WorldWideScience

Sample records for bovine cartilage explants

  1. Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants

    NARCIS (Netherlands)

    De Mattei, M; Pasello, M; Pellati, A; Stabellini, G; Massari, L; Gemmati, D; Caruso, A

    2003-01-01

    Electromagnetic field (EMF) exposure has been proposed for the treatment of osteoarthritis. In this study, we investigated the effects of EMF (75 Hz, 2,3 mT) on proteoglycan (PG) metabolism of bovine articular cartilage explants cultured in vitro, both under basal conditions and in the presence of i

  2. Suppression of MMP activity in bovine cartilage explants cultures has little if any effect on the release of aggrecanase-derived aggrecan fragments

    DEFF Research Database (Denmark)

    Wang, Bijue; Chen, Pingping; Jensen, Anne-Christine Bay;

    2009-01-01

    - and aggrecanase-derived fragments of aggrecan and type II collagen into the supernatant of bovine cartilage explants cultures using neo-epitope specific immunoassays, and to associate the release of these fragments with the activity of proteolytic enzymes using inhibitors. FINDINGS: Bovine cartilage explants were...... cultured in the presence or absence of the catabolic cytokines oncostatin M (OSM) and tumor necrosis factor alpha (TNFalpha). In parallel, explants were co-cultured with protease inhibitors such as GM6001, TIMP1, TIMP2 and TIMP3. Fragments released into the supernatant were determined using a range of neo......-epitope specific immunoassays; (1) sandwich (342)FFGVG-G2 ELISA, (2) competition NITEGE(373)ELISA (3) sandwich G1-NITEGE(373 )ELISA (4) competition (374)ARGSV ELISA, and (5) sandwich (374)ARGSV-G2 ELISA all detecting aggrecan fragments, and (6) sandwich CTX-II ELISA, detecting C-telopeptides of type II collagen...

  3. Cartilage (Bovine and Shark) (PDQ)

    Science.gov (United States)

    ... Ask about Your Treatment Research Cartilage (Bovine and Shark) (PDQ®)–Patient Version Overview Go to Health Professional ... 8 ). Questions and Answers About Cartilage (Bovine and Shark) What is cartilage? Cartilage is a type of ...

  4. The metabolic dynamics of cartilage explants over a long-term culture period

    Directory of Open Access Journals (Sweden)

    E.K Moo

    2011-01-01

    Full Text Available INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture. METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days. RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17. CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.

  5. Collagen metabolism of human osteoarthritic articular cartilage as modulated by bovine collagen hydrolysates

    OpenAIRE

    Saskia Schadow; Hans-Christian Siebert; Günter Lochnit; Jens Kordelle; Markus Rickert; Jürgen Steinmeyer

    2013-01-01

    Destruction of articular cartilage is a characteristic feature of osteoarthritis (OA). Collagen hydrolysates are mixtures of collagen peptides and have gained huge public attention as nutriceuticals used for prophylaxis of OA. Here, we evaluated for the first time whether different bovine collagen hydrolysate preparations indeed modulate the metabolism of collagen and proteoglycans from human OA cartilage explants and determined the chemical composition of oligopeptides representing collagen ...

  6. Bovine explant model of degeneration of the intervertebral disc

    OpenAIRE

    Sivan Sarit; Menage Janis; Roberts Sally; Urban Jill PG

    2008-01-01

    Abstract Background Many new treatments for degeneration of the intervertebral disc are being developed which can be delivered through a needle. These require testing in model systems before being used in human patients. Unfortunately, because of differences in anatomy, there are no ideal animal models of disc degeneration. Bovine explant model systems have many advantages but it is not possible to inject any significant volume into an intact disc. Therefore we have attempted to mimic disc de...

  7. Bovine explant model of degeneration of the intervertebral disc

    Directory of Open Access Journals (Sweden)

    Sivan Sarit

    2008-02-01

    Full Text Available Abstract Background Many new treatments for degeneration of the intervertebral disc are being developed which can be delivered through a needle. These require testing in model systems before being used in human patients. Unfortunately, because of differences in anatomy, there are no ideal animal models of disc degeneration. Bovine explant model systems have many advantages but it is not possible to inject any significant volume into an intact disc. Therefore we have attempted to mimic disc degeneration in an explant bovine model via enzymatic digestion. Methods Bovine coccygeal discs were incubated with different concentrations of the proteolytic enzymes, trypsin and papain, and maintained in culture for up to 3 weeks. A radio-opaque solution was injected to visualise cavities generated. Degenerative features were monitored histologically and biochemically (water and glycosaminoglycan content, via dimethylmethylene blue. Results and Conclusion The central region of both papain and trypsin treated discs was macro- and microscopically fragmented, with severe loss of metachromasia. The integrity of the surrounding tissue was mostly in tact with cells in the outer annulus appearing viable. Biochemical analysis demonstrated greatly reduced glycosaminoglycan content in these compared to untreated discs. We have shown that bovine coccygeal discs, treated with proteolytic enzymes can provide a useful in vitro model system for developing and testing potential new treatments of disc degeneration, such as injectable implants or biological therapies.

  8. Processed bovine cartilage: an improved biosynthetic implant for contour defects

    Energy Technology Data Exchange (ETDEWEB)

    Ersek, R.A.; Hart, W.G. Jr.; Greer, D.; Beisang, A.A.; Flynn, P.J.; Denton, D.R.

    1984-05-01

    Irradiated human cartilage has been found to be a superior implant material for correction of contour defects; however, availability problems have prevented this material from gaining wide acceptance. Implantation of processed irradiated bovine cartilage in primates and rabbits, as described here, provides strong evidence that this material performs like irradiated allograft cartilage antigenically and has certain cosmetic advantages over allograft cartilage. Our studies in primates have shown that there is no systemically measurable antibody-antigen reaction, either cellular or noncellular, to irradiated processed bovine cartilage. Neither primary nor second-set provocative implantations produced any measurable rejection. In rabbits, composite grafts of two pieces of irradiated bovine cartilage adjacent to each other were also well tolerated, with no measurable absorption and with capsule formation typical of a foreign body reaction to an inert object.

  9. Cartilage (Bovine and Shark) (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the use of bovine and shark cartilage as a treatment for people with cancer. Note: The information in this summary is no longer being updated and is provided for reference purposes only.

  10. Andrographolide Exerts Chondroprotective Activity in Equine Cartilage Explant and Suppresses Interleukin-1β-Induced MMP-2 Expression in Equine Chondrocyte Culture

    OpenAIRE

    Tangyuenyong, Siriwan; Viriyakhasem, Nawarat; Peansukmanee, Siriporn; Kongtawelert, Prachya; Ongchai, Siriwan

    2014-01-01

    Cartilage erosion in degenerative joint diseases leads to lameness in affected horses. It has been reported that andrographolide from Andrographis paniculata inhibited cartilage matrix-degrading enzymes. This study aimed to explore whether this compound protects equine cartilage degradation in the explant culture model and to determine its effect on matrix metalloproteinase-2 (MMP-2) expression, a matrix-degrading enzyme, in equine chondrocyte culture. Equine articular cartilage explant cultu...

  11. Ultrasound Backscattering Is Anisotropic in Bovine Articular Cartilage.

    Science.gov (United States)

    Inkinen, Satu I; Liukkonen, Jukka; Tiitu, Virpi; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2015-07-01

    Collagen, proteoglycans and chondrocytes can contribute to ultrasound scattering in articular cartilage. However, anisotropy of ultrasound scattering in cartilage is not fully characterized. We investigate this using a clinical intravascular ultrasound device with ultrasound frequencies of 9 and 40 MHz. Osteochondral samples were obtained from intact bovine patellas, and cartilage was imaged in two perpendicular directions: through articular and lateral surfaces. At both frequencies, ultrasound backscattering was higher (p < 0.05) when measured through the lateral surface of cartilage. In addition, the composition and structure of articular cartilage were investigated with multiple reference methods involving light microscopy, digital densitometry, polarized light microscopy and Fourier infrared imaging. Reference methods indicated that acoustic anisotropy of ultrasound scattering arises mainly from non-uniform distribution of chondrocytes and anisotropic orientation of collagen fibers. To conclude, ultrasound backscattering in articular cartilage was found to be anisotropic and dependent on the frequency in use. PMID:25933711

  12. Proteomic Profile of Brucella abortus-Infected Bovine Chorioallantoic Membrane Explants

    Science.gov (United States)

    Mol, Juliana P. S.; Pires, Simone F.; Chapeaurouge, Alexander D.; Perales, Jonas; Santos, Renato L.; Andrade, Hélida M.; Lage, Andrey P.

    2016-01-01

    Brucella abortus is the etiological agent of bovine brucellosis, a zoonotic disease that causes significant economic losses worldwide. The differential proteomic profile of bovine chorioallantoic membrane (CAM) explants at early stages of infection with B. abortus (0.5, 2, 4, and 8 h) was determined. Analysis of CAM explants at 0.5 and 4 h showed the highest differences between uninfected and infected CAM explants, and therefore were used for the Differential Gel Electrophoresis (DIGE). A total of 103 spots were present in only one experimental group and were selected for identification by mass spectrometry (MALDI/ToF-ToF). Proteins only identified in extracts of CAM explants infected with B. abortus were related to recognition of PAMPs by TLR, production of reactive oxygen species, intracellular trafficking, and inflammation. PMID:27104343

  13. Standardized butanol fraction of WIN-34B suppresses cartilage destruction via inhibited production of matrix metalloproteinase and inflammatory mediator in osteoarthritis human cartilage explants culture and chondrocytes

    Directory of Open Access Journals (Sweden)

    Huh Jeong-Eun

    2012-12-01

    Full Text Available Abstract Background WIN-34B is a novel Oriental medicine, which represents the n-butanol fraction prepared from dried flowers of Lonicera japonica Thunb and dried roots of Anemarrhena asphodeloides BUNGE. The component herb of WIN-34B is used for arthritis treatment in East Asian countries. The aim of this study was to determine the cartilage-protective effects and mechanisms of WIN-34B and its major phenolic compounds, chlorogenic acid and mangiferin, in osteoarthritis (OA human cartilage explants culture and chondrocytes. Methods The investigation focused on whether WIN-34B and its standard compounds protected cartilage in interleukin (IL-1β-stimulated cartilage explants culture and chondrocytes derived from OA patients. Also, the mechanisms of WIN-34B on matrix metalloproteinases (MMPs, tissue inhibitor of matrix metalloproteinases (TIMPs, inflammatory mediators, and mitogen-activated protein kinases (MAPKs pathways were assessed. Results WIN-34B was not cytotoxic to cultured cartilage explants or chondrocytes. WIN-34B dose-dependently inhibited the release of glycosaminoglycan and type II collagen, increased the mRNA expression of aggrecan and type II collagen, and recovered the intensity of proteoglycan and collagen by histological analysis in IL-1β-stimulated human cartilage explants culture. The cartilage protective effect of WIN-34B was similar to or better than that of chlorogenic acid and mangiferin. Compared to chlorogenic acid and mangiferin, WIN-34B displayed equal or greater decreases in the levels of MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, and markedly up-regulated TIMP-1 and TIMP-3. WIN-34B inhibited inflammatory mediators involved in cartilage destruction, such as prostaglandin E2, nitric oxide, tumor necrosis factor-alpha, and IL-1β. The phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK, and p38 was significantly reduced by WIN-34B treatment, while phosphorylation of JNK was only

  14. Standardized butanol fraction of WIN-34B suppresses cartilage destruction via inhibited production of matrix metalloproteinase and inflammatory mediator in osteoarthritis human cartilage explants culture and chondrocytes

    Science.gov (United States)

    2012-01-01

    Background WIN-34B is a novel Oriental medicine, which represents the n-butanol fraction prepared from dried flowers of Lonicera japonica Thunb and dried roots of Anemarrhena asphodeloides BUNGE. The component herb of WIN-34B is used for arthritis treatment in East Asian countries. The aim of this study was to determine the cartilage-protective effects and mechanisms of WIN-34B and its major phenolic compounds, chlorogenic acid and mangiferin, in osteoarthritis (OA) human cartilage explants culture and chondrocytes. Methods The investigation focused on whether WIN-34B and its standard compounds protected cartilage in interleukin (IL)-1β-stimulated cartilage explants culture and chondrocytes derived from OA patients. Also, the mechanisms of WIN-34B on matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), inflammatory mediators, and mitogen-activated protein kinases (MAPKs) pathways were assessed. Results WIN-34B was not cytotoxic to cultured cartilage explants or chondrocytes. WIN-34B dose-dependently inhibited the release of glycosaminoglycan and type II collagen, increased the mRNA expression of aggrecan and type II collagen, and recovered the intensity of proteoglycan and collagen by histological analysis in IL-1β-stimulated human cartilage explants culture. The cartilage protective effect of WIN-34B was similar to or better than that of chlorogenic acid and mangiferin. Compared to chlorogenic acid and mangiferin, WIN-34B displayed equal or greater decreases in the levels of MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, and markedly up-regulated TIMP-1 and TIMP-3. WIN-34B inhibited inflammatory mediators involved in cartilage destruction, such as prostaglandin E2, nitric oxide, tumor necrosis factor-alpha, and IL-1β. The phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38 was significantly reduced by WIN-34B treatment, while phosphorylation of JNK was only inhibited by chlorogenic

  15. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy.

    Directory of Open Access Journals (Sweden)

    Nahoko Shintani

    Full Text Available BACKGROUND: Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2 induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2 and transforming growth factor beta 1 (TGF-ß1 were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml for 4 (or 6 weeks. FGF-2 (10 ng/ml or TGF-ß1 (10 ng/ml was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2, but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. CONCLUSIONS/SIGNIFICANCE: TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of

  16. Properties and Mechanobiological Behavior of Bovine Nasal Septum Cartilage.

    Science.gov (United States)

    Correro-Shahgaldian, Maria Rita; Introvigne, Jasmin; Ghayor, Chafik; Weber, Franz E; Gallo, Luigi M; Colombo, Vera

    2016-05-01

    Bovine nasal septum (BNS) is a source of non-load bearing hyaline cartilage. Little information is available on its mechanical and biological properties. The aim of this work was to assess the characteristics of BNS cartilage and investigate its behavior in in vitro mechanobiological experiments. Mechanical tests, biochemical assays, and microscopic assessment were performed for tissue characterization. Compressions tests showed that the tissue is viscoelastic, although values of elastic moduli differ from the ones of other cartilaginous tissues. Water content was 78 ± 1.4%; glycosaminoglycans and collagen contents-measured by spectrophotometric assay and hydroxyproline assay-were 39 ± 5% and 25 ± 2.5% of dry weight, respectively. Goldner's Trichrome staining and transmission electron microscopy proved isotropic cells distribution and results of earlier cell division. Furthermore, gene expression was measured after uniaxial compression, showing variations depending on compression time as well as trends depending on equilibration time. In conclusion, BNS has been characterized at several levels, revealing that bovine nasal tissue is regionally homogeneous. Results suggest that, under certain conditions, BNS could be used to perform in vitro cartilage loading experiments.

  17. Effects of Ureaplasma diversum on bovine oviductal explants: quantitative measurement using a calmodulin assay.

    Science.gov (United States)

    Smits, B; Rosendal, S; Ruhnke, H L; Plante, C; O'Brien, P J; Miller, R B

    1994-01-01

    Calmodulin (CAM) acts as an intracellular regulator of calcium, an important mediator of many cell processes. We used the CAM assay and electron microscopy to investigate the effects of Ureaplasma diversum on bovine oviductal explants obtained aseptically from slaughtered cows. A stock suspension of U. diversum (treated specimens) and sterile broth (controls) was added to replicates of cultured explants and incubated at 38 degrees C in an atmosphere of 5.5% CO2 for 48 hours. Explants were examined for ciliary activity, extracellular CAM loss, and for histological and ultrastructural changes. Explants and their culture media were examined for changes in CAM concentration. All experiments were replicated three times. In addition, U. diversum, medium and broth were assayed for CAM content. The concentrations of CAM in explants and media changed significantly (p diversum when compared to controls. The controls and infected specimens did not differ histologically or ultrastructurally, but U. diversum was seen to be closely associated with infected explant tissue. In view of this close affinity it is assumed the loss of CAM from the oviductal cells was causally related, but this was not proven. The failure to show cell membrane injury on light and electron microscopic examination was probably related to the short duration of the experiment and may only point out the sensitivity of the CAM assay in detecting early cell membrane injury. Compromise in characteristics of the medium to support both, the viability of oviductal cells and U. diversum limited the experimental time to 48 hours.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:8004536

  18. Preliminary investigation of intrinsic UV fluorescence spectroscopic changes associated with proteolytic digestion of bovine articular cartilage

    Science.gov (United States)

    Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre

    2016-03-01

    Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.

  19. Type II and VI collagen in nasal and articular cartilage and the effect of IL-1 alpha on the distribution of these collagens

    NARCIS (Netherlands)

    I.D.C. Jansen; A.P. Hollander; D.J. Buttle; V. Everts

    2010-01-01

    The distribution of type II and VI collagen was immunocytochemically investigated in bovine articular and nasal cartilage. Cartilage explants were used either fresh or cultured for up to 4 weeks with or without interleukin 1α (IL-1α). Sections of the explants were incubated with antibodies for both

  20. Electrostatic and Non-Electrostatic Contributions of Proteoglycans to the Compressive Equilibrium Modulus of Bovine Articular Cartilage

    OpenAIRE

    Guterl, Clare Canal; Hung, Clark T.; Ateshian, Gerard A.

    2010-01-01

    This study presents direct experimental evidence for assessing the electrostatic and nonelectrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage. Immature and mature bovine cartilage samples were tested in unconfined compression and their depth-dependent equilibrium compressive modulus was determined using strain measurements with digital image correlation analysis. The electrostatic contribution was assessed by testing samples in isoto...

  1. The Frictional Coefficient of Bovine Knee Articular Cartilage

    Institute of Scientific and Technical Information of China (English)

    Qian Shan-hua; Ge Shi-rong; Wang Qing-liang

    2006-01-01

    The normal displacement of articular cartilage was measured under load and in sliding, and the coefficient of friction during sliding was measured using a UMT-2 Multi-Specimen Test System. The maximum normal displacement under load and the start-up frictional coefficient have similar tendency of variation with loading time. The sliding speed does not significantly influence the frictional coefficient of articular cartilage.

  2. Comparison of nonlinear mechanical properties of bovine articular cartilage and meniscus.

    Science.gov (United States)

    Danso, E K; Honkanen, J T J; Saarakkala, S; Korhonen, R K

    2014-01-01

    Nonlinear, linear and failure properties of articular cartilage and meniscus in opposing contact surfaces are poorly known in tension. Relationships between the tensile properties of articular cartilage and meniscus in contact with each other within knee joints are also not known. In the present study, rectangular samples were prepared from the superficial lateral femoral condyle cartilage and lateral meniscus of bovine knee joints. Tensile tests were carried out with a loading rate of 5mm/min until the tissue rupture. Nonlinear properties of the toe region, linear properties in larger strains, and failure properties of both tissues were analysed. The strain-dependent tensile modulus of the toe region, Young's modulus of the linear region, ultimate tensile stress and toughness were on average 98.2, 8.3, 4.0 and 1.9 times greater (p<0.05) for meniscus than for articular cartilage. In contrast, the toe region strain, yield strain and failure strain were on average 9.4, 3.1 and 2.3 times greater (p<0.05) for cartilage than for meniscus. There was a significant negative correlation between the strain-dependent tensile moduli of meniscus and articular cartilage samples within the same joints (r=-0.690, p=0.014). In conclusion, the meniscus possesses higher nonlinear and linear elastic stiffness and energy absorption capability before rupture than contacting articular cartilage, while cartilage has longer nonlinear region and can withstand greater strains before failure. These findings point out different load carrying demands that both articular cartilage and meniscus have to fulfil during normal physiological loading activities of knee joints. PMID:24182695

  3. The development and characterization of a competitive ELISA for measuring active ADAMTS-4 in a bovine cartilage ex vivo model

    DEFF Research Database (Denmark)

    He, Yi; Zheng, Qinlong; Simonsen, Ole;

    2013-01-01

    )) in a bovine cartilage ex vivo model. We found that after stimulation with catabolic factors, the cartilage initially released high levels of aggrecanase-derived aggrecan fragments into supernatant but subsequently decreased to background levels. The level of active ADAMTS-4 released into the supernatant...

  4. The effects of Brazilian propolis on etiological agents of mastitis and the viability of bovine mammary gland explants.

    Science.gov (United States)

    Fiordalisi, Samira A L; Honorato, Luciana A; Loiko, Márcia R; Avancini, César A M; Veleirinho, Maria B R; Machado Filho, Luiz C P; Kuhnen, Shirley

    2016-03-01

    The objective of this study was to evaluate in vitro the antimicrobial activity of Brazilian propolis from Urupema, São Joaquim, and Agua Doce (Santa Catarina State) and green propolis from Minas Gerais State, and the effects of propolis on bovine mammary gland explant viability. The propolis samples differed in flavonoid content and antioxidant activity. Green propolis showed the highest content of flavonoids, followed by the sample from São Joaquim. The propolis from Urupema showed the lowest flavonoid content along with the lowest antioxidant activity. The total phenolics were similar across all studied samples. Despite phytochemical differences, the propolis samples from Minas Gerais, São Joaquim, and Urupema presented the same level of antimicrobial activity against Staphylococcus aureus strains. The reduction in S. aureus growth was, on average, 1.5 and 4 log10 times at 200 and 500 μg/mL, respectively. At concentrations of 1,000 μg/mL, all propolis reduced bacterial growth to zero. On the other hand, when the propolis were tested against strains of Escherichia coli, the samples presented weak antimicrobial activity. Mammary explants were maintained in culture for 96h without a loss in viability, demonstrating the applicability of the model in evaluating the toxicity of propolis. The origin and chemical composition of the propolis had an effect on mammary explant viability. We encountered inhibitory concentrations of 272.4, 171.8, 63.85, and 13.26 μg/mL for the propolis from Água Doce, Urupema, São Joaquim, and Mina Gerais, respectively. A clear association between greater antimicrobial activity and toxicity for mammary explants was observed. Of all propolis tested, the Urupema sample was noteworthy, as it showed antimicrobial activity at less toxic concentrations than the other samples, reducing bacterial growth to an average of 9.3 × 10(2) cfu/mL after 6h of contact using 200 μg/mL of extract. The results demonstrate the potential for Brazilian

  5. The effects of Brazilian propolis on etiological agents of mastitis and the viability of bovine mammary gland explants.

    Science.gov (United States)

    Fiordalisi, Samira A L; Honorato, Luciana A; Loiko, Márcia R; Avancini, César A M; Veleirinho, Maria B R; Machado Filho, Luiz C P; Kuhnen, Shirley

    2016-03-01

    The objective of this study was to evaluate in vitro the antimicrobial activity of Brazilian propolis from Urupema, São Joaquim, and Agua Doce (Santa Catarina State) and green propolis from Minas Gerais State, and the effects of propolis on bovine mammary gland explant viability. The propolis samples differed in flavonoid content and antioxidant activity. Green propolis showed the highest content of flavonoids, followed by the sample from São Joaquim. The propolis from Urupema showed the lowest flavonoid content along with the lowest antioxidant activity. The total phenolics were similar across all studied samples. Despite phytochemical differences, the propolis samples from Minas Gerais, São Joaquim, and Urupema presented the same level of antimicrobial activity against Staphylococcus aureus strains. The reduction in S. aureus growth was, on average, 1.5 and 4 log10 times at 200 and 500 μg/mL, respectively. At concentrations of 1,000 μg/mL, all propolis reduced bacterial growth to zero. On the other hand, when the propolis were tested against strains of Escherichia coli, the samples presented weak antimicrobial activity. Mammary explants were maintained in culture for 96h without a loss in viability, demonstrating the applicability of the model in evaluating the toxicity of propolis. The origin and chemical composition of the propolis had an effect on mammary explant viability. We encountered inhibitory concentrations of 272.4, 171.8, 63.85, and 13.26 μg/mL for the propolis from Água Doce, Urupema, São Joaquim, and Mina Gerais, respectively. A clear association between greater antimicrobial activity and toxicity for mammary explants was observed. Of all propolis tested, the Urupema sample was noteworthy, as it showed antimicrobial activity at less toxic concentrations than the other samples, reducing bacterial growth to an average of 9.3 × 10(2) cfu/mL after 6h of contact using 200 μg/mL of extract. The results demonstrate the potential for Brazilian

  6. Reactive oxygen species induce expression of vascular endothelial growth factor in chondrocytes and human articular cartilage explants

    OpenAIRE

    Fay, Jakob; Varoga, Deike; Wruck, Christoph J.; Kurz, Bodo; Goldring, Mary B.; Pufe, Thomas

    2006-01-01

    Vascular endothelial growth factor (VEGF) promotes cartilage-degrading pathways, and there is evidence for the involvement of reactive oxygen species (ROS) in cartilage degeneration. However, a relationship between ROS and VEGF has not been reported. Here, we investigate whether the expression of VEGF is modulated by ROS. Aspirates of synovial fluid from patients with osteoarthritis (OA) were examined for intra-articular VEGF using ELISA. Immortalized C28/I2 chondrocytes and human knee cartil...

  7. Viscoelastic properties of bovine articular cartilage attached to subchondral bone at high frequencies

    Directory of Open Access Journals (Sweden)

    Shepherd Duncan ET

    2009-06-01

    Full Text Available Abstract Background Articular cartilage is a viscoelastic material, but its exact behaviour under the full range of physiological loading frequencies is unknown. The objective of this study was to measure the viscoelastic properties of bovine articular cartilage at loading frequencies of up to 92 Hz. Methods Intact tibial plateau cartilage, attached to subchondral bone, was investigated by dynamic mechanical analysis (DMA. A sinusoidally varying compressive force of between 16 N and 36 N, at frequencies from 1 Hz to 92 Hz, was applied to the cartilage surface by a flat indenter. The storage modulus, loss modulus and phase angle (between the applied force and the deformation induced were determined. Results The storage modulus, E', increased with increasing frequency, but at higher frequencies it tended towards a constant value. Its dependence on frequency, f, could be represented by, E' = Aloge (f + B where A = 2.5 ± 0.6 MPa and B = 50.1 ± 12.5 MPa (mean ± standard error. The values of the loss modulus (4.8 ± 1.0 MPa mean ± standard deviation were much less than the values of storage modulus and showed no dependence on frequency. The phase angle was found to be non-zero for all frequencies tested (4.9 ± 0.6°. Conclusion Articular cartilage is viscoelastic throughout the full range of frequencies investigated. The behaviour has implications for mechanical damage to articular cartilage and the onset of osteoarthritis. Storage modulus increases with frequency, until the plateau region is reached, and has a higher value than loss modulus. Furthermore, loss modulus does not increase with loading frequency. This means that more energy is stored by the tissue than is dissipated and that this effect is greater at higher frequencies. The main mechanism for this excess energy to be dissipated is by the formation of cracks.

  8. Type II and VI collagen in nasal and articular cartilage and the effect of IL-1 alpha on the distribution of these collagens

    OpenAIRE

    Jansen, I.D.C.; Hollander, A P; Buttle, D. J.; Everts, V.

    2010-01-01

    The distribution of type II and VI collagen was immunocytochemically investigated in bovine articular and nasal cartilage. Cartilage explants were used either fresh or cultured for up to 4 weeks with or without interleukin 1α (IL-1α). Sections of the explants were incubated with antibodies for both types of collagen. Microscopic analyses revealed that type II collagen was preferentially localized in the interchondron matrix whereas type VI collagen was primarily found in the direct vicinity o...

  9. A low percentage of autologous serum can replace bovine serum to engineer human nasal cartilage

    Directory of Open Access Journals (Sweden)

    F Wolf

    2008-02-01

    Full Text Available For the generation of cell-based therapeutic products, it would be preferable to avoid the use of animal-derived components. Our study thus aimed at investigating the possibility to replace foetal bovine serum (FBS with autologous serum (AS for the engineering of cartilage grafts using expanded human nasal chondrocytes (HNC. HNC isolated from 7 donors were expanded in medium containing 10% FBS or AS at different concentrations (2%, 5% and 10% and cultured in pellets using serum-free medium or in Hyaff®-11 meshes using medium containing FBS or AS. Tissue forming capacity was assessed histologically (Safranin O, immunohistochemically (type II collagen and biochemically (glycosaminoglycans -GAG- and DNA. Differences among experimental groups were assessed by Mann Whitney tests. HNC expanded under the different serum conditions proliferated at comparable rates and generated cartilaginous pellets with similar histological appearance and amounts of GAG. Tissues generated by HNC from different donors cultured in Hyaff®-11 had variable quality, but the accumulated GAG amounts were comparable among the different serum conditions. Staining intensity for collagen type II was consistent with GAG deposition. Among the different serum conditions tested, the use of 2% AS resulted in the lowest variability in the GAG contents of generated tissues. In conclusion, a low percentage of AS can replace FBS both during the expansion and differentiation of HNC and reduce the variability in the quality of the resulting engineered cartilage tissues.

  10. Tensorial electrokinetics in articular cartilage.

    Science.gov (United States)

    Reynaud, Boris; Quinn, Thomas M

    2006-09-15

    Electrokinetic phenomena contribute to biomechanical functions of articular cartilage and underlie promising methods for early detection of osteoarthritic lesions. Although some transport properties, such as hydraulic permeability, are known to become anisotropic with compression, the direction-dependence of cartilage electrokinetic properties remains unknown. Electroosmosis experiments were therefore performed on adult bovine articular cartilage samples, whereby fluid flows were driven by electric currents in directions parallel and perpendicular to the articular surface of statically compressed explants. Magnitudes of electrokinetic coefficients decreased slightly with compression (from approximately -7.5 microL/As in the range of 0-20% compression to -6.0 microL/As in the 35-50% range) consistent with predictions of microstructure-based models of cartilage material properties. However, no significant dependence on direction of the electrokinetic coupling coefficient was detected, even for conditions where the hydraulic permeability tensor is known to be anisotropic. This contrast may also be interpreted using microstructure-based models, and provides insights into structure-function relationships in cartilage extracellular matrix and physical mediators of cell responses to tissue compression. Findings support the use of relatively simple isotropic modeling approaches for electrokinetic phenomena in cartilage and related materials, and indicate that measurement of electrokinetic properties may provide particularly robust means for clinical evaluation of cartilage matrix integrity.

  11. The effect of protease inhibitors on the induction of osteoarthritis-related biomarkers in bovine full-depth cartilage explants

    DEFF Research Database (Denmark)

    He, Yi; Zheng, Qinlong; Jiang, Mengmeng;

    2015-01-01

    Oncostatin M (OSM) were cultured for 21 days with or without a number of inhibitors targeting different types of proteases. Monoclonal antibodies were raised against the active sites of ADAMTS-4, -5, MMP-9 and -13, and 4 ELISAs were developed and technically validated. In addition, the established AGNx...

  12. Early Transcriptional Responses of Bovine Chorioallantoic Membrane Explants to Wild Type, ΔvirB2 or ΔbtpB Brucella abortus Infection

    Science.gov (United States)

    Mol, Juliana P. S.; Costa, Erica A.; Carvalho, Alex F.; Sun, Yao-Hui; Tsolis, Reneé M.; Paixão, Tatiane A.; Santos, Renato L.

    2014-01-01

    The pathogenesis of the Brucella-induced inflammatory response in the bovine placenta is not completely understood. In this study we evaluated the role of the B. abortus Type IV secretion system and the anti-inflammatory factor BtpB in early interactions with bovine placental tissues. Transcription profiles of chorioallantoic membrane (CAM) explants inoculated with wild type (strain 2308), ΔvirB2 or ΔbtpB Brucella abortus were compared by microarray analysis at 4 hours post infection. Transcripts with significant variation (>2 fold change; P<0.05) were functionally classified, and transcripts related to defense and inflammation were assessed by quantitative real time RT-PCR. Infection with wild type B. abortus resulted in slightly more genes with decreased than increased transcription levels. Conversely, infection of trophoblastic cells with the ΔvirB2 or the ΔbtpB mutant strains, that lack a functional T4SS or that has impaired inhibition of TLR signaling, respectively, induced more upregulated than downregulated genes. Wild type Brucella abortus impaired transcription of host genes related to immune response when compared to ΔvirB and ΔbtpB mutants. Our findings suggest that proinflammatory genes are negatively modulated in bovine trophoblastic cells at early stages of infection. The virB operon and btpB are directly or indirectly related to modulation of these host genes. These results shed light on the early interactions between B. abortus and placental tissue that ultimately culminate in inflammatory pathology and abortion. PMID:25259715

  13. Early transcriptional responses of bovine chorioallantoic membrane explants to wild type, ΔvirB2 or ΔbtpB Brucella abortus infection.

    Directory of Open Access Journals (Sweden)

    Juliana P S Mol

    Full Text Available The pathogenesis of the Brucella-induced inflammatory response in the bovine placenta is not completely understood. In this study we evaluated the role of the B. abortus Type IV secretion system and the anti-inflammatory factor BtpB in early interactions with bovine placental tissues. Transcription profiles of chorioallantoic membrane (CAM explants inoculated with wild type (strain 2308, ΔvirB2 or ΔbtpB Brucella abortus were compared by microarray analysis at 4 hours post infection. Transcripts with significant variation (>2 fold change; P<0.05 were functionally classified, and transcripts related to defense and inflammation were assessed by quantitative real time RT-PCR. Infection with wild type B. abortus resulted in slightly more genes with decreased than increased transcription levels. Conversely, infection of trophoblastic cells with the ΔvirB2 or the ΔbtpB mutant strains, that lack a functional T4SS or that has impaired inhibition of TLR signaling, respectively, induced more upregulated than downregulated genes. Wild type Brucella abortus impaired transcription of host genes related to immune response when compared to ΔvirB and ΔbtpB mutants. Our findings suggest that proinflammatory genes are negatively modulated in bovine trophoblastic cells at early stages of infection. The virB operon and btpB are directly or indirectly related to modulation of these host genes. These results shed light on the early interactions between B. abortus and placental tissue that ultimately culminate in inflammatory pathology and abortion.

  14. Osteoarthritic cartilage lesions in the bovine patellar groove: a macroscopic, histological and immunohistological analysis.

    Science.gov (United States)

    Heinola, T; Sukura, A; Virkki, L M; Sillat, T; Lekszycki, T; Konttinen, Y T

    2014-04-01

    A high percentage of osteoarthritis (OA)-like patellar groove lesions in the stifle joint in calcium-deficient bulls has been recently reported. The prevalence of these lesions in bulls deficient in or supplemented with calcium was compared to findings in culled and healthy bulls to determine whether they represent normal anatomical variations, developmental anomalies or OA. It was hypothesized that the patellar groove lesions may represent OA. Distal cartilage samples from 160 femurs were analysed using a macroscopic Société Française d'Arthroscopie (SFA) OA grading system. Samples representing different SFA grades were subjected to Osteoarthritis Research Society International (OARSI) histological and high-mobility group box 1 (HMGB1) immunohistological OA grading. For a qualitative analysis three OA samples were immunostained for interleukin (IL)-1β, matrix metalloproteinase (MMP)-13 and collagenase-produced COL2-3/4M neoepitopes. Patellar groove lesions were found in 48% of the femurs and were highest in calcium-deficient animals (71%, PCOL2-3/4M staining patterns were compatible with OA. The study showed that patellar groove lesions are common in bulls. In all SFA, OARSI and HMGB1 graded samples the lesions clearly demonstrated OA and showed OA-typical pathophysiology. Arthroscopic SFA grading showed similar changes in calcium-deficient and calcium-supplemented bulls, but in the absence of a time course study and histological data the primary nature of these lesions could not be established with certainty. PMID:24581814

  15. The Immunosuppressant FTY720 (Fingolimod enhances Glycosaminoglycan depletion in articular cartilage

    Directory of Open Access Journals (Sweden)

    Stradner Martin H

    2011-12-01

    Full Text Available Abstract Background FTY720 (Fingolimod is a novel immunosuppressive drug investigated in clinical trials for organ transplantation and multiple sclerosis. It acts as a functional sphingosine-1-phosphate (S1P receptor antagonist, thereby inhibiting the egress of lymphocytes from secondary lymphoid organs. As S1P is able to prevent IL-1beta induced cartilage degradation, we examined the direct impact of FTY720 on cytokine induced cartilage destruction. Methods Bovine chondrocytes were treated with the bioactive phosphorylated form of FTY720 (FTY720-P in combination with IL-1beta or TNF-alpha. Expression of MMP-1,-3.-13, iNOS and ADAMTS-4,-5 and COX-2 was evaluated using quantitative real-time PCR and western blot. Glycosaminoglycan depletion from cartilage explants was determined using a 1,9-dimethylene blue assay and safranin O staining. Results FTY720-P significantly reduced IL-1beta and TNF-alpha induced expression of iNOS. In contrast FTY720-P increased MMP-3 and ADAMTS-5 mRNA expression. Furthermore depletion of glycosaminoglycan from cartilage explants by IL-1beta and TNF-alpha was significantly enhanced by FTY720-P in an MMP-3 dependent manner. Conclusions Our results suggest that FTY720 may enhance cartilage degradation in pro-inflammatory environment.

  16. Agonists of the G protein-coupled receptor 109A-mediated pathway promote antilipolysis by reducing serine residue 563 phosphorylation of hormone-sensitive lipase in bovine adipose tissue explants.

    Science.gov (United States)

    Kenéz, A; Locher, L; Rehage, J; Dänicke, S; Huber, K

    2014-01-01

    A balanced lipolytic regulation in adipose tissues based on fine-tuning of prolipolytic and antilipolytic pathways is of vital importance to maintain the metabolic health in dairy cows. Antilipolytic pathways, such as the G protein-coupled receptor 109A (GPR109A)-mediated pathway and the insulin signaling pathway in bovine adipose tissues may be involved in prohibiting excessive lipomobilization by reducing triglycerol hydrolysis. This study aimed to evaluate the in vitro antilipolytic potential of the mentioned pathways in bovine adipose tissue explants. Therefore, subcutaneous and retroperitoneal adipose tissue samples (approximately 100mg) of German Holstein cows were treated for 90 min ex vivo with nicotinic acid (2, 8, or 32 μM), nicotinamide (2, 8, or 32 μM), β-hydroxybutyrate (0.2, 1, or 5mM), or insulin (12 mU/L), with a concurrent lipolytic challenge provoked with 1 μM isoproterenol. Lipolytic and antilipolytic responses of the adipose tissues were assessed by measuring free glycerol and nonesterified fatty acid release. To identify molecular components of the investigated antilipolytic pathways, protein abundance of GPR109A and the extent of hormone-sensitive lipase (HSL) phosphorylation at serine residue 563 were detected by Western blotting. Treatment with nicotinic acid or β-hydroxybutyrate decreased the lipolytic response in adipose tissue explants and concurrently reduced the extent of HSL phosphorylation, but treatment with nicotinamide or insulin did not. Subcutaneous adipose tissue constitutively expressed more GPR109A protein, but no other depot-specific differences were observed. This study provides evidence that the GPR109A-mediated pathway is functionally existent in bovine adipose tissues, and confirms that HSL phosphorylation at serine residue 563 is also important in antilipolytic regulation in vitro. This antilipolytic pathway may be involved in a balanced lipid mobilization in the dairy cow.

  17. Enzymatic digestion of articular cartilage results in viscoelasticity changes that are consistent with polymer dynamics mechanisms

    Directory of Open Access Journals (Sweden)

    June Ronald K

    2009-11-01

    Full Text Available Abstract Background Cartilage degeneration via osteoarthritis affects millions of elderly people worldwide, yet the specific contributions of matrix biopolymers toward cartilage viscoelastic properties remain unknown despite 30 years of research. Polymer dynamics theory may enable such an understanding, and predicts that cartilage stress-relaxation will proceed faster when the average polymer length is shortened. Methods This study tested whether the predictions of polymer dynamics were consistent with changes in cartilage mechanics caused by enzymatic digestion of specific cartilage extracellular matrix molecules. Bovine calf cartilage explants were cultured overnight before being immersed in type IV collagenase, bacterial hyaluronidase, or control solutions. Stress-relaxation and cyclical loading tests were performed after 0, 1, and 2 days of incubation. Results Stress-relaxation proceeded faster following enzymatic digestion by collagenase and bacterial hyaluronidase after 1 day of incubation (both p ≤ 0.01. The storage and loss moduli at frequencies of 1 Hz and above were smaller after 1 day of digestion by collagenase and bacterial hyaluronidase (all p ≤ 0.02. Conclusion These results demonstrate that enzymatic digestion alters cartilage viscoelastic properties in a manner consistent with polymer dynamics mechanisms. Future studies may expand the use of polymer dynamics as a microstructural model for understanding the contributions of specific matrix molecules toward tissue-level viscoelastic properties.

  18. Lubricin reduces cartilage--cartilage integration.

    Science.gov (United States)

    Schaefer, Dirk B; Wendt, David; Moretti, Matteo; Jakob, Marcel; Jay, Gregory D; Heberer, Michael; Martin, Ivan

    2004-01-01

    Cartilage integration in vivo does not occur, such that even cartilage fissures do not heal. This could be due not only to the limited access of chondrocytes to the wound, but also to exogenous factors. In this paper, we tested the hypothesis that lubricin, a lubricating protein physiologically present in the synovial fluid, reduces the integrative cartilage repair capacity. Disk/ring composites of bovine articular cartilage were prepared using concentric circular blades and cultured for 6 weeks with or without treatment with 250 microg/ml lubricin applied three times per week. Following culture, the percentage of contact area between the disks and the rings, as assessed by light microscopy, were equal in both groups. The adhesive strength of the integration interface, as assessed by push-out mechanical tests, was markedly and significantly lower in lubricin-treated specimens (2.5 kPa) than in the controls (28.7 kPa). Histological observation of Safranin-O stained cross-sections confirmed the reduced integration in the lubricin treated composites. Our findings suggest that the synovial milieu, by providing lubrication of cartilage surfaces, impairs cartilage--cartilage integration. PMID:15299281

  19. Bovine meniscal tissue exhibits age- and interleukin-1 dose-dependent degradation patterns and composition-function relationships.

    Science.gov (United States)

    Ling, Carrie H-Y; Lai, Janice H; Wong, Ivan J; Levenston, Marc E

    2016-05-01

    Despite increasing evidence that meniscal degeneration is an early event in the development of knee osteoarthritis, relatively little is known regarding the sequence or functional implications of cytokine-induced meniscal degradation or how degradation varies with age. This study examined dose-dependent patterns of interleukin-1 (IL-1)-induced matrix degradation in explants from the radially middle regions of juvenile and adult bovine menisci. Tissue explants were cultured for 10 days in the presence of 0, 1.25, 5, or 20 ng/ml recombinant human IL-1α. Juvenile explants exhibited immediate and extensive sulfated glycosaminoglycan (sGAG) loss and subsequent collagen release beginning after 4-6 days, with relatively little IL-1 dose-dependence. Adult explants exhibited a more graded response to IL-1, with dose-dependent sGAG release and a lower fraction of sGAG released (but greater absolute release) than juvenile explants. In contrast to juvenile explants, adult explants exhibited minimal collagen release over the 10-day culture. Compressive and shear moduli reflected the changes in explant composition, with substantial decreases for both ages but a greater relative decrease in juvenile tissue. Dynamic moduli exhibited stronger dependence on explant sGAG content for juvenile tissue, likely reflecting concomitant changes to both proteoglycan and collagen tissue components. The patterns of tissue degradation suggest that, like in articular cartilage, meniscal proteoglycans may partially protect collagen from cell-mediated degeneration. A more detailed view of functional changes in meniscal tissue mechanics with degeneration will help to establish the relevance of in vitro culture models and will advance understanding of how meniscal degeneration contributes to overall joint changes in early stage osteoarthritis. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:801-811, 2016. PMID:26519862

  20. Engineering Cartilage

    Science.gov (United States)

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  1. Cartilage (Bovine and Shark) (PDQ)

    Science.gov (United States)

    ... and conditions, including cancer. The trials are being sponsored by the NIH and other federal agencies, and ... be credited as the source. Please note that blog posts that are written by individuals from outside ...

  2. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold.

    Science.gov (United States)

    Musumeci, G; Loreto, C; Carnazza, M L; Coppolino, F; Cardile, V; Leonardi, R

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  3. Induction of inflammatory cytokines by cartilage extracts.

    Science.gov (United States)

    Merly, Liza; Simjee, Shabana; Smith, Sylvia L

    2007-03-01

    Shark cartilage extracts were examined for induction of cytokines and chemokines in human peripheral blood leukocytes. Primary leukocyte cultures were exposed to a variety of aqueous and organic extracts prepared from several commercial brands of shark cartilage. From all commercial sources of shark cartilage tested the acid extracts induced higher levels of TNFalpha than other extracts. Different commercial brands of shark cartilage varied significantly in cytokine-inducing activity. TNFalpha induction was seen as early as 4 h and IFNgamma at detectable levels for up to four days. Shark cartilage extracts did not induce physiologically significant levels of IL-4. Results suggest that shark cartilage, preferentially, induces Th1 type inflammatory cytokines. When compared to bovine cartilage extract, collagen, and chondroitin sulfate, shark cartilage induced significantly higher levels of TNFalpha. Treatment with digestive proteases (trypsin and chymotrypsin) reduced the cytokine induction response by 80%, suggesting that the active component(s) in cartilage extracts is proteinaceous. The induction of Th1 type cytokine response in leukocytes is a significant finding since shark cartilage, taken as a dietary supplement for a variety of chronic degenerative diseases, would be contraindicated in cases where the underlying pathology of the chronic condition is caused by inflammation. PMID:17276897

  4. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly(ethylene glycol diacrylate scaffold

    Directory of Open Access Journals (Sweden)

    G. Musumeci

    2011-09-01

    Full Text Available Osteoarthritis (OA is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol (PEG based hydrogels (PEG-DA encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i in tissue explanted from OA and normal human cartilage; ii in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  5. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation

    DEFF Research Database (Denmark)

    Sondergaard, B C; Henriksen, K; Wulf, H;

    2006-01-01

    OBJECTIVE: Both matrix metalloprotease (MMP) activity and cathepsin K (CK) activity have been implicated in cartilage turnover. We investigated the relative contribution of MMP activity and CK activity in cartilage degradation using ex vivo and in vivo models. METHODS: Bovine articular cartilage...

  6. Explant cultures of human colon

    DEFF Research Database (Denmark)

    Autrup, Herman; Barrett, L.A.; Jackson, F.E.;

    1978-01-01

    Human colonic epithelium has been cultured as explants in a chemically defined medium for periods of 1 to 20 days. The viability of the explants was shown by the preservation of the ultrastructural features of the colonic epithelial cells and by active incorporation of radioactive precursors...... into cellular DNA and protein. A progressive decrease in the number of goblet cells, decrease in the depth of the crypts, and a change from a columnar to a cuboidal epithelium were observed. After 20 days in culture the colonic mucosa consisted of a single layer of cuboidal epithelial cells and a few glands....... The ability to maintain colonic mucosa in culture was subject to both intra- and interindividual variation. Cultured human colonic mucosa also activated a chemical procarcinogen, benzo[a]pyrene, into metabolites which bound to cellular DNA. A 100-fold interindividual variation in this binding was observed....

  7. Chondroprotective Effect of Kartogenin on CD44-Mediated Functions in Articular Cartilage and Chondrocytes

    OpenAIRE

    Ono, Yohei; Ishizuka, Shinya; Knudson, Cheryl B.; Knudson, Warren

    2014-01-01

    Objective: A recent report identified the small molecule kartogenin as a chondrogenic and chondroprotective agent. Since changes in hyaluronan metabolism occur during cartilage degeneration in osteoarthritis, we began studies to determine whether there was a connection between extracellular hyaluronan, CD44–hyaluronan interactions and the effects of kartogenin on articular chondrocytes. Methods: Chondrocytes cultured in monolayers, bioengineered neocartilages, or cartilage explants were treat...

  8. Involvement of ADAMTS5 and hyaluronidase in aggrecan degradation and release from OSM-stimulated cartilage

    Directory of Open Access Journals (Sweden)

    M Durigova

    2011-01-01

    Full Text Available The relative contribution of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS4 and ADAMTS5 to aggrecan degradation under oncostatin M (OSM stimulation, the role of the ancillary domains of the aggrecanases on their ability to cleave within the chondroitin sulfate (CS-2 region, the role of hyaluronidases (HYAL in stimulating aggrecan release in the absence of proteolysis, and the identity of the hyaluronidase involved in OSM-mediated cartilage breakdown were investigated. Bovine articular cartilage explants were cultured in the presence of interleukin-1beta (IL-1beta, tumor necrosis factor alpha (TNFalpha and/or OSM, or treated with trypsin and/or hyaluronidase. Aggrecan was digested with various domain-truncated isoforms of ADAMTS4 and ADAMTS5. Aggrecan and link protein degradation and release were analyzed by immunoblotting. Aggrecanase and HYAL gene expression were determined. ADAMTS4 was the most inducible aggrecanase upon cytokine stimulation, whereas ADAMTS5 was the most abundant aggrecanase. ADAMTS5 was the most active aggrecanase and was responsible for the generation of an OSM-specific degradation pattern in the CS-2 region. Its ability to cleave at the OSM-specific site adjacent to the aggrecan G3 region was enhanced by truncation of the C-terminal thrombospondin domain, but reduced by further truncation of both the spacer and cysteine-rich domains of the enzyme. OSM has the ability to mediate proteoglycan release through hyaluronan degradation, under conditions where HYAL-2 is the predominant hyaluronidase being expressed. Compared to other catabolic cytokines, OSM exhibits a unique potential at degrading the proteoglycan aggregate, by promoting early robust aggrecanolysis, primarily through the action of ADAMTS5, and hyaluronan degradation.

  9. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.

    Science.gov (United States)

    Li, Feng; Wang, Anmin; Wang, Chengtao

    2016-05-01

    Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer's solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism. PMID:26970769

  10. Comparative digital cartilage histology for human and common osteoarthritis models

    Directory of Open Access Journals (Sweden)

    Pedersen DR

    2013-02-01

    Full Text Available Douglas R Pedersen, Jessica E Goetz, Gail L Kurriger, James A MartinDepartment of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USAPurpose: This study addresses the species-specific and site-specific details of weight-bearing articular cartilage zone depths and chondrocyte distributions among humans and common osteoarthritis (OA animal models using contemporary digital imaging tools. Histological analysis is the gold-standard research tool for evaluating cartilage health, OA severity, and treatment efficacy. Historically, evaluations were made by expert analysts. However, state-of-the-art tools have been developed that allow for digitization of entire histological sections for computer-aided analysis. Large volumes of common digital cartilage metrics directly complement elucidation of trends in OA inducement and concomitant potential treatments.Materials and methods: Sixteen fresh human knees, 26 adult New Zealand rabbit stifles, and 104 bovine lateral plateaus were measured for four cartilage zones and the cell densities within each zone. Each knee was divided into four weight-bearing sites: the medial and lateral plateaus and femoral condyles.Results: One-way analysis of variance followed by pairwise multiple comparisons (Holm–Sidak method at a significance of 0.05 clearly confirmed the variability between cartilage depths at each site, between sites in the same species, and between weight-bearing articular cartilage definitions in different species.Conclusion: The present study clearly demonstrates multisite, multispecies differences in normal weight-bearing articular cartilage, which can be objectively quantified by a common digital histology imaging technique. The clear site-specific differences in normal cartilage must be taken into consideration when characterizing the pathoetiology of OA models. Together, these provide a path to consistently analyze the volume and variety of histologic slides necessarily generated

  11. Effects of anti-arthritic drugs on proteoglycan synthesis by equine cartilage.

    Science.gov (United States)

    Frean, S P; Cambridge, H; Lees, P

    2002-08-01

    The concentration-effect relationships of phenylbutazone, indomethacin, betamethasone, pentosan polysulphate (PPS) and polysulphated glycosaminoglycan (PSGAG), on proteoglycan synthesis by equine cultured chondrocytes grown in monolayers, and articular cartilage explants were measured. The effect of PSGAG on interleukin-1beta induced suppression of proteogycan synthesis was also investigated. Proteoglycan synthesis was measured by scintillation assay of radiolabelled sulphate (35SO4) incorporation. Polysulphated glycosaminoglycan and PPS stimulated proteoglycan synthesis in chondrocyte monolayers in a concentration-related manner with maximal effects being achieved at a concentration of 10 microg/mL. Polysulphated glycosaminoglycan reversed the concentration-related suppression of proteoglycan synthesis induced by interleukin-1beta. Neither PSGAG nor PPS exerted significant effects on radiolabel incorporation in cartilage explants. Betamethasone suppressed proteoglycan synthesis by both chondrocytes and explants at high concentrations (0.1-100 microg/mL), but the effect was not concentration-related. At low concentrations (0.001-0.05 microg/mL) betamethasone neither increased nor decreased proteoglycan synthesis. Phenylbutazone and indomethacin increased radiolabel incorporation in chondrocyte cultures but not in cartilage explants at low (0.1, 1 and 10 microg/mL), but not at high (20 and 100 microg/mL) concentrations. These findings may be relevant to the clinical use of these drugs in the treatment of equine disease. PMID:12213118

  12. Cartilage Engineering and Microgravity

    Science.gov (United States)

    Toffanin, R.; Bader, A.; Cogoli, A.; Carda, C.; Fantazzini, P.; Garrido, L.; Gomez, S.; Hall, L.; Martin, I.; Murano, E.; Poncelet, D.; Pörtner, R.; Hoffmann, F.; Roekaerts, D.; Ronney, P.; Triebel, W.; Tummers, M.

    2005-06-01

    The complex effects of mechanical forces and growth factors on articular cartilage development still need to be investigated in order to identify optimal conditions for articular cartilage repair. Strictly controlled in vitro studies under modelled or space microgravity conditions can improve our understanding of the fundamental role of gravity in articular cartilage development. The main objective of this Topical Team is to use modelled microgravity as a tool to elucidate the fundamental science of cartilage regeneration. Particular attention is, therefore, given to the effects of physical forces under altered gravitational conditions, applied using controlled bioreactor systems, on cell metabolism, cell differentiation and tissue development. Specific attention is also directed toward the potential advantages of using magnetic resonance methods for the non-destructive characterisation of scaffolds, chondrocytes-polymer constructs and tissue engineered cartilage.

  13. Human serum provided additional values in growth factors supplemented medium for human chondrocytes monolayer expansion and engineered cartilage construction.

    Science.gov (United States)

    Chua, K H; Aminuddin, B S; Fuzina, N H; Ruszymah, B H I

    2004-05-01

    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.

  14. Evidence for a negative Pasteur effect in articular cartilage.

    Science.gov (United States)

    Lee, R B; Urban, J P

    1997-01-01

    Uptake of external glucose and production of lactate were measured in freshly-excised bovine articular cartilage under O2 concentrations ranging from 21% (air) to zero (N2-bubbled). Anoxia (O2 concentration Pasteur effect in bovine articular cartilage. Anoxia also suppressed glycolysis in articular cartilage from horse, pig and sheep. Inhibitors acting on the glycolytic pathway (2-deoxy-D-glucose, iodoacetamide or fluoride) strongly decreased aerobic lactate production and ATP concentration, consistent with the belief that articular cartilage obtains its principal supply of ATP from substrate-level phosphorylation in glycolysis. Azide or cyanide lowered the ATP concentration in aerobic cartilage to approximately the same extent as did anoxia but, because glycolysis (lactate production) was also inhibited by these treatments, the importance of any mitochondrial ATP production could not be assessed. A negative Pasteur effect would make chondrocytes particularly liable to suffer a shortage of energy under anoxic conditions. Incorporation of [35S]sulphate into proteoglycan was severely curtailed by treatments, such as anoxia, which decreased the intracellular concentration of ATP.

