Science.gov (United States)

    Bai, Qinqin; Yang, Yongchun; Lu, Chengping

    2016-02-04

    To isolate and identify Streptococcus agalactiae phages and screen candidate phages to control infection caused by bovine S. agalactiae. We used two methods for isolation of S. agalactiae phages, namely (1) isolation of phages from milk and environmental samples, and (2) isolation of phages via induction of lysogens with Mitomycin C. Double-layer agar culture method was used to purify phages. Then the newly obtained phages, with S. agalactiae phage JX01 isolated from mastitis milk, were comparatively analyzed in the following aspects: morphology of phages by transmission electron microscopy, host range of phages to 55 S. agalactiae strains and other Streptococcus strains, phages DNA using EcoR I, Xba I, Pst I and Sal I, the optical multiplicity of infection, absorption curve and one step growth curve, and the stability of phages at different storage conditions. The comparative analysis of the 3 novel phages LYGO9, HZ04 and pA11 (induced from S. agalctiae bovine clinical isolate HAJL2011070601) with JX01 showed that the 4 phages were classified as the member of Siphovirdae family. EcoR I, Sal I, Xba I and Pst I separately digested the 4 phages DNA provided 4, 3, 3 and 2 profiles, respectively. This suggested that they were different strains. All the 4 phages specifically infected bovine S. agalactiae isolates. LYGO9, pA11, JX01 and HZ04 could lyse 12, 13, 20 and 23 of 42 tested bovine S. agalctiae isolates, respectively. This clearly indicated that these 4 phages are closely related. The 3 new phages which specifically lyse bovine S. agalactiae isolates are siphovirus phages. Phage LYGO9 was shown having a short latent period and a larger burst size.

  19. Le virus de la leucémie bovine et l’homéostasie du compartiment lymphocytaire périphérique

    Directory of Open Access Journals (Sweden)

    Luc Willems

    2007-01-01

    Full Text Available Bovine leukaemia virus and peripheral blood lymphocytes homeostasis. Bovine leukaemia virus (BLV is the etiological agent of a lymphoproliferative disease in cattle. This retrovirus can also be transmitted experimentally to the ovine species, in which pathology is more rapid and more frequent. In this model, infection leads to an increased cell turnover. This accelerated lymphocyte dynamics might be related to viral expression which induces cellular proliferation and host cell destruction by the immune system.

  20. Human exposure to bovine polyomavirus: a zoonosis

    Energy Technology Data Exchange (ETDEWEB)

    Parry, J V; Gardner, S D

    1986-01-01

    A competitive-type solid phase radioimmunoassay (RIA) was developed for the detection of antibody to bovine polyomavirus. Comparison of RIA and counter-immunoelectrophoresis (CIE) results on 273 cattle sera indicated that both techniques were detecting antibody of like specificity. Human sera from 256 blood donors, 219 people recently vaccinated against polio, rubella or rabies, 50 immunosuppressed patients and 472 people with various occupational exposure to cattle were tested for antibody to bovine polyomavirus, the foetal rhesus monkey kidney strain, (anti-FRKV) by RIA. Apart from one blood donor and one of 108 rabies vaccinees only those in close contact with cattle possessed anti-FRKV. Compared with 62 per cent seropositive in the natural hosts, cattle, 71 per cent of veterinary surgeons, 50 per cent of cattle farmers, 40 per cent of abattoir workers, 16 per cent of veterinary institute technical staff and 10 per cent of veterinary students were anti-FRKV positive. Our findings indicate that the theoretical hazard of FRKV infection from undetected contamination of current tissue culture derived vaccines may, in practice, be remote. Proposed wider use of primate kidney cells as substrates for new vaccines may increase this risk.

  1. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing; Zhu, Jian-Kang

    2010-01-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host's essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  2. The relationship between host lifespan and pathogen reservoir potential: an analysis in the system Arabidopsis thaliana--cucumber mosaic virus.

    Directory of Open Access Journals (Sweden)

    Jean Michel Hily

    2014-11-01

    Full Text Available Identification of the determinants of pathogen reservoir potential is central to understand disease emergence. It has been proposed that host lifespan is one such determinant: short-lived hosts will invest less in costly defenses against pathogens, so that they will be more susceptible to infection, more competent as sources of infection and/or will sustain larger vector populations, thus being effective reservoirs for the infection of long-lived hosts. This hypothesis is sustained by analyses of different hosts of multihost pathogens, but not of different genotypes of the same host species. Here we examined this hypothesis by comparing two genotypes of the plant Arabidopsis thaliana that differ largely both in life-span and in tolerance to its natural pathogen Cucumber mosaic virus (CMV. Experiments with the aphid vector Myzus persicae showed that both genotypes were similarly competent as sources for virus transmission, but the short-lived genotype was more susceptible to infection and was able to sustain larger vector populations. To explore how differences in defense against CMV and its vector relate to reservoir potential, we developed a model that was run for a set of experimentally-determined parameters, and for a realistic range of host plant and vector population densities. Model simulations showed that the less efficient defenses of the short-lived genotype resulted in higher reservoir potential, which in heterogeneous host populations may be balanced by the longer infectious period of the long-lived genotype. This balance was modulated by the demography of both host and vector populations, and by the genetic composition of the host population. Thus, within-species genetic diversity for lifespan and defenses against pathogens will result in polymorphisms for pathogen reservoir potential, which will condition within-population infection dynamics. These results are relevant for a better understanding of host-pathogen co-evolution, and of

  3. Early host response in the mammary gland after experimental Streptococcus uberis challenge in heifers

    NARCIS (Netherlands)

    Greeff, de A.; Zadoks, R.N.; Ruuls, L.; Toussaint, M.; Nguyen, T.K.; Downing, A.; Rebel, J.M.J.; Stockhofe-Zurwieden, N.; Smith, H.E.

    2013-01-01

    Streptococcus uberis is a highly prevalent causative agent of bovine mastitis, which leads to large economic losses in the dairy industry. The aim of this study was to examine the host response during acute inflammation after experimental challenge with capsulated Strep. uberis. Gene expression in

  4. Pteromalus puparum venom impairs host cellular immune responses by decreasing expression of its scavenger receptor gene

    Science.gov (United States)

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we ...

  5. Symptomless endophytic fungi suppress endogenous levels of salicylic acid and interact with the jasmonate-dependent indirect defense traits of their host, lima bean (Phaseolus lunatus).

    Science.gov (United States)

    Navarro-Meléndez, Ariana L; Heil, Martin

    2014-07-01

    Symptomless ‘type II’ fungal endophytes colonize their plant host horizontally and exert diverse effects on its resistance phenotype. Here, we used wild Lima bean (Phaseolus lunatus) plants that were experimentally colonized with one of three strains of natural endophytes (Bartalinia pondoensis, Fusarium sp., or Cochliobolus lunatus) to investigate the effects of fungal colonization on the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) and on two JA-dependent indirect defense traits. Colonization with Fusarium sp. enhanced JA levels in intact leaves, whereas B. pondoensis suppressed the induction of endogenous JA in mechanically damaged leaves. Endogenous SA levels in intact leaves were significantly decreased by all strains and B. pondoensis and Fusarium sp. decreased SA levels after mechanical damage. Colonization with Fusarium sp. or C. lunatus enhanced the number of detectable volatile organic compounds (VOCs) emitted from intact leaves, and all three strains enhanced the relative amount of several VOCs emitted from intact leaves as well as the number of detectable VOCs emitted from slightly damaged leaves. All three strains completely suppressed the induced secretion of extrafloral nectar (EFN) after the exogenous application of JA. Symptomless endophytes interact in complex and strain-specific ways with the endogenous levels of SA and JA and with the defense traits that are controlled by these hormones. These interactions can occur both upstream and downstream of the defense hormones.

  6. Effector-triggered immunity: from pathogen perception to robust defense.

    Science.gov (United States)

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  7. Solexa sequencing and custom microRNA chip reveal repertoire of microRNAs in mammary gland of bovine suffering from natural infectious mastitis.

    Science.gov (United States)

    Ju, Zhihua; Jiang, Qiang; Liu, Gang; Wang, Xiuge; Luo, Guojing; Zhang, Yan; Zhang, Jibin; Zhong, Jifeng; Huang, Jinming

    2018-02-01

    Identification of microRNAs (miRNAs), target genes and regulatory networks associated with innate immune and inflammatory responses and tissue damage is essential to elucidate the molecular and genetic mechanisms for resistance to mastitis. In this study, a combination of Solexa sequencing and custom miRNA chip approaches was used to profile the expression of miRNAs in bovine mammary gland at the late stage of natural infection with Staphylococcus aureus, a widespread mastitis pathogen. We found 383 loci corresponding to 277 known and 49 putative novel miRNAs, two potential mitrons and 266 differentially expressed miRNAs in the healthy and mastitic cows' mammary glands. Several interaction networks and regulators involved in mastitis susceptibility, such as ALCAM, COL1A1, APOP4, ITIH4, CRP and fibrinogen alpha (FGA), were highlighted. Significant down-regulation and location of bta-miR-26a, which targets FGA in the mastitic mammary glands, were validated using quantitative real-time PCR, in situ hybridization and dual-luciferase reporter assays. We propose that the observed miRNA variations in mammary glands of mastitic cows are related to the maintenance of immune and defense responses, cell proliferation and apoptosis, and tissue injury and healing during the late stage of infection. Furthermore, the effect of bta-miR-26a in mastitis, mediated at least in part by enhancing FGA expression, involves host defense, inflammation and tissue damage. © 2018 Stichting International Foundation for Animal Genetics.

  8. Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana.

    Science.gov (United States)

    Swarupa, V; Ravishankar, K V; Rekha, A

    2014-04-01

    Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars.

  9. MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection.

    Science.gov (United States)

    Gupta, Om Prakash; Permar, Vipin; Koundal, Vikas; Singh, Uday Dhari; Praveen, Shelly

    2012-02-01

    Plants have evolved diverse mechanism to recognize pathogen attack and triggers defense responses. These defense responses alter host cellular function regulated by endogenous, small, non-coding miRNAs. To understand the mechanism of miRNAs regulated cellular functions during stem rust infection in wheat, we investigated eight different miRNAs viz. miR159, miR164, miR167, miR171, miR444, miR408, miR1129 and miR1138, involved in three different independent cellular defense response to infection. The investigation reveals that at the initiation of disease, accumulation of miRNAs might be playing a key role in hypersensitive response (HR) from host, which diminishes at the maturation stage. This suggests a possible host-fungal synergistic relation leading to susceptibility. Differential expression of these miRNAs in presence and absence of R gene provides a probable explanation of miRNA regulated R gene mediated independent pathways.

  10. Antifungal Potential of Host Defense Peptide Mimetics in a Mouse Model of Disseminated Candidiasis

    Directory of Open Access Journals (Sweden)

    Mobaswar Hossain Chowdhury

    2018-02-01

    Full Text Available Invasive candidiasis caused by Candida albicans and non-albicans Candida (NAC present a serious disease threat. Although the echinocandins are recommended as the first line of antifungal drug class, resistance to these agents is beginning to emerge, demonstrating the need for new antifungal agents. Host defense peptides (HDP exhibit potent antifungal activity, but as drugs they are difficult to manufacture efficiently, and they are often inactivated by serum proteins. HDP mimetics are low molecular weight non-peptide compounds that can alleviate these problems and were shown to be membrane-active against C. albicans and NAC. Here, we expand upon our previous works to describe the in vitro and in vivo activity of 11 new HDP mimetics that are active against C. albicans and NAC that are both sensitive and resistant to standard antifungal drugs. These compounds exhibit minimum inhibitory/fungicidal concentration (MIC/MFC in the µg/mL range in the presence of serum and are inhibited by divalent cations. Rapid propidium iodide influx into the yeast cells following in vitro exposure suggested that these HDP mimetics were also membrane active. The lead compounds were able to kill C. albicans in an invasive candidiasis CD-1 mouse model with some mimetic candidates decreasing kidney burden by 3–4 logs after 24 h in a dose-dependent manner. The data encouraged further development of this new anti-fungal drug class for invasive candidiasis.

  11. Anti-endotoxic and antibacterial effects of a dermal substitute coated with host defense peptides.

    Science.gov (United States)

    Kasetty, Gopinath; Kalle, Martina; Mörgelin, Matthias; Brune, Jan C; Schmidtchen, Artur

    2015-01-01

    Biomaterials used during surgery and wound treatment are of increasing importance in modern medical care. In the present study we set out to evaluate the addition of thrombin-derived host defense peptides to human acellular dermis (hAD, i.e. epiflex(®)). Antimicrobial activity of the functionalized hAD was demonstrated using radial diffusion and viable count assays against Gram-negative Escherichia coli, Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. Electron microscopy analyses showed that peptide-mediated bacterial killing led to reduced hAD degradation. Furthermore, peptide-functionalized hAD displayed endotoxin-binding activity in vitro, as evidenced by inhibition of NF-κB activation in human monocytic cells (THP-1 cells) and a reduction of pro-inflammatory cytokine production in whole blood in response to lipopolysaccharide stimulation. The dermal substitute retained its anti-endotoxic activity after washing, compatible with results showing that the hAD bound a significant amount of peptide. Furthermore, bacteria-induced contact activation was inhibited by peptide addition to the hAD. E. coli infected hAD, alone, or after treatment with the antiseptic substance polyhexamethylenebiguanide (PHMB), yielded NF-κB activation in THP-1 cells. The activation was abrogated by peptide addition. Thus, thrombin-derived HDPs should be of interest in the further development of new biomaterials with combined antimicrobial and anti-endotoxic functions for use in surgery and wound treatment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Phytohemagglutinin facilitates the aggregation of blastomere pairs from Day 5 donor embryos with Day 4 host embryos for chimeric bovine embryo multiplication.

    Science.gov (United States)

    Simmet, Kilian; Reichenbach, Myriam; Reichenbach, Horst-Dieter; Wolf, Eckhard

    2015-12-01

    Multiplication of bovine embryos by the production of aggregation chimeras is based on the concept that few blastomeres of a donor embryo form the inner cell mass (ICM) and thus the embryo proper, whereas cells of a host embryo preferentially contribute to the trophectoderm (TE), the progenitor cells of the embryonic part of the placenta. We aggregated two fluorescent blastomeres from enhanced green fluorescent protein (eGFP) transgenic Day 5 morulae with two Day 4 embryos that did not complete their first cleavage until 27 hours after IVF and tested the effect of phytohemagglutinin-L (PHA) on chimeric embryo formation. The resulting blastocysts were characterized by differential staining of cell lineages using the TE-specific factor CDX2 and confocal laser scanning microscopy to facilitate the precise localization of eGFP-positive cells. The proportions of blastocyst development of sandwich aggregates with (n = 99) and without PHA (n = 46) were 85.9% and 54.3% (P chimeric blastocysts analyzed by confocal laser scanning microscopy, nine had eGFP-positive cells (three of them in the ICM, three in the TE, and three in both lineages). When integration in the ICM occurred, the number of eGFP-positive cells in this compartment was 8.3 ± 2.3 (mean ± standard error of the mean). We conclude that PHA is advantageous for the formation of aggregation chimeras, but the approach tested in the present study with only two donor blastomeres and two host embryos did not result in multiplication of genetically valuable donor embryos. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Anti-Bovine Programmed Death-1 Rat–Bovine Chimeric Antibody for Immunotherapy of Bovine Leukemia Virus Infection in Cattle

    Directory of Open Access Journals (Sweden)

    Tomohiro Okagawa

    2017-06-01

    Full Text Available Blockade of immunoinhibitory molecules, such as programmed death-1 (PD-1/PD-ligand 1 (PD-L1, is a promising strategy for reinvigorating exhausted T cells and preventing disease progression in a variety of chronic infections. Application of this therapeutic strategy to cattle requires bovinized chimeric antibody targeting immunoinhibitory molecules. In this study, anti-bovine PD-1 rat–bovine chimeric monoclonal antibody 5D2 (Boch5D2 was constructed with mammalian expression systems, and its biochemical function and antiviral effect were characterized in vitro and in vivo using cattle infected with bovine leukemia virus (BLV. Purified Boch5D2 was capable of detecting bovine PD-1 molecules expressed on cell membranes in flow cytometric analysis. In particular, Biacore analysis determined that the binding affinity of Boch5D2 to bovine PD-1 protein was similar to that of the original anti-bovine PD-1 rat monoclonal antibody 5D2. Boch5D2 was also capable of blocking PD-1/PD-L1 binding at the same level as 5D2. The immunomodulatory and therapeutic effects of Boch5D2 were evaluated by in vivo administration of the antibody to a BLV-infected calf. Inoculated Boch5D2 was sustained in the serum for a longer period. Boch5D2 inoculation resulted in activation of the proliferation of BLV-specific CD4+ T cells and decrease in the proviral load of BLV in the peripheral blood. This study demonstrates that Boch5D2 retains an equivalent biochemical function to that of the original antibody 5D2 and is a candidate therapeutic agent for regulating antiviral immune response in vivo. Clinical efficacy of PD-1/PD-L1 blockade awaits further experimentation with a large number of animals.

  14. Prototheca zopfii isolated from bovine mastitis induced oxidative stress and apoptosis in bovine mammary epithelial cells.

    Science.gov (United States)

    Shahid, Muhammad; Gao, Jian; Zhou, Yanan; Liu, Gang; Ali, Tariq; Deng, Youtian; Sabir, Naveed; Su, Jingliang; Han, Bo

    2017-05-09

    Bovine protothecal mastitis results in considerable economic losses worldwide. However, Prototheca zopfii induced morphological alterations and oxidative stress in bovine mammary epithelial cells (bMECs) is not comprehensively studied yet. Therefore, the aim of this current study was to investigate the P. zopfii induced pathomorphological changes, oxidative stress and apoptosis in bMECs. Oxidative stress was assessed by evaluating catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA) contents and lactate dehydrogenase (LDH) activity, while ROS generation and apoptosis was measured by confocal laser scanning microscopy. The results revealed that infection of P. zopfii genotype II (GTII) significantly changed bMECs morphology, increased apoptotic rate and MDA contents at 12 h (p < 0.05) and 24 h (p < 0.01) in comparison with control group, in time-dependent manner. LDH activity and ROS generation was also increased (p < 0.01) at 12 h and 24 h. However, SOD and CAT contents in bMECs infected with GTII were decreased (p < 0.05) at 12 h, while GPx (p < 0.01), SOD (p < 0.05) and CAT (p < 0.01) levels were reduced at 24 h. In case of GTI, only CAT and GPx activities were significantly decreased when the duration prolonged to 24 h but lesser than GTII. This suggested that GTII has more devastating pathogenic effects in bMECs, and the findings of this study concluded that GTII induced apoptosis and oxidative stress in bMECs via the imbalance of oxidant and antioxidant defenses as well as the production of intracellular ROS.

  15. Serpin functions in host-pathogen interactions

    Directory of Open Access Journals (Sweden)

    Jialing Bao

    2018-04-01

    Full Text Available Serpins are a broadly distributed superfamily of protease inhibitors that are present in all kingdoms of life. The acronym, serpin, is derived from their function as potent serine proteases inhibitors. Early studies of serpins focused on their functions in haemostasis since modulating serine proteases activities are essential for coagulation. Additional research has revealed that serpins function in infection and inflammation, by modulating serine and cysteine proteases activities. The aim of this review is to summarize the accumulating findings and current understanding of the functions of serpins in host-pathogen interactions, serving as host defense proteins as well as pathogenic factors. We also discuss the potential crosstalk between host and pathogen serpins. We anticipate that future research will elucidate the therapeutic value of this novel target.

  16. Methicillin resistant S. aureus in human and bovine mastitis.

    Science.gov (United States)

    Holmes, Mark A; Zadoks, Ruth N

    2011-12-01

    Staphylococcus aureus is a ubiquitous organism that causes a variety of diseases including mastitis in cattle and humans. High-level resistance of S. aureus to β-lactams conferred by a mecA gene encoding a modified penicillin binding protein (PBP2a) was first observed in the early 1960's. These methicillin resistant S. aureus (MRSA) have been responsible for both hospital acquired infections (HA-MRSA) and, more recently, community acquired MRSA (CA-MRSA). A small number of human MRSA mastitis cases and outbreaks in maternity or neonatal units have been reported which are generally the result of CA-MRSA. The establishment of the sequence type 398 (ST398) in farm animals, primarily pigs, in the early 2000's has provided a reservoir of infection for humans and dairy cattle, particularly in continental Europe, described as livestock-associated MRSA (LA-MRSA). Prior to the emergence of ST398 there were sporadic reports of MRSA in bovine milk and cases of mastitis, often caused by strains from human associated lineages. Subsequently, there have been several reports describing bovine udder infections caused by ST-398 MRSA. Recently, another group of LA-MRSA strains was discovered in humans and dairy cattle in Europe. This group carries a divergent mecA gene and includes a number of S. aureus lineages (CC130, ST425, and CC1943) that were hitherto thought to be bovine-specific but are now also found as carriage or clinical isolates in humans. The emergence of MRSA in dairy cattle may be associated with contact with other host species, as in the case of ST398, or with the exchange of genetic material between S. aureus and coagulase negative Staphylococcus species, which are the most common species associated with bovine intramammary infections and commonly carry antimicrobial resistance determinants.

  17. Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems.

    Science.gov (United States)

    Iranzo, Jaime; Lobkovsky, Alexander E; Wolf, Yuri I; Koonin, Eugene V

    2015-03-13

    Parasite-host arms race is one of the key factors in the evolution of life. Most cellular life forms, in particular prokaryotes, possess diverse forms of defense against pathogens including innate immunity, adaptive immunity and programmed cell death (altruistic suicide). Coevolution of these different but interacting defense strategies yields complex evolutionary regimes. We develop and extensively analyze a computational model of coevolution of different defense strategies to show that suicide as a defense mechanism can evolve only in structured populations and when the attainable degree of immunity against pathogens is limited. The general principle of defense evolution seems to be that hosts do not evolve two costly defense mechanisms when one is sufficient. Thus, the evolutionary interplay of innate immunity, adaptive immunity and suicide, leads to an equilibrium state where the combination of all three defense strategies is limited to a distinct, small region of the parameter space. The three strategies can stably coexist only if none of them are highly effective. Coupled adaptive immunity-suicide systems, the existence of which is implied by the colocalization of genes for the two types of defense in prokaryotic genomes, can evolve either when immunity-associated suicide is more efficacious than other suicide systems or when adaptive immunity functionally depends on the associated suicide system. Computational modeling reveals a broad range of outcomes of coevolution of anti-pathogen defense strategies depending on the relative efficacy of different mechanisms and population structure. Some of the predictions of the model appear compatible with recent experimental evolution results and call for additional experiments.

  18. Membrane rafts: a potential gateway for bacterial entry into host cells.

    Science.gov (United States)

    Hartlova, Anetta; Cerveny, Lukas; Hubalek, Martin; Krocova, Zuzana; Stulik, Jiri

    2010-04-01

    Pathogenic bacteria have developed various mechanisms to evade host immune defense systems. Invasion of pathogenic bacteria requires interaction of the pathogen with host receptors, followed by activation of signal transduction pathways and rearrangement of the cytoskeleton to facilitate bacterial entry. Numerous bacteria exploit specialized plasma membrane microdomains, commonly called membrane rafts, which are rich in cholesterol, sphingolipids and a special set of signaling molecules which allow entry to host cells and establishment of a protected niche within the host. This review focuses on the current understanding of the raft hypothesis and the means by which pathogenic bacteria subvert membrane microdomains to promote infection.

  19. Pathogenesis and Treatment of Bovine Foot Rot.

    Science.gov (United States)

    Van Metre, David C

    2017-07-01

    Bovine foot rot (BFR) is an infectious disease of the interdigital skin and subcutaneous tissues of beef and dairy cattle that occurs under a variety of management and environmental settings. The anaerobic, gram-negative bacteria Fusobacterium necrophorum, Porphyromonas levii, and Prevotella intermedia are commonly isolated from lesions. A multitude of host, agent, and environmental factors contribute to the development of BFR. Initiation of systemic antimicrobial therapy early in the course of disease commonly leads to resolution. Delays in treatment may result in extension of infection into deeper bone, synovial structures, or ligamentous structures, and the prognosis for recovery is reduced. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Development and characterization of a bovine monocyte-derived macrophage cell line

    Science.gov (United States)

    Monocytes circulate in the blood, and later differentiate into macrophages in the tissues. They are components of the innate arm of the immune response and are one of the first lines of defense again invading pathogens. However, they also serve as host cells for intracellular pathogens such as Mycob...

  1. The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection.

    Science.gov (United States)

    Mukherjee, Krishnendu; Vilcinskas, Andreas

    2018-01-01

    Parasitic fungi are the only pathogens that can infect insect hosts directly through their proteinaceous exoskeleton. Penetration of the cuticle requires the release of fungal enzymes, including proteinases, which act as virulence factors. Insects can sense fungal infections and activate innate immune responses, including the synthesis of antifungal peptides and proteinase inhibitors that neutralize the incoming proteinases. This well-studied host response is epigenetically regulated by histone acetylation/deacetylation. Here we show that entomopathogenic fungi can in turn sense the presence of insect-derived antifungal peptides and proteinase inhibitors, and respond by inducing the synthesis of chymotrypsin-like proteinases and metalloproteinases that degrade the host-derived defense molecules. The rapidity of this response is dependent on the virulence of the fungal strain. We confirmed the specificity of the pathogen response to host-derived defense molecules by LC/MS and RT-PCR analysis, and correlated this process with the epigenetic regulation of histone acetylation/deacetylation. This cascade of responses reveals that the coevolution of pathogens and hosts can involve a complex series of attacks and counterattacks based on communication between the invading fungal pathogen and its insect host. The resolution of this process determines whether or not pathogenesis is successful.

  2. Demeter's Resilience: an International Food Defense exercise.

    Science.gov (United States)

    Hennessey, Morgan; Kennedy, Shaun; Busta, Frank

    2010-07-01

    The National Center for Food Protection and Defense (NCFPD), which is led by the University of Minnesota, hosted an international food defense exercise on 27 to 29 May 2008. Established in 2004, NCFPD is a Department of Homeland Security Center of Excellence with the mission of defending the food system through research and education. Tabletop exercises are practice-based scenarios intended to mimic real life experiences. The objective of the exercise discussed in this article was to facilitate discussion to increase awareness among exercise participants of both the threat that would be posed by an intentional attack on the food supply and the international impact of such an attack. Through facilitated discussion, exercise participants agreed on the following themes: (i) recognition of a foodborne disease outbreak is driven by the characteristics of the illness rather than the actual number of ill individuals; (ii) during the course of a foodborne outbreak there are generally multiple levels of communication; (iii) a common case definition for a foodborne disease is difficult to develop on a global scale; and (iv) the safety and health of all individuals is the number one priority of all parties involved. Several challenges were faced during the development of the exercise, but these were overcome to produce a more robust exercise. The following discussion will provide an overview of the challenges and the strategies used to overcome them. The lessons learned provide insight into how to plan, prepare, and host an international food defense exercise.

  3. Analysis of the bovine monocyte-derived macrophage response to Mycobacterium avium subspecies paratuberculosis infection using RNA-seq

    Directory of Open Access Journals (Sweden)

    Maura E Casey

    2015-02-01

    Full Text Available Johne’s disease, caused by infection with Mycobacterium avium subsp. paratuberculosis, (MAP, is a chronic intestinal disease of ruminants with serious economic consequences for cattle production in the United States and elsewhere. During infection, MAP bacilli are phagocytosed and subvert host macrophage processes, resulting in subclinical infections that can lead to immunopathology and dissemination of disease. Analysis of the host macrophage transcriptome during infection can therefore shed light on the molecular mechanisms and host-pathogen interplay associated with Johne’s disease. Here we describe results of an in vitro study of the bovine monocyte-derived macrophage (MDM transcriptome response during MAP infection using RNA-seq. MDM were obtained from seven age- and sex-matched Holstein-Friesian cattle and were infected with MAP across a six-hour infection time course with non-infected controls. We observed 245 and 574 differentially expressed genes in MAP-infected versus non-infected control samples (adjusted P value ≤ 0.05 at 2 and 6 hours post-infection, respectively. Functional analyses of these differentially expressed genes, including biological pathway enrichment, highlighted potential functional roles for genes that have not been previously described in the host response to infection with MAP bacilli. In addition, differential expression of pro- and anti-inflammatory cytokine genes, such as those associated with the IL-10 signaling pathway, and other immune-related genes that encode proteins involved in the bovine macrophage response to MAP infection emphasize the balance between protective host immunity and bacilli survival and proliferation. Systematic comparisons of RNA-seq gene expression results with Affymetrix® microarray data generated from the same experimental samples also demonstrated that RNA-seq represents a superior technology for studying host transcriptional responses to intracellular infection.

  4. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose.

    Science.gov (United States)

    Auld, Stuart K J R; Edel, Kai H; Little, Tom J

    2012-10-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  5. Natural selection on immune defense: A field experiment.

    Science.gov (United States)

    Langeloh, Laura; Behrmann-Godel, Jasminca; Seppälä, Otto

    2017-02-01

    Predicting the evolution of phenotypic traits requires an understanding of natural selection on them. Despite its indispensability in the fight against parasites, selection on host immune defense has remained understudied. Theory predicts immune traits to be under stabilizing selection due to associated trade-offs with other fitness-related traits. Empirical studies, however, report mainly positive directional selection. This discrepancy could be caused by low phenotypic variation in the examined individuals and/or variation in host resource level that confounds trade-offs in empirical studies. In a field experiment where we maintained Lymnaea stagnalis snails individually in cages in a lake, we investigated phenotypic selection on two immune defense traits, phenoloxidase (PO)-like activity and antibacterial activity, in hemolymph. We used a diverse laboratory population and manipulated snail resource level by limiting their food supply. For six weeks, we followed immune activity, growth, and two fitness components, survival and fecundity of snails. We found that PO-like activity and growth were under stabilizing selection, while antibacterial activity was under positive directional selection. Selection on immune traits was mainly driven by variation in survival. The form of selection on immune defense apparently depends on the particular trait, possibly due to its importance for countering the present parasite community. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  6. Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets

    Science.gov (United States)

    Isaac, Dervla T; Isberg, Ralph

    2014-01-01

    Macrophages are the front line of immune defense against invading microbes. Microbes, however, have evolved numerous and diverse mechanisms to thwart these host immune defenses and thrive intracellularly. Legionella pneumophila, a Gram-negative pathogen of amoebal and mammalian phagocytes, is one such microbe. In humans, it causes a potentially fatal pneumonia referred to as Legionnaires' disease. Armed with the Icm/Dot type IV secretion system, which is required for virulence, and approximately 300 translocated proteins, Legionella is able to enter host cells, direct the biogenesis of its own vacuolar compartment, and establish a replicative niche, where it grows to high levels before lysing the host cell. Efforts to understand the pathogenesis of this bacterium have focused on characterizing the molecular activities of its many effectors. In this article, we highlight recent strides that have been made in understanding how Legionella effectors mediate host-pathogen interactions. PMID:24762308

  7. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding.

    Science.gov (United States)

    Smith, Jason D; Woldemariam, Melkamu G; Mescher, Mark C; Jander, Georg; De Moraes, Consuelo M

    2016-09-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Pathological studies on bovine viral diarrhea

    International Nuclear Information System (INIS)

    Elkady, A.A.M.A.

    2002-01-01

    Bovine viral diarrhea virus (BVDV) is classified as an RNA virus in the family flavin viride and is a member of the genus pest virus (Collet et al 1989). BVDV has a worldwide distribution and infections in cattle populations (Kahrs et al 1970). It was recognized since 50 years ago, the initial description of an acute enteric disease of cattle in North America, which was characterized by outbreaks of diarrhea and erosive of digestive tract (Olafsonp et al 1946). The disease and causative agent were named bovine viral diarrhea (B V D ) and (B V DV), respectively. This virus was subsequently associated with a sporadically occurring and highly fatal enteric disease that was termed mucosal disease (M D), (Ramsey and Chivers 1953). The initial isolate of BVDV did not produce cytopathic effect in cell culture, whereas an isolate from MD did produce cytopathic effects (Lee et al 1957). In vitro characteristic of non cytopathic or sytopathic effects of BVDV is referred to as the biotype of the virus. It has now been established that MD occurs only when xattle that are born immuno tolerant to and persistently infected with a noncyropathic BVDV become super infected with a cytopathic BVDV. The knowledge of the molecular biology. Pathogenesis and epidemiology of BVDV has greatly evolved in the past 10-15 years and has provided a better understanding of this complex infectious agent. Infection with BVDV can result in a wide spectrum of diseases ranging from subclinical infection s to a highly fatal from known as mucosal disease (ND). The clinical response to infection depends on multiple interactive factors. Host factors that influence the clinical outcome of BVDV infection include whether the host is immunocompetent or immuno tolerant to BVDV, pregnancy status, gestational age of the fetus, immune status (passively derived or actively derived from previous infection or vaccination) and concurrent level of environmental stress

  9. Immunomodulatory Effects of Amblyomma variegatum Saliva on Bovine Cells: Characterization of Cellular Responses and Identification of Molecular Determinants

    Directory of Open Access Journals (Sweden)

    Valérie Rodrigues

    2018-01-01

    Full Text Available The tropical bont tick, Amblyomma variegatum, is a tick species of veterinary importance and is considered as one of major pest of ruminants in Africa and in the Caribbean. It causes direct skin lesions, transmits heartwater, and reactivates bovine dermatophilosis. Tick saliva is reported to affect overall host responses through immunomodulatory and anti-inflammatory molecules, among other bioactive molecules. The general objective of this study was to better understand the role of saliva in interaction between the Amblyomma tick and the host using cellular biology approaches and proteomics, and to discuss its impact on disease transmission and/or activation. We first focused on the immuno-modulating effects of semi-fed A. variegatum female saliva on bovine peripheral blood mononuclear cells (PBMC and monocyte-derived macrophages in vitro. We analyzed its immuno-suppressive properties by measuring the effect of saliva on PBMC proliferation, and observed a significant decrease in ConA-stimulated PBMC lymphoproliferation. We then studied the effect of saliva on bovine macrophages using flow cytometry to analyze the expression of MHC-II and co-stimulation molecules (CD40, CD80, and CD86 and by measuring the production of nitric oxide (NO and pro- or anti-inflammatory cytokines. We observed a significant decrease in the expression of MHC-II, CD40, and CD80 molecules, associated with decreased levels of IL-12-p40 and TNF-α and increased level of IL-10, which could explain the saliva-induced modulation of NO. To elucidate these immunomodulatory effects, crude saliva proteins were analyzed using proteomics with an Orbitrap Elite mass spectrometer. Among the 336 proteins identified in A. variegatum saliva, we evidenced bioactive molecules exhibiting anti-inflammatory, immuno-modulatory, and anti-oxidant properties (e.g., serpins, phospholipases A2, heme lipoprotein. We also characterized an intriguing ubiquitination complex that could be involved in

  10. Immunomodulatory Effects of Amblyomma variegatum Saliva on Bovine Cells: Characterization of Cellular Responses and Identification of Molecular Determinants

    Science.gov (United States)

    Rodrigues, Valérie; Fernandez, Bernard; Vercoutere, Arthur; Chamayou, Léo; Andersen, Alexandre; Vigy, Oana; Demettre, Edith; Seveno, Martial; Aprelon, Rosalie; Giraud-Girard, Ken; Stachurski, Frédéric; Loire, Etienne; Vachiéry, Nathalie; Holzmuller, Philippe

    2018-01-01

    The tropical bont tick, Amblyomma variegatum, is a tick species of veterinary importance and is considered as one of major pest of ruminants in Africa and in the Caribbean. It causes direct skin lesions, transmits heartwater, and reactivates bovine dermatophilosis. Tick saliva is reported to affect overall host responses through immunomodulatory and anti-inflammatory molecules, among other bioactive molecules. The general objective of this study was to better understand the role of saliva in interaction between the Amblyomma tick and the host using cellular biology approaches and proteomics, and to discuss its impact on disease transmission and/or activation. We first focused on the immuno-modulating effects of semi-fed A. variegatum female saliva on bovine peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages in vitro. We analyzed its immuno-suppressive properties by measuring the effect of saliva on PBMC proliferation, and observed a significant decrease in ConA-stimulated PBMC lymphoproliferation. We then studied the effect of saliva on bovine macrophages using flow cytometry to analyze the expression of MHC-II and co-stimulation molecules (CD40, CD80, and CD86) and by measuring the production of nitric oxide (NO) and pro- or anti-inflammatory cytokines. We observed a significant decrease in the expression of MHC-II, CD40, and CD80 molecules, associated with decreased levels of IL-12-p40 and TNF-α and increased level of IL-10, which could explain the saliva-induced modulation of NO. To elucidate these immunomodulatory effects, crude saliva proteins were analyzed using proteomics with an Orbitrap Elite mass spectrometer. Among the 336 proteins identified in A. variegatum saliva, we evidenced bioactive molecules exhibiting anti-inflammatory, immuno-modulatory, and anti-oxidant properties (e.g., serpins, phospholipases A2, heme lipoprotein). We also characterized an intriguing ubiquitination complex that could be involved in saliva

  11. Field study on the epidemiology and pathogenicity of different isolates of bovine Ostertagia spp.

    Science.gov (United States)

    Al Saqur, I; Armour, J; Bairden, K; Dunn, A M; Jennings, F W; Murray, M

    1982-11-01

    The epidemiological features of three different isolates of bovine Ostertagia spp under similar initial levels of larval challenge were compared in the field. Two of the isolates, consisting mainly of Ostertagia ostertagi, and a low proportion of Skrjabinagia lyrata conformed in epidemiological behaviour with those investigated by previous workers, though the worm burdens which established did not give rise to the expected clinical signs. The third isolate behaved in a different way, yielding very high faecal egg counts which were followed by high pasture larval counts, heavy worm burdens and severe clinical disease. This isolate, while consisting mainly of O ostertagi and a few S lyrata, also contained a proportion of O leptospicularis, and it is suggested that this species may influence the dynamics of the host-parasite relationship in bovine ostertagiasis.

  12. Modulation of legume defense signaling pathways by native and non-native pea aphid clones

    Directory of Open Access Journals (Sweden)

    Carlos Sanchez-Arcos

    2016-12-01

    Full Text Available The pea aphid (Acyrthosiphon pisum is a complex of at least 15 genetically different host races that are native to specific legume plants, but can all develop on the universal host plant Vicia faba. Despite much research it is still unclear why pea aphid host races (biotypes are able to colonize their native hosts while other host races are not. All aphids penetrate the plant and salivate into plant cells when they test plant suitability. Thus plants might react differently to the various pea aphid host races. To find out whether legume species vary in their defense responses to different pea aphid host races, we measured the amounts of salicylic acid (SA, the jasmonic acid-isoleucine conjugate (JA-Ile, other jasmonate precursors and derivatives, and abscisic acid (ABA in four different species (Medicago sativa, Trifolium pratense, Pisum sativum, V. faba after infestation by native and non-native pea aphid clones of various host races. Additionally, we assessed the performance of the clones on the four plant species. On M. sativa and T. pratense, non-native clones that were barely able to survive or reproduce, triggered a strong SA and JA-Ile response, whereas infestation with native clones led to lower levels of both phytohormones. On P. sativum, non-native clones, which survived or reproduced to a certain extent, induced fluctuating SA and JA-Ile levels, whereas the native clone triggered only a weak SA and JA-Ile response. On the universal host V. faba all aphid clones triggered only low SA levels initially, but induced clone-specific patterns of SA and JA-Ile later on. The levels of the active JA-Ile conjugate and of the other JA-pathway metabolites measured showed in many cases similar patterns, suggesting that the reduction in JA signaling was due to an effect upstream of OPDA. ABA levels were downregulated in all aphid clone-plant combinations and were therefore probably not decisive factors for aphid-plant compatibility. Our results

  13. Massive activation of archaeal defense genes during viral infection.

    Science.gov (United States)

    Quax, Tessa E F; Voet, Marleen; Sismeiro, Odile; Dillies, Marie-Agnes; Jagla, Bernd; Coppée, Jean-Yves; Sezonov, Guennadi; Forterre, Patrick; van der Oost, John; Lavigne, Rob; Prangishvili, David

    2013-08-01

    Archaeal viruses display unusually high genetic and morphological diversity. Studies of these viruses proved to be instrumental for the expansion of knowledge on viral diversity and evolution. The Sulfolobus islandicus rod-shaped virus 2 (SIRV2) is a model to study virus-host interactions in Archaea. It is a lytic virus that exploits a unique egress mechanism based on the formation of remarkable pyramidal structures on the host cell envelope. Using whole-transcriptome sequencing, we present here a global map defining host and viral gene expression during the infection cycle of SIRV2 in its hyperthermophilic host S. islandicus LAL14/1. This information was used, in combination with a yeast two-hybrid analysis of SIRV2 protein interactions, to advance current understanding of viral gene functions. As a consequence of SIRV2 infection, transcription of more than one-third of S. islandicus genes was differentially regulated. While expression of genes involved in cell division decreased, those genes playing a role in antiviral defense were activated on a large scale. Expression of genes belonging to toxin-antitoxin and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems was specifically pronounced. The observed different degree of activation of various CRISPR-Cas systems highlights the specialized functions they perform. The information on individual gene expression and activation of antiviral defense systems is expected to aid future studies aimed at detailed understanding of the functions and interplay of these systems in vivo.

  14. Cdc42 promotes host defenses against fatal infection

    DEFF Research Database (Denmark)

    Lee, Keunwook; Boyd, Kelli L; Parekh, Diptiben V

    2013-01-01

    attempted to specifically delete it in these cells by crossing the Cdc42(fl/fl) mouse with a FSP-1 cre mouse, which is thought to mediate recombination exclusively in fibroblasts. Surprisingly, the FSP-1cre;Cdc42(fl/fl) mice died at 3 weeks of age due to overwhelming suppurative upper airway infections...... showed that in addition to fibroblasts, the FSP-1 cre deleted Cdc42 very efficiently in all leukocytes. Thus, by using this non-specific cre mouse we inadvertently demonstrated the importance of Cdc42 in host protection from lethal infections and suggest a critical role for this small GTPase in innate...

  15. Interplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-05-01

    Full Text Available Suppression of host innate immunity appears to be required for the establishment of symbiosis between rhizobia and host plants. In this study, we established a system that included a host plant, a bacterial pathogen and a symbiotic rhizobium to study the role of innate immunity during symbiotic interactions. A pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000, was shown to cause chlorosis in Medicago truncatula A17. Sinorhizobium meliloti strain Sm2011 (Sm2011 and Pst DC3000 strain alone induced similar defense responses in M. truncatula. However, when co-inoculated, Sm2011 specifically suppressed the defense responses induced by Pst DC3000, such as MAPK activation and ROS production. Inoculation with Sm2011 suppressed the transcription of defense-related genes triggered by Pst DC3000 infection, including the receptor of bacterial flagellin (FLS2, pathogenesis-related protein 10 (PR10, and the transcription factor WRKY33. Interestingly, inoculation with Pst DC3000 specifically inhibited the expression of the symbiosis marker genes nodule inception and nodulation pectate lyase and reduced the numbers of infection threads and nodules on M. truncatula A17 roots, indicating that Pst DC3000 inhibits the establishment of symbiosis in M. truncatula. In addition, defense-related genes, such as MAPK3/6, RbohC, and WRKY33, exhibited a transient increase in their expression in the early stage of symbiosis with Sm2011, but the expression dropped down to normal levels at later symbiotic stages. Our results suggest that plant innate immunity plays an antagonistic role in symbiosis by directly reducing the numbers of infection threads and nodules.

  16. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis

    Directory of Open Access Journals (Sweden)

    Arainga Mariluz

    2012-03-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G or reduced (TaxS240P transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting

  17. Emerging pestiviruses infecting domestic and wildlife hosts.

    Science.gov (United States)

    Ridpath, Julia F

    2015-06-01

    Until the early 1990 s there were just three recognized species in the pestivirus genus, bovine viral diarrhea virus (BVDV), border disease virus (BDV) and classical swine fever virus (CSFV). Subsequently BVDV were divided into two different species, BVDV1 and BVDV2 and four additional putative pestivirus species have been identified, based on phylogenetic analysis. The four putative pestivirus specices, listed in chronological order of published reports, are Giraffe (isolated from one of several giraffes in the Nanyuki District of Kenya suffering from mucosal disease-like symptoms), HoBi (first isolated from fetal bovine serum originating in Brazil and later from samples originating in Southeast Asia), Pronghorn (isolated from an emaciated blind pronghorn antelope in the USA), and Bungowannah (isolated following an outbreak in pigs, resulting in still birth and neonatal death, in Australia). In addition to the emergence of putative new species of pestivirus, changes in host and virulence of recognized or 'classic' pestiviruses have led to reevaluation of disease control programs and management of domestic and wildlife populations.

  18. Genome sequencing of ovine isolates of Mycobacterium avium subspecies paratuberculosis offers insights into host association

    Directory of Open Access Journals (Sweden)

    Bannantine John P

    2012-03-01

    Full Text Available Abstract Background The genome of Mycobacterium avium subspecies paratuberculosis (MAP is remarkably homogeneous among the genomes of bovine, human and wildlife isolates. However, previous work in our laboratories with the bovine K-10 strain has revealed substantial differences compared to sheep isolates. To systematically characterize all genomic differences that may be associated with the specific hosts, we sequenced the genomes of three U.S. sheep isolates and also obtained an optical map. Results Our analysis of one of the isolates, MAP S397, revealed a genome 4.8 Mb in size with 4,700 open reading frames (ORFs. Comparative analysis of the MAP S397 isolate showed it acquired approximately 10 large sequence regions that are shared with the human M. avium subsp. hominissuis strain 104 and lost 2 large regions that are present in the bovine strain. In addition, optical mapping defined the presence of 7 large inversions between the bovine and ovine genomes (~ 2.36 Mb. Whole-genome sequencing of 2 additional sheep strains of MAP (JTC1074 and JTC7565 further confirmed genomic homogeneity of the sheep isolates despite the presence of polymorphisms on the nucleotide level. Conclusions Comparative sequence analysis employed here provided a better understanding of the host association, evolution of members of the M. avium complex and could help in deciphering the phenotypic differences observed among sheep and cattle strains of MAP. A similar approach based on whole-genome sequencing combined with optical mapping could be employed to examine closely related pathogens. We propose an evolutionary scenario for M. avium complex strains based on these genome sequences.

  19. Exploring the bovine rumen bacterial community from birth to adulthood.

    Science.gov (United States)

    Jami, Elie; Israel, Adi; Kotser, Assaf; Mizrahi, Itzhak

    2013-06-01

    The mammalian gut microbiota is essential in shaping many of its host's functional attributes. One such microbiota resides in the bovine digestive tract in a compartment termed as the rumen. The rumen microbiota is necessary for the proper physiological development of the rumen and for the animal's ability to digest and convert plant mass into food products, making it highly significant to humans. The establishment of this microbial population and the changes occurring with the host's age are important for understanding this key microbial community. Despite its importance, little information about colonization of the microbial populations in newborn animals, and the gradual changes occurring thereafter, exists. Here, we characterized the overall bovine ruminal bacterial populations of five age groups, from 1-day-old calves to 2-year-old cows. We describe the changes occurring in the rumen ecosystem after birth, reflected by a decline in aerobic and facultative anaerobic taxa and an increase in anaerobic ones. Some rumen bacteria that are essential for mature rumen function could be detected as early as 1 day after birth, long before the rumen is active or even before ingestion of plant material occurs. The diversity and within-group similarity increased with age, suggesting a more diverse but homogeneous and specific mature community, compared with the more heterogeneous and less diverse primary community. In addition, a convergence toward a mature bacterial arrangement with age was observed. These findings have also been reported for human gut microbiota, suggesting that similar forces drive the establishment of gut microbiotas in these two distinct mammalian digestive systems.

  20. Proteomic characterization of host response to Yersinia pestis and near neighbors

    International Nuclear Information System (INIS)

    Chromy, Brett A.; Perkins, Julie; Heidbrink, Jenny L.; Gonzales, Arlene D.; Murphy, Gloria A.; Fitch, J. Patrick; McCutchen-Maloney, Sandra L.

    2004-01-01

    Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Yersinia pseudotuberculosis and Yersinia enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct for the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague

  1. Serological and coprological analyses for the diagnosis of Fasciola gigantica infections in bovine hosts from Sargodha, Pakistan.

    Science.gov (United States)

    Rehman, T; Khan, M N; Abbas, R Z; Babar, W; Sikandar, A; Zaman, M A

    2016-07-01

    A serological and coprological survey of fasciolosis was conducted in bovine hosts from the Sargodha district, Pakistan using excretory-secretory (ES) antigens of Fasciola gigantica from cattle and buffaloes. Livers, faecal and blood samples of 146 cattle and 184 buffaloes were collected from slaughterhouses and examined for the presence of any Fasciola in bile ducts and ova in faeces. Serum was separated. ES antigens were prepared by incubating adult Fasciola in phosphate-buffered saline for 6-8 h and then filtering using a 0.22-μm syringe filter. Checkerboard titration was performed and optimum concentrations of antigen and serum were determined. Sero-prevalence was found to be 50.00 and 38.35% in buffalo and cattle, respectively. Using liver examination as the gold standard, enzyme-linked immunosorbent assay (ELISA) sensitivity was found to be 100% in both buffalo and cattle as compared with that of coprological examination in buffalo (61.79%) and cattle (54.54%). This indigenous ELISA was also highly specific, with values of 96.84 and 98.90% in buffalo and cattle, respectively. Positive predictive values were calculated as 96.74 and 98.21% in buffalo and cattle, respectively, while negative predictive values were 100%. For the validation of indigenous ELISA in field surveys, faecal and blood samples were collected from six sub-districts (tehsils) in the district of Sargodha. Sera were screened for the presence of anti-fasciola antibodies using both the indigenous and commercial ELISA kits. While both kits were equally sensitive, the indigenous ELISA was found to be more specific. The highest prevalence of fasciolosis was found in December, as ascertained using both serological and coprological examination. Significant differences were found in prevalences of fasciolosis in different sub-districts and age groups, together with feeding and watering systems.

  2. Concomitant infection of Neospora caninum and Bovine Herpesvirus type 5 in spontaneous bovine abortions

    Directory of Open Access Journals (Sweden)

    Maia S. Marin

    2013-11-01

    Full Text Available Bovine Herpesvirus type 5 (BoHV-5 has not been conclusively demonstrated to cause bovine abortion. Brain lesions produced by Neospora caninum and Bovine Herpesvirus type 1 (BoHV-1 exhibit common features. Therefore, careful microscopic evaluation and additional diagnostic procedures are required to achieve an accurate final etiological diagnosis. The aim of the present work was to investigate the occurrence of infections due to BoHV-1, BoHV-5 and N. caninum in 68 cases of spontaneous bovine abortions which showed microscopic lesions in the fetal central nervous system. This study allowed the identification of 4 (5.9% fetuses with dual infection by BoHV-5 and N. caninum and 33 (48.5% cases in which N. caninum was the sole pathogen identified. All cases were negative to BoHV-1. The results of this study provide evidence that dual infection by BoHV-5 and N. caninum occur during pregnancy in cattle; however, the role of BoHV-5 as a primary cause of bovine abortion needs further research. Molecular diagnosis of BoHV-5 and N. caninum confirmed the importance of applying complementary assays to improve the sensitivity of diagnosing bovine abortion.

  3. Detection and identification of the atypical bovine pestiviruses in commercial foetal bovine serum batches.

    Directory of Open Access Journals (Sweden)

    Hongyan Xia

    Full Text Available The recently emerging atypical bovine pestiviruses have been detected in commercial foetal bovine serum (FBS of mainly South American origin so far. It is unclear how widely the viruses are presented in commercial FBS of different geographic origins. To further investigate the possible pestivirus contamination of commercially available FBS batches, 33 batches of FBS were obtained from ten suppliers and analysed in this study for the presence of both the recognised and the atypical bovine pestiviruses. All 33 batches of FBS were positive by real-time RT-PCR assays for at least one species of bovine pestiviruses. According to the certificate of analysis that the suppliers claimed for each batch of FBS, BVDV-1 was detected in all 11 countries and BVDV-2 was detected exclusively in the America Continent. The atypical pestiviruses were detected in 13 batches claimed to originate from five countries. Analysis of partial 5'UTR sequences showed a high similarity among these atypical bovine pestiviruses. This study has demonstrated, for the first time that commercial FBS batches of different geographic origins are contaminated not only with the recognised species BVDV-1 and BVDV-2, but also with the emerging atypical bovine pestiviruses.

  4. Maternal androgens in avian brood parasites and their hosts: responses to parasitism and competition?

    Science.gov (United States)

    Hahn, Caldwell; Wingfield, John C.; Fox, David M.; Walker, Brian G.; Thomley, Jill E

    2017-01-01

    In the coevolutionary dynamic of avian brood parasites and their hosts, maternal (or transgenerational) effects have rarely been investigated. We examined the potential role of elevated yolk testosterone in eggs of the principal brood parasite in North America, the brown-headed cowbird, and three of its frequent host species. Elevated maternal androgens in eggs are a common maternal effect observed in many avian species when breeding conditions are unfavorable. These steroids accelerate embryo development, shorten incubation period, increase nestling growth rate, and enhance begging vigor, all traits that can increase the survival of offspring. We hypothesized that elevated maternal androgens in host eggs are a defense against brood parasitism. Our second hypothesis was that elevated maternal androgens in cowbird eggs are a defense against intra-specific competition. For host species, we found that elevated yolk testosterone was correlated with parasitized nests of small species, those whose nest success is most reduced by cowbird parasitism. For cowbirds, we found that elevated yolk testosterone was correlated with eggs in multiply-parasitized nests, which indicate intra-specific competition for nests due to high cowbird density. We propose experimental work to further examine the use of maternal effects by cowbirds and their hosts.

  5. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    Science.gov (United States)

    Runyon, Justin B; Mescher, Mark C

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens—notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)—also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across kingdoms. PMID:20495380

  6. Of poisons and parasites-the defensive role of tetrodotoxin against infections in newts.

    Science.gov (United States)

    Johnson, Pieter T J; Calhoun, Dana M; Stokes, Amber N; Susbilla, Calvin B; McDevitt-Galles, Travis; Briggs, Cheryl J; Hoverman, Jason T; Tkach, Vasyl V; de Roode, Jacobus C

    2018-02-24

    Classical research on animal toxicity has focused on the role of toxins in protection against predators, but recent studies suggest these same compounds can offer a powerful defense against parasites and infectious diseases. Newts in the genus Taricha are brightly coloured and contain the potent neurotoxin, tetrodotoxin (TTX), which is hypothesized to have evolved as a defense against vertebrate predators such as garter snakes. However, newt populations often vary dramatically in toxicity, which is only partially explained by predation pressure. The primary aim of this study was to evaluate the relationships between TTX concentration and infection by parasites. By systematically assessing micro- and macroparasite infections among 345 adult newts (sympatric populations of Taricha granulosa and T. torosa), we detected 18 unique taxa of helminths, fungi, viruses and protozoans. For both newt species, per-host concentrations of TTX, which varied from undetectable to >60 μg/cm 2 skin, negatively predicted overall parasite richness as well as the likelihood of infection by the chytrid fungus, Batrachochytrium dendrobatidis, and ranavirus. No such effect was found on infection load among infected hosts. Despite commonly occurring at the same wetlands, T. torosa supported higher parasite richness and average infection load than T. granulosa. Host body size and sex (females > males) tended to positively predict infection levels in both species. For hosts in which we quantified leucocyte profiles, total white blood cell count correlated positively with both parasite richness and total infection load. By coupling data on host toxicity and infection by a broad range of micro- and macroparasites, these results suggest that-alongside its effects on predators-tetrodotoxin may help protect newts against parasitic infections, highlighting the importance of integrative research on animal chemistry, immunological defenses and natural enemy ecology. © 2018 The Authors. Journal

  7. Apicomplexan profilins in vaccine development applied to bovine neosporosis.

    Science.gov (United States)

    Mansilla, Florencia C; Capozzo, Alejandra V

    2017-12-01

    Neospora caninum, an intracellular protozoan parasite from the phylum Apicomplexa, is the etiologic agent of neosporosis, a disease considered as a major cause of reproductive loss in cattle and neuromuscular disease in dogs. Bovine neosporosis has a great economic impact in both meat and dairy industries, related to abortion, premature culling and reduced milk yields. Although many efforts have been made to restrain bovine neosporosis, there are still no efficacious control methods. Many vaccine-development studies focused in the apicomplexan proteins involved in the adhesion and invasion of the host cell. Among these proteins, profilins have recently emerged as potential vaccine antigens or even adjuvant candidates for several diseases caused by apicomplexan parasites. Profilins bind Toll-like receptors 11 and 12 initiating MyD88 signaling, that triggers IL-12 and IFN-γ production, which may promote protection against infection. Here we summarized the state-of-the-art of novel vaccine development based on apicomplexan profilins applied as antigens or adjuvants, and delved into recent advances on N. caninum vaccines using profilin in the mouse model and in cattle. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Born in an alien nest: how do social parasite male offspring escape from host aggression?

    Directory of Open Access Journals (Sweden)

    Patrick Lhomme

    Full Text Available Social parasites exploit the colony resources of social insects. Some of them exploit the host colony as a food resource or as a shelter whereas other species also exploit the brood care behavior of their social host. Some of these species have even lost the worker caste and rely completely on the host's worker force to rear their offspring. To avoid host defenses and bypass their recognition code, these social parasites have developed several sophisticated chemical infiltration strategies. These infiltration strategies have been highly studied in several hymenopterans. Once a social parasite has successfully entered a host nest and integrated its social system, its emerging offspring still face the same challenge of avoiding host recognition. However, the strategy used by the offspring to survive within the host nest without being killed is still poorly documented. In cuckoo bumblebees, the parasite males completely lack the morphological and chemical adaptations to social parasitism that the females possess. Moreover, young parasite males exhibit an early production of species-specific cephalic secretions, used as sexual pheromones. Host workers might thus be able to recognize them. Here we used a bumblebee host-social parasite system to test the hypothesis that social parasite male offspring exhibit a chemical defense strategy to escape from host aggression during their intranidal life. Using behavioral assays, we showed that extracts from the heads of young cuckoo bumblebee males contain a repellent odor that prevents parasite males from being attacked by host workers. We also show that social parasitism reduces host worker aggressiveness and helps parasite offspring acceptance.

  9. Haematophagous arthropod saliva and host defense system: a tale of tear and blood

    Directory of Open Access Journals (Sweden)

    Andrade Bruno B.

    2005-01-01

    Full Text Available The saliva from blood-feeding arthropod vectors is enriched with molecules that display diverse functions that mediate a successful blood meal. They function not only as weapons against host's haemostatic, inflammatory and immune responses but also as important tools to pathogen establishment. Parasites, virus and bacteria taking advantage of vectors' armament have adapted to facilitate their entry in the host. Today, many salivary molecules have been identified and characterized as new targets to the development of future vaccines. Here we focus on current information on vector's saliva and the molecules responsible to modify host's hemostasis and immune response, also regarding their role in disease transmission.

  10. Defensive behaviors of the Oriental armyworm Mythimna separata in response to different parasitoid species (Hymenoptera: Braconidae).

    Science.gov (United States)

    Zhou, Jincheng; Meng, Ling; Li, Baoping

    2017-01-01

    This study examined defensive behaviors of Mythimna separata (Lepidoptera: Noctuidae) larvae varying in body size in response to two parasitoids varying in oviposition behavior; Microplitis mediator females sting the host with the ovipositor after climbing onto it while Meteorus pulchricornis females make the sting by standing at a close distance from the host. Mythimna separata larvae exhibited evasive (escaping and dropping) and aggressive (thrashing) behaviors to defend themselves against parasitoids M. mediator and M. pulchricornis . Escaping and dropping did not change in probability with host body size or parasitoid species. Thrashing did not vary in frequency with host body size, yet performed more frequently in response to M. mediator than to M. pulchricornis . Parasitoid handling time and stinging likelihood varied depending not only on host body size but also on parasitoid species. Parasitoid handling time increased with host thrashing frequency, similar in slope for both parasitoids yet on a higher intercept for M. mediator than for M. pulchricornis . Handling time decreased with host size for M. pulchricornis but not for M. mediator . The likelihood of realizing an ovipositor sting decreased with thrashing frequency of both small and large hosts for M. pulchricornis , while this was true only for large hosts for M. mediator . Our results suggest that the thrashing behavior of M. separata larvae has a defensive effect on parasitism, depending on host body size and parasitoid species with different oviposition behaviors.

  11. Defensive behaviors of the Oriental armyworm Mythimna separata in response to different parasitoid species (Hymenoptera: Braconidae

    Directory of Open Access Journals (Sweden)

    Jincheng Zhou

    2017-08-01

    Full Text Available This study examined defensive behaviors of Mythimna separata (Lepidoptera: Noctuidae larvae varying in body size in response to two parasitoids varying in oviposition behavior; Microplitis mediator females sting the host with the ovipositor after climbing onto it while Meteorus pulchricornis females make the sting by standing at a close distance from the host. Mythimna separata larvae exhibited evasive (escaping and dropping and aggressive (thrashing behaviors to defend themselves against parasitoids M. mediator and M. pulchricornis. Escaping and dropping did not change in probability with host body size or parasitoid species. Thrashing did not vary in frequency with host body size, yet performed more frequently in response to M. mediator than to M. pulchricornis. Parasitoid handling time and stinging likelihood varied depending not only on host body size but also on parasitoid species. Parasitoid handling time increased with host thrashing frequency, similar in slope for both parasitoids yet on a higher intercept for M. mediator than for M. pulchricornis. Handling time decreased with host size for M. pulchricornis but not for M. mediator. The likelihood of realizing an ovipositor sting decreased with thrashing frequency of both small and large hosts for M. pulchricornis, while this was true only for large hosts for M. mediator. Our results suggest that the thrashing behavior of M. separata larvae has a defensive effect on parasitism, depending on host body size and parasitoid species with different oviposition behaviors.

  12. Bovine tuberculosis at the human-livestock-wildlife interface: Is it a public health problem in Tanzania? A review

    Directory of Open Access Journals (Sweden)

    Bugwesa Z. Katale

    2012-06-01

    Full Text Available Despite the apparent public health concern about Bovine tuberculosis (BTB in Tanzania, little has been done regarding the zoonotic importance of the disease and raising awareness of the community to prevent the disease. Bovine tuberculosis is a potential zoonotic disease that can infect a variety of hosts, including humans. The presence of multiple hosts including wild animals, inefficient diagnostic techniques, absence of defined national controls and eradication programs could impede the control of bovine TB. In Tanzania, the diagnosis of Mycobacterium bovis in animals is mostly carried out by tuberculin skin testing, meat inspection in abattoirs and only rarely using bacteriological techniques. The estimated prevalence of BTB in animals in Tanzania varies and ranges across regions from 0.2% to 13.3%, which is likely to be an underestimate if not confirmed by bacteriology or molecular techniques. Mycobacterium bovis has been detected and isolated from different animal species and has been recovered in 10% of apparently healthy wildebeest that did not show lesions at post-mortem. The transmission of the disease from animals to humans can occur directly through the aerosol route and indirectly by consumption of raw milk. This poses an emerging disease threat in the current era of HIV confection in Tanzania and elsewhere. Mycobacterium bovis is one of the causative agents of human extra pulmonary tuberculosis. In Tanzania there was a significant increase (116.6% of extrapulmonary cases reported between 1995 and 2009, suggesting the possibility of widespread M. bovis and Mycobacterium tuberculosis infection due to general rise of Human Immunodeficiency virus (HIV. This paper aims to review the potential health and economic impact of bovine tuberculosis and challenges to its control in order to safeguard human and animal population in Tanzania.

  13. Host exploitation strategies of the social parasite Maculinea alcon

    DEFF Research Database (Denmark)

    Fürst, Matthias Alois

    as model systems. These enable the study of adaptations and counter-adaptations that might evolve in the arms-race between a parasite pursuing maximum gain and a host trying to avoid exploitation. One such system is the socially parasitic butterfly Maculinea alcon and its host the ant Myrmica rubra....... Throughout the first instars M. alcon lives on a specific food plant, however, in the last instar before pupation it develops into an obligate social parasite, posing a considerably cost to its host ant colony. I here focus on the different exploitation strategies of M. alcon throughout its lifecycle...... a fitness cost to infected host ant colonies, the host ants are expected to have developed defense mechanisms in response to the presence of the social parasite. I was able to demonstrate that the efficiency of ant colonies to defend themselves against intruders depends on a multitude of often correlated...

  14. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen.

    Science.gov (United States)

    Buron-Moles, Gemma; Wisniewski, Michael; Viñas, Inmaculada; Teixidó, Neus; Usall, Josep; Droby, Samir; Torres, Rosario

    2015-01-30

    Apples are subjected to both abiotic and biotic stresses during the postharvest period, which lead to large economic losses worldwide. To obtain biochemical insights into apple defense response, we monitored the protein abundance changes (proteome), as well as the protein carbonyls (oxi-proteome) formed by reactive oxygen species (ROS) in 'Golden Smoothee' apple in response to wounding, Penicillium expansum (host) and Penicillium digitatum (non-host) pathogens with select transcriptional studies. To examine the biological relevance of the results, we described quantitative and oxidative protein changes into the gene ontology functional categories, as well as into de KEGG pathways. We identified 26 proteins that differentially changed in abundance in response to wounding, P. expansum or P. digitatum infection. While these changes showed some similarities between the apple responses and abiotic and biotic stresses, Mal d 1.03A case, other proteins as Mal d 1.03E and EF-Tu were specifically induced in response to P. digitatum infection. Using a protein carbonyl detection method based on fluorescent Bodipy, we detected and identified 27 oxidized proteins as sensitive ROS targets. These ROS target proteins were related to metabolism processes, suggesting that this process plays a leading role in apple fruit defense response against abiotic and biotic stresses. ACC oxidase and two glutamine synthetases showed the highest protein oxidation level in response to P. digitatum infection. Documenting changes in the proteome and, specifically in oxi-proteome of apple can provide information that can be used to better understand how impaired protein functions may affect apple defense mechanisms. Possible mechanisms by which these modified proteins are involved in fruit defense response are discussed. Mechanical damage in apple fruits is linked annually to large economic losses due to opportunistic infection by postharvest pathogens, such as P. expansum. Despite the current use

  15. Proteomic Analysis of Bovine Nucleolus

    Institute of Scientific and Technical Information of China (English)

    Amrutlal K.Patel; Doug Olson; Suresh K. Tikoo

    2010-01-01

    Nucleolus is the most prominent subnuclear structure, which performs a wide variety of functions in the eu-karyotic cellular processes. In order to understand the structural and functional role of the nucleoli in bovine cells,we analyzed the proteomie composition of the bovine nueleoli. The nucleoli were isolated from Madin Darby bo-vine kidney cells and subjected to proteomie analysis by LC-MS/MS after fractionation by SDS-PAGE and strongcation exchange chromatography. Analysis of the data using the Mascot database search and the GPM databasesearch identified 311 proteins in the bovine nucleoli, which contained 22 proteins previously not identified in theproteomic analysis of human nucleoli. Analysis of the identified proteins using the GoMiner software suggestedthat the bovine nueleoli contained proteins involved in ribosomal biogenesis, cell cycle control, transcriptional,translational and post-translational regulation, transport, and structural organization.

  16. Absolute Quantification of the Host-To-Parasite DNA Ratio in Theileria parva-Infected Lymphocyte Cell Lines.

    Science.gov (United States)

    Gotia, Hanzel T; Munro, James B; Knowles, Donald P; Daubenberger, Claudia A; Bishop, Richard P; Silva, Joana C

    2016-01-01

    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology and level of T. parva infections in its wildlife host, African buffalo (Syncerus caffer), and in cattle are distinct. We have developed an absolute quantification method based on quantitative PCR (qPCR) in which recombinant plasmids containing single copy genes specific to the parasite (apical membrane antigen 1 gene, ama1) or the host (hypoxanthine phosphoribosyltransferase 1, hprt1) are used as the quantification reference standards. Our study shows that T. parva and bovine cells are present in similar numbers in T. parva-infected lymphocyte cell lines and that consequently, due to its much smaller genome size, T. parva DNA comprises between 0.9% and 3% of the total DNA samples extracted from these lines. This absolute quantification assay of parasite and host genome copy number in a sample provides a simple and reliable method of assessing T. parva load in infected bovine lymphocytes, and is accurate over a wide range of host-to-parasite DNA ratios. Knowledge of the proportion of target DNA in a sample, as enabled by this method, is essential for efficient high-throughput genome sequencing applications for a variety of intracellular pathogens. This assay will also be very useful in future studies of interactions of distinct host-T. parva stocks and to fully characterize the dynamics of ECF infection in the field.