  15. Poroelasticity of Cartilage at the Nanoscale

    OpenAIRE

    Nia, Hadi Tavakoli; Han, Lin; Li, Yang; Ortiz, Christine; Grodzinsky, Alan

    2011-01-01

    Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ∼15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ∼ 12.5 μm), the magnitude of the dynamic complex indentation modulus, |E∗|, and phase angle, ϕ, between the force and tip displacement sinusoids, were me...

  16. Characterization of Myelomonocytoid Progenitor Cells with Mesenchymal Differentiation Potential Obtained by Outgrowth from Pancreas Explants

    Directory of Open Access Journals (Sweden)

    Marc-Estienne Roehrich

    2012-01-01

    Full Text Available Progenitor cells can be obtained by outgrowth from tissue explants during primary ex vivo tissue culture. We have isolated and characterized cells outgrown from neonatal mouse pancreatic explants. A relatively uniform population of cells showing a distinctive morphology emerged over time in culture. This population expressed monocyte/macrophage and hematopoietic markers (CD11b+ and CD45+, and some stromal-related markers (CD44+ and CD29+, but not mesenchymal stem cell (MSC-defining markers (CD90− and CD105− nor endothelial (CD31− or stem cell-associated markers (CD133− and stem cell antigen-1; Sca-1−. Cells could be maintained in culture as a plastic-adherent monolayer in culture medium (MesenCult MSC for more than 1 year. Cells spontaneously formed sphere clusters “pancreatospheres” which, however, were nonclonal. When cultured in appropriate media, cells differentiated into multiple mesenchymal lineages (fat, cartilage, and bone. Positive dithizone staining suggested that a subset of cells differentiated into insulin-producing cells. However, further studies are needed to characterize the endocrine potential of these cells. These findings indicate that a myelomonocytoid population from pancreatic explant outgrowths has mesenchymal differentiation potential. These results are in line with recent data onmonocyte-derivedmesenchymal progenitors (MOMPs.

  17. Pharmacological influence of antirheumatic drugs on proteoglycans from interleukin-1 treated articular cartilage.

    Science.gov (United States)

    Steinmeyer, J; Daufeldt, S

    1997-06-01

    The purpose of this study was to examine whether drugs used in the treatment of arthritic disorders possess any inhibitory potential on the proteoglycanolytic activities of matrix metalloproteinases (MMPs), and to determine whether drugs which inhibit these enzymes also modulate the biosynthesis and release of proteoglycans (PGs) from interleukin-1-(IL-1) treated articular cartilage explants. The cartilage-bone marrow extract and the glycosaminoglycan-peptide complex (DAK-16) dose-dependently inhibited MMP proteoglycanases in vitro when tested at concentrations ranging from 0.5 to 55 mg/mL, displaying an IC50 value of 31.78 mg/mL and 10.64 mg/mL (1.9 x 10[-4] M) respectively. (R,S)-N-[2-[2-(hydroxyamino)-2-oxoethyl]-4-methyl-1-oxopentyl++ +]-L-leucyl-L-phenylalaninamide (U-24522) proved to be a potent inhibitor of MMP proteoglycanases (IC50 value 1.8 x 10[-9] M). None of the other tested drugs, such as possible chondroprotective drugs, nonsteroidal anti-inflammatory drugs (NSAIDs), disease modifying antirheumatic drugs (DMARDs), glucocorticoids and angiotensin-converting enzyme inhibitors tested at a concentration of 10(-4) M displayed any significant inhibition. Only U-24522, tested at a concentration ranging from 10(-4) to 10(-6) M, significantly inhibited the IL-1-induced augmentation of PG loss from cartilage explants into the nutrient media, whereas DAK-16 and the cartilage-bone marrow extract were ineffective. DAK-16 and the cartilage-bone marrow extract did not modulate the IL-1-mediated reduced biosynthesis and aggregability of PGs by the cartilage explants. The addition of 10(-5) M U-24522, however, partially maintained the aggregability of PGs ex vivo. In our experiments, both possible chondroprotective drugs as well as U-24522 demonstrated no cytotoxic effects on chondrocytes.

  18. Oxygen dynamics in choanosomal sponge explants

    NARCIS (Netherlands)

    Hoffmann, F.; Larsen, O.; Rapp, H.T.; Osinga, R.

    2005-01-01

    Oxygen microprofiles were measured over the boundary layer and into the tissue of 10-day-old cultivated tissue fragments (explants of 2-4 cm 3) from the choanosome of the cold-water sponge Geodia barretti with oxygen-sensitive Clark-type microelectrodes. At this time of cultivation, the surface tiss

  19. Anti-cartilage antibody.

    Science.gov (United States)

    Greenbury, C L; Skingle, J

    1979-08-01

    Antibody to cartilage has been demonstrated by indirect immunofluorescence on rat trachea in the serum of about 3% of 1126 patients with rheumatoid arthritis. Titres ranged from 1:20 to 1:640. The antibody was not found in 284 patients with primary or secondary osteoarthritis or in 1825 blood donors, nor, with the exception of two weak reactors, in 1314 paraplegic patients. In most cases the antibody appears to be specific for native type II collagen. Using this as an antigen in a haemagglutination test 94% of anti-cartilage sera were positive, whereas among 100 rheumatoid control sera there were only three weak positives. More than 80% of patients with antibody had some erosion of articular cartilage, but there was no correlation with age, sex, duration of disease, nor any recognisable clinical event or change.

  20. Degeneration of osteoarthritis cartilage

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter

    Osteoarthritis (OA) is a widespread, chronic joint disease for which there are currently no effective treatments beyond symptom relief. The lack of any approved disease modifying osteoarthritic drugs may partly be explained by insufficient disease understanding, but may also be tied to the absence...... spatial cartilage changes that were observed in our study and in recent literature. The cartilage “Activity” marker is shown to have a state-of-the-art performance in separating healthy knees from OA knees and is also shown to predict knee replacement which is a clinically relevant endpoint for OA....

  1. Dynamic compressive properties of bovine knee layered tissue

    Science.gov (United States)

    Nishida, Masahiro; Hino, Yuki; Todo, Mitsugu

    2015-09-01

    In Japan, the most common articular disease is knee osteoarthritis. Among many treatment methodologies, tissue engineering and regenerative medicine have recently received a lot of attention. In this field, cells and scaffolds are important, both ex vivo and in vivo. From the viewpoint of effective treatment, in addition to histological features, the compatibility of mechanical properties is also important. In this study, the dynamic and static compressive properties of bovine articular cartilage-cancellous bone layered tissue were measured using a universal testing machine and a split Hopkinson pressure bar method. The compressive behaviors of bovine articular cartilage-cancellous bone layered tissue were examined. The effects of strain rate on the maximum stress and the slope of stress-strain curves of the bovine articular cartilage-cancellous bone layered tissue were discussed.

  2. Costal Cartilage Grafts in Rhinoplasty.

    Science.gov (United States)

    Fedok, Fred G

    2016-01-01

    Cartilage grafts are regularly used in rhinoplasty. Septal and auricular donor sites are commonly used. Many situations compel the surgeon to use other alternative donor sites, including revision rhinoplasty and trauma. Many patients have a small amount of native septal cartilage and are unable to provide adequate septal cartilage to be used for frequently performed rhinoplasty maneuvers. The rib cage provides an enormous reserve of costal cartilage that can be carved into a variety of necessary grafts. A description of the technique of harvesting costal cartilage, a review of complications and management, and illustrative cases examples are included. PMID:26616708

  3. Biochemical composition of the superficial layer of articular cartilage.

    Science.gov (United States)

    Crockett, R; Grubelnik, A; Roos, S; Dora, C; Born, W; Troxler, H

    2007-09-15

    To gain more information on the mechanism of lubrication in articular joints, the superficial layer of bovine articular cartilage was mechanically removed in a sheet of ice that formed on freezing the cartilage. Freeze-dried samples contained low concentrations of chondroitin sulphate and protein. Analysis of the protein by SDS PAGE showed that the composition of the sample was comparable to that of synovial fluid (SF). Attenuated total reflection infrared (ATR-IR) spectroscopy of the dried residue indicated that the sample contained mostly hyaluronan. Moreover, ATR-IR spectroscopy of the upper layer of the superficial layer, adsorbed onto silicon, showed the presence of phospholipids. A gel could be formed by mixing hyaluronan and phosphatidylcholine in water with mechanical properties similar to those of the superficial layer on cartilage. Much like the superficial layer of natural cartilage, the surface of this gel became hydrophobic on drying out. Thus, it is proposed that the superficial layer forms from hyaluronan and phospholipids, which associate by hydrophobic interactions between the alkyl chains of the phospholipids and the hydrophobic faces of the disaccharide units in hyaluronan. This layer is permeable to material from the SF and the cartilage, as shown by the presence of SF proteins and chondroitin sulphate. As the cartilage dries out after removal from the joint, the phospholipids migrate towards the surface of the superficial layer to reduce the surface tension. It is also proposed that the highly efficient lubrication in articular joints can, at least in part, be attributed to the ability of the superficial layer to adsorb and hold water on the cartilage surface, thus creating a highly viscous boundary protection.

  4. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage

    Science.gov (United States)

    Lee, Whasil; Leddy, Holly A.; Chen, Yong; Lee, Suk Hee; Zelenski, Nicole A.; McNulty, Amy L.; Wu, Jason; Beicker, Kellie N.; Coles, Jeffrey; Zauscher, Stefan; Grandl, Jörg; Sachs, Frederick; Liedtke, Wolfgang B.

    2014-01-01

    Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca2+ signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca2+ transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains. PMID:25385580

  5. An exploration of the ability of tepoxalin to ameliorate the degradation of articular cartilage in a canine in vitro model

    Directory of Open Access Journals (Sweden)

    Clegg Peter D

    2009-07-01

    Full Text Available Abstract Background To study the ability of tepoxalin, a dual inhibitor of cyclooxygenase (COX and lipoxygenase (LOX and its active metabolite to reduce the catabolic response of cartilage to cytokine stimulation in an in vitro model of canine osteoarthritis (OA. Grossly normal cartilage was collected post-mortem from seven dogs that had no evidence of joint disease. Cartilage explants were cultured in media containing the recombinant canine interleukin-1β (IL-1β at 100 ng/ml and recombinant human oncostatin-M (OSM at 50 ng/ml. The effects of tepoxalin and its metabolite were studied at three concentrations (1 × 10-5, 1 × 10-6 and 1 × 10-7 M. Total glycosaminoglycan (GAG and collagen (hydroxyproline release from cartilage explants were used as outcome measures of proteoglycan and collagen depletion respectively. PGE2 and LTB4 assays were performed to study the effects of the drug on COX and LOX activity. Results Treatment with IL-1β and OSM significantly upregulated both collagen (p = 0.004 and proteoglycan (p = 0.001 release from the explants. Tepoxalin at 10-5 M and 10-6 M caused a decrease in collagen release from the explants (p = 0.047 and p = 0.075. Drug treatment showed no effect on GAG release. PGE2 concentration in culture media at day 7 was significantly increased by IL-1β and OSM and treatment with both tepoxalin and its metabolite showed a trend towards dose-dependent reduction of PGE2 production. LTB4 concentrations were too low to be quantified. Cytotoxicity assays suggested that neither tepoxalin nor its metabolite had a toxic effect on the cartilage chondrocytes at the concentrations and used in this study. Conclusion This study provides evidence that tepoxalin exerts inhibition of COX and can reduce in vitro collagen loss from canine cartilage explants at a concentration of 10-5 M. We can conclude that, in this model, tepoxalin can partially inhibit the development of cartilage degeneration when it is available locally to

  6. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.

    Science.gov (United States)

    Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas

    2016-04-01

    The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program. PMID:26240062

  7. Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound

    Science.gov (United States)

    Töyräs, J.; Rieppo, J.; Nieminen, M. T.; Helminen, H. J.; Jurvelin, J. S.

    1999-11-01

    Ultrasound may provide a quantitative technique for the characterization of cartilage changes typical of early osteoarthrosis. In this study, specific changes in bovine articular cartilage were induced using collagenase and chondroitinase ABC, enzymes that selectively degrade collagen fibril network and digest proteoglycans, respectively. Changes in cartilage structure and properties were quantified using high frequency ultrasound, microscopic analyses and mechanical indentation tests. The ultrasound reflection coefficient of the physiological saline-cartilage interface (R1) decreased significantly (-96.4%, pdigested cartilage compared to controls. Also a significantly lower ultrasound velocity (-6.2%, pdigestion. After chondroitinase ABC digestion, a new acoustic interface at the depth of the enzyme penetration front was detected. Cartilage thickness, as determined with ultrasound, showed a high, linear correlation (R = 0.943, n = 60, average difference 0.073 mm (4.0%)) with the thickness measured by the needle-probe method. Both enzymes induced a significant decrease in the Young's modulus of cartilage (p<0.01). Our results indicate that high frequency ultrasound provides a sensitive technique for the analysis of cartilage structure and properties. Possibly ultrasound may be utilized in vivo as a quantitative probe during arthroscopy.

  8. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    International Nuclear Information System (INIS)

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively

  9. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H.N.; Haudenschild, Dominik R., E-mail: DRHaudenschild@ucdavis.edu

    2015-05-08

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively.

  10. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    Energy Technology Data Exchange (ETDEWEB)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine, E-mail: catherine.labbe@rennes.inra.fr

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time.

  11. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    International Nuclear Information System (INIS)

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time

  12. Studies of mineralization in tissue culture: optimal conditions for cartilage calcification

    Science.gov (United States)

    Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.

    1992-01-01

    The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.

  13. Poroelasticity of cartilage at the nanoscale.

    Science.gov (United States)

    Nia, Hadi Tavakoli; Han, Lin; Li, Yang; Ortiz, Christine; Grodzinsky, Alan

    2011-11-01

    Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ~15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ~ 12.5 μm), the magnitude of the dynamic complex indentation modulus, |E*|, and phase angle, φ, between the force and tip displacement sinusoids, were measured in the frequency range f ~ 0.2-130 Hz at an offset indentation depth of δ(0) ~ 3 μm. The experimentally measured |E*| and φ corresponded well with that predicted by a fibril-reinforced poroelastic model over a three-decade frequency range. The peak frequency of phase angle, f(peak), was observed to scale linearly with the inverse square of the contact distance between probe tip and cartilage, 1/d(2), as predicted by linear poroelasticity theory. The dynamic mechanical properties were observed to be independent of the deformation amplitude in the range δ = 7-50 nm. Hence, these results suggest that poroelasticity was the dominant mechanism underlying the frequency-dependent mechanical behavior observed at these nanoscale deformations. These findings enable ongoing investigations of the nanoscale progression of matrix pathology in tissue-level disease. PMID:22067171

  14. Articular cartilage stem cell signalling

    OpenAIRE

    Karlsson, Camilla; Lindahl, Anders

    2009-01-01

    The view of articular cartilage as a non-regeneration organ has been challenged in recent years. The articular cartilage consists of distinct zones with different cellular and molecular phenotypes, and the superficial zone has been hypothesized to harbour stem cells. Furthermore, the articular cartilage demonstrates a distinct pattern regarding stem cell markers (that is, Notch-1, Stro-1, and vascular cell adhesion molecule-1). These results, in combination with the positive identification of...

  15. Transcriptomic profiling of cartilage ageing

    OpenAIRE

    Mandy Jayne Peffers; Xuan Liu; Peter David Clegg

    2014-01-01

    The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older dono...

  16. Type II collagen peptide is able to accelerate embryonic chondrocyte differentiation: an association with articular cartilage matrix resorption in osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2010-01-01

    Conclusion. The effect of CP on gene expression and collagen decomposition activity depends on the morphotype of embryonic chondrocytes. Lack of effect of CP on collagen decomposition activity in both the embryonic hypertrophic chondrocytes and the cartilage explants from OA patients supports the hypothesis that the hypertrophic morphotype is a dominant morphotype of articular chondrocytes in OA. Moreover, collagen decomposition products can be involved in the resorption of matrix in OA and in the maintenance of chronic nature of the pathology.

  17. Effects of Bone Morphogenic Proteins on Engineered Cartilage

    Science.gov (United States)

    Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.

    2007-01-01

    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.

  18. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    International Nuclear Information System (INIS)

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium

  19. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish.

    Science.gov (United States)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation.

  20. A new bovine conjunctiva model shows that Listeria monocytogenes invasion is associated with lysozyme resistance.

    Science.gov (United States)

    Warren, Jessica; Owen, A Rhys; Glanvill, Amy; Francis, Asher; Maboni, Grazieli; Nova, Rodrigo J; Wapenaar, Wendela; Rees, Catherine; Tötemeyer, Sabine

    2015-08-31

    Listerial keratoconjunctivitis ('silage eye') is a wide spread problem in ruminants causing economic losses to farmers and impacts negatively on animal welfare. It results from direct entry of Listeria monocytogenes into the eye, often following consumption of contaminated silage. An isolation protocol for bovine conjunctival swabbing was developed and used to sample both infected and healthy eyes bovine eyes (n=46). L. monocytogenes was only isolated from one healthy eye sample, and suggests that this organism can be present without causing disease. To initiate a study of this disease, an infection model was developed using isolated conjunctiva explants obtained from cattle eyes post slaughter. Conjunctiva were cultured and infected for 20 h with a range of L. monocytogenes isolates (n=11), including the healthy bovine eye isolate and also strains isolated from other bovine sources, such as milk or clinical infections. Two L. monocytogenes isolates (one from a healthy eye and one from a cattle abortion) were markedly less able to invade conjunctiva explants, but one of those was able to efficiently infect Caco2 cells indicating that it was fully virulent. These two isolates were also significantly more sensitive to lysozyme compared to most other isolates tested, suggesting that lysozyme resistance is an important factor when infecting bovine conjunctiva. In conclusion, we present the first bovine conjunctiva explant model for infection studies and demonstrate that clinical L. monocytogenes isolates from cases of bovine keratoconjunctivitis are able to infect these tissues. PMID:25778543

  1. Making post-mortem implantable cardioverter defibrillator explantation safe

    DEFF Research Database (Denmark)

    Räder, Sune B E W; Zeijlemaker, Volkert; Pehrson, Steen;

    2009-01-01

    that the resting voltage over the operating person would not exceed 50 V. CONCLUSION: The use of intact medical gloves made of latex, neoprene, or plastic eliminates the potential electrical risk during explantation of an ICD. Two gloves on each hand offer sufficient protection. We will recommend the use......AIMS: The aim of this study is to investigate whether protection with rubber or plastic gloves during post-mortem explantation of an implantable cardioverter defibrillator (ICD) offers enough protection for the explanting operator during a worst-case scenario (i.e. ICD shock). METHODS AND RESULTS......: We investigated the insulating properties of rubber and plastic gloves (double layer) within the first 60 min exposure (mimicking the maximum time of an explantation procedure) to saline (simulating the effects of body fluids on the gloves). For latex gloves, we measured an increase in voltage up...

  2. Shear loading of costal cartilage

    CERN Document Server

    Subit, Damien

    2014-01-01

    A series of tests were performed on a single post-mortem human subject at various length scales. First, tabletop tests were performed. Next, the ribs and intercostal muscles were tested with the view to characterize the load transfer between the ribs. Finally, the costal cartilage was tested under shear loading, as it plays an important in the transfer of the load between the ribs and the sternum. This paper reports the results of dynamic shear loading tests performed on three samples of costal cartilage harvested from a single post-mortem human subject, as well as the quantification of the effective Young's modulus estimated from the amount of cartilage calcification.

  3. An ovine tracheal explant culture model for allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Abeynaike Latasha

    2010-08-01

    Full Text Available Abstract Background The airway epithelium is thought to play an important role in the pathogenesis of asthmatic disease. However, much of our understanding of airway epithelial cell function in asthma has been derived from in vitro studies that may not accurately reflect the interactive cellular and molecular pathways active between different tissue constituents in vivo. Methods Using a sheep model of allergic asthma, tracheal explants from normal sheep and allergic sheep exposed to house dust mite (HDM allergen were established to investigate airway mucosal responses ex vivo. Explants were cultured for up to 48 h and tissues were stained to identify apoptotic cells, goblet cells, mast cells and eosinophils. The release of cytokines (IL-1α, IL-6 and TNF-α by cultured tracheal explants, was assessed by ELISA. Results The general morphology and epithelial structure of the tracheal explants was well maintained in culture although evidence of advanced apoptosis within the mucosal layer was noted after culture for 48 h. The number of alcian blue/PAS positive mucus-secreting cells within the epithelial layer was reduced in all cultured explants compared with pre-cultured (0 h explants, but the loss of staining was most evident in allergic tissues. Mast cell and eosinophil numbers were elevated in the allergic tracheal tissues compared to naïve controls, and in the allergic tissues there was a significant decline in mast cells after 24 h culture in the presence or absence of HDM allergen. IL-6 was released by allergic tracheal explants in culture but was undetected in cultured control explants. Conclusions Sheep tracheal explants maintain characteristics of the airway mucosa that may not be replicated when studying isolated cell populations in vitro. There were key differences identified in explants from allergic compared to control airways and in their responses in culture for 24 h. Importantly, this study establishes the potential for the

  4. Engineered cartilage covered ear implants for auricular cartilage reconstruction.

    Science.gov (United States)

    Lee, Sang Jin; Broda, Christopher; Atala, Anthony; Yoo, James J

    2011-02-14

    Cartilage tissues are often required for auricular tissue reconstruction. Currently, alloplastic ear-shaped medical implants composed of silicon and polyethylene are being used clinically. However, the use of these implants is often associated with complications, including inflammation, infection, erosion, and dislodgement. To overcome these limitations, we propose a system in which tissue-engineered cartilage serves as a shell that entirely covers the alloplastic implants. This study investigated whether cartilage tissue, engineered with chondrocytes and a fibrin hydrogel, would provide adequate coverage of a commercially used medical implant. To demonstrate the in vivo stability of cell-fibrin constructs, we tested variations of fibrinogen and thrombin concentration as well as cell density. After implantation, the retrieved engineered cartilage tissue was evaluated by histo- and immunohistochemical, biochemical, and mechanical analyses. Histomorphological evaluations consistently showed cartilage formation over the medical implants with the maintenance of dimensional stability. An initial cell density was determined that is critical for the production of matrix components such as glycosaminoglycans (GAG), elastin, type II collagen, and for mechanical strength. This study shows that engineered cartilage tissues are able to serve as a shell that entirely covers the medical implant, which may minimize the morbidity associated with implant dislodgement. PMID:21182236

  5. The friction of explanted hip prostheses.

    Science.gov (United States)

    Hall, R M; Unsworth, A; Wroblewski, B M; Siney, P; Powell, N J

    1997-01-01

    Charnley prostheses, retrieved at revision surgery, were studied to assess the effects of friction on the total hip replacement procedure. Frictional resistance was measured using the Durham hip function simulator under both dry and lubricated conditions. The friction factor values (f) for the explanted prostheses were found to have a non-Gaussian distribution with medians of 0.13 [inter-quartile range (IQR) 0.10-0.16] and 0.06 (IQR 0.005-0.08) for dry and lubricated (n = 0.01 Pa s) regimes, respectively. New Charnley prostheses had values of f equal to 0.11 +/- 0.025 and 0.04 +/- 0.01 under the same conditions, and showed no large deviation from a Gaussian distribution. There was found to be a statistically significant difference in the medians of the friction factors for new and retrieved prostheses in the lubricated regime. Ingression of cement into the worn region of the cup was found to increase the friction factor significantly under dry conditions. There was no evidence of an increase in the friction factor or torque for those joints that had a loose socket with respect to those that were fixed at revision. A decrease in the frictional torque against number of cycles undergone by the joint in vivo may indicate that a fatigue-type process may have a role in the loosening of the socket. However, this relationship was found not to be significant for friction measured under lubricated conditions and it seems unlikely that the frictional torque generated in this type of prosthesis will contribute significantly to the long-term loosening of the socket.

  6. Noncontact evaluation of articular cartilage degeneration using a novel ultrasound water jet indentation system.

    Science.gov (United States)

    Lu, M-H; Zheng, Y P; Huang, Q-H; Ling, C; Wang, Q; Bridal, L; Qin, L; Mak, A

    2009-01-01

    We previously reported a noncontact ultrasound water jet indentation system for measuring and mapping tissue mechanical properties. The key idea was to utilize a water jet as an indenter as well as the coupling medium for high-frequency ultrasound. In this paper, the system was employed to assess articular cartilage degeneration, using stiffness ratio as an indicator of the mechanical properties of samples. Both the mechanical and acoustical properties of intact and degenerated bovine patellar articular cartilage (n = 8) were obtained in situ. It was found that the stiffness ratio was reduced by 44 +/- 17% after the articular cartilage was treated by 0.25% trypsin at 37 degrees C for 4 h while no significant difference in thickness was observed between the intact and degenerated samples. A significant decrease of 36 +/- 20% in the peak-to-peak amplitude of ultrasound echoes reflected from the cartilage surface was also found for the cartilage samples treated by trypsin. The results also showed that the stiffness obtained with the new method highly correlated with that measured using a standard mechanical testing protocol. A good reproducibility of the measurements was demonstrated. The present results showed that the ultrasound water jet indentation system may provide a potential tool for the non-destructive evaluation of articular cartilage degeneration by simultaneously obtaining mechanical properties, acoustical properties, and thickness data. PMID:19011965

  7. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive electrospun cartilage substitute by integrating cold atmospheric plasma (CAP treatment with sustained growth factor delivery microspheres. Specifically, CAP was applied to a poly(ε-caprolactone electrospun scaffold with homogeneously distributed bioactive factors (transforming growth factor-β1 and bovine serum albumin loaded poly(lactic-co-glycolic acid microspheres. We have shown that CAP treatment renders electrospun scaffolds more hydrophilic thus facilitating vitronectin adsorption. More importantly, our results demonstrate, for the first time, CAP and microspheres can synergistically enhance stem cell growth as well as improve chondrogenic differentiation of human marrow-derived mesenchymal stem cells (such as increased glycosaminoglycan, type II collagen, and total collagen production. Furthermore, CAP can substantially enhance 3D cell infiltration (over two-fold increase in infiltration depth after 1 day of culture in the scaffolds. By integrating CAP, sustained bioactive factor loaded microspheres, and electrospinning, we have fabricated a promising bioactive scaffold for cartilage regeneration.

  8. Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular cartilage

    International Nuclear Information System (INIS)

    Charged contrast agents have been used both in vitro and in vivo for estimation of the fixed charge density (FCD) in articular cartilage. In the present study, the effects of molecular size and charge on the diffusion and equilibrium distribution of several magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents were investigated. Full thickness cartilage disks (Oe = 4.0 mm, n = 64) were prepared from fresh bovine patellae. Contrast agent (gadopentetate: Magnevist (registered) , gadodiamide: Omniscan(TM), ioxaglate: Hexabrix(TM) or sodium iodide: NaI) diffusion was allowed either through the articular surface or through the deep cartilage. CT imaging of the samples was conducted before contrast agent administration and after 1, 5, 9, 16, 25 and 29 h (and with three samples after 2, 3, 4 and 5 days) diffusion using a clinical peripheral quantitative computed tomography (pQCT) instrument. With all contrast agents, the diffusion through the deep cartilage was slower when compared to the diffusion through the articular surface. With ioxaglate, gadopentetate and gadodiamide it took over 29 h for diffusion to reach the near-equilibrium state. The slow diffusion of the contrast agents raise concerns regarding the validity of techniques for FCD estimation, as these contrast agents may not reach the equilibrium state that is assumed. However, since cartilage composition, i.e. deep versus superficial, had a significant effect on diffusion, imaging of the nonequilibrium diffusion process might enable more accurate assessment of cartilage integrity.

  9. Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Silvast, Tuomo S; Toeyraes, Juha [Department of Clinical Neurophysiology, Kuopio University Hospital, PO Box 1777, 70211 Kuopio (Finland); Kokkonen, Harri T; Jurvelin, Jukka S [Department of Physics, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland); Quinn, Thomas M [Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 2B2 (Canada); Nieminen, Miika T [Department of Diagnostic Radiology, Oulu University Hospital, PO Box 50, 90029, Oulu (Finland)], E-mail: Tuomo.Silvast@uku.fi

    2009-11-21

    Charged contrast agents have been used both in vitro and in vivo for estimation of the fixed charge density (FCD) in articular cartilage. In the present study, the effects of molecular size and charge on the diffusion and equilibrium distribution of several magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents were investigated. Full thickness cartilage disks (Oe = 4.0 mm, n = 64) were prepared from fresh bovine patellae. Contrast agent (gadopentetate: Magnevist (registered) , gadodiamide: Omniscan(TM), ioxaglate: Hexabrix(TM) or sodium iodide: NaI) diffusion was allowed either through the articular surface or through the deep cartilage. CT imaging of the samples was conducted before contrast agent administration and after 1, 5, 9, 16, 25 and 29 h (and with three samples after 2, 3, 4 and 5 days) diffusion using a clinical peripheral quantitative computed tomography (pQCT) instrument. With all contrast agents, the diffusion through the deep cartilage was slower when compared to the diffusion through the articular surface. With ioxaglate, gadopentetate and gadodiamide it took over 29 h for diffusion to reach the near-equilibrium state. The slow diffusion of the contrast agents raise concerns regarding the validity of techniques for FCD estimation, as these contrast agents may not reach the equilibrium state that is assumed. However, since cartilage composition, i.e. deep versus superficial, had a significant effect on diffusion, imaging of the nonequilibrium diffusion process might enable more accurate assessment of cartilage integrity.

  10. Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular cartilage.

    Science.gov (United States)

    Silvast, Tuomo S; Kokkonen, Harri T; Jurvelin, Jukka S; Quinn, Thomas M; Nieminen, Miika T; Töyräs, Juha

    2009-11-21

    Charged contrast agents have been used both in vitro and in vivo for estimation of the fixed charge density (FCD) in articular cartilage. In the present study, the effects of molecular size and charge on the diffusion and equilibrium distribution of several magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents were investigated. Full thickness cartilage disks (Ø = 4.0 mm, n = 64) were prepared from fresh bovine patellae. Contrast agent (gadopentetate: Magnevist((R)), gadodiamide: Omniscan, ioxaglate: Hexabrix or sodium iodide: NaI) diffusion was allowed either through the articular surface or through the deep cartilage. CT imaging of the samples was conducted before contrast agent administration and after 1, 5, 9, 16, 25 and 29 h (and with three samples after 2, 3, 4 and 5 days) diffusion using a clinical peripheral quantitative computed tomography (pQCT) instrument. With all contrast agents, the diffusion through the deep cartilage was slower when compared to the diffusion through the articular surface. With ioxaglate, gadopentetate and gadodiamide it took over 29 h for diffusion to reach the near-equilibrium state. The slow diffusion of the contrast agents raise concerns regarding the validity of techniques for FCD estimation, as these contrast agents may not reach the equilibrium state that is assumed. However, since cartilage composition, i.e. deep versus superficial, had a significant effect on diffusion, imaging of the nonequilibrium diffusion process might enable more accurate assessment of cartilage integrity. PMID:19864699

  11. A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering.

    Science.gov (United States)

    Spitters, Tim W G M; Leijten, Jeroen C H; Deus, Filipe D; Costa, Ines B F; van Apeldoorn, Aart A; van Blitterswijk, Clemens A; Karperien, Marcel

    2013-10-01

    In cartilage, tissue engineering bioreactors can create a controlled environment to study chondrocyte behavior under mechanical stimulation or produce chondrogenic grafts of clinically relevant size. Here we present a novel bioreactor that combines mechanical stimulation with a two compartment system through which nutrients can be supplied solely by diffusion from opposite sides of a tissue-engineered construct. This design is based on the hypothesis that creating gradients of nutrients, growth factors, and growth factor antagonists can aid in the generation of zonal tissue-engineered cartilage. Computational modeling predicted that the design facilitates the creation of a biologically relevant glucose gradient. This was confirmed by quantitative glucose measurements in cartilage explants. In this system, it is not only possible to create gradients of nutrients, but also of anabolic or catabolic factors. Therefore, the bioreactor design allows control over nutrient supply and mechanical stimulation useful for in vitro generation of cartilage constructs that can be used for the resurfacing of articulated joints or as a model for studying osteoarthritis disease progression.

  12. Prefabrication of 3D cartilage contructs: towards a tissue engineered auricle--a model tested in rabbits.

    Directory of Open Access Journals (Sweden)

    Achim von Bomhard

    Full Text Available The reconstruction of an auricle for congenital deformity or following trauma remains one of the greatest challenges in reconstructive surgery. Tissue-engineered (TE three-dimensional (3D cartilage constructs have proven to be a promising option, but problems remain with regard to cell vitality in large cell constructs. The supply of nutrients and oxygen is limited because cultured cartilage is not vascular integrated due to missing perichondrium. The consequence is necrosis and thus a loss of form stability. The micro-surgical implantation of an arteriovenous loop represents a reliable technology for neovascularization, and thus vascular integration, of three-dimensional (3D cultivated cell constructs. Auricular cartilage biopsies were obtained from 15 rabbits and seeded in 3D scaffolds made from polycaprolactone-based polyurethane in the shape and size of a human auricle. These cartilage cell constructs were implanted subcutaneously into a skin flap (15 × 8 cm and neovascularized by means of vascular loops implanted micro-surgically. They were then totally enhanced as 3D tissue and freely re-implanted in-situ through microsurgery. Neovascularization in the prefabricated flap and cultured cartilage construct was analyzed by microangiography. After explantation, the specimens were examined by histological and immunohistochemical methods. Cultivated 3D cartilage cell constructs with implanted vascular pedicle promoted the formation of engineered cartilaginous tissue within the scaffold in vivo. The auricles contained cartilage-specific extracellular matrix (ECM components, such as GAGs and collagen even in the center oft the constructs. In contrast, in cultivated 3D cartilage cell constructs without vascular pedicle, ECM distribution was only detectable on the surface compared to constructs with vascular pedicle. We demonstrated, that the 3D flaps could be freely transplanted. On a microangiographic level it was evident that all the skin flaps

  13. Role of Insulin-Transferrin-Selenium in Auricular Chondrocyte Proliferation and Engineered Cartilage Formation in Vitro

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2014-01-01

    Full Text Available The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%, or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X and glycosaminoglycan (GAG expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan and hypertrophy (i.e., lower mRNA expression of Col X and MMP13. In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.

  14. Species-Independent Modeling of High-Frequency Ultrasound Backscatter in Hyaline Cartilage.

    Science.gov (United States)

    Männicke, Nils; Schöne, Martin; Liukkonen, Jukka; Fachet, Dominik; Inkinen, Satu; Malo, Markus K; Oelze, Michael L; Töyräs, Juha; Jurvelin, Jukka S; Raum, Kay

    2016-06-01

    Apparent integrated backscatter (AIB) is a common ultrasound parameter used to assess cartilage matrix degeneration. However, the specific contributions of chondrocytes, proteoglycan and collagen to AIB remain unknown. To reveal these relationships, this work examined biopsies and cross sections of human, ovine and bovine cartilage with 40-MHz ultrasound biomicroscopy. Site-matched estimates of collagen concentration, proteoglycan concentration, collagen orientation and cell number density were employed in quasi-least-squares linear regression analyses to model AIB. A positive correlation (R(2) = 0.51, p 70°) to the sound beam direction. These findings indicate causal relationships between AIB and cartilage structural parameters and could aid in more sophisticated future interpretations of ultrasound backscatter. PMID:27038804

  15. Citrus tissue culture employing vegetative explants.

    Science.gov (United States)

    Chaturvedi, H C; Singh, S K; Sharma, A K; Agnihotri, S

    2001-11-01

    Citrus being a number one fruit of the world due to its high nutritional value, huge production of fruits and fruit products, the citrus industry may be considered a major fruit industry. Though citrus orchard area in India is comparable to USA, the produce is far less, while its export is nil. Biotechnology has played an outstanding role in boosting the citrus industry, e.g., in Spain, which is now the biggest exporter of citrus fruit with the application of micrografting. Amongst the fruit trees, perhaps the maximum tissue culture research has been done in citrus during the past four decades, however, the results of practical value are meagre. The shortfalls in citrus tissue culture research and some advancements made in this direction along with bright prospects are highlighted, restricting the review to vegetative explants only. Whilst utilization of nucellar embryogenesis is limited to rootstocks, the other aspects, like, regeneration and proliferation of shoot meristems measuring 200 microm in length--a global breakthrough--of two commercially important scion species, Citrus aurantifolia and C. sinensis and an important rootstock, C. limonia, improvement of micrografting technique, cloning of the same two scion species as well as some Indian rootstock species, employing nodal stem segments of mature trees, of immense practical value have been elaborated. A rare phenomenon of shift in the morphogenetic pattern of differentiation from shoot bud differentiation to embryoid formation occurred during the long-term culture of stem callus of C. grandis. Stem callus-regenerated plants of C. aurantifolia, C. sinensis and C. grandis showed variation in their ploidy levels and a somaclonal variant of C. sinensis, which produced seedless fruits was isolated. Tailoring of rooting in microshoots to a tap root-like system by changing the inorganic salt composition of the rooting medium, resulting in 100% transplant success, and germplasm preservation through normal growth

  16. Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration.

    Science.gov (United States)

    Park, Kyung Min; Lee, Sang Young; Joung, Yoon Ki; Na, Jae Sik; Lee, Myung Chul; Park, Ki Dong

    2009-07-01

    Injectable hydrogels have been studied for potential applications for articular cartilage regeneration. In this study, a thermosensitive chitosan-Pluronic (CP) hydrogel was designed as an injectable cell delivery carrier for cartilage regeneration. The CP conjugate was synthesized by grafting Pluronic onto chitosan using EDC/NHS chemistry. The sol-gel phase transition and mechanical properties of the CP hydrogel were examined by rheological experiments. The CP solution underwent a sol-gel transition around 25 degrees C at which the storage modulus (G') approaches 10(4)Pa, highlighting the potential of this material as an injectable scaffold for cartilage regeneration. The CP hydrogel was formed rapidly by increasing the temperature. The morphology of the dried CP hydrogel was observed by scanning electron microscopy. In vitro cell culture was performed using bovine chondrocytes. The proliferation of bovine chondrocytes and the amount of synthesized glycosaminoglycan increased for 28 days. These results suggested that the CP hydrogel has potential as an injectable cell delivery carrier for cartilage regeneration and could serve as a new biomaterial for tissue engineering. PMID:19261553

  17. Preserved irradiated homologous cartilage for orbital reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Linberg, J.V.; Anderson, R.L.; Edwards, J.J.; Panje, W.R.; Bardach, J.

    1980-07-01

    Human costal cartilage is an excellent implant material for orbital and periorbital reconstruction because of its light weight, strength, homogeneous consistency and the ease with which it can be carved. Its use has been limited by the necessity of a separate surgical procedure to obtain the material. Preserved irradiated homologous cartilage has been shown to have almost all the autogenous cartilage and is convenient to use. Preserved irradiated homologous cartilage transplants do not elicit rejection reactions, resist infection and rarely undergo absorption.

  18. Transcriptomic profiling of cartilage ageing

    Directory of Open Access Journals (Sweden)

    Mandy Jayne Peffers

    2014-12-01

    Full Text Available The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386.

  19. Transcriptomic profiling of cartilage ageing.

    Science.gov (United States)

    Peffers, Mandy Jayne; Liu, Xuan; Clegg, Peter David

    2014-12-01

    The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386). PMID:26484061

  20. PHOTOCROSSLINKABLE HYDROGELS FOR CARTILAGE TISSUE ENGINEERING

    NARCIS (Netherlands)

    Levett, Peter Andrew

    2015-01-01

    For millions of people, damaged cartilage is a major source of pain and disability. As those people often discover upon seeking medical treatment, once damaged, cartilage is very difficult to repair. Finding better clinical therapies for damaged cartilage has generated a huge amount of research inte

  1. Biomaterial and Cell Based Cartilage Repair

    NARCIS (Netherlands)

    Zhao, X

    2015-01-01

    Injuries to human native cartilage tissue are particularly troublesome because cartilage has little ability to heal or regenerate itself. The reconstruction, repair, and regeneration of cartilage tissue continue to be one of the greatest clinical challenges, especially in orthopaedic and plastic sur

  2. Isolation, identification, and comparison of cartilage stem progenitor/cells from auricular cartilage and perichondrium

    OpenAIRE

    Xue, Ke; Zhang, Xiaodie; Qi, Lin; Zhou, Jia; Liu, Kai

    2016-01-01

    Auricular cartilage loss or defect remains a challenge to plastic surgeons, and cartilage regenerative medicine provides a novel method to solve the problem. However, ideal seeding cells seem to be the key point in the development of cartilage regeneration. Although bone marrow-mesenchymal stem cells were considered as the ideal seeding cells in cartilage regeneration, regenerative cartilage differentiated from bone marrow-mesenchymal stem cells still faces some problems. It is reported that ...

  3. Explant exenisation for tissue culture in marine macroalgae

    Science.gov (United States)

    Liu, Xuewu; Kloareg, Bernard

    1992-09-01

    Unialgal explants from Laminaria digitata, and from a variety of red algae, were obtained by hand removing the visible epiphytes, and stirring the tissue in the presence of glass beads. Two antibiotic mixtures were found to be efficient in removing the contaminating fungi and bacteria from the algae. The procedure proved suitable as a primary step in the tissue culture of the investigated species.

  4. Effects of refrigeration and freezing on the electromechanical and biomechanical properties of articular cartilage.

    Science.gov (United States)

    Changoor, Adele; Fereydoonzad, Liah; Yaroshinsky, Alex; Buschmann, Michael D

    2010-06-01

    In vitro electromechanical and biomechanical testing of articular cartilage provide critical information about the structure and function of this tissue. Difficulties obtaining fresh tissue and lengthy experimental testing procedures often necessitate a storage protocol, which may adversely affect the functional properties of cartilage. The effects of storage at either 4°C for periods of 6 days and 12 days, or during a single freeze-thaw cycle at -20°C were examined in young bovine cartilage. Non-destructive electromechanical measurements and unconfined compression testing on 3 mm diameter disks were used to assess cartilage properties, including the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Cartilage disks were also examined histologically. Compared with controls, significant decreases in SPI (to 32.3±5.5% of control values, prefrigeration at 4°C, but no significant changes were detected at day 6. A trend toward detecting a decrease in SPI (to 94.2±6.2% of control values, p=0.083) was identified following a single freeze-thaw cycle, but no detectable changes were observed for any biomechanical parameters. All numbers are mean±95% confidence interval. These results indicate that fresh cartilage can be stored in a humid chamber at 4°C for a maximum of 6 days with no detrimental effects to cartilage electromechanical and biomechanical properties, while one freeze-thaw cycle produces minimal deterioration of biomechanical and electromechanical properties. A comparison to literature suggested that particular attention should be paid to the manner in which specimens are thawed after freezing, specifically by minimizing thawing time at higher temperatures. PMID:20887036

  5. [Cartilage tumors : Pathology and radiomorphology].

    Science.gov (United States)

    Uhl, M; Herget, G; Kurz, P

    2016-06-01

    Primary cartilage-forming tumors of the bone are frequent entities in the daily work of skeletal radiologists. This article describes the correlation of pathology and radiology in cartilage-forming skeletal tumors, in particular, enchondroma, osteochondroma, periosteal chondromas, chondroblastoma and various forms of chondrosarcoma. After reading, the radiologist should be able to deduce the different patterns of cartilage tumors on radiographs, CT, and MRI from the pathological aspects. Differentiation of enchondroma and chondrosarcoma is a frequent diagnostic challenge. Some imaging parameters, e. g., deep cortical scalloping (more than two thirds of the cortical thickness), cortical destruction, or a soft-tissue mass, are features of a sarcoma. Osteochondromas are bony protrusions with a continuous extension of bone marrow from the parent bone, the host cortical bone runs continuously from the osseous surface of the tumor into the shaft of the osteochondroma and the osteochondroma has a cartilage cap. Chondromyxoid fibromas are well-defined lytic and eccentric lesions of the metaphysis of the long bones, with nonspecific MRI findings. Chondroblastomas have a strong predilection for the epiphysis of long tubular bones and develop an intense perifocal bone marrow edema. Dedifferentiated chondrosarcomas are bimorphic lesions with a low-grade chondrogenic component and a high-grade noncartilaginous component. Most chondrogenic tumors have a predilection with regard to site and age at manifestation. PMID:27233920

  6. Cartilage Wound Healing and Integration

    NARCIS (Netherlands)

    P.K. Bos (Koen)

    2006-01-01

    textabstractThe intrinsic regeneration capacity of articular cartilage following injury is limited. Partialthickness defects are not repaired and full-thickness defects are repaired with fi brocartilage. Untreated, these defects may progress to early osteoarthritis. The goal of surgical treatment

  7. Postnatal development of articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.

    2010-01-01

    Articular cartilage (AC) is the thin layer of tissue that covers the ends of the bones in the synovial joints in mammals. Functional adult AC has depth-dependent mechanical properties that are not yet present at birth. These depth-dependent mechanical properties in adult life are the result of a dep

  8. Thidiazuron-induced high-frequency plant regeneration from leaf explants of Paulownia tomentosa mature trees

    OpenAIRE

    CORREDOIRA, E.; Ballester, A.; Viéitez Martín, Ana María

    2008-01-01

    Attempts were made to study the effect of thidiazuron (TDZ) on adventitious shoot induction and plant development in Paulownia tomentosa explants derived from mature trees. Media with different concentrations of TDZ in combination with an auxin were used to induce adventitious shoot-buds in two explant types: basal leaf halves with the petiole attached (leaf explant) and intact petioles. Optimal shoot regeneration was obtained in leaf explants cultured on induction medium containing TDZ (22.7...

  9. Morphologic differences observed by scanning electron microscopy according to the reason for pseudophakic IOL explantation

    DEFF Research Database (Denmark)

    Fernandez-Buenaga, Roberto; Alio, Jorge L.; Ramirez, Jose M.;

    2015-01-01

    Purpose To compare variations in surface morphology, as studied by scanning electron microscopy (SEM), of explanted intraocular lenses (IOLs) concerning the cause leading to the explantation surgery. Methods In this prospective multicenter study, explanted IOLs were analyzed by SEM and energy-dis...

  10. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  11. Absorção de macronutrientes por explantes de bananeira in vitro Macronutrient absorption by banana explants in vitro

    Directory of Open Access Journals (Sweden)

    Josefa Diva Nogueira Diniz

    1999-07-01

    Full Text Available Com o objetivo de estudar a absorção de macronutrientes (N, P, K, Ca, Mg e S em explantes de bananeira cv. Prata Anã, foram utilizados explantes de plantas estabelecidas in vitro, inoculados em meio básico de Murashige & Skoog (1962 contendo sacarose (30 g/L, e BAP (3,5 mg/L com sete tratamentos, representados pelos períodos de 0, 10, 20, 30, 40, 50 e 60 dias de cultivo e três repetições. As quantidades de macronutrientes totais absorvidas pelos explantes seguiram a ordem: K > N > Ca > ou = P > Mg @ S. O P foi o nutriente absorvido mais rapidamente pelos explantes, com 75% extraído do meio de cultivo nos primeiros 30 dias, cessando sua absorção aos 50 dias, restando ainda 9% no meio de cultivo. A absorção do S cessou também aos 50 dias, quando 66% deste nutriente ainda permanecia no meio de cultivo. Este resultado sugere haver uma relação, quanto à absorção, entre esses dois nutrientes. As maiores taxas de absorção de todos os nutrientes foram verificadas nos primeiros 20 dias. O rizoma, o pseudocaule e as folhas, se diferenciaram quanto à concentração e extração ou acúmulo de nutrientes.The absorption of the nutrients (N, P, K, Ca, Mg and S by banana (Musa sp. cv. Prata Anã explants on the basic medium of Murashige & Skoog (1962 supplemented with sucrose (30 g/L and BAP (3.5 mg/L were evaluated at 0, 10, 20, 30, 40, 50 and 60 days after inoculation. The seven treatments were arranged on a completely randomized design with three replicates. The sequence of nutrient absorption by the explants was K > N > Ca > or = P > Mg @ S. The P was the nutrient with the fastest absorption rate and at the 30th day the explants had already absorbed 75% of the P from the medium. The P absorption stopped by the 50th day. The S absorption stopped at the 50th day with 66% of it remaining in the medium. The results suggested a close relationship between these two nutrients. The highest rates of nutrient absorption were observed during the

  12. Antiviral effects of bovine interferons on bovine respiratory tract viruses.

    OpenAIRE

    Fulton, R W; Downing, M M; Cummins, J M

    1984-01-01

    The antiviral effects of bovine interferons on the replication of bovine respiratory tract viruses were studied. Bovine turbinate monolayer cultures were treated with bovine interferons and challenged with several bovine herpesvirus 1 strains, bovine viral diarrhea virus, parainfluenza type 3 virus, goat respiratory syncytial virus, bovine respiratory syncytial virus, bovine adenovirus type 7, or vesicular stomatitis virus. Treatment with bovine interferons reduced viral yield for each of the...

  13. Development of artificial articular cartilage.

    Science.gov (United States)

    Oka, M; Ushio, K; Kumar, P; Ikeuchi, K; Hyon, S H; Nakamura, T; Fujita, H

    2000-01-01

    Attempts have been made to develop an artificial articular cartilage on the basis of a new viewpoint of joint biomechanics in which the lubrication and load-bearing mechanisms of natural and artificial joints are compared. Polyvinyl alcohol hydrogel (PVA-H), 'a rubber-like gel', was investigated as an artificial articular cartilage and the mechanical properties of this gel were improved through a new synthetic process. In this article the biocompatibility and various mechanical properties of the new improved PVA-H is reported from the perspective of its usefulness as an artificial articular cartilage. As regards lubrication, the changes in thickness and fluid pressure of the gap formed between a glass plate and the specimen under loading were measured and it was found that PVA-H had a thicker fluid film under higher pressures than polyethylene (PE) did. The momentary stress transmitted through the specimen revealed that PVA-H had a lower peak stress and a longer duration of sustained stress than PE, suggesting a better damping effect. The wear factor of PVA-H was approximately five times that of PE. Histological studies of the articular cartilage and synovial membranes around PVA-H implanted for 8-52 weeks showed neither inflammation nor degenerative changes. The artificial articular cartilage made from PVA-H could be attached to the underlying bone using a composite osteochondral device made from titanium fibre mesh. In the second phase of this work, the damage to the tibial articular surface after replacement of the femoral surface in dogs was studied. Pairs of implants made of alumina, titanium or PVA-H on titanium fibre mesh were inserted into the femoral condyles. The two hard materials caused marked pathological changes in the articular cartilage and menisci, but the hydrogel composite replacement caused minimal damage. The composite osteochondral device became rapidly attached to host bone by ingrowth into the supporting mesh. The clinical implications of

  14. Mechanobiology and Cartilage Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    Céline; HUSELSTEIN; Natalia; de; ISLA; Sylvaine; MULLER; Jean-Franois; STOLTZ

    2005-01-01

    1 IntroductionThe cartilage is a hydrated connective tissue in joints that withstands and distributes mechanical forces. Chondrocytes utilize mechanical signals to maintain tissue homeostasis. They regulate their metabolic activity through complex biological and biophysical interactions with the extracellular matrix (ECM). Although some of the mechanisms of mechanotransduction are known today, there are certainly many others left unrevealed. Different topics of chondrocytes mechanobiology have led to the de...

  15. Preclinical Studies for Cartilage Repair

    OpenAIRE

    Hurtig, Mark B.; Buschmann, Michael D; Fortier, Lisa A; Hoemann, Caroline D; Hunziker, Ernst B.; Jurvelin, Jukka S.; Mainil-Varlet, Pierre; McIlwraith, C. Wayne; Sah, Robert L.; Whiteside, Robert A.

    2011-01-01

    Investigational devices for articular cartilage repair or replacement are considered to be significant risk devices by regulatory bodies. Therefore animal models are needed to provide proof of efficacy and safety prior to clinical testing. The financial commitment and regulatory steps needed to bring a new technology to clinical use can be major obstacles, so the implementation of highly predictive animal models is a pressing issue. Until recently, a reductionist approach using acute chondral...

  16. Laboratory analyses of two explanted hydrophobic acrylic intraocular lenses

    Directory of Open Access Journals (Sweden)

    Yunhai Dai

    2014-01-01

    Full Text Available Two three-piece hydrophobic acrylic intraocular lenses (IOLs were explanted from two patients at 7 and 9 years, respectively, after implantation, because of poor fundus visualisation and/or a clinically significant decrease in visual acuity related to their opacified IOLs. In addition to light microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, confocal laser scanning microscopy was used for the first time to observe the explanted IOLs. The clinical aspect seemed to correspond to the phenomenon of surface light scattering, while laboratory analyses showed dense glistenings in the central layer of the IOL optic, which had no change next to the surface. Further studies on these phenomena are needed.

  17. Diverse response of tomato fruit explants to high temperature

    Directory of Open Access Journals (Sweden)

    Zofia Starck

    2014-02-01

    Full Text Available Tomato explants (fruit with a pedicel and a piece of peduncle, with fruit growth stimulated by treating the flowers with NOA + GA3 (NG-series were used as a model system for studying the effect of high temperature on C-sucrose uptake, its distribution and Ca retranslocation. Two cultivars with contrasting responses to high temperature were compared. In sensitive cv. Roma heat stress during 22h (40oC for 10h and 30oC for 12h, drastically depressed the uptake of 14C-sucrose coinciding with diminished fruit 14C-supply. It also decreased the specific activity of soluble acid invertase and the calcium content. All these strong negative responses to high temperature were markedly reduced in the NG-treated series involving remobilization of Ca to the fruits and a higher stability of the invertase activity. This indicates the indirect role of flower treatment with NG in addaptation to heat stress. In tolerant cv. Robin even higher temperatures (42oC for 10h and 34oC for 12h were not stressful. They did not affect the 14C-sucrose uptake and stimulated 14C-supply to the fruit. Increased specific activity of acid invertase and a higher calcium content were also recorded but only in the control explants. In contrast to cv. Roma elevated temperature was slightly stressful for cv. Robin explants of NG-series. The differences in response of both cultivar explants to elevated temperature, based on unequal fruit supply with 14C-sucrose, seem to be causaly connected with two factors: the invertase activity being more or less sensitive to the heat stress, the ability to translocate Ca to the heated fruits.

  18. Shoot Regeneration from Leaf Explants of Withania somnifera (L. Dunal

    Directory of Open Access Journals (Sweden)

    Aruna Girish JOSHI

    2010-03-01

    Full Text Available Regeneration from leaf explants of Withania somnifera (L. for mass propagation was studied on Murashige and Skoog�s medium supplemented with Kinetin (Kn and 6-benzylaminopurine (BAP alone or in combination. Shoot buds were induced from the midrib on the abaxial side in presence of Kn and BAP (4 �M. These shoot buds developed into shoots on the same medium. Rooting of these shoots was achieved in 0.5 �M of IBA.