  17. Pas de deux: An Intricate Dance of Anther Smut and Its Host

    Directory of Open Access Journals (Sweden)

    Su San Toh

    2018-02-01

    Full Text Available The successful interaction between pathogen/parasite and host requires a delicate balance between fitness of the former and survival of the latter. To optimize fitness a parasite/pathogen must effectively create an environment conducive to reproductive success, while simultaneously avoiding or minimizing detrimental host defense response. The association between Microbotryum lychnidis-dioicae and its host Silene latifolia serves as an excellent model to examine such interactions. This fungus is part of a species complex that infects species of the Caryophyllaceae, replacing pollen with the fungal spores. In the current study, transcriptome analyses of the fungus and its host were conducted during discrete stages of bud development so as to identify changes in fungal gene expression that lead to spore development and to identify changes associated with infection in the host plant. In contrast to early biotrophic phase stages of infection for the fungus, the latter stages involve tissue necrosis and in the case of infected female flowers, further changes in the developmental program in which the ovary aborts and a pseudoanther is produced. Transcriptome analysis via Illumina RNA sequencing revealed enrichment of fungal genes encoding small secreted proteins, with hallmarks of effectors and genes found to be relatively unique to the Microbotryum species complex. Host gene expression analyses also identified interesting sets of genes up-regulated, including those involving stress response, host defense response, and several agamous-like MADS-box genes (AGL61 and AGL80, predicted to interact and be involved in male gametophyte development.

  18. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding1[OPEN

    Science.gov (United States)

    2016-01-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077

  19. Increasing antiviral activity of surfactant protein d trimers by introducing residues from bovine serum collectins: dissociation of mannan-binding and antiviral activity

    DEFF Research Database (Denmark)

    Hartshorn, K L; White, M R; Smith, K

    2010-01-01

    Collectins contribute to host defence through interactions with glycoconjugates on pathogen surfaces. We have prepared recombinant trimeric neck and carbohydrate recognition domains (NCRD) of collectins, and we now show that the NCRD of bovine conglutinin and CL-46 (like that of CL-43) have greater...

  20. Transcriptional Portrait of Actinobacillus pleuropneumoniae during Acute Disease - Potential Strategies for Survival and Persistence in the Host

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Rundsten, Carsten Friis; Jensen, Tim Kåre

    2012-01-01

    and survive within the hostile environment of host macrophages. This persistence within macrophages may be related to urease activity, mobilization of various stress responses and active evasion of the host defenses by cell surface sialylation. Conclusions/Significance The data presented here highlight...

  1. Immunoregulation of bovine macrophages by factors in the salivary glands of Rhipicephalus microplus

    Directory of Open Access Journals (Sweden)

    Brake Danett K

    2012-02-01

    Full Text Available Abstract Background Alternative strategies are required to control the southern cattle tick, Rhipicephalus microplus, due to evolving resistance to commercially available acaricides. This invasive ectoparasite is a vector of economically important diseases of cattle such as bovine babesiosis and anaplasmosis. An understanding of the biological intricacies underlying vector-host-pathogen interactions is required to innovate sustainable tick management strategies that can ultimately mitigate the impact of animal and zoonotic tick-borne diseases. Tick saliva contains molecules evolved to impair host innate and adaptive immune responses, which facilitates blood feeding and pathogen transmission. Antigen presenting cells are central to the development of robust T cell responses including Th1 and Th2 determination. In this study we examined changes in co-stimulatory molecule expression and cytokine response of bovine macrophages exposed to salivary gland extracts (SGE obtained from 2-3 day fed, pathogen-free adult R. microplus. Methods Peripheral blood-derived macrophages were treated for 1 hr with 1, 5, or 10 μg/mL of SGE followed by 1, 6, 24 hr of 1 μg/mL of lipopolysaccharide (LPS. Real-time PCR and cytokine ELISA were used to measure changes in co-stimulatory molecule expression and cytokine response. Results Changes were observed in co-stimulatory molecule expression of bovine macrophages in response to R. microplus SGE exposure. After 6 hrs, CD86, but not CD80, was preferentially up-regulated on bovine macrophages when treated with 1 μg/ml SGE and then LPS, but not SGE alone. At 24 hrs CD80, CD86, and CD69 expression was increased with LPS, but was inhibited by the addition of SGE. SGE also inhibited LPS induced upregulation of TNFα, IFNγ and IL-12 cytokines, but did not alter IL-4 or CD40 mRNA expression. Conclusions Molecules from the salivary glands of adult R. microplus showed bimodal concentration-, and time-dependent effects on

  2. Viral infections and bovine mastitis: a review

    NARCIS (Netherlands)

    Wellenberg, G.J.; Poel, van der W.H.M.; Oirschot, van J.T.

    2002-01-01

    This review deals with the role of viruses in the aetiology of bovine mastitis. Bovine herpesvirus 1, bovine herpesvirus 4, foot-and-mouth disease virus, and parainfluenza 3 virus have been isolated from milk from cows with clinical mastitis. Intramammary inoculations of bovine herpesvirus 1 or

  3. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium.

    Science.gov (United States)

    Pukkila-Worley, Read; Ausubel, Frederick M

    2012-02-01

    Intestinal epithelial cells provide an essential line of defense for Caernohabditis elegans against ingested pathogens. Because nematodes consume microorganisms as their food source, there has presumably been selection pressure to evolve and maintain immune defense mechanisms within the intestinal epithelium. Here we review recent advances that further define the immune signaling network within these cells and suggest mechanisms used by the nematode to monitor for infection. In reviewing studies of pathogenesis that use this simple model system, we hope to illustrate some of the basic principles of epithelial immunity that may also be of relevance in higher order hosts. Copyright © 2012. Published by Elsevier Ltd.

  4. Do host species evolve a specific response to slave-making ants?

    Directory of Open Access Journals (Sweden)

    Delattre Olivier

    2012-12-01

    Full Text Available Abstract Background Social parasitism is an important selective pressure for social insect species. It is particularly the case for the hosts of dulotic (so called slave-making ants, which pillage the brood of host colonies to increase the worker force of their own colony. Such raids can have an important impact on the fitness of the host nest. An arms race which can lead to geographic variation in host defenses is thus expected between hosts and parasites. In this study we tested whether the presence of a social parasite (the dulotic ant Myrmoxenus ravouxi within an ant community correlated with a specific behavioral defense strategy of local host or non-host populations of Temnothorax ants. Social recognition often leads to more or less pronounced agonistic interactions between non-nestmates ants. Here, we monitored agonistic behaviors to assess whether ants discriminate social parasites from other ants. It is now well-known that ants essentially rely on cuticular hydrocarbons to discriminate nestmates from aliens. If host species have evolved a specific recognition mechanism for their parasite, we hypothesize that the differences in behavioral responses would not be fully explained simply by quantitative dissimilarity in cuticular hydrocarbon profiles, but should also involve a qualitative response due to the detection of particular compounds. We scaled the behavioral results according to the quantitative chemical distance between host and parasite colonies to test this hypothesis. Results Cuticular hydrocarbon profiles were distinct between species, but host species did not show a clearly higher aggression rate towards the parasite than toward non-parasite intruders, unless the degree of response was scaled by the chemical distance between intruders and recipient colonies. By doing so, we show that workers of the host and of a non-host species in the parasitized site displayed more agonistic behaviors (bites and ejections towards parasite

  5. Subdued, a TMEM16 family Ca²⁺-activated Cl⁻channel in Drosophila melanogaster with an unexpected role in host defense.

    Science.gov (United States)

    Wong, Xiu Ming; Younger, Susan; Peters, Christian J; Jan, Yuh Nung; Jan, Lily Y

    2013-11-05

    TMEM16A and TMEM16B are calcium-activated chloride channels (CaCCs) with important functions in mammalian physiology. Whether distant relatives of the vertebrate TMEM16 families also form CaCCs is an intriguing open question. Here we report that a TMEM16 family member from Drosophila melanogaster, Subdued (CG16718), is a CaCC. Amino acid substitutions of Subdued alter the ion selectivity and kinetic properties of the CaCC channels heterologously expressed in HEK 293T cells. This Drosophila channel displays characteristics of classic CaCCs, thereby providing evidence for evolutionarily conserved biophysical properties in the TMEM16 family. Additionally, we show that knockout flies lacking subdued gene activity more readily succumb to death caused by ingesting the pathogenic bacteria Serratia marcescens, suggesting that subdued has novel functions in Drosophila host defense. DOI: http://dx.doi.org/10.7554/eLife.00862.001.

  6. The effect of water limitation on volatile emission, tree defense response, and brood success of Dendroctonus ponderosae in two pine hosts, lodgepole and jack pine

    Directory of Open Access Journals (Sweden)

    Inka eLusebrink

    2016-02-01

    Full Text Available The mountain pine beetle (MPB; Dendroctonus ponderosae has recently expanded its range from lodgepole pine forest into the lodgepole × jack pine hybrid zone in central Alberta, within which it has attacked pure jack pine. This study tested the effects of water limitation on tree defense response of mature lodgepole and jack pine (Pinus contorta and Pinus banksiana trees in the field. Tree defense response was initiated by inoculation of trees with the MPB-associated fungus Grosmannia clavigera and measured through monoterpene emission from tree boles and concentration of defensive compounds in phloem, needles, and necrotic tissues. Lodgepole pine generally emitted higher amounts of monoterpenes than jack pine; particularly from fungal-inoculated trees. Compared to non-inoculated trees, fungal inoculation increased monoterpene emission in both species, whereas water treatment had no effect on monoterpene emission. The phloem of both pine species contains (--α-pinene, the precursor of the beetle’s aggregation pheromone, however lodgepole pine contains two times as much as jack pine. The concentration of defensive compounds was 70-fold greater in the lesion tissue in jack pine, but only 10-fold in lodgepole pine compared to healthy phloem tissue in each species, respectively. Water-deficit treatment inhibited an increase of L-limonene as response to fungal inoculation in lodgepole pine phloem. The amount of myrcene in jack pine phloem was higher in water-deficit trees compared to ambient trees. Beetles reared in jack pine were not affected by either water or biological treatment, whereas beetles reared in lodgepole pine benefited from fungal inoculation by producing larger and heavier female offspring. Female beetles that emerged from jack pine bolts contained more fat than those that emerged from lodgepole pine, even though lodgepole pine phloem had a higher nitrogen content than jack pine phloem. These results suggest that jack pine chemistry

  7. 21 CFR 184.1034 - Catalase (bovine liver).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Catalase (bovine liver). 184.1034 Section 184.1034... Listing of Specific Substances Affirmed as GRAS § 184.1034 Catalase (bovine liver). (a) Catalase (bovine liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is...

  8. Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection.

    Directory of Open Access Journals (Sweden)

    Evgeny A Glazov

    Full Text Available MicroRNA (miRNA and other types of small regulatory RNAs play a crucial role in the regulation of gene expression in eukaryotes. Several distinct classes of small regulatory RNAs have been discovered in recent years. To extend the repertoire of small RNAs characterized in mammals and to examine relationship between host miRNA expression and viral infection we used Illumina's ultrahigh throughput sequencing approach. We sequenced three small RNA libraries prepared from cell line derived from the adult bovine kidney under normal conditions and upon infection of the cell line with Bovine herpesvirus 1. We used a bioinformatics approach to distinguish authentic mature miRNA sequences from other classes of small RNAs and short RNA fragments represented in the sequencing data. Using this approach we detected 219 out of 356 known bovine miRNAs and 115 respective miRNA* sequences. In addition we identified five new bovine orthologs of known mammalian miRNAs and discovered 268 new cow miRNAs many of which are not identifiable in other mammalian genomes and thus might be specific to the ruminant lineage. In addition we found seven new bovine mirtron candidates. We also discovered 10 small nucleolar RNA (snoRNA loci that give rise to small RNA with possible miRNA-like function. Results presented in this study extend our knowledge of the biology and evolution of small regulatory RNAs in mammals and illuminate mechanisms of small RNA biogenesis and function. New miRNA sequences and the original sequencing data have been submitted to miRNA repository (miRBase and NCBI GEO archive respectively. We envisage that these resources will facilitate functional annotation of the bovine genome and promote further functional and comparative genomics studies of small regulatory RNA in mammals.

  9. Clinical applications of bovine colostrum therapy

    DEFF Research Database (Denmark)

    Rathe, Mathias; Müller, Klaus; Sangild, Per Torp

    2014-01-01

    Bovine colostrum, the first milk that cows produce after parturition, contains high levels of growth factors and immunomodulatory components. Some healthy and diseased individuals may gain health benefits by consuming bovine colostrum as a food supplement. This review provides a systematic...... to populations, outcomes, and methodological quality, as judged by the Jadad assessment tool. Many studies used surrogate markers to study the effects of bovine colostrum. Studies suggesting clinical benefits of colostrum supplementation were generally of poor methodological quality, and results could...... not be confirmed by other investigators. Bovine colostrum may provide gastrointestinal and immunological benefits, but further studies are required before recommendations can be made for clinical application. Animal models may help researchers to better understand the mechanisms of bovine colostrum supplementation...

  10. Expression of host defense peptides in the intestine of Eimeria-challenged chickens.

    Science.gov (United States)

    Su, S; Dwyer, D M; Miska, K B; Fetterer, R H; Jenkins, M C; Wong, E A

    2017-07-01

    Avian coccidiosis is caused by the intracellular protozoan Eimeria, which produces intestinal lesions leading to weight gain depression. Current control methods include vaccination and anticoccidial drugs. An alternative approach involves modulating the immune system. The objective of this study was to profile the expression of host defense peptides such as avian beta-defensins (AvBDs) and liver expressed antimicrobial peptide 2 (LEAP2), which are part of the innate immune system. The mRNA expression of AvBD family members 1, 6, 8, 10, 11, 12, and 13 and LEAP2 was examined in chickens challenged with either E. acervulina, E. maxima, or E. tenella. The duodenum, jejunum, ileum, and ceca were collected 7 d post challenge. In study 1, E. acervulina challenge resulted in down-regulation of AvBD1, AvBD6, AvBD10, AvBD11, AvBD12, and AvBD13 in the duodenum. E. maxima challenge caused down-regulation of AvBD6, AvBD10, and AvBD11 in the duodenum, down-regulation of AvBD10 in the jejunum, but up-regulation of AvBD8 and AvBD13 in the ceca. E. tenella challenge showed no change in AvBD expression in any tissue. In study 2, which involved challenge with only E. maxima, there was down-regulation of AvBD1 in the ileum, AvBD11 in the jejunum and ileum, and LEAP2 in all 3 segments of the small intestine. The expression of LEAP2 was further examined by in situ hybridization in the jejunum of chickens from study 2. LEAP2 mRNA was expressed similarly in the enterocytes lining the villi, but not in the crypts of control and Eimeria challenged chickens. The lengths of the villi in the Eimeria challenged chickens were less than those in the control chickens, which may in part account for the observed down-regulation of LEAP2 mRNA quantified by PCR. Overall, the AvBD response to Eimeria challenge was not consistent; whereas LEAP2 was consistently down-regulated, which suggests that LEAP2 plays an important role in modulating an Eimeria infection. Published by Oxford University Press on

  11. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    International Nuclear Information System (INIS)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin; Xiong, Wei; Sun, Wei; Yang, Chongwen; Zhang, Kai; Wang, Ying; Liu, Hongrong; Huang, Xiaojun; Ji, Gang; Sun, Fei; Zheng, Congyi; Zhu, Ping

    2014-01-01

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure represents a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process

  12. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Xiong, Wei [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luo-jia-shan, Wuhan, Hubei 430072 (China); Sun, Wei; Yang, Chongwen; Zhang, Kai; Wang, Ying [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Hongrong [College of Physics and Information Science, Hunan Normal University, Changsha, Hunan 410081 (China); Huang, Xiaojun; Ji, Gang; Sun, Fei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Zheng, Congyi, E-mail: cctcc202@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luo-jia-shan, Wuhan, Hubei 430072 (China); Zhu, Ping, E-mail: zhup@ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-02-15

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure represents a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.

  13. The bovine QTL viewer: a web accessible database of bovine Quantitative Trait Loci

    Directory of Open Access Journals (Sweden)

    Xavier Suresh R

    2006-06-01

    Full Text Available Abstract Background Many important agricultural traits such as weight gain, milk fat content and intramuscular fat (marbling in cattle are quantitative traits. Most of the information on these traits has not previously been integrated into a genomic context. Without such integration application of these data to agricultural enterprises will remain slow and inefficient. Our goal was to populate a genomic database with data mined from the bovine quantitative trait literature and to make these data available in a genomic context to researchers via a user friendly query interface. Description The QTL (Quantitative Trait Locus data and related information for bovine QTL are gathered from published work and from existing databases. An integrated database schema was designed and the database (MySQL populated with the gathered data. The bovine QTL Viewer was developed for the integration of QTL data available for cattle. The tool consists of an integrated database of bovine QTL and the QTL viewer to display QTL and their chromosomal position. Conclusion We present a web accessible, integrated database of bovine (dairy and beef cattle QTL for use by animal geneticists. The viewer and database are of general applicability to any livestock species for which there are public QTL data. The viewer can be accessed at http://bovineqtl.tamu.edu.

  14. A novel mechanism for NETosis provides antimicrobial defense at the oral mucosa

    DEFF Research Database (Denmark)

    Mohanty, Tirthankar; Sjögren, Jonathan; Kahn, Fredrik

    2015-01-01

    Neutrophils are essential for host defense at the oral mucosa and neutropenia or functional neutrophil defects lead to disordered oral homeostasis. We found that neutrophils from the oral mucosa harvested from morning saliva had released neutrophil extracellular traps (undergone NETosis) in vivo...

  15. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy.

    Science.gov (United States)

    Chen, Shuliang; Yu, Xiao; Guo, Deyin

    2018-01-16

    Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.

  16. Host Diet Affects the Morphology of Monarch Butterfly Parasites.

    Science.gov (United States)

    Hoang, Kevin; Tao, Leiling; Hunter, Mark D; de Roode, Jacobus C

    2017-06-01

    Understanding host-parasite interactions is essential for ecological research, wildlife conservation, and health management. While most studies focus on numerical traits of parasite groups, such as changes in parasite load, less focus is placed on the traits of individual parasites such as parasite size and shape (parasite morphology). Parasite morphology has significant effects on parasite fitness such as initial colonization of hosts, avoidance of host immune defenses, and the availability of resources for parasite replication. As such, understanding factors that affect parasite morphology is important in predicting the consequences of host-parasite interactions. Here, we studied how host diet affected the spore morphology of a protozoan parasite ( Ophryocystis elektroscirrha ), a specialist parasite of the monarch butterfly ( Danaus plexippus ). We found that different host plant species (milkweeds; Asclepias spp.) significantly affected parasite spore size. Previous studies have found that cardenolides, secondary chemicals in host plants of monarchs, can reduce parasite loads and increase the lifespan of infected butterflies. Adding to this benefit of high cardenolide milkweeds, we found that infected monarchs reared on milkweeds of higher cardenolide concentrations yielded smaller parasites, a potentially hidden characteristic of cardenolides that may have important implications for monarch-parasite interactions.

  17. Feed intake and weight changes in Bos indicus-Bos taurus crossbred steers following Bovine Viral Diarrhea Virus Type 1b challenge under production conditions

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) has major impacts on beef cattle production worldwide, but the understanding of host animal genetic influence on illness is limited. This study evaluated rectal temperature, weight change and feed intake in Bos indicus crossbred steers (n = 366) that were challenge...

  18. Lactic Acid Bacteria Isolated from Bovine Mammary Microbiota: Potential Allies against Bovine Mastitis.

    Science.gov (United States)

    Bouchard, Damien S; Seridan, Bianca; Saraoui, Taous; Rault, Lucie; Germon, Pierre; Gonzalez-Moreno, Candelaria; Nader-Macias, Fatima M E; Baud, Damien; François, Patrice; Chuat, Victoria; Chain, Florian; Langella, Philippe; Nicoli, Jacques; Le Loir, Yves; Even, Sergine

    2015-01-01

    Bovine mastitis is a costly disease in dairy cattle worldwide. As of yet, the control of bovine mastitis is mostly based on prevention by thorough hygienic procedures during milking. Additional strategies include vaccination and utilization of antibiotics. Despite these measures, mastitis is not fully under control, thus prompting the need for alternative strategies. The goal of this study was to isolate autochthonous lactic acid bacteria (LAB) from bovine mammary microbiota that exhibit beneficial properties that could be used for mastitis prevention and/or treatment. Sampling of the teat canal led to the isolation of 165 isolates, among which a selection of ten non-redundant LAB strains belonging to the genera Lactobacillus and Lactococcus were further characterized with regard to several properties: surface properties (hydrophobicity, autoaggregation); inhibition potential of three main mastitis pathogens, Staphylococcus aureus, Escherichia coli and Streptococcus uberis; colonization capacities of bovine mammary epithelial cells (bMEC); and immunomodulation properties. Three strains, Lactobacillus brevis 1595 and 1597 and Lactobacillus plantarum 1610, showed high colonization capacities and a medium surface hydrophobicity. These strains are good candidates to compete with pathogens for mammary gland colonization. Moreover, nine strains exhibited anti-inflammatory properties, as illustrated by the lower IL-8 secretion by E. coli-stimulated bMEC in the presence of these LAB. Full genome sequencing of five candidate strains allowed to check for undesirable genetic elements such as antibiotic resistance genes and to identify potential bacterial determinants involved in the beneficial properties. This large screening of beneficial properties while checking for undesirable genetic markers allowed the selection of promising candidate LAB strains from bovine mammary microbiota for the prevention and/or treatment of bovine mastitis.

  19. Lactic Acid Bacteria Isolated from Bovine Mammary Microbiota: Potential Allies against Bovine Mastitis.

    Directory of Open Access Journals (Sweden)

    Damien S Bouchard

    Full Text Available Bovine mastitis is a costly disease in dairy cattle worldwide. As of yet, the control of bovine mastitis is mostly based on prevention by thorough hygienic procedures during milking. Additional strategies include vaccination and utilization of antibiotics. Despite these measures, mastitis is not fully under control, thus prompting the need for alternative strategies. The goal of this study was to isolate autochthonous lactic acid bacteria (LAB from bovine mammary microbiota that exhibit beneficial properties that could be used for mastitis prevention and/or treatment. Sampling of the teat canal led to the isolation of 165 isolates, among which a selection of ten non-redundant LAB strains belonging to the genera Lactobacillus and Lactococcus were further characterized with regard to several properties: surface properties (hydrophobicity, autoaggregation; inhibition potential of three main mastitis pathogens, Staphylococcus aureus, Escherichia coli and Streptococcus uberis; colonization capacities of bovine mammary epithelial cells (bMEC; and immunomodulation properties. Three strains, Lactobacillus brevis 1595 and 1597 and Lactobacillus plantarum 1610, showed high colonization capacities and a medium surface hydrophobicity. These strains are good candidates to compete with pathogens for mammary gland colonization. Moreover, nine strains exhibited anti-inflammatory properties, as illustrated by the lower IL-8 secretion by E. coli-stimulated bMEC in the presence of these LAB. Full genome sequencing of five candidate strains allowed to check for undesirable genetic elements such as antibiotic resistance genes and to identify potential bacterial determinants involved in the beneficial properties. This large screening of beneficial properties while checking for undesirable genetic markers allowed the selection of promising candidate LAB strains from bovine mammary microbiota for the prevention and/or treatment of bovine mastitis.

  20. Early Transcriptional Responses of Bovine Chorioallantoic Membrane Explants to Wild Type, ΔvirB2 or ΔbtpB Brucella abortus Infection

    Science.gov (United States)

    Mol, Juliana P. S.; Costa, Erica A.; Carvalho, Alex F.; Sun, Yao-Hui; Tsolis, Reneé M.; Paixão, Tatiane A.; Santos, Renato L.

    2014-01-01

    The pathogenesis of the Brucella-induced inflammatory response in the bovine placenta is not completely understood. In this study we evaluated the role of the B. abortus Type IV secretion system and the anti-inflammatory factor BtpB in early interactions with bovine placental tissues. Transcription profiles of chorioallantoic membrane (CAM) explants inoculated with wild type (strain 2308), ΔvirB2 or ΔbtpB Brucella abortus were compared by microarray analysis at 4 hours post infection. Transcripts with significant variation (>2 fold change; Pabortus resulted in slightly more genes with decreased than increased transcription levels. Conversely, infection of trophoblastic cells with the ΔvirB2 or the ΔbtpB mutant strains, that lack a functional T4SS or that has impaired inhibition of TLR signaling, respectively, induced more upregulated than downregulated genes. Wild type Brucella abortus impaired transcription of host genes related to immune response when compared to ΔvirB and ΔbtpB mutants. Our findings suggest that proinflammatory genes are negatively modulated in bovine trophoblastic cells at early stages of infection. The virB operon and btpB are directly or indirectly related to modulation of these host genes. These results shed light on the early interactions between B. abortus and placental tissue that ultimately culminate in inflammatory pathology and abortion. PMID:25259715

  1. Stress responses in Streptococcus species and their effects on the host.

    Science.gov (United States)

    Nguyen, Cuong Thach; Park, Sang-Sang; Rhee, Dong-Kwon

    2015-11-01

    Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.

  2. Immune recognition of salivary proteins from the cattle tick Rhipicephalus microplus differs according to the genotype of the bovine host

    NARCIS (Netherlands)

    Garcia, Gustavo Rocha; Maruyama, Sandra Regina; Nelson, Kristina T; Ribeiro, José Marcos Chaves; Gardinassi, Luiz Gustavo; Maia, Antonio Augusto Mendes; Ferreira, Beatriz Rossetti; Kooyman, Frans N J; de Miranda Santos, Isabel K F

    2017-01-01

    BACKGROUND: Males of the cattle tick Rhipicephalus microplus produce salivary immunoglobulin-binding proteins and allotypic variations in IgG are associated with tick loads in bovines. These findings indicate that antibody responses may be essential to control tick infestations. Infestation loads

  3. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, A

    2006-08-30

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the

  4. Application of SYNROC to high-level defense wastes

    International Nuclear Information System (INIS)

    Tewhey, J.D.; Hoenig, C.L.; Newkirk, H.W.; Rozsa, R.B.; Coles, D.G.; Ryerson, F.J.

    1981-01-01

    The SYNROC method for immobilization of high-level nuclear reactor wastes is currently being applied to US defense wastes in tank storage at Savannah River, South Carolina. The minerals zirconolite, perovskite, and hollandite are used in SYNROC D formulations to immobilize fission products and actinides that comprise up to 10% of defense waste sludges and coexisting solutions. Additional phase in SYNROC D are nepheline, the host phase for sodium; and spinel, the host for excess aluminum and iron. Up to 70 wt % of calcined sludge can be incorporated with 30 wt % of SYNROC additives to produce a waste form consisting of 10% nepheline, 30% spinel, and approximately 20% each of the radioactive waste-bearing phases. Urea coprecipitation and spray drying/calcining methods have been used in the laboratory to produce homogeneous, reactive ceramic powders. Hot pressing and sintering at temperatures from 1000 to 1100 0 C result in waste form products with greater than 97% of theoretical density. Hot isostatic pressing has recently been implemented as a processing alternative. Characterization of waste-form mineralogy has been done by means of XRD, SEM, and electron microprobe. Leaching of SYNROC D samples is currently being carried out. Assessment of radiation damage effects and physical properties of SYNROC D will commence in FY81

  5. Antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni

    Science.gov (United States)

    Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all t...

  6. Bovine immunity - a driver for diversity in Theileria parasites?

    Science.gov (United States)

    McKeever, Declan J

    2009-06-01

    Theileria parva and Theileria annulata are tick-borne parasites of cattle that infect and transform leukocytes, causing severe and often fatal parasitic leukoses. Both species provoke strong immunity against subsequent infection. However, considerable diversity is observed in field populations of each parasite and protection is only assured against homologous challenge. The life cycles of these parasites are complex and involve prolonged exposure to host and vector defence mechanisms. Although the relevant vector mechanisms are poorly defined, protective responses of cattle seem to be tightly focused and variable in their specificity between individuals. This review considers whether bovine immunity acts as a driver for diversity in T. parva and T. annulata and explores other factors that might underlie genetic variation in these parasites.

  7. Identification of Novel Host Interactors of Effectors Secreted by Salmonella and Citrobacter

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Nakayasu, Ernesto S.; Brown, Roslyn N.; Niemann, George S.; Sydor, Michael A.; Sanchez, Octavio; Ansong, Charles; Lu, Shao-Yeh; Choi, Hyungwon; Valleau, Dylan; Weitz, Karl K.; Savchenko, Alexei; Cambronne, Eric D.; Adkins, Joshua N.; McFall-Ngai, Margaret J.

    2016-07-12

    Many pathogenic bacteria of the familyEnterobacteriaceaeuse type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from theEnterobacteriaceaeintracellular pathogensSalmonella entericaserovar Typhimurium andCitrobacter rodentium. We identified 54 high-confidence host interactors for theSalmonellaeffectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for theCitrobactereffectors EspT, NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfHSalmonellaprotein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction.

    IMPORTANCEDuring infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets ofSalmonellaandCitrobactereffectors, which will help elucidate their mechanisms of

  8. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation.

    Science.gov (United States)

    Marsolier, J; Perichon, M; DeBarry, J D; Villoutreix, B O; Chluba, J; Lopez, T; Garrido, C; Zhou, X Z; Lu, K P; Fritsch, L; Ait-Si-Ali, S; Mhadhbi, M; Medjkane, S; Weitzman, J B

    2015-04-16

    Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack their genetic and epigenetic machinery to change host cell phenotypic states. Among the Apicomplexa phylum of obligate intracellular parasites, which cause veterinary and human diseases, Theileria is the only genus that transforms its mammalian host cells. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-1 (ref. 2). The transformed phenotypes are reversed by treatment with the theilericidal drug buparvaquone. We used comparative genomics to identify a homologue of the peptidyl-prolyl isomerase PIN1 in T. annulata (TaPIN1) that is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPIN1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7, leading to its degradation and subsequent stabilization of c-JUN, which promotes transformation. We performed in vitro and in silico analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPIN1 is directly inhibited by the anti-parasite drug buparvaquone (and other known PIN1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerization is thus a conserved mechanism that is important in cancer and is used by Theileria parasites to manipulate host oncogenic signalling.

  9. Technical note: a pilot study using a mouse mastitis model to study differences between bovine associated coagulase-negative staphylococci.

    Science.gov (United States)

    Breyne, K; De Vliegher, S; De Visscher, A; Piepers, S; Meyer, E

    2015-02-01

    Coagulase-negative staphylococci (CNS) are a group of bacteria classified as either minor mastitis pathogens or commensal microbiota. Recent research suggests species- and even strain-related epidemiological and genetic differences within the large CNS group. The current pilot study investigated in 2 experiments whether a mouse mastitis model validated for bovine Staphylococcus aureus can be used to explore further differences between CNS species and strains. In a first dose titration experiment, a low inoculum dose of S. aureus Newbould 305 (positive control) was compared with increasing inoculum doses of a Staphylococcus chromogenes strain originating from a chronic bovine intramammary infection to a sham-inoculated mammary glands (negative control). In contrast to the high bacterial growth following inoculation with S. aureus, S. chromogenes was retrieved in very low levels at 24 h postinduction (p.i.). In a second experiment, the inflammation inflicted by 3 CNS strains was studied in mice. The host immune response induced by the S. chromogenes intramammary strain was compared with the one induced by a Staphylococcus fleurettii strain originating from cow bedding sawdust and by a S. chromogenes strain originating from a teat apex of a heifer. As expected, at 28 and 48 h p.i., low bacterial growth and local neutrophil influx in the mammary gland were induced by all CNS strains. As hypothesized, bacterial growth p.i. was the lowest for S. fleurettii compared with that induced by the 2 S. chromogenes strains, and the overall immune response established by the 3 CNS strains was less pronounced compared with the one induced by S. aureus. Proinflammatory cytokine profiling revealed that S. aureus locally induced IL-6 and IL-1β but not TNF-α, whereas, overall, CNS-inoculated glands lacked a strong cytokine host response but also induced IL-1β locally. Compared with both other CNS strains, S. chromogenes from the teat apex inflicted a more variable IL-1β response

  10. Radioimmunoassay of bovine heart protein kinase

    International Nuclear Information System (INIS)

    Fleischer, N.; Rosen, O.M.; Reichlin, M.

    1976-01-01

    Immunization of guinea pigs with bovine cardiac cAMP-dependent protein kinase (ATP : protein phosphotransferase, EC 2.7.1.37) resulted in the development of precipitating antibodies to the cAMP-binding subunit of the enzyme. Both the phosphorylated and nonphosphorylated cAMP-binding protein of the protein kinase reacted with the antiserum. A radioimmunoassay was developed that detects 10 ng of holoenzyme and permits measurement of enzyme concentrations in bovine cardiac muscle. Bovine liver, kidney, brain, and skeletal muscle contain protein kinases which are immunologically identical to those found in bovine cardiac muscle. However, the proportion of immunoreactive enzyme activity differed for each tissue. All of the immunologically nonreactive enzyme in skeletal muscle and heart was separable from immunoreactive enzyme by chromatography on DEAE-cellulose. Rat tissues and pig heart contained protein kinase activity that cross reacted immunologically in a nonparallel fashion with bovine cardiac enzyme. These results indicate that cAMP-dependent protein kinases within and between species are immunologically heterogeneous

  11. Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    Full Text Available The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context--which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans--is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.

  12. Chemical and mechanical defenses vary among maternal lines and leaf ages in Verbascum thapsus L. (Scrophulariaceae and reduce palatability to a generalist insect.

    Directory of Open Access Journals (Sweden)

    Christina Alba

    Full Text Available Intra-specific variation in host-plant quality affects herbivore foraging decisions and, in turn, herbivore foraging decisions mediate plant fitness. In particular, variation in defenses against herbivores, both among and within plants, shapes herbivore behavior. If variation in defenses is genetically based, it can respond to natural selection by herbivores. We quantified intra-specific variation in iridoid glycosides, trichome length, and leaf strength in common mullein (Verbascum thapsus L, Scrophulariaceae among maternal lines within a population and among leaves within plants, and related this variation to feeding preferences of a generalist herbivore, Trichopulsia ni Hübner. We found significant variation in all three defenses among maternal lines, with T. ni preferring plants with lower investment in chemical, but not mechanical, defense. Within plants, old leaves had lower levels of all defenses than young leaves, and were strongly preferred by T. ni. Caterpillars also preferred leaves with trichomes removed to leaves with trichomes intact. Differences among maternal lines indicate that phenotypic variation in defenses likely has a genetic basis. Furthermore, these results reveal that the feeding behaviors of T. ni map onto variation in plant defense in a predictable way. This work highlights the importance of variation in host-plant quality in driving interactions between plants and their herbivores.

  13. Chemical and mechanical defenses vary among maternal lines and leaf ages in Verbascum thapsus L. (Scrophulariaceae) and reduce palatability to a generalist insect.

    Science.gov (United States)

    Alba, Christina; Bowers, M Deane; Blumenthal, Dana; Hufbauer, Ruth A

    2014-01-01

    Intra-specific variation in host-plant quality affects herbivore foraging decisions and, in turn, herbivore foraging decisions mediate plant fitness. In particular, variation in defenses against herbivores, both among and within plants, shapes herbivore behavior. If variation in defenses is genetically based, it can respond to natural selection by herbivores. We quantified intra-specific variation in iridoid glycosides, trichome length, and leaf strength in common mullein (Verbascum thapsus L, Scrophulariaceae) among maternal lines within a population and among leaves within plants, and related this variation to feeding preferences of a generalist herbivore, Trichopulsia ni Hübner. We found significant variation in all three defenses among maternal lines, with T. ni preferring plants with lower investment in chemical, but not mechanical, defense. Within plants, old leaves had lower levels of all defenses than young leaves, and were strongly preferred by T. ni. Caterpillars also preferred leaves with trichomes removed to leaves with trichomes intact. Differences among maternal lines indicate that phenotypic variation in defenses likely has a genetic basis. Furthermore, these results reveal that the feeding behaviors of T. ni map onto variation in plant defense in a predictable way. This work highlights the importance of variation in host-plant quality in driving interactions between plants and their herbivores.

  14. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    Science.gov (United States)

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  15. Overcompensation of herbivore reproduction through hyper-suppression of plant defenses in response to competition.

    Science.gov (United States)

    Schimmel, Bernardus C J; Ataide, Livia M S; Chafi, Rachid; Villarroel, Carlos A; Alba, Juan M; Schuurink, Robert C; Kant, Merijn R

    2017-06-01

    Spider mites are destructive arthropod pests on many crops. The generalist herbivorous mite Tetranychus urticae induces defenses in tomato (Solanum lycopersicum) and this constrains its fitness. By contrast, the Solanaceae-specialist Tetranychus evansi maintains a high reproductive performance by suppressing tomato defenses. Tetranychus evansi outcompetes T. urticae when infesting the same plant, but it is unknown whether this is facilitated by the defenses of the plant. We assessed the extent to which a secondary infestation by a competitor affects local plant defense responses (phytohormones and defense genes), mite gene expression and mite performance. We observed that T. evansi switches to hyper-suppression of defenses after its tomato host is also invaded by its natural competitor T. urticae. Jasmonate (JA) and salicylate (SA) defenses were suppressed more strongly, albeit only locally at the feeding site of T. evansi, upon introduction of T. urticae to the infested leaflet. The hyper-suppression of defenses coincided with increased expression of T. evansi genes coding for salivary defense-suppressing effector proteins and was paralleled by an increased reproductive performance. Together, these observations suggest that T. evansi overcompensates its reproduction through hyper-suppression of plant defenses in response to nearby competitors. We hypothesize that the competitor-induced overcompensation promotes competitive population growth of T. evansi on tomato. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Depletion of dendritic cells enhances innate anti-bacterial host defense through modulation of phagocyte homeostasis.

    Directory of Open Access Journals (Sweden)

    Stella E Autenrieth

    2012-02-01

    Full Text Available Dendritic cells (DCs as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye. We used CD11c-diphtheria toxin (DT mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection.

  17. 76 FR 38602 - Bovine Tuberculosis and Brucellosis; Program Framework

    Science.gov (United States)

    2011-07-01

    ...] Bovine Tuberculosis and Brucellosis; Program Framework AGENCY: Animal and Plant Health Inspection Service... framework being developed for the bovine tuberculosis and brucellosis programs in the United States. This... proposed revisions to its programs regarding bovine tuberculosis (TB) and bovine brucellosis in the United...

  18. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Bentancor Marcel

    2007-10-01

    Full Text Available Abstract Background Vascular plants respond to pathogens by activating a diverse array of defense mechanisms. Studies with these plants have provided a wealth of information on pathogen recognition, signal transduction and the activation of defense responses. However, very little is known about the infection and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The purpose of this study was to determine: i whether two representative broad host range pathogens, Erwinia carotovora ssp. carotovora (E.c. carotovora and Botrytis cinerea (B. cinerea, could infect Physcomitrella, and ii whether B. cinerea, elicitors of a harpin (HrpN producing E.c. carotovora strain (SCC1 or a HrpN-negative strain (SCC3193, could cause disease symptoms and induce defense responses in Physcomitrella. Results B. cinerea and E.c. carotovora were found to readily infect Physcomitrella gametophytic tissues and cause disease symptoms. Treatments with B. cinerea spores or cell-free culture filtrates from E.c. carotovoraSCC1 (CF(SCC1, resulted in disease development with severe maceration of Physcomitrella tissues, while CF(SCC3193 produced only mild maceration. Although increased cell death was observed with either the CFs or B. cinerea, the occurrence of cytoplasmic shrinkage was only visible in Evans blue stained protonemal cells treated with CF(SCC1 or inoculated with B. cinerea. Most cells showing cytoplasmic shrinkage accumulated autofluorescent compounds and brown chloroplasts were evident in a high proportion of these cells. CF treatments and B. cinerea inoculation induced the expression of the defense-related genes: PR-1, PAL, CHS and LOX. Conclusion B. cinerea and E.c. carotovora elicitors induce a defense response in Physcomitrella, as evidenced by enhanced expression of conserved plant defense-related genes. Since cytoplasmic shrinkage is the most common morphological change observed in plant PCD, and that harpins and B

  19. Bovine Herpesvirus 4 infections and bovine mastitis

    NARCIS (Netherlands)

    Wellenberg, Gerardus Johannus

    2002-01-01

    Mastitis is an often occurring disease in dairy cattle with an enormous economic impact for milk producers worldwide. Despite intensive research, which is historically based on the detection of bacterial udder pathogens, still around 20-35% of clinical cases of bovine mastitis have an unknown

  20. LukMF′ is the major secreted leukocidin of bovine Staphylococcus aureus and is produced in vivo during bovine mastitis

    Science.gov (United States)

    Vrieling, Manouk; Boerhout, Eveline M.; van Wigcheren, Glenn F.; Koymans, Kirsten J.; Mols-Vorstermans, Tanja G.; de Haas, Carla J. C.; Aerts, Piet C.; Daemen, Ineke J. J. M.; van Kessel, Kok P. M.; Koets, Ad P.; Rutten, Victor P. M. G.; Nuijten, Piet J.M.; van Strijp, Jos A. G.; Benedictus, Lindert

    2016-01-01

    Staphylococcus aureus is a major human and animal pathogen and a common cause of mastitis in cattle. S. aureus secretes several leukocidins that target bovine neutrophils, crucial effector cells in the defence against bacterial pathogens. In this study, we investigated the role of staphylococcal leukocidins in the pathogenesis of bovine S. aureus disease. We show that LukAB, in contrast to the γ-hemolysins, LukED, and LukMF′, was unable to kill bovine neutrophils, and identified CXCR2 as a bovine receptor for HlgAB and LukED. Furthermore, we assessed functional leukocidin secretion by bovine mastitis isolates and observed that, although leukocidin production was strain dependent, LukMF′ was most abundantly secreted and the major toxin killing bovine neutrophils. To determine the role of LukMF′ in bovine mastitis, cattle were challenged with high (S1444) or intermediate (S1449, S1463) LukMF′-producing isolates. Only animals infected with S1444 developed severe clinical symptoms. Importantly, LukM was produced in vivo during the course of infection and levels in milk were associated with the severity of mastitis. Altogether, these findings underline the importance of LukMF′ as a virulence factor and support the development of therapeutic approaches targeting LukMF′ to control S. aureus mastitis in cattle. PMID:27886237

  1. Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions.

    Science.gov (United States)

    Dörmann, Peter; Kim, Hyeran; Ott, Thomas; Schulze-Lefert, Paul; Trujillo, Marco; Wewer, Vera; Hückelhoven, Ralph

    2014-12-01

    Plant cells dynamically change their architecture and molecular composition following encounters with beneficial or parasitic microbes, a process referred to as host cell reprogramming. Cell-autonomous defense reactions are typically polarized to the plant cell periphery underneath microbial contact sites, including de novo cell wall biosynthesis. Alternatively, host cell reprogramming converges in the biogenesis of membrane-enveloped compartments for accommodation of beneficial bacteria or invasive infection structures of filamentous microbes. Recent advances have revealed that, in response to microbial encounters, plasma membrane symmetry is broken, membrane tethering and SNARE complexes are recruited, lipid composition changes and plasma membrane-to-cytoskeleton signaling is activated, either for pre-invasive defense or for microbial entry. We provide a critical appraisal on recent studies with a focus on how plant cells re-structure membranes and the associated cytoskeleton in interactions with microbial pathogens, nitrogen-fixing rhizobia and mycorrhiza fungi. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues

    Directory of Open Access Journals (Sweden)

    Namgyu Kim

    2016-10-01

    Full Text Available Tomato yellow leaf curl virus (TYLCV, a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins—two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein—were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection.

  3. Aspartic protease activities of schistosomes cleave mammalian hemoglobins in a host-specific manner

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    2007-02-01

    Full Text Available We examined the efficiency of digestion of hemoglobin from four mammalian species, human, cow, sheep, and horse by acidic extracts of mixed sex adults of Schistosoma japonicum and S. mansoni. Activity ascribable to aspartic protease(s from S. japonicum and S. mansoni cleaved human hemoglobin. In addition, aspartic protease activities from S. japonicum cleaved hemoglobin from bovine, sheep, and horse blood more efficiently than did the activity from extracts of S. mansoni. These findings support the hypothesis that substrate specificity of hemoglobin-degrading proteases employed by blood feeding helminth parasites influences parasite host species range; differences in amino acid sequences in key sites of the parasite proteases interact less or more efficiently with the hemoglobins of permissive or non-permissive hosts.

  4. Influence of specific amino acid side-chains on the antimicrobial activity and structure of bovine lactoferrampin.

    Science.gov (United States)

    Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2012-06-01

    Lactoferrin is an 80 kDa iron binding protein found in the secretory fluids of mammals and it plays a major role in host defence. An antimicrobial peptide, lactoferrampin, was identified through sequence analysis of bovine lactoferrin and its antimicrobial activity against a wide range of bacteria and yeast species is well documented. In the present work, the contribution of specific amino acid residues of lactoferrampin was examined to evaluate the role that they play in membrane binding and bilayer disruption. The structures of all the bovine lactoferrampin derivatives were examined with circular dichroism and nuclear magnetic resonance spectroscopy, and their interactions with phospholipids were evaluated with differential scanning calorimetry and isothermal titration calorimetry techniques. From our results it is apparent that the amphipathic N-terminal helix anchors the peptide to membranes with Trp 268 and Phe 278 playing important roles in determining the strength of the interaction and for inducing peptide folding. In addition, the N-terminal helix capping residues (DLI) increase the affinity for negatively charged vesicles and they mediate the depth of membrane insertion. Finally, the unique flexibility in the cationic C-terminal region of bovine lactoferrampin does not appear to be essential for the antimicrobial activity of the peptide.

  5. Heterogeneity of Bovine Peripheral Blood Monocytes

    Directory of Open Access Journals (Sweden)

    Jamal Hussen

    2017-12-01

    Full Text Available Peripheral blood monocytes of several species can be divided into different subpopulations with distinct phenotypic and functional properties. Herein, we aim at reviewing published work regarding the heterogeneity of the recently characterized bovine monocyte subsets. As the heterogeneity of human blood monocytes was widely studied and reviewed, this work focuses on comparing bovine monocyte subsets with their human counterparts regarding their phenotype, adhesion and migration properties, inflammatory and antimicrobial functions, and their ability to interact with neutrophilic granulocytes. In addition, the differentiation of monocyte subsets into functionally polarized macrophages is discussed. Regarding phenotype and distribution in blood, bovine monocyte subsets share similarities with their human counterparts. However, many functional differences exist between monocyte subsets from the two species. In contrast to their pro-inflammatory functions in human, bovine non-classical monocytes show the lowest phagocytosis and reactive oxygen species generation capacity, an absent ability to produce the pro-inflammatory cytokine IL-1β after inflammasome activation, and do not have a role in the early recruitment of neutrophils into inflamed tissues. Classical and intermediate monocytes of both species also differ in their response toward major monocyte-attracting chemokines (CCL2 and CCL5 and neutrophil degranulation products (DGP in vitro. Such differences between homologous monocyte subsets also extend to the development of monocyte-derived macrophages under the influence of chemokines like CCL5 and neutrophil DGP. Whereas the latter induce the differentiation of M1-polarized macrophages in human, bovine monocyte-derived macrophages develop a mixed M1/M2 macrophage phenotype. Although only a few bovine clinical trials analyzed the correlation between changes in monocyte composition and disease, they suggest that functional differences between

  6. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs.

    Directory of Open Access Journals (Sweden)

    Xiangfang Zeng

    Full Text Available Dietary modulation of the synthesis of endogenous host defense peptides (HDPs represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections. However, HDP regulation by dietary compounds such as butyrate is species-dependent. To examine whether butyrate could induce HDP expression in pigs, we evaluated the expressions of a panel of porcine HDPs in IPEC-J2 intestinal epithelial cells, 3D4/31 macrophages, and primary monocytes in response to sodium butyrate treatment by real-time PCR. We revealed that butyrate is a potent inducer of multiple, but not all, HDP genes. Porcine β-defensin 2 (pBD2, pBD3, epididymis protein 2 splicing variant C (pEP2C, and protegrins were induced markedly in response to butyrate, whereas pBD1 expression remained largely unaltered in any cell type. Additionally, a comparison of the HDP-inducing efficacy among saturated free fatty acids of different aliphatic chain lengths revealed that fatty acids containing 3-8 carbons showed an obvious induction of HDP expression in IPEC-J2 cells, with butyrate being the most potent and long-chain fatty acids having only a marginal effect. We further investigated a panel of butyrate analogs for their efficacy in HDP induction, and found glyceryl tributyrate, benzyl butyrate, and 4-phenylbutyrate to be comparable with butyrate. Identification of butyrate and several analogs with a strong capacity to induce HDP gene expression in pigs provides attractive candidates for further evaluation of their potential as novel alternatives to antibiotics in augmenting innate immunity and disease resistance of pigs.

  7. Distance and sex determine host plant choice by herbivorous beetles.

    Directory of Open Access Journals (Sweden)

    Daniel J Ballhorn

    Full Text Available Plants respond to herbivore damage with the release of volatile organic compounds (VOCs. This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores?We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis when facing lima bean plants (Fabaceae: Phaseolus lunatus with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials.Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a slightly damaged

  8. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities.

    Science.gov (United States)

    Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  9. Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Julie A Peterson

    2016-11-01

    Full Text Available Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically-, plant toxin-, plant nutrient-, and/or physically-mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  10. Variation in plant defense against invasive herbivores: evidence for a hypersensitive response in eastern hemlocks (Tsuga canadensis).

    Science.gov (United States)

    Radville, Laura; Chaves, Arielle; Preisser, Evan L

    2011-06-01

    Herbivores can trigger a wide array of morphological and chemical changes in their host plants. Feeding by some insects induces a defensive hypersensitive response, a defense mechanism consisting of elevated H(2)O(2) levels and tissue death at the site of herbivore feeding. The invasive hemlock woolly adelgid Adelges tsugae ('HWA') and elongate hemlock scale Fiorinia externa ('EHS') feed on eastern hemlocks; although both are sessile sap feeders, HWA causes more damage than EHS. The rapid rate of tree death following HWA infestation has led to the suggestion that feeding induces a hypersensitive response in hemlock trees. We assessed the potential for an herbivore-induced hypersensitive response in eastern hemlocks by measuring H(2)O(2) levels in foliage from HWA-infested, EHS-infested, and uninfested trees. Needles with settled HWA or EHS had higher H(2)O(2) levels than control needles, suggesting a localized hypersensitive plant response. Needles with no direct contact to settled HWA also had high H(2)O(2) levels, suggesting that HWA infestation may induce a systemic defense response in eastern hemlocks. There was no similar systemic defensive response in the EHS treatment. Our results showed that two herbivores in the same feeding guild had dramatically different outcomes on the health of their shared host.

  11. Bovine besnoitiosis emerging in Central-Eastern Europe, Hungary

    OpenAIRE

    Hornok, Sándor; Fedák, András; Baska, Ferenc; Hofmann-Lehmann, Regina; Basso, Walter

    2014-01-01

    BACKGROUND: Besnoitia besnoiti, the cause of bovine besnoitiosis, is a cyst-forming coccidian parasite that has recently been shown to be spreading in several Western and Southern European countries. FINDINGS: Clinical cases of bovine besnoitiosis were confirmed for the first time in Hungary, by histological, serological and PCR analyses. CONCLUSIONS: This is the first report of autochthonous bovine besnoitiosis in Central-Eastern Europe. The emergence of bovine besnoitiosis in this region re...

  12. The phage-host arms race: Shaping the evolution of microbes

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Adi [Weizmann Inst. of Science, Rehovot (Israel). Dept. of Molecular Genetics; Sorek, Rotem [Weizmann Inst. of Science, Rehovot (Israel). Dept. of Molecular Genetics

    2010-10-26

    Bacteria, the most abundant organisms on the planet, are outnumbered by a factor of 10 to 1 by phages that infect them. Faced with the rapid evolution and turnover of phage particles, bacteria have evolved various mechanisms to evade phage infection and killing, leading to an evolutionary arms race. The extensive co-evolution of both phage and host has resulted in considerable diversity on the part of both bacterial and phage defensive and offensive strategies. In this paper, we discuss the unique and common features of phage resistance mechanisms and their role in global biodiversity. Finally, the commonalities between defense mechanisms suggest avenues for the discovery of novel forms of these mechanisms based on their evolutionary traits.

  13. A review on bovine besnoitiosis: a disease with economic impact in herd health management, caused by Besnoitia besnoiti (Franco and Borges, ).

    Science.gov (United States)

    Cortes, Helder; Leitão, Alexandre; Gottstein, Bruno; Hemphill, Andrew

    2014-09-01

    Bovine besnoitiosis is caused by the largely unexplored apicomplexan parasite Besnoitia besnoiti. In cows, infection during pregnancy often results in abortion, and chronically infected bulls become infertile. Similar to other apicomplexans B. besnoiti has acquired a largely intracellular lifestyle, but its complete life cycle is still unknown, modes of transmission have not been entirely resolved and the definitive host has not been identified. Outbreaks of bovine besnoitiosis in cattle were described in the 1990s in Portugal and Spain, and later several cases were also detected in France. More cases have been reported recently in hitherto unaffected countries, including Italy, Germany, Switzerland, Hungary and Croatia. To date, there is still no effective pharmaceutical compound available for the treatment of besnoitiosis in cattle, and progress in the identification of novel targets for intervention through pharmacological or immunological means is hampered by the lack of molecular data on the genomic and transcriptomic level. In addition, the lack of an appropriate small animal laboratory model, and wide gaps in our knowledge on the host-parasite interplay during the life cycle of this parasite, renders vaccine and drug development a cost- and labour-intensive undertaking.

  14. Determining fertility in a bovine subject comprises detecting in a sample from the bovine subject the presence or absence of genetic marker alleles associated with a trait indicative of fertility of the bovine subject and/or off-spring

    DEFF Research Database (Denmark)

    2009-01-01

    NOVELTY - Determining fertility in a bovine subject comprises detecting in a sample from the bovine subject the presence or absence of two or more genetic marker alleles that are associated with a trait indicative of fertility of the bovine subject and/or off-spring. USE - The methods are useful...... for determining fertility in a bovine subject; and selecting bovine subjects for breeding purposes (all claimed). DETAILED DESCRIPTION - Determining fertility in a bovine subject comprises detecting in a sample from the bovine subject the presence or absence of two or more genetic marker alleles...... that are associated with a trait indicative of fertility of the bovine subject and/or off-spring, where the two or more genetic marker alleles are single nucleotide polymorphisms selected from Hapmap60827-rs29019866, ARS-BFGL-NGS-40979, Hapmap47854-BTA-119090, ARS-BFGL-NGS-114679, Hapmap43841-BTA-34601, Hapmap43407...

  15. Adaptation to the Host Environment by Plant-Pathogenic Fungi.

    Science.gov (United States)

    van der Does, H Charlotte; Rep, Martijn

    2017-08-04

    Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.

  16. Transcriptome and microRNome of Theileria annulata Host Cells

    KAUST Repository

    Rchiad, Zineb

    2016-06-01

    Tropical Theileriosis is a parasitic disease of calves with a profound economic impact caused by Theileria annulata, an apicomplexan parasite of the genus Theileria. Transmitted by Hyalomma ticks, T. annulata infects and transforms bovine lymphocytes and macrophages into a cancer-like phenotype characterized by all six hallmarks of cancer. In the current study we investigate the transcriptional landscape of T. annulata-infected lymphocytes to define genes and miRNAs regulated by host cell transformation using next generation sequencing. We also define genes and miRNAs differentially expressed as a result of the attenuation of a T.annulata-infected macrophage cell line used as a vaccine. By comparing the transcriptional landscape of one attenuated and two transformed cell lines we identify four genes that we propose as key factors in transformation and virulence of the T. annulata host cells. We also identify miR- 126-5p as a key regulator of infected cells proliferation, adhesion, survival and invasiveness. In addition to the host cell trascriptome we studied T. annulata transcriptome and identified the role of ROS and TGF-β2 in controlling parasite gene expression. Moreover, we have used the deep parasite ssRNA-seq data to refine the available T. annulata annotation. Taken together, this study provides the full list of host cell’s genes and miRNAs transcriptionally perturbed after infection with T. annulata and after attenuation and describes genes and miRNAs never identified before as players in this type of host cell transformation. Moreover, this study provides the first database for the transcriptome of T. annulata and its host cells using next generation sequencing.

  17. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis

    NARCIS (Netherlands)

    Juffermans, N. P.; Florquin, S.; Camoglio, L.; Verbon, A.; Kolk, A. H.; Speelman, P.; van Deventer, S. J.; van der Poll, T.

    2000-01-01

    Interleukin (IL)-1 signaling is required for the containment of infections with intracellular microorganisms, such as Listeria monocytogenes and Leishmania major. To determine the role of IL-1 in the host response to tuberculosis, we infected IL-1 type I receptor-deficient (IL-1R(-/-)) mice, in

  18. The use of lyophilised bovine bone xenograft in mandibular reconstructive surgery - an animal experimental surgery

    International Nuclear Information System (INIS)

    Samsudin, A.R.; Meor Kamal, M. Z.; Afifi Abu Bakar

    1999-01-01

    The aim of this study is to look at the effectiveness of using lyophillised bovine bone xenograft in mandibular reconstructive surgery. Six adult merino sheep underwent bilateral marginal block resection of the mandible under general anaesthesia. The defect on the right body of mandible was left alone while the similar mandibulectomy defect on the left body of mandible was reconstructed using a cortico-cancellous block of radiosterilised lyophillised bovine bone xenograft which was procured from a calve femur. The bone xenograft was fixed and immobilized using titanium mini plates and screws. All the sheep returned to the controlled grazing ground on the 7th. Postoperative day. One sheep was sacrificed every month and the mandible was retrieved for postmortem gross and microscopical histological examination. Clinical results showed no evidence of tissue rejection in the mandible of the sheep and all the wounds healed well. All sheep showed no problem with normal eating habits. Histological examination showed resorption of the xenograft very early at one month postoperative and xenograft resorption together with new host bone deposition started at 2 months postoperative and maximise at 6 months postoperative. There is also evidence showing that the cancellous portion resorp more than the cortical portion of the xenograft. In conclusion, cortico-cancellous blocks of bovine bone xenograft may be use in mandibular reconstructive surgery giving esthetically acceptable, functional, biocompatible and overall clinically predictable results

  19. High-level expression, purification and antibacterial activity of bovine lactoferricin and lactoferrampin in Photorhabdus luminescens.

    Science.gov (United States)

    Tang, Zhiru; Zhang, Youming; Stewart, Adrian Francis; Geng, Meimei; Tang, Xiangsha; Tu, Qiang; Yin, Yulong

    2010-10-01

    Bovine lactoferricin (LFC) and bovine lactoferrampin (LFA) are two active fragments located in the N(1)-domain of bovine lactoferrin. Recent studies suggested that LFC and LFA have broad-spectrum activity against Gram-positive and Gram-negative bacteria. To date, LFC and LFA have usually been produced from milk. We report here the high-level expression, purification and characterization of LFC and LFA using the Photorhabdus luminescens expression system. After the cipA and cipB genes were deleted by ET recombination, the expression host P. luminescens TZR(001) was constructed. A synthetic LFC-LFA gene containing LFC and LFA was fused with the cipB gene to form a cipB-LFC-LFA gene. To obtain the expression vector pBAD-cipB-LFC-LFA, the cipB-LFC-LFA gene was cloned on the L-arabinose-inducible expression vector pBAD24. pBAD-cipB-LFC-LFA was transformed into P. luminescens TZR(001). The cipB-LFC-LFA fusion protein was expressed under the induction of L-arabinose and its yield reached 12 mg L(-1) bacterial culture. Recombinant LFC-LFA was released from cipB by pepsin. The MIC of recombinant LFC-LFA toward E. coli 0149, 0141 and 020 was 6.25, 12.5 and 3.175 microg ml(-1), respectively. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Repeatability of host female and male aggression towards a brood parasite

    Czech Academy of Sciences Publication Activity Database

    Trnka, A.; Požgayová, Milica; Samaš, P.; Honza, Marcel

    2013-01-01

    Roč. 119, č. 10 (2013), s. 907-917 ISSN 0179-1613 R&D Projects: GA ČR(CZ) GAP506/12/2404 Institutional support: RVO:68081766 Keywords : Cuckoo Cuculus canorus * Great reed warblers * Nest defense * Behavioral syndromes * Plumage polymorphism * Enemy recognition * Potential hosts * Practical guide * Zebra finches Subject RIV: EG - Zoology Impact factor: 1.556, year: 2013

  1. Towards an integrated defense system for cyber security situation awareness experiment

    Science.gov (United States)

    Zhang, Hanlin; Wei, Sixiao; Ge, Linqiang; Shen, Dan; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    In this paper, an implemented defense system is demonstrated to carry out cyber security situation awareness. The developed system consists of distributed passive and active network sensors designed to effectively capture suspicious information associated with cyber threats, effective detection schemes to accurately distinguish attacks, and network actors to rapidly mitigate attacks. Based on the collected data from network sensors, image-based and signals-based detection schemes are implemented to detect attacks. To further mitigate attacks, deployed dynamic firewalls on hosts dynamically update detection information reported from the detection schemes and block attacks. The experimental results show the effectiveness of the proposed system. A future plan to design an effective defense system is also discussed based on system theory.

  2. Chlamydia infection across host species boundaries promotes distinct sets of transcribed anti-apoptotic factors.

    Directory of Open Access Journals (Sweden)

    Joshua eMessinger

    2015-12-01

    Full Text Available Chlamydiae, obligate intracellular bacteria, cause significant human and veterinary associated diseases. Having emerged an estimated 700-million years ago, these bacteria have twice adapted to humans as a host species, causing sexually transmitted infection (C. trachomatis and respiratory associated disease (C. pneumoniae. The principle mechanism of host cell defense against these intracellular bacteria is the induction of cell death via apoptosis. However, in the arms race of co-evolution, Chlamydiae have developed mechanisms to promote cell viability and inhibit cell death. Herein we examine the impact of Chlamydiae infection across multiple host species on transcription of anti-apoptotic genes. We found mostly distinct patterns of gene expression (Mcl1 and cIAPs elicited by each pathogen-host pair indicating Chlamydiae infection across host species boundaries does not induce a universally shared host response. Understanding species specific host-pathogen interactions is paramount to deciphering how potential pathogens become emerging diseases.

  3. Sexing bovine pre-implantation embryos using the polymerase ...

    African Journals Online (AJOL)

    The paper aims to present a bovine model for human embryo sexing. Cows were super-ovulated, artificially inseminated and embryos were recovered 7 days later. Embryo biopsy was performed; DNA was extracted from blastomeres and amplified using bovine-specific and bovine-Y-chromosomespecific primers, followed ...

  4. Cloning and sequencing of the bovine gastrin gene

    DEFF Research Database (Denmark)

    Lund, T; Rehfeld, J F; Olsen, Jørgen

    1989-01-01

    In order to deduce the primary structure of bovine preprogastrin we therefore sequenced a gastrin DNA clone isolated from a bovine liver cosmid library. Bovine preprogastrin comprises 104 amino acids and consists of a signal peptide, a 37 amino acid spacer-sequence, the gastrin-34 sequence followed...

  5. Direct and indirect plant defenses are not suppressed by endosymbionts of a specialist root herbivore

    Science.gov (United States)

    Insect endosymbionts influence many important metabolic and developmental processes of their host. It has been speculated that they may also help to manipulate and suppress plant defenses to the benefit of herbivores. Recently, endosymbionts of the root herbivore Diabrotica virgifera virgifera have ...

  6. Defense Business Board

    Science.gov (United States)

    Skip to main content (Press Enter). Toggle navigation Defense Business Board Search Search Defense Business Board: Search Search Defense Business Board: Search Defense Business Board Business Excellence in Defense of the Nation Defense Business Board Home Charter Members Meetings Studies Contact Us The Defense

  7. Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection.

    Science.gov (United States)

    Kandhavelu, Jeyalakshmi; Demonte, Naveen Luke; Namperumalsamy, Venkatesh Prajna; Prajna, Lalitha; Thangavel, Chitra; Jayapal, Jeya Maheshwari; Kuppamuthu, Dharmalingam

    2017-01-30

    Aspergillus flavus and Fusarium sp. are primary causative agents of keratitis that results in corneal tissue damage leading to vision loss particularly in individuals from the tropical parts of the world. Proteins in the tear film collected from control and keratitis patients was profiled and compared. A total of 1873 proteins from control and 1400 proteins from patient tear were identified by mass spectrometry. While 847 proteins were found to be glycosylated in the patient tear, only 726 were glycosylated in control tear. And, some of the tear proteins showed alterations in their glycosylation pattern after infection. Complement system proteins, proteins specific for neutrophil extracellular traps and proteins involved in would healing were found only in the patient tear. The presence of these innate immune system proteins in the tear film of patients supports the previous data indicating the involvement of neutrophil and complement pathways in antifungal defense. High levels of wound healing proteins in keratitis patient tear implied activation of tissue repair during infection. The early appearance of the host defense proteins and wound healing response indicates that tear proteins could be used as an early marker system for monitoring the progression of pathogenesis. Identification of negative regulators of the above defense pathways in keratitis tear indicates an intricate balance of pro and anti-defense mechanisms operating in fungal infection of the eye. Tear proteins from control and mycotic keratitis patients were separated into glycoproteins and non-glycosylated proteins and then identified by mass spectrometry. Tear proteins from keratitis patients showed alteration in the glycosylation pattern indicating the alteration of glycosylation machinery due to infection. Neutrophil extracellular traps specific proteins, complement pathway proteins, as well as wound healing proteins, were found only in patient tear showing the activation of antifungal defense

  8. MicroRNA-2400 promotes bovine preadipocyte proliferation

    International Nuclear Information System (INIS)

    Wei, Yao; Cui, Ya Feng; Tong, Hui Li; Zhang, Wei Wei; Yan, Yun Qin

    2016-01-01

    MicroRNAs (miRNAs) play critical roles in the proliferation of bovine preadipocytes. miR-2400 is a novel and unique miRNA from bovines. In the present study, we separated and identified preadipocytes from bovine samples. miR-2400 overexpression increased the rate of preadipocyte proliferation, which was analyzed with a combination of EdU and flow cytometry. Simultaneously, functional genes related to proliferation (PCNA, CCND2, CCNB1) were also increased, which was detected by real-time PCR. Furthermore, luciferase reporter assays showed that miR-2400 bound directly to the 3'untranslated regions (3′UTRs) of PRDM11 mRNA. These data suggested that miR-2400 could promote preadipocyte proliferation by targeting PRDM11. - Highlights: • miRNAs are important in bovine preadipocyte proliferation. • miR-2400 is a novel miRNA from bovines. • miR-2400 overexpression increased preadipocyte proliferation. • Functional genes related to preadipocyte proliferation were upregulated. • Preadipocyte proliferation was promoted by targeting PRDM11.

  9. Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes.

    Science.gov (United States)

    Killackey, Samuel A; Sorbara, Matthew T; Girardin, Stephen E

    2016-01-01

    Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general.

  10. Decellularization and Delipidation Protocols of Bovine Bone and Pericardium for Bone Grafting and Guided Bone Regeneration Procedures.

    Directory of Open Access Journals (Sweden)

    Chiara Gardin

    Full Text Available The combination of bone grafting materials with guided bone regeneration (GBR membranes seems to provide promising results to restore bone defects in dental clinical practice. In the first part of this work, a novel protocol for decellularization and delipidation of bovine bone, based on multiple steps of thermal shock, washes with detergent and dehydration with alcohol, is described. This protocol is more effective in removal of cellular materials, and shows superior biocompatibility compared to other three methods tested in this study. Furthermore, histological and morphological analyses confirm the maintenance of an intact bone extracellular matrix (ECM. In vitro and in vivo experiments evidence osteoinductive and osteoconductive properties of the produced scaffold, respectively. In the second part of this study, two methods of bovine pericardium decellularization are compared. The osmotic shock-based protocol gives better results in terms of removal of cell components, biocompatibility, maintenance of native ECM structure, and host tissue reaction, in respect to the freeze/thaw method. Overall, the results of this study demonstrate the characterization of a novel protocol for the decellularization of bovine bone to be used as bone graft, and the acquisition of a method to produce a pericardium membrane suitable for GBR applications.