  19. Multi-parametric MRI characterization of enzymatically degraded articular cartilage.

    Science.gov (United States)

    Nissi, Mikko J; Salo, Elli-Noora; Tiitu, Virpi; Liimatainen, Timo; Michaeli, Shalom; Mangia, Silvia; Ellermann, Jutta; Nieminen, Miika T

    2016-07-01

    Several laboratory and rotating frame quantitative MRI parameters were evaluated and compared for detection of changes in articular cartilage following selective enzymatic digestion. Bovine osteochondral specimens were subjected to 44 h incubation in control medium or in collagenase or chondroitinase ABC to induce superficial collagen or proteoglycan (glycosaminoglycan) alterations. The samples were scanned at 9.4 T for T1 , T1 Gd (dGEMRIC), T2 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , TRAFF2 , and T1 sat relaxation times and for magnetization transfer ratio (MTR). For reference, glycosaminoglycan content, collagen fibril orientation and biomechanical properties were determined. Changes primarily in the superficial cartilage were noted after enzymatic degradation. Most of the studied parameters were sensitive to the destruction of collagen network, whereas glycosaminoglycan depletion was detected only by native T1 and T1 Gd relaxation time constants throughout the tissue and by MTR superficially. T1 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat correlated significantly with the biomechanical properties while T1 Gd correlated with glycosaminoglycan staining. The findings indicated that most of the studied MRI parameters were sensitive to both glycosaminoglycan content and collagen network integrity, with changes due to enzymatic treatment detected primarily in the superficial tissue. Strong correlation of T1 , adiabatic T1ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat with the altered biomechanical properties, reflects that these parameters were sensitive to critical functional properties of cartilage. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1111-1120, 2016. PMID:26662555

  20. Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes.

    Directory of Open Access Journals (Sweden)

    Adel Tekari

    Full Text Available Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease

  1. Foldable Lens Explantation and Exchange:The Reason and Solution

    Institute of Scientific and Technical Information of China (English)

    Danying Zheng; Zhenpin Zhang; Wenhui Yang; Weirong Chen

    2001-01-01

    Objective: To report the explantation and exchange of Hydrophilic Acrylic foldable intraocular lens (IOL) on 14 patients who had visual disturbances caused by the change of transparence on optic. Methods: Sixteen Hydrophilic Acrylic foldable intraocular lenses from 14 patients who presented with decreased visual acuity from 6 months to 1 year after normal phacoemulsification and IOL implantation associated with extensive transparent change on optic of the lens. The lenses were explanted with the bisection technique. All the eyes were reinserted with Acrysof foldable lenses. Results: Sixteen lenses were removed successfully and exchanged with the new lens in the capsule. The posterior capsular rupture and vitreous loss were found in the first two cases. One of them had the zonulysis due to the radial tear of the anterior capsule during the enlargement of the capsular opening. The anterior vitrectomy was performed with IOL fixed on the ciliary sulcus. The visual acuity of all the patients improved obviously without posterior complication. Conclusion: Foldable lens explantation with the bisection technique and exchange had a successful outcome with improvement of ocular condition. Eye science 2001; 17:54 ~56.

  2. Molecular weight characterization of virgin and explanted polyester arterial prostheses.

    Science.gov (United States)

    Maarek, J M; Guidoin, R; Aubin, M; Prud'homme, R E

    1984-10-01

    The macromolecular properties of 17 virgin commercial arterial prostheses and a series of explanted prostheses, both manufactured from poly(ethylene terephthalate) (PET) yarns, have been studied by gel permeation chromatography (GPC) and by differential scanning calorimetry (DSC). Only small differences were found between the average molecular weights and the degree of crystallinity of the unused reference grafts. A broadening of the DSC curves was observed for the prostheses containing texturized yarns compared with those made solely from flat, untexturized yarns. This broadening may be due to greater heterogeneity of the crystal sizes caused by the texturizing process and to the use of two or more different yarns with dissimilar thermal histories in the same prosthesis. Average molecular weights of the explant series were significantly lower than those of the corresponding reference grafts but almost time independent. The polydispersity index and the degree of crystallinity of the explants remained constant as a function of time. These results are discussed in regard to others available in the literature. PMID:6242474

  3. Multimodal evaluation of tissue-engineered cartilage

    OpenAIRE

    Mansour, Joseph M.; Welter, Jean F.

    2013-01-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment...

  4. The Relationship between MR Parameters and Biomechanical Quantities of Loaded Human Articular Cartilage in Osteoarthritis: An In-Vitro Study

    Science.gov (United States)

    Juráš, V.; Szomolányi, P.; Gäbler, S.; Frollo, I.; Trattnig, S.

    2009-01-01

    The aim of this study was to assess the changes in MRI parameters during applied load directly in MR scanner and correlate these changes with biomechanical parameters of human articular cartilage. Cartilage explants from patients who underwent total knee replacement were examined in the micro-imaging system in 3T scanner. Respective MRI parameters (T1 without- and T1 with contrast agent as a marker of proteoglycan content, T2 as a marker of collagen network anisotropy and ADC as a measure of diffusivity) were calculated in pre- and during compression state. Subsequently, these parameters were compared to the biomechanical properties of articular cartilage, instantaneous modulus (I), equilibrium modulus (Eq) and time of tissue relaxation (τ). Significant load-induced changes of T2 and ADC were recorded. High correlation between T1Gd and I (r = 0.6324), and between ADC and Eq (r = -0.4884) was found. Multi-parametric MRI may have great potential in analyzing static and dynamic biomechanical behavior of articular cartilage in early stages of osteoarthritis (OA).

  5. Predicting knee cartilage loss using adaptive partitioning of cartilage thickness maps

    DEFF Research Database (Denmark)

    Jørgensen, Dan R.; Dam, Erik B.; Lillholm, Martin

    2013-01-01

    This study investigates whether measures of knee cartilage thickness can predict future loss of knee cartilage. A slow and a rapid progressor group was determined using longitudinal data, and anatomically aligned cartilage thickness maps were extracted from MRI at baseline. A novel machine learni...

  6. Advances in treatment of articular cartilage injuries

    Directory of Open Access Journals (Sweden)

    Yuan-cheng LI

    2013-05-01

    Full Text Available Cartilage is a kind of terminally differentiated tissue devoid of vessel or nerve, and it is difficult to repair by itself after damage. Many studies for the treatment of cartilage injuries were performed in recent years aiming at repair of the structure and restoration of its function for injured joint. This article reviews the traditional methods of treatment for cartilage injuries, such as joint lavage with the aid of arthroscope, abrasion chondroplasty, laser abrasion and chondroplasty, and drilling of the subchondral bone-marrow space. The research advances in treatment of articular cartilage injuries with tissue engineering were summarized.

  7. Multimodal evaluation of tissue-engineered cartilage.

    Science.gov (United States)

    Mansour, Joseph M; Welter, Jean F

    2013-02-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment of these properties should be part of the implantation release criteria for TE cartilage. Release criteria should certify that selected tissue properties have reached certain target ranges, and should be predictive of the likelihood of success of an implant in vivo. Unfortunately, it is not currently known which properties are needed to establish release criteria, nor how close one has to be to the properties of native cartilage to achieve success. Achieving properties approaching those of native cartilage requires a clear understanding of the target properties and reproducible assessment methodology. Here, we review several main aspects of quality control as it applies to TE cartilage. This includes a look at known mechanical and biological properties of native cartilage, which should be the target in engineered tissues. We also present an overview of the state of the art of tissue assessment, focusing on native articular and TE cartilage. Finally, we review the arguments for developing and validating non-destructive testing methods for assessing TE products. PMID:23606823

  8. Preserved irradiated homolgous cartilage for orbital reconstruction.

    Science.gov (United States)

    Linberg, J V; Anderson, R L; Edwards, J J; Panje, W R; Bardach, J

    1980-07-01

    Human costal cartilage is an excellent implant material for orbital and periorbital reconstruction because of its light weight, strength, homogeneous consistency and the ease with which it can be carved. Its use has been limited by the necessity of a separate surgical procedure to obtain the material. Preserved irradiated homologous cartilage has been shown to have almost all the autogenous cartilage and is concenient to use. Preserved irradiated homologous cartilage transplants do not elicit rejection reactions, resist infection and rarely undergo absorption. PMID:7393528

  9. A comparison study of different physical treatments on cartilage matrix derived porous scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Native cartilage matrix derived (CMD) scaffolds from various animal and human sources have drawn attention in cartilage tissue engineering due to the demonstrable presence of bioactive components. Different chemical and physical treatments have been employed to enhance the micro-architecture of CMD scaffolds. In this study we have assessed the typical effects of physical cross-linking methods, namely ultraviolet (UV) light, dehydrothermal (DHT) treatment, and combinations of them on bovine articular CMD porous scaffolds with three different matrix concentrations (5%, 15% and 30%) to assess the relative strengths of each treatment. Our findings suggest that UV and UV–DHT treatments on 15% CMD scaffolds can yield architecturally optimal scaffolds for cartilage tissue engineering. (paper)

  10. Development of cartilage conduction hearing aid

    Directory of Open Access Journals (Sweden)

    H. Hosoi

    2010-04-01

    Full Text Available Purpose: The potential demand for hearing aids is increasing in accordance with aging of populations in many developed countries. Because certain patients cannot use air conduction hearing aids, they usually use bone conduction hearing aids. However, bone does not transmit sound as efficiently as air, and bone conduction hearing aids require surgery (bone anchored hearing aid or great pressure to the skull. The first purpose of this study is to examine the efficacy of a new sound conduction pathway via the cartilage. The second purpose is to develop a hearing aid with a cartilage conduction transducer for patients who cannot use regular air conduction hearing aids.Design/methodology/approach: We examined the hearing ability of a patient with atresia of both external auditory meatuses via three kinds of conduction pathways (air, bone, and cartilage. After the best position for the cartilage conduction transducer was found, audiometric evaluation was performed for his left ear with an insertion earphone (air conduction, a bone conduction transducer, and a cartilage conduction transducer. Then we made a new hearing aid using cartilage conduction and got subjective data from the patients.Findings: The tragal cartilage was the best position for the cartilage conduction transducer. The patient’s mean hearing levels were 58.3 dBHL, 6.7 dBHL, and 3.3 dBHL for air conduction, bone conduction, and cartilage conduction respectively. The hearing ability of the patients obtained from the cartilage conduction hearing aid was comparable to those from the bone conduction hearing aid.Practical implications: Hearing levels using cartilage conduction are very similar to those via bone conduction. Cartilage conduction hearing aids may overcome the practical disadvantages of bone conduction hearing aids such as pain and the need for surgery.Originality/value: We have clarified the efficacy of the cartilage conduction pathway and developed a prototype ‘cartilage

  11. A bioreaction-diffusion model for growth of marine sponge explants in bioreactors.

    Science.gov (United States)

    Garcia Camacho, F; Chileh, T; Cerón García, M C; Sánchez Mirón, A; Belarbi, E H; Chisti, Y; Molina Grima, E

    2006-12-01

    Marine sponges are sources of high-value bioactives. Engineering aspects of in vitro culture of sponges from cuttings (explants) are poorly understood. This work develops a diffusion-controlled growth model for sponge explants. The model assumes that the explant growth is controlled by diffusive transport of at least some nutrients from the surrounding medium into the explant that generally has a poorly developed aquiferous system for internal irrigation during early stages of growth. Growth is assumed to obey Monod-type kinetics. The model is shown to satisfactorily explain the measured growth behavior of the marine sponge Crambe crambe in two different growth media. In addition, the model is generally consistent with published data for growth of explants of the sponges Disidea avara and Hemimycale columella. The model predicted that nutrient concentration profiles for nutrients, such as dissolved oxygen within the explant, are consistent with data published by independent researchers. In view of the proposed model's ability to explain available data for growth of several species of sponge explants, diffusive transport does play a controlling role in explant growth at least until a fully developed aquiferous system has become established. According to the model and experimental observations, the instantaneous growth rate depends on the size of the explant and all those factors that influence the diffusion of critical nutrients within the explant. Growth follows a hyperbolic profile that is consistent with the Monod kinetics.

  12. Multilayered Short Peptide-Alginate Blends as New Materials for Potential Applications in Cartilage Tissue Regeneration.

    Science.gov (United States)

    Knoll, Grant A; Romanelli, Steven M; Brown, Alexandra M; Sortino, Rachel M; Banerjee, Ipsita A

    2016-03-01

    Peptide based nanomaterials have been gaining increased prominence due to their ability to form permeable scaffolds that promote growth and regeneration of new tissue. In this work for the first time a short hexapeptide motif VQIVYK, derived from the Tau protein family was conjugated with an organic polyamine linker, putrescine and utilized as a template for developing new materials for cartilage tissue regeneration. Our results showed that the conjugate formed extensive nanofibrous assemblies upon self-assembly under aqueous conditions. We then employed the layer-by-layer (LBL) approach to design the scaffold by first incorporating a short segment of the dentin sialophosphoprotein motif GDASYNSDESK followed by integration with the peptide sequence GSGAGAGSGAGAGSGAGA. This sequence mimics Ala, Gly, Ser repeats seen in the spider silk protein. We then incorporated the polysaccharide alginate which served as a hydrogel. To further enhance binding interactions with chondrocytes, and promote the formation of cartilage in vitro, the bionanocomposites were then attached to the chondrocyte binding peptide sequence HDSQLEALIKFM. The thermal properties as well as biodegradability of the scaffold was examined. To confirm biocompatibility, we examined cell viability, attachment and morphology in the presence of bovine chondrocytes. The cells were found to efficiently adhere to the scaffolds which formed an intricate mesh mimicking the extracellular matrix of cartilage tissue. To evaluate if differentiation occurred in the presence of the scaffolds, we examined in vitro deposition of proteoglycans. Thus, we have developed a new family of nanoscale scaffolds that may be utilized for cartilage tissue regeneration.

  13. Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration

    Directory of Open Access Journals (Sweden)

    P Kiviranta

    2007-04-01

    Full Text Available In order efficiently to target therapies intending to stop or reverse degenerative processes of articular cartilage, it would be crucial to diagnose osteoarthritis (OA earlier and more sensitively than is possible with the existing clinical methods. Unfortunately, current clinical methods for OA diagnostics are insensitive for detecting the early degenerative changes, e.g., arising from collagen network damage or proteoglycan depletion. We have recently investigated several novel quantitative biophysical methods, including ultrasound indentation, quantitative ultrasound techniques and magnetic resonance imaging, for diagnosing the degenerative changes of articular cartilage, typical for OA. In this study, the combined results of these novel diagnostic methods were compared with histological (Mankin score, MS, compositional (proteoglycan, collagen and water content and mechanical (dynamic and equilibrium moduli reference measurements of the same bovine cartilage samples. Receiver operating characteristics (ROC analysis was conducted to judge the diagnostic performance of each technique. Indentation and ultrasound techniques provided the most sensitive measures to differentiate samples of intact appearance (MS=0 from early (13 degeneration. Furthermore, these techniques were good predictors of tissue composition and mechanical properties. The specificity and sensitivity analyses revealed that the mechano-acoustic methods, when further developed for in vivo use, may provide more sensitive probes for OA diagnostics than the prevailing qualitative X-ray and arthroscopic techniques. Noninvasive quantitative MRI measurements showed slightly lower diagnostic performance than mechano-acoustic techniques. The compared methods could possibly also be used for the quantitative monitoring of success of cartilage repair.

  14. PATTERN OF PLANT REGENERATION FROM SHOOT TIP EXPLANTS OF PIGEONPEA (CAJANUS CAJAN L MILLLSP) VAR LRG-41

    OpenAIRE

    T. Raghavendra; P. Sudhakar

    2014-01-01

    An efficient direct shoot bud differentiation and multiple shoot induction from shoot tip explants of pigeon pea (Cajanus cajan L.) has been achieved. The frequency of shoot bud regeneration was influenced by the type of explants, genotype and concentrations of cytokinin. Explants viz. shoot tip isolated from 10 day old seedlings showed better explants response Explants were cultured on Murashige and skoog (MS) medium augmented with different concentrations of BAP and NAA. Among the various c...

  15. Handheld-Level Electromechanical Cartilage Reshaping Device.

    Science.gov (United States)

    Kim, Sehwan; Manuel, Cyrus T; Wong, Brian J F; Chung, Phil-Sang; Mo, Ji-Hun

    2015-06-01

    We have developed a handheld-level multichannel electromechanical reshaping (EMR) cartilage device and evaluated the feasibility of providing a means of cartilage reshaping in a clinical outpatient setting. The effect of EMR on pig costal cartilage was evaluated in terms of shape change, tissue heat generation, and cell viability. The pig costal cartilage specimens (23 mm × 6.0 mm × 0.7 mm) were mechanically deformed to 90 degrees and fixed to a plastic jig and applied 5, 6, 7, and 8 V up to 8 minutes to find the optimal dosimetry for the our developed EMR device. The results reveal that bend angle increased with increasing voltage and application time. The maximum bend angle obtained was 70.5 ± 7.3 at 8 V, 5 minutes. The temperature of flat pig costal cartilage specimens were measured, while a constant electric voltage was applied to three pairs of electrodes that were inserted into the cartilages. The nonthermal feature of EMR was validated by a thermal infrared camera; that is, the maximum temperate of the flat cartilages is 20.3°C at 8 V. Cell viability assay showed no significant difference in cell damaged area from 3 to 7 minutes exposure with 7 V. In conclusion, the multichannel EMR device that was developed showed a good feasibility of cartilage shaping with minimal temperature change. PMID:26126226

  16. The influence of season collection of explants on micropropagation of peach rootstock GF-677

    Directory of Open Access Journals (Sweden)

    Elektra Spahiu

    2013-02-01

    Full Text Available The influence of season on the rate of multiplication on in vitro culture of peach rootstock GF- 677 was investigated on Murashige and Skoog (MS media, supplemented with GA3 0.1 mg/L and IAA 0.1mg/l. Benzyladenine (BAP at concentrations 1mg/l was used in the multiplication stage and 1mg/l IBA in the stage of rooting. Shoot-tip and nodal segment explants were collected from 5 years old rootstock GF-677 (Prunus persica x Prunus amygdalus in February 24th (from dormant shoots that have been sprouted in climatic room, March 22th, April 20th, May 18th and September 15th during the 2009 growing season and have been sterilized by sodium hypochlorite (NaOCl 10% for 20 min. The data on the effect of the season collection of the explants on number of shoots per explants, the mean shoot length and the percentage of rooted shoots were recorded six weeks after culture. In vitro performance of explants indicated a positive correlation between shoot proliferation and season collection The highest number of shoots per explants (3,5 was obtained on explants collected in March 22th (3,5, which was on a par with explants collected in February 24th (from shoots that have been sprouted in climatic room. Moreover, the highest shoot length was observed on explants collected on February and March (1,53cm and 1,505cm respectively. The percentage of rooted shoots from explants sampled on February was not markedly greater than those sampled on March. The number of shoots per explants, the shoot length and the percentage of rooted shoots on explants sampled in April, May and September were significantly lower than those sampled in February and March. The amount of chlorophyll a + b of the shoots coming from explants collected in March was markedly greater than those collected in February, April, May and September.

  17. Histology of Somatic Embryogenesis in Cultured Leaf Explants of Pistachio (Pistacia veraL)

    OpenAIRE

    ONAY, Ahmet

    2000-01-01

    The histology of somatic embryo initiation and development in pistachio ( Pistacia were L.) embryogenic masses (EMS) derived from leaf explants was examined using light microscopy. Explants with somatic embryos at different developmental stages were fixed for histological examination, cut into 10 µm thick sections, stained with hematoxylin-eosin and observed microscopically. The histological examination showed that the two types of cell clusters induced originated from explants and were mo...

  18. Chlorophyll Fluorescence as a Tool to Assess the Regeneration Potential of African Violet Leaf Explants

    Directory of Open Access Journals (Sweden)

    Norbert KEUTGEN

    2016-06-01

    Full Text Available Micropropagation of many ornamentals has enabled their efficient commercialisation and many problems have been solved by the elaboration of adequate culture protocols. Nevertheless, a non-destructive technique for monitoring the developmental progress of explants would be desirable. The present study focussed on the applicability of chlorophyll fluorescence in leaf explants of African violet (a Saintpaulia ionantha × confusa – hybrid explanted onto Murashige and Skoog basic medium. The explants that survived on the medium without additional phytohormones had the capacity to develop further into two different kinds of explants: light green explants, characterized by a non-regular size growth and stiffer appearance, and dark green explants capable of organogenesis. Compared to the source leaves of African violet plants, explants were characterized by reduced chlorophyll (Chl and carotenoid (Car contents as well as a tendency towards a higher Car/Chl ratio. The Chl a/b ratio decreased significantly in the light green explants. A reduction of maximum quantum efficiency of photosystem II (Fv/Fm accompanied by a high percentage (> 50% of thermal energy dissipation as a consequence of an elevated light intensity (800 µmol m-2 s-1 quanta indicated photoinhibition in the light green explants, whereas in the dark green explants the largest percentage (> 50% of the light energy was dissipated into the fraction of photon energy trapped by ‘closed’ photosystem II reaction centres. These results suggest that the capacity of organogenesis of leaf explants of African violet can be monitored using chlorophyll fluorescence, because it is related to modifications of the photosynthetic system.

  19. Effect of peripheral nerve on the neurite growth from retinal explants in culture

    Institute of Scientific and Technical Information of China (English)

    LiuLi; SoKwokfai

    1990-01-01

    The effect of peripheral nerve (PN) on neurite outgrowth from retinal explants of adult hamsters was examined.Cultures of retinal explants,and co-cultures of retinal explants and PN were performed using chick retinal basement memebrane (BM) as substrate.The presence of PN increases the number and length of neurite outgrowth.In addition,a high proportion of neurites situated close to PN tend to grow towards it.Since there was no contact between retinal explants and PN,we suggest that PN might secete diffusible substances to attract the neurites to grow towards it.

  20. Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets

    Science.gov (United States)

    Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara

    2004-05-01

    This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%

  1. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Science.gov (United States)

    Dua, Rupak; Comella, Kristin; Butler, Ryan; Castellanos, Glenda; Brazille, Bryn; Claude, Andrew; Agarwal, Arvind; Liao, Jun; Ramaswamy, Sharan

    2016-01-01

    We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA) nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels) were integrated with human bone marrow stem cell (HBMSC)-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol) diacrylate (PEGDA) hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05) when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05) when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in engineered

  2. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rupak Dua

    Full Text Available We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels were integrated with human bone marrow stem cell (HBMSC-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol diacrylate (PEGDA hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05 when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05 when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in

  3. Proliferation of Female Inflorescences explants of Date Palm

    International Nuclear Information System (INIS)

    This study was conducted to determine the effect of Abscisic acid (ABA) and Ancymidol on proliferation of female inflorescences explants of date palm. In the first experiment two lengths of spath at (5-7 cm) or at (7-10 cm) were cultured on nutrient media which consists of half macro and full micro salts of MS medium supplemented with gradual decreasing in concentration of Abscisic acid (ABA) and Ancymidol from 4.5, 3.0, 1.5 to 0.5 mg-1. In the second experiment two phases of nutrient medium (solid and liquid) and two source of carbon were investigated. Gradual decreasing of ABA concentrations from 4.5 mg-1 to 1.5 mg-1 in culture medium, stimulated the production of direct somatic embryos and accelerated callus initiation, but at last decrement (0.5 mg-1) of Ancymidol concentration few embryos were produced. Callus initiation from inflorescences explants gave high production and well development of somatic embryos when cultured on liquid medium supplemented with 40 g-1 sucrose. All direct or indirect somatic embryos obtained in these experiments were converted successfully to healthy normal plantlets which could be transferred to acclimatization stage.

  4. Microscopic and spectroscopic investigation of an explanted opacified intraocular lens

    Energy Technology Data Exchange (ETDEWEB)

    Simon, V., E-mail: viosimon@phys.ubbcluj.ro [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Radu, T.; Vulpoi, A. [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Rosca, C. [Optilens Clinic of Ophthalmology, 400604 Cluj-Napoca (Romania); Eniu, D. [Iuliu Haţieganu University of Medicine and Pharmacy, Department of Molecular Sciences, 400349 Cluj-Napoca (Romania)

    2015-01-15

    Highlights: • Changes on intraocular lens (IOL) surface after implantation. • Partial opacification of IOL central area. • Elemental composition on IOL surface prior to and after implantation. • First XPS depth profiling examination of the opacifying deposits. • Cell-mediated hydroxyapatite structuring. - Abstract: The investigated polymethylmethacrylate intraocular lens explanted an year after implantation presented a fine granularity consisting of ring-like grains of about 15 μm in diameter. In order to evidence the changes occurred on intraocular lens relative to morphology, elemental composition and atomic environments, microscopic and spectroscopic analyses were carried out using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), energy-dispersive X-ray (EDS), and X-ray photoelectron (XPS) spectroscopies. The results revealed that the grains contain hydroxyapatite mineral phase. A protein layer covers the lens both in opacified and transparent zones. The amide II band is like in basal epithelial cells. The shape and size of the grains, and the XPS depth profiling results indicate the possibility of a cell-mediated process involving lens epithelial cells which fagocitated apoptotic epithelial cells, and in which the debris derived from cell necrosis were calcified. To the best of our knowledge, this is the first investigation on explanted intraocular lenses using XPS depth profiling in order to examine the inside of the opacifying deposits.

  5. Microscopic and spectroscopic investigation of an explanted opacified intraocular lens

    Science.gov (United States)

    Simon, V.; Radu, T.; Vulpoi, A.; Rosca, C.; Eniu, D.

    2015-01-01

    The investigated polymethylmethacrylate intraocular lens explanted an year after implantation presented a fine granularity consisting of ring-like grains of about 15 μm in diameter. In order to evidence the changes occurred on intraocular lens relative to morphology, elemental composition and atomic environments, microscopic and spectroscopic analyses were carried out using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), energy-dispersive X-ray (EDS), and X-ray photoelectron (XPS) spectroscopies. The results revealed that the grains contain hydroxyapatite mineral phase. A protein layer covers the lens both in opacified and transparent zones. The amide II band is like in basal epithelial cells. The shape and size of the grains, and the XPS depth profiling results indicate the possibility of a cell-mediated process involving lens epithelial cells which fagocitated apoptotic epithelial cells, and in which the debris derived from cell necrosis were calcified. To the best of our knowledge, this is the first investigation on explanted intraocular lenses using XPS depth profiling in order to examine the inside of the opacifying deposits.

  6. Regulatory Challenges for Cartilage Repair Technologies.

    Science.gov (United States)

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible.

  7. Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation.

    Science.gov (United States)

    Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle

    2016-08-01

    Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters

  8. Long-term culture of sponge explants: conditions enhancing survival and growth, and assessment of bioactivity.

    Science.gov (United States)

    de Caralt, Sònia; Agell, Gemma; Uriz, María-J

    2003-07-01

    Sponges are an important source of secondary metabolites with pharmaceutical interest. This is the main reason for the increasing interest of sponge culture recent years. The optimal culture system depends on the species to be cultured: while some species easily produce sponge aggregates after dissociation (primmorphs), others show a great capacity to regenerate after fragmentation (explants). Corticium candelabrum is a Mediterranean bacteriosponge that can undergo asexual reproduction. We have taken advantage of this capability and cultured C. candelabrum explants under several experimental conditions. To find the best conditions for obtaining functional explants, we assayed a range of conditions, including seasons of collection, culture temperature, filtered versus filtered-sterile seawater, addition of antibiotics and proportion of ectosome. We monitored the changes in shape and ultrastructure during the formation of explants. After 24 h, TEM images showed the aquiferous system disarranged, in particular at the sponge periphery. From 2 to 4 weeks later, the aquiferous system regenerated, and fragments became functional sponges (explants). Explants were cultured under two regimes: in vitro and in a closed aquarium system. Antibiotics were only added to the in vitro culture to assess their effect on the symbiotic bacteria, which remained healthy despite the presence of antibiotics. Two food regimens (marine bacteria and green algae) were assayed for their ability to satisfy the metabolic requirements of explants. We monitored explant survival and growth. Explants showed a high long-term survival rate (close to 100%). Growth rates were higher in the closed aquarium system, without antibiotic addition, and fed with algae. Explants cultures were hardly contaminated because manipulation was reduced to a minimum and we used sterilized seawater. C. candelabrum produces bioactive molecules, which may play a defensive role in the sponge and may have pharmaceutical

  9. [Surgical therapeutic possibilities of cartilage damage].

    Science.gov (United States)

    Burkart, A C; Schoettle, P B; Imhoff, A B

    2001-09-01

    Therapy of cartilage damage is a frequent problem, especially in the young and active patient. For the treatment of a cartilage damage we have to consider the size of the defect, age and weight of the patient, meniscal tears, ligament instabilities and varus-/valgus-malalignment. Lavage, shaving and debridement are only sufficient for a short time and have no long term effect. Abrasio and drilling could be useful in eldery people. Microfracturing seems to be an effective alternative for small defects. The restoration of the cartilage surface with the use of autologous chondrocyte transplantation, osteochondral autograft transplantation and posterior condyle transfer seems to be an adequate treatment for younger patients. PMID:11572120

  10. The influence of collagen network integrity on the accumulation of gadolinium-based MR contrast agents in articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, Edzard; Schmidt, C.; Diederichs, G. [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie; Settles, M. [Klinikum rechts der Isar, Muenchen (Germany). Inst. fuer Roentgendiagnostik; Weirich, G. [Klinikum Rechts der Isar, Muenchen (Germany). Inst. fuer Pathologie und Pathologische Anatomie

    2011-03-15

    Delayed gadolinium-enhanced MR imaging of cartilage is used to quantify the proteoglycan loss in early osteoarthritis. It is assumed that T 1 after Gd-DTPA administration in the near equilibrium state reflects selective proteoglycan loss from cartilage. To investigate the influence of the collagen network integrity on contrast accumulation, the relaxation rates {delta}R1 and {delta}R2 were compared after Gd-DTPA administration in a well established model of osteoarthritis. Collagen or proteoglycan depletion was induced by the proteolytic enzymes papain and collagenase in healthy bovine patellar cartilage. Using a dedicated MRI sequence, T{sub 1} and T{sub 2} maps were simultaneously acquired before and 11 h after Gd-DTPA administration. Depth-dependent profiles of {delta}R1 and {delta}R2 were calculated in healthy, proteoglycan and collagen-depleted articular cartilage and the mean values of different cartilage layers were compared using the Mann-Whitney-U test. In superficial layers (1 mm) there was no significant difference (p > 0.05) in either {delta}R1 or {delta}R2 between proteoglycan-depleted (16.6 {+-} 1.2 s{sup -1}, 15.9 {+-} 1.0 s{sup -1}) and collagen-depleted articular cartilage (15.3 {+-} 0.9 s{sup -1}, 15.5 {+-} 0.9 s{sup -1}). In deep layers (3 mm) both parameters were significantly higher (p = 0.005, 0.03) in proteoglycan-depleted articular cartilage (12.3 {+-} 1.1 s{sup -1}, 9.8 {+-} 0.8 s{sup -1}) than in collagen-depleted articular cartilage (9.1 {+-} 1.1 s{sup -1}, 8.7 {+-} 0.7 s{sup -1}). Both proteoglycan loss and alterations in the collagen network influence the accumulation of Gd-DTPA in articular cartilage with significant differences between superficial and deep cartilage layers. (orig.)

  11. Organogênese direta de explantes cotiledonares e regeneração de plantas de mogango Direct organogenesis of cotyledon explants and plant regeneration of squash

    Directory of Open Access Journals (Sweden)

    André Luís Lopes da Silva

    2006-06-01

    Full Text Available Os objetivos foram induzir a organogênese direta de explantes cotiledonares de mogango e estudar a regeneração de plântulas completas a partir das brotações adventícias. Foram utilizados cotilédones como explantes, originados das plântulas de mogango com 20 dias após a semeadura. O meio basal utilizado foi o MS (MURASHIGE & SKOOG, 1962 suplementado com 30g L-1 de sacarose e 7g L-1 de agar. Foram testadas as concentrações de 6-benzilaminopurina (BAP de 0; 0,5; 1,0 e 2,0mg L-1. Explantes de ápices caulinares e segmentos nodais de brotações adventícias foram então cultivados em meio MS suplementado com 30g L-1 de sacarose e 7g L-1 de agar. Maiores concentrações de BAP no meio MS promoveram um aumento da percentagem de explantes cotiledonares com brotações adventícias e uma redução da percentagem de enraizamento. Explantes de segmentos nodais e ápices caulinares oriundos de brotações adventícias cresceram e enraizaram em meio MS sem reguladores de crescimento. Altas percentagens de enraizamento dependem do tamanho dos explantes utilizados.The objectives were to induce direct organogenesis of squash cotyledons and to study the regeneration of complete plantlets from adventitious shoot. Cotyledon explants of 20-day seedlings were cultured in MS (MURASHIGE & SKOOG, 1962 medium supplemented with 30g L-1 of sucrose and 7g L-1 of agar. The 6-benzilaminopurina (BAP concentrations of 0, 0.5, 1.0 and 2.0mg L-1 were tested. Apical and nodal explants from adventitious shoots were transferred to MS medium supplemented with 30g L-1 of sucrose and 7g L-1 of agar. Increasing BAP concentrations in the MS medium enhance the percentage of adventitious shoot and reduce the percentage of root organogenesis of squash cotyledon explants. Apical and nodal explants from adventitious shoot regenerated plantlets with roots in MS medium without growth regulators. High percentage of plantlet rooting depends upon the size of the explants.

  12. In vitro morphogenic events in culture of Lotus corniculatus L. seedling root explants

    Directory of Open Access Journals (Sweden)

    Jan J. Rybczyński

    2011-04-01

    Full Text Available The experiments were carried out on Lotus corniculatus (L. seedling root explants of the cultivar varieties Skrzeszowicka, Caroll A10 and strain 175. Callus formation and shoot regeneration were the major explant response depended mainly on of the studied genotype and used plant growth regulators (PGRs. Primary cortex of proximal and distal end of explant was the most active tissue for callus proliferation. For shoot primordia differentiation deeper zones of cortex took a part. The process of meristematic centre initiation was not uniform and various level of shoot differentiation events were observed not earlier than 3 weeks of culture. Usually, the shoot primordia regeneration began on proximal rather than distal end of the explant. BAP rather than urea derivatives stimulated shoot proliferation in extended cultures. Increasing of BAP and TDZ concentrations brought about the explant polarity and expansion of the meristematic zones. The explant position in root did not have significant influence on the number of regenerated shoots. The cultures only had better bud formation by TDZ when compared to BAP. BAP stimulated bud formation and development of the shoots from them. Short term of TDZ treatment of explants stimulated meristem formation which developed into buds and shoots. CPPU stimulated callus proliferation and bud formation when explants pretreatment was prolonged from 12 to 36 hrs.

  13. Plant Regeneration of Sweet Potato via Somatic Embryogenesis from Different Explants

    Institute of Scientific and Technical Information of China (English)

    Ling ZHANG; Hongxuan XU; Baifu QIN; Zhihua LIA0; Min CHEN; Chunxian YANG; Yufan FU; Qitang ZHANG

    2012-01-01

    [Objective] This study aimed to regenerate plants of sweet potato (Ipomoea batatas) cultivar Xushu22 via somatic embryogenesis, using leaf and shoot apex as explants. [Method] The leaf and shoot apex of Xushu 22 were separately cultured on MSB medium and MSD medium. The induced embryogenic calluses were then cultured on MS medium. The regeneration frequency of leaf and shoot apex ex- plants were respectively calculated. [Result] The average frequency of leaf explants developing somatic callus was 95.69% compared to 30.56% in case of shoot apex explants. There were different types of morphogenic structures in the process of so- matic embryo development. Leaf explants gave a high regeneration frequency to 60.61%, while the regeneration frequency of shoot apices was 22%. In addition, no morphological variations were observed in the regeneration plants. [Conclusion] Leaf explant was better than shoot apices in plant regeneration of Xushu22 via somatic embryogenesis.

  14. The structure and function of cartilage proteoglycans

    Directory of Open Access Journals (Sweden)

    P J Roughley

    2006-11-01

    Full Text Available Cartilage contains a variety of proteoglycans that are essential for its normal function. These include aggrecan, decorin, biglycan, fibromodulin and lumican. Each proteoglycan serves several functions that are determined by both its core protein and its glycosaminoglycan chains. This review discusses the structure/function relationships of the cartilage proteoglycans, and the manner in which perturbations in proteoglycan structure or abundance can adversely affect tissue function.

  15. Materials science: Like cartilage, but simpler

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    2015-01-01

    The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties.......The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties....

  16. 78 FR 72979 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2013-12-04

    ... risks of other livestock diseases, such as bovine viral diarrhea, foot-and-mouth disease, infectious... Products Derived from Bovines,'' published in the Federal Register on September 18, 2007 (72 FR 53314-53379... 92, 93, 94, et al. Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine...

  17. Glucosamine increases hyaluronic acid production in human osteoarthritic synovium explants

    Directory of Open Access Journals (Sweden)

    Uitterlinden EJ

    2008-09-01

    Full Text Available Abstract Background Glucosamine (GlcN used by patients with osteoarthritis was demonstrated to reduce pain, but the working mechanism is still not clear. Viscosupplementation with hyaluronic acid (HA is also described to reduce pain in osteoarthritis. The synthesis of HA requires GlcN as one of its main building blocks. We therefore hypothesized that addition of GlcN might increase HA production by synovium tissue. Methods Human osteoarthritic synovium explants were obtained at total knee surgery and pre-cultured for 1 day. The experimental conditions consisted of a 2 days continuation of the culture with addition of N-Acetyl-glucosamine (GlcN-Ac; 5 mM, glucosamine-hydrochloride (GlcN-HCl; 0.5 and 5 mM, glucose (Gluc; 0.5 and 5 mM. Hereafter HA production was measured in culture medium supernatant using an enzyme-linked binding protein assay. Real time RT-PCR was performed for hyaluronic acid synthase (HAS 1, 2 and 3 on RNA isolated from the explants. Results 0.5 mM and 5 mM GlcN-HCl significantly increased HA production compared to control (approximately 2 – 4-fold, whereas GlcN-Ac had no significant effect. Addition of 5 mM Gluc also increased HA production (approximately 2-fold, but 0.5 mM Gluc did not. Gene expression of the HA forming enzymes HAS 1, 2 and 3 was not altered by the addition of GlcN or Gluc. Conclusion Our data suggest that exogenous GlcN can increase HA production by synovium tissue and is more effective at lower concentrations than Gluc. This might indicate that GlcN exerts its potential analgesic properties through stimulation of synovial HA production.

  18. Camel and bovine chymosin

    DEFF Research Database (Denmark)

    Jensen, Jesper Langholm; Mølgaard, Anne; Poulsen, Jens-Christian Navarro;

    2013-01-01

    Bovine and camel chymosin are aspartic peptidases that are used industrially in cheese production. They cleave the Phe105-Met106 bond of the milk protein κ-casein, releasing its predominantly negatively charged C-terminus, which leads to the separation of the milk into curds and whey. Despite...... having 85% sequence identity, camel chymosin shows a 70% higher milk-clotting activity than bovine chymosin towards bovine milk. The activities, structures, thermal stabilities and glycosylation patterns of bovine and camel chymosin obtained by fermentation in Aspergillus niger have been examined...... differential scanning calorimetry revealed a slightly higher thermal stability of camel chymosin compared with bovine chymosin. The crystal structure of a doubly glycosylated variant of camel chymosin was determined at a resolution of 1.6 Å and the crystal structure of unglycosylated bovine chymosin...

  19. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Directory of Open Access Journals (Sweden)

    Pia M. Jungmann

    2014-01-01

    Full Text Available Background. New quantitative magnetic resonance imaging (MRI techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, and diffusion weighted imaging (DWI are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  20. In end stage osteoarthritis, cartilage tissue pentosidine levels are inversely related to parameters of cartilage damage

    NARCIS (Netherlands)

    Vos, P.A.J.M.; Mastbergen, S.C.; Huisman, A.M.; Boer, T.N.de; Groot, J.de; Polak, A.A.; Lafeber, F.P.J.G.

    2012-01-01

    Objectives: Age is the most prominent predisposition for development of osteoarthritis (OA). Age-related changes of articular cartilage are likely to play a role. Advanced glycation endproducts (AGEs) accumulate in cartilage matrix with increasing age and adversely affect the biomechanical propertie

  1. Poroelastic response of articular cartilage by nanoindentation creep tests at different characteristic lengths.

    Science.gov (United States)

    Taffetani, M; Gottardi, R; Gastaldi, D; Raiteri, R; Vena, P

    2014-07-01

    Nanoindentation is an experimental technique which is attracting increasing interests for the mechanical characterization of articular cartilage. In particular, time dependent mechanical responses due to fluid flow through the porous matrix can be quantitatively investigated by nanoindentation experiments at different penetration depths and/or by using different probe sizes. The aim of this paper is to provide a framework for the quantitative interpretation of the poroelastic response of articular cartilage subjected to creep nanoindentation tests. To this purpose, multiload creep tests using spherical indenters have been carried out on saturated samples of mature bovine articular cartilage achieving two main quantitative results. First, the dependence of indentation modulus in the drained state (at equilibrium) on the tip radius: a value of 500 kPa has been found using the large tip (400 μm radius) and of 1.7 MPa using the smaller one (25 μm). Secon, the permeability at microscopic scale was estimated at values ranging from 4.5×10(-16) m(4)/N s to 0.1×10(-16) m(4)/N s, from low to high equivalent deformation. Consistently with a poroelastic behavior, the size-dependent response of the indenter displacement disappears when characteristic size and permeability are accounted for. For comparison purposes, the same protocol was applied to intrinsically viscoelastic homogeneous samples of polydimethylsiloxane (PDMS): both indentation modulus and time response have been found size-independent. PMID:24814573

  2. Tissue engineering strategies to study cartilage development, degeneration and regeneration.

    Science.gov (United States)

    Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh

    2015-04-01

    Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.

  3. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies.

    LENUS (Irish Health Repository)

    Moran, Ellen M

    2009-01-01

    INTRODUCTION: The aim of this study was to examine IL-17A in patients, following anti-TNF-alpha therapy and the effect of IL-17A on matrix turnover and cartilage degradation. METHODS: IL-17A expression was examined by ELISA and immunohistology in the rheumatoid arthritis (RA) joints. RA whole synovial tissue explant (RA ST), primary synovial fibroblasts (RASFC), human cartilage and chondrocyte cultures were stimulated with IL-17A +\\/- TNF-alpha and Oncostatin M (OSM). Matrix metalloproteinase (MMP) and tissue inhibitor (TIMP-1) were assessed by ELISA and zymography. Cartilage proteoglycan release was assessed histologically by Safranin-O staining. Clinical parameters, IL-17A, MMP\\/TIMP were assessed in patients pre\\/post biologic therapy. RESULTS: IL-17A levels were higher in RA vs osteoarthritis (OA)\\/normal joints (P < 0.05). IL-17A up-regulated MMP-1, -2, -9, and -13 in RA ST, RASFC, cartilage and chondrocyte cultures (P < 0.05). In combination with TNF-alpha and OSM, IL-17A shifted the MMP:TIMP-1 ratio in favor of matrix degradation (all P < 0.05). Cartilage proteoglycan depletion in response to IL-17A was mild; however, in combination with TNF-alpha or OSM showed almost complete proteoglycan depletion. Serum IL-17A was detected in 28% of patients commencing biologic therapy. IL-17A negative patients demonstrated reductions post therapy in serum MMP1\\/TIMP4, MMP3\\/TIMP1 and MMP3\\/TIMP4 ratios and an increase in CS846 (all P < 0.05). No significant changes were observed in IL-17A positive patients. CONCLUSIONS: IL-17A is produced locally in the inflamed RA joint. IL-17A promotes matrix turnover and cartilage destruction, especially in the presence of other cytokines, mimicking the joint environment. IL-17A levels are modulated in vivo, following anti-TNF therapy, and may reflect changes in matrix turnover.

  4. 78 FR 73993 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2013-12-10

    ... Health Inspection Service 9 CFR Parts 92, 93, 94, 95, 96, and 98 RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products Corrections In rule document 2013-28228 appearing...

  5. 77 FR 20319 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2012-04-04

    ...; ] DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 9 CFR Part 93 RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products Correction In proposed rule...

  6. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    Directory of Open Access Journals (Sweden)

    Kott Laima S

    2010-05-01

    Full Text Available Abstract Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM with wild-type control M. spicata (CM, and c to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA, caffeic acid (CA, coumaric acid (CO] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim and CM (CMsim were determined (HPLC and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine were cultured with LPS (0 or 3 μg/mL and test article [HRAMsim (0, 8, 40, 80, 240, or 400 μg/mL, or CMsim (0, 1, 5 or 10 mg/mL, or RA (0.640 μg/mL, or CA (0.384 μg/mL, or CO (0.057 μg/mL or FA (0.038 μg/mL] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2, interleukin 1β (IL-1, glycosaminoglycan (GAG, nitric oxide (NO and cell viability (differential live-dead cell staining. Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 μg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (≥ 8 μg/mL inhibited LPS-induced PGE2 and NO; HRAMsim (≥ 80 μg/mL inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces

  7. Effect of vasoactive intestinal peptide on pulmonary surfactants phospholipid synthesis in lung explants

    Institute of Scientific and Technical Information of China (English)

    Lian LI; Zi-qiang LUO; Fu-wen ZHOU; Dan-dan FENG; Cha-xiang GUAN; Chang-qing ZHANG; Xiu-hong SUN

    2004-01-01

    AIM: To investigate the effect of vasoactive intestinal peptide (VIP) on pulmonary surfactants (PS) phospholipid synthesis in cultured lung explants. METHODS: Lung explants were cultured with serum-free medium, [methyl-3H]choline incorporation, total phospholipid, phosphatidylcholine, activity of choline-phosphate cytidylyltransferase (CCT) and CCTα mRNA level in lung explants were determined. RESULTS: (1) VIP (10-10-10-7 mol/L) for 16 h promoted [methyl-3H]choline incorporation in dose dependence and VIP (10-8 mol/L) for 2 h-16 h promoted [methylz3H]choline incorporation in time dependence. (2) VIP (10-8 mol/L) enhanced the contents of total phospholipidsand phosphatidylcholine in lung explants. (3) VIP (10-10-10-7 mol/L) elevated microsomal CCT activity of lung explants in dose dependence. (4) VIP (10-8 mol/L) increased expression of CCTα mRNA in lung explants and alveolar type Ⅱ cells (ATII). (5) [D-P-Cl-Phe(6)-Leu(17)]-VIP (10-6 mol/L), a VIP receptors antagonist, abolished the increase of [3H]choline incorporation, microsomal CCT activity and CCTα mRNA level induced by VIP (10-8 mol/L) in lung explants. CONCLUSION: VIP could enhance synthesis of phosphatidylcholine, the major component of pulmonary surfactants by enhancing microsomal CCT activity and CCTα mRNA level via VIP receptormediated pathway.

  8. Culturing Schwann Cells from Neonatal Rats by Improved Enzyme Digestion Combined with Explants-culture Method.

    Science.gov (United States)

    Liu, Di; Liang, Xiao-Chun; Zhang, Hong

    2016-08-01

    Objective To develop an improved method for culturing Schwann cells(SCs) by using both enzyme digestion and explants-culture approaches and compared with traditional explants-culture method and general hemi-explants-culture method. Methods Bilaterally sciatic nerves and brachial plexus nerves were dissected from 3 to 5-day-old neonatal SD rats and explants-culture method,general hemi-explants-culture method,and improved enzyme digestion combined with explants-culture method were adopted to culture SCs,respectively. SCs were digested and passaged after 7 days in culture and counted under the microscope. The purity of SCs was identified by S-100 immunofluorescence staining. Results The SCs of improved method group grew fastest and the total number of cells obtained was(1.85±0.13)×10(6);the SCs of the hemi-explants-culture method group grew slower than the improved method group and the total number of cells obtained was (1.10±0.10)×10(6);the SCs of the explants-culture method group grew slowest and the total number of cells obtained was (0.77±0.03)×10(6).The total number of cells obtained showed significant difference among the three groups(Pculture method group,and (74.50±4.23)% in the explants-culture method group(Pculture method can obtain sufficient amount of high-purity SCs in a short time and thus may be applied in further research on peripheral nerve regeneration.

  9. Unlocking the bovine genome

    Science.gov (United States)

    The draft genome sequence of cattle (Bos taurus) has now been analyzed by the Bovine Genome Sequencing and Analysis Consortium and the Bovine HapMap Consortium, which together represent an extensive collaboration involving more than 300 scientists from 25 different countries. ...

  10. Isolation of bovine corneal keratan sulfate and its growth factor and morphogen binding

    OpenAIRE

    Weyers, Amanda; Yang, Bo; Solakyildirim, Kemal; Yee, Vienna; Li, Lingyun; Zhang, Fuming; Linhardt, Robert

    2013-01-01

    Keratan sulfate (KS) is an important glycosaminoglycan that is found in cartilage, reproductive, and neural tissues. Corneal KS glycosaminoglycan is found N-linked to lumican, keratocan, and mimecan proteoglycans and has been widely studied by investigators interested in corneal development and diseases. Recently, the availability of corneal KS has become severely limited due to restricted the shipment of bovine central nervous system by-products across international borders in efforts to pre...

  11. Molecular cloning, expression and characterization of bovine UQCC and its association with body measurement traits

    DEFF Research Database (Denmark)

    Liu, Yongfeng; Zan, Linsen; Zhao, Shuanping;

    2010-01-01

    Ubiquinol-cytochrome c reductase complex chaperone (UQCC) involved in the development and maintenance of bone and cartilage is an important candidate gene for body measurement traits selection through marker-assisted selection (MAS). The expression of UQCC is upregulated in many human and animal ...... measurement traits in bovine reproduction and breeding, and provide data for establishing of an animal model using cattle to study big animal body type....

  12. Reproducible simulation of respiratory motion in porcine lung explants

    International Nuclear Information System (INIS)

    Purpose: To develop a model for exactly reproducible respiration motion simulations of animal lung explants inside an MR-compatible chest phantom. Materials and Methods: The materials included a piston pump and a flexible silicone reconstruction of a porcine diaphragm and were used in combination with an established MR-compatible chest phantom for porcine heart-lung preparations. The rhythmic inflation and deflation of the diaphragm at the bottom of the artificial thorax with water (1-1.5 L) induced lung tissue displacement resembling diaphragmatic breathing. This system was tested on five porcine heart-lung preparations using 1.5T MRI with transverse and coronal 3D-GRE (TR/TE=3.63/1.58, 256 x 256 matrix, 350 mm FOV, 4 mm slices) and half Fourier T2-FSE (TR/TE=545/29, 256 x 192, 350 mm, 6 mm) as well as multiple row detector CT (16 x 1 mm collimation, pitch 1.5, FOV 400 mm, 120 mAs) acquired at five fixed inspiration levels. Dynamic CT scans and coronal MRI with dynamic 2D-GRE and 2D-SS-GRE sequences (image frequencies of 10/sec and 3/sec, respectively) were acquired during continuous 'breathing' (7/minute). The position of the piston pump was visually correlated with the respiratory motion visible through the transparent wall of the phantom and with dynamic displays of CT and MR images. An elastic body splines analysis of the respiratory motion was performed using CT data. Results: Visual evaluation of MRI and CT showed three-dimensional movement of the lung tissue throughout the respiration cycle. Local tissue displacement inside the lung explants was documented with motion maps calculated from CT. The maximum displacement at the top of the diaphragm (mean 26.26 [SD 1.9] mm on CT and 27.16 [SD 1.5] mm on MRI, respectively [p=0.25; Wilcoxon test]) was in the range of tidal breathing in human patients. Conclusion: The chest phantom with a diaphragmatic pump is a promising platform for multi-modality imaging studies of the effects of respiratory lung motion. (orig.)

  13. Primary human bronchial epithelial cells grown from explants.

    Science.gov (United States)

    Yaghi, Asma; Zaman, Aisha; Dolovich, Myrna

    2010-01-01

    Human bronchial epithelial cells are needed for cell models of disease and to investigate the effect of excipients and pharmacologic agents on the function and structure of human epithelial cells. Here we describe in detail the method of growing bronchial epithelial cells from bronchial airway tissue that is harvested by the surgeon at the times of lung surgery (e.g. lung cancer or lung volume reduction surgery). With ethics approval and informed consent, the surgeon takes what is needed for pathology and provides us with a bronchial portion that is remote from the diseased areas. The tissue is then used as a source of explants that can be used for growing primary bronchial epithelial cells in culture. Bronchial segments about 0.5-1cm long and open and minced into 2-3mm(3) pieces of tissue. The pieces are used as a source of primary cells. After coating 100mm culture plates for 1-2 hr with a combination of collagen (30 microg/ml), fibronectin (10 microg/ml), and BSA (10 microg/ml), the plates are scratched in 4-5 areas and tissue pieces are placed in the scratched areas, then culture medium (DMEM/Ham F-12 with additives) suitable for epithelial cell growth is added and plates are placed in an incubator at 37 degrees C in 5% CO(2) humidified air. The culture medium is changed every 3-4 days. The epithelial cells grow from the pieces forming about 1.5 cm diameter rings in 3-4 weeks. Explants can be re-used up to 6 times by moving them into new pre-coated plates. Cells are lifted using trypsin/EDTA, pooled, counted, and re-plated in T75 Cell Bind flasks to increase their numbers. T75 flasks seeded with 2-3 million cells grow to 80% confluence in 4 weeks. Expanded primary human epithelial cells can be cultured and allowed to differentiate on air-liquid interface. Methods described here provide an abundant source of human bronchial epithelial cells from freshly isolated tissues and allow for studying these cells as models of disease and for pharmacology and toxicology

  14. Life Cycle of Heterodera zeae Koshy, Swarup, and Sethi on Zea mays L. Axenic Root Explants

    OpenAIRE

    Lauritis, J. A.; Rebois, R. V.; Graney, L. S.

    1983-01-01

    Monoxenic cultures of Heterodera zeae, the corn cyst nematode (CCN), were established on root explants of corn Zea mays L., cv. Kenworthy. The life cycle of H. zeae was determined from light anti scanning electron microscopic observations of the root explants grown in the dark at 29.5 ± .5 C under gnotobiotic conditions. The life cycle, from the time the explants were inoculated with second-stage larvae (L2) to the first appearance of newly hatched second-generation L2, required 22 days. The ...

  15. Human stem cells and articular cartilage regeneration.

    Science.gov (United States)

    Inui, Atsuyuki; Iwakura, Takashi; Reddi, A Hari

    2012-11-05

    The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  16. Polarized IR microscopic imaging of articular cartilage

    Science.gov (United States)

    Ramakrishnan, Nagarajan; Xia, Yang; Bidthanapally, Aruna

    2007-08-01

    The objective of this spectroscopic imaging study is to understand the anisotropic behavior of articular cartilage under polarized infrared radiation at 6.25 µm pixel resolution. Paraffin embedded canine humeral cartilage-bone blocks were used to obtain 6 µm thick tissue sections. Two wire grid polarizers were used to manipulate the polarization states of IR radiation by setting them for various polarizer/analyzer angles. The characteristics of the major chemical components (amide I, amide II, amide III and sugar) of articular cartilage were investigated using (a) a polarizer and (b) a combination of a polarizer and an analyzer. These results were compared to those obtained using only an analyzer. The infrared anisotropy (variation in infrared absorption as a function of polarization angles) of amide I, amide II and amide III bands correlates with the orientation of collagen fibrils along the tissue depth in different histological zones. An 'anisotropic flipping' region of amide profiles indicates the possibility of using Fourier transform infrared imaging (FTIRI) to determine the histological zones in cartilage. Cross-polarization experiment indicates the resolution of overlapping peaks of collagen triple helix and/or proteoglycan in articular cartilage.