  11. Myxoma virus in the European rabbit: interactions between the virus and its susceptible host.

    Science.gov (United States)

    Stanford, Marianne M; Werden, Steven J; McFadden, Grant

    2007-01-01

    Myxoma virus (MV) is a poxvirus that evolved in Sylvilagus lagomorphs, and is the causative agent of myxomatosis in European rabbits (Oryctolagus cuniculus). This virus is not a natural pathogen of O. cuniculus, yet is able to subvert the host rabbit immune system defenses and cause a highly lethal systemic infection. The interaction of MV proteins and the rabbit immune system has been an ideal model to help elucidate host/poxvirus interactions, and has led to a greater understanding of how other poxvirus pathogens are able to cause disease in their respective hosts. This review will examine how MV causes myxomatosis, by examining a selection of the identified immunomodulatory proteins that this virus expresses to subvert the immune and inflammatory pathways of infected rabbit hosts.

  12. Thrombocytopenia impairs host defense in gram-negative pneumonia-derived sepsis in mice

    NARCIS (Netherlands)

    de Stoppelaar, Sacha F.; van 't Veer, Cornelis; Claushuis, Theodora A. M.; Albersen, Bregje J. A.; Roelofs, Joris J. T. H.; van der Poll, Tom

    2014-01-01

    Thrombocytopenia is a common finding in sepsis and associated with a worse outcome. We used a mouse model of pneumonia-derived sepsis caused by the human pathogen Klebsiella pneumoniae to study the role of platelets in host response to sepsis. Platelet counts (PCs) were reduced to less than a median

  13. Advances in lactoferrin research concerning bovine mastitis.

    Science.gov (United States)

    Shimazaki, Kei-Ichi; Kawai, Kazuhiro

    2017-02-01

    Lactoferrin is a multifunctional, iron-binding glycoprotein found in milk and other exocrine secretions. Lactoferrin in milk plays vital roles in the healthy development of newborn mammals, and is also an innate resistance factor involved in the prevention of mammary gland infection by microorganisms. Inflammation of the udder because of bacterial infection is referred to as mastitis. There have been many investigations into the relationships between lactoferrin and mastitis, which fall into several categories. The main categories are fluctuations in the lactoferrin concentration of milk, lactoferrin activity against mastitis pathogens, elucidation of the processes underlying the onset of mastitis, participation of lactoferrin in the immune system, and utilization of lactoferrin in mastitis treatment and prevention. This minireview describes lactoferrin research concerning bovine mastitis. In the 1970s, many researchers reported that the lactoferrin concentration fluctuates in milk from cows with mastitis. From the late 1980s, many studies clarified the infection-defense mechanism in the udder and the contribution of lactoferrin to the immune system. After the year 2000, the processes underlying the onset of mastitis were elucidated in vivo and in vitro, and lactoferrin was applied for the treatment and prevention of mastitis.

  14. Bovine petechial fever (Ondiri disease).

    Science.gov (United States)

    Davies, G

    1993-02-01

    Bovine petechial fever is a Rickettsial disease of cattle, which has been diagnosed, only in Kenya, East Africa. Other countries in the region share some of the biotopes in which the disease occurs, and may well have the infection. The disease is characterised by widespread petechial and ecchymotic haemorrhages on the mucosal surfaces, and throughout the serosal and subserosal surfaces of the body organs and cavities. It may be fatal in up to 50% of untreated cases. The causal organism may be demonstrated most readily in the cytoplasm of polymorphonuclear granulocytes of the peripheral blood, as well as other leucocytes, and has been classified as Cytoecetes ondirii, a member of the tribe Ehrlichiae. Circumstantial and other evidence suggests that the disease is transmitted by an arthropod vector, which has yet to be identified. The blood of a naturally infected wild ruminant, the bushbuck, Tragelaphus scriptus has been shown to remain infective for at least 2 years, and other species such as the African buffalo, Syncercus caffer for at least 5 weeks. These and possibly other species, may serve as the amplifying and reservoir hosts.

  15. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity.

    Directory of Open Access Journals (Sweden)

    Georgina Fabro

    2011-11-01

    Full Text Available Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis. We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70% of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP-triggered immunity (PTI. We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether

  16. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions.

    Science.gov (United States)

    Butt, T M; Coates, C J; Dubovskiy, I M; Ratcliffe, N A

    2016-01-01

    Although many insects successfully live in dangerous environments exposed to diverse communities of microbes, they are often exploited and killed by specialist pathogens. Studies of host-pathogen interactions (HPI) provide valuable insights into the dynamics of the highly aggressive coevolutionary arms race between entomopathogenic fungi (EPF) and their arthropod hosts. The host defenses are designed to exclude the pathogen or mitigate the damage inflicted while the pathogen responds with immune evasion and utilization of host resources. EPF neutralize their immediate surroundings on the insect integument and benefit from the physiochemical properties of the cuticle and its compounds that exclude competing microbes. EPF also exhibit adaptations aimed at minimizing trauma that can be deleterious to both host and pathogen (eg, melanization of hemolymph), form narrow penetration pegs that alleviate host dehydration and produce blastospores that lack immunogenic sugars/enzymes but facilitate rapid assimilation of hemolymph nutrients. In response, insects deploy an extensive armory of hemocytes and macromolecules, such as lectins and phenoloxidase, that repel, immobilize, and kill EPF. New evidence suggests that immune bioactives work synergistically (eg, lysozyme with antimicrobial peptides) to combat infections. Some proteins, including transferrin and apolipophorin III, also demonstrate multifunctional properties, participating in metabolism, homeostasis, and pathogen recognition. This review discusses the molecular intricacies of these HPI, highlighting the interplay between immunity, stress management, and metabolism. Increased knowledge in this area could enhance the efficacy of EPF, ensuring their future in integrated pest management programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Host evasion by Burkholderia cenocepacia

    Directory of Open Access Journals (Sweden)

    Shyamala eGanesan

    2012-01-01

    Full Text Available Burkholderia cenocepacia is an opportunistic respiratory pathogen of individuals with cystic fibrosis (CF. It is one of the highly transmissible species of Burkholderia cepacia complex and very resistant to almost all the antibiotics. Approximately 1/3rd of B. cenocepacia infected CF patients go on to develop fatal ‘cepacia syndrome’. During the last two decades, substantial progress has been made with regards to evasion of host innate defense mechanisms by B. cenocepacia. Almost all strains of B. cenocepacia has capacity to survive and replicate intracellularly in both airway epithelial cells and macrophages, which are primary centennials of the lung and play a pivotal role in clearance of infecting bacteria. Some strains of B. cenocepaica, which express cable pili and the associated 22kDa adhesin are also capable of transmigrating across airway epithelium and persist in mouse models of infection. In this review, we will discuss how this type of interaction between B. cenocepacia and host may lead to persistence of bacteria and contribute to lung inflammation in CF patients.

  18. Insights into the bovine rumen plasmidome

    Science.gov (United States)

    Kav, Aya Brown; Sasson, Goor; Jami, Elie; Doron-Faigenboim, Adi; Benhar, Itai; Mizrahi, Itzhak

    2012-01-01

    Plasmids are self-replicating genetic elements capable of mobilization between different hosts. Plasmids often serve as mediators of lateral gene transfer, a process considered to be a strong and sculpting evolutionary force in microbial environments. Our aim was to characterize the overall plasmid population in the environment of the bovine rumen, which houses a complex and dense microbiota that holds enormous significance for humans. We developed a procedure for the isolation of total rumen plasmid DNA, termed rumen plasmidome, and subjected it to deep sequencing using the Illumina paired-end protocol and analysis using public and custom-made bioinformatics tools. A large number of plasmidome contigs aligned with plasmids of rumen bacteria isolated from different locations and at various time points, suggesting that not only the bacterial taxa, but also their plasmids, are defined by the ecological niche. The bacterial phylum distribution of the plasmidome was different from that of the rumen bacterial taxa. Nevertheless, both shared a dominance of the phyla Firmicutes, Bacteroidetes, and Proteobacteria. Evidently, the rumen plasmidome is of a highly mosaic nature that can cross phyla. Interestingly, when we compared the functional profile of the rumen plasmidome to two plasmid databases and two recently published rumen metagenomes, it became apparent that the rumen plasmidome codes for functions, which are enriched in the rumen ecological niche and could confer advantages to their hosts, suggesting that the functional profiles of mobile genetic elements are associated with their environment, as has been previously implied for viruses. PMID:22431592

  19. An experimental infection model for reproduction of calf pneumonia with bovine respiratory syncytial virus (BRSV) based on one combined exposure of calves

    DEFF Research Database (Denmark)

    Tjørnehøj, Kirsten; Uttenthal, Åse; Viuff, B.

    2003-01-01

    Bovine respiratory syncytial virus (BRSV) has been recognised as an important pathogen in calf pneumonia for 30 years, but surprisingly few effective infection models for studies of the immune response and the pathogenesis in the natural host have been established. We present a reproducible...... disease. This model is a valuable tool for the study of the pathogenesis of BRSV and for vaccine efficacy studies....

  20. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  1. Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity.

    Science.gov (United States)

    Fedele, Giorgio; Schiavoni, Ilaria; Adkins, Irena; Klimova, Nela; Sebo, Peter

    2017-09-21

    Adenylate cyclase toxin (CyaA) is released in the course of B. pertussis infection in the host's respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC), macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3',5'-cyclic adenosine monophosphate (cAMP), which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.

  2. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism.

    Science.gov (United States)

    Adams, Aaron S; Aylward, Frank O; Adams, Sandye M; Erbilgin, Nadir; Aukema, Brian H; Currie, Cameron R; Suen, Garret; Raffa, Kenneth F

    2013-06-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment.

  3. Bacteriophage ΦSA012 Has a Broad Host Range against Staphylococcus aureus and Effective Lytic Capacity in a Mouse Mastitis Model

    Directory of Open Access Journals (Sweden)

    Hidetomo Iwano

    2018-01-01

    Full Text Available Bovine mastitis is an inflammation of the mammary gland caused by bacterial infection in dairy cattle. It is the most costly disease in the dairy industry because of the high use of antibiotics. Staphylococcus aureus is one of the major causative agents of bovine mastitis and antimicrobial resistance. Therefore, new strategies to control bacterial infection are required in the dairy industry. One potential strategy is bacteriophage (phage therapy. In the present study, we examined the host range of previously isolated S. aureus phages ΦSA012 and ΦSA039 against S. aureus strains isolated from mastitic cows. These phages could kill all S. aureus (93 strains from 40 genotypes and methicillin-resistant S. aureus (six strains from six genotypes strains tested. Using a mouse mastitis model, we demonstrated that ΦSA012 reduced proliferation of S. aureus and inflammation in the mammary gland. Furthermore, intravenous or intraperitoneal phage administration reduced proliferation of S. aureus in the mammary glands. These results suggest that broad host range phages ΦSA012 is potential antibacterial agents for dairy production medicine.

  4. Survival of Bemisia tabaci and activity of plant defense-related enzymes in genotypes of Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Luis Latournerie-Moreno

    2015-03-01

    Full Text Available The whitefly Bemisia tabaci (Gennadius, 1889 is a major plant pest of horticultural crops from the families Solanaceae, Fabaceae and Cucurbitaceae in Neotropical areas. The exploration of host plant resistance and their biochemical mechanisms offers an excellent alternative to better understand factors affecting the interaction between phytophagous insect and host plant. We evaluated the survival of B. tabaci in landrace genotypes of Capsicum annuum L., and the activity of plant defense-related enzymes (chitinase, polyphenoloxidase, and peroxidase. The landrace genotypes Amaxito, Tabaquero, and Simojovel showed resistance to B. tabaci, as we observed more than 50% nymphal mortality, while in the commercial susceptible genotype Jalapeño mortality of B. tabaci nymphs was not higher than 20%. The activities of plant defense-related enzymes were significantly different among pepper genotypes (P < 0.05. Basal activities of chitinase, polyphenoloxidase and peroxidase were significantly lower or equal in landrace genotypes than that of the commercial genotype Jalapeño. The activity of plant enzymes was differential among pepper genotypes (P < 0.05. For example, the activity of chitinase enzyme generally was higher in non-infested plants with B. tabaci than those infested. Instead polyphenoloxidase ('Amaxito' and 'Simojovel' and peroxidase enzymes activities ('Tabaquero' increased in infested plants (P < 0.05. We conclude that basal activities of plant defense-related enzymes could be act through other mechanism plant induction, since plant defense-related enzymes showed a different induction response to B. tabaci. We underlined the role of polyphenoloxidase as plant defense in the pepper genotype Simojovel related to B. tabaci.

  5. In vitro permissiveness of bovine neutrophils and monocyte derived macrophages to Leishmania donovani of Ethiopian isolate.

    Science.gov (United States)

    Tasew, Geremew; Gadisa, Endalamaw; Abera, Adugna; Zewude, Aboma; Chanyalew, Menberework; Aseffa, Abraham; Abebe, Markos; Ritter, Uwe; van Zandbergen, Ger; Laskay, Tamás; Tafess, Ketema

    2016-04-18

    Epidemiological studies in Ethiopia have documented that the risk of visceral leishmaniasis (VL, Kala-azar) is higher among people living with domestic animals. The recent report on isolation of Leishmania donovani complex DNA and the detected high prevalence of anti-leishmanial antibodies in the blood of domestic animals further strengthen the potential role of domestic animals in the epidemiology of VL in Ethiopia. In mammalian hosts polymorphonuclear cells (PMN) and macrophages are the key immune cells influencing susceptibility or control of Leishmania infection. Thus to substantiate the possible role of cattle in VL transmission we investigate the permissiveness of bovine PMN and monocyte derived macrophages (MDM) for Leishmania (L.) donovani infection. Whole blood was collected from pure Zebu (Boss indicus) and their cross with Holstein Friesian cattle. L. donovani (MHOM/ET/67/HU3) wild and episomal green fluorescent protein (eGFP) labelled stationary stage promastigotes were co-incubated with whole blood and MDM to determine infection of these cells. Engulfment of promastigotes by the cells and their transformation to amastigote forms in MDM was studied with direct microscopy. Microscopy and flow cytometry were used to measure the infection rate while PCR-RLFP was used to confirm the infecting parasite. L. donovani infected bovine whole blood PMN in the presence of plasma factors and all cellular elements. Morphological examinations of stained cytospin smears revealed that PMN engulfed promastigotes. Similarly, we were able to show that bovine MDM can be infected by L. donovani, which transformed to amastigote forms in the cells. The in vitro infection of bovine PMN and MDM by L. donovani further strengthens the possibility that cattle might serve as source of L. donovani infection for humans.

  6. Use of phages against antibiotic-resistant Staphylococcus aureus isolated from bovine mastitis.

    Science.gov (United States)

    Dias, R S; Eller, M R; Duarte, V S; Pereira, Â L; Silva, C C; Mantovani, H C; Oliveira, L L; Silva, E de A M; De Paula, S O

    2013-08-01

    Bovine mastitis is the primary disease of dairy cattle worldwide and it causes large economic losses. Among several microorganisms that are the causative agents of this disease, Staphylococcus aureus is the most prevalent. Although antibiotic therapy is still the most widely used procedure for the treatment of bovine mastitis, alternative means of treatment are necessary due to the presence of antibiotic residues in milk, which is a growing concern because of its interference with the production of milk derivatives and the selection of resistant bacterial strains. The use of bacteriophages as a tool for the control of pathogens is an alternative treatment to antibiotic therapy. In this work, to obtain phages with the potential for use in phage therapy as a treatment for mastitis, we isolated and identified the bacteria from the milk of mastitis-positive cows. A total of 19% of the animals from small and medium farms of the Zona da Mata Mineira, Brazil, was positive for bovine mastitis, and bacteria of the genus Staphylococcus were the most prevalent pathogens. The majority of the S. aureus isolates tested was resistant to penicillin and ampicillin. In parallel, we isolated 10 bacteriophages able to infect some of these S. aureus isolates. We determined that these phages contained DNA genomes of approximately 175 kb in length, and the protein profiles indicated the presence of 4 major proteins. Electron microscopy revealed that the phages are caudate and belong to the Myoviridae family. The isolates exhibited interesting features for their use in phage therapy such as a high lytic potential, a wide range of hosts, and thermostability, all of which favor their use in the field.

  7. The role of lipids in host microbe interactions.

    Science.gov (United States)

    Lang, Roland; Mattner, Jochen

    2017-06-01

    Lipids are one of the major subcellular constituents and serve as signal molecules, energy sources, metabolic precursors and structural membrane components in various organisms. The function of lipids can be modified by multiple biochemical processes such as (de-)phosphorylation or (de-)glycosylation, and the organization of fatty acids into distinct cellular pools and subcellular compartments plays a pivotal role for the morphology and function of various cell populations. Thus, lipids regulate, for example, phagosome formation and maturation within host cells and thus, are critical for the elimination of microbial pathogens. Vice versa, microbial pathogens can manipulate the lipid composition of phagosomal membranes in host cells, and thus avoid their delivery to phagolysosomes. Lipids of microbial origin belong also to the strongest and most versatile inducers of mammalian immune responses upon engagement of distinct receptors on myeloid and lymphoid cells. Furthermore, microbial lipid toxins can induce membrane injuries and cell death. Thus, we will review here selected examples for mutual host-microbe interactions within the broad and divergent universe of lipids in microbial defense, tissue injury and immune evasion.

  8. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Science.gov (United States)

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  9. Reflecting on 20+ Years of “Executive Program in Defense Decision Making” Curriculum

    OpenAIRE

    2017-01-01

    CCMR News Article CCMR hosted a version of its biannual “Executive Program in Defense Decision Making” offering for 21 international military and civilian participants, from November 6-17, 2017. Often described as CCMR’s “flagship” course, this curriculum has been offered at the Naval Postgraduate School (NPS) in Monterey, California for over 20 years.

  10. Genome analysis of an atypical bovine pestivirus from fetal bovine serum.

    Science.gov (United States)

    Gao, Shandian; Du, Junzheng; Tian, Zhancheng; Xing, Shanshan; Chang, Huiyun; Liu, Guangyuan; Luo, Jianxun; Yin, Hong

    2016-08-01

    We report the complete genome sequence of a bovine pestivirus LVRI/cont-1 originated from a commercial batch of fetal bovine serum. Its complete genome consists of 12,282 nucleotides (nt), which contain an open reading frame (ORF) of 11,700 bp flanked by 5' and 3' untranslated regions (383 and 199 bp). The size of the 5'UTR and the individual protein coding region of LVRI/cont-1 are identical to those of the reference virus Th/04_KhonKaen, but it has a deletion of the first 56 nt in the 3'UTR. Alignment of the complete nucleotide sequence and phylogenetic analysis indicate that this viral isolate belongs to atypical pestiviruses.

  11. Seneca Valley Virus Suppresses Host Type I Interferon Production by Targeting Adaptor Proteins MAVS, TRIF, and TANK for Cleavage.

    Science.gov (United States)

    Qian, Suhong; Fan, Wenchun; Liu, Tingting; Wu, Mengge; Zhang, Huawei; Cui, Xiaofang; Zhou, Yun; Hu, Junjie; Wei, Shaozhong; Chen, Huanchun; Li, Xiangmin; Qian, Ping

    2017-08-15

    Seneca Valley virus (SVV) is an oncolytic RNA virus belonging to the Picornaviridae family. Its nucleotide sequence is highly similar to those of members of the Cardiovirus genus. SVV is also a neuroendocrine cancer-selective oncolytic picornavirus that can be used for anticancer therapy. However, the interaction between SVV and its host is yet to be fully characterized. In this study, SVV inhibited antiviral type I interferon (IFN) responses by targeting different host adaptors, including mitochondrial antiviral signaling (MAVS), Toll/interleukin 1 (IL-1) receptor domain-containing adaptor inducing IFN-β (TRIF), and TRAF family member-associated NF-κB activator (TANK), via viral 3C protease (3C pro ). SVV 3C pro mediated the cleavage of MAVS, TRIF, and TANK at specific sites, which required its protease activity. The cleaved MAVS, TRIF, and TANK lost the ability to regulate pattern recognition receptor (PRR)-mediated IFN production. The cleavage of TANK also facilitated TRAF6-induced NF-κB activation. SVV was also found to be sensitive to IFN-β. Therefore, SVV suppressed antiviral IFN production to escape host antiviral innate immune responses by cleaving host adaptor molecules. IMPORTANCE Host cells have developed various defenses against microbial pathogen infection. The production of IFN is the first line of defense against microbial infection. However, viruses have evolved many strategies to disrupt this host defense. SVV, a member of the Picornavirus genus, is an oncolytic virus that shows potential functions in anticancer therapy. It has been demonstrated that IFN can be used in anticancer therapy for certain tumors. However, the relationship between oncolytic virus and innate immune response in anticancer therapy is still not well known. In this study, we showed that SVV has evolved as an effective mechanism to inhibit host type I IFN production by using its 3C pro to cleave the molecules MAVS, TRIF, and TANK directly. These molecules are crucial for

  12. The interferon response circuit in antiviral host defense.

    Science.gov (United States)

    Haller, O; Weber, F

    2009-01-01

    Viruses have learned to multiply in the face of a powerful innate and adaptive immune response of the host. They have evolved multiple strategies to evade the interferon (IFN) system which would otherwise limit virus growth at an early stage of infection. IFNs induce the synthesis of a range of antiviral proteins which serve as cell-autonomous intrinsic restriction factors. For example, the dynamin-like MxA GTPase inhibits the multiplication of influenza and bunyaviruses (such as La Crosse virus, Hantaan virus, Rift Valley Fever virus, and Crimean-Congo hemorrhagic fever virus) by binding and sequestering the nucleocapsid protein into large perinuclear complexes. To overcome such intracellular restrictions, virulent viruses either inhibit IFN synthesis, bind and inactivate secreted IFN molecules, block IFN-activated signaling, or disturb the action of IFN-induced antiviral proteins. Many viruses produce specialized proteins to disarm the danger signal or express virulence genes that target members of the IFN regulatory factor family (IRFs) or components of the JAK-STAT signaling pathway. An alternative evasion strategy is based on extreme viral replication speed which out-competes the IFN response. The identification of viral proteins with IFN antagonistic functions has great implications for disease prevention and therapy. Virus mutants lacking IFN antagonistic properties represent safe yet highly immunogenic candidate vaccines. Furthermore, novel drugs intercepting viral IFN-antagonists could be used to disarm the viral intruders.

  13. 76 FR 26239 - Bovine Tuberculosis and Brucellosis; Public Meetings

    Science.gov (United States)

    2011-05-06

    ... Inspection Service [Docket No. APHIS-2011-0044] Bovine Tuberculosis and Brucellosis; Public Meetings AGENCY... bovine tuberculosis and brucellosis programs in the United States. The meetings are being organized by... tuberculosis (TB) and bovine brucellosis in the United States. In keeping with its commitment to partnering...

  14. De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Ho, Chai-Ling; Tan, Yung-Chie; Yeoh, Keat-Ai; Ghazali, Ahmad-Kamal; Yee, Wai-Yan; Hoh, Chee-Choong

    2016-01-19

    Basal stem rot (BSR) is a fungal disease in oil palm (Elaeis guineensis Jacq.) which is caused by hemibiotrophic white rot fungi belonging to the Ganoderma genus. Molecular responses of oil palm to these pathogens are not well known although this information is crucial to strategize effective measures to eradicate BSR. In order to elucidate the molecular interactions between oil palm and G. boninense and its biocontrol fungus Trichoderma harzianum, we compared the root transcriptomes of untreated oil palm seedlings with those inoculated with G. boninense and T. harzianum, respectively. Differential gene expression analyses revealed that jasmonate (JA) and salicylate (SA) may act in an antagonistic manner in affecting the hormone biosynthesis, signaling, and downstream defense responses in G. boninense-treated oil palm roots. In addition, G. boninense may compete with the host to control disease symptom through the transcriptional regulation of ethylene (ET) biosynthesis, reactive oxygen species (ROS) production and scavenging. The strengthening of host cell walls and production of pathogenesis-related proteins as well as antifungal secondary metabolites in host plants, are among the important defense mechanisms deployed by oil palm against G. boninense. Meanwhile, endophytic T. harzianum was shown to improve the of nutrition status and nutrient transportation in host plants. The findings of this analysis have enhanced our understanding on the molecular interactions of G. boninense and oil palm, and also the biocontrol mechanisms involving T. harzianum, thus contributing to future formulations of better strategies for prevention and treatment of BSR.

  15. Detection of bovine herpesvirus 4 glycoprotein B and thymidine kinase DNA by PCR assays in bovine milk

    NARCIS (Netherlands)

    Wellenberg, G.J.; Verstraten, E.; Belak, S.; Verschuren, S.B.E.; Rijsewijk, F.A.M.; Peshev, R.; Oirschot, van J.T.

    2001-01-01

    A polymerase chain reaction (PCR) assay was developed to detect bovine herpesvirus 4 (BHV4) glycoprotein B (gB) DNA, and a nested-PCR assay was modified for the detection of BHV4 thymidine kinase (TK) DNA in bovine milk samples. To identify false-negative PCR results, internal control templates were

  16. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Amey Redkar

    2017-05-01

    Full Text Available Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal–host interaction to suit the pathogen’s needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis – maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.

  17. Persistent infections after natural transmission of bovine viral diarrhoea virus from cattle to goats and among goats

    Science.gov (United States)

    2013-01-01

    Bovine viral diarrhoea virus (BVDV) is an economically important pathogen of cattle worldwide. Infection of a pregnant animal may lead to persistent infection of the foetus and birth of a persistently infected (PI) calf that sheds the virus throughout its life. However, BVD viruses are not strictly species specific. BVDV has been isolated from many domesticated and wild ruminants. This is of practical importance as virus reservoirs in non-bovine hosts may hamper BVDV control in cattle. A goat given as a social companion to a BVDV PI calf gave birth to a PI goat kid. In order to test if goat to goat infections were possible, seronegative pregnant goats were exposed to the PI goat. In parallel, seronegative pregnant goats were kept together with the PI calf. Only the goat to goat transmission resulted in the birth of a next generation of BVDV PI kids whereas all goats kept together with the PI calf aborted. To our knowledge, this is the first report which shows that a PI goat cannot only transmit BVD virus to other goats but that such transmission may indeed lead to the birth of a second generation of PI goats. Genetic analyses indicated that establishment in the new host species may be associated with step-wise adaptations in the viral genome. Thus, goats have the potential to be a reservoir for BVDV. However, the PI goats showed growth retardation and anaemia and their survival under natural conditions remains questionable. PMID:23675947

  18. Persistent infections after natural transmission of bovine viral diarrhoea virus from cattle to goats and among goats.

    Science.gov (United States)

    Bachofen, Claudia; Vogt, Hans-Rudolf; Stalder, Hanspeter; Mathys, Tanja; Zanoni, Reto; Hilbe, Monika; Schweizer, Matthias; Peterhans, Ernst

    2013-05-15

    Bovine viral diarrhoea virus (BVDV) is an economically important pathogen of cattle worldwide. Infection of a pregnant animal may lead to persistent infection of the foetus and birth of a persistently infected (PI) calf that sheds the virus throughout its life. However, BVD viruses are not strictly species specific. BVDV has been isolated from many domesticated and wild ruminants. This is of practical importance as virus reservoirs in non-bovine hosts may hamper BVDV control in cattle. A goat given as a social companion to a BVDV PI calf gave birth to a PI goat kid. In order to test if goat to goat infections were possible, seronegative pregnant goats were exposed to the PI goat. In parallel, seronegative pregnant goats were kept together with the PI calf. Only the goat to goat transmission resulted in the birth of a next generation of BVDV PI kids whereas all goats kept together with the PI calf aborted. To our knowledge, this is the first report which shows that a PI goat cannot only transmit BVD virus to other goats but that such transmission may indeed lead to the birth of a second generation of PI goats. Genetic analyses indicated that establishment in the new host species may be associated with step-wise adaptations in the viral genome. Thus, goats have the potential to be a reservoir for BVDV. However, the PI goats showed growth retardation and anaemia and their survival under natural conditions remains questionable.

  19. Seroprevalence of viral and bacterial diseases among the bovines in Himachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    Shailja Katoch

    2017-12-01

    Full Text Available Aim: The study was designed to measure the seroprevalence of viral and bacterial diseases: Infectious bovine rhinotracheitis, bovine viral diarrhea, bovine leukemia, bovine parainfluenza, bovine respiratory syncytial disease, brucellosis, and paratuberculosis among bovine of Himachal Pradesh during the year 2013-2015. Materials and Methods: The serum samples were collected from seven districts of state, namely, Bilaspur, Kangra, Kinnaur, Lahul and Spiti, Mandi, Sirmour, and Solan. The samples were screened using indirect ELISA kits to measure the seroprevalence of viral and bacterial diseases. Results: The overall seroprevalence of infectious bovine rhinotracheitis was 24.24%, bovine viral diarrhea 1.52%, bovine leukemia 9.09%, bovine parainfluenza 57.58%, bovine respiratory syncytial disease 50%, brucellosis 19.69%, and paratuberculosis 9.09% in Himachal Pradesh. The seroprevalence of bovine rhinotracheitis, bovine leukemia, bovine parainfluenza, bovine respiratory syncytial disease, and paratuberculosis in the state varied significantly (p0.01. Multiple seropositivity has been observed in this study. Bovine parainfluenza virus 3 was observed commonly in mixed infection with almost all viruses and bacteria under study. Conclusion: The viral and bacterial diseases are prevalent in the seven districts of Himachal Pradesh investigated in the study. Therefore, appropriate management practices and routine vaccination programs should be adopted to reduce the prevalence of these diseases.

  20. Adaptation to toxic hosts as a factor in the evolution of insecticide resistance.

    Science.gov (United States)

    Alyokhin, Andrei; Chen, Yolanda H

    2017-06-01

    Insecticide resistance is a serious economic problem that jeopardizes sustainability of chemical control of herbivorous insects and related arthropods. It can be viewed as a specific case of adaptation to toxic chemicals, which has been driven in large part, but not exclusively, by the necessity for insect pests to tolerate defensive compounds produced by their host plants. Synthetic insecticides may simply change expression of specific sets of detoxification genes that have evolved due to ancestral associations with host plants. Feeding on host plants with more abundant or novel secondary metabolites has even been shown to prime insect herbivores to tolerate pesticides. Clear understanding of basic evolutionary processes is important for achieving lasting success in managing herbivorous arthropods. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Soledad R. Ordonez

    2017-10-01

    Full Text Available Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that form the first barrier of defense against fungal infections. These include host defense peptides, like LL-37 and defensins that can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these molecules have immunomodulatory activities which can aid in fungal clearance from the lung. However, existing observations are based on in vitro studies which do not reflect the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the presence of mucus can have strong detrimental effects on antifungal activity, while the potential synergistic interplay between soluble effector molecules is largely unknown. In this review, we describe the current knowledge on soluble effector molecules that contribute to antifungal activity, the importance of environmental factors and discuss the future directions required to understand the innate antifungal defense in the lung.

  2. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    Science.gov (United States)

    Ordonez, Soledad R.; Veldhuizen, Edwin J. A.; van Eijk, Martin; Haagsman, Henk P.

    2017-01-01

    Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that form the first barrier of defense against fungal infections. These include host defense peptides, like LL-37 and defensins that can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these molecules have immunomodulatory activities which can aid in fungal clearance from the lung. However, existing observations are based on in vitro studies which do not reflect the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the presence of mucus can have strong detrimental effects on antifungal activity, while the potential synergistic interplay between soluble effector molecules is largely unknown. In this review, we describe the current knowledge on soluble effector molecules that contribute to antifungal activity, the importance of environmental factors and discuss the future directions required to understand the innate antifungal defense in the lung. PMID:29163395

  3. Temporal and spatial resolution of activated plant defense responses in leaves of Nicotiana benthamiana infected with Dickeya dadantii

    Directory of Open Access Journals (Sweden)

    María Luisa ePérez-Bueno

    2016-01-01

    Full Text Available The necrotrophic bacteria Dickeya dadantii is the causal agent of soft-rot disease in a broad range of hosts. The model plant Nicotiana benthamiana, commonly used as experimental host for a very broad range of plant pathogens, is susceptible to infection by D. dadantii. The inoculation with D. dadantii at high dose seems to overcome the plant defense capacity, inducing maceration and death of the tissue, although restricted to the infiltrated area. By contrast, the output of the defense response to low dose inoculation is inhibition of maceration and limitation in the growth, or even eradication, of bacteria. Responses of tissue invaded by bacteria (neighbouring the infiltrated areas after 2-3 days post-inoculation included: i inhibition of photosynthesis in terms of photosystem II efficiency; ii activation of energy dissipation as non-photochemical quenching in photosystem II, which is related to the activation of plant defense mechanisms; and iii accumulation of secondary metabolites in cell walls of the epidermis (lignins and the apoplast of the mesophyll (phytoalexins. Infiltrated tissues showed an increase in the content of the main hormones regulating stress responses, including abscisic acid (ABA, jasmonic acid (JA and salicylic acid (SA. We propose a mechanism involving the three hormones by which N. benthamiana could activate an efficient defense response against D. dadantii.

  4. Molecular identification and functional delineation of a glutathione reductase homolog from disk abalone (Haliotis discus discus): Insights as a potent player in host antioxidant defense.

    Science.gov (United States)

    Herath, H M L P B; Wickramasinghe, P D S U; Bathige, S D N K; Jayasooriya, R G P T; Kim, Gi-Young; Park, Myoung Ae; Kim, Chul; Lee, Jehee

    2017-01-01

    : Vibrio parahaemolyticus, Listeria monocytogenes, and lipopolysaccharide (LPS), thus indicating its possible involvement in host defense mechanisms during pathogenic infections. Taken together, the results of the current study suggest that AbGSR plays an important role in antioxidant-mediated host defense mechanisms and also provide insights into the immunological contribution of AbGSR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bovine cysticercosis in the European Union

    DEFF Research Database (Denmark)

    Blagojevic, Bojan; Robertson, Lucy J.; Vieira-Pinto, Madalena

    2017-01-01

    -only inspection of slaughtered cattle in order to reduce the potential for cross-contamination with bacteria that are of greatest public health risk, is expected in the European Union in the near future. With this system, the detection sensitivity for bovine cysticercosis that is already low with the current meat...... of bovine cysticercosis in the European Union....