  17. Thermogravimetry of irradiated human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Martinho Junior, Antonio C.; Machado, Luci D.B.; Dias, Djalma B.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: antonio_carlos_martinho@msn.com; lmachado@ipen.br; dbdias@ipen.br; mathor@ipen.br; Herson, Marisa R. [Universidade de Sao Paulo, SP (Brazil). Hospital das Clinicas. Banco de Tecidos do Instituto Central]. E-mail: marisah@vifm.org; Meumann, Nilton F.; Pasqualucci, Carlos Augusto G. [Universidade de Sao Paulo, SP (Brazil). Faculdade de Medicina. Servico de Verificacao de Obitos]. E-mail: svoc@usp.br

    2007-07-01

    Costal cartilage has been sterilized with gamma radiation using {sup 60}Co sources at two different doses, 25 kGy and 50 kGy, for storage in tissue banks. Samples of costal cartilage were deep-freezing as method of preservation. Thermogravimetry (Shimadzu TGA-50) was used to verify the water release of costal cartilage before and after irradiation. The TG tests were carried out at heating rate of 10 deg C/min from room temperature to 600 deg C under a flow rate of 50 mL/min of compressed air. Samples of costal cartilage were divided in 2 parts. One part of them was kept as reference material; the other part was irradiated. This procedure assures better homogeneity of the sample and reproducibility of the experimental results. The obtained data have shown that the TG curves have the same pattern, independently of the sample. Non-irradiated samples showed great variability of thermogravimetric curves among different donors and for the same donor. Further experimental work is being carried out on human cartilage preserved in glycerol in high concentration (> 98%) to compare with those deep freezing. (author)

  18. Human Stem Cells and Articular Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    A. Hari Reddi

    2012-11-01

    Full Text Available  The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  19. Effect of mechanical convection on the partitioning of an anionic iodinated contrast agent in intact patellar cartilage.

    Science.gov (United States)

    Entezari, Vahid; Bansal, Prashant N; Stewart, Rachel C; Lakin, Benjamin A; Grinstaff, Mark W; Snyder, Brian D

    2014-10-01

    To determine if mechanical convection accelerates partitioning of an anionic contrast agent into cartilage while maintaining its ability to reflect the glycosaminoglycan (GAG) content in contrast-enhanced computed tomography (CECT) of cartilage. Bovine patellae (N = 4) were immersed in iothalamate and serially imaged over 24 h of passive diffusion at 34°C. Following saline washing for 14 h, each patella was serially imaged over 2.5 h of mechanical convection by cyclic compressive loading (120N, 1 Hz) while immersed in iothalamate at 34°C. After similar saline washing, each patella was sectioned into 15 blocks (n = 60) and contrast concentration per time point as well as GAG content were determined for each cartilage block. Mechanical convection produced 70.6%, 34.4%, and 16.4% higher contrast concentration at 30, 60, and 90 min, respectively, compared to passive diffusion (p correlation between contrast concentration and GAG content was significant at all time points and correlation coefficients improved with time, reaching R(2)  = 0.60 after 180 min of passive diffusion and 22.5 min of mechanical convection. Mechanical convection significantly accelerated partitioning of a contrast agent into healthy cartilage while maintaining strong correlations with GAG content, providing an evidence-based rationale for adopting walking regimens in CECT imaging protocols.

  20. Non-invasive monitoring of cytokine-based regenerative treatment of cartilage by hyperspectral unmixing (Conference Presentation)

    Science.gov (United States)

    Mahbub, Saabah B.; Succer, Peter; Gosnell, Martin E.; Anwaer, Ayad G.; Herbert, Benjamin; Vesey, Graham; Goldys, Ewa M.

    2016-03-01

    Extracting biochemical information from tissue autofluorescence is a promising approach to non-invasively monitor disease treatments at a cellular level, without using any external biomarkers. Our recently developed unsupervised hyperspectral unmixing by Dependent Component Analysis (DECA) provides robust and detailed metabolic information with proper account of intrinsic cellular heterogeneity. Moreover this method is compatible with established methods of fluorescent biomarker labelling. Recently adipose-derived stem cell (ADSC) - based therapies have been introduced for treating different diseases in animals and humans. ADSC have been shown promise in regenerative treatments for osteoarthritis and other bone and joint disorders. One of the mechanism of their action is their anti-inflammatory effects within osteoarthritic joints which aid the regeneration of cartilage. These therapeutic effects are known to be driven by secretions of different cytokines from the ADSCs. We have been using the hyperspectral unmixing techniques to study in-vitro the effects of ADSC-derived cytokine-rich secretions with the cartilage chip in both human and bovine samples. The study of metabolic effects of different cytokine treatment on different cartilage layers makes it possible to compare the merits of those treatments for repairing cartilage.

  1. A comparative Study between the Structure of Cartilage Tissue Produced from Murine MSCs Differentiation and Hyaline Costal Cartilage

    Directory of Open Access Journals (Sweden)

    M.R. Baghban Eslaminezhad, Ph.D.

    2007-09-01

    Full Text Available Background and purpose: Vitro cartilage differentiation of mesenchymal stem cells (MSCs has been noticed in several investigations. In this regard, almost always molecular differentiation of the cells has been examined, while structural and morphological differentiation of them has been ignored. Therefore, the present study examines the structure and ultrastructure of the cartilage differentiated from murine MSCs compared with that of costal cartilage.Materials and Methods: 2× 105 MSCs isolated from the bone marrow of NMRI mice were pleted by centrifugation and cultured for 21 days in chondrogenic medium. At the end of cultivation period, occurrence of chondrogenic differentiation was confirmed by reverse transcriptase–polymerase chain reaction (RT-PCR analysis for some cartilage-specific genes. To compare the structure of differentiated tissue with that of natural cartilage, the cartilage was differentiated from MSCs and the cartilage obtained from the same murine rib was prepared for transmission electron microscopy (TEM.Results: Structural studies indicated that similar to the costal cartilage, the cartilage produced from differentiation of perichondrium-like layer was formed. According to the microscopic images, in contrast to costal chondrocytes, the differentiated cells had euchromatic nucleus and their cytoplasm contained plenty of the organelles involved in active cell secretion. Furthermore, intercellular matrix in differentiated cartilage had a fibrillar appearance. Conclusion: Our results indicated that the structure of cartilage produced in micro mass culture system is somewhat different from that of costal cartilage. The cells from differentiated tissue seemed to be more active than those from costal cartilage. .

  2. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction

    International Nuclear Information System (INIS)

    Scaffolds are widely used to reconstruct cartilage. Yet, the fabrication of a scaffold with a highly organized microenvironment that closely resembles native cartilage remains a major challenge. Scaffolds derived from acellular extracellular matrices are able to provide such a microenvironment. Currently, no report specifically on decellularization of full thickness ear cartilage has been published. In this study, decellularized ear cartilage scaffolds were prepared and extensively characterized. Cartilage decellularization was optimized to remove cells and cell remnants from elastic cartilage. Following removal of nuclear material, the obtained scaffolds retained their native collagen and elastin contents as well as their architecture and shape. High magnification scanning electron microscopy showed no obvious difference in matrix density after decellularization. However, glycosaminoglycan content was significantly reduced, resulting in a loss of viscoelastic properties. Additionally, in contact with the scaffolds, human bone-marrow-derived mesenchymal stem cells remained viable and are able to differentiate toward the chondrogenic lineage when cultured in vitro. These results, including the ability to decellularize whole human ears, highlight the clinical potential of decellularization as an improved cartilage reconstruction strategy. (paper)

  3. Direct organogenesis of seaside heliotrope (Heliotropium crassavicum) using stem explants.

    Science.gov (United States)

    Satyavani, K; Dheepak, V; Gurudeeban, S; Ramanathan, T

    2013-10-15

    Heliotropium crassavicum L. is a sand binder salt marsh herb with enormous traditional value and widely found in South Asia America and Europe. In the direct method of regeneration from stem explants, we observed the maximum number of shoot regeneration after four weeks culture of MS elongation medium with 2.0 mg L(-1) of 2, 4-D (17.27 +/- 0.51). It was clear that MS medium with 2.0 mg mL(-1) 2, 4-D alone suitable for shoot multiplication as well as shoot elongation then compared to other combination of auxin and cytokinin. In vitro shoots were excised from shoot clumps and transferred to rooting medium containing 2, 4-dichlorophenoxy acetic acid (0.5-3.0 mg L(-1)). The maximum number of root regeneration (6.4 +/- 0.416) and root length (6.08 +/- 0.07) were observed in MS rooting medium fortified with 2.5 mg L(-1) of 2, 4-D after 2 weeks of culture. 85% of in vitro raised plantlets with well-developed shoots and roots were transferred to ex vivo conditions into polythene bag containing sterile compost with ratio (v/v/v) of organic fertilizer: sand: peat (1:2:2; 3:1:0 or 2:2:1). Sixty five percent of acclimated plants were transferred to the pots under full sun where they grew well without any detectable phenotypic variations. PMID:24506027

  4. Engineering articular cartilage using newly developed carrageenan basedhydrogels

    OpenAIRE

    Popa, Elena Geta

    2014-01-01

    Articular cartilage holds specific functionality in the human body creating smooth gliding areas and allowing the joints to move easily without pain. However, due to its avascular nature and to the low metabolic activity of the constituent cells-the chondrocytes, cartilage has a low regenerative potential. The current surgical options to treat damaged cartilage are not long lasting and involve frequent revisions. Tissue engineering may provide an alternative approach for cartilage...

  5. Type III Collagen, a Fibril Network Modifier in Articular Cartilage*

    OpenAIRE

    Wu, Jiann-Jiu; Weis, Mary Ann; Kim, Lammy S.; Eyre, David R.

    2010-01-01

    The collagen framework of hyaline cartilages, including articular cartilage, consists largely of type II collagen that matures from a cross-linked heteropolymeric fibril template of types II, IX, and XI collagens. In the articular cartilages of adult joints, type III collagen makes an appearance in varying amounts superimposed on the original collagen fibril network. In a study to understand better the structural role of type III collagen in cartilage, we find that type III collagen molecules...

  6. Development of artificial articular cartilage

    Indian Academy of Sciences (India)

    Biswajit Bera

    2009-10-01

    The present study describes the development of artificial articular cartilage on the basis of mimicking structural gel properties and mechanical gel properties of natural articular cartilage. It is synthesized from PVA/Si nanocomposite containing 20% Tetra ethoxy silane (TEOS) by sol–gel method. Mechanical strength of Poly(vinyl alcohol), PVA is improved up to 35 MPa. Manufacturing method is adopted considering colloidal stability of nano silica particle in PVA sol at specific pH = 1. An adhesive is also prepared from PVA/Si nanocomposite containing 40% TEOS for firm attachment of artificial articular cartilage on underlying bone with high bond strength.

  7. Semi-automatic knee cartilage segmentation

    Science.gov (United States)

    Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus

    2006-03-01

    Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.

  8. Repairing articular cartilage defects with tissue-engineering cartilage in rabbits

    Institute of Scientific and Technical Information of China (English)

    SONG Hong-xing; LI Fo-bao; SHEN Hui-liang; LIAO Wei-ming; LIU Miao; WANG Min; CAO Jun-ling

    2006-01-01

    Objective: To investigate the effect of cancellous bone matrix gelatin (BMG) engineered with allogeneic chondrocytes in repairing articular cartilage defects in rabbits.Methods: Chondrocytes were seeded onto three-dimensional cancellous BMG and cultured in vitro for 12 days to prepare BMG-chondrocyte complexes. Under anesthesia with 2.5% pentobarbital sodium (1 ml/kg body weight), articular cartilage defects were made on the right knee joints of 38 healthy New Zealand white rabbits (regardless of sex, aged 4-5 months and weighing 2.5-3 kg) and the defects were then treated with 2.5 % trypsin.Then BMG-chondrocyte complex (Group A, n=18 ),BMG ( Group B, n=10), and nothing ( Group C, n=10)were implanted into the cartilage defects, respectively. The repairing effects were assessed by macroscopic, histologic,transmission electron microscopic (TEM) observation,immunohistochemical examination and in situ hybridization detection, respectively, at 2, 4, 8, 12 and 24 weeks after operation.Results: Cancellous BMG was degraded within 8 weeks after operation. In Group A, lymphocyte infiltration was observed around the graft. At 24 weeks after operation, the cartilage defects were repaired by cartilage tissues and the articular cartilage and subchondral bone were soundly healed. Proteoglycan and type Ⅱ collagen were detected in the matrix of the repaired tissues by Safranin-O staining and immunohistochemical staining,respectively. In situ hybridization proved gene expression of type Ⅱ collagen in the cytoplasm of chondrocytes in the repaired tissues. TEM observation showed that chondrocytes and cartilage matrix in repaired tissues were almost same as those in the normal articular cartilage. In Group B, the defects were repaired by cartilage-fibrous tissues. In Group C, the defects were repaired only by fibrous tissues.Conclusions : Cancellous BMG can be regarded as the natural cell scaffolds for cartilage tissue engineering.Articular cartilage defects can be repaired by

  9. Preparation of Articular Cartilage Specimens for Scanning Electron Microscopy.

    Science.gov (United States)

    Stupina, T A

    2016-08-01

    We developed and adapted a technology for preparation of articular cartilage specimens for scanning electron microscopy. The method includes prefixation processing, fixation, washing, and dehydration of articular cartilage specimens with subsequent treatment in camphene and air-drying. The technological result consists in prevention of deformation of the articular cartilage structures. The method is simpler and cheaper than the known technologies. PMID:27591865

  10. Spectrocolorimetric evaluation of repaired articular cartilage after a microfracture

    Directory of Open Access Journals (Sweden)

    Dohi Yoshihiro

    2008-09-01

    Full Text Available Abstract Background In clinical practice, surgeons differentiate color changes in repaired cartilage compared with surrounding intact cartilage, but cannot quantify these color changes. Objective assessments are required. A spectrocolorimeter was used to evaluate whether intact and repaired cartilage can be quantified. Findings We investigated the use of a spectrocolorimeter and the application of two color models (L* a* b* colorimetric system and spectral reflectance distribution to describe and quantify articular cartilage. In this study, we measured the colors of intact and repaired cartilage after a microfracture. Histologically, the repaired cartilage was a mixture of fibrocartilage and hyaline cartilage. In the L* a* b* colorimetric system, the L* and a* values recovered to close to the values of intact cartilage, whereas the b* value decreased over time after the operation. Regarding the spectral reflectance distribution at 12 weeks after the operation, the repaired cartilage had a higher spectral reflectance ratio than intact cartilage between wavelengths of 400 to 470 nm. Conclusion This study reports the first results regarding the relationship between spectrocolorimetric evaluation and the histological findings of repair cartilage after a microfracture. Our findings demonstrate the ability of spectrocolorimetric measurement to judge the repair cartilage after treatment on the basis of objective data such as the L*, a* and b* values and the SRP as a coincidence index of the spectral reflectance curve.

  11. Bovine Herpesvirus 4 infections and bovine mastitis

    NARCIS (Netherlands)

    Wellenberg, Gerardus Johannus

    2002-01-01

    Mastitis is an often occurring disease in dairy cattle with an enormous economic impact for milk producers worldwide. Despite intensive research, which is historically based on the detection of bacterial udder pathogens, still around 20-35% of clinical cases of bovine mastitis have an unknown aetiol

  12. Molecular Profiling of Multiplexed Gene Markers to Assess Viability of Ex Vivo Human Colon Explant Cultures

    OpenAIRE

    Drew, Janice E.; Andrew J Farquharson; Vase, Hollie; Carey, Frank A.; Steele, Robert J C; Ross, Ruth A; Bunton, David C.

    2015-01-01

    Abstract Human colon tissue explant culture provides a physiologically relevant model system to study human gut biology. However, the small (20–30 mg) and complex tissue samples used present challenges for monitoring tissue stability, viability, and provision of sufficient tissue for analyses. Combining molecular profiling with explant culture has potential to overcome such limitations, permitting interrogation of complex gene regulation required to maintain gut mucosa in culture, monitor res...

  13. Explant culture of rat colon: A model system for studying metabolism of chemical carcinogens

    DEFF Research Database (Denmark)

    Autrup, Herman; Stoner, G.D.; Jackson, F.;

    1978-01-01

    An explant culture system has been developed for the long-term maintenance of colonic tissue from the rat. Explants of 1 cm2 in size were placed in tissue-culture dishes to which was added 2 ml of CMRL-1066 medium supplemented with glucose, hydrocortisone, beta-retinyl acetate, and either 2.5% bo......,12-dimethylbenz[alpha]anthracene, aflatoxin B1, dimethylnitrosamine, 1,2-dimethylhydrazine, and methylazoxymethanol acetate into chemical species that bind to cellular DNA and protein....

  14. Effects of laser irradiation on immature olfactory neuroepithelial explants from the rat

    Energy Technology Data Exchange (ETDEWEB)

    Mester, A.F.; Snow, J.B. Jr.

    1988-07-01

    The photobiological effect of low-output laser irradiation on the maturation and regeneration of immature olfactory bipolar receptor cells of the rat was studied. The maturation and regeneration of the receptor cells of rat fetuses were quantified in neuroepithelial explants with morphometric analysis. The number of explants with outgrowth and the number and length of neuritic outgrowths were determined on a regular basis for 12 days. Explants in the experimental group were irradiated with a helium-neon laser using different incident energy densities (IED). Explants in the fluorescent light control group were exposed to fluorescent light for the same periods of time as those in the experimental group were exposed to laser irradiation. Explants in another control group were not exposed to laser or fluorescent light irradiation. The IED of 0.5 J/cm2 laser irradiation has been found to increase significantly the number of explants with outgrowth and the number and length of the outgrowths. Other laser IEDs or fluorescent light irradiation did not influence maturation or regeneration.

  15. Investigation of the performance of articular cartilage and synthetic biomaterials in multi-directional sliding motion as in orthopedic implants

    Science.gov (United States)

    Schwartz, Christian John

    The performance of several synthetic biomaterials and bovine articular cartilage were investigated in terms of their suitability for use as articulating surfaces in artificial joints. The Dual-Axis Wear Simulator (DAWS), a wear testing machine that simulates conditions in a synovial joint, was designed and fabricated to enable investigators to measure the wear of such materials in multi-directional sliding while immersed in a bovine serum lubricant solution. This machine was used initially to determine the wear mechanisms and wear amounts of ultra-high molecular weight polyethylene (UHMWPE), polytetrafluoroethylene (PTFE), polyoxymethylene (POM), and the compliant elastomer Pellethane(TM) 2363-80A. It was found that the compliant material produced lower wear. Dynamic mechanical analysis was used to determine that bovine articular cartilage had a very significant amount of viscoelasticity to support static loads and damp impact loads. Furthermore, the use of a compliant counterface led to lower wear in the cartilage as compared to a rigid counterface. Pt-Zr quasicrystals were used as fillers in UHMWPE, and the wear, stiffness, and impact toughness of the filled polymer were shown to be comparable or better than those of UHMWPE that had been irradiation crosslinked. Crosslinked UHMWPE was investigated for its susceptibility to oxidative degradation and increased wear. It was found that thermal stabilization of the polymer could be eliminated if a mild amount crosslinking was used. Furthermore, there was no degradation in wear resistance of mildly crosslinked and non-stabilized UHMWPE even after accelerated aging. Based on the results of this work and lessons learned about compliance and wear resistance, blends were produced by using surface-activated UHMWPE particles as fillers in elastomeric PUR. The blends showed better wear resistance than UHMWPE, as well as increased stiffness and damping over PUR. The results of this work indicated that there is great potential

  16. Pine somatic embryogenesis using zygotic embryos as explants.

    Science.gov (United States)

    Pullman, Gerald S; Bucalo, Kylie

    2011-01-01

    Somatic embryogenesis (SE) has the potential to be the lowest-cost method to rapidly produce large numbers of high-value somatic seedlings with desired characteristics for plantation forestry. At least 24 of the 115-120 known Pinus species can undergo SE. Initiation for most species works best with immature megagametophytes as starting material, although a few pines can initiate SE cultures from isolated mature seed embryos. Successful initiation depends heavily on explant type, embryo developmental stage, and medium salt base. Most first reports of initiation used 2,4-D and BAP or a combination of cytokinins. More recent reports have optimized initiation for many Pinus spp., but still use mostly the combinations of auxin and cytokinins. Initiation can be stimulated with medium supplements including abscisic acid (ABA), brassinosteroids, ethylene inhibitors, gibberellin inhibitors, organic acids, putrescine, specific sugar types (maltose, galactose, D-chiro-inositol, and D-xylose), triacontanol, vitamins (B12, biotin, vitamin E, and folic acid), or manipulation of environmental factors including pH, water potential, cone cold storage, gelling agent concentration, and liquid medium. Embryo development and maturation usually occur best on medium containing ABA along with water potential reduction (with sugars and polyethylene glycol) or water availability reduction (with raised gelling agent increasing gel-strength). Activated carbon and maltose may also improve embryo maturation. The main issues holding SE technology back are related to the high cost of producing a somatic seedling, incurred from low initiation percentages for recalcitrant species, culture loss, and decline after initiation and poor embryo maturation resulting in no or poor germination. Although vast progress has been made in pine SE technology over the past 24 years, fundamental studies on seed and embryo physiology, biochemistry, and gene expression are still needed to help improve the technology

  17. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    Directory of Open Access Journals (Sweden)

    Betul Kul Babur

    Full Text Available We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage

  18. Advanced Strategies for Articular Cartilage Defect Repair

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2013-02-01

    Full Text Available Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.

  19. Cartilage repair: Generations of autologous chondrocyte transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Resinger, Christoph [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Vecsei, Vilmos [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation.

  20. PRP and Articular Cartilage: A Clinical Update

    Science.gov (United States)

    Rossi, Roberto; Castoldi, Filippo; Michielon, Gianni

    2015-01-01

    The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory. PMID:26075244

  1. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  2. Birth injuries to the epiphyseal cartilage

    International Nuclear Information System (INIS)

    A birth injury in the vicinity of a joint might lead to a fracture through the epiphyseal cartilage. The criteria for diagnosing such a fracture at radiography are considered and the continued remodelling of the bone demonstrated. The history of 2 cases with late diagnosis and serious long-term sequelae are described, in order to emphasize the necessity of early radiography. (Auth.)

  3. Nonspecific otalgia: Indication for cartilage tympanoplasty

    Directory of Open Access Journals (Sweden)

    Rauf Ahmad

    2015-01-01

    Full Text Available Introduction: Myringoplasty and tympanoplasty are commonly performed otologic surgical procedures. The aim of this study was to analyze the influence of nonspecific otalgia on the successful autologous conchal cartilage and temporalis fascia graft take up in type-1 tympanoplasty. Materials and Methods: A total of 250 adult patients who met the inclusion criteria were enrolled for this study. Patients were placed in two groups (otalgia and nonotalgia group depending upon the history of otalgia. Patients in both groups were operated (type-1 tympanoplasty using randomly either temporalis fascia or conchal cartilage as the graft material. Follow-up of patients was done after 3 weeks, 6 weeks, and 3 months of surgery to check the status of graft take up. Result: Our study shows that patients in otalgia group in which autologous temporalis fascia was used as the graft material, the majority of patients had graft necrosis by 3 months after surgery (9.6% success only. Whereas patients of the same group in which autologous conchal cartilage was used as the graft material, successful graft take up was in 93.5% patients after 3 months of surgery. Our study shows that there was not much difference in using autologous temporalis fascia or autologous conchal cartilage on successful graft take up in nonotolgia group of patients, with success rate of 97.89% and 97.84%, respectively.

  4. Spatially resolved elemental distributions in articular cartilage

    Science.gov (United States)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gründer, W.

    2001-07-01

    In this study, the nuclear microprobe technique is employed to analyse the chemistry of joint cartilage in order to correlate internal structures of the collagen network with the elemental distribution. The samples were taken from pig's knee joint. 30 μm thick coronar cross-sections were prepared by means of cryosectioning and freeze-drying. We performed simultaneously particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA). Thus we obtained spatially resolved distributions of the elements H, C, N, O, P, S, Cl, K and Ca. The main components of the organic matrix are H, C, N and O. It was shown that their relations vary with the cartilage structures. It could be shown that zones with aligned collagen fibrils contain less sulphur and potassium but more chlorine. The higher chlorine concentration is remarkable because newest biochemical studies found that hypochloric acid is involved in cartilage degradation. Furthermore, the calcium distribution is still of great interest. Its correlation to structural changes inside the cartilage is still being discussed. It could be disproved that zones of higher calcium concentration are related to the aligned structures of the collagen network.

  5. MULTIPLE OSSIFIED COSTAL CARTILAGES FOR 1ST RIB

    Directory of Open Access Journals (Sweden)

    Raghavendra D.R.

    2014-12-01

    Full Text Available Costal cartilages are flattened bars of hyaline cartilages. All ribs except the last two, join with the sternum through their respective costal cartilages directly or indirectly. During dissection for 1st MBBS students in the Department of Anatomy, JJMMC, Davangere, variation was found in a male cadaver aged 45 –50 years. Multiple ossified costal cartilages for 1st rib were present on left side. There were 3 costal cartilages connecting 1st rib to manubrium. There were two small intercostal spaces between them. The lower two small costal cartilages fused together to form a common segment which in turn fused with large upper costal cartilage. The large upper costal cartilage forms costochondral joint with 1st rib. All costal cartilages showed features of calcification. The present variation of multiple ossified costal cartilages are due to bifurcation of costal cartilage. It may cause musculoskeletal pain, intercostal nerve entrapment or vascular compression. Awareness of these anomalies are important for radiologists for diagnostic purpose and for surgeons for performing various clinical and surgical procedures.

  6. Facilitating cartilage volume measurement using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Maataoui, Adel, E-mail: adel.maataoui@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Gurung, Jessen, E-mail: jessen.gurung@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Ackermann, Hanns, E-mail: h.ackermann@add.uni-frankfurt.d [Institute for Epidemiology and Medical Statistics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Abolmaali, Nasreddin [Biological and Molecular Imaging, ZIK OncoRay - Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden (Germany); Kafchitsas, Konstantinos [Department of Orthopedics and Orthopedic Surgery, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz (Germany); Vogl, Thomas J., E-mail: t.vogl@em.uni-frankfurt.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Khan, M. Fawad, E-mail: fawad@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2010-08-15

    Purpose: To compare quantitative cartilage volume measurement (CVM) using different slice thicknesses. Materials and methods: Ten knees were scanned with a 1.5 T MRI (Sonata, Siemens, Erlangen, Germany) using a 3D gradient echo sequence (FLASH, fast low-angle shot). Cartilage volume of the medial and lateral tibial plateau was measured by two independent readers in 1.5 mm, 3.0 mm and 5.0 mm slices using the Argus software application. Accuracy and time effectiveness served as control parameters. Results: Determining cartilage volume, time for calculation diminished for the lateral tibial plateau from 384.6 {+-} 127.7 s and 379.1 {+-} 117.6 s to 214.9 {+-} 109.9 s and 213.9 {+-} 102.2 s to 122.1 {+-} 60.1 s and 126.8 {+-} 56.2 s and for the medial tibial plateau from 465.0 {+-} 147.7 s and 461.8 {+-} 142.7 s to 214.0 {+-} 67.9 s and 208.9 {+-} 66.2 s to 132.6 {+-} 41.5 s and 130.6 {+-} 42.0 s measuring 1.5 mm, 3 mm and 5 mm slices, respectively. No statistically significant difference between cartilage volume measurements was observed (p > 0.05) while very good inter-reader correlation was evaluated. Conclusion: CVM using 1.5 mm slices provides no higher accuracy than cartilage volume measurement in 5 mm slices while an overall time saving up to 70% is possible.

  7. Effect of Hormones on Direct Shoot Regeneration in Hypocotyl Explants of Tomato

    Directory of Open Access Journals (Sweden)

    Rizwan RASHID

    2010-03-01

    Full Text Available This study was conducted for developing a high frequency regeneration system in two genotypes of tomato (Lycopersicon esculentum Mill., �Punjab Upma� and �IPA-3� for direct shoot regeneration from hypocotyl explants. The explants were excised from in vitro tomato seedlings and cultured on MS medium supplemented with different concentrations and combinations of hormones. Direct regeneration was significantly influenced by the genotype hormones combination and concentrations. The MS medium supplemented with (Kinetin 0.5 mg/l and (BAP 0.5 mg/l was found optimum for inducing direct shoot regeneration and number of shoots per explant from hypocotyl explants on this medium. Shoot regeneration per cent in �Punjab Upma� and �IPA-3� per cent was recorded to be highest i.e (86.02 and (82.57 respectively. Besides this, average number shoots per explant was also highest i.e (3.16 in case of �Punjab Upma� and (2.93 in case of �IPA-3�. A significant decline was observed in percent shoot regeneration and average number of shoots per explant with increase in the hormonal concentration. Shoots were obtained and transferred to the elongation medium (MS + BAP 0.3 mg/l. Hundred per cent rooting was induced in separated shoots upon culturing on MS and � MS basal media. Hardening on moist cotton showed maximum plantlet survival rate in case of both genotypes. After hardening, plants were transferred to soil. Thus, a tissue culture base line was established in tomato for obtaining direct regeneration using hypocotyl as explants.

  8. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants.

    Science.gov (United States)

    Lone, Abdul G; Atci, Erhan; Renslow, Ryan; Beyenal, Haluk; Noh, Susan; Fransson, Boel; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R; Call, Douglas R

    2015-06-01

    We developed a porcine dermal explant model to determine the extent to which Staphylococcus aureus biofilm communities deplete oxygen, change pH, and produce damage in underlying tissue. Microelectrode measurements demonstrated that dissolved oxygen (DO) in biofilm-free dermal tissue was 4.45 ± 1.17 mg/liter, while DO levels for biofilm-infected tissue declined sharply from the surface, with no measurable oxygen detectable in the underlying dermal tissue. Magnetic resonance imaging demonstrated that biofilm-free dermal tissue had a significantly lower relative effective diffusion coefficient (0.26 ± 0.09 to 0.30 ± 0.12) than biofilm-infected dermal tissue (0.40 ± 0.12 to 0.48 ± 0.12; P < 0.0001). Thus, the difference in DO level was attributable to biofilm-induced oxygen demand rather than changes in oxygen diffusivity. Microelectrode measures showed that pH within biofilm-infected explants was more alkaline than in biofilm-free explants (8.0 ± 0.17 versus 7.5 ± 0.15, respectively; P < 0.002). Cellular and nuclear details were lost in the infected explants, consistent with cell death. Quantitative label-free shotgun proteomics demonstrated that both proapoptotic programmed cell death protein 5 and antiapoptotic macrophage migration inhibitory factor accumulated in the infected-explant spent medium, compared with uninfected-explant spent media (1,351-fold and 58-fold, respectively), consistent with the cooccurrence of apoptosis and necrosis in the explants. Biofilm-origin proteins reflected an extracellular matrix-adapted lifestyle of S. aureus. S. aureus biofilms deplete oxygen, increase pH, and induce cell death, all factors that contribute to impede wound healing.

  9. Staphylococcus aureus Induces Hypoxia and Cellular Damage in Porcine Dermal Explants

    Science.gov (United States)

    Lone, Abdul G.; Atci, Erhan; Renslow, Ryan; Beyenal, Haluk; Noh, Susan; Fransson, Boel; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R.

    2015-01-01

    We developed a porcine dermal explant model to determine the extent to which Staphylococcus aureus biofilm communities deplete oxygen, change pH, and produce damage in underlying tissue. Microelectrode measurements demonstrated that dissolved oxygen (DO) in biofilm-free dermal tissue was 4.45 ± 1.17 mg/liter, while DO levels for biofilm-infected tissue declined sharply from the surface, with no measurable oxygen detectable in the underlying dermal tissue. Magnetic resonance imaging demonstrated that biofilm-free dermal tissue had a significantly lower relative effective diffusion coefficient (0.26 ± 0.09 to 0.30 ± 0.12) than biofilm-infected dermal tissue (0.40 ± 0.12 to 0.48 ± 0.12; P diffusivity. Microelectrode measures showed that pH within biofilm-infected explants was more alkaline than in biofilm-free explants (8.0 ± 0.17 versus 7.5 ± 0.15, respectively; P < 0.002). Cellular and nuclear details were lost in the infected explants, consistent with cell death. Quantitative label-free shotgun proteomics demonstrated that both proapoptotic programmed cell death protein 5 and antiapoptotic macrophage migration inhibitory factor accumulated in the infected-explant spent medium, compared with uninfected-explant spent media (1,351-fold and 58-fold, respectively), consistent with the cooccurrence of apoptosis and necrosis in the explants. Biofilm-origin proteins reflected an extracellular matrix-adapted lifestyle of S. aureus. S. aureus biofilms deplete oxygen, increase pH, and induce cell death, all factors that contribute to impede wound healing. PMID:25847960

  10. Derivation of an equation to estimate marrow content of bovine cervical vertebrae.

    Science.gov (United States)

    Gebault, R A; Field, R A; Means, W J; Russell, W C

    1998-08-01

    Marrow content of bovine cervical vertebrae from Choice- and Select-grade carcasses weighing 294 to 343 kg was determined so that a method to monitor the amount of marrow in meat from advanced meat/bone separation machinery and recovery (AMR) systems could be developed. The marrow determination requires cleaning and then ashing bones. Because a large difference in ash content of bone and bone marrow exists and because cartilage content of cervical vertebrae in Choice and Select beef is relatively constant, it was possible to derive the following equation: Weight of marrow = [weight of cartilage (% ash in cartilage - % ash in bone) + % ash in bone (total weight) - (total ash)]/[(% ash in bone - % ash in marrow)]. Constants for ash in fresh bone, marrow, and cartilage were 58.51, .57, and 2.14% with SD of 2.23, .15, and .30%, respectively. A cartilage content of 9.5% along with cervical vertebrae weight and total ash weight were also used to calculate 33.9% marrow in cervical vertebrae. Means for marrow pressed or centrifuged from bovine cervical vertebrae were lower than those obtained from the equation. Therefore, pressing and centrifuging left some marrow in spongy bone. Our ashing method for determining the amount of marrow in whole cervical vertebrae should be useful for determining marrow remaining in cervical vertebrae of bone cakes from AMR systems. Percentage ash in pressed bones is higher and the calculated marrow content is lower when pressed bones are compared to cervical vertebrae that are not pressed. The amount of marrow in whole cervical vertebrae minus the amount left in cervical vertebrae from bone cakes equals the amount in meat from AMR systems.

  11. Unsaturated phosphatidylcholines lining on the surface of cartilage and its possible physiological roles

    Directory of Open Access Journals (Sweden)

    Crawford Ross W

    2007-08-01

    Full Text Available Abstract Background Evidence has strongly indicated that surface-active phospholipid (SAPL, or surfactant, lines the surface of cartilage and serves as a lubricating agent. Previous clinical study showed that a saturated phosphatidylcholine (SPC, dipalmitoyl-phosphatidylcholine (DPPC, was effective in the treatment of osteoarthritis, however recent studies suggested that the dominant SAPL species at some sites outside the lung are not SPC, rather, are unsaturated phosphatidylcholine (USPC. Some of these USPC have been proven to be good boundary lubricants by our previous study, implicating their possible important physiological roles in joint if their existence can be confirmed. So far, no study has been conducted to identify the whole molecule species of different phosphatidylcholine (PC classes on the surface of cartilage. In this study we identified the dominant PC molecule species on the surface of cartilage. We also confirmed that some of these PC species possess a property of semipermeability. Methods HPLC was used to analyse the PC profile of bovine cartilage samples and comparisons of DPPC and USPC were carried out through semipermeability tests. Results It was confirmed that USPC are the dominant SAPL species on the surface of cartilage. In particular, they are Dilinoleoyl-phosphatidylcholine (DLPC, Palmitoyl-linoleoyl-phosphatidylcholine, (PLPC, Palmitoyl-oleoyl-phosphatidylcholine (POPC and Stearoyl-linoleoyl-phosphatidylcholine (SLPC. The relative content of DPPC (a SPC was only 8%. Two USPC, PLPC and POPC, were capable of generating osmotic pressure that is equivalent to that by DPPC. Conclusion The results from the current study confirm vigorously that USPC is the endogenous species inside the joint as against DPPC thereby confirming once again that USPC, and not SPC, characterizes the PC species distribution at non-lung sites of the body. USPC not only has better anti-friction and lubrication properties than DPPC, they also

  12. Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis Regeneração de plantas de Eucalyptus camaldulensis a partir das explantes cotiledonares

    Directory of Open Access Journals (Sweden)

    Roberson Dibax

    2005-08-01

    Full Text Available Breeding methods based on genetic transformation techniques need to be implemented for Eucalyptus camaldulensis to shorten the long breeding cycles and avoid manipulation of adult trees; that requires the development of plant regeneration protocols enabling development of plants from transformed tissues. The present work aimed to optimise the regeneration process already established for the species. Cotyledonary leaves of E. camaldulensis were cultured in MS medium supplemented with naphthaleneacetic acid (NAA and 6-benzylaminopurine (BAP combinations. The most efficient treatment for bud indirect regeneration (2.7 µmol L-1 NAA and 4.44 µmol L-1 BAP was used for further experiments. When explants were kept in the dark during the first 30 days, the percentage of explants forming calluses increased and explant necrosis was reduced in comparison with light-cultured explants. Mineral medium modifications were compared and half-strength MS mineral medium turned out to be as efficient as full-strength medium, producing 54% and 47% of explants with buds, respectively. For shoot elongation, MS medium with half-strength nitrate and ammonium salts, and 0.2% activated charcoal yielded rooted shoots 1 to 8 cm high after one month. The procedure is an efficient protocol for E. camadulensis plant regeneration, reducing the stages necessary for the obtention of complete plants.A implementação, para espécies florestais, de técnicas de melhoramento baseadas em métodos de transformação genética, permitirá reduzir os longos ciclos de melhoramento e evitar a manipulação de árvores adultas. Isto implica dispor de um protocolo de regeneração que permita o desenvolvimento de plantas a partir de tecidos transformados. Este trabalho teve como objetivo otimizar este protocolo de regeneração para Eucalyptus camaldulensis. Folhas cotiledonares foram cultivadas em meio de cultura MS suplementado com combinações de ácido naftalenoacético (ANA e 6

  13. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage

    Directory of Open Access Journals (Sweden)

    Charlotte M. Beddoes

    2016-06-01

    Full Text Available Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.

  14. 奶牛乳腺上皮细胞的原代培养%Primary Culture of Bovine Mammary Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    吴娟; 王凤龙; 王申元

    2009-01-01

    [Objective] To investigate the feasibility of the primary culture of bovine mammary epithelial cells in biochemical incubator. [Method] In vitro, bovine mammary epithelial cells were isolated and cultured by the tissue explant method in order to investigate the optimal culture conditions. The morphology observation and identification of the cultured cells were performed by inverted microscope observation, Giemsa staining and cytokeratin immunohistochemistry. [Result] Observed with inverted microscope, most of the bovine mammary epithelial cells were polygonal and displayed typical slabstone-like appearance. As it can be seen from cell staining results, the cell body was big and the nucleus was stained dark blue and was round or oval in shape, with clearly visible nucleoli, generally 2-4 nucleoli. The tissue-specific expression of cytokeratin 14 and cytokeratin 18 genes in mammary epithelial cells was identified by cytokeratin immunohistochemistry. [Conclusion] Primary bovine mammary epithelial cells were successfully cultured in biochemical incubator.

  15. Organogênese de explante foliar de clones de Eucalyptus grandis x E. urophylla Organogenesis of the leaf explant of Eucalyptus grandis x E. urophylla clones

    Directory of Open Access Journals (Sweden)

    Elisa Cristina Soares de Carvalho Alves

    2004-05-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos dos reguladores de crescimento TDZ [1-fenil-3-(1,2,3-tia-diazol-5-iluréia], BAP (6-benzilaminopurina e ANA (ácido naftalenoacético no desempenho da propagação in vitro por organogênese de explante foliar de três clones híbridos de Eucalyptus grandis x Eucalyptus urophylla. Houve resposta diferenciada dos clones quanto a intensidade, textura e coloração dos calos, em razão dos tratamentos com os reguladores de crescimento. Os melhores resultados de calejamento dos três genótipos foram observados nos tratamentos com a combinação dos reguladores de crescimento TDZ (0,5 mg L-1 e ANA (0,1 mg L-1, obtendo-se 100% de calejamento no explante foliar. Os piores resultados de calejamento foram observados nos tratamentos com a combinação dos reguladores de crescimento BAP (0,1 mg L-1 e ANA (0,1 mg L-1. Em relação à regeneração, a melhor resposta foi obtida com 1,0 mg L-1 BAP em que 8% dos calos formados a partir de explantes foliares regeneraram gemas, com número médio destas formadas por calo igual a 4,2.The aim of this work was to evaluate the effects of growth regulators TDZ [1-phenil-3-(1,2,3-thiadiazol-5-yl urea], BAP (6-benzilaminopurine e NAA (Naphthalene acetic acid on the in vitro propagation by organogenesis from foliar explants of Eucalyptus grandis x E. urophylla. Depending on the clone used, there were singular responses to growth regulators treatment regarding callusing intensity, texture and color. The best results of the three genotypes used were observed with the TDZ (0.5 mg L-1 and NAA (0.1 mg L-1 treatment, where 100% of the foliar explants presented callus. The worst results were observed with the BAP (0.1 mg L-1 and NAA (0.1 mg L-1 treatment. Subsequently, considering the regeneration process, the best response was achieved with 1.0 mg L-1 BAP, in which 8% of the calli regenerated buds, with an average of 4.2 buds per explant.

  16. Cartilage restoration technique of the hip.

    Science.gov (United States)

    Mardones, Rodrigo; Larrain, Catalina

    2016-04-01

    Hip cartilage lesions represent a diagnostic challenge and can be an elusive source of pain. Treatment may present difficulties due to localization and spherical form of the joint and is most commonly limited to excision, debridement, thermal chondroplasty and microfractures. This chapter will focus in new technologies to enhance the standard techniques. These new technologies are based in stem cells therapies; as intra-articular injections of expanded mesenchymal stem cells, mononuclear concentrate in a platelet-rich plasma matrix and expanded mesenchymal stem cells seeded in a collagen membrane. This review will discuss the bases, techniques and preliminary results obtained with the use of stem cells for the treatment of hip cartilage lesions. PMID:27026816

  17. Bioprinted Scaffolds for Cartilage Tissue Engineering.

    Science.gov (United States)

    Kang, Hyun-Wook; Yoo, James J; Atala, Anthony

    2015-01-01

    Researchers are focusing on bioprinting technology as a viable option to overcome current difficulties in cartilage tissue engineering. Bioprinting enables a three-dimensional (3-D), free-form, computer-designed structure using biomaterials, biomolecules, and/or cells. The inner and outer shape of a scaffold can be controlled by this technology with great precision. Here, we introduce a hybrid bioprinting technology that is a co-printing process of multiple materials including high-strength synthetic polymer and cell-laden hydrogel. The synthetic polymer provides mechanical support for shape maintenance and load bearing, while the hydrogel provides the biological environment for artificial cartilage regeneration. This chapter introduces the procedures for printing of a 3-D scaffold using our hybrid bioprinting technology and includes the source materials for preparation of 3-D printing. PMID:26445837

  18. Time-Dependent Nanomechanics of Cartilage

    OpenAIRE

    Han, Lin; Frank, Eliot H.; Greene, Jacqueline J.; Lee, Hsu-Yi; Hung, Han-Hwa K.; Grodzinsky, Alan J.; Ortiz, Christine

    2011-01-01

    In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus Eind, force-relaxation time constant τ, magnitude of dynamic complex modulus |E∗|, phase angle δ between force and indentation depth, storage modulus E′, and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E∗| increased significant...

  19. Cartilage restoration technique of the hip

    OpenAIRE

    Mardones, Rodrigo; Larrain, Catalina

    2015-01-01

    Hip cartilage lesions represent a diagnostic challenge and can be an elusive source of pain. Treatment may present difficulties due to localization and spherical form of the joint and is most commonly limited to excision, debridement, thermal chondroplasty and microfractures. This chapter will focus in new technologies to enhance the standard techniques. These new technologies are based in stem cells therapies; as intra-articular injections of expanded mesenchymal stem cells, mononuclear conc...

  20. Articular cartilage collagen: an irreplaceable framework?

    OpenAIRE

    Eyre, D. R.; Weis, M A; J-J Wu

    2006-01-01

    Adult articular cartilage by dry weight is two-thirds collagen. The collagen has a unique molecular phenotype. The nascent type II collagen fibril is a heteropolymer, with collagen IX molecules covalently linked to the surface and collagen XI forming the filamentous template of the fibril as a whole. The functions of collagens IX and XI in the heteropolymer are far from clear but, evidently, they are critically important since mutations in COLIX and COLXI genes can result in chondrodysplasia ...

  1. Oxygen, nitric oxide and articular cartilage

    OpenAIRE

    Fermor, B.; Christensen, S. E.; I Youn; J M Cernanec; C M Davies; Weinberg, J. B.

    2007-01-01

    Molecular oxygen is required for the production of nitric oxide (NO), a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O...

  2. Embryoid Body-Explant Outgrowth Cultivation from Induced Pluripotent Stem Cells in an Automated Closed Platform

    Science.gov (United States)

    Tone, Hiroshi; Yoshioka, Saeko; Akiyama, Hirokazu; Nishimura, Akira; Ichimura, Masaki; Nakatani, Masaru; Kiyono, Tohru

    2016-01-01

    Automation of cell culture would facilitate stable cell expansion with consistent quality. In the present study, feasibility of an automated closed-cell culture system “P 4C S” for an embryoid body- (EB-) explant outgrowth culture was investigated as a model case for explant culture. After placing the induced pluripotent stem cell- (iPSC-) derived EBs into the system, the EBs successfully adhered to the culture surface and the cell outgrowth was clearly observed surrounding the adherent EBs. After confirming the outgrowth, we carried out subculture manipulation, in which the detached cells were simply dispersed by shaking the culture flask, leading to uniform cell distribution. This enabled continuous stable cell expansion, resulting in a cell yield of 3.1 × 107. There was no evidence of bacterial contamination throughout the cell culture experiments. We herewith developed the automated cultivation platform for EB-explant outgrowth cells. PMID:27648449

  3. Embryoid Body-Explant Outgrowth Cultivation from Induced Pluripotent Stem Cells in an Automated Closed Platform

    Science.gov (United States)

    Tone, Hiroshi; Yoshioka, Saeko; Akiyama, Hirokazu; Nishimura, Akira; Ichimura, Masaki; Nakatani, Masaru; Kiyono, Tohru

    2016-01-01

    Automation of cell culture would facilitate stable cell expansion with consistent quality. In the present study, feasibility of an automated closed-cell culture system “P 4C S” for an embryoid body- (EB-) explant outgrowth culture was investigated as a model case for explant culture. After placing the induced pluripotent stem cell- (iPSC-) derived EBs into the system, the EBs successfully adhered to the culture surface and the cell outgrowth was clearly observed surrounding the adherent EBs. After confirming the outgrowth, we carried out subculture manipulation, in which the detached cells were simply dispersed by shaking the culture flask, leading to uniform cell distribution. This enabled continuous stable cell expansion, resulting in a cell yield of 3.1 × 107. There was no evidence of bacterial contamination throughout the cell culture experiments. We herewith developed the automated cultivation platform for EB-explant outgrowth cells.

  4. Time-dependent nanomechanics of cartilage.

    Science.gov (United States)

    Han, Lin; Frank, Eliot H; Greene, Jacqueline J; Lee, Hsu-Yi; Hung, Han-Hwa K; Grodzinsky, Alan J; Ortiz, Christine

    2011-04-01

    In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus E(ind), force-relaxation time constant τ, magnitude of dynamic complex modulus |E(∗)|, phase angle δ between force and indentation depth, storage modulus E', and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E(∗)| increased significantly with frequency from 0.22 ± 0.02 MPa (1 Hz) to 0.77 ± 0.10 MPa (316 Hz), accompanied by an increase in δ (energy dissipation). At this length scale, the energy dissipation mechanisms were deconvoluted: the dynamic frequency dependence was primarily governed by the fluid-flow-induced poroelasticity, whereas the long-time force relaxation reflected flow-independent viscoelasticity. After PG depletion, the change in the frequency response of |E(∗)| and δ was consistent with an increase in cartilage local hydraulic permeability. Although untreated disks showed only slight dynamic amplitude-dependent behavior, PG-depleted disks showed great amplitude-enhanced energy dissipation, possibly due to additional viscoelastic mechanisms. Hence, in addition to functioning as a primary determinant of cartilage compressive stiffness and hydraulic permeability, the presence of aggrecan minimized the amplitude dependence of |E(∗)| at nanometer-scale deformation. PMID:21463599

  5. Technique and results of cartilage shield tympanoplasty

    Directory of Open Access Journals (Sweden)

    Sohil I Vadiya

    2014-01-01

    Full Text Available Aim: Use of cartilage for repair of tympanic membrane is recommended by many otologists. The current study aims at evaluating results of cartilage shield tympanoplasty in terms of graft take up and hearing outcomes. Material and Methods: In the current study, cartilage shield tympanoplasty(CST is used in ears with high risk perforations of the tympanic membrane. A total of 40 ears were selected where type I CST was done in 30 ears and type III CST was done in 10 ears. Results: An average of 37.08 dB air bone gap(ABG was present in pre operative time and an average of 19.15 dB of ABG was observed at 6 months after the surgery with hearing gain of 17.28 dB on average was observed. Graft take up rate of 97.5% was observed. The technique is modified to make it easier and to minimize chances of lateralization of graft. Conclusion: The hearing results of this technique are comparable to other methods of tympanic membrane repair.

  6. Irradiated homologous costal cartilage for augmentation rhinoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Lefkovits, G. (Lenox Hill Hospital, New York, NY (USA))

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  7. Patterns of proteoglycan degradation by a neutral protease from human growth-plate epiphyseal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, M.G.; Armstrong, A.L.; Neuman, R.G.; Davis, M.W.; Mankin, H.J.

    1982-12-01

    The hypothesis is widely held that proteolytic degradation of proteoglycans in the lower hypertrophic zone of the growth plate may be involved in the initiation of mineralization in the zone of provisional calcification. However, a neutral protease that is responsible for the degradation of proteoglycans in the growth plate has not been identified, isolated, and characterized. In the work reported here, neutral protease activity in the growth plate is demonstrated for the first time, and some of the properties of the enzyme are described. Proteoglycans subunits were prepared from bovine nasal cartilage and calf costal cartilage by equilibrium density-gradient centrifugation under dissociative conditions. The proteoglycan subunits were labeled with /sup 14/C-formaldehyde. Homogenates from human growth plates were examined for neutral protease activity using the proteoglycan subunits as substrates. Following incubation of the proteoglycan subunits with growth-plate homogenates at pH 5.3 and at pH 7.5 in the presence and absence of ten-millimolar magnesium chloride and calcium chloride, the digestion products were examined by gel chromatography on Sepharose-2B and 6B columns. Column eluants containing proteoglycan-subunit degradation products were monitored for uronic acid, hexose, and radio-activity. Maximum extensive degradation of proteoglycan subunits occurred at pH 7.5 in the presence of ten-millimolar magnesium chloride and calcium chloride.

  8. Stem Cell-assisted Approaches for Cartilage Tissue Engineering

    OpenAIRE

    Park, In-Kyu; Cho, Chong-Su

    2010-01-01

    The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering functional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue repair. When d...

  9. In Vitro Propagation of Desmodium gangeticum (L. DC. from Cotyledonary Nodal Explants

    Directory of Open Access Journals (Sweden)

    U R Vishwakarma

    2009-01-01

    Full Text Available An in vitro procedure for rapid multiplication of medicinally important plant Desmodium gangeticum (L. DC. (Fabaceae, has been developed using cotyledonary nodal explant. An average of 9.2 shoots per explant were obtained by culturing cotyledonary nodal explaint on Murashige and Skoog′s medium containing 8.8 μM BAP and 21.2 μM NAA, in combination, within 28 days. These shoots were rooted on half strength MS medium supplemented with IAA 17.1 μM. Rooted plantlets were hardened using 1:1:1 mixture of soil, river sand and vermiculite under green house conditions.

  10. In Vitro Propagation of Desmodium gangeticum (L.) DC. from Cotyledonary Nodal Explants

    OpenAIRE

    U R Vishwakarma; Gurav, A M; Sharma, P.C

    2009-01-01

    An in vitro procedure for rapid multiplication of medicinally important plant Desmodium gangeticum (L.) DC. (Fabaceae), has been developed using cotyledonary nodal explant. An average of 9.2 shoots per explant were obtained by culturing cotyledonary nodal explaint on Murashige and Skoog′s medium containing 8.8 μM BAP and 21.2 μM NAA, in combination, within 28 days. These shoots were rooted on half strength MS medium supplemented with IAA 17.1 μM. Rooted plantlets were hardened using 1:1:1 mix...

  11. Efficient Regeneration of �Caralis� Alstroemeria Cultivar from Rhizome Explants

    OpenAIRE

    Amir Ghaffar SHAHRIARI; Bagheri, Abdolreza; Sharifi, Ahmad; Nasrin MOSHTAGHI

    2012-01-01

    In this paper, the effects of a number of growth regulators as well as supplements to the Murashige and Skoog (MS) basal medium were evaluated on the regeneration of Alstroemeria rhizome explants. In the first experiment the effects of three cytokinins (BA, TDZ and 2IP each at 0.5, 1 and 2 mg/l) in combination with NAA (0.2 mg/l), followed by another PGR combination of 2IP (at 0.5, 1 and 2 mg/l) with NAA (0 and 0.2 mg/l), on regeneration of rhizome-derived explants, was investigated. Through ...

  12. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures

    Energy Technology Data Exchange (ETDEWEB)

    Morales, T.I. (Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD (United States))

    1991-04-01

    Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated (35S)sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (1) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (2) link-stable proteoglycan aggregates are assembled, (3) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (4) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.

  13. 77 FR 15847 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2012-03-16

    ..., ``Analysis of Bovine Spongiform Encephalopathy (BSE) Risk to the U.S. Cattle Population from Importation of... final rule did not limit the importation of bovine-derived meat from Canada to that derived from cattle... meat from bovines 30 months of age or older while continuing to prohibit the importation of live...

  14. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage.

    Science.gov (United States)

    Ichimaru, Shohei; Nakagawa, Shuji; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Fujiwara, Hiroyoshi; Shimomura, Seiji; Mazda, Osam; Kubo, Toshikazu

    2016-01-01

    Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses.

  15. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  16. Cutaneous Squamous Cell Carcinoma with Invasion through Ear Cartilage

    Directory of Open Access Journals (Sweden)

    Julie Boisen

    2016-01-01

    Full Text Available Cutaneous squamous cell carcinoma of the ear represents a high-risk tumor location with an increased risk of metastasis and local tissue invasion. However, it is uncommon for these cancers to invade through nearby cartilage. Cartilage invasion is facilitated by matrix metalloproteases, specifically collagenase 3. We present the unusual case of a 76-year-old man with an auricular squamous cell carcinoma that exhibited full-thickness perforation of the scapha cartilage. Permanent sections through the eroded cartilage confirmed tumor invasion extending to the posterior ear skin.

  17. The Application of Sheet Technology in Cartilage Tissue Engineering.

    Science.gov (United States)

    Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei

    2016-04-01

    Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions. PMID:26414455

  18. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Science.gov (United States)

    Bailleul, Alida M; Hall, Brian K; Horner, John R

    2013-01-01

    The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors. PMID:23418610

  19. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering.

    Science.gov (United States)

    Hilz, Florian M; Ahrens, Philipp; Grad, Sibylle; Stoddart, Martin J; Dahmani, Chiheb; Wilken, Frauke L; Sauerschnig, Martin; Niemeyer, Philipp; Zwingmann, Jörn; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger; Südkamp, Norbert P; Weyh, Thomas; Imhoff, Andreas B; Alini, Mauro; Salzmann, Gian M

    2014-02-01

    Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production.

  20. BOVINE VIRAL DIARRHEA VIRUSES

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is an umbrella term for two species of viruses, BVDV1 and BVDV2, within the Pestivirus genus of the Flavivirus family. BVDV viruses are further subclassified as cytopathic and noncytopathic based on their activity in cultured epithelial cells. Noncytopathic BVDV p...

  1. Bovine Spongiform Encephalopathy

    Science.gov (United States)

    Bovine spongiform encephalopathy (BSE), also referred to as “mad cow disease” is a chronic, non-febrile, neuro-degenerative disease affecting the central nervous system. The transmissible spongiform encephalopathies (TSEs) of domestic animals, of which BSE is a member includes scrapie of sheep...

  2. Bovine milk exosome proteome

    Science.gov (United States)

    Exosomes are 40-100 nm membrane vesicles of endocytic origin and are found in blood, urine, amniotic fluid, bronchoalveolar lavage (BAL) fluid, as well as human and bovine milk. Exosomes are extracellular organelles important in intracellular communication/signaling, immune function, and biomarkers ...

  3. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  4. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Science.gov (United States)

    Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue under

  5. Effect of clinorotation on in vitro cultured explants of Mentha piperita L.

    Science.gov (United States)

    Paolicchi, Fabio; Mensuali-Sodi, Anna; Tognoni, Franco

    2002-02-14

    An in vitro culture system was used to study the influence of gravity on axillary shoot formation and adventitious root regeneration in Mentha piperita L. The direction of the gravity vector was altered by displacing stem node explants in different orientations. Also, microgravity conditions were simulated by rotating the explants on a horizontal clinostat so that the main axis of nodes was either parallel (Cpa) or perpendicular to the clinostat axis (Ccp and Ccf, centripetally and centrifugally oriented, respectively). Mint nodes were cultured on solidified Linsmaier and Skoog's medium [Physiol. Plant. 18 (1965) 100] adding a filter-sterilized aqueous solution of 2 mg/l benzyladenine (BA) in half of the cultures. The proliferation of axillary shoots as well as adventitious root formation were not affected by altering upright explant orientation. On the contrary clinorotation was able to modify plantlet development. In absence of BA, leaf width was hindered by Cpa treatment and penultimate internode length was enhanced by Ccp. Furthermore, a negative effect of Cpa treatment was observed in root length parameter, while Ccp increased the root number both in absence and in presence of BA. An effect strictly connected to clinorotation in presence of BA was the occurrence of hyperhydricity. Moreover, explants under clinorotation treatments switched their gravitropic response modifying shoot curvature.

  6. Fumonisin B₁ (FB₁) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants.

    Science.gov (United States)

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-03-24

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B₁ (FB₁) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB₁ at any concentration on dermal or epidermal cells. However, FB₁ significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB₁ (2.5-10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB₁ impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB₁ might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB₁ on the equine hoof in more detail.

  7. CALLUS INDUCTION AND PLANT REGENERATION IN PUNICA GRANATUM L. ?NANA' FROM LEAF EXPLANTS

    Directory of Open Access Journals (Sweden)

    Alireza Bonyanpour

    2013-09-01

    Full Text Available ABSTRACT In this investigation, leaf explants of a local cultivar of dwarf pomegranate were placed on Murashige and Skoog (1962 (MS medium supplemented with various concentrations of 6-benzyl adenin (BA and naphthalene acetic acid (NAA for callus induction. After 40 days, maximum callus induction was observed on a media containing 1 mg L-1 BA and 0.2 to 0.4 mg L-1 NAA. However, the highest callus growth was obtained on a medium containing 1 mg L-1 BA and 1 mg L-1 NAA. The highest number of shoots (7 shoots per explants was obtained by transferring the calli to the media containing 5 mg L-1 BA with 0.1 mg L-1 NAA. Maximum shoot proliferation was observed when shoots were cultured on woody plant medium (WPM supplemented with 5 mg L-1 kinetin (Kin. In this treatment, after 4 subcultures, 36 shoots were produced from one original explant. Among treatments used in rooting experiments, shoots cultured on WPM medium containing 0.2 mg L-1 indol butyric acid (IBA had the maximum root percentage (100% and good root growth (2.06 cm mean length and 2 roots in each explants. Rooted plantlets were cultured in a soil mixture containing vermiculite (60%, perlite (30% and coco peat (10% v/v. After 2 months, 80% of plants survived and transferred to the greenhouse.

  8. Re-use of explanted DDD pacemakers as VDD- clinical utility and cost effectiveness.

    Science.gov (United States)

    Namboodiri, K K N; Sharma, Y P; Bali, H K; Grover, A

    2004-01-01

    Re-use of DDD pulse generators explanted from patients died of unrelated causes is associated with an additional cost of two transvenous leads if implanted as DDD itself, and high rate of infection according to some studies. We studied the clinical and economical aspects of reutilization of explanted DDD pacemakers programmed to VDD mode. Out of 28 patients who received VDD pacemaker during the period, October 2000- September 2001 in the Department of Cardiology, PGIMER, Chandigarh, 5 poor patients were implanted with explanted DDD pulse generators programmed to VDD mode. Each implantation was planned and carried out according to a standard protocol. The age ranged from 45 to 75 (mean-61) years. The indications for pacing were complete heart block (4) and second degree AV block (1). The clinical profile, costs and complications, if any were noted and followed up at regular intervals. The results were compared with patients who received new DDD pulse generators during this period. The additional cost for the atrial lead was not required in these patients. None of these patients had any local site infection. Compared to the two-lead system, the single lead system provided more rapid implantation and minimized complications associated with placement of an atrial lead. The explanted DDD pacemaker can be safely reused as VDD mode with same efficacy in selected patient population. This is associated with lower cost and complications compared to reimplantation as DDD itself.

  9. Production of immunoglobulins in gingival tissue explant cultures from juvenile periodontitis patients

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B. (Univ. of Maryland Dental School, Baltimore (USA))

    1990-10-01

    B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected. Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients.

  10. Fumonisin B₁ (FB₁) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants.

    Science.gov (United States)

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-04-01

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B₁ (FB₁) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB₁ at any concentration on dermal or epidermal cells. However, FB₁ significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB₁ (2.5-10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB₁ impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB₁ might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB₁ on the equine hoof in more detail. PMID:27023602

  11. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants

    Science.gov (United States)

    Methicillin-resistant Staphylococcus aureus (MRSA) can infect wounds and produce difficult-to- treat biofilms. To determine the extent that MRSA biofilms can deplete oxygen, change pH and damage host tissue, we developed a porcine dermal explant model on which we cultured GFP-labeled MRSA biofilms. ...

  12. Effect of explant type on the rooting and acclimatization of Dianthus serotinus Waldst. & Kit.

    Directory of Open Access Journals (Sweden)

    Marković Marija

    2014-01-01

    Full Text Available The effect of the concentration of MS salts and explant type on D. serotinus rooting and acclimatization was investigated in order to optimize a protocol for the micropropagation of this species. The obtained results showed that explant type as well as the concentration of MS salts had a significant effect on rooting, and the highest rooting rate (85-86,7% was achieved when culturing single-node cuttings and terminal buds on a half-strength MS medium supplemented with 0,5 mgL-1 NAA. Nevertheless, mean number of roots per explant was higher on the MS media (15,3-18,6 than on the half-strength MS media (11,8-13,4. The best acclimatization rate was obtained in a 4:1 mixture of peat and sand (83,3-86,7%. The explant type from which in vitro plantlets developed had no effect on the acclimatization rate. [Projekat Ministarstva nauke Republike Srbije, br. 43007

  13. Effect of Pre-culture Irradiation and Explant Types on Efficiency of Brassica napus Genetic Transformation

    International Nuclear Information System (INIS)

    The irradiated seeds of canola cv. Drakkar ( Brassica napus l. ) were germinated under aspect conditions, cotyledonary petioles and hypocotyl of 6 days old seedlings were used for Agrobacterium-mediated transformation. Agrobacterium tumefaciens has construct with the selectable marker gene (NPT II) and the desirable gene (HPPD). Direct and indirect shoot organogenesis were obtained from the both explants. Cotyledonary petioles was higher responded than hypocotyl with respective 26% and 14% of the explants producing NPT II-positive shoots after the selection on 50mg/l kanamycin. Calli might develop on and not in the agar medium were un transformation. This explains the higher number of escapes detected in hypocotyl explants than in experiments with cotyledons. The frequency of transformation plants as a function of indirect organogenesis was more than direct shoot regeneration from explants. The pre- irradiation with 75 Gy of gamma rays enhanced the genetic transformation frequencies by about 10 % as compared to that of the un-irradiated material. The obtained shoots were rooted and regenerated mature plants

  14. Effect of explants, hormonal combination and genotype on micropropagation of pepper

    Directory of Open Access Journals (Sweden)

    Z. Moheb Mohamadi

    2014-07-01

    Full Text Available Pepper (Capsicum annuum is generally propagated from seeds. In Iran, imported hybrid seeds are used for this purpose. Germination of the greenhouse pepper seeds and stabilization of their seedlings takes a long time. But, tissue culture technique could rapidly propagate this plant with a homogeneous genetic structure in a large scale. An attempt was made in this study to evaluate the effects of different genotypes, explants and growth regulators on callus production and regeneration and introduce the appropriate protocol for micropropagation of commercial varieties of pepper in Iran. Analysis of variance indicated that effect of different genotypes, interaction of various explants and combination of hormones and interaction between genotypes, explants and hormones were significant on the evaluated traits at 1% level. Based on the results, for micropropagation of pepper with leaves and cotyledons, combination of 1 mg/l IAA and 5 mg/l BAP was selected. It seems that using leaf explants for micropropagation of pepper in large scale in greenhouses would be suitable.

  15. Characterisation of coral explants: a model organism for cnidarian-dinoflagellate studies

    Science.gov (United States)

    Gardner, S. G.; Nielsen, D. A.; Petrou, K.; Larkum, A. W. D.; Ralph, P. J.

    2015-03-01

    Coral cell cultures made from reef-building scleractinian corals have the potential to aid in the pursuit of understanding of the cnidarian-dinoflagellate symbiosis. Various methods have previously been described for the production of cell cultures in vitro with a range of success and longevity. In this study, viable tissue spheroids containing host tissue and symbionts (coral explants) were grown from the tissues of Fungia granulosa. The cultured explants remained viable for over 2 months and showed morphological similarities in tissue structure and internal microenvironment to reef-building scleractinian corals. The photophysiology of the explants (1 week old) closely matched that of the parent coral F. granulosa. This study provides the first empirical basis for supporting the use of coral explants as laboratory models for studying coral symbioses. In particular, it highlights how these small, self-sustaining, skeleton-free models can be useful for a number of molecular, genetic and physiological analyses necessary for investigating host-symbiont interactions at the microscale.

  16. A RIFAMPICINA NA DESCONTAMINAÇÃO BACTERIANA DE EXPLANTES DE MAMOEIRO PROVENIENTES DO CAMPO

    Directory of Open Access Journals (Sweden)

    GIOVANNI RODRIGUES VIANNA

    1997-01-01

    Full Text Available Observou-se alta contaminação bacteriana nos explantes de mamoeiro introduzidos in vitro, a partir de plantas matrizes desenvolvidas no campo, independentemente da época do ano em que se realizaram as coletas. O uso de desinfestantes superficiais, como álcool e hipoclorito de sódio, garantiram níveis aceitáveis de controle apenas para fungos, não para bactérias. A rifampicina, por tratamento de imersão ou introdução em meio de cultura, controlou satisfatoriamente as contaminações de caráter endofítico, obtendo-se 70% de explantes sadios, sem sinais de fitotoxicidade.High contamination by bacteria was observed in papaya tissue cuttings introduced in vitro from plants grown in the field, independent of the period of the year that samples were collected. The use of alcohol and sodium hypoclorite did not guarantee good bacteria control. Rifampicin, added as an immersion solution treatment or in the culture media, controlled the internal contamination of explants, without damaging the cuttings. Up to 70% of healthy tissue explants were obtained by the use of rifampicin.

  17. Computational model for the analysis of cartilage and cartilage tissue constructs

    Science.gov (United States)

    Smith, David W.; Gardiner, Bruce S.; Davidson, John B.; Grodzinsky, Alan J.

    2013-01-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. PMID:23784936

  18. Computational model for the analysis of cartilage and cartilage tissue constructs.

    Science.gov (United States)

    Smith, David W; Gardiner, Bruce S; Davidson, John B; Grodzinsky, Alan J

    2016-04-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23784936

  19. Vulnerability of the Superficial Zone of Immature Articular Cartilage to Compressive Injury

    Energy Technology Data Exchange (ETDEWEB)

    Rolauffs, R.; Muehleman, C; Li, J; Kurz, B; Kuettner, K; Frank, E; Grodzinsky, A

    2010-01-01

    The zonal composition and functioning of adult articular cartilage causes depth-dependent responses to compressive injury. In immature cartilage, shear and compressive moduli as well as collagen and sulfated glycosaminoglycan (sGAG) content also vary with depth. However, there is little understanding of the depth-dependent damage caused by injury. Since injury to immature knee joints most often causes articular cartilage lesions, this study was undertaken to characterize the zonal dependence of biomechanical, biochemical, and matrix-associated changes caused by compressive injury. Disks from the superficial and deeper zones of bovine calves were biomechanically characterized. Injury to the disks was achieved by applying a final strain of 50% compression at 100%/second, followed by biomechanical recharacterization. Tissue compaction upon injury as well as sGAG density, sGAG loss, and biosynthesis were measured. Collagen fiber orientation and matrix damage were assessed using histology, diffraction-enhanced x-ray imaging, and texture analysis. Injured superficial zone disks showed surface disruption, tissue compaction by 20.3 {+-} 4.3% (mean {+-} SEM), and immediate biomechanical impairment that was revealed by a mean {+-} SEM decrease in dynamic stiffness to 7.1 {+-} 3.3% of the value before injury and equilibrium moduli that were below the level of detection. Tissue areas that appeared intact on histology showed clear textural alterations. Injured deeper zone disks showed collagen crimping but remained undamaged and biomechanically intact. Superficial zone disks did not lose sGAG immediately after injury, but lost 17.8 {+-} 1.4% of sGAG after 48 hours; deeper zone disks lost only 2.8 {+-} 0.3% of sGAG content. Biomechanical impairment was associated primarily with structural damage. The soft superficial zone of immature cartilage is vulnerable to compressive injury, causing superficial matrix disruption, extensive compaction, and textural alteration, which results

  20. The Application of Polysaccharide Biocomposites to Repair Cartilage Defects

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2014-01-01

    Full Text Available Owing to own nature of articular cartilage, it almost has no self-healing ability once damaged. Despite lots of restore technologies having been raised in the past decades, no repair technology has smoothly substituted for damaged cartilage using regenerated cartilage tissue. The approach of tissue engineering opens a door to successfully repairing articular cartilage defects. For instance, grafting of isolated chondrocytes has huge clinical potential for restoration of cartilage tissue and cure of chondral injury. In this paper, SD rats are used as subjects in the experiments, and they are classified into three groups: natural repair (group A, hyaluronic acid repair (group B, and polysaccharide biocomposites repair (hyaluronic acid hydrogel containing chondrocytes, group C. Through the observation of effects of repairing articular cartilage defects, we concluded that cartilage repair effect of polysaccharide biocomposites was the best at every time point, and then the second best was hyaluronic acid repair; both of them were better than natural repair. Polysaccharide biocomposites have good biodegradability and high histocompatibility and promote chondrocytes survival, reproduction, and spliting. Moreover, polysaccharide biocomposites could not only provide the porous network structure but also carry chondrocytes. Consequently hyaluronic acid-based polysaccharide biocomposites are considered to be an ideal biological material for repairing articular cartilage.

  1. MORPHOMETRIC STUDY OF THYROID CARTILAGES IN WESTERN INDIA

    Directory of Open Access Journals (Sweden)

    Mohini M.Joshi

    2015-06-01

    Full Text Available Background: Morphometrical evaluation of the larynx has always been interesting for both morphologists and the physicians. A good understanding of the anatomy and the knowledge of variations in the laryngeal cartilages is important Objective: Objective of the present study was to collect exact and reliable morphometric data of thyroid cartilage in adult human larynx of regional population. Methods: The totals of 50 thyroid cartilage specimens were studied. The cartilages were preserved in 5% formalin. The measurements were taken with the help of Digital Vernier Caliper. The cartilages were weighed on Single pan electronic balance. For each of the parameters, the mean, standard deviation (S.D. and range was calculated. Results: Mean depth of superior thyroid notch was 9.7± 3.36 mm. Asymmetry between the length of superior horn of thyroid cartilages in left and right sides can be seen, but difference was not statistically significant (p>0.05. It is observed that inner thyroid angle varies from 55 to 1040 and outer thyroid angle varies from 53 to 990. In present study mean weight of thyroid cartilage was 6.70±1.55 grams. Conclusions: A fair amount of intersubject variability in the dimensions was observed. Bilateral asymmetry, though present in majority of specimens, was insignificant. Various dimensions of thyroid cartilages are smaller as compared to the western population.

  2. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  3. THIONIN STAINING OF PARAFFIN AND PLASTIC EMBEDDED SECTIONS OF CARTILAGE

    NARCIS (Netherlands)

    BULSTRA, SK; DRUKKER, J; KUIJER, R; BUURMAN, WA; VANDERLINDEN, AJ

    1993-01-01

    The usefulness of thionin for staining cartilage sections embedded in glycol methacrylate (GMA) and the effect of decalcification on cartilage sections embedded in paraffin and GMA were assessed. Short decalcification periods using 5% formic acid or 10% EDTA did not influence the staining properties

  4. A Novel Approach to Stimulate Cartilage Repair: Targeting Collagen Turnover

    NARCIS (Netherlands)

    Y.M. Bastiaansen-Jenniskens (Yvonne Maria)

    2009-01-01

    textabstractOA is a complex disease of which the ethiopathology is not completely known and therapies to repair cartilage are still under investigation. The increase of collagen type II expression in osteoarthritic cartilage suggests an activated repair mechanism that is however ineffective in repai

  5. Cartilage Aggrecan Can Undergo Self-Adhesion

    OpenAIRE

    Han, Lin; Dean, Delphine; Daher, Laura A.; Grodzinsky, Alan J.; Ortiz, Christine

    2008-01-01

    Here it is reported that aggrecan, the highly negatively charged macromolecule in the cartilage extracellular matrix, undergoes Ca2+-mediated self-adhesion after static compression even in the presence of strong electrostatic repulsion in physiological-like solution conditions. Aggrecan was chemically end-attached onto gold-coated planar silicon substrates and gold-coated microspherical atomic force microscope probe tips (end radius R ≈ 2.5 μm) at a density (∼40 mg/mL) that simulates physiolo...

  6. Milk Thistle Extract and Silymarin Inhibit Lipopolysaccharide Induced Lamellar Separation of Hoof Explants in Vitro

    Directory of Open Access Journals (Sweden)

    Nicole Reisinger

    2014-10-01

    Full Text Available The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS in this process remains unclear. Phytogenic substances, like milk thistle (MT and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control, MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 µg/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 µg/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application.

  7. Improved explant method to isolate umbilical cord-derived mesenchymal stem cells and their immunosuppressive properties.

    Science.gov (United States)

    Mori, Yuka; Ohshimo, Jun; Shimazu, Takahisa; He, Haiping; Takahashi, Atsuko; Yamamoto, Yuki; Tsunoda, Hajime; Tojo, Arinobu; Nagamura-Inoue, Tokiko

    2015-04-01

    The umbilical cord (UC) has become one of the major sources of mesenchymal stem cells (MSCs). The common explant method of isolating UC-derived MSCs (UC-MSCs) involves mincing the UCs into small fragments, which are then attached to a culture dish bottom from which the MSCs migrate. However, the fragments frequently float up from the bottom of the dish, thereby reducing the cell recovery rate. To overcome this problem, we demonstrate an improved explant method for UC-MSC isolation, which involves the use of a stainless steel mesh (Cellamigo(®); Tsubakimoto Chain Co.), to protect the tissue from floating after the minced fragments are aligned at regular intervals in culture dishes. The culture medium was refreshed every 3 days and the adherent cells and tissue fragments were harvested using trypsin. The number of UC-MSCs isolated from 1 g of UC using the explant method with Cellamigo was 2.9 ± 1.4 × 10(6)/g, which was significantly higher than that obtained without Cellamigo (0.66 ± 0.53 × 10(6)/g) (n = 6, p < 0.01) when cells reached 80-90% confluence. In addition, the processing and incubation time required to reach 80-90% confluence was reduced in the improved explant method compared with the conventional method. The UC-MSCs isolated using the improved method were positive for CD105, CD73, CD90, and HLA class I expression and negative for CD45 and HLA class II expression. The isolated UC-MSCs efficiently inhibited the responder T cells induced by allogeneic dendritic cells in a mixed lymphocyte reaction. Conclusively, we demonstrated that the use of Cellamigo improves the explant method for isolating UC-MSCs. PMID:25220032

  8. Efficient Regeneration of �Caralis� Alstroemeria Cultivar from Rhizome Explants

    Directory of Open Access Journals (Sweden)

    Amir Ghaffar SHAHRIARI

    2012-05-01

    Full Text Available In this paper, the effects of a number of growth regulators as well as supplements to the Murashige and Skoog (MS basal medium were evaluated on the regeneration of Alstroemeria rhizome explants. In the first experiment the effects of three cytokinins (BA, TDZ and 2IP each at 0.5, 1 and 2 mg/l in combination with NAA (0.2 mg/l, followed by another PGR combination of 2IP (at 0.5, 1 and 2 mg/l with NAA (0 and 0.2 mg/l, on regeneration of rhizome-derived explants, was investigated. Through the second experiment, the effects of a number of supplements, including glucose (30 g/l as the alternative for sucrose, casein hydrolysate (1 g/l, asparagine and glutamine, (each at 30 mg/l added to MS medium, containing 1 mg/l BA and 0.2 mg/l NAA, was examined on rhizome explants� regeneration. Among the tested cytokinins, BA induced better regeneration of rhizome explants, resulting in a higher number of shoots compared to the other cytokinins. A medium supplemented with 1 mg/l BA and 0.2 mg/l NAA proved to be the most effective, with an average of 4.16 regenerated shoots per explant. In the second PGR combination, addition of NAA at 0.2 mg/l improved regeneration, compared to NAA-free treatments. In the second experiment, glucose substitution for sucrose improved regeneration with an average of 5.10 regenerated shoots per explant, compared to 4.16 shoots in sucrose-containing medium; whereas glutamine and asparagine (with 2.66 shoots and casein hydrolysate (with 3.80 shoots showed a negative influence on rhizome explants� regeneration.

  9. Stem Cell-assisted Approaches for Cartilage Tissue Engineering.

    Science.gov (United States)

    Park, In-Kyu; Cho, Chong-Su

    2010-05-01

    The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering functional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue repair. When designing materials for cartilage tissue engineering, biodegradability and biocompatibility are the key factors in selecting material candidates, for either synthetic or natural polymers. The unique environment of cartilage makes it suitable to use a hydrogel with high water content in the cross-linked or thermosensitive (injectable) form. Moreover, design of composite scaffolds from two polymers with complementary physicochemical and biological properties has been explored to provide residing chondrocytes with a combination of the merits that each component contributes.

  10. Epiphyseal and Physeal Cartilage: Normal Gadolinium-enhanced MR Imaging

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To evaluate the normal appearance of epiphyseal and physeal cartilage on Gadolinium (Gd)-enhanced MR imaging. The appearance and enhancement ratios of 20 proximal and distal femoral epiphyses in 10 normal piglets were analyzed on Gd-enhanced MR images. The correlation of the MR imaging appearance with corresponding histological findings of immature epiphyses was examined. Our results showed that Gd-enhanced MRI could differentiate the differences in enhancement between physeal and epiphyseal cartilage and show vascular canals within the epiphyseal cartilage. Enhanced ratios in the physeal were greater than those in the epiphyseal cartilage (P<0.005). It is concluded that Gd-enhanced MR imaging reveals epiphyseal vascular canals and shows difference in enhancement of physeal and epiphyseal cartilage.

  11. REGENERATION OF ARTICULAR CARTILAGE UNDER THE IMPLANTATION OF BONE MATRIX

    Directory of Open Access Journals (Sweden)

    Yuri M. Iryanov, Nikolay A. Kiryanov, Olga V. Dyuriagina , Tatiana Yu. Karaseva, Evgenii A. Karasev

    2015-07-01

    Full Text Available Background: The damage or loss of articular cartilage is costly medical problem. The purpose of this work – morphological analysis of reparative chondrogenesis when implanted in the area of the knee joint cartilage of granulated mineralized bone matrix. Material and Methods: The characteristic features of the knee cartilage regeneration studied experimentally in pubertal Wistar rats after modeling a marginal perforated defect and implantation of granulated mineralized bone matrix obtained according to original technology without heat and demineralizing processing into the injury zone. Results: This biomaterial established to have pronounced chondro- and osteoinductive properties, and to provide prolonged activation of reparative process, accelerated organotypical remodeling and restoration of the articular cartilage injured. Conclusion: The data obtained demonstrate the efficacy of МВМ in clinical practice for the treatment of diseases and injuries of the articular cartilage.

  12. Radiological observation of determination of sex by costal cartilage calcification

    International Nuclear Information System (INIS)

    The difference of patterns of costal cartilage calcification in male and female had been first described by Fischer in 1955. Thereafter several reports were published, but specific clinical significance was not found. During the period from January, 1978 to December, 1978, we, in the Department of Radiology, Jeonbug National University, studied 2164 cases that showed the entire 12 pairs of ribs. Among these we detected 1494 cases of costal cartilage calcification and frequent sites of calcification. Patterns of costal cartilage calcification were classified into six groups- type l: central, type II: marginal, type III: junctional type, type IV: railroad, type V: diffuse, type VI: mixed. Results are as follows; 1. In a total of 2164 cases, calcification of costal cartilage was present in 1494 cases(69.0%). Of 1181 males 780 cases(66.0%) showed calcification, and of 983 females 714 cases (72.6%) showed calcification. 2. In 439 cases of males, except for 341 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows: marginal type in 265 cases (60.4%), junctional type in 134 cases (30.5%), mixed type in 21 cases (0.5%), central type in 17 cases(3.8%), and railroad type in 2 cases (0.5%). Diffuse type was not present. 3. In 492 cases of females, except of 222 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows; central type in 336 cases (68.3%), junctional type in 94 cases(19.1%), mixed type in 24 cases (4.9%), railroad type in 19 cases (3.9%), and diffuse type in 14 cases (2.8%). 4. When central calcification was observed, predictive value to female was 94.7%. When marginal calcification was observed, predictive value to male was 987.4%. 5. Males frequently showed calcification in upper costal cartilages, and females in lower costal cartilages.

  13. Radiological observation of determination of sex by costal cartilage calcification

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Shin Hwa; Won, Jong Jin; Rhee, Song Joo; Moon, Moo Chang; Oh, Jong Hyun; Choi, Ki Chul [Jeonbug National University College of Medicine, Jeonjju (Korea, Republic of)

    1979-12-15

    The difference of patterns of costal cartilage calcification in male and female had been first described by Fischer in 1955. Thereafter several reports were published, but specific clinical significance was not found. During the period from January, 1978 to December, 1978, we, in the Department of Radiology, Jeonbug National University, studied 2164 cases that showed the entire 12 pairs of ribs. Among these we detected 1494 cases of costal cartilage calcification and frequent sites of calcification. Patterns of costal cartilage calcification were classified into six groups- type l: central, type II: marginal, type III: junctional type, type IV: railroad, type V: diffuse, type VI: mixed. Results are as follows; 1. In a total of 2164 cases, calcification of costal cartilage was present in 1494 cases(69.0%). Of 1181 males 780 cases(66.0%) showed calcification, and of 983 females 714 cases (72.6%) showed calcification. 2. In 439 cases of males, except for 341 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows: marginal type in 265 cases (60.4%), junctional type in 134 cases (30.5%), mixed type in 21 cases (0.5%), central type in 17 cases(3.8%), and railroad type in 2 cases (0.5%). Diffuse type was not present. 3. In 492 cases of females, except of 222 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows; central type in 336 cases (68.3%), junctional type in 94 cases(19.1%), mixed type in 24 cases (4.9%), railroad type in 19 cases (3.9%), and diffuse type in 14 cases (2.8%). 4. When central calcification was observed, predictive value to female was 94.7%. When marginal calcification was observed, predictive value to male was 987.4%. 5. Males frequently showed calcification in upper costal cartilages, and females in lower costal cartilages.

  14. Biochemical effects on long-term frozen human costal cartilage

    International Nuclear Information System (INIS)

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  15. Biochemical effects on long-term frozen human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B., E-mail: mathor@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  16. Composite scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Moutos, Franklin T; Guilak, Farshid

    2008-01-01

    Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.

  17. Influencing micropropagation in Clitoria ternatea L. through the manipulation of TDZ levels and use of different explant types.

    Science.gov (United States)

    Mukhtar, Seemab; Ahmad, Naseem; Khan, Md Imran; Anis, Mohammad; Aref, Ibrahim M

    2012-10-01

    A comparative performance of two explants types (CN and Nodal) for their efficiency to induce multiple shoot regeneration in Clitoria ternatea has been carried out. Thidiazuron (TDZ) in different concentrations (0.05-2.5 μM) was used as a supplement to the Murashige and Skoog's (MS) basal media. Explant type apart, two factors viz. concentration and exposure duration to TDZ played an important role in affecting multiple shoot regeneration. Cotyledonary node explants produced the best results at 0.1 μM TDZ, while in nodal explants the highest rate of shoot formation was achieved on MS medium supplemented with 1.0 μM TDZ. In both the explants, shoot multiplication increased when the regenerated shoots were subcultured on hormone free MS medium after 4 weeks of exposure to TDZ. Among the two, cotyledonary node explants produced considerably higher number of shoots at a comparatively lower concentration of TDZ than nodal explants. The regenerated shoots rooted best on MS medium containing 1.0 μM indole-3-butyric acid (IBA) and were successfully established in pots containing garden soil with 88 % survival rate. All the regenerated plants showed normal morphology and growth characteristics. PMID:24082502

  18. Deginerative changes of femoral articular cartilage in the knee : comparative study of specimen sonography and pathology

    International Nuclear Information System (INIS)

    To determine the sonographic findings of degenerative change in femoral articular cartilage of the knee by comparative study of specimen sonography and pathology. We obtained 40 specimens of cartilage of the femur (20 medial and 20 lateral condylar) from 20 patients with osteoarthritis of the knee who had undergone total knee replacement. The specimens were placed in a saline-filled container and sonography was performed using a 10-MHz linear transducer. Sonographic abnormalities were evaluated at the cartilage surface, within the cartilage, and at the bone-cartilage interface, and were compared with the corresponding pathologic findings. In addition, cartilage thickness was measured at a representative portion of each femoral cartilage specimen and was compared with the thickness determined by sonography. 'Dot' lesions, irregularity or loss of the hyperechoic line, were demonstrated by sonography at the saline-cartilage interface of 14 cartilages. Pathologic examination showed that these findings corresponded to cleft, detachment, erosion, and degeneration. Irregularities in the hyperechoic line at the bone-cartilage interface were revealed by sonography in eight cartilages and were related to irregularity or loss of tidemark, downward displacement of the cartilage, and subchondral callus formation. Dot lesions, corresponding to cleft and degeneration, were noted within one cartilage. Cartilage thickness measured on specimen and by sonography showed no significant difference (p=0.446). Specimen sonography suggested that articular cartilage underwent degenerative histopathological change. Cartilage thickness measured by sonography exactly reflected real thickness

  19. Articular cartilage thickness measured with US is not as easy as it appears

    DEFF Research Database (Denmark)

    Torp-Pedersen, S; Bartels, E M; Wilhjelm, Jens E.;

    2011-01-01

    Theoretically, the high spatial resolution of US makes it well suited to monitor the decrease in articular cartilage thickness in osteoarthritis. A requirement is, however, that the borders of the cartilage are correctly identified and that the cartilage is measured under orthogonal insonation....... If US measurements are compared to measurements with other techniques, they should be corrected for the higher sound speed in cartilage....

  20. Optical coherence tomography enables accurate measurement of equine cartilage thickness for determination of speed of sound.

    Science.gov (United States)

    Puhakka, Pia H; Te Moller, Nikae C R; Tanska, Petri; Saarakkala, Simo; Tiitu, Virpi; Korhonen, Rami K; Brommer, Harold; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Background and purpose - Arthroscopic estimation of articular cartilage thickness is important for scoring of lesion severity, and measurement of cartilage speed of sound (SOS)-a sensitive index of changes in cartilage composition. We investigated the accuracy of optical coherence tomography (OCT) in measurements of cartilage thickness and determined SOS by combining OCT thickness and ultrasound (US) time-of-flight (TOF) measurements. Material and methods - Cartilage thickness measurements from OCT and microscopy images of 94 equine osteochondral samples were compared. Then, SOS in cartilage was determined using simultaneous OCT thickness and US TOF measurements. SOS was then compared with the compositional, structural, and mechanical properties of cartilage. Results - Measurements of non-calcified cartilage thickness using OCT and microscopy were significantly correlated (ρ = 0.92; p measurement of articular cartilage thickness. Although SOS measurements lacked accuracy in thin equine cartilage, the concept of SOS measurement using OCT appears promising.

  1. Isolation of bovine corneal keratan sulfate and its growth factor and morphogen binding.

    Science.gov (United States)

    Weyers, Amanda; Yang, Bo; Solakyildirim, Kemal; Yee, Vienna; Li, Lingyun; Zhang, Fuming; Linhardt, Robert J

    2013-05-01

    Keratan sulfate (KS) is an important glycosaminoglycan that is found in cartilage, reproductive tissues, and neural tissues. Corneal KS glycosaminoglycan is found N-linked to lumican, keratocan and mimecan proteoglycans, and has been widely studied by investigators interested in corneal development and diseases. Recently, the availability of corneal KS has become severely limited, owing to restrictions on the shipment of bovine central nervous system byproducts across international borders in an effort to prevent additional cases of mad cow disease. We report a simple method for the purification of multi-milligram quantities of bovine corneal KS, and characterize its structural properties. We also examined its protein-binding properties, and discovered that corneal KS bound with high affinity to fibroblast growth factor-2 and sonic hedgehog, a growth factor and a morphogen involved in corneal development and healing. PMID:23402351

  2. Callus induction and plant regeneration from different explant types of Miscanthus x ogiformis Honda 'Giganteus'

    DEFF Research Database (Denmark)

    Holme, Inger Bæksted; Petersen, Karen Koefoed

    1996-01-01

    Different explants of Miscanthus x ogiformis Honda 'Giganteus' were tested in order to develop an efficient tissue culture system. Shoot apices, leaf and root sections from in vitro-propagated plants, and leaf and immature inflorescence sections from 6-month-old greenhouse-grown plants were used....... The explants were cultured on urashige and Skoog medium supplemented with 4.5, 13.6, 22.6 or 31.7 μM 2,4-dichlorophenoxyacetic acid. Three types of callus were formed but only one was embryogenic and regenerated plants. Callus induction and formation of embryogenic callus depended on the type and developmental......-propagated shoots and older leaves of greenhouse-grown plants. Immature inflorescences smaller than 2.5 cm produced a higher percentage of embryogenic callus than larger more mature inflorescences. Embryogenic callus derived from immature inflorescences had the highest regeneration capacity. Differences in 2...

  3. Premature Calcifications of Costal Cartilages: A New Perspective Premature Calcifications of Costal Cartilages: A New Perspective

    International Nuclear Information System (INIS)

    Calcifications of the costal cartilages occur, as a rule, not until the age of 30 years. The knowledge of the clinical significance of early and extensive calcifications is still incomplete. Materials and Methods. A search was made to find patients below the age of 30 years who showed distinct calcifications of their lower costal cartilages by viewing 360 random samples of intravenous pyelograms and abdominal plain films. The histories, and clinical and laboratory findings of these patients were analyzed. Results. Nineteen patients fulfilled the criteria of premature calcifications of costal cartilages (CCCs). The patients had in common that they were frequently referred to a hospital and were treated by several medical disciplines. Nevertheless many complaints of the patients remained unsolved. Premature CCCs were often associated with rare endocrine disorders, inborn errors of metabolism, and abnormal hematologic findings. Among the metabolic disorders there were 2 proven porphyrias and 7 patients with a suspected porphyria but with inconclusive laboratory findings. Conclusion. Premature CCCs are unlikely to be a normal variant in skeletal radiology. The findings in this small group of patients call for more intensive studies, especially in regard to the putative role of a porphyria

  4. Techniques for diced cartilage with deep temporalis fascia graft.

    Science.gov (United States)

    Calvert, Jay; Kwon, Edwin

    2015-02-01

    Diced cartilage with deep temporalis fascia (DC-F) graft has become a popular technique for reconstruction of the nasal dorsum. Cartilage can be obtained from the septum, ear, or costal cartilage when employing the DC-F technique. The complications seen with DC-F grafts tend to occur early in the surgeon's implementation of this technique. Management of the complications varies depending on the severity of the problem. This article gives an overview of both the technique and the complications commonly encountered.

  5. The Slice Culture Method for Following Development of Tooth Germs In Explant Culture

    OpenAIRE

    Alfaqeeh, Sarah A; Tucker, Abigail S.

    2013-01-01

    Explant culture allows manipulation of developing organs at specific time points and is therefore an important method for the developmental biologist. For many organs it is difficult to access developing tissue to allow monitoring during ex vivo culture. The slice culture method allows access to tissue so that morphogenetic movements can be followed and specific cell populations can be targeted for manipulation or lineage tracing.

  6. Comparative effects of plant growth regulators on leaf and stem explants of Labisia pumila var. alata

    OpenAIRE

    Ling, Anna Pick Kiong; Tan, Kinn Poay; Hussein, Sobri

    2013-01-01

    Objective: Labisia pumila var. alata, commonly known as ‘Kacip Fatimah’ or ‘Selusuh Fatimah’ in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medicinal properties. Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat. Thus, this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L. pumila. Metho...

  7. Prolonged viability of human organotypic skin explant in culture method (hOSEC)*

    OpenAIRE

    Frade, Marco Andrey Cipriani; de Andrade, Thiago Antônio Moretti; Aguiar, Andréia Fernanda Carvalho Leone; Guedes, Flávia Araújo; Leite, Marcel Nani; Passos, Williane Rodrigues; Coelho, Eduardo Barbosa; Das, Pranab Kummar

    2015-01-01

    BACKGROUND: Currently, the cosmetic industry is overwhelmed in keeping up with the safety assessment of the increasing number of new products entering the market. To meet such demand, research centers have explored alternative methods to animal testing and also the large number of volunteers necessary for preclinical and clinical tests. OBJECTIVES: This work describes the human skin ex-vivo model (hOSEC: Human Organotypic Skin Explant Culture) as an alternative to test the effectiveness of co...

  8. Staphylococcus aureus Induces Hypoxia and Cellular Damage in Porcine Dermal Explants

    OpenAIRE

    Lone, Abdul G.; Atci, Erhan; Renslow, Ryan; Beyenal, Haluk; Noh, Susan; Fransson, Boel; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R.; Douglas R. Call

    2015-01-01

    We developed a porcine dermal explant model to determine the extent to which Staphylococcus aureus biofilm communities deplete oxygen, change pH, and produce damage in underlying tissue. Microelectrode measurements demonstrated that dissolved oxygen (DO) in biofilm-free dermal tissue was 4.45 ± 1.17 mg/liter, while DO levels for biofilm-infected tissue declined sharply from the surface, with no measurable oxygen detectable in the underlying dermal tissue. Magnetic resonance imaging demonstrat...

  9. Ni2+ treatment causes cement gland formation in ectoderm explants of Xenopus laevis embryo

    Institute of Scientific and Technical Information of China (English)

    HUANGYONG; XIAOYANDING

    1999-01-01

    We found T-type calcium channel blocker Ni2+ can efficiently induce the formation of cement gland in Xenopus laevis animal cap explants.Nother T-typer specific calcium channel blocker Amiloride can also induce the formation of cement gland,while L-type specific calcium channel blocker Nifedipine as no inductive effect.These results may offer us an new approach to study the differentiation of cement gland through the change of intracelluar calcium concentration.

  10. Prospective Clinical Trial for Septic Arthritis: Cartilage Degradation and Inflammation Are Associated with Upregulation of Cartilage Metabolites

    Directory of Open Access Journals (Sweden)

    Hagen Schmal

    2016-01-01

    Full Text Available Background. Intra-articular infections can rapidly lead to osteoarthritic degradation. The aim of this clinical biomarker analysis was to investigate the influence of inflammation on cartilage destruction and metabolism. Methods. Patients with acute joint infections were enrolled in a prospective clinical trial and the cytokine composition of effusions (n=76 was analyzed. Characteristics of epidemiology and disease severity were correlated with levels of cytokines with known roles in cartilage turnover and degradation. Results. Higher synovial IL-1β concentrations were associated with clinical parameters indicating a higher disease severity (p<0.03 excluding the incidence of sepsis. Additionally, intra-articular IL-1β levels correlated with inflammatory serum parameters as leucocyte counts (LC and C-reactive protein concentrations (p<0.05 but not with age or comorbidity. Both higher LC and synovial IL-1β levels were associated with increased intra-articular collagen type II cleavage products (C2C indicating cartilage degradation. Joints with preinfectious lesions had higher C2C levels. Intra-articular inflammation led to increased concentrations of typical cartilage metabolites as bFGF, BMP-2, and BMP-7. Infections with Staphylococcus species induced higher IL-1β expression but less cartilage destruction than other bacteria. Conclusion. Articular infections have bacteria-specific implications on cartilage metabolism. Collagen type II cleavage products reliably mark destruction, which is associated with upregulation of typical cartilage turnover cytokines. This trial is registered with DRKS00003536, MISSinG.

  11. Butterfly cartilage graft versus fat graft myringoplasty

    Directory of Open Access Journals (Sweden)

    Sonika Kanotra

    2016-01-01

    Full Text Available Aim: The aim of the study was to compare the graft take up rates of two minimally invasive techniques of butterfly cartilage graft (BCG and fat graft myringoplasty (FGM. Materials and Methods: Two groups of 30 patients each with small dry central perforations of the tympanic membrane (T.M. were randomly subjected to either of the two techniques of myringoplasty. Statistical Analysis Used: The results were compared using the Chi-square test. A value of <0.05 was taken as statistically significant. Results: The graft take up rate was 93.3% with BCG and 83.3% with fat graft. Conclusions: The BCG scores over FGM in small perforations of the T.M.

  12. Bovine coronavirus hemagglutinin protein.

    Science.gov (United States)

    King, B; Potts, B J; Brian, D A

    1985-02-01

    Treatment of purified bovine coronavirus (Mebus strain) with pronase destroyed the integrity of virion surface glycoproteins gp140, gp120, gp100, reduced the amount of gp26 and destroyed the hemagglutinating activity of the virus. Bromelain, on the other hand, destroyed the integrity of gp120, gp100 and gp26 but failed to remove gp140 and failed to destroy viral hemagglutinating activity. These experiments suggest that gp140 is the virion hemagglutinin. Immunoblotting studies using monospecific antiserum demonstrate that gp140 is a disulfide-linked dimeric structure reducible to monomers of 65 kDa.

  13. Camel and bovine chymosin

    DEFF Research Database (Denmark)

    Jensen, Jesper Langholm; Mølgaard, Anne; Poulsen, Jens-Christian Navarro;

    2013-01-01

    Bovine and camel chymosin are aspartic peptidases that are used industrially in cheese production. They cleave the Phe105-Met106 bond of the milk protein κ-casein, releasing its predominantly negatively charged C-terminus, which leads to the separation of the milk into curds and whey. Despite...... chymosin. Both enzymes possess local positively charged patches on their surface that can play a role in interactions with the overall negatively charged C-terminus of κ-casein. Camel chymosin contains two additional positive patches that favour interaction with the substrate. The improved electrostatic...

  14. Bovine Virus Diarrhea (BVD)

    OpenAIRE

    Hoar, Bruce R.

    2004-01-01

    Bovine virus diarrhea (BVD) is a complicated disease to discuss as it can result in a wide variety of disease problems from very mild to very severe. BVD can be one of the most devastating diseases cattle encounter and one of the hardest to get rid of when it attacks a herd. The viruses that cause BVD have been grouped into two genotypes, Type I and Type II. The disease syndrome caused by the two genotypes is basically the same, however disease caused by Type II infection is often more severe...

  15. Proteomic Analysis of Bovine Nucleolus

    Institute of Scientific and Technical Information of China (English)

    Amrutlal K.Patel; Doug Olson; Suresh K. Tikoo

    2010-01-01

    Nucleolus is the most prominent subnuclear structure, which performs a wide variety of functions in the eu-karyotic cellular processes. In order to understand the structural and functional role of the nucleoli in bovine cells,we analyzed the proteomie composition of the bovine nueleoli. The nucleoli were isolated from Madin Darby bo-vine kidney cells and subjected to proteomie analysis by LC-MS/MS after fractionation by SDS-PAGE and strongcation exchange chromatography. Analysis of the data using the Mascot database search and the GPM databasesearch identified 311 proteins in the bovine nucleoli, which contained 22 proteins previously not identified in theproteomic analysis of human nucleoli. Analysis of the identified proteins using the GoMiner software suggestedthat the bovine nueleoli contained proteins involved in ribosomal biogenesis, cell cycle control, transcriptional,translational and post-translational regulation, transport, and structural organization.

  16. Further assessment of neuropathology in retinal explants and neuroprotection by human neural progenitor cells

    Science.gov (United States)

    Mohlin, Camilla; Liljekvist-Soltic, Ingela; Johansson, Kjell

    2011-10-01

    Explanted rat retinas show progressive photoreceptor degeneration that appears to be caspase-12-dependent. Decrease in photoreceptor density eventually affects the inner retina, particularly in the bipolar cell population. Explantation and the induced photoreceptor degeneration are accompanied by activation of Müller and microglia cells. The goal of this study was to determine whether the presence of a feeder layer of human neural progenitor cells (hNPCs) could suppress the degenerative and reactive changes in the explants. Immunohistochemical analyses showed considerable sprouting of rod photoreceptor axon terminals into the inner retina and reduced densities of cone and rod bipolar cells. Both sprouting and bipolar cell degenerations were significantly lower in retinas cultured with feeder layer cells compared to cultured controls. A tendency toward reduced microglia activation in the retinal layers was also noted in the presence of feeder layer cells. These results indicate that hNPCs or factors produced by them can limit the loss of photoreceptors and secondary injuries in the inner retina. The latter may be a consequence of disrupted synaptic arrangement.

  17. In vitro regeneration from petiole explants of non-toxic Jatropha curcas

    KAUST Repository

    Kumar, Nitish

    2011-01-01

    Jatropha curcas, a multipurpose shrub has acquired significant economic potential as biodiesel plant. The seeds or pressed cake is toxic due to the presence of toxic substances and is not useful as food/fodder despite having the best protein composition. A simple, efficient, and reproducible method for plant regeneration through direct organogenesis from petiole explants of non-toxic J. curcas was developed using Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ). The best induction of shoot buds (57.61%), and number of shoot buds (4.98) per explant were obtained when in vitro petiole explants were placed horizontally on MS medium supplemented with 2.27 mu M TDZ. The Induced shoot buds were transferred to MS medium containing 10 mu M kinetin (Kn), 4.5 mu M 6-benzyl aminopurine (BA), and 5.5 mu M alpha-naphthaleneacetic acid (NAA) for shoot proliferation and subsequent elongation was achieved on MS medium supplemented with 2.25 mu M BA and 8.5 mu M IAA. The elongated shoots could be rooted on half-strength MS medium with 15 mu M IBA, 11.4 mu M IAA and 5.5 mu M NAA with more than 90% survival rate. (C) 2010 Elsevier B.V. All rights reserved.

  18. Heparin exerts anti-apoptotic effects on uterine explants by targeting the endocannabinoid system.

    Science.gov (United States)

    Salazar, Ana Inés; Vercelli, Claudia; Schiariti, Victoria; Davio, Carlos; Correa, Fernando; Franchi, Ana María

    2016-09-01

    Miscarriage caused by Gram-negative bacteria infecting the female genital tract is one of the most common complications of human pregnancy. Intraperitoneal administration of LPS to 7-days pregnant mice induces embryo resorption after 24 h. Here, we show that LPS induced apoptosis on uterine explants from 7-days pregnant mice and that CB1 receptor was involved in this effect. On the other hand, heparin has been widely used for the prevention of pregnancy loss in women with frequent miscarriage with or without thrombophilia. Besides its anticoagulant properties, heparin exerts anti-inflammatory, immunomodulatory and anti-apoptotic effects. Here, we sought to investigate whether the administration of heparin prevented LPS-induced apoptosis in uterine explants from 7-days pregnant mice. We found that heparin enhanced cell survival in LPS-treated uterine explants and that this effect was mediated by increasing uterine FAAH activity. Taken together, our results point towards a novel mechanism involved in the protective effects of heparin. PMID:27364950

  19. Rapid and simple method for in vivo ex utero development of mouse embryo explants.

    Science.gov (United States)

    Gonçalves, André B; Thorsteinsdóttir, Sólveig; Deries, Marianne

    2016-01-01

    The in utero development of mammals drastically reduces the accessibility of the mammalian embryo and therefore limits the range of experimental manipulation that can be done to study functions of genes or signaling pathways during embryo development. Over the past decades, tissue and organ-like culture methods have been developed with the intention of reproducing in vivo situations. Developing accessible and simple techniques to study and manipulate embryos is an everlasting challenge. Herein, we describe a reliable and quick technique to culture mid-gestation explanted mouse embryos on top of a floating membrane filter in a defined medium. Viability of the cultured tissues was assessed by apoptosis and proliferation analysis showing that cell proliferation is normal and there is only a slight increase in apoptosis after 12h of culture compared to embryos developing in utero. Moreover, differentiation and morphogenesis proceed normally as assessed by 3D imaging of the transformation of the myotome into deep back muscles. Not only does muscle cell differentiation occur as expected, but so do extracellular matrix organization and the characteristic splitting of the myotome into the three epaxial muscle groups. Our culture method allows for the culture and manipulation of mammalian embryo explants in a very efficient way, and it permits the manipulation of in vivo developmental events in a controlled environment. Explants grown under these ex utero conditions simulate real developmental events that occur in utero.

  20. Differential antiepileptic effects of the organic calcium antagonists verapamil and flunarizine in neurons of organotypic neocortical explants from newborn rats

    NARCIS (Netherlands)

    Bingmann, D; Speckmann, E J; Baker, R E; Ruijter, J; de Jong, B. M.

    1988-01-01

    Effects of the organic calcium antagonists verapamil and flunarizine on pentylenetetrazol induced paroxysmal depolarizations were tested in organotypic neocortical explants taken from neonatal rats. In these in vitro experiments the papaverin derivative verapamil depressed, and finally abolished, ep

  1. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network

    Directory of Open Access Journals (Sweden)

    H Paetzold

    2012-04-01

    Full Text Available For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  2. Selection of valine-resistance in callus culture of Arabidopsis thaliana (L.) Heynh. derived from leaf explants

    OpenAIRE

    Małgorzata D. Gaj; Grzegorz Czaja; Małgorzata Nawrot

    2014-01-01

    The selection of valine-resistant mutants was carried out in leaf explant cultures of three Arabidopsis thaliana (L.) Heynh. ecotypes: C-24, RLD and Columbia. The valine concentration used for in vitro selection, lethal for seed-growing plants, has not affected callus formation and growth. However, strong inhibition of shoot regeneration ability of calli growing under selection pressure was noticed. In total, 1043 explants were cultured on valine medium and 18 shoots were regenerated with an ...

  3. Response of cotyledon explants of Capsicum annuum L. cv. kujawianka to chosen plant growth regulators in in vitro culture

    Directory of Open Access Journals (Sweden)

    Alicja Fraś

    2014-02-01

    Full Text Available Shoot buds originated directly on cotyledon explants of Capsicum annuum L. cv. Kujawianka, when Linsmaier and Skoog medium was enriched with BAP (2 mg/l. Kinetin (2 mg/l or kinetin with IAA (1 mg/l + 1 mg/l induced indirect shoot buds regeneration from callus. Rooting was obtained with explants cultivated on a medium containing NAA (0,5 mg/l. Occurrence of the early stages of differentiation was proved at the histological level.

  4. Effect of Macrophage Migration Inhibitory Factor (MIF) in Human Placental Explants Infected with Toxoplasma gondii Depends on Gestational Age

    OpenAIRE

    de Oliveira Gomes, Angelica; de Oliveira Silva, Deise Aparecida; Silva, Neide Maria; de Freitas Barbosa, Bellisa; Franco, Priscila Silva; Angeloni, Mariana Bodini; Fermino, Marise Lopes; Roque-Barreira, Maria Cristina; Bechi, Nicoletta; Paulesu, Luana Ricci; dos Santos, Maria Célia; Mineo, José Roberto; Ferro, Eloisa Amália Vieira

    2011-01-01

    Because macrophage migration inhibitory factor (MIF) is a key cytokine in pregnancy and has a role in inflammatory response and pathogen defense, the objective of the present study was to investigate the effects of MIF in first- and third-trimester human placental explants infected with Toxoplasma gondii. Explants were treated with recombinant MIF, IL-12, interferon-γ, transforming growth factor-β1, or IL-10, followed by infection with T. gondii RH strain tachyzoites. Supernatants of cultured...

  5. IN VITRO REGENERATION FROM SHOOT TIP AND NODAL EXPLANTS OF SIMAROUBA GLAUCA DC, A PROMISING BIODIESEL TREE

    Directory of Open Access Journals (Sweden)

    Shastri P. Shukla

    2013-03-01

    Full Text Available An efficient regeneration protocol was developed from shoot tip and nodal explants of Simarouba glauca DC, a promising biodiesel plant. Nodal explants appeared to have better regeneration capacity than shoot tip explants (40% in the tested media. The highest regeneration frequency (90% and shoot number (7.00 ± 1.00 shoots per explants were obtained in nodal explants in Murashige and Skoog’s (MS medium supplemented with 6-benzylaminopurine (BAP 4.43 μM and α-naphthalene acetic acid (NAA 5.36 μM.Induced shoot buds were multiplied and elongated on the MS medium supplemented with BAP (4.44 μM, NAA (5.36 μM and TDZ (Thidiazuron 2.27 μM with 9.66±0.33 (mean length 5.35±0.32 cm and 9.00±0.57 (mean length 4.51±0.15cm shoots using nodal segments and shoot tip explants, respectively. Halfstrength woody plant medium (WPM containing 2.46μM indole-3-butyric acid (IBA produced the maximum number of roots (6.00±1.15. The rooted plantlets were hardened on MS basal liquid medium and subsequently in polycups containing sterile soil and vermiculite (1:1 and successfully established in pots.