  6. Comparative analysis of human and bovine teeth: radiographic density

    Directory of Open Access Journals (Sweden)

    Jefferson Luis Oshiro Tanaka

    2008-12-01

    Full Text Available Since bovine teeth have been used as substitutes for human teeth in in vitro dental studies, the aim of this study was to compare the radiographic density of bovine teeth with that of human teeth to evaluate their usability for radiographic studies. Thirty bovine and twenty human teeth were cut transversally in 1 millimeter-thick slices. The slices were X-rayed using a digital radiographic system and an intraoral X-ray machine at 65 kVp and 7 mA. The exposure time (0.08 s and the target-sensor distance (40 cm were standardized for all the radiographs. The radiographic densities of the enamel, coronal dentin and radicular dentin of each slice were obtained separately using the "histogram" tool of Adobe Photoshop 7.0 software. The mean radiographic densities of the enamel, coronal dentin and radicular dentin were calculated by the arithmetic mean of the slices of each tooth. One-way ANOVA demonstrated statistically significant differences for the densities of bovine and human enamel (p 0.05. Based on the results, the authors concluded that: a the radiographic density of bovine enamel is significantly higher than that of human enamel; b the radiodensity of bovine coronal dentin is statistically lower than the radiodensity of human coronal dentin; bovine radicular dentin is also less radiodense than human radicular dentin, although this difference was not statistically significant; c bovine teeth should be used with care in radiographic in vitro studies.

  7. Genes of the bovine lungworm Dictyocaulus viviparus associated with transition from pasture to parasitism.

    Science.gov (United States)

    Strube, C; Buschbaum, S; Schnieder, T

    2012-08-01

    Genes necessary to enable nematode parasitic life after free-living larval life are of substantial interest to understand parasitism. We investigated transcriptional changes during transition to parasitism in the bovine lungworm Dictyocaulus viviparus, one of the most important parasites in cattle farming due to substantial economic losses. Upregulated transcripts in either free-living, developmentally arrested L3 or parasitic immature L5 were identified by suppression subtractive hybridization (SSH) followed by differential screening and subsequent virtual Northern blot verification. From 400 sequenced clones of parasitic L5, 372 (93.0%) upregulated high quality ESTs were obtained clustering into 30 contigs and 38 singletons. Most conceptual translated peptides were SCP/TAPS "family" members also known as pathogenesis-related protein (PRP) superfamily (28.5% of total ESTs), cysteine proteases (24.5%), and H-gal-GP orthologues (9.9%). These proteins are predicted to play key roles in fundamental biological processes such as nutrition and development but also parasite-host interactions and immune defense mechanisms. Increased energy requirement of the rapidly developing L5 lungworm stage was obvious in a proportion of 12.2% upregulated ESTs being components of the respiratory chain. From the developmentally arrested L3 stage sequencing of 200 clones resulted in 195 high quality ESTs (97.0%) clustering into 7 contigs and 3 singletons only. Besides a hypothetical protein (70.1% of total ESTs) most transcripts encoded the cleavage stimulation factor subunit 2 (17.5%), which is a component of the poly(A(+)) machinery and found to be involved in gene silencing. Obtained data provide the basis for future fundamental research into genes associated with parasitic lifestyle but also applied research like vaccine and/or drug development. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Latitudinal variation of a defensive symbiosis in the Bugula neritina (Bryozoa sibling species complex.

    Directory of Open Access Journals (Sweden)

    Jonathan Linneman

    Full Text Available Mutualistic relationships are beneficial for both partners and are often studied within a single environment. However, when the range of the partners is large, geographical differences in selective pressure may shift the relationship outcome from positive to negative. The marine bryozoan Bugula neritina is a colonial invertebrate common in temperate waters worldwide. It is the source of bioactive polyketide metabolites, the bryostatins. Evidence suggests that an uncultured vertically transmitted symbiont, "Candidatus Endobugula sertula", hosted by B. neritina produces the bryostatins, which protect the vulnerable larvae from predation. Studies of B. neritina along the North American Atlantic coast revealed a complex of two morphologically similar sibling species separated by an apparent biogeographic barrier: the Type S sibling species was found below Cape Hatteras, North Carolina, while Type N was found above. Interestingly, the Type N colonies lack "Ca. Endobugula sertula" and, subsequently, defensive bryostatins; their documented northern distribution was consistent with traditional biogeographical paradigms of latitudinal variation in predation pressure. Upon further sampling of B. neritina populations, we found that both host types occur in wider distribution, with Type N colonies living south of Cape Hatteras, and Type S to the north. Distribution of the symbiont, however, was not restricted to Type S hosts. Genetic and microscopic evidence demonstrates the presence of the symbiont in some Type N colonies, and larvae from these colonies are endowed with defensive bryostatins and contain "Ca. Endobugula sertula". Molecular analysis of the symbiont from Type N colonies suggests an evolutionarily recent acquisition, which is remarkable for a symbiont thought to be transmitted only vertically. Furthermore, most Type S colonies found at higher latitudes lack the symbiont, suggesting that this host-symbiont relationship is more flexible than

  9. Spectroscopic study of gamma irradiated bovine hemoglobin

    International Nuclear Information System (INIS)

    Maghraby, Ahmed Mohamed; Ali, Maha Anwar

    2007-01-01

    In the present study, the effects of ionizing radiation of Cs-137 and Co-60 from 4.95 to 743.14 Gy and from 40 Gy to 300 kGy, respectively, on some bovine hemoglobin characteristics were studied. Such an effect was evaluated using electron paramagnetic resonance (EPR) spectroscopy, and infra-red (IR) spectroscopy. Bovine hemoglobin EPR spectra were recorded and analyzed before and after irradiation and changes were explained in detail. IR spectra of unirradiated and irradiated Bovine hemoglobin were recorded and analyzed also. It was found that ionizing radiation may lead to the increase of free radicals production, the decrease in α-helices contents, which reflects the degradation of hemoglobin molecular structure, or at least its incomplete performance. Results also show that the combined application of EPR and FTIR spectroscopy is a powerful tool for determining structural modification of bovine hemoglobin samples exposed to gamma irradiation

  10. CXC chemokine receptor 2 contributes to host defense in murine urinary tract infection

    NARCIS (Netherlands)

    Olszyna, D. P.; Florquin, S.; Sewnath, M.; Branger, J.; Speelman, P.; van Deventer, S. J.; Strieter, R. M.; van der Poll, T.

    2001-01-01

    CXC chemokines have been implicated in the recruitment of neutrophils to sites of infection. To determine the role of CXC chemokines in the host response to urinary tract infection (UTI), female mice were treated with an antibody against the major CXC chemokine receptor in the mouse, CXCR2, before

  11. A Role for the Anti-Viral Host Defense Mechanism in the Phylogenetic Divergence in Baculovirus Evolution.

    Directory of Open Access Journals (Sweden)

    Toshihiro Nagamine

    Full Text Available Although phylogenic analysis often suggests co-evolutionary relationships between viruses and host organisms, few examples have been reported at the microevolutionary level. Here, we show a possible example in which a species-specific anti-viral response may drive phylogenic divergence in insect virus evolution. Two baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV and Bombyx mori nucleopolyhedrovirus (BmNPV, have a high degree of DNA sequence similarity, but exhibit non-overlapping host specificity. In our study of their host-range determination, we found that BmNPV replication in B. mori cells was prevented by AcMNPV-P143 (AcP143, but not BmNPV-P143 (BmP143 or a hybrid P143 protein from a host-range expanded phenotype. This suggests that AcMNPV resistance in B. mori cells depends on AcP143 recognition and that BmNPV uses BmP143 to escapes this recognition. Based on these data, we propose an insect-baculovirus co-evolution scenario in which an ancestor of silkworms exploited an AcMNPV-resistant mechanism; AcMNPV counteracted this resistance via P143 mutations, resulting in the birth of BmNPV.

  12. Bovine aortic endothelial cells are susceptible to Hantaan virus infection

    International Nuclear Information System (INIS)

    Bahr, U.; Muranyi, W.; Mueller, S.; Kehm, R.; Handermann, M.; Darai, G.; Zeier, M.

    2004-01-01

    Hantavirus serotype Hantaan (HTN) is one of the causative agents of hemorrhagic fever with renal syndrome (HFRS, lethality up to 10%). The natural host of HTN is Apodemus agrarius. Recent studies have shown that domestic animals like cattle are sporadically seropositive for hantaviruses. In the present study, the susceptibility of bovine aortic endothelial cells (BAEC) expressing α V β 3 -integrin to a HTN infection was investigated. Viral nucleocapsid protein and genomic RNA segments were detected in infected BAEC by indirect immunofluorescence assay, Western blot analysis, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. The results of this study strongly support our previous observation on Puumala virus (PUU) that has been propagated efficiently in BAEC. These findings open a new window to contemplate the ecology of hantavirus infection and transmission route from animal to man

  13. Importance of bovine mastitis in Africa.

    Science.gov (United States)

    Motaung, Thabiso E; Petrovski, Kiro R; Petzer, Inge-Marie; Thekisoe, Oriel; Tsilo, Toi J

    2017-06-01

    Bovine mastitis is an important animal production disease that affects the dairy industry globally. Studies have estimated the prevalence of this disease in approximately 30% of African countries, with the highest prevalence found in Ethiopia. This is despite the wide cattle distribution in Africa, and the largest number of dairy farms and herds in countries such as South Africa, Kenya and Uganda. Furthermore, the estimated financial losses due to direct and indirect impacts of bovine mastitis are lacking in this continent. Therefore, intensive research efforts will help determine the continent-wide economic impacts and advance careful monitoring of disease prevalence and epidemiology. Here, published cases supporting the occurrence and importance of bovine mastitis in certain regions of Africa are outlined.

  14. Characterisation of bovine epiblast-derived outgrowth colonies

    DEFF Research Database (Denmark)

    Østrup, Esben; Gjørret, Jakob; Schauser, Kirsten Hallundbæk

    2010-01-01

    The aim of the present study was to characterise bovine epiblast-derived outgrowth colonies (OCs) with respect to the embryonic origin of their cellular components. Epiblasts were isolated mechanically from bovine Day 12 embryos. Epiblasts were cultured on feeder layers of SNL cells (neomycin...

  15. Recent Progress in Cryopreservation of Bovine Oocytes

    Directory of Open Access Journals (Sweden)

    In-Sul Hwang

    2014-01-01

    Full Text Available Principle of oocyte cryoinjury is first overviewed and then research history of cryopreservation using bovine oocytes is summarized for the last two decades with a few special references to recent progresses. Various types of cryodevices have been developed to accelerate the cooling rate and applied to the oocytes from large domestic species enriched with cytoplasmic lipid droplets. Two recent approaches include the qualitative improvement of IVM oocytes prior to the vitrification and the short-term recovery culture of vitrified-warmed oocytes prior to the subsequent IVF. Supplementation of L-carnitine to IVM medium of bovine oocytes has been reported to reduce the amount of cytoplasmic lipid droplets and improve the cryotolerance of the oocytes, but it is still controversial whether the positive effect of L-carnitine is reproducible. Incidence of multiple aster formation, a possible cause for low developmental potential of vitrified-warmed bovine oocytes, was inhibited by a short-term culture of the postwarm oocytes in the presence of Rho-associated coiled-coil kinase (ROCK inhibitor. Use of an antioxidant α-tocopherol, instead of the ROCK inhibitor, also supported the revivability of the postwarm bovine oocytes. Further improvements of the vitrification procedure, combined with pre- and postvitrification chemical treatment, would overcome the high sensitivity of bovine oocytes to cryopreservation.

  16. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Science.gov (United States)

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  17. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Directory of Open Access Journals (Sweden)

    Molly C. Bletz

    2017-08-01

    Full Text Available Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae was enriched on aquatic frogs, and Agrobacterium

  18. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar.

    Science.gov (United States)

    Bletz, Molly C; Archer, Holly; Harris, Reid N; McKenzie, Valerie J; Rabemananjara, Falitiana C E; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  19. Prevalence of bovine fascioliasis, areas at risk and ensuing losses in the state of Goiás, Brazil

    Directory of Open Access Journals (Sweden)

    Fernanda Martins de Aquino

    2018-05-01

    Full Text Available Abstract The present study had to determine the prevalence and spatial distribution of areas at risk of bovine fascioliasis in the state of Goiás, central-western Brazil between 2007 and 2014; to evaluate the associations of some epidemiological variables with occurrences of Fasciola hepatica in animals; and to estimate the economic losses that this parasite on the cattle industry. It could be concluded that of 23,255,979 animals slaughtered, the average prevalence of F. hepatica in cattle in Goiás during the period evaluated was 0.0026% (95% CI: 0.0024-0.0028. In the State of Goias, in about then years (since when this parasite was found for the first time by other researchers in 2007, F. hepatica was diagnosed in 168 new municipalities. Using the regression analysis, the effective bovine herd size was a significant risk factor (OR= 1.21; 95% CI 1.1022-1.4510; p ≤ 0.05 for cattle to be infected with fascioliasis in the state of Goiás. The cattle-rearing industry lost approximately R$ 15,072.75 (US$ 4,785 due to condemn of livers with Fasciola in the state of Goiás. New studies need to be conducted in these regions, with the aim to identify the likelihood of presence of intermediate hosts, which might serve as a source of F. hepatica infection for definitive hosts.

  20. Symbiotic Bacteria Enable Olive Fly Larvae to Overcome Host Defenses

    International Nuclear Information System (INIS)

    Ben-Yosef, Michael; Yuval, Boaz; Pasternak, Zohar; Jurkevitch, Edouard

    2016-01-01

    Ripe fruit offer readily available nutrients for many animals, including fruit fly larvae (Diptera: Tephritidae) and their associated rot-inducing bacteria. Yet, during most of their ontogeny, fruit remain chemically defended and effectively suppress herbivores and pathogens by high levels of secondary metabolites. Olive flies (Bactrocera oleae) are uniquely able to develop in unripe olives. Unlike other frugivorous tephritids, the larvae maintain bacteria confined within their midgut caeca. We examined the interaction between larvae, their associated bacteria, and fruit chemical defence, hypothesizing that bacterial contribution to larval development is contingent on the phenology of fruit defensive chemistry. We demonstrate that larvae require their natural complement of bacteria (Candidatus Erwinia dacicola: Enterobacteriaceae) in order to develop in unripe olives. Conversely, when feeding on ripe fruit, larval development proceeds independently of these bacteria. Our experiments suggest that bacteria counteract the inhibitory effect of oleuropein—the principal phenolic glycoside in unripe olives. In light of these results, we suggest that the unique symbiosis in olive flies, compared with other frugivorous tephritids, is understood by considering the relationship between the fly, bacteria and fruit chemistry. When applied in an evolutionary context, this approach may also point out the forces which shaped symbioses across the Tephritidae. (author)

  1. Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae?

    Science.gov (United States)

    Duhamel, Marie; Pel, Roel; Ooms, Astra; Bücking, Heike; Jansa, Jan; Ellers, Jacintha; van Straalen, Nico M; Wouda, Tjalf; Vandenkoornhuyse, Philippe; Kiers, E Toby

    2013-09-01

    A key objective in ecology is to understand how cooperative strategies evolve and are maintained in species networks. Here, we focus on the tri-trophic relationship between arbuscular mycorrhizal (AM) fungi, host plants, and fungivores to ask if host plants are able to protect their mutualistic mycorrhizal partners from being grazed. Specifically, we test whether secondary metabolites are transferred from hosts to fungal partners to increase their defense against fungivores. We grew Plantago lanceolata hosts with and without mycorrhizal inoculum, and in the presence or absence of fungivorous springtails. We then measured fungivore effects on host biomass and mycorrhizal abundance (using quantitative PCR) in roots and soil. We used high-performance liquid chromatography to measure host metabolites in roots, shoots, and hyphae, focusing on catalpol, aucubin, and verbascoside. Our most striking result was that the metabolite catalpol was consistently found in AM fungal hyphae in host plants exposed to fungivores. When fungivores were absent, catalpol was undetectable in hyphae. Our results highlight the potential for plant-mediated protection of the mycorrhizal hyphal network.

  2. Evaluation of envelope glycoprotein E(rns) of an atypical bovine pestivirus as antigen in a microsphere immunoassay for the detection of antibodies against bovine viral diarrhea virus 1 and atypical bovine pestivirus.

    Science.gov (United States)

    Vijayaraghavan, Balaje; Xia, Hongyan; Harimoorthy, Rajiv; Liu, Lihong; Belák, Sándor

    2012-11-01

    Atypical bovine pestiviruses are related antigenically and phylogenetically to bovine viral diarrhea viruses (BVDV-1 and BVDV-2), and may cause the same clinical manifestations in animals. Glycoprotein E(rns) of an atypical bovine pestivirus Th/04_KhonKaen was produced in a baculovirus expression system and was purified by affinity chromatography. The recombinant E(rns) protein was used as an antigen in a microsphere immunoassay for the detection of antibodies against BVDV-1 and atypical bovine pestivirus. The diagnostic performance of the new method was evaluated by testing a total of 596 serum samples, and the assay was compared with enzyme-linked immunosorbent assay (ELISA). Based on the negative/positive cut-off median fluorescence intensity (MFI) value of 2800, the microsphere immunoassay had a sensitivity of 100% and specificity of 100% compared to ELISA. The immunoassay was able to detect antibodies against both BVDV-1 and the atypical pestivirus. This novel microsphere immunoassay has the potential to be multiplexed for simultaneous detection of antibodies against different bovine pathogens in a high-throughput and economical way. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis.

    Science.gov (United States)

    Garavaglia, Betiana S; Thomas, Ludivine; Gottig, Natalia; Dunger, Germán; Garofalo, Cecilia G; Daurelio, Lucas D; Ndimba, Bongani; Orellano, Elena G; Gehring, Chris; Ottado, Jorgelina

    2010-01-28

    Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.

  4. Differential Regulation of Mas-Related G Protein-Coupled Receptor X2-Mediated Mast Cell Degranulation by Antimicrobial Host Defense Peptides and Porphyromonas gingivalis Lipopolysaccharide.

    Science.gov (United States)

    Gupta, Kshitij; Idahosa, Chizobam; Roy, Saptarshi; Lee, Donguk; Subramanian, Hariharan; Dhingra, Anuradha; Boesze-Battaglia, Kathleen; Korostoff, Jonathan; Ali, Hydar

    2017-10-01

    Porphyromonas gingivalis is a keystone pathogen that contributes to periodontal pathogenesis by disrupting host-microbe homeostasis and promoting dysbiosis. The virulence of P. gingivalis likely reflects an alteration in the lipid A composition of its lipopolysaccharide (LPS) from the penta-acylated ( Pg LPS 1690 ) to the tetra-acylated ( Pg LPS 1435/1449 ) form. Mast cells play an important role in periodontitis, but the mechanisms of their activation and regulation remain unknown. The expression of epithelium- and neutrophil-derived host defense peptides (HDPs) (LL-37 and human β-defensin-3), which activate mast cells via Mas-related G protein-coupled receptor X2 (MRGPRX2), is increased in periodontitis. We found that MRGPRX2-expressing mast cells are present in normal gingiva and that their numbers are elevated in patients with chronic periodontitis. Furthermore, HDPs stimulated degranulation in a human mast cell line (LAD2) and in RBL-2H3 cells stably expressing MRGPRX2 (RBL-MRGPRX2). Pg LPS 1690 caused substantial inhibition of HDP-induced mast cell degranulation, but Pg LPS 1435/1449 had no effect. A fluorescently labeled HDP (FAM-LL-37) bound to RBL-MRGPRX2 cells, and Pg LPS 1690 inhibited this binding, but Pg LPS 1435/1449 had no effect. These findings suggest that low-level inflammation induced by HDP/MRGPRX2-mediated mast cell degranulation contributes to gingival homeostasis but that sustained inflammation due to elevated levels of both HDPs and MRGPRX2-expressing mast cells promotes periodontal disease. Furthermore, differential regulation of HDP-induced mast cell degranulation by Pg LPS 1690 and Pg LPS 1435/1449 may contribute to the modulation of disease progression. Copyright © 2017 American Society for Microbiology.

  5. The journal of medical chemical, biological and radiological defense, an update

    International Nuclear Information System (INIS)

    Price, B. B. S.; Peitersen, L.E.

    2009-01-01

    The Journal of Medical Chemical, Biological, and Radiological Defense (www.JMedCBR.org) is a peer-reviewed scientific online journal focusing on the biology, chemistry, physiology, toxicology and treatment of exposure to threat agents. JMedCBR provides a central international forum for the publication of current research and development information on medical chemical, biological and radiological defense, as well as training, doctrine, and problems related to chemical, biological and radiological casualties. JMedCBR is sponsored by the US Defense Threat Reduction Agency (DTRA) Chem-Bio Technologies Directorate as part of its scientific outreach program in chemical and biological defense solutions for the Department of Defense. In addition to scientific and medical research, JMedCBR hosts an archive of related papers from authors in the field. Although organized into annual issues, articles are published on the web continuously. The complete JMedCBR is published electronically and is made available to the scientific community free of charge. JMedCBR is committed to providing its readers with quality scientific information and critical analyses. All submissions are peer-reviewed by an editorial board of recognized and respected international scientists who represent expertise in different aspects of medical chemical, biological and radiological defense. Contributions to JMedCBR must be original works of the author(s) and must not have been previously published or simultaneously submitted to other publications. The author(s) transfer the copyright of articles published in JMedCBR to the journal. A copyright transfer form must accompany each manuscript submission. For more information on submitting to JMedCBR, see the Authors' Guide, available at http://www.jmedcbr.org/authorGuide.html.(author)

  6. Virulence on the fly: Drosophila melanogaster as a model genetic organism to decipher host-pathogen interactions.

    NARCIS (Netherlands)

    Limmer, S.; Quintin, J.; Hetru, C.; Ferrandon, D.

    2011-01-01

    To gain an in-depth grasp of infectious processes one has to know the specific interactions between the virulence factors of the pathogen and the host defense mechanisms. A thorough understanding is crucial for identifying potential new drug targets and designing drugs against which the pathogens

  7. Expression of infectious bovine rhinotracheitis virus glycoprotein D ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... Bovine Herpesvirus 1 (BHV-1) belongs to the genus of ... through vaccination with recombinant vaccines of thymidine kinase, manufacturing and applying ..... Resistance to bovine respiratory syncytial virus (BRSV) induced in.

  8. Sucrose/bovine serum albumin mediated biomimetic crystallization

    Indian Academy of Sciences (India)

    To understand the role of the sucrose/bovine serum albumin system in the biomineralization process, we have tested the influence of different concentration of the sucrose/bovine serum albumin (BSA) on calcium carbonate (CaCO3) precipitation. The CaCO3 crystals were characterized by scanning electron microscope ...

  9. Host-pathogen interplay of Haemophilus ducreyi.

    Science.gov (United States)

    Janowicz, Diane M; Li, Wei; Bauer, Margaret E

    2010-02-01

    Haemophilus ducreyi, the causative agent of the sexually transmitted infection chancroid, is primarily a pathogen of human skin. During infection, H. ducreyi thrives extracellularly in a milieu of professional phagocytes and other antibacterial components of the innate and adaptive immune responses. This review summarizes our understanding of the interplay between this pathogen and its host that leads to development and persistence of disease. H. ducreyi expresses key virulence mechanisms to resist host defenses. The secreted LspA proteins are tyrosine-phosphorylated by host kinases, which may contribute to their antiphagocytic effector function. The serum resistance and adherence functions of DsrA map to separate domains of this multifunctional virulence factor. An influx transporter protects H. ducreyi from killing by the antimicrobial peptide LL37. Regulatory genes have been identified that may coordinate virulence factor expression during disease. Dendritic cells and natural killer cells respond to H. ducreyi and may be involved in determining the differential outcomes of infection observed in humans. A human model of H. ducreyi infection has provided insights into virulence mechanisms that allow this human-specific pathogen to survive immune pressures. Components of the human innate immune system may also determine the ultimate fate of H. ducreyi infection by driving either clearance of the organism or an ineffective response that allows disease progression.

  10. Dual role of Fcγ receptors in host defense and disease in Borrelia burgdorferi-infected mice

    Directory of Open Access Journals (Sweden)

    Alexia Anne Belperron

    2014-06-01

    Full Text Available Arthritis in mice infected with the Lyme disease spirochete, Borrelia burgdorferi, results from the influx of innate immune cells responding to the pathogen in the joint and is influenced in part by mouse genetics. Production of inflammatory cytokines by innate immune cells in vitro is largely mediated by Toll-like receptor (TLR interaction with Borrelia lipoproteins, yet surprisingly mice deficient in TLR2 or the TLR signaling molecule MyD88 still develop arthritis comparable to that seen in wild type mice after B. burgdorferi infection. These findings suggest that other, MyD88-independent inflammatory pathways can contribute to arthritis expression. Clearance of B. burgdorferi is dependent on the production of specific antibody and phagocytosis of the organism. As Fc receptors (FcγR are important for IgG-mediated clearance of immune complexes and opsonized particles by phagocytes, we examined the role that FcγR play in host defense and disease in B. burgdorferi-infected mice. B. burgdorferi-infected mice deficient in the Fc receptor common gamma chain (FcεRγ-/- mice harbored ~10 fold more spirochetes than similarly infected wild type mice, and this was associated with a transient increase in arthritis severity. While the elevated pathogen burdens seen in B. burgdorferi-infected MyD88-/- mice were not affected by concomitant deficiency in FcγR, arthritis was reduced in FcεRγ-/-MyD88-/- mice in comparison to wild type or single knockout mice. Gene expression analysis from infected joints demonstrated that absence of both MyD88 and FcγR lowers mRNA levels of proteins involved in inflammation, including Cxcl1 (KC, Xcr1 (Gpr5, IL-1beta, and C reactive protein. Taken together, our results demonstrate a role for FcγR-mediated immunity in limiting pathogen burden and arthritis in mice during the acute phase of B. burgdorferi infection, and further suggest that this pathway contributes to the arthritis that develops in B. burgdorferi

  11. Immunogenicity of a modified-live virus vaccine against bovine viral diarrhea virus types 1 and 2, infectious bovine rhinotracheitis virus, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus when administered intranasally in young calves.

    Science.gov (United States)

    Xue, Wenzhi; Ellis, John; Mattick, Debra; Smith, Linda; Brady, Ryan; Trigo, Emilio

    2010-05-14

    The immunogenicity of an intranasally-administered modified-live virus (MLV) vaccine in 3-8 day old calves was evaluated against bovine viral diarrhea virus (BVDV) types 1 and 2, infectious bovine rhinotracheitis (IBR) virus, parainfluenza-3 (PI-3) virus and bovine respiratory syncytial virus (BRSV). Calves were intranasally vaccinated with a single dose of a multivalent MLV vaccine and were challenged with one of the respective viruses three to four weeks post-vaccination in five separate studies. There was significant sparing of diseases in calves intranasally vaccinated with the MLV vaccine, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding, greater white blood cell and platelet counts, and less severe pulmonary lesions than control animals. This was the first MLV combination vaccine to demonstrate efficacy against BVDV types 1 and 2, IBR, PI-3 and BRSV in calves 3-8 days of age. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Bovine Necrotic Vulvovaginitis Associated with Porphyromonas levii

    Science.gov (United States)

    Friedgut, Orly; Alpert, Nir; Stram, Yehuda; Lahav, Dan; Tiomkin, Doron; Avramson, Miriam; Grinberg, Kalia; Bernstein, Michael

    2004-01-01

    An outbreak of bovine necrotic vulvovaginitis associated with Porphyromonas levii, an emerging animal and human pathogen, affected 32 cows on a dairy farm in the northeast of Israel. Five animals had to be culled. This report appears to be the first that associates P. levii with bovine necrotic vulvovagnitis. PMID:15109423

  13. Foot-and-mouth disease virus, but not bovine enterovirus, targets the host cell cytoskeleton, via the non-structural protein 3Cpro

    DEFF Research Database (Denmark)

    Armer, Hannah; Moffat, Katy; Wileman, Thomas

    2008-01-01

    Foot-and-mouth disease virus (FMDV), a member of the Picornaviridae, is a pathogen of cloven-hoofed animals and causes a disease of major economic importance. Picornavirus-infected cells show changes in cell morphology and rearrangement of cytoplasmic membranes, which are a consequence of virus r....... In contrast, infection of cells with another picornavirus, bovine enterovirus, did not affect -tubulin distribution, and the microtubule network remained relatively unaffected....

  14. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...

  15. Secretory phospholipase A2 in dromedary tears: a host defense against staphylococci and other gram-positive bacteria.

    Science.gov (United States)

    Ben Bacha, Abir; Abid, Islem

    2013-03-01

    The best known physiologic function of secreted phospholipase A2 (sPLA2) group IIA (sPLA2-IIA) is defense against bacterial infection through hydrolytic degradation of bacterial membrane phospholipids. In fact, sPLA2-IIA effectively kills Gram-positive bacteria and to a lesser extent Gram-negative bacteria and is considered a major component of the eye's innate immune defense system. The antibacterial properties of sPLA2 have been demonstrated in rabbit and human tears. In this report, we have analyzed the bactericidal activity of dromedary tears and the subsequently purified sPLA2 on several Gram-positive bacteria. Our results showed that the sPLA2 displays a potent bactericidal activity against all the tested bacteria particularly against the Staphylococcus strains when tested in the ionic environment of tears. There is a synergic action of the sPLA2 with lysozyme when added to the bacteria culture prior to sPLA2. Interestingly, lysozyme purified from dromedary tears showed a significant bactericidal activity against Listeria monocytogene and Staphylococcus epidermidis, whereas the one purified from human tears displayed no activity against these two strains. We have also demonstrated that Ca(2+) is crucial for the activity of dromedary tear sPLA2 and to a less extent Mg(2+) ions. Given the presence of sPLA2 in tears and intestinal secretions, this enzyme may play a substantial role in innate mucosal and systemic bactericidal defenses against Gram-positive bacteria.

  16. Screening and identification of host proteins interacting with Theileria annulata cysteine proteinase (TaCP by yeast-two-hybrid system

    Directory of Open Access Journals (Sweden)

    Shuaiyang Zhao

    2017-10-01

    Full Text Available Abstract Background Theileria annulata can infect monocytes/macrophages and B lymphocytes and causes severe lymphoproliferative disease in ruminants. Meanwhile, infection by T. annulata leads to the permanent proliferation of cell population through regulating signaling pathways of host cells. Cysteine proteinases (CPs are one kind of protein hydrolase and usually play critical roles in parasite virulence, host invasion, nutrition and host immune response. However, the biological function of T. annulata CP (TaCP is still unclear. In this study, a yeast-two-hybrid assay was performed to screen host proteins interacting with TaCP, to provide information to help our understanding of the molecular mechanisms between T. annulata and host cells. Methods The cDNA from purified bovine B cells was inserted into pGADT7-SfiI vector (pGADT7-SfiI-BcDNA, Prey plasmid for constructing the yeast two-hybrid cDNA library. TaCP was cloned into the pGBKT7 vector (pGBKT7-TaCP and was considered as bait plasmid after evaluating the expression, auto-activation and toxicity tests in the yeast strain Y2HGold. The yeast two-hybrid screening was carried out via co-transforming bait and prey plasmids into yeast strain Y2HGold. Sequences of positive preys were analyzed using BLAST, Gene Ontology, UniProt and STRING. Results Two host proteins, CRBN (Bos taurus cereblon transcript variant X2 and Ppp4C (Bos indicus protein phosphatase 4 catalytic subunit were identified to interact with TaCP. The results of functional analysis showed that the two proteins were involved in many cellular processes, such as ubiquitylation regulation, microtubule organization, DNA repair, cell apoptosis and maturation of spliceosomal snRNPs. Conclusions This study is the first to screen the host proteins of bovine B cells interacting with TaCP, and 2 proteins, CRBN and Ppp4C, were identified using yeast two-hybrid technique. The results of functional analysis suggest that the two proteins are

  17. Effect of melatonin on in vitro maturation of bovine oocytes ...

    African Journals Online (AJOL)

    ... Vs 17.67, 15.68, 16.53). In conclusion in this experiment, melatonin cannot improve cumulus cell expansion and nuclear maturation of bovine oocytes. When concentrations is high, melatonin may affect bovine oocytes meiotic maturation at metaphase-1 stage, but it is improbable melatonin be toxic for bovine oocytes.

  18. Technical Soddi Defenses: The Trojan Horse Defense Revisited

    Directory of Open Access Journals (Sweden)

    Chad Steel

    2014-12-01

    Full Text Available In 2004, the Trojan horse defense was at a crossroads, with two child pornography cases where it was successfully employed in the United Kingdom, resulting in acquittals.  The original Trojan horse defense has now become part of the more general “technical SODDI” defense, which includes the possibility of unknown actors using unsecured Wi-Fi connections or having physical access to a computer to perform criminal acts.  In the past ten years, it has failed to be effective in the United States for criminal cases, with no published acquittals in cases where it was the primary defense.  In the criminal cases where it has been used as leverage in plea negotiations, there has been either poor forensics performed by the prosecution or political pressure to resolve a matter.  On the civil side, however, the defense has been wildly successful, effectively shutting down large John Doe copyright infringement litigation against non-commercial violators.  

  19. Immunity of an alternative host can be overcome by higher densities of its parasitoids Palmistichus elaeisis and Trichospilus diatraeae.

    Directory of Open Access Journals (Sweden)

    Gilberto Santos Andrade

    Full Text Available Interactions of the parasitoids Palmistichus elaeisis Delvare & LaSalle and Trichospilus diatraeae Cherian & Margabandhu (Hymenoptera: Eulophidae with its alternative host Anticarsia gemmatalis (Hübner (Lepidoptera: Noctuidae affect the success or failure of the mass production of these parasitoids for use in integrated pest management programs. The aim of this study was to evaluate changes in the cellular defense and encapsulation ability of A. gemmatalis pupae against P. elaeisis or T. diatraeae in adult parasitoid densities of 1, 3, 5, 7, 9, 11 or 13 parasitoids/pupae. We evaluated the total quantity of circulating hemocytes and the encapsulation rate versus density. Increasing parasitoid density reduced the total number of hemocytes in the hemolymph and the encapsulation rate by parasitized pupae. Furthermore, densities of P. elaeisis above 5 parasitoids/pupae caused higher reduction in total hemocyte numbers. The encapsulation rate fell with increasing parasitoid density. However, parasitic invasion by both species induced generally similar responses. The reduction in defensive capacity of A. gemmatalis is related to the adjustment of the density of these parasitoids to their development in this host. Thus, the role of the density of P. elaeisis or T. diatraeae by pupa is induced suppression of cellular defense and encapsulation of the host, even without them possesses a co-evolutionary history. Furthermore, these findings can predict the success of P. elaeisis and T. diatraeae in the control of insect pests through the use of immunology as a tool for evaluation of natural enemies.

  20. The Role of MicroRNAs in Bovine Infection and Immunity

    Directory of Open Access Journals (Sweden)

    Nathan eLawless

    2014-11-01

    Full Text Available MicroRNAs (miRNAs are a class of small, non-coding RNAs that are recognised as critical regulators of immune gene expression during infection. Many immunologically significant human miRNAs have been found to be conserved in agriculturally important species, including cattle. Discovering how bovine miRNAs mediate the immune defence during infection is critical to understanding the aetiology of the most prevalent bovine diseases. Here, we review current knowledge of miRNAs in the bovine genome, and discuss the advances in understanding of miRNAs as regulators of immune cell function, and bovine immune response activation, regulation, and resolution. Finally, we consider the future perspectives on miRNAs in bovine viral disease, their role as potential biomarkers and in therapy.

  1. Characterization of carbohydrate structures of bovine MUC15 and distribution of the mucin in bovine milk

    DEFF Research Database (Denmark)

    Pallesen, Lone Tjener; Pedersen, Lise Refstrup Linnebjerg; Petersen, Torben Ellebæk

    2007-01-01

    by densitometric scanning of Western blots. In raw milk, MUC15 was shown to constitute 0.08% (wt) of the protein and approximately 1.5% (wt) of the MFGM-associated proteins. Surprisingly, this study showed that in addition to the fat-containing fractions, such as MFGM and buttermilk, MUC15 was present in nonfat......The present work reports the characterization of carbohydrate structures and the distribution of the newly identified mucin MUC15, a highly glycosylated protein associated with the bovine milk fat globule membrane (MFGM). Distribution of MUC15 was investigated in various fractions of bovine milk......-containing fractions as well, such as skim milk and whey. Compositional and structural studies of the carbohydrates of bovine milk MUC15 showed that the glycans are composed of fucose, galactose, mannose, N-acetylgalactosamine, N-acetylglycosamine, and sialic acid. The carbohydrate was shown to constitute 65...

  2. Revisiting host preference in the Mycobacterium tuberculosis complex: experimental infection shows M. tuberculosis H37Rv to be avirulent in cattle.

    Directory of Open Access Journals (Sweden)

    Adam O Whelan

    Full Text Available Experiments in the late 19th century sought to define the host specificity of the causative agents of tuberculosis in mammals. Mycobacterium tuberculosis, the human tubercle bacillus, was independently shown by Smith, Koch, and von Behring to be avirulent in cattle. This finding was erroneously used by Koch to argue the converse, namely that Mycobacterium bovis, the agent of bovine tuberculosis, was avirulent for man, a view that was subsequently discredited. However, reports in the literature of M. tuberculosis isolation from cattle with tuberculoid lesions suggests that the virulence of M. tuberculosis for cattle needs to be readdressed. We used an experimental bovine infection model to test the virulence of well-characterized strains of M. tuberculosis and M. bovis in cattle, choosing the genome-sequenced strains M. tuberculosis H37Rv and M. bovis 2122/97. Cattle were infected with approximately 10(6 CFU of M. tuberculosis H37Rv or M. bovis 2122/97, and sacrificed 17 weeks post-infection. IFN-gamma and tuberculin skin tests indicated that both M. bovis 2122 and M. tuberculosis H37Rv were equally infective and triggered strong cell-mediated immune responses, albeit with some indication of differential antigen-specific responses. Postmortem examination revealed that while M. bovis 2122/97-infected animals all showed clear pathology indicative of bovine tuberculosis, the M. tuberculosis-infected animals showed no pathology. Culturing of infected tissues revealed that M. tuberculosis was able to persist in the majority of animals, albeit at relatively low bacillary loads. In revisiting the early work on host preference across the M. tuberculosis complex, we have shown M. tuberculosis H37Rv is avirulent for cattle, and propose that the immune status of the animal, or genotype of the infecting bacillus, may have significant bearing on the virulence of a strain for cattle. This work will serve as a baseline for future studies into the genetic basis

  3. Interferon induced IFIT family genes in host antiviral defense.

    Science.gov (United States)

    Zhou, Xiang; Michal, Jennifer J; Zhang, Lifan; Ding, Bo; Lunney, Joan K; Liu, Bang; Jiang, Zhihua

    2013-01-01

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.

  4. Neutrophil extracellular traps in the host defense against sepsis induced by Burkholderia pseudomallei (melioidosis)

    NARCIS (Netherlands)

    de Jong, Hanna K.; Koh, Gavin C. K. W.; Achouiti, Ahmed; van der Meer, Anne J.; Bulder, Ingrid; Stephan, Femke; Roelofs, Joris J. T. H.; Day, Nick P. J.; Peacock, Sharon J.; Zeerleder, Sacha; Wiersinga, W. Joost

    2014-01-01

    Neutrophil extracellular traps (NETs) are a central player in the host response to bacteria: neutrophils release extracellular DNA (nucleosomes) and neutrophil elastase to entrap and kill bacteria. We studied the role of NETs in Burkholderia pseudomallei infection (melioidosis), an important cause

  5. Seroprevalence of bovine theileriosis in northern China

    Directory of Open Access Journals (Sweden)

    Yaqiong Li

    2016-11-01

    Full Text Available Abstract Background Bovine theileriosis is a common disease transmitted by ticks, and can cause loss of beef and dairy cattle worldwide. Here, an indirect enzyme-linked immunosorbent assay (iELISA based on Theileria luwenshuni surface protein (TlSP was developed and used to carry out a seroepidemiological survey of bovine theileriosis in northern China. Methods We used the BugBuster Ni-NTA His•Bind Purification Kit to purify recombinant TlSP (rTlSP, which was subsequently analyzed by Western Blotting to evaluate cross-reactivity with other pathogen-positive sera. The iELISA method based on rTlSP was successfully developed. Sera from 2005 blood samples were tested with the rTlSP-iELISA method, and blood smears from these samples were observed by microscopy. Results The specificity of iELISA was 98.9%, the sensitivity was 98.5%, and the cut-off was selected as 24.6%. Western Blot analysis of rTlSP confirmed that there were cross-reactions with Theileria luwenshuni, Theileria uilenbergi, Theileria ovis, Theileria annulata, Theileria orientalis and Theileria sinensis. The epidemiological survey showed that the highest positive rate of bovine theileriosis was 98.3%, the lowest rate was 84.1%, and the average positive rate was 95.4% by iELISA. With microscopy, the highest positive rate was 38.9%, the lowest rate was 5.1%, and the relative average positive rate was 13.7%. Conclusions An rTlSP-iELISA was developed to detect circulating antibodies against bovine Theileria in northern China. This is the first report on the seroprevalence of bovine theileriosis in northern China, and it also provides seroepidemiological data on bovine theileriosis in China.

  6. Heterologous expression of bovine lactoferricin in Pichia methanolica.

    Science.gov (United States)

    Wang, Haikuan; Zhao, Xinhuai; Lu, Fuping

    2007-06-01

    According to the bias of codon utilization of Pichia methanolica, a fragment encoding bovine lactoferricin has been cloned and expressed in the P. methanolica under the control of the alcohol oxidase promoter, which was followed by the Saccharomyces cerevisiae alpha-factor signal peptide. The alpha-factor signal peptide efficiently directed the secretion of bovine lactoferricin from the recombinant yeast cell. The recombinant bovine lactoferricin appears to be successfully expressed, as it displays antibacterial activity (antibacterial assay). Moreover, the identity of the recombinant product was estimated by Tricine-SDS-PAGE.

  7. Chlamydia trachomatis’ struggle to keep its host alive

    Directory of Open Access Journals (Sweden)

    Barbara S. Sixt

    2017-03-01

    Full Text Available Bacteria of the phylum Chlamydiae infect a diverse range of eukaryotic host species, including vertebrate animals, invertebrates, and even protozoa. Characteristics shared by all Chlamydiae include their obligate intracellular lifestyle and a biphasic developmental cycle. The infectious form, the elementary body (EB, invades a host cell and differentiates into the replicative form, the reticulate body (RB, which proliferates within a membrane-bound compartment, the inclusion. After several rounds of division, RBs retro-differentiate into EBs that are then released to infect neighboring cells. The consequence of this obligatory transition between replicative and infectious forms inside cells is that Chlamydiae absolutely depend on the viability and functionality of their host cell throughout the entire infection cycle. We recently conducted a forward genetic screen in Chlamydia trachomatis, a common sexually transmitted human pathogen, and identified a mutant that caused premature death in the majority of infected host cells. We employed emerging genetic tools in Chlamydia to link this cytotoxicity to the loss of the protein CpoS (Chlamydia promoter of survival that normally localizes to the membrane of the pathogen-containing vacuole. CpoS-deficient bacteria also induced an exaggerated type-1 interferon response in infected cells, produced reduced numbers of infectious EBs in cell culture, and were cleared faster from the mouse genital tract in a transcervical infection model in vivo. The analysis of this CpoS-deficient mutant yielded unique insights into the nature of cell-autonomous defense responses against Chlamydia and highlighted the importance of Chlamydia-mediated control of host cell fate for the success of the pathogen.

  8. Control of bovine hepatic fatty acid oxidation

    International Nuclear Information System (INIS)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-01-01

    Fatty acid oxidation by bovine liver slices and mitochondria was examined to determine potential regulatory sites of fatty acid oxidation. Conversion of 1-[ 14 C]palmitate to 14 CO 2 and total [ 14 C]acid-soluble metabolites was used to measure fatty acid oxidation. Oxidation of palmitate (1 mM) was linear in both liver slice weight and incubation time. Carnitine stimulated palmitate oxidation; 2 mM dl-carnitine produced maximal stimulation of palmitate oxidation to both CO 2 and acid-soluble metabolites. Propionate (10 mM) inhibited palmitate oxidation by bovine liver slices. Propionate (.5 to 10 mM) had no effect on palmitate oxidation by mitochondria, but malonyl Coenzyme A, the first committed intermediate of fatty acid synthesis, inhibited mitochondrial palmitate oxidation (inhibition constant = .3 μM). Liver mitochonndrial carnitine palmitoyltransferase exhibited Michaelis constants for palmitoyl Coenzyme A and l-carnitine of 11.5 μM and .59 mM, respectively. Long-chain fatty acid oxidation in bovine liver is regulated by mechanisms similar to those in rats but adapted to the unique digestive physiology of the bovine

  9. Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow Plum pox virus to adapt to new hosts.

    Science.gov (United States)

    Carbonell, Alberto; Maliogka, Varvara I; Pérez, José de Jesús; Salvador, Beatriz; León, David San; García, Juan Antonio; Simón-Mateo, Carmen

    2013-10-01

    Plum pox virus (PPV)-D and PPV-R are two isolates from strain D of PPV that differ in host specificity. Previous analyses of chimeras originating from PPV-R and PPV-D suggested that the N terminus of the coat protein (CP) includes host-specific pathogenicity determinants. Here, these determinants were mapped precisely by analyzing the infectivity in herbaceous and woody species of chimeras containing a fragment of the 3' region of PPV-D (including the region coding for the CP) in a PPV-R backbone. These chimeras were not infectious in Prunus persica, but systemically infected Nicotiana clevelandii and N. benthamiana when specific amino acids were modified or deleted in a short 30-amino-acid region of the N terminus of the CP. Most of these mutations did not reduce PPV fitness in Prunus spp. although others impaired systemic infection in this host. We propose a model in which the N terminus of the CP, highly relevant for virus systemic movement, is targeted by a host defense mechanism in Nicotiana spp. Mutations in this short region allow PPV to overcome the defense response in this host but can compromise the efficiency of PPV systemic movement in other hosts such as Prunus spp.

  10. [Study of defense styles, defenses and coping strategies in alcohol-dependent population].

    Science.gov (United States)

    Ribadier, A; Varescon, I

    2017-05-01

    Defense mechanisms have been seen to greatly change over time and across different definitions made by different theoretical currents. Recently with the definition provided by the DSM IV, defense mechanisms have integrated the concept of coping as a defensive factor. These mechanisms are no longer considered just through a psychodynamic approach but also through a cognitive and behavioral one. In recent years, new theories have therefore integrated these two components of the defensive operation. According to Chabrol and Callahan (2013), defense mechanisms precede coping strategies. In individuals with psychopathological disorders, these authors indicate a relative stability of these mechanisms. Also, we asked about the presence of unique characteristics among people with alcohol dependence. Indeed, studies conducted with people with alcohol dependence highlight the presence of a neurotic defense style and some highly immature defenses (projection, acting out, splitting and somatization). In terms of coping strategies, persons with alcohol dependence preferentially use avoidant strategies and strategies focused on emotion. However, although several studies have been conducted to assess coping strategies and defense styles within a population of individuals with an alcohol problem, at the present time none of them has taken into account all these aspects of defense mechanisms. The aim of this study is therefore to study the defenses and defense styles and coping strategies in an alcohol-dependent population. This multicenter study (3 CHU, 1 center of supportive care and prevention in addiction and 1 clinic) received a favorable opinion of an Institutional Review Board (IRB Registration #: 00001072). Eighty alcohol-dependent individuals responded to a questionnaire assessing sociodemographic characteristics and elements related to the course of consumption. Coping strategies were assessed by means of a questionnaire validated in French: the Brief Cope. The Defense

  11. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis

    KAUST Repository

    Garavaglia, Betiana S.

    2010-01-28

    Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause downregulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization. 2010 Garavaglia et al.

  12. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis.

    Directory of Open Access Journals (Sweden)

    Betiana S Garavaglia

    Full Text Available Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.

  13. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis

    KAUST Repository

    Garavaglia, Betiana S.; Thomas, Ludivine; Gottig, Natalia; Dunger, Germá n; Garofalo, Cecilia G.; Daurelio, Lucas D.; Ndimba, Bongani; Orellano, Elena G.; Gehring, Christoph A; Ottado, Jorgelina

    2010-01-01

    Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause downregulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization. 2010 Garavaglia et al.

  14. LC-MS/MS analysis of permethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples.

    Science.gov (United States)

    Dong, Xue; Zhou, Shiyue; Mechref, Yehia

    2016-06-01

    Oligosaccharides in milk not only provide nutrition to the infants but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat, and human milks using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat, and human milk samples (without isomeric consideration) were 11, 8, and 11, respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat, and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by porous graphitic carbon LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using porous graphitic carbon column. Permethylation of the glycan structures facilitated the interpretation of MS/MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Vaccination of koalas (Phascolarctos cinereus) with a recombinant chlamydial major outer membrane protein adjuvanted with poly I:C, a host defense peptide and polyphosphazine, elicits strong and long lasting cellular and humoral immune responses.

    Science.gov (United States)

    Khan, Shahneaz Ali; Waugh, Courtney; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2014-10-07

    Chlamydial infections are wide spread in koalas across their range and a solution to this debilitating disease has been sought for over a decade. Antibiotics are the currently accepted therapeutic measure, but are not an effective treatment due to the asymptomatic nature of some infections and a low efficacy rate. Thus, a vaccine would be an ideal way to address this infectious disease threat in the wild. Previous vaccine trials have used a three-dose regimen; however this is very difficult to apply in the field as it would require multiple capture events, which are stressful and invasive processes for the koala. In addition, it requires skilled koala handlers and a significant monetary investment. To overcome these challenges, in this study we utilized a polyphosphazine based poly I:C and a host defense peptide adjuvant combined with recombinant chlamydial major outer membrane protein (rMOMP) antigen to induce long lasting (54 weeks) cellular and humoral immunity in female koalas with a novel single immunizing dose. Immunized koalas produced a strong IgG response in plasma, as well as at mucosal sites. Moreover, they showed high levels of C. pecorum specific neutralizing antibodies in the plasma as well as vaginal and conjunctival secretions. Lastly, Chlamydia-specific lymphocyte proliferation responses were produced against both whole chlamydial elementary bodies and rMOMP protein, over the 12-month period. The results of this study suggest that a single dose rMOMP vaccine incorporating a poly I:C, host defense peptide and polyphosphazine adjuvant is able to stimulate both arms of the immune system in koalas, thereby providing an alternative to antibiotic treatment and/or a three-dose vaccine regime. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Interplays between soil-borne plant viruses and RNA silencing-mediated antiviral defense in roots

    Directory of Open Access Journals (Sweden)

    Ida Bagus Andika

    2016-09-01

    Full Text Available Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots.

  17. Cytopathic bovine viral diarrhea viruses (BVDV): emerging pestiviruses doomed to extinction.

    Science.gov (United States)

    Peterhans, Ernst; Bachofen, Claudia; Stalder, Hanspeter; Schweizer, Matthias

    2010-01-01

    Bovine viral diarrhea virus (BVDV), a Flaviviridae pestivirus, is arguably one of the most widespread cattle pathogens worldwide. Each of its two genotypes has two biotypes, non-cytopathic (ncp) and cytopathic (cp). Only the ncp biotype of BVDV may establish persistent infection in the fetus when infecting a dam early in gestation, a time point which predates maturity of the adaptive immune system. Such fetuses may develop and be born healthy but remain infected for life. Due to this early initiation of fetal infection and to the expression of interferon antagonistic proteins, persistently infected (PI) animals remain immunotolerant to the infecting viral strain. Although only accounting for some 1% of all animals in regions where BVDV is endemic, PI animals ensure the viral persistence in the host population. These animals may, however, develop the fatal mucosal disease, which is characterized by widespread lesions in the gastrointestinal tract. Cp BVD virus, in addition to the persisting ncp biotype, can be isolated from such animals. The cp viruses are characterized by unrestrained genome replication, and their emergence from the persisting ncp ones is due to mutations that are unique in each virus analyzed. They include recombinations with host cell mRNA, gene translocations and duplications, and point mutations. Cytopathic BVD viruses fail to establish chains of infection and are unable to cause persistent infection. Hence, these viruses illustrate a case of "viral emergence to extinction" - irrelevant for BVDV evolution, but fatal for the PI host. © INRA, EDP Sciences, 2010.

  18. Ballistic missile defense effectiveness

    Science.gov (United States)

    Lewis, George N.

    2017-11-01

    The potential effectiveness of ballistic missile defenses today remains a subject of debate. After a brief discussion of terminal and boost phase defenses, this chapter will focus on long-range midcourse defenses. The problems posed by potential countermeasures to such midcourse defenses are discussed as are the sensor capabilities a defense might have available to attempt to discriminate the actual missile warhead in a countermeasures environment. The role of flight testing in assessing ballistic missile defense effectiveness is discussed. Arguments made about effectiveness by missile defense supporters and critics are summarized.

  19. Characterization of non-host resistance in broad bean to the wheat stripe rust pathogen

    Directory of Open Access Journals (Sweden)

    Cheng Yulin

    2012-06-01

    Full Text Available Abstract Background Non-host resistance (NHR confers plant species immunity against the majority of microbial pathogens and represents the most robust and durable form of plant resistance in nature. As one of the main genera of rust fungi with economic and biological importance, Puccinia infects almost all cereals but is unable to cause diseases on legumes. Little is known about the mechanism of this kind of effective defense in legumes to these non-host pathogens. Results In this study, the basis of NHR in broad bean (Vicia faba L. against the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst, was characterized. No visible symptoms were observed on broad bean leaves inoculated with Pst. Microscopic observations showed that successful location of stomata and haustoria formation were significantly reduced in Pst infection of broad bean. Attempted infection induced the formation of papillae, cell wall thickening, production of reactive oxygen species, callose deposition and accumulation of phenolic compounds in plant cell walls. The few Pst haustoria that did form in broad bean cells were encased in reactive oxygen and callose materials and those cells elicited cell death. Furthermore, a total of seven defense-related genes were identified and found to be up-regulated during the Pst infection. Conclusions The results indicate that NHR in broad bean against Pst results from a continuum of layered defenses, including basic incompatibility, structural and chemical strengthening of cell wall, posthaustorial hypersensitive response and induction of several defense-related genes, demonstrating the multi-layered feature of NHR. This work also provides useful information for further determination of resistance mechanisms in broad bean to rust fungi, especially the adapted important broad bean rust pathogen, Uromyces viciae-fabae, because of strong similarity and association between NHR of plants to unadapted pathogens and basal

  20. 76 FR 72391 - Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense...

    Science.gov (United States)

    2011-11-23

    ... DEPARTMENT OF DEFENSE Office of the Secretary [Docket ID DOD-2011-OS-0055] Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense Logistics Agency Actions AGENCY: Defense Logistics Agency, Department of Defense. ACTION: Revised Defense Logistics Agency...

  1. Camel and bovine chymosin

    DEFF Research Database (Denmark)

    Jensen, Jesper Langholm; Mølgaard, Anne; Poulsen, Jens-Christian Navarro

    2013-01-01

    chymosin. Both enzymes possess local positively charged patches on their surface that can play a role in interactions with the overall negatively charged C-terminus of κ-casein. Camel chymosin contains two additional positive patches that favour interaction with the substrate. The improved electrostatic......Bovine and camel chymosin are aspartic peptidases that are used industrially in cheese production. They cleave the Phe105-Met106 bond of the milk protein κ-casein, releasing its predominantly negatively charged C-terminus, which leads to the separation of the milk into curds and whey. Despite...... interactions arising from variation in the surface charges and the greater malleability both in domain movements and substrate binding contribute to the better milk-clotting activity of camel chymosin towards bovine milk....

  2. Mycobacterium bovis infections in domesticated non-bovine mammalian species. Part 2: A review of diagnostic methods.

    Science.gov (United States)

    Broughan, J M; Crawshaw, T R; Downs, S H; Brewer, J; Clifton-Hadley, R S

    2013-11-01

    Despite the large host range of Mycobacterium bovis, ante-mortem diagnostic tests for the infection mostly lack sensitivity/specificity and/or remain unvalidated in non-bovine species. The epidemiology and importance of M. bovis infection in these species are discussed in the first part of this two-part review. This second part focuses on the diagnostic options available to identify infected species such as sheep, goats, dogs, cats, and camelids, and highlights the significant challenges posed, both in establishing estimates of disease prevalence and in controlling infections in these species, in the absence of fully validated tests. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.

    Science.gov (United States)

    Zarate, Sonia I; Kempema, Louisa A; Walling, Linda L

    2007-02-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF.

  4. A retrospective analysis of the infectious bovine rhinotracheitis (bovine herpes virus-1) surveillance program in Norway using Monte Carlo simulation models

    DEFF Research Database (Denmark)

    Paisley, Larry; Tharaldsen, J.; Jarp, J.

    2001-01-01

    Serological surveillance for antibodies against bovine herpes virus type I (BHV-1) which causes infectious bovine rhinotracheitis and infectious pustular vulvovaginitis has been carried out since 1992 in Norway. Since 1993 (when a single infected herd was detected) all bulk-milk and pooled...

  5. Gabor Weber Local Descriptor for Bovine Iris Recognition

    Directory of Open Access Journals (Sweden)

    Shengnan Sun

    2013-01-01

    Full Text Available Iris recognition is a robust biometric technology. This paper proposes a novel local descriptor for bovine iris recognition, named Gabor Weber local descriptor (GWLD. We first compute the Gabor magnitude maps for the input bovine iris image, and then calculate the differential excitation and orientation for each pixel over each Gabor magnitude map. After that, we use these differential excitations and orientations to construct the GWLD histogram representation. Finally, histogram intersection is adopted to measure the similarity between different GWLD histograms. The experimental results on the SEU bovine iris database verify the representation power of our proposed local descriptor.

  6. Missile Defense: Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities

    Science.gov (United States)

    2016-04-28

    Page 1 GAO-16-339R Ballistic Missile Defense 441 G St. N.W. Washington, DC 20548 April 28, 2016 Congressional Committees Missile Defense... Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities For over half a century, the Department of Defense (DOD) has been...funding efforts to develop a system to detect, track, and defeat enemy ballistic missiles. The current system—the Ballistic Missile Defense System

  7. Prevalence and diversity of Escherichia coli isolated from a barley trial supplemented with bulky organic soil amendments: green compost and bovine slurry.

    Science.gov (United States)

    Holden, N J; Wright, F; Mackenzie, K; Marshall, J; Mitchell, S; Mahajan, A; Wheatley, R; Daniell, T J

    2014-03-01

    A barley field trial supplemented with bulky organic soil amendments, municipal compost or bovine slurry was sampled for Escherichia coli to test the hypothesis that E. coli isolated from the soil or from barley plants were derived from bovine slurry. A qualitative analysis showed that a total of 12% of the bulk soil cores and 16% of harvested grain samples yielded E. coli. The strongest association for positive detection of E. coli from soil was with time of year and for slurry-treated plots, with irrigation. However, E. coli were detected in plots from all treatment types and not exclusively associated with bovine slurry. Phylogroup, plasmid profiling and population genetics analysis (multilocus sequence typing) revealed extensive genetic diversity. Identical sequence types for slurry and soil isolates were detected, indicative of direct transfer into the soil, although not frequently. Host interaction assays with selected isolates showed a variation in the ability to colonize barley roots, but not in interactions with bovine cells. The work has implications in appropriate use of E. coli as a faecal indicator as isolates were widespread and diverse, reinforcing the view that some are a natural part of the microflora in agricultural systems. Faecal deposition is considered to be the main process that introduces Escherichia coli into soil, giving rise to their use as a faecal indication species and the potential for cycling pathogens in agricultural systems. We found that bovine slurry was not the main source of E. coli in a barley trial and a high degree of diversity was present in the collection. The findings support the hypothesis that the population structure of E. coli in secondary habitats is shaped by the environment and highlight the drawbacks of its use as a faecal indicator species. © 2013 The Society for Applied Microbiology.

  8. Production and manipulation of bovine embryos: techniques and terminology.

    Science.gov (United States)

    Machaty, Z; Peippo, J; Peter, A

    2012-09-15

    There are numerous publications regarding bovine embryos, ranging from descriptions of their appearance and development to emerging techniques in the field of assisted reproductive technology. Concurrently, several specialized terms have been developed to describe the bovine embryo. The purpose of the current review is two-fold; it is primarily to describe techniques involved in the in vivo and in vitro production of bovine embryos and their manipulation, and secondarily to summarize specialized terms used in these processes. The intention is not to review these techniques in detail, but instead to provide salient points and current knowledge regarding these techniques, with a focus on terminology. The first review dealt with classical and contemporary terminology used to describe morphologic aspects of ovarian dynamics in cattle. Subsequently, the terms and current understanding of processes involved in preattachment bovine embryos were described in the second review. As the third article in a series, this mini-review is focused on defining the production, manipulation, and transfer of bovine preattachment embryos. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Epidemiology of Bovine Mastitis in Cows of Dharwad District

    Science.gov (United States)

    Kurjogi, Mahantesh M.; Kaliwal, Basappa B.

    2014-01-01

    Bovine mastitis is very common in cows of both developed and developing countries. The prevalence of clinical and subclinical mastitis (SCM) varies from region to region. Hence, the present study was carried out to determine the prevalence of mastitis using three diagnostic tests by considering different risk factors like age, lactation, breed, season, quarters, and herd. The results showed that surf field mastitis test (SFMT) is the most sensitive test for diagnosis of bovine mastitis, the older age and cows with later part of lactation period were more prone to bovine mastitis, and exotic breeds like Holstein freshen (HF) were more susceptible to bovine mastitis. The highest incidence of mastitis was recorded in monsoon season. The prevalence of subclinical and clinical mastitis was more in single and two quarters, respectively, and the rate of bovine mastitis was more in unorganized herds. The study concluded that SCM is directly associated with age, lactation period, and environmental factors of the cow and clinical mastitis is more associated with breed of the cow and environmental conditions. PMID:27382623

  10. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens

    Science.gov (United States)

    Qamar, Aarzoo; Mysore, Kirankumar S.; Senthil-Kumar, Muthappa

    2015-01-01

    Pyrroline-5-carboxylate (P5C) is an intermediate product of both proline biosynthesis and catabolism. Recent evidences indicate that proline-P5C metabolism is tightly regulated in plants, especially during pathogen infection and abiotic stress. However, role of P5C and its metabolism in plants has not yet been fully understood. Studies indicate that P5C synthesized in mitochondria has a role in both resistance (R)-gene-mediated and non-host resistance against invading pathogens. Proline dehydrogenase and delta-ornithine amino transferase-encoding genes, both involved in P5C synthesis in mitochondria are implicated in defense response of Nicotiana benthamiana and Arabidopsis thaliana against bacterial pathogens. Such defense response is proposed to involve salicylic acid-dependent pathway, reactive oxygen species (ROS) and hypersensitive response (HR)-associated cell death. Recently HR, a form of programmed cell death (PCD), has been proposed to be induced by changes in mitochondrial P5C synthesis or the increase in P5C levels per se in plants inoculated with either a host pathogen carrying suitable avirulent (Avr) gene or a non-host pathogen. Consistently, A. thaliana mutant plants deficient in P5C catabolism showed HR like cell death when grown in external P5C or proline supplemented medium. Similarly, yeast and plant cells under oxidative stress were shown to increase ROS production and PCD due to increase in P5C levels. Similar mechanism has also been reported as one of the triggers for apoptosis in mammalian cells. This review critically analyzes results from various studies and enumerates the pathways for regulation of P5C levels in the plant cell, especially in mitochondria, during pathogen infection. Further, mechanisms regulating P5C- mediated defense responses, namely HR are outlined. This review also provides new insights into the differential role of proline-P5C metabolism in plants exposed to pathogen infection. PMID:26217357

  11. Production of biological nanoparticles from bovine serum albumin ...

    African Journals Online (AJOL)

    Production of biological nanoparticles from bovine serum albumin for drug delivery. ... Bovine serum albumin (BSA) was used for generation of nanoparticles in a drug delivery system. ... The impact of protein concentration and additional rate of organic solvent (i.e. ethanol) upon the particle ... AJOL African Journals Online.

  12. MODELING HOST-PATHOGEN INTERACTIONS: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS FOR INFECTIOUS DISEASE RESEARCH (Session introduction)

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Braun, Pascal; Bonneau, Richard A.; Hyduke, Daniel R.

    2011-12-01

    Pathogenic infections are a major cause of both human disease and loss of crop yields and animal stocks and thus cause immense damage to the worldwide economy. The significance of infectious diseases is expected to increase in an ever more connected warming world, in which new viral, bacterial and fungal pathogens can find novel hosts and ecologic niches. At the same time, the complex and sophisticated mechanisms by which diverse pathogenic agents evade defense mechanisms and subvert their hosts networks to suit their lifestyle needs is still very incompletely understood especially from a systems perspective [1]. Thus, understanding host-pathogen interactions is both an important and a scientifically fascinating topic. Recently, technology has offered the opportunity to investigate host-pathogen interactions on a level of detail and scope that offers immense computational and analytical possibilities. Genome sequencing was pioneered on some of these pathogens, and the number of strains and variants of pathogens sequenced to date vastly outnumbers the number of host genomes available. At the same time, for both plant and human hosts more and more data on population level genomic variation becomes available and offers a rich field for analysis into the genetic interactions between host and pathogen.

  13. Arthropods Associate with their Red Wood ant Host without Matching Nestmate Recognition Cues.

    Science.gov (United States)

    Parmentier, Thomas; Dekoninck, Wouter; Wenseleers, Tom

    2017-07-01

    Social insect colonies provide a valuable resource that attracts and offers shelter to a large community of arthropods. Previous research has suggested that many specialist parasites of social insects chemically mimic their host in order to evade aggression. In the present study, we carry out a systematic study to test how common such chemical deception is across a group of 22 arthropods that are associated with red wood ants (Formica rufa group). In contrast to the examples of chemical mimicry documented in some highly specialized parasites in previous studies, we find that most of the rather unspecialized red wood ant associates surveyed did not use mimicry of the cuticular hydrocarbon recognition cues to evade host detection. Instead, we found that myrmecophiles with lower cuticular hydrocarbon concentrations provoked less host aggression. Therefore, some myrmecophiles with low hydrocarbon concentrations appear to evade host detection via a strategy known as chemical insignificance. Others showed no chemical disguise at all and, instead, relied on behavioral adaptations such as particular defense or evasion tactics, in order to evade host aggression. Overall, this study indicates that unspecialized myrmecophiles do not require the matching of host recognition cues and advanced strategies of chemical mimicry, but can integrate in a hostile ant nest via either chemical insignificance or specific behavioral adaptations.

  14. No evidence for a bovine mastitis Escherichia coli pathotype.

    Science.gov (United States)

    Leimbach, Andreas; Poehlein, Anja; Vollmers, John; Görlich, Dennis; Daniel, Rolf; Dobrindt, Ulrich

    2017-05-08

    Escherichia coli bovine mastitis is a disease of significant economic importance in the dairy industry. Molecular characterization of mastitis-associated E. coli (MAEC) did not result in the identification of common traits. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype has been proposed suggesting virulence traits that differentiate MAEC from commensal E. coli. The present study was designed to investigate the MPEC pathotype hypothesis by comparing the genomes of MAEC and commensal bovine E. coli. We sequenced the genomes of eight E. coli isolated from bovine mastitis cases and six fecal commensal isolates from udder-healthy cows. We analyzed the phylogenetic history of bovine E. coli genomes by supplementing this strain panel with eleven bovine-associated E. coli from public databases. The majority of the isolates originate from phylogroups A and B1, but neither MAEC nor commensal strains could be unambiguously distinguished by phylogenetic lineage. The gene content of both MAEC and commensal strains is highly diverse and dominated by their phylogenetic background. Although individual strains carry some typical E. coli virulence-associated genes, no traits important for pathogenicity could be specifically attributed to MAEC. Instead, both commensal strains and MAEC have very few gene families enriched in either pathotype. Only the aerobactin siderophore gene cluster was enriched in commensal E. coli within our strain panel. This is the first characterization of a phylogenetically diverse strain panel including several MAEC and commensal isolates. With our comparative genomics approach we could not confirm previous studies that argue for a positive selection of specific traits enabling MAEC to elicit bovine mastitis. Instead, MAEC are facultative and opportunistic pathogens recruited from the highly diverse bovine gastrointestinal microbiota. Virulence-associated genes implicated in mastitis are a by-product of commensalism with the primary function

  15. Plant lectins: the ties that bind in root symbiosis and plant defense.

    Science.gov (United States)

    De Hoff, Peter L; Brill, Laurence M; Hirsch, Ann M

    2009-07-01

    Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general.

  16. Mutational and Evolutionary Analyses of Bovine Reprimo Gene ...

    African Journals Online (AJOL)

    It can therefore be concluded that bovine RPRM gene contained 4 transition mutations and 5 indels that can be used in marker assisted selection. Evolutionary findings also demonstrated the existence of a divergent evolution between bovine RPRM gene and RPRM gene of fishes and frog. Keywords: Identity, phylogeny ...

  17. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13...