  6. PATTERN OF PLANT REGENERATION FROM SHOOT TIP EXPLANTS OF PIGEONPEA (CAJANUS CAJAN L MILLLSP VAR LRG-41

    Directory of Open Access Journals (Sweden)

    T. Raghavendra

    2014-02-01

    Full Text Available An efficient direct shoot bud differentiation and multiple shoot induction from shoot tip explants of pigeon pea (Cajanus cajan L. has been achieved. The frequency of shoot bud regeneration was influenced by the type of explants, genotype and concentrations of cytokinin. Explants viz. shoot tip isolated from 10 day old seedlings showed better explants response Explants were cultured on Murashige and skoog (MS medium augmented with different concentrations of BAP and NAA. Among the various concentrations tested, 2.0mg/l BAP (Benzyl amino purine and 0.1 mg/l Napthalene acetic acid (NAA were found to be the best for maximum shoot bud differentiation. Percentage, as well as the number of shoots per explant showing differentiation of shoot buds was higher on MS media supplement with BAP and optimal BAP concentration for shoot regeneration was 2mg/l. The elongated shoots were successfully rooted on MS medium containing different concentrations of auxins. Among them indole buteric acid (IBA at 1.0mg/l induced maximum frequency of rooting. Regenerated plants were successfully established in soil where 91% of them have been developed into morphologically normal and fertile plants. This method can thus be advantageously applied in the production of transgenic pigeon pea plants.

  7. PATTERN OF PLANT REGENERATION FROM SHOOT TIP EXPLANTS OF PIGEONPEA (CAJANUS CAJAN L MILLLSP VAR LRG-41

    Directory of Open Access Journals (Sweden)

    T. Raghavendra

    2014-03-01

    Full Text Available An efficient direct shoot bud differentiation and multiple shoot induction from shoot tip explants of pigeon pea (Cajanus cajan L. has been achieved. The frequency of shoot bud regeneration was influenced by the type of explants, genotype and concentrations of cytokinin. Explants viz. shoot tip isolated from 10 day old seedlings showed better explants response Explants were cultured on Murashige and skoog (MS medium augmented with different concentrations of BAP and NAA. Among the various concentrations tested, 2.0mg/l BAP (Benzyl amino purine and 0.1 mg/l Napthalene acetic acid (NAA were found to be the best for maximum shoot bud differentiation. Percentage, as well as the number of shoots per explant showing differentiation of shoot buds was higher on MS media supplement with BAP and optimal BAP concentration for shoot regeneration was 2mg/l. The elongated shoots were successfully rooted on MS medium containing different concentrations of auxins. Among them indole buteric acid (IBA at 1.0mg/l induced maximum frequency of rooting. Regenerated plants were successfully established in soil where 91% of them have been developed into morphologically normal and fertile plants. This method can thus be advantageously applied in the production of transgenic pigeon pea plants.

  8. Cartilage oligomeric matrix protein in patients with juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Bjørnhart, Birgitte; Juul, Anders; Nielsen, Susan;

    2009-01-01

    Cartilage oligomeric matrix protein (COMP) has been identified as a prognostic marker of progressive joint destruction in rheumatoid arthritis. In this population based study we evaluated associations between plasma concentrations of COMP, disease activity, and growth velocity in patients with...

  9. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse

    Science.gov (United States)

    Siddiqui, Nauman; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  10. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse.

    Science.gov (United States)

    Dasa, Osama; Siddiqui, Nauman; Ruzieh, Mohammed; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  11. Namaste (counterbalancing technique: Overcoming warping in costal cartilage

    Directory of Open Access Journals (Sweden)

    Kapil S Agrawal

    2015-01-01

    Full Text Available Background: Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. Materials and Methods: We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. Results: No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Conclusion: Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage.

  12. Cartilage reshaping: an overview of the state of the art

    Science.gov (United States)

    Karamzadeh, Amir M.; Sobol, Emil N.; Rasouli, Alexandre; Nelson, J. Stuart; Milner, Thomas E.; Wong, Brian J.

    2001-05-01

    The laser irradiation of cartilage results in a plastic deformation of the tissue allowing for the creation of new stable shapes. During photothermal stimulation, mechanically deformed cartilage undergoes a temperature dependent phase transition, which results in accelerated stress relaxation of the tissue matrix. Cartilage specimens thus reshaped can be used to recreate the underlying framework of structures in the head and neck. Optimization of this process has required an understanding of the biophysical processes accompanying reshaping and also determination of the laser dosimetry parameters, which maintain graft viability. Extensive in vitro, ex-vivo, and in vivo animal investigations, as well as human trials, have been conducted. This technology is now in use to correct septal deviations in an office-based setting. While the emphasis of clinical investigation has focused on septoplasty procedures, laser mediated cartilage reshaping may have application in surgical procedures involving the trachea, laryngeal framework, external ear, and nasal tip. Future directions for research and device design are discussed.

  13. Tailored PVA/ECM Scaffolds for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Stocco

    2014-01-01

    Full Text Available Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth. We realized a biohybrid composite scaffold combining a novel and nonspecific extracellular matrix (ECM, which is decellularized Wharton’s jelly ECM, with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA. Wharton’s jelly ECM was tested for its ability in promoting scaffold colonization by chondrocytes and compared with polyvinyl alcohol itself and the more specific decellularized cartilage matrix. Our preliminary evidences highlighted the chance of using Wharton’s jelly ECM in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration.

  14. Starch-modified magnetite nanoparticles for impregnation into cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Soshnikova, Yulia M., E-mail: yuliasoshnikova@gmail.com [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Roman, Svetlana G.; Chebotareva, Natalia A. [A.N. Bach Institute of Biochemistry (Russian Federation); Baum, Olga I. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Obrezkova, Mariya V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation); Gillis, Richard B.; Harding, Stephen E. [University of Nottingham, National Centre for Macromolecular Hydrodynamics (United Kingdom); Sobol, Emil N. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Lunin, Valeriy V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation)

    2013-11-15

    The paper presents preparation and characterization of starch-modified Fe{sub 3}O{sub 4} nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non‐stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases.

  15. In vitro clonal propagation of Achyranthes aspera L. and Achyranthes bidentata Blume using nodal explants

    Institute of Scientific and Technical Information of China (English)

    Wesely Edward Gnanaraj; Johnson MarimuthuAntonisamy; Mohanamathi RB

    2012-01-01

    Objective: To develop the reproducible in vitro propagation protocols for the medicinally important plants viz., Achyranthes aspera (A. aspera) L. and Achyranthes bidentata (A. bidentata) Blume using nodal segments as explants. Methods: Young shoots of A. aspera and A. bidentata were harvested and washed with running tap water and treated with 0.1% bavistin and rinsed twice with distilled water. Then the explants were surface sterilized with 0.1% (w/v) HgCl2 solutions for 1 min. After rinsing with sterile distilled water for 3-4 times, nodal segments were cut into smaller segments (1 cm) and used as the explants. The explants were placed horizontally as well as vertically on solid basal Murashige and Skoog (MS) medium supplemented with 3% sucrose, 0.6% (w/v) agar (Hi-Media, Mumbai) and different concentration and combination of 6-benzyl amino purine (BAP), kinetin (Kin), naphthalene acetic acid (NAA) and indole acetic acid (IAA) for direct regeneration.Results:Adventitious proliferation was obtained from A. aspera and A. bidentata nodal segments inoculated on MS basal medium with 3% sucrose and augmented with BAP and Kin with varied frequency. MS medium augmented with 3.0 mg/L of BAP showed the highest percentage (93.60±0.71) of shootlets formation for A. aspera and (94.70±0.53) percentages for A. bidentata. Maximum number of shoots/explants (10.60±0.36) for A. aspera and (9.50±0.56) for A. bidentata was observed in MS medium fortified with 5.0 mg/L of BAP. For A. aspera, maximum mean length (5.50±0.34) of shootlets was obtained in MS medium augmented with 3.0 mg/L of Kin and for A. bidentata (5.40±0.61) was observed in the very same concentration. The highest percentage, maximum number of rootlets/shootlet and mean length of rootlets were observed in 1/2 MS medium supplemented with 1.0 mg/L of IBA. Seventy percentages of plants were successfully established in polycups. Sixty eight percentages of plants were well established in the green house condition

  16. In Vitro Shoot Regeneration of NAA-Pulse Treated Plumular Leaf Explants of Cowpea

    Directory of Open Access Journals (Sweden)

    Muhammad AASIM

    2010-06-01

    Full Text Available Cowpea (Vigna unguiculata L. is an economically important grain legume crop and is an important source of dietary protein in many of the developing countries. The present study reports the effect of pulse treatment duration, concentration of NAA and presence of NAA in the culture medium on shoot regeneration from plumular leaf explant of Turkish cowpea cv. �Akkiz� and �Karagoz�. Pulse treatment of mature embryos with 20 mg l-1 NAA for 1 and 3 weeks followed by culturing of plumular leaf explant on MS medium containing 0.25, 0.50 and 1.0 BAP with 1.0, 2.0 and 4.0 mg l-1 NAA promoted somatic embryogenesis in both cultivars. Longer duration of pulse treatment was deleterious resulting in browning and consequently death of the embryos on explants. Pulse treatment with 20 mg l-1 NAA for one week was less deleterious and developed two plantlets after the explants were transferred to MS0 medium after 6 weeks through somatic embryogenesis in cv. �Akkiz�. Pulse treatment with 10 mg l-1 NAA for 1 week showed 33.33-50.00 % and 25.00-50.00% shoot regeneration frequency in cv. �Akkiz� and �Karagoz� respectively on MS medium containing 0.25-1.00 mg l-1 BAP. Maximum number of 2.50 shoots each per explant were recorded in cv. �Akkiz� and �Karagoz� on MS medium containing 1.00 and 0.50 mg l-1 BAP respectively. Contrarily, maximum shoot length of 8.98 cm of cv. �Akkiz� and 9.42 cm of cv. �Karagoz� was recorded on MS medium containing 0.50 mg l-1 BAP and 1.00 mg l-1 BAP respectively. Regenerated shoots were rooted on MS medium containing 0.5 mg l-1 IBA and and acclimatized in growth room at room temprature where they produced viable seeds.

  17. Post-traumatic glenohumeral cartilage lesions: a systematic review

    Directory of Open Access Journals (Sweden)

    Stussi Edgar

    2008-07-01

    Full Text Available Abstract Background Any cartilage damage to the glenohumeral joint should be avoided, as these damages may result in osteoarthritis of the shoulder. To understand the pathomechanism leading to shoulder cartilage damage, we conducted a systematic review on the subject of articular cartilage lesions caused by traumas where non impression fracture of the subchondral bone is present. Methods PubMed (MEDLINE, ScienceDirect (EMBASE, BIOBASE, BIOSIS Previews and the COCHRANE database of systematic reviews were systematically scanned using a defined search strategy to identify relevant articles in this field of research. First selection was done based on abstracts according to specific criteria, where the methodological quality in selected full text articles was assessed by two reviewers. Agreement between raters was investigated using percentage agreement and Cohen's Kappa statistic. The traumatic events were divided into two categories: 1 acute trauma which refers to any single impact situation which directly damages the articular cartilage, and 2 chronic trauma which means cartilage lesions due to overuse or disuse of the shoulder joint. Results The agreement on data quality between the two reviewers was 93% with a Kappa value of 0.79 indicating an agreement considered to be 'substantial'. It was found that acute trauma on the shoulder causes humeral articular cartilage to disrupt from the underlying bone. The pathomechanism is said to be due to compression or shearing, which can be caused by a sudden subluxation or dislocation. However, such impact lesions are rarely reported. In the case of chronic trauma glenohumeral cartilage degeneration is a result of overuse and is associated to other shoulder joint pathologies. In these latter cases it is the rotator cuff which is injured first. This can result in instability and consequent impingement which may progress to glenohumeral cartilage damage. Conclusion The great majority of glenohumeral cartilage

  18. Viral infections and bovine mastitis: a review

    NARCIS (Netherlands)

    Wellenberg, G.J.; Poel, van der W.H.M.; Oirschot, van J.T.

    2002-01-01

    This review deals with the role of viruses in the aetiology of bovine mastitis. Bovine herpesvirus 1, bovine herpesvirus 4, foot-and-mouth disease virus, and parainfluenza 3 virus have been isolated from milk from cows with clinical mastitis. Intramammary inoculations of bovine herpesvirus 1 or para

  19. Nanomechanical phenotype of chondroadherin-null murine articular cartilage.

    Science.gov (United States)

    Batista, Michael A; Nia, Hadi T; Önnerfjord, Patrik; Cox, Karen A; Ortiz, Christine; Grodzinsky, Alan J; Heinegård, Dick; Han, Lin

    2014-09-01

    Chondroadherin (CHAD), a class IV small leucine rich proteoglycan/protein (SLRP), was hypothesized to play important roles in regulating chondrocyte signaling and cartilage homeostasis. However, its roles in cartilage development and function are not well understood, and no major osteoarthritis-like phenotype was found in the murine model with CHAD genetically deleted (CHAD(-/-)). In this study, we used atomic force microscopy (AFM)-based nanoindentation to quantify the effects of CHAD deletion on changes in the biomechanical function of murine cartilage. In comparison to wild-type (WT) mice, CHAD-deletion resulted in a significant ≈70-80% reduction in the indentation modulus, Eind, of the superficial zone knee cartilage of 11 weeks, 4 months and 1 year old animals. This mechanical phenotype correlates well with observed increases in the heterogeneity collagen fibril diameters in the surface zone. The results suggest that CHAD mainly plays a major role in regulating the formation of the collagen fibrillar network during the early skeletal development. In contrast, CHAD-deletion had no appreciable effects on the indentation mechanics of middle/deep zone cartilage, likely due to the dominating role of aggrecan in the middle/deep zone. The presence of significant rate dependence of the indentation stiffness in both WT and CHAD(-/-) knee cartilage suggested the importance of both fluid flow induced poroelasticity and intrinsic viscoelasticity in murine cartilage biomechanical properties. Furthermore, the marked differences in the nanomechanical behavior of WT versus CHAD(-/-) cartilage contrasted sharply with the relative absence of overt differences in histological appearance. These observations highlight the sensitivity of nanomechanical tools in evaluating structural and mechanical phenotypes in transgenic mice. PMID:24892719

  20. Tissue Engineering Cartilage with a Composite Electrospun and Hydrogel Scaffold

    OpenAIRE

    Wright, Lee David

    2011-01-01

    Osteoarthritis is the most prevalent musculoskeletal disease in humans, severely reducing the standard of living of millions of people. Osteoarthritis is characterized by degeneration and loss of articular cartilage which leads to pain, and loss of joint motility and function. Individuals suffering from severe osteoarthritis are commonly treated with full knee replacements. The procedure does eliminate the problem of degrading cartilage tissue; however, it does not fully restore function a...

  1. Quantitative spatially resolved measurements of mass transfer through laryngeal cartilage.

    Science.gov (United States)

    Macpherson, J V; O'Hare, D; Unwin, P R; Winlove, C P

    1997-11-01

    The scanning electrochemical microscope (SECM) is a scanned probe microscope that uses the response of a mobile ultramicroelectrode (UME) tip to determine the reactivity, topography, and mass transport characteristics of interfaces with high spatial resolution. SECM strategies for measuring the rates of solute diffusion and convection through samples of cartilage, using amperometric UMEs, are outlined. The methods are used to determine the diffusion coefficients of oxygen and ruthenium(III) hexamine [Ru(NH3)6(3+)] in laryngeal cartilage. The diffusion coefficient of oxygen in cartilage is found to be approximately 50% of that in aqueous electrolyte solution, assuming a partition coefficient of unity for oxygen between cartilage and aqueous solution. In contrast, diffusion of Ru(NH3)6(3+) within the cartilage sample cannot be detected on the SECM timescale, suggesting a diffusion coefficient at least two orders of magnitude lower than that in solution, given a measured partition coefficient for Ru(NH3)6(3+) between cartilage and aqueous solution, Kp = [Ru(NH3)6(3+)]cartilage/[RU(NH3)6(3+)]solution = 3.4 +/- 0.1. Rates of Ru(NH3)6(3+) osmotically driven convective transport across cartilage samples are imaged at high spatial resolution by monitoring the current response of a scanning UME, with an osmotic pressure of approximately 0.75 atm across the slice. A model is outlined that enables the current response to be related to the local flux. By determining the topography of the sample from the current response with no applied osmotic pressure, local transport rates can be correlated with topographical features of the sample surface, at much higher spatial resolution than has previously been achieved. PMID:9370471

  2. A Novel Approach to Stimulate Cartilage Repair: Targeting Collagen Turnover

    OpenAIRE

    Bastiaansen-Jenniskens, Yvonne Maria

    2009-01-01

    textabstractOA is a complex disease of which the ethiopathology is not completely known and therapies to repair cartilage are still under investigation. The increase of collagen type II expression in osteoarthritic cartilage suggests an activated repair mechanism that is however ineffective in repairing or maintaining the ECM homeostasis. We therefore investigated the ability to modulate the formation of a functional collagen type II network that can ultimately contribute to innovation of car...

  3. Automatic ICRS scoring of cartilage lesions using arthroscopic OCT images

    OpenAIRE

    te Moller, Nikae; Pitkanen, M; Liukkonen, J.; Puhakka, P H; Brommer, Harold; J.S. Jurvelin; van Weeren, René; Toyras, J.

    2014-01-01

    Articular cartilage injury is a common cause of chronic disability in both humans and animals. Current treatment strategies offer several possibilities and in order to select the optimal repair procedure, accurate determination of size and severity of a lesion is important [1,2]. Recently, an equine ex vivo study showed that arthroscopic optical coherence tomography (OCT) provides high resolution optical images of the cartilage layer [3]. Furthermore, in that study morphological characteristi...

  4. The Role of Sirtuins in Cartilage Homeostasis and Osteoarthritis.

    Science.gov (United States)

    Dvir-Ginzberg, Mona; Mobasheri, Ali; Kumar, Ashok

    2016-07-01

    The past decade has witnessed many advances in the understanding of sirtuin biology and related regulatory circuits supporting the capacity of these proteins to serve as energy-sensing molecules that contribute to healthspan in various tissues, including articular cartilage. Hence, there has been a significant increase in new investigations that aim to elucidate the mechanisms of sirtuin function and their roles in cartilage biology, skeletal development, and pathologies such as osteoarthritis (OA), rheumatoid arthritis (RA), and intervertebral disc degeneration (IVD). The majority of the work carried out to date has focused on SIRT1, although SIRT6 has more recently become a focus of some investigations. In vivo work with transgenic mice has shown that Sirt1 and Sirt6 are essential for maintaining cartilage homeostasis and that the use of sirtuin-activating molecules such as resveratrol may have beneficial effects on cartilage anabolism. Current thinking is that SIRT1 exerts positive effects on cartilage by encouraging chondrocyte survival, especially under stress conditions, which may provide a mechanism supporting the use of sirtuin small-molecule activators (STACS) for future therapeutic interventions in OA and other degenerative pathologies of joints, especially those that involve articular cartilage. PMID:27289467

  5. Computational aspects in mechanical modeling of the articular cartilage tissue.

    Science.gov (United States)

    Mohammadi, Hadi; Mequanint, Kibret; Herzog, Walter

    2013-04-01

    This review focuses on the modeling of articular cartilage (at the tissue level), chondrocyte mechanobiology (at the cell level) and a combination of both in a multiscale computation scheme. The primary objective is to evaluate the advantages and disadvantages of conventional models implemented to study the mechanics of the articular cartilage tissue and chondrocytes. From monophasic material models as the simplest form to more complicated multiscale theories, these approaches have been frequently used to model articular cartilage and have contributed significantly to modeling joint mechanics, addressing and resolving numerous issues regarding cartilage mechanics and function. It should be noted that attentiveness is important when using different modeling approaches, as the choice of the model limits the applications available. In this review, we discuss the conventional models applicable to some of the mechanical aspects of articular cartilage such as lubrication, swelling pressure and chondrocyte mechanics and address some of the issues associated with the current modeling approaches. We then suggest future pathways for a more realistic modeling strategy as applied for the simulation of the mechanics of the cartilage tissue using multiscale and parallelized finite element method.

  6. Cartilage change after arthroscopic repair for an isolated meniscal tear.

    Science.gov (United States)

    Soejima, Takashi; Murakami, Hidetaka; Inoue, Takashi; Kanazawa, Tomonoshin; Katouda, Michihiro; Nagata, Kensei

    2005-01-01

    To investigate the direct effect to the cartilage caused by the meniscal repair, we examined patients who underwent an isolated meniscal repair without any other abnormalities by arthroscopic examination. A total of 17 patients were examined by second-look arthroscopy after an average interval of 9 months from the meniscal repair, and have been evaluated the status of the repaired meniscus and of the relative femoral condylar cartilage. Changes in the severity of the cartilage lesion between at the time of meniscal repair and the time of the second-look arthroscopy were considered based on the status of the repaired meniscus. Regardless of the healing status of the repair site, it was possible to prevent degeneration in the cartilage in 9 of the 10 patients who demonstrated no degeneration in the meniscal body. Of the 7 patients who demonstrated degeneration in the meniscal body, progression in cartilage degeneration was noted as 1 grade in 2 patients and 2 grades in another 3 patients. Even in those in which stable fusion of the repair site was achieved, the condition of the inner meniscal body was not necessarily maintained favorably in all cases, indicating that degeneration in the meniscal body was a risk factor for cartilage degeneration. It was concluded that recovery could not be expected even at 9 months after the repair if the lesion had already demonstrated degeneration in the meniscal body at the time of repair.

  7. Depth Dependence of Shear Properties in Articular Cartilage

    Science.gov (United States)

    Buckley, Mark; Gleghorn, Jason; Bonassar, Lawrence; Cohen, Itai

    2007-03-01

    Articular cartilage is a highly complex and heterogeneous material in its structure, composition and mechanical behavior. Understanding these spatial variations is a critical step in designing replacement tissue and developing methods to diagnose and treat tissue affected by damage or disease. Existing techniques in particle image velocimetry (PIV) have been used to map the shear properties of complex materials; however, these methods have yet to be applied to understanding shear behavior in cartilage. In this talk, we will show that confocal microscopy in conjunction with PIV techniques can be used to determine the depth dependence of the shear properties of articular cartilage. We will show that the shear modulus of this tissue varies by over an order of magnitude over its depth, with the least stiff region located about 200 microns from the surface. Furthermore, our data indicate that the shear strain profile of articular cartilage is sensitive to both the degree of compression and the total applied shear strain. In particular, we find that cartilage strain stiffens most dramatically in a region 200-500 microns below the surface. Finally, we will describe a physical model that accounts for this behavior by taking into account the local buckling of collagen fibers just below the cartilage surface and present second harmonic generation (SHG) imaging data addressing the collagen orientation before and after shear.

  8. Specific premature epigenetic aging of cartilage in osteoarthritis

    Science.gov (United States)

    Vidal-Bralo, Laura; Lopez-Golan, Yolanda; Mera-Varela, Antonio; Rego-Perez, Ignacio; Horvath, Steve; Zhang, Yuhua; del Real, Álvaro; Zhai, Guangju; Blanco, Francisco J; Riancho, Jose A.; Gomez-Reino, Juan J; Gonzalez, Antonio

    2016-01-01

    Osteoarthritis (OA) is a disease affecting multiple tissues of the joints in the elderly, but most notably articular cartilage. Premature biological aging has been described in this tissue and in blood cells, suggesting a systemic component of premature aging in the pathogenesis of OA. Here, we have explored epigenetic aging in OA at the local (cartilage and bone) and systemic (blood) levels. Two DNA methylation age-measures (DmAM) were used: the multi-tissue age estimator for cartilage and bone; and a blood-specific biomarker for blood. Differences in DmAM between OA patients and controls showed an accelerated aging of 3.7 years in articular cartilage (95 % CI = 1.1 to 6.3, P = 0.008) of OA patients. By contrast, no difference in epigenetic aging was observed in bone (0.04 years; 95 % CI = −1.8 to 1.9, P = 0.3) and in blood (−0.6 years; 95 % CI = −1.5 to 0.3, P = 0.2) between OA patients and controls. Therefore, premature epigenetic aging according to DNA methylation changes was specific of OA cartilage, adding further evidence and insight on premature aging of cartilage as a component of OA pathogenesis that reflects damage and vulnerability. PMID:27689435

  9. Site-1 protease is required for cartilage development in zebrafish.

    Science.gov (United States)

    Schlombs, Kornelia; Wagner, Thomas; Scheel, Jochen

    2003-11-25

    gonzo (goz) is a zebrafish mutant with defects in cartilage formation. The goz phenotype comprises cartilage matrix defects and irregular chondrocyte morphology. Expression of endoderm, mesoderm, and cartilage marker genes is, however, normal, indicating a defect in chondrocyte morphogenesis. The mutated gene responsible for the goz phenotype, identified by positional cloning and confirmed by phosphomorpholino knockdown, encodes zebrafish site-1 protease (s1p). S1P has been shown to process and activate sterol regulatory element-binding proteins (SREBPs), which regulate expression of key enzymes of lipid biosynthesis or transport. This finding is consistent with the abnormal distribution of lipids in goz embryos. Knockdown of site-2 protease, which is also involved in activation of SREBPs, results in similar lipid and cartilage phenotypes as S1P knockdown. However, knockdown of SREBP cleavage-activating protein, which forms a complex with SREBP and is essential for S1P cleavage, results only in lipid phenotypes, whereas cartilage appears normal. This indicates that the cartilage phenoptypes of goz are caused independently of the lipid defects. PMID:14612568

  10. Sealing and explant types on the mangaba micropropagation Tipo de vedação e explantes na micropropagação de mangabeira

    Directory of Open Access Journals (Sweden)

    Aline de Jesus Sá

    2012-08-01

    Full Text Available In micropropagation, especially for mangaba tree botanical variety of Northeastern Brazil, limiting aspects such as ethylene accumulation in the cultivation flask and loss of vigor in subcultures have been observed. This study was aimed at assessing the technical and scientific knowledge of the in vitro propagation of botanical mangaba tree variety and at improving the micropropagation protocol, establishing the in vitro cultivation time, the best type of flask sealing and explant at different micropropagation stages. For the establishment phase and for the first and second subcultures, the MS medium with 3% sucrose and 0.6% agar, supplemented with 1 mg L-1 IAA and 1 mg L-1 BA was used. Evaluations were performed at 30, 50 and 65 days of in vitro cultivation. The best types of flask sealing for the establishment phase were the PVC film and Para-film® and for the first subculture the Para-film® seal. In the second subculture the PVC film and Para-film® seals promoted the best growth. The median and basal nodal segments presented the best performance in the first subculture. No significant effect of explant type was observed in the second subculture. The ideal subculture interval in the establishment phase and the first and second subcultures is 50 days.Na micropropagação, especialmente para mangaba, variedade botânica da árvore do Nordeste do Brasil, aspectos limitantes, como acúmulo de etileno no recipiente de cultivo e perda de vigor em subculturas têm sido observados. Neste estudo, objetivou-se avaliar o conhecimento técnico e científico da propagação in vitro de mangabeira, variedade botânica do Nordeste do Brasil, e melhorar o protocolo de micropropagação, o melhor tipo de vedação frasco e explante em diferentes etapas. Para a fase de estabelecimento e para as subculturas primeiro e segundo, foi utlizado o meio MS com 3% de sacarose e agar 0,6%, suplementado com 1 mg L-1 de AIA e 1 mg L-1 de BAP. As avaliações foram

  11. Response of root explants to in vitro cultivation of marketable garlic cultivars Resposta dos explantes radiculares ao cultivo in vitro de cultivares comerciais de alho

    Directory of Open Access Journals (Sweden)

    Danielle C Scotton

    2013-03-01

    Full Text Available Garlic cultivars are sexually sterile under standard growth conditions, with direct implications for commercial production costs as well as breeding programs. Garlic is propagated commercially via bulblets, which facilitates disease transmission and virus load accumulation over vegetative generations. Tissue culture produces virus-free clones that are more productive, while keeping the desired traits of the cultivar. Consequently, this technique allows studies of garlic genetics as well as guarantees genetic conservation of varieties. We aimed at analyzing the in vitro regeneration of eight marketable cultivars of garlic using root segments as explants. For each genotype, bulblet-derived explants were isolated and introduced into MS medium supplemented with 2,4-D and 2-iP. Calli were transferred to MS medium supplemented with 8.8 mM BAP and 0.1 mM NAA (regeneration medium A, or with 4.6 mM kinetin alone (regeneration medium B. The calli were then evaluated for regeneration frequency after sixty days of in vitro cultivation. The noble cultivar 'Jonas' presented the highest rates of plant regeneration among the cultivars tested. The medium A, which contained auxin and cytokinin, induced the highest regeneration rates of all cultivars. The process described herein is simple, reproducible and can potentially be used as a tool in molecular breeding strategies for other marketable cultivars and genotypes of garlic.Cultivares de alho são sexualmente estéreis sob condições padrão de cultivo, com implicações diretas nos custos de produção comercial, bem como em programas de melhoramento. O alho é comercialmente propagado por meio de bulbilhos, o que facilita a transmissão de doenças e leva ao acúmulo de cargas virais ao longo das gerações. A cultura de tecidos produz clones livres de vírus que são mais produtivos, mantendo as características desejadas da cultivar. Consequentemente, esta técnica permite estudar a genética do alho, bem

  12. Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins.

    Science.gov (United States)

    Schüller-Ravoo, Sigrid; Teixeira, Sandra M; Feijen, Jan; Grijpma, Dirk W; Poot, André A

    2013-12-01

    The aim of this study is to investigate the applicability of flexible and elastic poly(trimethylene carbonate) (PTMC) structures prepared by stereolithography as scaffolds for cartilage tissue engineering. A three-armed methacrylated PTMC macromer with a molecular weight of 3100 g mol(-1) is used to build designed scaffolds with a pore diameter of 350 ± 12 μm and a porosity of 54.0 ± 2.2%. Upon seeding of bovine chondrocytes in the scaffolds, the cells adhere and spread on the PTMC surface. After culturing for 6 weeks, also cells with a round morphology are present, indicative of the differentiated chondrocyte phenotype. Sulphated glycosaminoglycans and fibrillar collagens are deposited by the cells. During culturing for 6 weeks, the compression moduli of the constructs increases 50% to approximately 100 kPa.

  13. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement

    Energy Technology Data Exchange (ETDEWEB)

    Freemont, Anthony J. [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)]. E-mail: Tony.freemont@man.ac.uk; Hoyland, Judith [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)

    2006-01-15

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed.

  14. Supplementation of exogenous adenosine 5'-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering.

    Science.gov (United States)

    Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana

    2013-10-01

    Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5'-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure-function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct.

  15. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery

    Science.gov (United States)

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J. F.

    2014-09-01

    Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuries in the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential use of laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ=2.94 μm), titanium:sapphire femtosecond laser system (λ=1700 nm), and Nd:glass femtosecond laser (λ=1053 nm). Bovine samples were ablated at fluences of 8 to 18 J/cm2 with the erbium:YAG laser, at a power of 300±15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 μJ/pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J/cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.

  16. Effects of thidiazuron and paclobutrazol on regeneration potential of tulip flower stalk explants in vitro and subsequent shoot multiplication

    Directory of Open Access Journals (Sweden)

    Małgorzata Podwyszyńska

    2011-04-01

    Full Text Available The effects of TDZ and paclobutrazol on the primary regeneration on tulip flower stalk explants of six cultivars and subsequent shoot multiplication were examined. Explants, flower stalk slices, were excised from cooled and subsequently forced bulbs. The explants were incubated for two months in darkness on medium containing NAA and cytokinins, 2iP and BAP, as control, or TDZ (0.5-4 mg l-1 and paclobutrazol (0.05-0.4 mg l-1. Then, the regenerating explants were subcultured on medium with TDZ and NAA applied at low concentrations. Different regeneration capabilities were found depending on cultivar and growth regulators. The percentage of explants forming leaf-like structures ranged, on the control medium, from 80% in 'Blue Parrot' and 'Prominence' to below 30% in 'Apeldoorn' and 'Mirjoran'. TDZ, applied at optimum for each cultivar concentration, greatly increased the regeneration potential up to 70-100%. Paclobutrazol, added to the TDZ-containing medium, significantly enhanced the response of explants, resulting in high numbers of leaf-like structures formed per explant (13.7-22.8. The structures developed gradually into characteristic forms: the growing up cotyledonary leaf, the probable root primordium formed at its base, the growing downwards stolon and the shoot meristem developed finely on its tip. It is suggested that such primary regeneration may have a nature of somatic embryogenesis. Then, the adventitious shoots developed and formed clusters, which were divided into 2-3 smaller ones every two months. The growth regulators, used at initial stage, markedly influenced subsequent shoot multiplication. Thus, the most intensive shoot formation was noted with TDZ at concentrations of 0.5-2 mg l-1 and paclobutrazol of 0.05-0.1 mg l-1.

  17. Abnormal mandibular growth and the condylar cartilage.

    Science.gov (United States)

    Pirttiniemi, Pertti; Peltomäki, Timo; Müller, Lukas; Luder, Hans U

    2009-02-01

    Deviations in the growth of the mandibular condyle can affect both the functional occlusion and the aesthetic appearance of the face. The reasons for these growth deviations are numerous and often entail complex sequences of malfunction at the cellular level. The aim of this review is to summarize recent progress in the understanding of pathological alterations occurring during childhood and adolescence that affect the temporomandibular joint (TMJ) and, hence, result in disorders of mandibular growth. Pathological conditions taken into account are subdivided into (1) congenital malformations with associated growth disorders, (2) primary growth disorders, and (3) acquired diseases or trauma with associated growth disorders. Among the congenital malformations, hemifacial microsomia (HFM) appears to be the principal syndrome entailing severe growth disturbances, whereas growth abnormalities occurring in conjunction with other craniofacial dysplasias seem far less prominent than could be anticipated based on their often disfiguring nature. Hemimandibular hyperplasia and elongation undoubtedly constitute the most obscure conditions that are associated with prominent, often unilateral, abnormalities of condylar, and mandibular growth. Finally, disturbances of mandibular growth as a result of juvenile idiopathic arthritis (JIA) and condylar fractures seem to be direct consequences of inflammatory and/or mechanical damage to the condylar cartilage. PMID:19164410

  18. Rehabilitation after cell transplantation for cartilage defects.

    Science.gov (United States)

    Deszczynski, J; Slynarski, K

    2006-01-01

    Rehabilitation is a key element of successful treatment of cartilage defects with cell transplantation. The process of graft maturation takes approximately 18 months and cannot be accelerated, but requires carefully introduced steps leading to early recovery of joint function. Rehabilitation starts at 8 hours after surgery with the continuous passive motion (CPM) exercises and physiotherapy. For the first 6 weeks, patients continue with CPM in the range of 0 degrees to 45 degrees for femoral and tibial defects and 0 degrees to 30 degrees for patellofemoral joint reconstruction. Isometric muscle training and scar manual therapy are introduced. Patients are allowed to weight-bear as tolerated from the second week after surgery. After this initial phase, from 6 to 8 weeks after surgery, rehabilitation is accelerated with increased load-bearing and progressive range of motion to full flexion. Usually patients are able to walk without crutches in this time. Proprioceptive training is introduced with the advance of pain-free full range of motion and no discomfort with full weight-bearing. At 6 months after surgery, most patients recover joint function, making it possible for them to return to daily living activities. However, they need to continue with muscle, proprioceptive, and sports-specific rehabilitation exercises. The rehabilitation process is complicated, requiring close cooperation between the patient and surgeon-physiotherapist team to understand the symptoms and address them in a timely fashion. PMID:16504734

  19. Dynamic Response of Femoral Cartilage in Knees With Unicompartmental Osteoarthritis

    Directory of Open Access Journals (Sweden)

    A. Vidal-Lesso

    2011-08-01

    Full Text Available The objective of the present work was to determine the dynamic indentation response, stiffness and relaxation curvesfor the shear and the bulk modulus of femoral knee cartilage with no visual damage in cases under unicompartmentalosteoarthritis.A cyclic displacement of 0.5 mm in axial direction was applied with a 3 mm plane-ended cylindrical indenter at specificpoints in the femoral knee cartilage specimens of seven patients with unicompartmental osteoarthritis (UOA. Theindentation force over time was recorded and next the maximum stiffness in all cycles was obtained and compared.Also, the relaxation curves for the shear and the bulk modulus of cartilage were obtained in this work.A decrease in the maximum indentation force was observed comparing between indentation cycles; it was of 6.75 ±0.71% from cycle 1 to cycle 2 and 4.70 ± 0.31% for cycle 2 to cycle 3. Stiffness values changed with a mean of 3.35 ±0.39% from cycle 1 to cycle 2 and 1.40 ± 0.71% from cycle 2 to cycle 3. Moreover, relaxation curves for the shearmodulus and the bulk modulus showed the nonlinear behavior of articular cartilage with UOA.Our results showed that cartilage specimens with no visual damage in UOA preserve a nonlinear viscoelastic behaviorand its stiffness increases through the loading cycles. Our work provides experimental values for generating a morerealistic cartilage behavior than those currently used in computer cartilage models for the study of UOA.

  20. Noninvasive determination of knee cartilage deformation during jumping.

    Science.gov (United States)

    Filipovic, Nenad; Vulovic, Radun; Peulic, Aleksandar; Radakovic, Radivoje; Kosanic, Djordje; Ristic, Branko

    2009-01-01

    The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping. Key pointsEven there are many existing mathematical models of force distribution during running or jumping (Liu et al, 1998), to our knowledge there is no interdisciplinary approach where imaging processing, finite element modeling and experimental force plate system are employed.The aim is to explore noninvasive deformation in the knee cartilage during athlete's jumping on the force plate.An original image algorithms and software were developed as well as complex mathematical models using high-performance computational power of finite element modeling together with one-dimensional dynamics model.The initial results showed cartilage deformation in the knee and future research will be focused on the methodology and more precisely determination of the stress and strain distribution in the knee cartilage during training phase of sportsman. PMID:24149600

  1. Morphometric study of cricoid cartilages in Western India

    Directory of Open Access Journals (Sweden)

    Mohini Joshi

    2011-10-01

    Full Text Available BackgroundIt is important to determine the size and proportion of thelarynx as such information is useful in procedures such asintubation, endoscopy and surgical manipulations. Recentinterest in the cases of subglottic stenosis and postintubationalstenosis of the lower respiratory tract has ledto renewed interest in ascertaining the measurements ofthe various laryngeal cartilages. The aim of the presentstudy was to collect morphometric data of cricoid cartilagefrom a regional population.MethodFifty laryngeal preparations from adult cadavers of WesternIndia were assessed. Sections were prepared via dissectionand the removed cricoid cartilages then measured andweighed.ResultsThe mean antero-posterior diameter (19.29±2.47 of thecricoid cartilage was greater than the average transversediameter (18.33±2.26. The height of arch of cricoidcartilage was 6.54±1.23mm and height of lamina was21.45±1.97mm. Mean weight of cricoid cartilage was4.53±1.27grams. The shape of the cricoid cartilage wasovoid in 46% of cases, oval in 38%, pear shaped in 12% andnarrow-oblong in 4% of cases.ConclusionInter-subject variability in the dimensions of cricoidcartilages was observed. The large difference in almost allsizes and shapes of the cricoid cartilage makes it difficult tostandardise the rigid stents used in these organs.Endotracheal tubes of the appropriate size should thereforebe based on the measurements of individual patients.Clinicians should therefore be aware of morphologicalvariations as they are of fundamental clinical importance.Key WordsCricoid cartilage, larynx, morphometry

  2. T cells fail to develop in the human skin-cell explants system; an inconvenient truth

    Directory of Open Access Journals (Sweden)

    Vanderlocht Joris

    2011-02-01

    Full Text Available Abstract Background Haplo-identical hematopoietic stem cell (HSC transplantation is very successful in eradicating haematological tumours, but the long post-transplant T-lymphopenic phase is responsible for high morbidity and mortality rates. Clark et al. have described a skin-explant system capable of producing host-tolerant donor-HSC derived T-cells. Because this T-cell production platform has the potential to replenish the T-cell levels following transplantation, we set out to validate the skin-explant system. Results Following the published procedures, while using the same commercial components, it was impossible to reproduce the skin-explant conditions required for HSC differentiation towards mature T-cells. The keratinocyte maturation procedure resulted in fragile cells with minimum expression of delta-like ligand (DLL. In most experiments the generated cells failed to adhere to carriers or were quickly outcompeted by fibroblasts. Consequently it was not possible to reproduce cell-culture conditions required for HSC differentiation into functional T-cells. Using cell-lines over-expressing DLL, we showed that the antibodies used by Clark et al. were unable to detect native DLL, but instead stained 7AAD+ cells. Therefore, it is unlikely that the observed T-lineage commitment from HSC is mediated by DLL expressed on keratinocytes. In addition, we did confirm expression of the Notch-ligand Jagged-1 by keratinocytes. Conclusions Currently, and unfortunately, it remains difficult to explain the development or growth of T-cells described by Clark et al., but for the fate of patients suffering from lymphopenia it is essential to both reproduce and understand how these co-cultures really "work". Fortunately, alternative procedures to speed-up T-cell reconstitution are being established and validated and may become available for patients in the near future.

  3. Retrospective Analysis of Lung Transplant Recipients Found to Have Unexpected Lung Cancer in Explanted Lungs.

    Science.gov (United States)

    Nakajima, Takahiro; Cypel, Marcelo; de Perrot, Marc; Pierre, Andrew; Waddell, Tom; Singer, Lianne; Roberts, Heidi; Keshavjee, Shaf; Yasufuku, Kazuhiro

    2015-01-01

    Unexpected lung cancer is sometimes found in explanted lungs. The objective of this study was to review these patients and their outcomes to better understand and optimize management protocols for lung transplant candidates with pulmonary nodules. Retrospective analysis of pretransplant imaging and clinicopathologic characteristics of patients who were found to have lung cancer in their explanted lungs was performed. From January 2003 to December 2012, 13 of 853 lung transplant recipients were found to have unexpected lung cancer in their explanted lung (1.52%). Of them, 9 cases were for interstitial lung disease (2.8%; 9/321 recipients) and 4 cases were for chronic obstructive pulmonary disease (1.57%; 4/255 recipients). The median period between computed tomographic scan and lung transplantation was 2.40 months (range: 0.5-19.2). On computed tomographic scan, only 3 cases were shown to possibly have a neoplasm by the radiologist. The staging of these lung cancers was as follows: 3 cases of IA, 1 case of IB, 5 cases of IIA, 1 case of IIIA, and 3 cases of IV. Of 13 cases, 9 died owing to cancer progression. On the contrary, only 1 stage I case with small cell lung cancer showed cancer recurrence. The median survival time was 339 days, and the 3-year survival rate was 11.0%. In conclusion, most of the patients with unexpected lung cancer showed poor prognosis except for the early-stage disease. The establishment of proper protocol for management of such nodules is important to improve the management of candidates who are found to have pulmonary nodules on imaging. PMID:26074103

  4. Plant regeneration from single-nodal-stem explants of legume tree Prosopis alba Griseb.

    Science.gov (United States)

    Castillo de Meier, G; Bovo, O A

    2000-08-01

    Seeds of Prosopis alba were scarified with abrasive paper and placed to germinate on MS (Murashige and Skoog 1962) nutrient medium. After 7 days of culture, the basal part of cotyledons was removed and pieces of 4 mm" from distal parts were cultured on Murashige and Skoog (1962) mineral salts and vitamins (MS) (3% sucrose) supplemented with growth regulators. Callus proliferation took place in the majority of the media tested. A low percentage of calluses with green buds that developed on MS basal medium containing 0.1 mg.L-1 2,4-D alone or supplemented with BAP at 0.1 mg.L-1 was observed. Neither cotyledonary segments in any medium assayed regenerated the whole plants. Bud elongation (near 70%) was achieved when single-nodal-stem segments cut from 20 days old seedlings were cultured on MS salts supplemented with 3 mg.L-1 NAA or 3 mg.L-1 IBA combined with 0.05 mg.L-1 KIN after 60 days in culture. Multiple shoots per bud were also observed. Single-nodal-stem segments from five-year-old plants were also cultured on the same media used for seedling explants. Maximal frequency of explants with bud elongation (near 70%) was found on MS with 0.1 mg.L-1 NAA plus 1 mg.L-1 BAP after 60 days of culture. Single-nodal-stem explants cut from adult trees (more than 20 years) were also employed, but the number of bud elongation was lesser. For rooting, the elongated shoots were transferred to a semisolid or liquid MS culture medium employing a paper bridge, supplemented with 0.5 mg.L-1 IBA or 0.1 mg.L-1 NAA.

  5. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures.

    Directory of Open Access Journals (Sweden)

    Purificación Gómez-Abellán

    Full Text Available AIMS: to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V and subcutaneous (S adipose tissue (AT in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX on positive and negative clock genes expression. SUBJECTS AND METHODS: VAT and SAT biopsies were obtained from morbid obese women (body mass index ≥ 40 kg/m(2 (n = 6. In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX and AT explants treated with DEX (2 hours were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. RESULTS: CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements in the SAT (situation not present in VAT. A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. CONCLUSIONS: 24 h patterns in CLOCK and BMAL1 (positive clock elements and PER2 (negative element mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure.

  6. Agrobacterium-mediated transformation of oat (Avena sativa L.) cultivars via immature embryo and leaf explants.

    Science.gov (United States)

    Gasparis, Sebastian; Bregier, Cezary; Orczyk, Waclaw; Nadolska-Orczyk, Anna

    2008-11-01

    This paper reports on the successful Agrobacterium-mediated transformation of oat, and on some factors influencing this process. In the first step of the experiments, three cultivars, two types of explant, and three combinations of strain/vectors, which were successfully used for transformation of other cereals were tested. Transgenic plants were obtained from the immature embryos of cvs. Bajka, Slawko and Akt and from leaf base explants of cv. Bajka after transformation with A. thumefaciens strain LBA4404(pTOK233). The highest transformation rate (12.3%) was obtained for immature embryos of cv. Bajka. About 79% of the selected plants proved to be transgenic; however, only 14.3% of the T(0) plants and 27.5% of the T(1) showed GUS expression. Cell competence of both types of explant differed in terms of their transformation ability and transgene expression. The next step of the study was to test the suitability for oat transformation of the pGreen binary vector combined with different selection cassettes: nptII or bar under the nos or 35S promoter. Transgenic plants were selected in combinations transformed with nos::nptII, 35S::nptII and nos::bar. The highest transformation efficiency (5.3%) was obtained for cv. Akt transformed with nos::nptII. A detailed analysis of the T(0) plants selected from a given callus line and their progeny revealed that they were the mixture of transgenic, chimeric-transgenic and non-transgenic individuals. Southern blot analysis of T(0) and T(1) showed simple integration pattern with the low copy number of the introduced transgenes.

  7. Rapid in vitro multiplication of the ethnomedicinal shrub, Acacia caesia (L.) Willd. (Mimosaceae) from leaf explants

    Institute of Scientific and Technical Information of China (English)

    Thambiraj J; Paulsamy S

    2012-01-01

    Objective: To develop an efficient protocol for in vitro multiplication of the ethnomedicinal shrub Acacia caesia (A. caesia) L. Willd., Methods: Leaf explants were inoculated on MS medium supplemented with TDZ and NAA for callus induction. Subculturing experiments were conducted by using leaf derived calli for shoot proliferation on MS medium fortified with various growth regulators like IBA, TDZ, BAP and GA3. The regenerated shoots were rooted in half strength MS medium supplemented with various concentrations of IBA, IAA and Kn. After roots were developed, the plantlets were transplanted to pots filled with garden soil, sand and vermicompost and kept in growth chamber with 70%-80%humidity under16h photoperiod. After acclimatization, the plantlets were transferred to the garden and survival percentage was calculated. Data were statistically analyzed and means were compared using Duncan’s Multiple Range Test (P<0.05). Results: An in vitro multiplication protocol was developed for the locally demanded medicinal plant species, A. caesia by using leaf explant. The study revealed that the callus formation was effective in MS medium containing TDZ and NAA at 1.5 and 0.3 mg/L respectively. Shoot induction was most successful in MS medium supplemented with combination of the auxin, IBA and cytokinin, TDZ at 2.0 and 0.5 mg/L respectively. A single leaf explant was capable of producing 12 shoots/callus after 30 days of culture. The other supplementation in MS medium with IBA and Kn at 2.0 and 0.4 mg/L respectively produced higher rooting frequency, roots/shoot and root length. The survivability rate of leaf callus derived plantlets was significantly higher (84%) in the hardening medium composed by garden soil, sand and vermicompost (1:1:1) by volume. Conclusions: A significant progress has been made in the in vitro regeneration system of this medicinally important plant species, A.caesia.

  8. Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants.

    Science.gov (United States)

    Ceasar, S Antony; Ignacimuthu, S

    2011-09-01

    A new Agrobacterium-mediated transformation system was developed for finger millet using shoot apex explants. The Agrobacterium strain LBA4404 harboring binary vector pCAMBIA1301, which contained hygromycin phosphotransferase (hptII) as selectable marker gene and β-glucuronidase (GUS) as reporter gene, was used for optimization of transformation conditions. Two finger millet genotypes, GPU 45 and CO 14, were used in this study. The optimal conditions for the Agrobacterium-mediated transformation of finger millet were found to be the co-cultivation of explants obtained on the 16th day after callus induction (DACI), exposure of explants for 30 min to agrobacterial inoculum and 3 days of co-cultivation on filter paper placed on medium supplemented with 100 μM acetosyringone (AS). Addition of 100 μM L: -cysteine in the selection medium enhanced the frequency of transformation and transgenic plant recovery. Both finger millet genotypes were transformed by Agrobacterium. A frequency of 19% transient expression with 3.8% stable transformation was achieved in genotype GPU 45 using optimal conditions. Five stably transformed plants were fully characterized by Southern blot analysis. A segregation analysis was also performed in four R(1) progenies, which showed normal Mendelian pattern of transgene segregation. The inheritance of transgenes in R(1) progenies was also confirmed by Southern blot analysis. This is the first report on Agrobacterium-mediated transformation of finger millet. This study underpins the introduction of numerous agronomically important genes into the genome of finger millet in the future.

  9. In situ fiber-optical monitoring of cytosolic calcium in tissue explant cultures

    CERN Document Server

    Ryser, Manuel; Geiser, Marianne; Frenz, Martin; Rička, Jaro

    2014-01-01

    We present a fluorescence-lifetime based method for monitoring cell and tissue activity in situ, during cell culturing and in the presence of a strong autofluorescence background. The miniature fiber-optic probes are easily incorporated in the tight space of a cell culture chamber or in an endoscope. As a first application we monitored the cytosolic calcium levels in porcine tracheal explant cultures using the Calcium Green-5N (CG5N) indicator. Despite the simplicity of the optical setup we are able to detect changes of calcium concentration as small as 2.5 nM, with a monitoring time resolution of less than 1 s.

  10. CALLUS INDUCTION AND PLANT REGENERATION IN PUNICA GRANATUM L. ?NANA' FROM LEAF EXPLANTS

    OpenAIRE

    Alireza Bonyanpour; Morteza Khosh-Khui

    2013-01-01

    ABSTRACT In this investigation, leaf explants of a local cultivar of dwarf pomegranate were placed on Murashige and Skoog (1962) (MS) medium supplemented with various concentrations of 6-benzyl adenin (BA) and naphthalene acetic acid (NAA) for callus induction. After 40 days, maximum callus induction was observed on a media containing 1 mg L-1 BA and 0.2 to 0.4 mg L-1 NAA. However, the highest callus growth was obtained on a medium containing 1 mg L-1 BA and 1 mg L-1 NAA. The highest number o...

  11. Radiation-induced outgrowth inhibition in explant cultures from surgical specimens of five human organs

    Energy Technology Data Exchange (ETDEWEB)

    Mothersill, Carmel; Cusack, Anne; Seymour, C.B.

    1988-03-01

    An explant outgrowth technique to determine the radiation response of five different human organs (bladder, oesophagus, colon, breast and thyroid) is described. In each case except thyroid, where malignancies are rare, data are presented for normal and malignant tissue. Results show that variations in response, consistent with those observed in vivo, can be measured. Tumours were in all cases highly resistant to radiation relative to their corresponding normal tissue. Possible reasons for this are discussed. The method may prove useful in the prediction of the radiobiological response for tumour and surrounding normal tissue where post-operative therapy is planned.

  12. Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants

    KAUST Repository

    Kumar, Nitish

    2010-07-01

    Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel crop. A simple and reproducible protocol was developed for Agrobacterium tumefaciens-mediated stable genetic transformation of J. curcas using leaf explains. Agrobacterium strain LBA 4404 harbouring the binary vector pCAMBIA 1304 having sense-dehydration responsive element binding (S-DREB2A), beta-glucuronidase (gus), and hygromycin-phosphotransferase (hpt) genes were used for gene transfer. A number of parameters such as preculture of explains, wounding of leaf explants, Agrobacterium growth phase (OD), infection duration, co-cultivation period, co-cultivation medium pH, and acetosyringone, were studied to optimized transformation efficiency. The highest transformation efficiency was achieved using 4-day precultured, non-wounded leaf explants infected with Agrobacterium culture corresponding to OD(600)=0.6 for 20 min, followed by co-cultivation for 4 days in a co-cultivation medium containing 100 mu M acetosyringone, pH 5.7. Co-cultivated leaf explants were initially cultured on Murashige and Skoog (MS) medium supplemented with 2.27 mu M thidiazuron (TDZ) for regeneration of shoot buds, followed by selection on same medium with 5 mu g ml(-1) hygromycin. Selected shoot buds were transferred to MS medium containing 10 mu M kinetin (Kn), 4.5 mu M 6-benzyl aminopurine (BA), and 5.5 mu M alpha-naphthaleneacetic acid (NAA) for proliferation. The proliferated shoots were elongated on MS medium supplemented with 2.25 mu M BA and 8.5 mu M indole-3-acetic acid (IAA). The elongated shoots were rooted on half strength MS medium supplemented with 15 mu M indole-3-butyric acid (IBA), 5.7 mu M IAA, 5.5 mu M NAA, and 0.25 mg l(-1) activated charcoal. GUS histochemical analysis of the transgenic tissues further confirmed the transformation event. PCR and DNA gel blot hybridization were performed to confirm the presence of transgene. A transformation efficiency of 29% was

  13. Variation in phytate accumulation in common bean (Phaseolus vulgaris L. fruit explants

    Directory of Open Access Journals (Sweden)

    Cileide Maria Medeiros Coelho

    2008-02-01

    Full Text Available The in vitro synthesis of phytate was studied in common bean fruit explants. Different concentrations of sucrose; phosphorus (P; myo-inositol; abscisic acid (ABA; glutamine and methionine, were tested. Fixed concentrations of these compounds were tested at different periods (0, 3, 6 and 9 days. Variation in phytate coincided with different concentrations of sucrose, myo-inositol, P and ABA for the duration tested. These compounds caused an accumulation of phytate and were more effective in the presence of myo-inositol and P. The accumulation of P varied less than phytate for the different treatments tested in vitro. In conclusion, P, sucrose, ABA, and myo-inositol caused an increase in the phytate of bean seed, showing that it could be possible to alter its content by culturing bean fruit explants in vitro.O fósforo é armazenado na forma de fitato nas sementes, o qual forma complexos estáveis e insolúveis com minerais e proteínas, conferindo efeito antinutriente. A síntese de fitato foi estudada em cultivo de explantes de fruto de feijão in vitro sob diferentes concentrações de sacarose, fósforo (P, mio-inositol, ácido abscísico (ABA, glutamina e metionina. Fixada a concentração destes compostos, testou-se os diferentes tempos de cultivo (0, 3, 6 e 9 dias. A variação no acúmulo de fitato ocorreu na presença de sacarose, mio-inositol, P e ABA nas diferentes concentrações e tempos testados. O acúmulo mais efetivo de fitato ocorreu na presença de mio-inositol e P. O acúmulo de P variou menos do que fitato em todos os tratamentos. Em conclusão, P, sacarose, ABA e mio-inositol causaram aumento no fitato acumulado nas sementes, mostrando que foi possível alterar a síntese de fitato em cultivo de explantes de fruto de feijão.

  14. An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology.

    Science.gov (United States)

    Klika, Václav; Gaffney, Eamonn A; Chen, Ying-Chun; Brown, Cameron P

    2016-09-01

    There is a long history of mathematical and computational modelling with the objective of understanding the mechanisms governing cartilage׳s remarkable mechanical performance. Nonetheless, despite sophisticated modelling development, simulations of cartilage have consistently lagged behind structural knowledge and thus the relationship between structure and function in cartilage is not fully understood. However, in the most recent generation of studies, there is an emerging confluence between our structural knowledge and the structure represented in cartilage modelling. This raises the prospect of further refinement in our understanding of cartilage function and also the initiation of an engineering-level understanding for how structural degradation and ageing relates to cartilage dysfunction and pathology, as well as informing the potential design of prospective interventions. Aimed at researchers entering the field of cartilage modelling, we thus review the basic principles of cartilage models, discussing the underlying physics and assumptions in relatively simple settings, whilst presenting the derivation of relatively parsimonious multiphase cartilage models consistent with our discussions. We proceed to consider modern developments that start aligning the structure captured in the models with observed complexities. This emphasises the challenges associated with constitutive relations, boundary conditions, parameter estimation and validation in cartilage modelling programmes. Consequently, we further detail how both experimental interrogations and modelling developments can be utilised to investigate and reduce such difficulties before summarising how cartilage modelling initiatives may improve our understanding of cartilage ageing, pathology and intervention. PMID:27195911

  15. Evaluation of influence of proteoglycans on hydration of articular cartilage with the use of ultrasound

    Directory of Open Access Journals (Sweden)

    Yi-yi YANG

    2015-04-01

    Full Text Available Objective To monitor the changes in hydration behaviour of articular cartilage induced by degradation of proteoglycans, and to explore the effect of proteoglycans on hydration behaviour of articular cartilage by using high-frequency ultrasound. Methods Twelve porcine patellae with smooth cartilage surface were prepared and equally divided into two groups: normal group without any enzyme treatment, and trypsin group they were treated with 0.25% trypsin for 8h to digest proteoglycan in the cartilage. The hydration behaviour of the cartilage tissue was scanned by high-frequency ultrasound system with a central frequency of 25MHz. Parameters including cartilage hydration strain and cartilage thickness were measured. The histopathological changes in the articular cartilage were observed under a light microscope. Results It took approximately 20min to reach equilibrium during the hydration process in the normal cartilages, while proteoglycan-degraded cartilage took only about 5min to achieve equilibrium. The equilibrium strain of normal cartilage was 3.5%±0.5%. The degradation of proteoglycans induced a significant decrease in equilibrium strain (1.8%±0.2%, P0.05. Conclusion Proteoglycans play an important role in hydration behaviour of articular cartilage. The degradation of proteoglycans could induce degeneration of cartilage structure and decrease in hydration behaviour after dehydration. DOI: 10.11855/j.issn.0577-7402.2015.03.03

  16. Biochemical investigations during in vitro adventitious shoot regeneration in leaflet explants from nodal segments of a mature Albizia procera tree

    Institute of Scientific and Technical Information of China (English)

    Ekta Rai; Sulochna Bouddha; Shamim Akhtar Ansari

    2016-01-01

    The in vitro adventitious shoot differentiation in leaflet explants of an adult tree differed from that of leaflet explants of seedlings of Albizia procera (Roxb.) Benth. reported previously elsewhere. The leaflet explants from an adult tree passed through an initial callus phase for 30 days on MS medium supplemented with 3% sucrose, 2.5 lM 2,4-D followed by a subsequent adventitious shoot differentiation phase for another 30 days on half MS medium supplemented with 0.25 lM each of BA and IBA. The regeneration rate of in vitro adventitious shoots in explants from the adult tree, i.e.1.66 shoots/callus, was lower than that from seedlings, i.e. [10 shoots/callus, which was reported elsewhere. Correspondingly, the activities of nitrate reductase and peroxidase, and endogenous phenol content remained very low during in vitro adventitious shoot differentiation in leaflet explants of an adult tree possibly due to lower availability of competent stem (juvenile) cells for the process.

  17. Organotypic Culture of Breast Tumor Explants as a Multicellular System for the Screening of Natural Compounds with Antineoplastic Potential

    Science.gov (United States)

    Carranza-Torres, Irma Edith; Guzmán-Delgado, Nancy Elena; Coronado-Martínez, Consuelo; Bañuelos-García, José Inocente; Viveros-Valdez, Ezequiel; Morán-Martínez, Javier; Carranza-Rosales, Pilar

    2015-01-01

    Breast cancer is the leading cause of death in women worldwide. The search for novel compounds with antitumor activity, with less adverse effects and higher efficacy, and the development of methods to evaluate their toxicity is an area of intense research. In this study we implemented the preparation and culture of breast tumor explants, which were obtained from precision-cut breast tumor slices. In order to validate the model we are proposing to screen antineoplastic effect of natural compounds, we selected caffeic acid, ursolic acid, and rosmarinic acid. Using the Krumdieck tissue slicer, precision-cut tissue slices were prepared from breast cancer samples; from these slices, 4 mm explants were obtained and incubated with the selected compounds. Viability was assessed by Alamar Blue assay, LDH release, and histopathological criteria. Results showed that the viability of the explants cultured in the presence of paclitaxel (positive control) decreased significantly (P < 0.05); however, tumor samples responded differently to each compound. When the explants were coincubated with paclitaxel and compounds, a synergic effect was observed. This study shows that ex vivo culture of breast cancer explants offers a suitable alternative model for evaluating natural or synthetic compounds with antitumor properties within the complex microenvironment of the tumor. PMID:26075250

  18. The effect of gamma radiation on in vitro cultured explants of yam (Dioscorea alata L.) cv. Kinampay

    International Nuclear Information System (INIS)

    Various explants of yam were irradiated with gamma rays at doses ranging from 5-50 Gy. Induction of callus was obtained in tuberous root and other vegetative explants: petiole, node, internode and shoot apex. Callus induction was observed in the irradiated and unirradiated fleshy or tuberous root explants grown in Murashige and Skoog's (MS) medium with benzyl adenine (BA) in combination with naphthalene acetic acid (NAA) ranging from 2-6 ppm. Stimulation of callus growth was obtained from tuberous root explants irradiated with 5 and 10 Gy and grown in MS medium supplemented with 2 ppm BA in combination with 6ppm NAA. Similar callus growth (as indicated by their weight) was observed at higher doses of 30 and 40 GY, provided that higher levels of 4 ppm BA and 6 ppm NAA were incorporated into the MS medium. Similarly, induction of callus was enhanced in tuberous root sections of putative mutant lines (for dwarfness and earliness) that were cultured in higher levels of BA and NAA in MS medium. Regeneration of plantlets was obtained from callus-derived shoot apex irradiated with 40 Gy and from calli-derived unirradiated nodal and tuberous root explants. (author). 40 refs.; 2 figs., 6 tabs

  19. Organotypic Culture of Breast Tumor Explants as a Multicellular System for the Screening of Natural Compounds with Antineoplastic Potential

    Directory of Open Access Journals (Sweden)

    Irma Edith Carranza-Torres

    2015-01-01

    Full Text Available Breast cancer is the leading cause of death in women worldwide. The search for novel compounds with antitumor activity, with less adverse effects and higher efficacy, and the development of methods to evaluate their toxicity is an area of ​​intense research. In this study we implemented the preparation and culture of breast tumor explants, which were obtained from precision-cut breast tumor slices. In order to validate the model we are proposing to screen antineoplastic effect of natural compounds, we selected caffeic acid, ursolic acid, and rosmarinic acid. Using the Krumdieck tissue slicer, precision-cut tissue slices were prepared from breast cancer samples; from these slices, 4 mm explants were obtained and incubated with the selected compounds. Viability was assessed by Alamar Blue assay, LDH release, and histopathological criteria. Results showed that the viability of the explants cultured in the presence of paclitaxel (positive control decreased significantly (P<0.05; however, tumor samples responded differently to each compound. When the explants were coincubated with paclitaxel and compounds, a synergic effect was observed. This study shows that ex vivo culture of breast cancer explants offers a suitable alternative model for evaluating natural or synthetic compounds with antitumor properties within the complex microenvironment of the tumor.

  20. EFEITO DE REGULADORES DE CRESCIMENTO E TIPO DE EXPLANTES NA MORFOGÊNESE in vitro DE Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Márcio Henrique Pereira Barbosa

    1994-01-01

    Full Text Available RESUMO Explantes apicais, cotiledonares, hipocotiledonares e brotações regeneradas in vitro de Capsicum annuum cv. Agronômico 10 foram cultivados em meio (MURASHIGE & SKOOG, 1962-MS suplementado com diferentes concentrações e combinações de BAP, adenina e tidiazuron. De acordo com o tipo de explante e reguladores de crescimento, foram obtidas diferentes respostas morfogenéticas. De modo geral, meios contendo concentrações mais elevadas de BAP e tidiazuron, promoveram a indução e produção de calos nos explantes provenientes de "seedlings", enquanto que a rizogênese foi favorecida em meios com baixas concentrações de BAP. Múltiplos brotos axilares foram formados somente quando utilizou-se como explante, brotações regeneradas in vitro. Os níveis de 26,64 e 39,96 µM de BAP possiblitaram a maximização da proliferação em aproximadamente 2,08 e 2,17 novas brotações por explante, respectivamente.

  1. ENDOSCOPIC TYMPANO PLASTY TEMPORALIS FASCIA VERSUS CARTILAGE : COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2015-08-01

    Full Text Available OBJECTIVE: To compare the graft acceptance rates and auditory outcomes of endoscopic cartilage tympanoplasty operations with those of endoscopic primary tympanoplasty using temporalis fascia in a homogenous group of patients . MATERIAL AND METHODS : This prospective study was conducted on 64 patients between the ages of 15 to 50 years. All patients had a central tympanic membrane perforation without infection in middle ear or upper respiratory tract. RESULTS : Anatomical results in terms of graft uptake and intact tympanic membrane over a period of 2 years showed good results both in 26(92.85% cases in cartilage group and in 33(91.66% cases in temporalis fascia group. The average post - operative Air bone gap in endoscopic fascia tympanoplasty group was 14.61db and 15.65db in endoscopic cartilage tympanoplasty group . CONCLUSION: Endoscopic tympanoplasty is a minimally invasive, sutureless procedure with better patient compliance. Tympanoplasty with cartilage graft has a high degree of graft take up. Tympanoplasty with cartilage provides better results in terms of integrity and intactness of the graft and less percentage of postoperative discharge from the operated ear.

  2. A high throughput mechanical screening device for cartilage tissue engineering.

    Science.gov (United States)

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput.

  3. Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    Science.gov (United States)

    Silva, Joana M.; Georgi, Nicole; Costa, Rui; Sher, Praveen; Reis, Rui L.; Van Blitterswijk, Clemens A.; Karperien, Marcel; Mano, João F.

    2013-01-01

    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs. PMID:23437056

  4. Collagen scaffolds with controlled insulin release and controlled pore structure for cartilage tissue engineering.

    Science.gov (United States)

    Nanda, Himansu Sekhar; Chen, Shangwu; Zhang, Qin; Kawazoe, Naoki; Chen, Guoping

    2014-01-01

    Controlled and local release of growth factors and nutrients from porous scaffolds is important for maintenance of cell survival, proliferation, and promotion of tissue regeneration. The purpose of the present research was to design a controlled release porous collagen-microbead hybrid scaffold with controlled pore structure capable of releasing insulin for application to cartilage tissue regeneration. Collagen-microbead hybrid scaffold was prepared by hybridization of insulin loaded PLGA microbeads with collagen using a freeze-drying technique. The pore structure of the hybrid scaffold was controlled by using preprepared ice particulates having a diameter range of 150-250 μ m. Hybrid scaffold had a controlled pore structure with pore size equivalent to ice particulates and good interconnection. The microbeads showed an even spatial distribution throughout the pore walls. In vitro insulin release profile from the hybrid scaffold exhibited a zero order release kinetics up to a period of 4 weeks without initial burst release. Culture of bovine articular chondrocytes in the hybrid scaffold demonstrated high bioactivity of the released insulin. The hybrid scaffold facilitated cell seeding and spatial cell distribution and promoted cell proliferation.

  5. Collagen Scaffolds with Controlled Insulin Release and Controlled Pore Structure for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Himansu Sekhar Nanda

    2014-01-01

    Full Text Available Controlled and local release of growth factors and nutrients from porous scaffolds is important for maintenance of cell survival, proliferation, and promotion of tissue regeneration. The purpose of the present research was to design a controlled release porous collagen-microbead hybrid scaffold with controlled pore structure capable of releasing insulin for application to cartilage tissue regeneration. Collagen-microbead hybrid scaffold was prepared by hybridization of insulin loaded PLGA microbeads with collagen using a freeze-drying technique. The pore structure of the hybrid scaffold was controlled by using preprepared ice particulates having a diameter range of 150–250 μm. Hybrid scaffold had a controlled pore structure with pore size equivalent to ice particulates and good interconnection. The microbeads showed an even spatial distribution throughout the pore walls. In vitro insulin release profile from the hybrid scaffold exhibited a zero order release kinetics up to a period of 4 weeks without initial burst release. Culture of bovine articular chondrocytes in the hybrid scaffold demonstrated high bioactivity of the released insulin. The hybrid scaffold facilitated cell seeding and spatial cell distribution and promoted cell proliferation.

  6. The effect of calcification on the structural mechanics of the costal cartilage.

    Science.gov (United States)

    Forman, Jason L; Kent, Richard W

    2014-01-01

    The costal cartilage often undergoes progressive calcification with age. This study sought to investigate the effects of calcification on the structural mechanics of whole costal cartilage segments. Models were developed for five costal cartilage specimens, including representations of the cartilage, the perichondrium, calcification, and segments of the rib and sternum. The material properties of the cartilage were determined through indentation testing; the properties of the perichondrium were determined through optimisation against structural experiments. The calcified regions were then expanded or shrunk to develop five different sensitivity analysis models for each. Increasing the relative volume of calcification from 0% to 24% of the cartilage volume increased the stiffness of the costal cartilage segments by a factor of 2.3-3.8. These results suggest that calcification may have a substantial effect on the stiffness of the costal cartilage which should be considered when modelling the chest, especially if age is a factor.

  7. Cartilage Grown in Lab Might One Day Help Younger Arthritis Sufferers

    Science.gov (United States)

    ... Cartilage Grown in Lab Might One Day Help Younger Arthritis Sufferers Made of patients' stem cells and ... eliminate the need for hip replacement surgery in younger arthritis patients. The cartilage hasn't been tested ...

  8. Cartilage Tissue Engineering: the effect of different biomaterials, cell types and culture methods

    NARCIS (Netherlands)

    W.J.C.M. Marijnissen (Willem)

    2006-01-01

    textabstractChapter 1 outlines the normal structure and composition of articular cartilage and the inefficient spontaneous healing response after focal damage. Current surgical treatment options are briefly discussed and tissue engineering techniques for the repair of articular cartilage defects

  9. Changes in articular cartilage after meniscectomy and meniscus replacement using a biodegradable porous polymer implant

    NARCIS (Netherlands)

    Hannink, G.J.; Tienen, T.G. van; Schouten, A.J.; Buma, P.

    2011-01-01

    PURPOSE: To evaluate the long-term effects of implantation of a biodegradable polymer meniscus implant on articular cartilage degeneration and compare this to articular cartilage degeneration after meniscectomy. METHODS: Porous polymer polycaprolacton-based polyurethane meniscus implants were implan

  10. Bovine Tuberculosis, A Zoonotic Disease

    Directory of Open Access Journals (Sweden)

    Tarmudji

    2008-12-01

    Full Text Available Bovine tuberculosis is caused by the infection of Mycobacterium tuberculosis var. bovis (M. bovis. This species is one of Mycobacterium tuberculosis complex, can infect wide range of hosts: cattle and other domesticated animals, wild mammals and humans (zoonotic. M. bovis bacterium from infected hosts can be transmitted to other susceptible animals and humans through respiratory excretes and secretion materials. Humans can be infected with M. bovis by ingested M. bovis contaminated animal products, unpasteurised milk from tuberculosis cows or through respiratory route of contaminated aerosol. Bovine tuberculosis at the first stage does not show any clinical sign but as the disease progress in the next stage which may take several months or years, clinical signs may arise, suh as: fluctuative body temperature, anorexia, lost body weight, coughing, oedema of lymph nodes, increased respiratory frequencies. Pathological lesion of bovine tuberculosis is characterised by the formation of granulomas (tubercles, in which bacterial cells have been localised, most in lymph nodes and pulmonum, but can occur in other organs. The granulomas usually arise in small nodules or tubercles appear yellowish either caseus, caseo-calcareus or calcified. In Indonesia, bovine tuberculosis occurred in dairy cattle since 1905 through the imported dairy cows from Holland and Australian. It was unfortunate that until recently, there were not many research and surveilances of bovine tuberculosis conducted in this country, so the distribution of bovine tuberculosis is unknown. Early serological diagnosis can be done on live cattle by means of tuberculin tests under field conditions. Confirmation can be done by isolation and identification of excreted and secreted samples from the slaughter house. Antibiotic treatment and vaccination were uneffective, therefore the effective control of bovine tuberculosis is suggested by tuberculin tests and by slaughtering the selected

  11. Histological and molecular evaluation of patient-derived colorectal cancer explants.

    Directory of Open Access Journals (Sweden)

    Joshua M Uronis

    Full Text Available Mouse models have been developed to investigate colorectal cancer etiology and evaluate new anti-cancer therapies. While genetically engineered and carcinogen-induced mouse models have provided important information with regard to the mechanisms underlying the oncogenic process, tumor xenograft models remain the standard for the evaluation of new chemotherapy and targeted drug treatments for clinical use. However, it remains unclear to what extent explanted colorectal tumor tissues retain inherent pathological features over time. In this study, we have generated a panel of 27 patient-derived colorectal cancer explants (PDCCEs by direct transplantation of human colorectal cancer tissues into NOD-SCID mice. Using this panel, we performed a comparison of histology, gene expression and mutation status between PDCCEs and the original human tissues from which they were derived. Our findings demonstrate that PDCCEs maintain key histological features, basic gene expression patterns and KRAS/BRAF mutation status through multiple passages. Altogether, these findings suggest that PDCCEs maintain similarity to the patient tumor from which they are derived and may have the potential to serve as a reliable preclinical model that can be incorporated into future strategies to optimize individual therapy for patients with colorectal cancer.

  12. Induction of Tetraploids from Petiole Explants through Colchicine Treatments in Echinacea purpurea L.

    Directory of Open Access Journals (Sweden)

    Dahanayake Nilanthi

    2009-01-01

    Full Text Available Petiole explants were obtained from in vitro grown diploid (2x=22 Echinacea purpurea plantlets. Shoots were regenerated by culturing the explants on MS basal medium containing 0.3 mg/L benzyladenine (BA, 0.01 mg/L naphthaleneacetic acid (NAA and four concentrations (30, 60, 120, and 240 mg/L of colchicine for 30 days, or 120 mg/L of colchicine for various durations (7, 14, 21, and 28 days. The regenerated shoots were induced to root on MS basal medium with 0.01 mg/L NAA, and then the root-tips of the regenerated shoots were sampled for count of chromosome number. It was found that a treatment duration of >7 days was necessary for induction of tetraploid (4x=44 shoots, and treatment with 120 mg/L colchicine for 28 days was the most efficient for induction of tetraploids, yielding 23.5% of tetraploids among all the regenerated shoots. Chimeras were observed in almost all the treatments. However, the ratio of tetraploid to diploid cells in a chimeric plant was usually low. In comparison with diploid plants, tetraploid plants in vitro had larger stomata and thicker roots with more root branches, and had prominently shorter inflorescence stalk when mature.

  13. Clonal propagation of guava (Psidium guajava L on nodal explants of mature elite cultivar

    Directory of Open Access Journals (Sweden)

    Guochen Yang

    2011-04-01

    Full Text Available Guava (Psidium guajava L. is a very valuable tropical and subtropical fruit. However, guava micro-propagation are genotypes dependent, there are several problems associated with in vitro cultures of guava including browning or blackening of culture medium due to leaching of phenolics, microbial contamination, and in vitro tissue recalcitrance. A micro-propagation system using Murashige and Skoog (MS medium with 6-benzylaminopurine (BA, kinetin and naphthaleneacetic acid (NAA was developed for guava (Psidium guajava L from mature cultivar. As part of this research various disinfection methods and plant growth regulators were tested in vitro. The most effective method involved treating explants in a 15% bleach solution for 20 mins followed by culturing them in MS medium with 250 mg/L polyvinylpyrrolidone (PVP. This method maximized the percentage of bud breakage (53.3%, while producing the minimum browning rate (18.3% for the explants. The best observed proliferation rate (71.2% occurred on the MS medium supplemented with 4.44 μM BA, 4.65 μM kinetin (KT and 0.54 μM NAA. It produced the highest mean number of shoots (2.2. Shoots were then rooted (65% when dipped in 4.9 mM Indole-3-butyric acid (IBA solution for 1 min and rooted plantlets survived (100% after acclimatization to the greenhouse.

  14. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver.

    Science.gov (United States)

    Bortolussi, S; Altieri, S

    2007-12-01

    The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ((phi(max)/phi(min)) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a phi(max)/phi(min) ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations. PMID:18196797

  15. Increased proliferation of explanted vascular smooth muscle cells: a marker presaging atherogenesis.

    Science.gov (United States)

    Absher, P M; Schneider, D J; Baldor, L C; Russell, J C; Sobel, B E

    1997-06-01

    The JCR:LA-cp homozygous cp/cp corpulent rat is genetically predisposed to develop atherosclerosis evident after 9 and 18 months of age in males and females and to manifest metabolic derangements resembling those seen in type II diabetes in humans (hyperinsulinemia, insulin resistance, hyperglycemia and hypertriglyceridemia). The present study was undertaken to determine whether vascular smooth muscle cells (SMCs) explanted from vessels destined to become atherosclerotic later in life exhibit intrinsic properties ex vivo that presage atherogenesis to provide a means for evaluating promptly intervention designed to modify it. SMCs were cultured from aortic explants of JCR:LA-cp corpulent (cp/cp) and lean control (+/+) rats of 4, 5, 6, and 9 months of age. Compared with SMCs from controls, SMCs from cp/cp rats exhibited increased proliferation, higher saturation density, increased augmentation of proliferation in response to selected mitogens and greater adherence to extracellular matrix proteins. The increased proliferative activity ex vivo anteceded by several months the development of atherosclerotic lesions in vivo. Thus, it is a promising marker in assessments of the efficacy of interventions designed to retard or prevent atherosclerosis.

  16. Utilization of Aseptic Seedling Explants for In vitro Propagation of Indian Red Wood

    Directory of Open Access Journals (Sweden)

    Kishore Kumar CHIRUVELLA

    2013-12-01

    Full Text Available Micropropagation has been advocated as one of the most viable biotechnological tool for ex situ conservation of rare, endangered endemic medicinal plants germplasm. Rapid clonal micropropagation protocol for large-scale multiplication of an endemic medicinal plant Soymida febrifuga (Meliaceae was established from 15-day aseptic seedling cotyledonary node and shoot tip explants. High frequency of sprouting and shoot differentiation was observed from cotyledonary node explants compared to shoot tip, on Murashige and Skoog (MS medium fortified with BA, KN, 2-iP and CM. Of the cytokinins used, BA (3.0 mgl-1 supported highest average number and maximum multiple shoot differentiation (16.6. In vitro proliferated shoots were multiplied rapidly by culturing nodal segments as microcuttings, further subcultured on the same media for elongation. Elongated shoots upon transfer to MS medium fortified with IBA showed rooting within two weeks of culture. Rooted plantlets were successfully hardened and 75% of rooted shoots successfully survived on establishment to the soil. Plants looked healthy with no visually detectable phenotypic variations. This protocol provides a successful and rapid technique that can be used for ex situ conservation minimizing the pressure on wild populations and contributes to the conservation of this endemic medicinally potent flora.

  17. Plant Regeneration from In Vitro Cultured Hypocotyl Explants of Euonymus japonicus Cu zhi

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Adventitious shoots were successfully regenerated from hypocotyl explants of in vitro cultures of Euonymus japonicus Cu zhi. Hypocotyl slices were cultured on Murashige and Skoog (MS) and B5 basal medium supplemented with varied concentration of different plant growth-regulators, e.g., α-naphthaleneacetic acid (NAA) and indole-3-butyric acid (IBA) in combination with 6-benzylaminopurine (6-BA) and kinetin. The study showed that shoots could be directly regenerated from hypocotyl explants without the intervening callus phase; MS medium was more suitable for adventitious shoots regeneration. The ability of hypocotyls segments to produce shoots varied depending upon their position on the seedlings. The highest regeneration rate was obtained with hypocotyl segments near to the cotyledon cultured on MS basal medium supplemented with 1.5 mg L-1 6-BA and 0.05 mg L-1 NAA (63.64%). The regenerated shoots were readily elongated on the same medium as used for multiplication and rooted on half-strength MS basal medium supplemented with 1.0 mg L-1 IBA and 100 mg L-1 activated carbon. After being transferred to greenhouse conditions, 96% of the plantlets were successfully acclimatized. This regeneration system is applied for genetic transformation now.

  18. In vitro direct shoot regeneration from proximal, middle and distal segment of Coleus forskohlii leaf explants.

    Science.gov (United States)

    Krishna, Gaurav; Sairam Reddy, P; Anoop Nair, N; Ramteke, P W; Bhattacharya, P S

    2010-04-01

    Coleus forskohlii is an endangered multipurpose medicinal plant that has widespread applications. In spite of this, there have been few attempts to propagate its cultivation in India. The present communication presents an in vitro rapid regeneration method using leaf explants of Coleus forskohlii through direct organogenesis. Leaf explants that were excised into three different segments i.e. proximal (P), middle (M) and distal (D) were cultured on Murashige and Skoog (MS) basal medium supplemented with cytokinins. MS Media containing 5.0 mg L(-1) BAP (6-Benzylaminopurine) promoted regeneration of multiple shoots through direct organogenesis from the leaf, which were further elongated on MS media augmented with 0.1 mg L-1 BAP and 0.1 mg L(-1) IAA (Indole-3-acetic acid), cytokinin and auxin combination. Regenerated and elongated shoots, when transferred to ose resulted in profuse rooting plants that were transferred to soil after acclimatization and maintained in a green house. The current protocol offers a direct, mass propagation method bypassing the callus phase of C. forskohlii and is suitable for conservation, large-scale commercial cultivation, and genetic transformation with agronomically desirable traits. PMID:23572969

  19. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells

    Science.gov (United States)

    Di Lauro, Salvatore; Rodriguez-Crespo, David; Gayoso, Manuel J.; Garcia-Gutierrez, Maria T.; Pastor, J. Carlos; Srivastava, Girish K.

    2016-01-01

    Purpose To develop and standardize a novel organ culture model using porcine central neuroretina explants and RPE cells separated by a cell culture membrane. Methods RPE cells were isolated from porcine eyes, expanded, and seeded on the bottom of cell culture inserts. Neuroretina explants were obtained from the area centralis and cultured alone (controls) on cell culture membranes or supplemented with RPE cells in the same wells but physically separated by the culture membrane. Finally, cellular and tissue specimens were processed for phase contrast, cyto-/histological, and immunochemical evaluation. Neuroretina thickness was also determined. Results Compared to the neuroretinas cultured alone, the neuroretinas cocultured with RPE cells maintained better tissue structure and cellular organization, displayed better preservation of photoreceptors containing rhodopsin, lower levels of glial fibrillary acidic protein immunoexpression, and preservation of cellular retinaldehyde binding protein both markers of reactive gliosis. Neuroretina thickness was significantly greater in the cocultures. Conclusions A coculture model of central porcine neuroretina and RPE cells was successfully developed and standardized. This model mimics a subretinal space and will be useful in studying interactions between the RPE and the neuroretina and to preclinically test potential therapies. PMID:27081295

  20. EXPRESIÓN GUS EN EXPLANTES DE Solanum phureja (Juz. et. Buk Var. Criolla Colombia , TRANSFORMADOS CON Agrobacterium tumefaciens Gus Expression in Solanum phureja Explants (Juz. et. Buk Cultivar Criolla Colombia , Transformed with Agrobacterium tumefaciens

    Directory of Open Access Journals (Sweden)

    IVÁN DARÍO BARRERO-FARFÁN

    Full Text Available La expresión transitoria y estable del gen gusA-intron en explantes internodales de papa criolla variedad Criolla Colombia cocultivados con Agrobacterium tumefaciens es reportada. Con el fin de determinar la susceptibilidad de esta variedad a la transformación mediada por A. tumefaciens, explantes internodales de Solanum phureja fueron infectados con la cepa LBA4404 de A. tumefaciens que contiene el plásmido pCAMBIA2301. Este plásmido contiene el gen ntpII que confiere resistencia a kanamicina y el gen reportero gusA-intron. La selección de los explantes potencialmente transgénicos fue realizada en medios con kanamicina. La eficiencia de transformación estable y transitoria fue calculada con base en la actividad GUS (ß-glucuronidasa, detectada por el ensayo histoquímico X-gluc. La expresión transitoria y estable del gen gusA-intron fue observada en células del explante más bien que en tejidos completos. Estos resultados demuestran que la papa criolla (S. phureja Juz. et. Buk variedad Criolla Colombia es susceptible a la infección por A. tumefaciens.The stable and transient expression of the gusA-intron reporter gene in internodal explants of "Papa Criolla" cultivar Criolla Colombia co-cultivated with Agrobacterium tumefaciens is reported. In order to determine the susceptibility of this cultivar to the A. tumefaciens-mediated transformation, internodal explants of Solanum phureja were infected by A. tumefaciens containing the vector pCAMBIA2301. This vector contains the kanamycin resistance gene ntpII and the reporter gene gusA-intron. The selection of potential transgenic explants was performed on kanamycin-containing media. The stable and transient transformation efficiency was calculated on the basis of the GUS (ß-glucuronidase activity, detected by the histochemical X-Gluc essay. Transient and stable expression of the gusA-intron gene is observed in explants cells rather than in whole tissues. Nonetheless, these results

  1. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration

    OpenAIRE

    Wei Zhu; Castro, Nathan J.; Xiaoqian Cheng; Michael Keidar; Lijie Grace Zhang

    2015-01-01

    Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive ele...

  2. Reconstruction of focal cartilage defects in the talus with miniarthrotomy and collagen matrix

    OpenAIRE

    Walther, M.; Altenberger, S; Kriegelstein, S; Volkering, C; Röser, A.

    2014-01-01

    Surgical principal and objective Treatment of focal cartilage defects (traumatic or osteochondrosis dissecans) of the talus using a collagen matrix. The goal is to stabilize the superclot formed after microfracturing to accommodate cartilage repair. The procedure can be carried out via miniarthrotomy, without medial malleolus osteotomy. Indications International Cartilage Repair Society (ICRS) grade III and IV focal cartilage defects of the talus > 1.5 cm2. Contraindications Generalized osteo...

  3. Wnt/β-catenin signaling of cartilage canal and osteochondral junction chondrocytes and full thickness cartilage in early equine osteochondrosis.

    Science.gov (United States)

    Kinsley, Marc A; Semevolos, Stacy A; Duesterdieck-Zellmer, Katja F

    2015-10-01

    The objective of this study was to elucidate gene and protein expression of Wnt signaling molecules in chondrocytes of foals having early osteochondrosis (OC) versus normal controls. The hypothesis was that increased expression of components of Wnt signaling pathway in osteochondral junction (OCJ) and cartilage canal (CC) chondrocytes would be found in early OC when compared to controls. Paraffin-embedded osteochondral samples (7 OC, 8 normal) and cDNA from whole cartilage (7 OC, 10 normal) and chondrocytes surrounding cartilage canals and osteochondral junctions captured with laser capture microdissection (4 OC, 6 normal) were obtained from femoropatellar joints of 17 immature horses. Equine-specific Wnt signaling molecule mRNA expression levels were evaluated by two-step real-time qPCR. Spatial tissue protein expression of β-catenin, Wnt-11, Wnt-4, and Dkk-1 was determined by immunohistochemistry. There was significantly decreased Wnt-11 and increased β-catenin, Wnt-5b, Dkk-1, Lrp6, Wif-1, Axin1, and SC-PEP gene expression in early OC cartilage canal chondrocytes compared to controls. There was also significantly increased β-catenin gene expression in early OC osteochondral junction chondrocytes compared to controls. Based on this study, abundant gene expression differences in OC chondrocytes surrounding cartilage canals suggest pathways associated with catabolism and inhibition of chondrocyte maturation are targeted in early OC pathogenesis. PMID:25676127

  4. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    Directory of Open Access Journals (Sweden)

    Wei-ling Cui

    2016-01-01

    Full Text Available Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group. As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves.

  5. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes.

  6. Cartilage oligomeric matrix protein specific antibodies are pathogenic

    DEFF Research Database (Denmark)

    Geng, Hui; Nandakumar, Kutty Selva; Pramhed, Anna;

    2012-01-01

    ABSTRACT: INTRODUCTION: Cartilage oligomeric matrix protein (COMP) is a major non-collagenous component of cartilage. Earlier, we developed a new mouse model for rheumatoid arthritis using COMP. This study was undertaken to investigate the epitope specificity and immunopathogenicity of COMP...... and the pathogenicity of mAbs was investigated by passive transfer experiments. RESULTS: B cell immunodominant epitopes were localized within 4 antigenic domains of the COMP but with preferential response to the epidermal growth factor (EGF)-like domain. Some of our anti-COMP mAbs showed interactions with the native...... form of COMP, which is present in cartilage and synovium. Passive transfer of COMP-specific mAbs enhanced arthritis when co-administrated with a sub-arthritogenic dose of a mAb specific to collagen type II. Interestingly, we found that a combination of 5 COMP mAbs was capable of inducing arthritis...

  7. [Structure of the articular cartilage in the middle aged].

    Science.gov (United States)

    Kop'eva, T N; Mul'diiarov, P Ia; Bel'skaia, O B; Pastel', V B

    1983-10-01

    In persons 17-83 years of age having no articular disorders 39 samples of the patellar articular cartilage, the articulated surface and the femoral head have been studied histochemically, histometrically and electron microscopically. Age involution of the articular cartilage is revealed after 40 years of age as a progressive decrease in chondrocytes density in the superficial and (to a less degree) in the intermediate zones. This is accompanied with a decreasing number of 3- and 4-cellular lacunae and with an increasing number of unicellular and hollow lacunae. In some chondrocytes certain distrophic and necrotic changes are revealed. In the articular matrix the zone with the minimal content of glycosaminoglycans becomes thicker and keratansulfate content in the territorial matrix of the cartilage deep zone grows large.

  8. Evaluation of Automated Volumetric Cartilage Quantification for Hip Preservation Surgery.

    Science.gov (United States)

    Ramme, Austin J; Guss, Michael S; Vira, Shaleen; Vigdorchik, Jonathan M; Newe, Axel; Raithel, Esther; Chang, Gregory

    2016-01-01

    Automating the process of femoroacetabular cartilage identification from magnetic resonance imaging (MRI) images has important implications to guiding clinical care by providing a temporal metric that allows for optimizing the timing for joint preservation surgery. In this paper, we evaluate a new automated cartilage segmentation method using a time trial, segmented volume comparison, overlap metrics, and Euclidean distance mapping. We report interrater overlap metrics using the true fast imaging with steady-state precession MRI sequence of 0.874, 0.546, and 0.704 for the total overlap, union overlap, and mean overlap, respectively. This method was 3.28× faster than manual segmentation. This technique provides clinicians with volumetric cartilage information that is useful for optimizing the timing for joint preservation procedures. PMID:26377376

  9. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes. PMID:26414246

  10. Reconstruction of traumatic orbital floor defects using irradiated cartilage homografts.

    Science.gov (United States)

    Bevivino, J R; Nguyen, P N; Yen, L J

    1994-07-01

    The important role of orbital shape and volume reconstruction has been studied by many investigators. There is, however, no consensus on the material that should be used in the reconstruction of the orbit. Both biologic and alloplastic materials have been used, each with its advantages and disadvantages. Here we report our experience with irradiated costal cartilage homograft in the reconstruction of the orbital floor. Irradiated cartilage grafts were used in 31 patients with significant traumatic defects in the orbital floor. Long-term follow-up in 21 patients up to 48 months revealed no incidence of graft infections, extrusions, or clinically detectable graft distortion or resorption. Irradiated cartilage homograft appears to be an excellent material for reconstruction of the orbital floor. PMID:7944194

  11. Comparative effects of plant growth regulators on leaf and stem explants of Labisia pumila var.alata

    Institute of Scientific and Technical Information of China (English)

    Anna Pick Kiong LING; Kinn Poay TAN; Sobri HUSSEIN

    2013-01-01

    Objective:Labisia pumi/a var.a/ata,commonly known as ‘Kacip Fatimah’ or ‘Selusuh Fatimah’ in Southeast Asia,is traditionally used by members of the Malay community because of its post-partum medicinal properties.Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat.Thus,this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L.pumila.Methods:The capabilities of callus,shoot,and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0,1,3,5,and 7 mg/L.Results:Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34± 19.55)% and (70.40± 14.14)% efficacy,respectively.IBA was also found to be the most efficient PGR for root induction.A total of (50.00±7.07)% and (77.78±16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5±5.0) and (30.0±8.5) d in the medium supplemented with 1 and 3 mg/L of IBA,respectively.Shoot formation was only observed in stem explant,with the maximum percentage of formation ((100.00±0.00)%) that was obtained in 1 mg/L zeatin after (11.0±2.8) d of culture.Conclusions:Callus,roots,and shoots can be induced from in vitro leaf and stem explants of L.pumila through the manipulation of types and concentrations of PGRs.

  12. Analysis of Calcium Content,Hormones,and Degrading Enzymes in Tomato Pedicel Explants During Calcium-Inhibited Abscission

    Institute of Scientific and Technical Information of China (English)

    XU Tao; LI Tian-lai; QI Ming-fang

    2009-01-01

    This study was designed to analyze the changes of phytohormone concentrations,calcium fraction,and the activities of degrading enzymes during calcium-inhibited and ethyleneglycol-bis-(β-aminoethyl ether)N,N'-tetraacetic acid (EGTA)induced abscission of tomato pedicel explants.Added calcium caused an increase in the total calcium content within the abscission zone and produced a corresponding reduction (20%) in pedicel explant abscission.As expected,EGTA treatment produced the opposite effect and resulted in a decrease in the total calcium content,while accelerating abscission of pedicel explants.Hormone analysis revealed that indole-3-acetic acid (IAA) concentrations in the abscission zone first decreased and then increased before the occurrence of abscission in all treatments,with the greatest effect produced by addition of EGTA.Similarly,abscisic acid (ABA),and gibberellin (GA1+3) concentrations,and ethylene production were elevated in the abscission zone during the first 16 h before abscission when explants imbibed EGTA.With calcium treatment,the concentrations of ABA,ethylene,and GA1+3 also increased in pedicels throughout the first 16 h following exposure,but the increase was slower and less dramatic than with EGTA.Both cellulase and polygalacturonase were induced in the explants during abscission and the activities were also strengthened by treatment with EGTA.Calciumtreated explants produced lower hydrolysing enzyme activities than controls throughout abscission.Calcium played a role of mediating hormone balance and degrading enzymes activities and affected on abscission.

  13. Analysis of cartilage-polydioxanone foil composite grafts.

    Science.gov (United States)

    Kim, James H; Wong, Brian

    2013-12-01

    This study presents an analytical investigation into the mechanical behavior of a cartilage-polydioxanone (PDS) plate composite grafts. Numerical methods are used to provide a first-order, numerical model of the flexural stiffness of a cartilage-PDS graft. Flexural stiffness is a measure of resistance to bending and is inversely related to the amount of deformation a structure may experience when subjected to bending forces. The cartilage-PDS graft was modeled as a single composite beam. Using Bernoulli-Euler beam theory, a closed form equation for the theoretical flexural stiffness of the composite graft was developed. A parametric analysis was performed to see how the flexural properties of the composite model changed with varying thicknesses of PDS foil. The stiffness of the cartilage-PDS composite using 0.15-mm-thick PDS was four times higher than cartilage alone. The composite with a 0.5-mm-thick PDS graft was only 1.7 times stiffer than the composite with the 0.15-mm-thick PDS graft. Although a thicker graft material will yield higher flexural stiffness for the composite, the relationship between composite stiffness and PDS thickness is nonlinear. After a critical point, increments in graft thickness produce gradually smaller improvements in flexural stiffness. The small increase in stiffness when using the thicker PDS foils versus the 0.15 mm PDS foil may not be worth the potential complications (prolonged foreign body reaction, reduction in nutrient diffusion to cartilage) of using thicker artificial grafts. PMID:24327249

  14. Contribution of collagen network features to functional properties of engineered cartilage

    NARCIS (Netherlands)

    Bastiaansen-Jenniskens, Y.M.; Koevoet, W.; Bart, A.C.W. de; Linden, J.C. van der; Zuurmond, A.M.; Weinans, H.; Verhaar, J.A.N.; Osch, G.J.V.M. van; Groot, J. de

    2008-01-01

    Background: Damage to articular cartilage is one of the features of osteoarthritis (OA). Cartilage damage is characterised by a net loss of collagen and proteoglycans. The collagen network is considered highly important for cartilage function but little is known about processes that control composit

  15. Tibiofemoral cartilage contact biomechanics in patients after reconstruction of a ruptured anterior cruciate ligament.

    Science.gov (United States)

    Hosseini, Ali; Van de Velde, Samuel; Gill, Thomas J; Li, Guoan

    2012-11-01

    We investigated the in vivo cartilage contact biomechanics of the tibiofemoral joint in patients after reconstruction of a ruptured anterior cruciate ligament (ACL). A dual fluoroscopic and MR imaging technique was used to investigate the cartilage contact biomechanics of the tibiofemoral joint during in vivo weight-bearing flexion of the knee in eight patients 6 months following clinically successful reconstruction of an acute isolated ACL rupture. The location of tibiofemoral cartilage contact, size of the contact area, cartilage thickness at the contact area, and magnitude of the cartilage contact deformation of the ACL-reconstructed knees were compared with those previously measured in intact (contralateral) knees and ACL-deficient knees of the same subjects. Contact biomechanics of the tibiofemoral cartilage after ACL reconstruction were similar to those measured in intact knees. However, at lower flexion, the abnormal posterior and lateral shift of cartilage contact location to smaller regions of thinner tibial cartilage that has been described in ACL-deficient knees persisted in ACL-reconstructed knees, resulting in an increase of the magnitude of cartilage contact deformation at those flexion angles. Reconstruction of the ACL restored some of the in vivo cartilage contact biomechanics of the tibiofemoral joint to normal. Clinically, recovering anterior knee stability might be insufficient to prevent post-operative cartilage degeneration due to lack of restoration of in vivo cartilage contact biomechanics. PMID:22528687

  16. Ultrasonographic Measurement of the Femoral Cartilage Thickness in Hemiparetic Patients after Stroke

    Science.gov (United States)

    Tunc, Hakan; Oken, Oznur; Kara, Murat; Tiftik, Tulay; Dogu, Beril; Unlu, Zeliha; Ozcakar, Levent

    2012-01-01

    The aim of the study was to evaluate the femoral cartilage thicknesses of hemiparetic patients after stroke using musculoskeletal ultrasonography and to determine whether there is any correlation between cartilage thicknesses and the clinical characteristics of the patients. Femoral cartilage thicknesses of both knees were measured in 87 (33…

  17. Bovine respiratory disease model based on dual infections with infection with bovine viral diarrhea virus and bovine corona virus

    Science.gov (United States)

    Bovine respiratory disease complex (BRDC) is the leading cause of economic loss in the U.S. cattle industry. BRDC likely results from simultaneous or sequential infections with multiple pathogens including both viruses and bacteria. Bovine viral diarrhea virus (BVDV) and bovine corona virus (BoCV...

  18. Metabolism of Cartilage Proteoglycans in Health and Disease

    Directory of Open Access Journals (Sweden)

    Demitrios H. Vynios

    2014-01-01

    Full Text Available Cartilage proteoglycans are extracellular macromolecules with complex structure, composed of a core protein onto which a variable number of glycosaminoglycan chains are attached. Their biosynthesis at the glycosaminoglycan level involves a great number of sugar transferases well-orchestrated in Golgi apparatus. Similarly, their degradation, either extracellular or intracellular in lysosomes, involves a large number of hydrolases. A deficiency or malfunction of any of the enzymes participating in cartilage proteoglycan metabolism may lead to severe disease state. This review summarizes the findings regarding this topic.

  19. Magnetic resonance imaging of hip joint cartilage and labrum

    Directory of Open Access Journals (Sweden)

    Christoph Zilkens

    2011-09-01

    Full Text Available Hip joint instability and impingement are the most common biomechanical risk factors that put the hip joint at risk to develop premature osteoarthritis. Several surgical procedures like periacetabular osteotomy for hip dysplasia or hip arthroscopy or safe surgical hip dislocation for femoroacetabular impingement aim at restoring the hip anatomy. However, the success of joint preserving surgical procedures is limited by the amount of pre-existing cartilage damage. Biochemically sensitive MRI techniques like delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC might help to monitor the effect of surgical or non-surgical procedures in the effort to halt or even reverse joint damage.

  20. Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: histopathological analysis

    OpenAIRE

    Kolf-Clauw, Martine; Castellote, Jessie; Joly, Benjamin; Bourges-Abella, Nathalie; Raymond-Letron, Isabelle; Pinton, Philippe; Oswald, Isabelle P.

    2009-01-01

    The digestive tract is a target for the mycotoxin deoxynivalenol (DON), a major cereals grain contaminant of public health concern in Europe and North America. Pig, the most sensitive species to DON toxicity, can be regarded as the most relevant animal model for studying the intestinal effects of DON. A pig jejunal explants culture was developed to assess short-term effects of DON. In a first step, jejunal explants from 9-13 week-old and from 4-5 week-old pigs were cultured in vitro for up...

  1. Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation

    DEFF Research Database (Denmark)

    Neale, A D; Wahleithner, J A; Lund, Marianne;

    1990-01-01

    encodes the cell wall protein extensin, which also accumulates during pathogen attack. Another sequence family encodes the water stress-induced protein osmotin [Singh et al. (1989). Plant Physiol. 90, 1096-1101]. We found that osmotin was also induced by viral infection and wounding and, hence, could...... be considered a pathogenesis-related protein. These genes, which were highly expressed in explants during de novo flower formation but not in explants forming vegetative shoots [Meeks-Wagner et al. (1989). Plant Cell 1, 25-35], were also regulated developmentally in day-neutral and photoresponsive tobacco...

  2. In vitro Regeneration of Plantlets from Leaf and Nodal explants of Aristolochia indica L.- An Important Threatened Medicinal Plant

    Institute of Scientific and Technical Information of China (English)

    Pramod V. Pattar; M.Jayaraj

    2012-01-01

    Objective: An efficient reproducible protocol has been developed for in vitro regeneration of plantlets from leaf and nodal explants of Aristolochia indica L. Methods: Wild grown plants Aristolochia indica L. were collected and grown in the departmental garden. Leaf and nodal segments (0.5-1.0 cm) from young healthy plants were first washed thoroughly under running tap water for 15 - 20 minutes and then treated with liquid detergent [5% (v/v) Tween-20] for 5-10 minutes. Later these explants were washed with double-distilled water for 5 minutes. Subsequently, explants were immersed in 70% (v/v) ethanol for 2 - 3 minutes and washed with sterile glass double distilled water for 2-3 times. Eventually, the explants were treated with an aqueous solution of 0.1% (w/v) HgCl2 for 1 - 2 minutes and rinsed for two-to-three times in sterile ddH2O to remove all traces of HgCl2. The sterilized explants were inoculated aseptically onto solid basal Murashige and Skoog’s medium with different concentrations and combinations of BAP and NAA for in vitro regeneration of plants. Results: Both leaf and nodal explants cultured on MS medium supplemented with 0.8 mg/L BAP developed into mass of callus. These calli were subcultured for the induction of shoots and roots. Shoots were induced from both calli on MS medium supplemented with 0.8 mg/L BAP+0.5 mg/L NAA. Roots were induced from in vitro shoots on MS medium supplemented with 0.8 mg/L NAA for 4 weeks. Nodal explants were more regenerative with 95 % response compared to leaf explants with 85%. Finally, these in vitro regenerated plantlets were hardened, acclimatised and successfully transferred to the field. Conclusions: The present protocol for in vitro regeneration of Aristolochia indica L. can be used to make this plant available throughout the year for traditional healers, pharmaceutical usages, germplasm conservation, commercial cultivation, and also for the production of secondary metabolites.

  3. Co-Culture of Mesenchymal Stem Cells with Mature Chondrocytes: Producing Cartilage Construct for Application in Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2009-12-01

    Full Text Available Background: Cell-based treatment approach using differentiatedmesenchymal stem cells (MSCs and mature chondrocyteshas been considered as an advanced treatment for cartilage repair.We investigated the differentiated level of these two celltypes that is crucial for their repair capacity for cartilage defectat a co-culture micro mass system.Methods: Passaged-2 MSCs isolated from the mouse bonemarrow and the primary-cultured chondrocytes obtained fromrat costal cartilage were mixed at different ratios including 1:1,1:2, and 2:1, and cultivated in the micro mass culture systems(experimental groups. Both the MSCs and chondrocytes alonein micro mass cultures were considered as the controls. After21 days, the cultures were sectioned and examined by toluidineblue staining. Furthermore, the cells at different groups wereanalyzed by semiquantitative reverse transcription-polymerasechain reaction using the specific primers designed to detect theexpression of both mouse and rat cartilage-specific genes.Results: According to the toluidine blue staining, metachromaticstain appeared to be more intense at 1:2 ratios than theother groups. Based on semiquantitative analysis, all coculturespossessed significantly more cartilage-specific geneexpression than the controls (P<0.01. While mouse aggrecanand collagen II genes had significantly more expression at 1:2ratio, rat collagen II gene was expressed in higher rate at coculturewith 2:1 ratio (P<0.01.Conclusion: Co-culture of MSCs with mature chondrocytesseemed to provide an appropriate microenvironment wherebythe two cell types exhibit higher differentiated phenotype thanwhen they were cultured alone, and sufficient to be used as thecellular material for repair of cartilage defects.

  4. Association of Bovine Viral Diarrhea Virus with Multiple Viral Infections in Bovine Respiratory Disease Outbreaks

    OpenAIRE

    Richer, Lisette; Marois, Paul; Lamontagne, Lucie

    1988-01-01

    We investigated eleven outbreaks of naturally occurring bovine respiratory diseases in calves and adult animals in the St-Hyacinthe area of Quebec. Specific antibodies to bovine herpesvirus-1, bovine viral diarrhea virus, respiratory syncytial virus, parainfluenza type 3 virus, reovirus type 3, and serotypes 1 to 7 of bovine adenovirus were found in paired sera from diseased animals. Several bovine viruses with respiratory tropism were involved concomitantly in herds during an outbreak of bov...

  5. A new mechanistic scenario for the origin and evolution of vertebrate cartilage.

    Directory of Open Access Journals (Sweden)

    Maria Cattell

    Full Text Available The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs. While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of

  6. A new mechanistic scenario for the origin and evolution of vertebrate cartilage.

    Science.gov (United States)

    Cattell, Maria; Lai, Su; Cerny, Robert; Medeiros, Daniel Meulemans

    2011-01-01

    The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed

  7. A new mechanistic scenario for the origin and evolution of vertebrate cartilage.

    Science.gov (United States)

    Cattell, Maria; Lai, Su; Cerny, Robert; Medeiros, Daniel Meulemans

    2011-01-01

    The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed

  8. Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes

    DEFF Research Database (Denmark)

    Heinonen, J; Taipaleenmäki, H; Roering, P;

    2011-01-01

    and interaction partners are still likely to be discovered. Our focus in this study was to characterize a novel cartilage specific gene that was identified in mouse limb cartilage during embryonic development. METHODS: Open access bioinformatics tools were used to characterize the gene, predicted protein...... models demonstrated similar expression profiles with Sox9, Acan and Col2a1 and up-regulation by BMP-2. Based on its cartilage specific expression, the molecule was named Snorc, (Small NOvel Rich in Cartilage). CONCLUSION: A novel cartilage specific molecule was identified which marks the differentiating...

  9. Indução de calos em explantes foliares de Murici-pequeno (Byrsonima intermedia A. Juss. Calli induction from leaf explants of murici-pequeno (Byrsonima intermedia A. Juss.

    Directory of Open Access Journals (Sweden)

    Raírys Cravo Nogueira

    2007-04-01

    Full Text Available O murici-pequeno (Byrsonima intermedia A. Juss. é um arbusto do cerrado cujo chá da casca do caule apresenta atividade adstringente nas diarréias e disenterias. O gênero Byrsonima apresenta taxa de germinação baixa e emergência lenta da plântula, dificultando a propagação sexuada. Objetivou-se com este trabalho obter calos friáveis em explantes foliares de murici-pequeno para estudos futuros em suspensão celular e metabolismo secundário, assim como embriogênese somática. Avaliou-se o efeito de diferentes concentrações da auxina 2,4-D e a sua interação com as citocininas TDZ e BAP na calogênese. Os resultados demonstraram que na ausência de 2,4-D não ocorre formação de calo em explantes foliares. A adição de BAP ou TDZ não influencia o processo de calogênese. Para a indução e proliferação de calo em explantes foliares de murici-pequeno, os resultados recomendam o uso de meio MS, acrescido de 1,0 mg L-1 de 2,4-D, mantendo os explantes em condição de escuro por 30 dias.Byrsonima intermedia A. Juss is a shrub of cerrado whose husk presents medicinal activities in diarrheas and dysenteries. The Byrsonima genus present low germination rate and slow plantlet emergency which makes difficult sexual propagation. The objective of this work was to obtain friable callus in leaf explants for future studies with suspension cells and secondary metabolites as well as somatic embryogenesis. The effect of different concentrations of 2,4-D and its interaction with TDZ and BAP in callus formation was evaluated. The results demonstrated that there is no formation of callus in leaf explants maintained in absence of 2,4-D. The addition of TDZ or BAP had no influence in the calogenesis process. For callus induction and proliferation, the results suggest the use of MS medium supplemented with 1.0 mg L-1 2,4-D maintaining the explants in the dark.

  10. Material Properties of Inorganic Bovine Cancellous Bovine: Nukbone

    Science.gov (United States)

    Piña, Cristina; Palma, Benito; Munguía, Nadia

    2006-09-01

    In this work, inorganic cancellous bovine bone implants prepared in the Instituto de Investigaciones en Materiales — UNAM were characterized. Elementary chemical analysis was made, toxic elements concentration were measured and the content of organic matter also. These implants fulfill all the requirements of the ASTM standards, and therefore it is possible their use in medical applications.