  18. Microstructure and hardness of bovine enamel in roselle extract solution

    Science.gov (United States)

    Dame, M. T.; Noerdin, A.; Indrani, D. J.

    2017-08-01

    The aim of this study was to analyze the effect of roselle extract solution on the microstructure and hardness of bovine enamel. Ten bovine teeth and a 5% concentration of roselle extract solution were prepared. Immersions of each bovine tooth in roselle extract solution were conducted up to 60 minutes. The bovine enamel surface was characterized in hardness and microscopy. It was apparent that the initial hardness was 328 KHN, and after immersion in 15 and 60 min, the values decrease to 57.4 KHN and 11 KHN, respectively. Scanning electron microscopy (SEM) revealed changes in enamel rods after immersion in the roselle extract solution.

  19. A high resolution radiation hybrid map of bovine chromosome 14 identifies scaffold rearrangement in the latest bovine assembly

    Directory of Open Access Journals (Sweden)

    Wang Zhiquan

    2007-07-01

    Full Text Available Abstract Background Radiation hybrid (RH maps are considered to be a tool of choice for fine mapping closely linked loci, considering that the resolution of linkage maps is determined by the number of informative meiosis and recombination events which may require very large mapping populations. Accurately defining the marker order on chromosomes is crucial for correct identification of quantitative trait loci (QTL, haplotype map construction and refinement of candidate gene searches. Results A 12 k Radiation hybrid map of bovine chromosome 14 was constructed using 843 single nucleotide polymorphism markers. The resulting map was aligned with the latest version of the bovine assembly (Btau_3.1 as well as other previously published RH maps. The resulting map identified distinct regions on Bovine chromosome 14 where discrepancies between this RH map and the bovine assembly occur. A major region of discrepancy was found near the centromere involving the arrangement and order of the scaffolds from the assembly. The map further confirms previously published conserved synteny blocks with human chromosome 8. As well, it identifies an extra breakpoint and conserved synteny block previously undetected due to lower marker density. This conserved synteny block is in a region where markers between the RH map presented here and the latest sequence assembly are in very good agreement. Conclusion The increase of publicly available markers shifts the rate limiting step from marker discovery to the correct identification of their order for further use by the research community. This high resolution map of bovine chromosome 14 will facilitate identification of regions in the sequence assembly where additional information is required to resolve marker ordering.

  20. The Role of IL-33 in Host Response to Candida albicans

    Directory of Open Access Journals (Sweden)

    C. Rodríguez-Cerdeira

    2014-01-01

    Full Text Available Background. Interleukin (IL 33 is a recently identified pleiotropic cytokine that influences the activity of multiple cell types and orchestrates complex innate and adaptive immune responses. Methods. We performed an extensive review of the literature published between 2005 and 2013 on IL-33 and related cytokines, their functions, and their regulation of the immune system following Candida albicans colonization. Our literature review included cross-references from retrieved articles and specific data from our own studies. Results. IL-33 (IL-1F11 is a recently identified member of the IL-1 family of cytokines. Accumulating evidence suggests a pivotal role of the IL-33/ST2 axis in host immune defense against fungal pathogens, including C. albicans. IL-33 induces a Th2-type inflammatory response and activates both innate and adaptive immunity. Studies in animal models have shown that Th2 inflammatory responses have a beneficial role in immunity against gastrointestinal and systemic infections by Candida spp. Conclusions. This review summarizes the most important clinical studies and case reports describing the beneficial role of IL-33 in immunity and host defense mechanisms against pathogenic fungi. The finding that the IL-33/ST2 axis is involved in therapeutic target has implications for the prevention and treatment of inflammatory diseases, including acute or chronic candidiasis.

  1. Bovine herpes virus infections in cattle.

    Science.gov (United States)

    Nandi, S; Kumar, Manoj; Manohar, M; Chauhan, R S

    2009-06-01

    Bovine herpes virus 1 (BHV-1) is primarily associated with clinical syndromes such as rhinotracheitis, pustular vulvovaginitis and balanoposthitis, abortion, infertility, conjunctivitis and encephalitis in bovine species. The main sources of infection are the nasal exudates and the respiratory droplets, genital secretions, semen, fetal fluids and tissues. The BHV-1 virus can become latent following a primary infection with a field isolate or vaccination with an attenuated strain. The viral genomic DNA has been demonstrated in the sensory ganglia of the trigeminal nerve in infectious bovine rhinotracheitis (IBR) and in sacral spinal ganglia in pustular vulvovaginitis and balanoposthitis cases. BHV-1 infections can be diagnosed by detection of virus or virus components and antibody by serological tests or by detection of genomic DNA by polymerase chain reaction (PCR), nucleic acid hybridization and sequencing. Inactivated vaccines and modified live virus vaccines are used for prevention of BHV-1 infections in cattle; subunit vaccines and marker vaccines are under investigation.

  2. Defense Human Resources Activity > PERSEREC

    Science.gov (United States)

    Skip to main content (Press Enter). Toggle navigation Defense Human Resources Activity Search Search Defense Human Resources Activity: Search Search Defense Human Resources Activity: Search Defense Human Resources Activity U.S. Department of Defense Defense Human Resources Activity Overview

  3. Human and Animal Isolates of Yersinia enterocolitica Show Significant Serotype-Specific Colonization and Host-Specific Immune Defense Properties

    Science.gov (United States)

    Schaake, Julia; Kronshage, Malte; Uliczka, Frank; Rohde, Manfred; Knuuti, Tobias; Strauch, Eckhard; Fruth, Angelika; Wos-Oxley, Melissa

    2013-01-01

    Yersinia enterocolitica is a human pathogen that is ubiquitous in livestock, especially pigs. The bacteria are able to colonize the intestinal tract of a variety of mammalian hosts, but the severity of induced gut-associated diseases (yersiniosis) differs significantly between hosts. To gain more information about the individual virulence determinants that contribute to colonization and induction of immune responses in different hosts, we analyzed and compared the interactions of different human- and animal-derived isolates of serotypes O:3, O:5,27, O:8, and O:9 with murine, porcine, and human intestinal cells and macrophages. The examined strains exhibited significant serotype-specific cell binding and entry characteristics, but adhesion and uptake into different host cells were not host specific and were independent of the source of the isolate. In contrast, survival and replication within macrophages and the induced proinflammatory response differed between murine, porcine, and human macrophages, suggesting a host-specific immune response. In fact, similar levels of the proinflammatory cytokine macrophage inflammatory protein 2 (MIP-2) were secreted by murine bone marrow-derived macrophages with all tested isolates, but the equivalent interleukin-8 (IL-8) response of porcine bone marrow-derived macrophages was strongly serotype specific and considerably lower in O:3 than in O:8 strains. In addition, all tested Y. enterocolitica strains caused a considerably higher level of secretion of the anti-inflammatory cytokine IL-10 by porcine than by murine macrophages. This could contribute to limiting the severity of the infection (in particular of serotype O:3 strains) in pigs, which are the primary reservoir of Y. enterocolitica strains pathogenic to humans. PMID:23959720

  4. Crystallization and preliminary X-ray diffraction analysis of the carbohydrate-recognizing domain (VP8*) of bovine rotavirus strain NCDV

    International Nuclear Information System (INIS)

    Yu, Xing; Guillon, Annabel; Szyczew, Alex J.; Kiefel, Milton J.; Coulson, Barbara S.; Itzstein, Mark von; Blanchard, Helen

    2008-01-01

    NCDV VP8* 64–224 was expressed in E. coli, purified and crystallized in the presence of a sialic acid derivative. X-ray diffraction data were obtained to a resolution of 2.0 Å and the crystallographic structure was determined by molecular replacement. The infectivity of rotavirus is dramatically enhanced by proteolytic cleavage of its outer layer VP4 spike protein into two functional domains, VP8* and VP5*. The carbohydrate-recognizing domain VP8* is proposed to bind sialic acid-containing host cell-surface glycans and this is followed by a series of subsequent virus–cell interactions. Live attenuated human and bovine rotavirus vaccine candidates for the prevention of gastroenteritis have been derived from bovine rotavirus strain NCDV. The NCDV VP8* 64–224 was overexpressed, purified to homogeneity and crystallized in the presence of an N-acetylneuraminic acid derivative. X-ray diffraction data were collected to a resolution of 2.0 Å and the crystallographic structure of NCDV VP8* 64–224 was determined by molecular replacement

  5. Balancing Selection at the Tomato RCR3 Guardee Gene Family Maintains Variation in Strength of Pathogen Defense

    Science.gov (United States)

    Hörger, Anja C.; Ilyas, Muhammad; Stephan, Wolfgang; Tellier, Aurélien; van der Hoorn, Renier A. L.; Rose, Laura E.

    2012-01-01

    Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant–pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the “Guard-Hypothesis,” R proteins (the “guards”) can sense modification of target molecules in the host (the “guardees”) by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the “guardee-effector” interface for pathogen recognition, natural selection acts on the “guard-guardee” interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto

  6. Balancing selection at the tomato RCR3 Guardee gene family maintains variation in strength of pathogen defense.

    Directory of Open Access Journals (Sweden)

    Anja C Hörger

    Full Text Available Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors and host resistance genes such as the major histocompatibility complex (MHC in mammals or resistance (R genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the "Guard-Hypothesis," R proteins (the "guards" can sense modification of target molecules in the host (the "guardees" by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3 and its guard (Cf-2. We conclude that, in addition to coevolution at the "guardee-effector" interface for pathogen recognition, natural selection acts on the "guard-guardee" interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in

  7. Smuggling across the border: how arthropod-borne pathogens evade and exploit the host defense system of the skin.

    Science.gov (United States)

    Bernard, Quentin; Jaulhac, Benoit; Boulanger, Nathalie

    2014-05-01

    The skin is a critical barrier between hosts and pathogens in arthropod-borne diseases. It harbors many resident cells and specific immune cells to arrest or limit infections by secreting inflammatory molecules or by directly killing pathogens. However, some pathogens are able to use specific skin cells and arthropod saliva for their initial development, to hide from the host immune system, and to establish persistent infection in the vertebrate host. A better understanding of the initial mechanisms taking place in the skin should allow the development of new strategies to fight these vector-borne pathogens that are spread worldwide and are of major medical importance.

  8. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems.

    Science.gov (United States)

    Makarova, Kira S; Wolf, Yuri I; Snir, Sagi; Koonin, Eugene V

    2011-11-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.

  9. Seroprevalence and risk factors associated with bovine herpesvirus ...

    African Journals Online (AJOL)

    Bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) are well known etiological agents of cattle that produce important economic losses due to reproductive failures and calf mortality, as well as enteric and respiratory disease. Tamaulipas is located northeast of Mexico, an important cattle production and ...

  10. PREVALENCE OF BOVINE (1)

    African Journals Online (AJOL)

    408 heads of cattle to determine the prevalence of bovine tuberculosis and assess its public health implications. A comparative ..... (78.6%) of the respondents consume raw and poorly heat ... compromises related to certain stress factors.

  11. 76 FR 28757 - Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense...

    Science.gov (United States)

    2011-05-18

    ... DEPARTMENT OF DEFENSE Office of the Secretary [DOCKET ID DOD-2011-OS-0055] Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense Logistics Agency Actions AGENCY: Defense Logistics Agency, Department of Defense. ACTION: Notice of Availability (NOA) of Revised...

  12. 76 FR 53119 - Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense...

    Science.gov (United States)

    2011-08-25

    ... DEPARTMENT OF DEFENSE Office of the Secretary [Docket ID: DOD-2011-OS-0055] Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense Logistics Agency Actions AGENCY: Defense Logistics Agency, Department of Defense. ACTION: Comment Addressed on Notice of...

  13. Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms.

    Science.gov (United States)

    Gomes, Fernanda; Saavedra, Maria José; Henriques, Mariana

    2016-04-01

    Bovine mastitis (BM) is a disease with high incidence worldwide and one of the most relevant bovine pathologies and the most costly to the dairy industry. BM is an inflammation of the udder and represents one of the most difficult veterinary diseases to control. Biofilm formation is considered a selective advantage for pathogens causing mastitis, facilitating bacterial persistence in the udder. In fact, recently some authors drew attention to the biofilm formation ability presented by several mastitis causing pathogens and to its possible relation with recurrent mastitis infections and with the increased resistance to antimicrobial agents and host immune defence system. Actually, up to now, several researchers reported the potential role of cells in this mode of growth in the previous facts mentioned. As a consequence of the presence of biofilms, the infection here focused is more difficult to treat and eradicate, making this problem a more relevant pressing issue. Thus, we believe that a deeper knowledge of these structures in mastitis can help to determine the best control strategy to be used in veterinary practice in order to reduce losses in the dairy industry and to ensure milk safety and quality. The aim of this paper was to review the existing research and consequently to provide an overview of the role of biofilms in BM infections. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Okra yield fertilized with bovine manure and biofertilizer

    Directory of Open Access Journals (Sweden)

    Ademar Pereira de Oliveira

    2013-12-01

    Full Text Available The use of bovine manure becomes an useful and economic practice for the small and medium producers of vegetables, and the okra plant normally demands high doses of organic fertilizers. This study was carried out, from January to July 2011, at the Federal University of Paraíba, in Areia city - PB, aiming to evaluate the effect of bovine manure and biofertilizer on the productive behavior of the okra plant. The experimental design used was randomized blocks, with four repetitions in factorial scheme 6 x 2, with the doses factors of bovine manure (0, 10, 20, 30, 40 and 50 t ha-1 with and without biofertilizer. The average mass of commercial fruit of okra, with and without biofertilizer was 18 and 16.5 g, respectively, in the doses of 27.5 and 60 t ha-1 of manure. The number of fruit plant-1 without biofertilizer was 30 fruits plant-1 of okra in the dose of 60 t ha-1 and with biofertilizer, the number of fruits plant-1 was 33 fruits in the dose of 28 t ha-1 of bovine manure. The productivity of commercial fruits of okra without biofertilizer was 20.4 t ha-1 and 22 t ha-1 with biofertilizer, respectively, in the doses of 60 and 31 t ha-1 of bovine manure.

  15. 75 FR 76423 - Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting

    Science.gov (United States)

    2010-12-08

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting AGENCY: National Defense Intelligence College, Defense Intelligence Agency, Department of Defense. ACTION: Notice of Closed Meeting. SUMMARY: Pursuant to the...

  16. 76 FR 28960 - Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting

    Science.gov (United States)

    2011-05-19

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting AGENCY: National Defense Intelligence College, Defense Intelligence Agency, Department of Defense. ACTION: Notice of Closed Meeting. SUMMARY: Pursuant to the...

  17. Strategical control of cattle tick in the Milk Bovine: A Revision

    OpenAIRE

    Furlong, Jonh; EMBRAPA - Gado de Leite; Sales, Ronaldo de Oliveira; Universidade Federal do Ceará

    2013-01-01

    In this bibliographical revision the different types of controls used in the eradication of the bovine cattle tick are presented that to develop itself, it needs to pass a phase of its life in the animals. It is important to know that the carrapato of the bovines is different of the cattle tick of the equines. In this text the common cattle tick of the bovines will be argued only (Boophilus microplus), mainly of the milk bovines, whose way of combat is different of that it is made for cut bov...

  18. Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein–Protein Interactions

    Directory of Open Access Journals (Sweden)

    Carlos A. Rossetti

    2017-07-01

    Full Text Available To date, fewer than 200 gene-products have been identified as Brucella virulence factors, and most were characterized individually without considering how they are temporally and coordinately expressed or secreted during the infection process. Here, we describe and analyze the in vivo temporal transcriptional profile of Brucella melitensis during the initial 4 h interaction with cattle. Pathway analysis revealed an activation of the “Two component system” providing evidence that the in vivo Brucella sense and actively regulate their metabolism through the transition to an intracellular lifestyle. Contrarily, other Brucella pathways involved in virulence such as “ABC transporters” and “T4SS system” were repressed suggesting a silencing strategy to avoid stimulation of the host innate immune response very early in the infection process. Also, three flagellum-encoded loci (BMEII0150-0168, BMEII1080-1089, and BMEII1105-1114, the “flagellar assembly” pathway and the cell components “bacterial-type flagellum hook” and “bacterial-type flagellum” were repressed in the tissue-associated B. melitensis, while RopE1 sigma factor, a flagellar repressor, was activated throughout the experiment. These results support the idea that Brucella employ a stealthy strategy at the onset of the infection of susceptible hosts. Further, through systems-level in silico host:pathogen protein–protein interactions simulation and correlation of pathogen gene expression with the host gene perturbations, we identified unanticipated interactions such as VirB11::MAPK8IP1; BtaE::NFKBIA, and 22 kDa OMP precursor::BAD and MAP2K3. These findings are suggestive of new virulence factors and mechanisms responsible for Brucella evasion of the host's protective immune response and the capability to maintain a dormant state. The predicted protein–protein interactions and the points of disruption provide novel insights that will stimulate advanced hypothesis

  19. Molecular Epidemiology of Bovine Tuberculosis and most Common ...

    African Journals Online (AJOL)

    Even though tuberculosis is endemic in Nigeria, information on the epidemiology of the disease especially bovine tuberculosis is still very scanty. Variable Number of Tandem Repeat (VNTR) was carried out on 113 tissue samples to have an idea of not only the epidemiology of bovine tuberculosis but also the most common ...

  20. RNAi and Antiviral Defense in the Honey Bee

    Science.gov (United States)

    Brutscher, Laura M.; Flenniken, Michelle L.

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  1. RNAi and Antiviral Defense in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Laura M. Brutscher

    2015-01-01

    Full Text Available Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD- affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.

  2. AFLP markers for the R-gene in the flea beetle, Phyllotreta nemorum, conferring resistance to defenses in Barbarea vulgaris

    NARCIS (Netherlands)

    Breuker, C.J.; Victoir, K.; Jong, de P.W.; Meijden, van der E.; Brakefield, P.M.; Vrieling, K.

    2005-01-01

    A so-called R-gene renders the yellow-striped flea beetle Phyllotreta nemorum L. (Coleoptera: Chrysomelidae: Alticinae) resistant to the defenses of the yellow rocket Barbarea vulgaris R.Br. (Brassicacea) and enables it to use it as a host plant in Denmark. In this study, genetic markers for an

  3. Aortic reconstruction with bovine pericardial grafts

    Directory of Open Access Journals (Sweden)

    Silveira Lindemberg Mota

    2003-01-01

    Full Text Available INTRODUCTION: Glutaraldehyde-treated crimped bovine pericardial grafts are currently used in aortic graft surgery. These conduits have become good options for these operations, available in different sizes and shapes and at a low cost. OBJECTIVE:To evaluate the results obtained with bovine pericardial grafts for aortic reconstruction, specially concerning late complications. METHOD: Between January 1995 and January 2002, 57 patients underwent different types of aortic reconstruction operations using bovine pericardial grafts. A total of 29 (50.8% were operated on an urgent basis (mostly acute Stanford A dissection and 28 electively. Thoracotomy was performed in three patients for descending aortic replacement (two patients and aortoplasty with a patch in one. All remaining 54 underwent sternotomy, cardiopulmonary bypass and aortic resection. Deep hypothermia and total circulatory arrest was used in acute dissections and arch operations. RESULTS: Hospital mortality was 17.5%. Follow-up was 24.09 months (18.5 to 29.8 months confidence interval and complication-free actuarial survival curve was 92.3% (standard deviation ± 10.6. Two patients lately developed thoracoabdominal aneurysms following previous DeBakey II dissection and one died from endocarditis. One "patch" aortoplasty patient developed local descending aortic pseudoaneurysm 42 months after surgery. All other patients are asymptomatic and currently clinically evaluated with echocardiography and CT scans, showing no complications. CONCLUSION: Use of bovine pericardial grafts in aortic reconstruction surgery is adequate and safe, with few complications related to the conduits.

  4. Photochemistry of modified proteins benzophenone-containing bovine serum albumin

    International Nuclear Information System (INIS)

    Mariano, P.S.; Glover, G.I.; Wilkinson, T.J.

    1976-01-01

    The results of exploratory and mechanistic studies of the photochemistry of poly-p-benzoyl-acetimido-bovine serum albumin, a modified protein containing photoreactive and photosensitizing groups, are reported. Specifically described are recent findings concerning (1) the synthesis and characterization of a modified bovine serum albumin that contains benzophenone-like moieties, (2) the photochemistry of this modified protein which appeared to involve photoreductive coupling of the benzophenone chromophores to the protein backbone, and (3) triplet energy transfer from modified bovine serum albumin to small molecule acceptors resulting in quenching of the photoreaction. (author)

  5. Infectivity in skeletal muscle of cattle with atypical bovine spongiform encephalopathy.

    Science.gov (United States)

    Suardi, Silvia; Vimercati, Chiara; Casalone, Cristina; Gelmetti, Daniela; Corona, Cristiano; Iulini, Barbara; Mazza, Maria; Lombardi, Guerino; Moda, Fabio; Ruggerone, Margherita; Campagnani, Ilaria; Piccoli, Elena; Catania, Marcella; Groschup, Martin H; Balkema-Buschmann, Anne; Caramelli, Maria; Monaco, Salvatore; Zanusso, Gianluigi; Tagliavini, Fabrizio

    2012-01-01

    The amyloidotic form of bovine spongiform encephalopathy (BSE) termed BASE is caused by a prion strain whose biological properties differ from those of typical BSE, resulting in a clinically and pathologically distinct phenotype. Whether peripheral tissues of BASE-affected cattle contain infectivity is unknown. This is a critical issue since the BASE prion is readily transmissible to a variety of hosts including primates, suggesting that humans may be susceptible. We carried out bioassays in transgenic mice overexpressing bovine PrP (Tgbov XV) and found infectivity in a variety of skeletal muscles from cattle with natural and experimental BASE. Noteworthy, all BASE muscles used for inoculation transmitted disease, although the attack rate differed between experimental and natural cases (∼70% versus ∼10%, respectively). This difference was likely related to different prion titers, possibly due to different stages of disease in the two conditions, i.e. terminal stage in experimental BASE and pre-symptomatic stage in natural BASE. The neuropathological phenotype and PrP(res) type were consistent in all affected mice and matched those of Tgbov XV mice infected with brain homogenate from natural BASE. The immunohistochemical analysis of skeletal muscles from cattle with natural and experimental BASE showed the presence of abnormal prion protein deposits within muscle fibers. Conversely, Tgbov XV mice challenged with lymphoid tissue and kidney from natural and experimental BASE did not develop disease. The novel information on the neuromuscular tropism of the BASE strain, efficiently overcoming species barriers, underlines the relevance of maintaining an active surveillance.

  6. Transforming Defense

    National Research Council Canada - National Science Library

    Lamb, Christopher J; Bunn, M. E; Lutes, Charles; Cavoli, Christopher

    2005-01-01

    .... Despite the resources and attention consumed by the war on terror, and recent decisions by the White House to curtail the growth of defense spending, the senior leadership of the Department of Defense (DoD...

  7. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells.

    Science.gov (United States)

    Heo, Young Tae; Quan, Xiaoyuan; Xu, Yong Nan; Baek, Soonbong; Choi, Hwan; Kim, Nam-Hyung; Kim, Jongpil

    2015-02-01

    Efficient and precise genetic engineering in livestock such as cattle holds great promise in agriculture and biomedicine. However, techniques that generate pluripotent stem cells, as well as reliable tools for gene targeting in livestock, are still inefficient, and thus not routinely used. Here, we report highly efficient gene targeting in the bovine genome using bovine pluripotent cells and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nuclease. First, we generate induced pluripotent stem cells (iPSCs) from bovine somatic fibroblasts by the ectopic expression of yamanaka factors and GSK3β and MEK inhibitor (2i) treatment. We observed that these bovine iPSCs are highly similar to naïve pluripotent stem cells with regard to gene expression and developmental potential in teratomas. Moreover, CRISPR/Cas9 nuclease, which was specific for the bovine NANOG locus, showed highly efficient editing of the bovine genome in bovine iPSCs and embryos. To conclude, CRISPR/Cas9 nuclease-mediated homologous recombination targeting in bovine pluripotent cells is an efficient gene editing method that can be used to generate transgenic livestock in the future.

  8. Extensive Genomic Diversity among Bovine-Adapted Staphylococcus aureus: Evidence for a Genomic Rearrangement within CC97.

    Directory of Open Access Journals (Sweden)

    Kathleen E Budd

    Full Text Available Staphylococcus aureus is an important pathogen associated with both human and veterinary disease and is a common cause of bovine mastitis. Genomic heterogeneity exists between S. aureus strains and has been implicated in the adaptation of specific strains to colonise particular mammalian hosts. Knowledge of the factors required for host specificity and virulence is important for understanding the pathogenesis and management of S. aureus mastitis. In this study, a panel of mastitis-associated S. aureus isolates (n = 126 was tested for resistance to antibiotics commonly used to treat mastitis. Over half of the isolates (52% demonstrated resistance to penicillin and ampicillin but all were susceptible to the other antibiotics tested. S. aureus isolates were further examined for their clonal diversity by Multi-Locus Sequence Typing (MLST. In total, 18 different sequence types (STs were identified and eBURST analysis demonstrated that the majority of isolates grouped into clonal complexes CC97, CC151 or sequence type (ST 136. Analysis of the role of recombination events in determining S. aureus population structure determined that ST diversification through nucleotide substitutions were more likely to be due to recombination compared to point mutation, with regions of the genome possibly acting as recombination hotspots. DNA microarray analysis revealed a large number of differences amongst S. aureus STs in their variable genome content, including genes associated with capsule and biofilm formation and adhesion factors. Finally, evidence for a genomic arrangement was observed within isolates from CC97 with the ST71-like subgroup showing evidence of an IS431 insertion element having replaced approximately 30 kb of DNA including the ica operon and histidine biosynthesis genes, resulting in histidine auxotrophy. This genomic rearrangement may be responsible for the diversification of ST71 into an emerging bovine adapted subgroup.

  9. Home - Defense Technology Security Administration

    Science.gov (United States)

    by @dtsamil Defense Technology Security Administration Mission, Culture, and History Executive Official seal of Defense Technology Security Administration Official seal of Defense Technology Security Administration OFFICE of the SECRETARY of DEFENSE Defense Technology Security Administration

  10. Optimizing Active Cyber Defense

    OpenAIRE

    Lu, Wenlian; Xu, Shouhuai; Yi, Xinlei

    2016-01-01

    Active cyber defense is one important defensive method for combating cyber attacks. Unlike traditional defensive methods such as firewall-based filtering and anti-malware tools, active cyber defense is based on spreading "white" or "benign" worms to combat against the attackers' malwares (i.e., malicious worms) that also spread over the network. In this paper, we initiate the study of {\\em optimal} active cyber defense in the setting of strategic attackers and/or strategic defenders. Specific...

  11. Comparative Genomics of Rhodococcus equi Virulence Plasmids Indicates Host-Driven Evolution of the vap Pathogenicity Island.

    Science.gov (United States)

    MacArthur, Iain; Anastasi, Elisa; Alvarez, Sonsiray; Scortti, Mariela; Vázquez-Boland, José A

    2017-05-01

    The conjugative virulence plasmid is a key component of the Rhodococcus equi accessory genome essential for pathogenesis. Three host-associated virulence plasmid types have been identified the equine pVAPA and porcine pVAPB circular variants, and the linear pVAPN found in bovine (ruminant) isolates. We recently characterized the R. equi pangenome (Anastasi E, et al. 2016. Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol. 8:3140-3148.) and we report here the comparative analysis of the virulence plasmid genomes. Plasmids within each host-associated type were highly similar despite their diverse origins. Variation was accounted for by scattered single nucleotide polymorphisms and short nucleotide indels, while larger indels-mostly in the plasticity region near the vap pathogencity island (PAI)-defined plasmid genomic subtypes. Only one of the plasmids analyzed, of pVAPN type, was exceptionally divergent due to accumulation of indels in the housekeeping backbone. Each host-associated plasmid type carried a unique PAI differing in vap gene complement, suggesting animal host-specific evolution of the vap multigene family. Complete conservation of the vap PAI was observed within each host-associated plasmid type. Both diversity of host-associated plasmid types and clonality of specific chromosomal-plasmid genomic type combinations were observed within the same R. equi phylogenomic subclade. Our data indicate that the overall strong conservation of the R. equi host-associated virulence plasmids is the combined result of host-driven selection, lateral transfer between strains, and geographical spread due to international livestock exchanges. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Traitement De La Peripneumonie Contagieuse Bovine Par L ...

    African Journals Online (AJOL)

    Traitement De La Peripneumonie Contagieuse Bovine Par L'oxyteTracycline Longe Action Et Transmission Experimentale de la Maladie A Partir de Bovins Traites. ... Tous les 14 animaux ont séroconverti et l'analyse post-mortem a montré la présence des lésions chroniques dont des séquestres pulmonaires chez 4 d'entre ...

  13. The analysis of the defense mechanism against indigenous bacterial translocation in X-irradiated mice

    International Nuclear Information System (INIS)

    Kobayashi, Toshiya; Ohmori, Toshihiro; Yanai, Minoru; Kawanishi, Gosei; Mitsuyama, Masao; Nomoto, Kikuo.

    1991-01-01

    The defense mechanism against indigenous bacterial translocation was studied using a model of endogenous infection in X-irradiated mice. All mice irradiated with 9 Gy died from day 8 to day 15 after irradiation. The death of mice was observed in parallel with the appearance of bacteria from day 7 in various organs, and the causative agent was identified to be Escherichia coli, an indigenous bacterium translocating from the intestine. Decrease in the number of blood leukocytes, peritoneal cells and lymphocytes in Peyer's patches or mesenteric lymph nodes was observed as early as 1 day after irradiation with 6 or 9 Gy. The mitogenic response of lymphocytes from various lymphoid tissues was severely affected as well. The impairment of these parameters for host defense reached the peak 3 days after irradiation and there was no recovery. However, in vivo bacterial activity of Kupffer cells in mice irradiated with 9 Gy was maintained in a normal level for a longer period. It was suggested that Kupffer cells play an important role in the defense against indigenous bacteria translocating from the intenstine in mice. (author)

  14. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.216 Section 113.216 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine...

  15. Comparative evaluation of various solid phases for the development of coated tube assays for the estimation of progesterone in human serum, bovine serum and bovine milk

    International Nuclear Information System (INIS)

    Karir, Tarveen; Samuel, Grace; Sivaprasad, N.; Venkatesh, Meera

    2009-01-01

    Immobilization of progesterone antibody using three polystyrene surfaces and two progesterone radiotracers for use in the development of a coated tube assay for the evaluation of progesterone levels in human serum, bovine serum and bovine milk was studied. The selection of the solid phase and the tracers were based on the maximum binding, non-specific binding, sensitivity and percentage recovery. Amongst the polystyrene tubes studied, streptavidin coated tubes showed the acceptable assay features such as low non-specific binding (0.5-1.0%), adequate sensitivity (0.13-0.16 ng/ml) and recovery (85-115%) for all the three sample matrices, human serum, bovine serum and bovine milk.

  16. Physics of a ballistic missile defense - The chemical laser boost-phase defense

    Science.gov (United States)

    Grabbe, Crockett L.

    1988-01-01

    The basic physics involved in proposals to use a chemical laser based on satellites for a boost-phase defense are investigated. After a brief consideration of simple physical conditions for the defense, a calculation of an equation for the number of satellites needed for the defense is made along with some typical values of this for possible future conditions for the defense. Basic energy and power requirements for the defense are determined. A sumary is made of probable minimum conditions that must be achieved for laser power, targeting accuracy, number of satellites, and total sources for power needed.

  17. Host age modulates within-host parasite competition.

    Science.gov (United States)

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Investment in defense and cost of predator-induced defense along a resource gradient

    DEFF Research Database (Denmark)

    Steiner, Uli

    2007-01-01

    An organism's investment in different traits to reduce predation is determined by the fitness benefit of the defense relative to the fitness costs associated with the allocation of time and resources to the defense. Inherent tradeoffs in time and resource allocation should result in differential...... investment in defense along a resource gradient, but competing models predict different patterns of investment. There are currently insufficient empirical data on changes in investment in defensive traits or their costs along resource gradients to differentiate between the competing allocation models....... In this study, I exposed tadpoles to caged predators along a resource gradient in order to estimate investment in defense and costs of defense by assessing predator-induced plasticity. Induced defenses included increased tail depth, reduced feeding, and reduced swimming activity; costs associated...

  19. Unfolding Green Defense

    DEFF Research Database (Denmark)

    Larsen, Kristian Knus

    2015-01-01

    In recent years, many states have developed and implemented green solutions for defense. Building on these initiatives NATO formulated the NATO Green Defence Framework in 2014. The framework provides a broad basis for cooperation within the Alliance on green solutions for defense. This report aims...... to inform and support the further development of green solutions by unfolding how green technologies and green strategies have been developed and used to handle current security challenges. The report, initially, focuses on the security challenges that are being linked to green defense, namely fuel...... consumption in military operations, defense expenditure, energy security, and global climate change. The report then proceeds to introduce the NATO Green Defence Framework before exploring specific current uses of green technologies and green strategies for defense. The report concludes that a number...

  20. A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis.

    Science.gov (United States)

    Sharma, Neelesh; Huynh, Do Luong; Kim, Sung Woo; Ghosh, Mrinmoy; Sodhi, Simrinder Singh; Singh, Amit Kumar; Kim, Nam Eun; Lee, Sung Jin; Hussain, Kafil; Oh, Sung Jong; Jeong, Dong Kee

    2017-11-28

    The antibacterial and anti-inflammatory properties of lactoferricin have been ascribed to its ability to sequester essential iron. The objective of the study was to clone bovine lactoferricin ( LFcinB ) gene into PiggyBac Transposon vector, expression study in the bovine mammary epithelial stem cells (bMESCs) and also to determine the antimicrobial property of recombinant LFcinB against bovine mastitis-causing organisms. The PiggyBac-LFcinB was transfected into bMESCs by electroporation and a three fold of LFcinB secretion was observed in the transfected bMESCs medium by ELISA assay. Furthermore, the assessment of antimicrobial activity against mastitis causing pathogens Staphylococcus aureus and Escherichia coli demonstrated convincing evidence to prove strong antibacterial activity of LFcinB with 14.0±1.0 mm and 18.0±1.5 mm zone of inhibition against both organisms, respectively. The present study provides the convincing evidence to suggest the potential of PiggyBac transposon system to transfer antibacterial peptide into bMESCs or cow mammary gland and also pave the way to use bovine mammary gland as the bioreactors. Simultaneously, it also suggest toward commercial utilization of LFcinB bioreactor system in pharmaceutical industry.