  11. Observations on the migratory behaviour of Schwann cells from adult peripheral nerve explant cultures.

    Science.gov (United States)

    Crang, A J; Blakemore, W F

    1987-06-01

    The migration of Schwann cells from adult sciatic nerve explant cultures has been examined by time-lapse photomicrography. Analysis of Schwann cell migratory behaviour indicates that the initial outwandering by individual Schwann cells was random. Although chance cell-cell contacts resulted in temporary immobilization of pairs of cells, stable multicellular structures did not form during this initial phase. As local cell densities increased, Schwann cells assembled networks within which Schwann cell movement continued to be observed. A second form of Schwann cell outgrowth was observed from degenerating fibres in which arrays of highly oriented Schwann cells migrated away from their basal lamina tubes onto the culture dish. These observations of Schwann cell random migration, network self-assembly and coordinated extratubal migration are considered to highlight aspects of Schwann cell behaviour, independent of axonal influences, which may have relevance to their role in peripheral nerve repair following nerve section. PMID:3612187

  12. Chemical and Structural Characterization of Several Mid-Term Explanted Breast Prostheses

    Directory of Open Access Journals (Sweden)

    Angela Amoresano

    2016-08-01

    Full Text Available The recent scandal of poly implant prostheses (PIP, which were found in some cases to be made of non-medical grade silicone (as reported by the European Scientific Committee on Emerging and Newly Identified Health Risks, had a great social impact. Thousands of patients asked for implant removal with significant costs for public health care systems. We analysed, by a multidisciplinary approach, sixteen different breast implants after explantation by using several analytical and structural techniques, such as Fourier Transform infrared spectroscopy (FT-IR, mass spectrometry equipped by ion coupled plasma (ICP-MS, gas-chromatography (GC-MS, and tensile testing. Traces of organic (fatty acid and inorganic (Fe, Cr, Pt, Na, and other metals substances were found in all samples, and, even if these values are under danger threshold levels, our study results highlight the possibility of bioaccumulation and tissue contamination, implying the need for continuous medical surveillance and monitoring of material aging.

  13. Characterisation of an accelerator-based neutron source for BNCT of explanted livers

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Politecnico di Milano (Italy). Dipartimento di Ingeneria Nucleare; Colautti, P. [INFN, Padova (Italy). Laboratori Nazionali di Legnaro; Corrado, M.G. [Universita degli Studi di Milano (Italy). Dipartimento di Fisica; d`Errico, F. [Pisa Univ. (Italy). Dipt. di Costruzioni Meccaniche e Nucleari; Matzke, M. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Monti, S.; Tinti, R. [ENEA-ERG-FIRE, Bologna (Italy); Silari, M. [Consiglio Nazionale delle Ricerche, Milan (Italy)

    1997-09-01

    An accelerator-based thermal neutron source for BNCT of the explanted liver was designed using the MCNP code. Neutrons are generated via (d,n) reactions by 7 MeV deuterons bombarding a beryllium target. The therapy constraints were approached by simulating an irradiation cavity placed inside a graphite reflector parallelepiped containing a heavy-water moderator in turn enclosing the beryllium target. The experimental verification was performed at the Laboratori Nazionali di Legnaro (Italy). The thermal and epithermal neutron flux was measured at various positions in the irradiation cavity by means of activation techniques employing bare and cadmium covered indium foils. Further measurements were performed with BF{sub 3} detectors. The fast neutron component of the dose equivalent and the energy spectrum above 100keV were assessed by means of a recently developed technique employing variable threshold superheated drop detectors. The prompt gamma ray dose was measured with {sup 7}LiF TLDs. (author).

  14. Differential response of normal and tumour oesophageal explant cultures to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mothersill, C.; Cusack, A.; MacDonnell, M.; Hennessy, T.P.; Seymour, C.B.

    1988-01-01

    An in vitro method is described which allows radiation dose response data to be obtained for samples of oesophageal mucosa obtained from patients undergoing resection for adeno or squamous cell carcinoma. Data are obtained using a growth endpoint from explant cultures and may be expressed in terms of absolute growth inhibition or reduced rate of growth. Radiation dose response curves suggest that cell survival is in the range expected for mammalian cells but that, as is found clinically, tumour cells are far more resistant to radiation than normal cells. The technique provides a means of assessing differential radiation response in normal and tumour tissues from the same patient, as it is unusual for both to be amenable to clonogenic assay.

  15. Immunohistochemical localization of IAA in graft union of explanted internode grafting

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The dynamic changes of IAA in graft union of explanted internode autografting of Cucumber (Cucumis sativus Linn.) have been investigated using the immunohistochemical localization technique.It is shown that the efficiency of IAA fixation using lyophilization-gas fixation is higher than that using liquid chemical fixation.In contrast to few silver particles and no significant changes during the development of graft union cultured in hormone-free medium,more silver particles in graft union and significant changes of IAA related to graft union development have been found when graft union was cultured in medium supplemented with appropriate hormones.The fixation procedure of plant hormones and the roles of IAA in graft union are discussed.

  16. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan;

    2011-01-01

    We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal...... adipose tissues. Expressions of inflammation related genes (IL-6, TNF-a, COX-2) were higher in the inguinal than the epididymal ATE. Similarly, expressions of marker genes of macrophage and monocyte (MPEG-1, CD68, F4/80, CD64) were higher in the stromal vascular fraction (SVF) isolated from inguinal ATE...... in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited...

  17. Micropropagation from cultured nodal explants of rose (Rosa hybrida L. cv. ‘Perfume Delight’

    Directory of Open Access Journals (Sweden)

    Kamnoon Kanchanapoom

    2010-01-01

    Full Text Available A method for the micropropagation of rose (Rosa hybrida L. cv. ‘Perfume Delight’ was developed. First to fifth nodal explants from young healthy shoots were excised and cultured on basal medium of Murashige and Skoog (1962, MS containing several concentrations of BA and NAA. Multiple shoot formation of up to 3 shoots was obtained on MS medium supplemented with 3 mg/l BA and 0.003 mg/l NAA. Shoot readily rooted on ¼MS medium devoid of growth regulators.Rooted plantlets were hardened and established in pots at 100% survival. In vitro flowering was observed on rose plantscultured on MS medium containing 3 mg/l BA and 0.003 mg/l NAA.

  18. Identification of a benzyladenine disaccharide conjugate produced during shoot organogenesis in Petunia leaf explants

    Energy Technology Data Exchange (ETDEWEB)

    Auer, C.A. (Univ. of Connecticute, Storrs, CT (United States)); Cohen, J.D. (Beltsville Agricultural Research Ctr., MD (United States))

    1993-06-01

    Prior studies of benzyladenine (BA) metabolism in Petunia hybrida Vilm. leaf explants during shoot organogenesis revealed the presence of an abundant unidentified BA conjugate. The BA conjugate, compound C, made up to 39% of the total pool of BA conjugates in two Petunia lines and was associated with an increased shoot organogenic response when compared with a third Petunia line that did not produce any compound C. Structural analysis of compound C utilizing fast atom bombardment mass spectrometry, two methods of carbohydrate analysis, ultraviolet absorption spectra, and Fourier transform infrared spectra identified it as a new cytokinin conjugate, 6-benzylamino-9-[O-glucopyranosyl-(1[yields]3)-ribofuranosyl]-purine. Based on our prior biological studies and the similarity of this compound to related cytokinin conjugates, this disaccharide cytokinin conjugate may be part of the interconvertible pool of cytokinins active in Petunia shoot organogenesis. 17 refs., 2 figs., 2 tabs.

  19. Human Endogenous Retrovirus W Activity in Cartilage of Osteoarthritis Patients

    Directory of Open Access Journals (Sweden)

    Signy Bendiksen

    2014-01-01

    Full Text Available The etiology of viruses in osteoarthritis remains controversial because the prevalence of viral nucleic acid sequences in peripheral blood or synovial fluid from osteoarthritis patients and that in healthy control subjects are similar. Until now the presence of virus has not been analyzed in cartilage. We screened cartilage and chondrocytes from advanced and non-/early osteoarthritis patients for parvovirus B19, herpes simplex virus-1, Epstein Barr virus, cytomegalovirus, human herpes virus-6, hepatitis C virus, and human endogenous retroviruses transcripts. Endogenous retroviruses transcripts, but none of the other viruses, were detected in 15 out the 17 patients. Sequencing identified the virus as HERV-WE1 and E2. HERV-W activity was confirmed by high expression levels of syncytin, dsRNA, virus budding, and the presence of virus-like particles in all advanced osteoarthritis cartilages examined. Low levels of HERV-WE1, but not E2 envelope RNA, were observed in 3 out of 8 non-/early osteoarthritis patients, while only 3 out of 7 chondrocytes cultures displayed low levels of syncytin, and just one was positive for virus-like particles. This study demonstrates for the first time activation of HERV-W in cartilage of osteoarthritis patients; however, a causative role for HERV-W in development or deterioration of the disease remains to be proven.

  20. Chitosan/Poly(ɛ-caprolactone) blend scaffolds for cartilage repair

    NARCIS (Netherlands)

    Neves, Sara C.; Moreira Teixeira, Liliana S.; Moroni, Lorenzo; Reis, Rui L.; Blitterswijk, van Clemens A.; Alves, Natália M.; Karperien, Marcel; Mano, João F.

    2011-01-01

    Chitosan (CHT)/poly(ɛ-caprolactone) (PCL) blend 3D fiber-mesh scaffolds were studied as possible support structures for articular cartilage tissue (ACT) repair. Micro-fibers were obtained by wet-spinning of three different polymeric solutions: 100:0 (100CHT), 75:25 (75CHT) and 50:50 (50CHT) wt.% CHT

  1. Healing Osteoarthritis: Engineered Proteins Created for Therapeutic Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Kevin M. Cherry

    2012-01-01

    Full Text Available Millions of people worldwide are afflicted with painfulosteoarthritis, which is characterized by degradationof articular cartilage found in major joints such as thehip or knee. Symptoms include inflammation, pain,and decreased mobility. Because cartilage has a limitedability to self-heal, researchers have focused efforts onmethods that trigger cartilage regeneration. Our approachis to develop an injectable, protein-based hydrogel withmechanical properties analogous to healthy articularcartilage. The hydrogel provides an environment for cellgrowth and stimulates new tissue formation. We utilizedrecombinant DNA technology to create multifunctional,elastomeric proteins. The recombinant proteins weredesigned with biologically active domains to influence cellbehavior and resilin structural domains that mimic thestiffness of native cartilage. Resilin, a protein found in thewing and leg joints of mosquitoes, provided inspiration forthe mechanical domain in the recombinant protein. Thenew resilin-based protein was expressed in E. coli bacteria.Forming hydrogels requires a large quantity of engineeredprotein, so parameters such as bacterial host, incubationtemperature, expression time, and induction method wereoptimized to increase the protein yield. Using salt toprecipitate the protein and exploiting resilin’s heat stability,27 mg/L of recombinant protein was recovered at 95%purity. The protein expression and purification protocolswere established by analyzing experimental samples onSDS-PAGE gels and by Western blotting. The mechanicalproperties and interactions with stem cells are currentlybeing evaluated to assess the potential of the resilin-basedhydrogel as a treatment for osteoarthritis.

  2. The MAGIC syndrome (mouth and genital ulcers with inflamed cartilage).

    Science.gov (United States)

    Orme, R L; Nordlund, J J; Barich, L; Brown, T

    1990-07-01

    We describe a 42-year-old man with features of both Behçet's disease and relapsing polychondritis. The term MAGIC syndrome (mouth and genital ulcers with inflamed cartilage) has previously been used to describe similarly affected patients. We discuss the diagnostic criteria and pathogenetic mechanisms.

  3. Surgical correction of joint deformities and hyaline cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Vyacheslav Alexandrovich Vinokurov

    2015-12-01

    Full Text Available Aim. To determine a method of extra-articular osteochondral fragment formation for the improvement of surgical correction results of joint deformities and optimization of regenerative conditions for hyaline cartilage. Materials and Methods. The method of formation of an articular osteochondral fragment without penetration into the joint cavity was devised experimentally. More than 30 patients with joint deformities underwent the surgery. Results. During the experiments, we postulated that there may potentially be a complete recovery of joint defects because of hyaline cartilage regeneration. By destructing the osteochondral fragment and reforming it extra-articularally, joint defects were recovered in all patients. The results were evaluated as excellent and good in majority of the patients. Conclusion. These findings indicate a novel method in which the complete recovery of joint defects due to dysplastic genesis or osteochondral defects as a result of injuries can be obtained. The devised method can be used in future experiments for objectification and regenerative potential of hyaline cartilage (e.g., rate and volume of the reformed joints that regenerate, detection of cartilage elements, and the regeneration process.

  4. Holmium laser ablation of cartilage: effects of cavitation bubbles

    Science.gov (United States)

    Asshauer, Thomas; Jansen, Thomas; Oberthur, Thorsten; Delacretaz, Guy P.; Gerber, Bruno E.

    1995-05-01

    The ablation of fresh harvested porcine femur patellar groove cartilage by a 2.12 micrometers Cr:Tm:Ho:YAG laser in clinically used irradiation conditions was studied. Laser pulses were delivered via a 600 micrometers diameter fiber in isotonic saline. Ablation was investigated as a function of the angle of incidence of the delivery fiber with respect to the cartilage surface (0-90 degrees) and of radiant exposure. Laser pulses with energies of 0.5, 1.0 and 1.5 J and a duration of 250 microseconds were used. A constant fiber tip-tissue distance of 1 mm was maintained for all experiments. The dynamics of the induced vapor bubble and of the ablation process was monitored by time resolved flash videography with a 1 microseconds illumination. Acoustic transients were measured with a piezoelectric PVDF needle probe hydrophone. Bubble attachment to the cartilage surface during the collapse phase, leading to the direct exposition of the cartilage surface to the maximal pressure generated, was observed in all investigated irradiation conditions. Maximal pressure transients of up to 200 bars (at 1 mm distance from the collapse center) were measured at the bubble collapse at irradiation angles >= 60 degrees. No significant pressure variation was observed in perpendicular irradiation conditions as a function of radiant exposure. A significant reduction of the induced pressure for irradiation angles

  5. Growth regulation of mandibular condylar cartilage in-vitro.

    NARCIS (Netherlands)

    Copray, Joseph Christofoor Vincentius Maria

    1984-01-01

    The significance of the mandibular condylar cartilage in the development of the orofacial complex, and particulary in the growth of the mandible has led to a considarable number of studies regarding its growth regulation. Especially clinicians concerned with craniofacial growth and development and t

  6. Preparation and placement of cartilage island graft in tympanoplasty

    Directory of Open Access Journals (Sweden)

    Veysel Yurttas

    2014-12-01

    Full Text Available Introduction: Cartilage graft tympanoplasty has a better success rate in the treatment of chronic otitis media if regularly prepared and placed. Objective: To prepare cartilage island material and evaluate its effect on the success rate of tympanoplasty. Methods: The medical records of 87 patients (48 males and 39 females; mean age, 27.3 ±11.2 years; range, 14–43 years with chronic otitis media without cholesteatoma who underwent intact canal-wall-up tympanoplasty and revision surgery between December of 2007 and October of 2011 were retrospectively evaluated. Surgery was performed under general anesthesia via a retroauricular approach. Results: The overall success rate of this technique was 93% in terms of perforation closure. No graft lateralization or displacement into the middle ear occurred. The overall average preoperative air bone gap was 37.27 ± 12.35 dB, and the postoperative air bone gap was 27.58 ± 9.84 dB. The mean postoperative follow-up period was 15.3 months (range: 7–21 months. Conclusion: If cartilage graft is properly prepared and placed, cartilage graft tympanoplasty appears to provide better success rates and hearing results.

  7. Microtia reconstruction with irradiated homograft costal cartilage: A preliminary report

    Directory of Open Access Journals (Sweden)

    Alireza Karimi Yazdi

    2015-01-01

    Full Text Available Background: Reconstruction of microtia is a challenging issue in otology. Autogenous costochondral reconstruction is the most widely accepted approach. However, it is time-consuming and has some limitations. Irradiated homograft costal cartilage has been proposed as a suitable alternative. In the present study, we represent our experience with this approach. Patients and Methods: A total of 19 ears were treated with irradiated homograft costal cartilage prepared from 18 to 40 years old cadaver under a standardized processing method. The reconstruction was achieved a two-stage procedure with at least 3 months interval. Results: The study population included 9 (56.25% males and 7 (43.75% females with the mean age of 13.7 ± 5.1 years. Microtia was bilateral in 3, right-sided in 8 and left-sided in 5 subjects. Averagely, subjects were followed for 36.0 ± 9.9 months during which none of the cases showed cartilage resorption. Short-term and long-term complications were negligible. Totally, 90% of subjects were satisfied with the procedure. Conclusion: Irradiated homograft costal cartilage resulted in relatively high satisfaction and low complication rates for auricular reconstruction. Esthetic appearances of the reconstructed auricle were acceptable. The advantages of this approach are the elimination of additional incisions for graft harvesting and donor-site morbidity.

  8. Cartilage ossiculoplasty in cholesteatoma surgery: hearing results and prognostic factors.

    Science.gov (United States)

    Quaranta, N; Taliente, S; Coppola, F; Salonna, I

    2015-10-01

    Cartilage tympanoplasty is an established procedure for tympanic membrane and attic reconstruction. Cartilage has been used as an ossiculoplasty material for many years. The aim of this study was to evaluate hearing results of costal cartilage prostheses in ossicular chain reconstruction procedures in subjects operated on for middle ear cholesteatoma and to determine the presence of prognostic factors. Candidates for this study were patients affected by middle ear cholesteatoma whose ossicular chain was reconstructed with a chondroprosthesis. 67 cases of ossiculoplasty with total (TORP) or partial (PORP) chondroprosthesis were performed between January 2011 and December 2013. Follow-up examination included micro-otoscopy and pure tone audiometry. The guidelines of the Committee on Hearing and Equilibrium of the American Academy of Otolaryngology Head and Neck Surgery were followed and pure-tone average (PTA) was calculated as the mean of 0.5, 1, 2 and 4 kHz thresholds. Statistical analysis was performed with ANOVA tests and regression models. Average air-bone gap (ABG) significantly improved from 39.2 dB HL (SD 9.1 dB HL) to 25.4 dB HL (SD 11 dB HL) (p costal cartilage as material of choice when autologous ossicles are not available. The maintenance of the posterior canal wall was the only prognostic factor identified. PMID:26824916

  9. Automatic ICRS scoring of cartilage lesions using arthroscopic OCT images

    NARCIS (Netherlands)

    te Moller, Nikae; Pitkanen, M; Liukkonen, J.; Puhakka, P H; Brommer, Harold; Jurvelin, J.S.; van Weeren, René; Toyras, J.

    2014-01-01

    Articular cartilage injury is a common cause of chronic disability in both humans and animals. Current treatment strategies offer several possibilities and in order to select the optimal repair procedure, accurate determination of size and severity of a lesion is important [1,2]. Recently, an equine

  10. Repair of the superior sulcus deformity using autogenous costal cartilage.

    Science.gov (United States)

    Sutula, F C; Thomas, O

    1982-05-01

    Superior sulcus deformity is a late sequela of surgical anophthalmos. Many methods have been proposed to treat this difficult problem. A technique using autogenous costal cartilage that has resulted in satisfactory repair is presented. In addition to standard photographs and exophthalmometry measurements to follow these patients, a specific device to accurately measure orbital volume gain after operation was fashioned. PMID:7099560

  11. Focal changes of the anticular cartilage in the femorotibial joint

    International Nuclear Information System (INIS)

    This paper reports on the value of routine MR sequences in detecting focal changes in the femorotibial hyaline cartilage. T1-, proton density-, and T2-weighted spin-echo and gradient-echo images were acquired in 20 cadaveric knees (cadavers aged 56-88 years; mean, 73.8 years). Three hundred eight coronal and sagittal (3-mm) anatomic sections were prepared, allowing identification of 85 areas of cartilage fissuring, fibrillation, or ulceration. Initially, MR images and anatomic sections were correlated in an unblinded fashion. Subsequently, images of a subset of 35 pathologic and 35 normal cartilage surfaces were blindly evaluated. In the unblinded study, 61 lesions were detectable on T1-weighted images, 59 with meniscal windows, 51 on proton density images, 58 on T2-weighted images, and 57 on gradient-echo images. A fissure usually manifested as a focus of abnormal signal. Ulcers and fibrillation presented as more extensive irregular signal, often accompanied by subchondral sclerosis. In the blinded study, the sensitivity was 71.4% for the detection of focal cartilage changes, the specificity was 68.6%, and the accuracy was 70%. Single fissures and superficial ulcers accounted for the majority of false-negative results

  12. Osteoarthritic Cartilage is more Homogeneous than Healthy Cartilage – Identification of a Superior ROI Co-localised with a Major Risk Factor for Osteoarthritis

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Dam, Erik B.; Nielsen, Mads;

    2007-01-01

    the automatic gradient descent technique, the partitioned region was toward the peripheral part of the cartilage sheet. Using this region, the P values for separating the different groups based on homogeneity were 5 × 10-9 (KL 0 versus KL 1) and 1 × 10-15 (KL 0 versus KL >0). The precision of homogeneity...... affects certain areas of the cartilage more distinctly, and these areas are located more toward the peripheral region of the cartilage. We propose that this region corresponds anatomically to cartilage covered by the meniscus in healthy subjects. This finding may provide valuable clues in the early...

  13. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site.

  14. Study on the Microstructure of Human Articular Cartilage/Bone Interface

    Institute of Scientific and Technical Information of China (English)

    Yaxiong Liu; Qin Lian; Jiankang He; Jinna Zhao; Zhongmin Jin; Dichen Li

    2011-01-01

    For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the microstructure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified cartilage and subchondral bone are in the manner of"protrusion-pore" with average diameter of 17.0 μm and 34.1 μm respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.

  15. Prolonged viability of human organotypic skin explant in culture method (hOSEC)*

    Science.gov (United States)

    Frade, Marco Andrey Cipriani; de Andrade, Thiago Antônio Moretti; Aguiar, Andréia Fernanda Carvalho Leone; Guedes, Flávia Araújo; Leite, Marcel Nani; Passos, Williane Rodrigues; Coelho, Eduardo Barbosa; Das, Pranab Kummar

    2015-01-01

    BACKGROUND: Currently, the cosmetic industry is overwhelmed in keeping up with the safety assessment of the increasing number of new products entering the market. To meet such demand, research centers have explored alternative methods to animal testing and also the large number of volunteers necessary for preclinical and clinical tests. OBJECTIVES: This work describes the human skin ex-vivo model (hOSEC: Human Organotypic Skin Explant Culture) as an alternative to test the effectiveness of cosmetics and demonstrate its viability through cutaneous keratinocytes' proliferative capacity up to 75 days in culture. METHODS: The skin explants obtained from surgeries were cultured in CO2-humid incubator. After 1, 7, 30 and 75 days in culture, skin fragments were harvested for analysis with histomorphological exam (HE staining) on all days of follow-up and immunohistochemistry for Ck5/6, Ck10 and Ki-67 only on the 75th day. RESULTS: On the 7th day, the epidermis was perfect in the dermoepidermal junction, showing the viability of the model. On the 30th day, the epidermis was thicker, with fewer layers on the stratum corneum, although the cutaneous structure was unaltered. On the 75th day, the skin became thinner but the dermoepidermal junctions were preserved and epidermal proliferation was maintained. After the 75th day on culture, the skin was similar to normal skin, expressing keratinocytes with Ck5/6 on supra-basal layers; Ck10 on differentiated layers; and viability could be assessed by the positivity of basal cells by Ki-67. CONCLUSION: The hOSEC model seems a good alternative to animal testing; it can be used as a preclinical test analogous to clinical human skin test with similar effectiveness and viability proven by immunohistological analyses. PMID:26131864

  16. Callus induction and biomass accumulation in vitro in explants from chokeberry (Aronia melanocarpa (Michx. Elliot fruit

    Directory of Open Access Journals (Sweden)

    Tatiana I. Calalb

    2014-09-01

    Full Text Available In this study, the following features were determined: biological (the optimal histogen as explant and the optimal age of donor fruit, biotechnological (type, dosage and combination of growth regulators supplements in culture medium Murashige and Skoog as well as sucrose dosage, and physical (light regime, to induce callusing and biomass accumulation in vitro from the succulent chokeberry (Aronia melanocarpa (Michx. Elliot fruit. It turned out that it was much easier to induce callus from explants composed of the epicarp and hypoderm cut from fruits at 50–60 days after flowering. The role of light regime and varied supplementation of the basic MS medium with different doses of growth regulators was established; they resulted in four pigmented carpomass: violet, cream-pink, cream-white and green. The best combinations for the proliferation of fruit callus were culture media with 0.2–2.5 mg × dm-3 2,4-D+0.5 mg × dm-3 KIN +60 g × dm-3sucrose, while for fruit biomass accumulation enriched with phenolic substances – 2.5–3.5 mg × dm-3 NAA+0.5 mg × dm-3 KIN+60 g × dm-3sucrose. The chemical study of phenolic compounds by HPLC coupled with the mass spectrometry method identified chlorogenic acid, hiperozide, quercetrin, isoquercitrin and rutozide quantitatively and qualitatively in all pigmented carpomass and fruits; an exception is p-coumaric present only qualitatively in green carpomass and absent in fruit and quercetol absent in green carpomass.

  17. Postnatal exposure history and airways: oxidant stress responses in airway explants.

    Science.gov (United States)

    Murphy, Shannon R; Schelegle, Edward S; Edwards, Patricia C; Miller, Lisa A; Hyde, Dallas M; Van Winkle, Laura S

    2012-12-01

    Postnatally, the lung continues to grow and differentiate while interacting with the environment. Exposure to ozone (O(3)) and allergens during postnatal lung development alters structural elements of conducting airways, including innervation and neurokinin abundance. These changes have been linked with development of asthma in a rhesus monkey model. We hypothesized that O(3) exposure resets the ability of the airways to respond to oxidant stress and that this is mediated by changes in the neurokinin-1 receptor (NK-1R). Infant rhesus monkeys received episodic exposure to O(3) biweekly with or without house dust mite antigen (HDMA) from 6 to 12 months of age. Age-matched monkeys were exposed to filtered air (FA). Microdissected airway explants from midlevel airways (intrapulmonary generations 5-8) for four to six animals in each of four groups (FA, O(3), HDMA, and HDMA+O(3)) were tested for NK-1R gene responses to acute oxidant stress using exposure to hydrogen peroxide (1.2 mM), a lipid ozonide (10 μM), or sham treatment for 4 hours in vitro. Airway responses were measured using real-time quantitative RT-PCR of NK-1R and IL-8 gene expression. Basal NK-1R gene expression levels were not different between the exposure groups. Treatment with ozonide or hydrogen peroxide did not change NK-1R gene expression in animals exposed to FA, HDMA, or HDMA+O(3). However, treatment in vitro with lipid ozonide significantly increased NK-1R gene expression in explants from O(3)-exposed animals. We conclude that a history of prior O(3) exposure resets the steady state of the airways to increase the NK-1R response to subsequent acute oxidant stresses. PMID:22962062

  18. Organ of Corti explants direct tonotopically graded morphology of spiral ganglion neurons in vitro.

    Science.gov (United States)

    Smith, Felicia L; Davis, Robin L

    2016-08-01

    The spiral ganglion is a compelling model system to examine how morphological form contributes to sensory function. While the ganglion is composed mainly of a single class of type I neurons that make simple one-to-one connections with inner hair cell sensory receptors, it has an elaborate overall morphological design. Specific features, such as soma size and axon outgrowth, are graded along the spiral contour of the cochlea. To begin to understand the interplay between different regulators of neuronal morphology, we cocultured neuron explants with peripheral target tissues removed from distinct cochlear locations. Interestingly, these "hair cell microisolates" were capable of both increasing and decreasing neuronal somata size, without adversely affecting survival. Moreover, axon characteristics elaborated de novo by the primary afferents in culture were systematically regulated by the sensory endorgan. Apparent peripheral nervous system (PNS)-like and central nervous system (CNS)-like axonal profiles were established in our cocultures allowing an analysis of putative PNS/CNS axon length ratios. As predicted from the in vivo organization, PNS-like axon bundles elaborated by apical cocultures were longer than their basal counterparts and this phenotype was methodically altered when neuron explants were cocultured with microisolates from disparate cochlear regions. Thus, location-dependent signals within the organ of Corti may set the "address" of neurons within the spiral ganglion, allowing them to elaborate the appropriate tonotopically associated morphological features in order to carry out their signaling function. J. Comp. Neurol. 524:2182-2207, 2016. © 2015 Wiley Periodicals, Inc. PMID:26663318

  19. Articular Cartilage Thickness Measured with US is Not as Easy as It Appears

    DEFF Research Database (Denmark)

    Torp-Pedersen, Søren; Bartels, E. M.; Wilhjelm, Jens E.;

    2011-01-01

    . Materials and Methods: A literature search limited to the last 10 years of studies applying US to measure cartilage thickness. Results: 15 studies were identified and they referred to another 8 studies describing methods of thickness measurement. 11 of the 15 studies identified the superficial cartilage......Background: Theoretically, the high spatial resolution of US makes it well suited to monitor the decrease in articular cartilage thickness in osteoarthritis. A requirement is, however, that the borders of the cartilage are correctly identified and that the cartilage ismeasured under orthogonal...... insonation. If US measurements are compared to measurements with other techniques, they should be corrected for the higher sound speed in cartilage. Purpose: To study whether investigators correctly identify the articular cartilage, whether they insonate orthogonally, and whether they correct for sound speed...

  20. A novel corneal explant model system to evaluate antiviral drugs against feline herpesvirus type 1 (FHV-1).

    Science.gov (United States)

    Pennington, Matthew R; Fort, Michael W; Ledbetter, Eric C; Van de Walle, Gerlinde R

    2016-06-01

    Feline herpesvirus type-1 (FHV-1) is the most common viral cause of ocular surface disease in cats. Many antiviral drugs are used to treat FHV-1, but require frequent topical application and most lack well-controlled in vivo studies to justify their clinical use. Therefore, better validation of current and novel treatment options are urgently needed. Here, we report on the development of a feline whole corneal explant model that supports FHV-1 replication and thus can be used as a novel model system to evaluate the efficacy of antiviral drugs. The anti-herpes nucleoside analogues cidofovir and acyclovir, which are used clinically to treat ocular herpesvirus infection in cats and have previously been evaluated in traditional two-dimensional feline cell cultures in vitro, were evaluated in this explant model. Both drugs suppressed FHV-1 replication when given every 12 h, with cidofovir showing greater efficacy. In addition, the potential efficacy of the retroviral integrase inhibitor raltegravir against FHV-1 was evaluated in cell culture as well as in the explant model. Raltegravir was not toxic to feline cells or corneas, and most significantly, inhibited FHV-1 replication at 500 µM in both systems. Importantly, this drug was effective when given only once every 24 h. Taken together, our data indicate that the feline whole corneal explant model is a useful tool for the evaluation of antiviral drugs and, furthermore, that raltegravir appears a promising novel antiviral drug to treat ocular herpesvirus infection in cats. PMID:26959283

  1. „IN VITRO” EFFECT OF SOME INDUSTRIAL BY-PRODUCTS ON LAVANDULA ANGUSTIFOLIA MILL. EXPLANT GROWTH

    Directory of Open Access Journals (Sweden)

    Corneliu Tanase

    2013-12-01

    Full Text Available After many studies, it was observed that lavender has many therapeutic effects, such as sedation, activities spasmolytic, antiviral, antibacterial. Thus, given the importance of lavender in different areas of human life, in the present study, we studied the influence of natural products bioregulatoars separated from industrial by-products on some lavender stems explants. These explants were inoculated in vitro on MS nutrient media. In these culture media were added polyphenolic extracts obtained from spruce bark and hemp shives, and evaluated their influence on lavender stems explants. The results obtained were compared with those obtained for the control variant, where MS culture medium was used as standard. It was found that the addition of aqueous extract from spruce bark of concentration of 130 mg GAE / L, in the growth of explants of Lavandula angustifolia Mill, an increase in the elongation of the main stem, number of leaves formed, the amount of photoassimilating pigments synthesized and causes the phenomenon of shoots formation. At a higher concentration of the extract (26 mgGAE/100g values are lower.

  2. Fumonisin B1 (FB1) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants

    Science.gov (United States)

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-01-01

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B1 (FB1) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB1 at any concentration on dermal or epidermal cells. However, FB1 significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB1 (2.5–10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB1 impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB1 might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB1 on the equine hoof in more detail. PMID:27023602

  3. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation.

    Science.gov (United States)

    Paz, Margie M; Martinez, Juan Carlos; Kalvig, Andrea B; Fonger, Tina M; Wang, Kan

    2006-03-01

    The utility of transformation for soybean improvement requires an efficient system for production of stable transgenic lines. We describe here an improved cotyledonary node method using an alternative explant for Agrobacterium tumefaciens-mediated soybean transformation. We use the term "half-seed" to refer to this alternative cotyledonary explant that is derived from mature seed of soybean following an overnight imbibition and to distinguish it from cotyledonary node derived from 5-7-day-old seedlings. Transformation efficiencies using half-seed explants ranged between 1.4 and 8.7% with an overall efficiency of 3.8% based on the number of transformed events that have been confirmed in the T1 generation by phenotypic assay using the herbicide Liberty (active ingredient glufosinate) and by Southern analysis. This efficiency is 1.5-fold higher than the cotyledonary node method used in our laboratory. Significantly, the half-seed system is simple and does not require deliberate wounding of explants, which is a critical and technically demanding step in the cotyledonary node method. PMID:16249869

  4. Pulmonary arterial lesions in explanted lungs after transplantation correlate with severity of pulmonary hypertension in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Carlsen, Jørn; Hasseriis Andersen, Kasper; Boesgaard, Søren;

    2013-01-01

    BACKGROUND: Pulmonary vascular findings are largely unreported in end-stage chronic obstructive pulmonary disease (COPD). METHODS: Pulmonary vascular lesions in explanted lungs from 70 patients with COPD/emphysema or α-1-antitrypsin deficiency were analyzed retrospectively. Patients were stratified...

  5. Calogênese e rizogênese em explantes de mogno (Swietenia macrophylla King cultivados in vitro.

    Directory of Open Access Journals (Sweden)

    Silvana Cruz da Rocha

    2010-08-01

    Full Text Available A exploração de árvores tropicais realizada de forma indiscriminada, buscando espécies de alto valor econômico, tem levado várias espécies, como o mogno (Swietenia macrophylla King, ao perigo de extinção. O desenvolvimento de uma metodologia de regeneração de gemas, direta ou indireta, poderia auxiliar na obtenção de um grande número de mudas e constituir uma perspectiva à propagação sexuada. Essa última é limitada pelo fato das sementes perderem rapidamente a capacidade germinativa. No presente trabalho, foram utilizados dois tipos de explantes: fragmentos foliares e de raízes de plantas cultivadas in vitro. Após desinfestação, os explantes foram colocados em meio de cultura de Murashige e Skoog (1962 contendo três quartos da concentração de sais, vitaminas do mesmo meio, 30g.L-1 de sacarose, auxina (ácido naftaleno-acético, ANA, 0,11 µM e 0,54 µM, citocinina (cinetina, CIN, 1,2 µM, 2,3 µM, 4,7 µM e 9,3 µM; 6-benziladenina, BA, 2,2 µM, 4,4 µM e 8,8 µM ou 2-isopenteniladenina, 2-iP, 2,5 µM e 7g.L-1 de ágar. As variáveis testadas foram a concentração e o tipo de regulador de crescimento e a origem dos explantes. A cada 30 dias, os explantes foram avaliados pela contagem do número de explantes formando calos ou raízes e a consistência dos calos. Foram obtidos calos a com base nos dois tipos de explantes. Nos explantes foliares, 90% deles formaram calos em meios de cultura contendo BA 4,4 µM com ANA 0,54 µM e BA 8,9 µM com ANA 0,11 ou 0,54 µM. Nos explantes de raízes, a maior percentagem de explantes com calos foi de 55%, no meio de cultura com BA 2,2 µM e ANA 0,54 µM. Raízes adventícias foram obtidas partindo de calos e do limbo dos explantes foliares, em meios de cultura com CIN e ANA. Não foi observada a formação de gemas adventícias.

  6. CALOGÊNESE E RIZOGÊNESE EM EXPLANTES DE MOGNO (Swietenia macrophylla King CULTIVADOS IN VITRO

    Directory of Open Access Journals (Sweden)

    Marguerite Quoirin

    2004-04-01

    Full Text Available A exploração de árvores tropicais realizada de forma indiscriminada, buscando espécies de alto valor econômico, tem levado várias espécies, como o mogno (Swietenia macrophylla King, ao perigo de extinção. O desenvolvimento de uma metodologia de regeneração de gemas, direta ou indireta, poderia auxiliar na obtenção de um grande número de mudas e constituir uma perspectiva à propagação sexuada. Essa última é limitada pelo fato das sementes perderem rapidamente a capacidade germinativa. No presente trabalho, foram utilizados dois tipos de explantes: fragmentos foliares e de raízes de plantas cultivadas in vitro. Após desinfestação, os explantes foram colocados em meio de cultura de Murashige e Skoog (1962 contendo três quartos da concentração de sais, vitaminas do mesmo meio, 30g.L-1 de sacarose, auxina (ácido naftaleno-acético, ANA, 0,11 M e 0,54 M, citocinina (cinetina, CIN, 1,2 M, 2,3 M, 4,7 M e 9,3 M; 6-benziladenina, BA, 2,2 M, 4,4 M e 8,8 M ou 2-isopenteniladenina, 2-iP, 2,5 M e 7g.L-1 de ágar. As variáveis testadas foram a concentração e o tipo de regulador de crescimento e a origem dos explantes. A cada 30 dias, os explantes foram avaliados pela contagem do número de explantes formando calos ou raízes e a consistência dos calos. Foram obtidos calos a com base nos dois tipos de explantes. Nos explantes foliares, 90% deles formaram calos em meios de cultura contendo BA 4,4 M com ANA 0,54 M e BA 8,9 M com ANA 0,11 ou 0,54 M. Nos explantes de raízes, a maior percentagem de explantes com calos foi de 55%, no meio de cultura com BA 2,2 M e ANA 0,54 M. Raízes adventícias foram obtidas partindo de calos e do limbo dos explantes foliares, em meios de cultura com CIN e ANA. Não foi observada a formação de gemas adventícias.

  7. Knee joint kinematics during walking influences the spatial cartilage thickness distribution in the knee.

    Science.gov (United States)

    Koo, Seungbum; Rylander, Jonathan H; Andriacchi, Thomas P

    2011-04-29

    The regional adaptation of knee cartilage morphology to the kinematics of walking has been suggested as an important factor in the evaluation of the consequences of alteration in normal gait leading to osteoarthritis. The purpose of this study was to investigate the association of spatial cartilage thickness distributions of the femur and tibia in the knee to the knee kinematics during walking. Gait data and knee MR images were obtained from 17 healthy volunteers (age 33.2 ± 9.8 years). Cartilage thickness maps were created for the femoral and tibial cartilage. Locations of thickest cartilage in the medial and lateral compartments in the femur and tibia were identified using a numerical method. The flexion-extension (FE) angle associated with the cartilage contact regions on the femur, and the anterior-posterior (AP) translation and internal-external (IE) rotation associated with the cartilage contact regions on the tibia at the heel strike of walking were tested for correlation with the locations of thickest cartilage. The locations of the thickest cartilage had relatively large variation (SD, 8.9°) and was significantly associated with the FE angle at heel strike only in the medial femoral condyle (R(2)=0.41, pknee kinematics and contact surface shapes seem to affect the functional adaptation of knee articular cartilage morphology. The sensitivity of cartilage morphology to kinematics at the knee during walking suggests that regional cartilage thickness variations are influenced by both loading and the number of loading cycles. Thus walking is an important consideration in the analysis of the morphological variations of articular cartilage, since it is the dominant cyclic activity of daily living. The sensitivity of cartilage morphology to gait kinematics is also important in understanding the etiology and pathomechanics of osteoarthritis.

  8. Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Haqqi Tariq M

    2011-08-01

    Full Text Available Abstract Background Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA, and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the Uncaria tomentosa, Boswellia spp., Lepidium meyenii and L-Leucine on the IL-1β-induced production of nitric oxide (NO, glycosaminoglycan (GAG, matrix metalloproteinases (MMPs, aggrecan (ACAN and type II collagen (COL2A1 in human OA chondrocytes and OA cartilage explants. Methods Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-Leucine mixture (HLM, 1-10 μg/ml and then stimulated with IL-1β (5 ng/ml. Effect of HLM on IL-1β-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits. Results HLM tested in these in vitro studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1β-stimulated OA chondrocytes (p Leucine mixture (HLM up-regulation of ACAN and COL2A1 expression in IL-1β-stimulated OA chondrocytes was also noted (p Conclusion Our data suggests that HLM could be chondroprotective and anti-inflammatory agent in arthritis, switching chondrocyte gene expression from catabolic direction towards anabolic and regenerative, and consequently this approach may be potentially useful as a new adjunct therapeutic/preventive agent for OA or injury recovery.

  9. Blockade of Toll-like receptor 2 prevents spontaneous cytokine release from rheumatoid arthritis ex vivo synovial explant cultures

    LENUS (Irish Health Repository)

    Nic An Ultaigh, Sinead

    2011-02-23

    Abstract Introduction The aim of this study was to examine the effect of blocking Toll-like receptor 2 (TLR2) in rheumatoid arthritis (RA) synovial cells. Methods RA synovial tissue biopsies, obtained under direct visualization at arthroscopy, were established as synovial explant cultures ex vivo or snap frozen for immunohistology. Mononuclear cell cultures were isolated from peripheral blood and synovial fluid of RA patients. Cultures were incubated with the TLR1\\/2 ligand, Pam3CSK4 (200 ng, 1 and 10 μg\\/ml), an anti-TLR2 antibody (OPN301, 1 μg\\/ml) or an immunoglobulin G (IgG) (1 μg\\/ml) matched control. The comparative effect of OPN301 and adalimumab (anti-tumour necrosis factor alpha) on spontaneous release of proinflammatory cytokines from RA synovial explants was determined using quantitative cytokine MSD multiplex assays or ELISA. OPN301 penetration into RA synovial tissue explants cultures was assessed by immunohistology. Results Pam3CSK4 significantly upregulated interleukin (IL)-6 and IL-8 in RA peripheral blood mononuclear cells (PBMCs), RA synovial fluid mononuclear cells (SFMCs) and RA synovial explant cultures (P < 0.05). OPN301 significantly decreased Pam3CSK4-induced cytokine production of tumour necrosis factor alpha (TNF-α), IL-1β, IL-6, interferon (IFN)-γ and IL-8 compared to IgG control in RA PBMCs and SFMCs cultures (all P < 0.05). OPN301 penetration of RA synovial tissue cultures was detected in the lining layer and perivascular regions. OPN301 significantly decreased spontaneous cytokine production of TNF-α, IL-1β, IFN-γ and IL-8 from RA synovial tissue explant cultures (all P < 0.05). Importantly, the inhibitory effect of OPN on spontaneous cytokine secretion was comparable to inhibition by anti-TNFα monoclonal antibody adalimumab. Conclusions These findings further support targeting TLR2 as a potential therapeutic agent for the treatment of RA.

  10. Bipolar Radiofrequency Ablation Using Dual Internally Cooled Wet Electrodes: Experimental Study in Ex Vivo Bovine Liver

    International Nuclear Information System (INIS)

    To determine the optimized protocol for bipolar radiofrequency ablation (RFA), using dual internally cooled wet (ICW) electrodes in the ex vivo bovine liver. RFA was applied to the explanted bovine liver, using two 3 cm active tip electrodes with 3.5 cm spacing. A total of 25 ablation zones were created by five groups; group A: 70 W-20 minute (min), group B: 70 W-25 min, group C: 90 W-15 min, group D: 90 W-20 min, and group E: 90 W-25 min. We measured the total energy and size of ablation zones with a color of grey or pink. Statistical analysis was done using Kruskal Wallis test and Mann Whitney U-test. The mean energy, mean volume of ablation zone with grey and pink color of groups A to E were 16.7, 23.9, 16.7, 21.8, 29.2 kcal, 25.7, 34.3, 29.5, 36.2, 45.2 cm3, and 60.0, 88.0, 71.5, 87.4, 104.5 cm3, respectively. Those were significantly different (p < 0.05). The volume of ablation zone of group E with grey color was larger than groups A, B and C (p < 0.05). Bipolar RFA, using dual ICW electrodes, can produce a large ablation zone with the protocol of 90 W-25 min.

  11. Procyanidin B3 prevents articular cartilage degeneration and heterotopic cartilage formation in a mouse surgical osteoarthritis model.

    Directory of Open Access Journals (Sweden)

    Hailati Aini

    Full Text Available Osteoarthritis (OA is a common disease in the elderly due to an imbalance in cartilage degradation and synthesis. Heterotopic ossification (HO occurs when ectopic masses of endochondral bone form within the soft tissues around the joints and is triggered by inflammation of the soft tissues. Procyanidin B3 (B3 is a procyanidin dimer that is widely studied due to its high abundance in the human diet and antioxidant activity. Here, we evaluated the role of B3 isolated from grape seeds in the maintenance of chondrocytes in vitro and in vivo. We observed that B3 inhibited H(2O(2-induced apoptosis in primary chondrocytes, suppressed H(2O(2- or IL-1ß-induced nitric oxide synthase (iNOS production, and prevented IL-1ß-induced suppression of chondrocyte differentiation marker gene expression in primary chondrocytes. Moreover, B3 treatment enhanced the early differentiation of ATDC5 cells. To examine whether B3 prevents cartilage destruction in vivo, OA was surgically induced in C57BL/6J mice followed by oral administration of B3 or vehicle control. Daily oral B3 administration protected articular cartilage from OA and prevented chondrocyte apoptosis in surgically-induced OA joints. Furthermore, B3 administration prevented heterotopic cartilage formation near the surgical region. iNOS protein expression was enhanced in the synovial tissues and the pseudocapsule around the surgical region in OA mice fed a control diet, but was reduced in mice that received B3. Together, these data indicated that in the OA model, B3 prevented OA progression and heterotopic cartilage formation, at least in a part through the suppression of iNOS. These results support the potential therapeutic benefits of B3 for treatment of human OA and heterotopic ossification.

  12. Evaluation of tensile strength of tissue adhesives and sutures for clear corneal incisions using porcine and bovine eyes, with a novel standardized testing platform

    Directory of Open Access Journals (Sweden)

    Kaja S

    2012-02-01

    Full Text Available Simon Kaja, Daryl L Goad, Fatima Ali, Ashley Abraham, R Luke Rebenitsch, Savak Teymoorian, Rohit Krishna, Peter KoulenVision Research Center and Department of Ophthalmology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USABackground: Tissue adhesives for ophthalmologic applications were proposed almost 50 years ago, yet to date no adequate tissue glues have been identified that combine strong sealing properties with adequate safety and absence of postsurgical side effects. In recent years, cataract surgeries and Descemet's stripping with endothelial keratoplasty procedures have significantly increased the number of clear corneal incisions performed. One of the obstacles to discovery and development of novel tissue adhesives has been the result of nonstandardized testing of potential tissue glues.Methods: We developed an instrument capable of controlling intraocular pressure in explanted porcine and bovine eyes in order to evaluate sealants, adhesives, and surgical closure methods used in ophthalmic surgery in a controlled, repeatable, and validated fashion. We herein developed and validated our instrument by testing the adhesive properties of cyanoacrylate glue in both porcine and bovine explant eyes.Results: The instrument applied and maintained intraocular pressure through a broad range of physiological intraocular pressures. Cyanoacrylate-based glues showed significantly enhanced sealing properties of clear corneal incisions compared with sutured wounds.Conclusion: This study shows the feasibility of our instrument for reliable and standardized testing of tissue adhesive for ophthalmological surgery.Keywords: manometer, intraocular pressure, applanation tonometry, clear corneal incision, tissue adhesive, ocular surgery

  13. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies.

    Science.gov (United States)

    Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; García-López, J; Brena-Molina, A M; Gutiérrez-Gómez, C; Ibarra, C; Velasquillo, C

    2016-09-01

    The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies. PMID:27566509

  14. The Effects of Smoking on Ultrasonographic Thickness and Elastosonographic Strain Ratio Measurements of Distal Femoral Cartilage

    Directory of Open Access Journals (Sweden)

    Harun R. Gungor

    2016-04-01

    Full Text Available Although adverse effects of smoking on bone health are all well known, data on how smoking interacts with cartilage structure in otherwise healthy individuals remains conflicting. Here, we ascertain the effects of cigarette smoking on sonoelastographic properties of distal femoral cartilage in asymptomatic adults. Demographic characteristics and smoking habits (packets/year of healthy volunteers were recorded. Medial, intercondylar, and lateral distal femoral cartilage thicknesses and strain ratios on the dominant extremity were measured with ultrasonography (US and real time US elastography. A total of 88 subjects (71 M, 17 F; aged 18–56 years, N = 43 smokers and N = 45 nonsmokers were evaluated. Mean amount of cigarette smoking was 10.3 ± 8.9 (1–45 packets/year. Medial, intercondylar and lateral cartilage were thicker in smokers than nonsmokers (p = 0.002, p = 0.017, and p = 0.004, respectively. Medial distal femoral cartilage strain ratio was lower in smokers (p = 0.003. The amount of smoking was positively correlated with cartilage thicknesses and negatively correlated with medial cartilage strain ratios (p < 0.05. Femoral cartilage is thicker in smokers but has less strain ratio representing harder cartilage on the medial side. Future studies are needed to understand how these structural changes in the knee cartilage should be interpreted with regard to the development of knee osteoarthritis in smokers.

  15. The Effects of Smoking on Ultrasonographic Thickness and Elastosonographic Strain Ratio Measurements of Distal Femoral Cartilage.

    Science.gov (United States)

    Gungor, Harun R; Agladioglu, Kadir; Akkaya, Nuray; Akkaya, Semih; Ok, Nusret; Ozçakar, Levent

    2016-04-01

    Although adverse effects of smoking on bone health are all well known, data on how smoking interacts with cartilage structure in otherwise healthy individuals remains conflicting. Here, we ascertain the effects of cigarette smoking on sonoelastographic properties of distal femoral cartilage in asymptomatic adults. Demographic characteristics and smoking habits (packets/year) of healthy volunteers were recorded. Medial, intercondylar, and lateral distal femoral cartilage thicknesses and strain ratios on the dominant extremity were measured with ultrasonography (US) and real time US elastography. A total of 88 subjects (71 M, 17 F; aged 18-56 years, N = 43 smokers and N = 45 nonsmokers) were evaluated. Mean amount of cigarette smoking was 10.3 ± 8.9 (1-45) packets/year. Medial, intercondylar and lateral cartilage were thicker in smokers than nonsmokers (p = 0.002, p = 0.017, and p = 0.004, respectively). Medial distal femoral cartilage strain ratio was lower in smokers (p = 0.003). The amount of smoking was positively correlated with cartilage thicknesses and negatively correlated with medial cartilage strain ratios (p < 0.05). Femoral cartilage is thicker in smokers but has less strain ratio representing harder cartilage on the medial side. Future studies are needed to understand how these structural changes in the knee cartilage should be interpreted with regard to the development of knee osteoarthritis in smokers. PMID:27110800

  16. Tracheal cartilage regeneration and new bone formation by slow release of bone morphogenetic protein (BMP)-2.

    Science.gov (United States)

    Igai, Hitoshi; Chang, Sung Soo; Gotoh, Masashi; Yamamoto, Yasumichi; Yamamoto, Masaya; Tabata, Yasuhiko; Yokomise, Hiroyasu

    2008-01-01

    We investigated the efficiency of bone morphogenetic protein (BMP)-2 released slowly from gelatin sponge for tracheal cartilage regeneration. A 1-cm gap was made in the mid-ventral portion of each of 10 consecutive tracheal cartilages. In the control group (n = 4), the resulting gap was left untreated. In the gelatin group (n = 4), plain gelatin was implanted in the gap. In the BMP-2 group (n = 4), gelatin containing 100 microg BMP-2 was implanted. We euthanatized all dogs in each group at 1, 3, 6, and 12 months after the implantation, respectively, and then examined the implant site macro- and microscopically. In the BMP-2 group, regenerated fibrous cartilage and newly formed bone were observed at 1 and 12 months. Regenerated cartilage was observed at the ends of the host cartilage stumps, with newly formed bone in the middle portion. The gaps were filled with regenerated cartilage and newly formed bone. At 3 and 6 months, regenerated cartilage, but not newly formed bone, was evident. The regenerated cartilage was covered with perichondrium and showed continuity with the host cartilage. We succeeded in inducing cartilage regeneration and new bone formation in canine trachea by slow release of 100 microg BMP-2 from gelatin. PMID:18204324

  17. Investigations of micron and submicron wear features of diseased human cartilage surfaces.

    Science.gov (United States)

    Peng, Zhongxiao; Baena, Juan C; Wang, Meiling

    2015-02-01

    Osteoarthritis is a common disease. However, its causes and morphological features of diseased cartilage surfaces are not well understood. The purposes of this research were (a) to develop quantitative surface characterization techniques to study human cartilages at a micron and submicron scale and (b) to investigate distinctive changes in the surface morphologies and biomechanical properties of the cartilages in different osteoarthritis grades. Diseased cartilage samples collected from osteoarthritis patients were prepared for image acquisition using two different techniques, that is, laser scanning microscopy at a micrometer scale and atomic force microscopy at a nanometer scale. Three-dimensional, digital images of human cartilages were processed and analyzed quantitatively. This study has demonstrated that high-quality three-dimensional images of human cartilage surfaces could be obtained in a hydrated condition using laser scanning microscopy and atomic force microscopy. Based on the numerical data extracted from improved image quality and quantity, it has been found that osteoarthritis evolution can be identified by specific surface features at the micrometer scale, and these features are amplitude and functional property related. At the submicron level, the spatial features of the surfaces were revealed to differ between early and advanced osteoarthritis grades. The effective indentation moduli of human cartilages effectively revealed the cartilage deterioration. The imaging acquisition and numerical analysis methods established allow quantitative studies of distinctive changes in cartilage surface characteristics and better understanding of the cartilage degradation process.

  18. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Mamisch, Tallal Charles [University Bern, Department of Orthopedic Surgery, Inselspital, Bern (Switzerland); University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Hughes, Timothy [Siemens Medical Solutions, Erlangen (Germany); Mosher, Timothy J. [Penn State University College of Medicine, Musculoskeletal Imaging and MRI, Department of Radiology, Hershey, PA (United States); Mueller, Christoph [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Trattnig, Siegfried [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); Boesch, Chris [University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Welsch, Goetz Hannes [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria)

    2012-03-15

    T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface. (orig.)

  19. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  20. Multiparametric MRI of Epiphyseal Cartilage Necrosis (Osteochondrosis with Histological Validation in a Goat Model.

    Directory of Open Access Journals (Sweden)

    Luning Wang

    Full Text Available To evaluate multiple MRI parameters in a surgical model of osteochondrosis (OC in goats.Focal ischemic lesions of two different sizes were induced in the epiphyseal cartilage of the medial femoral condyles of goats at 4 days of age by surgical transection of cartilage canal blood vessels. Goats were euthanized and specimens harvested 3, 4, 5, 6, 9 and 10 weeks post-op. Ex vivo MRI scans were conducted at 9.4 Tesla for mapping the T1, T2, T1ρ, adiabatic T1ρ and TRAFF relaxation times of articular cartilage, unaffected epiphyseal cartilage, and epiphyseal cartilage within the area of the induced lesion. After MRI scans, safranin O staining was conducted to validate areas of ischemic necrosis induced in the medial femoral condyles of six goats, and to allow comparison of MRI findings with the semi-quantitative proteoglycan assessment in corresponding safranin O-stained histological sections.All relaxation time constants differentiated normal epiphyseal cartilage from lesions of ischemic cartilage necrosis, and the histological staining results confirmed the proteoglycan (PG loss in the areas of ischemia. In the scanned specimens, all of the measured relaxation time constants were higher in the articular than in the normal epiphyseal cartilage, consistently allowing differentiation between these two tissues.Multiparametric MRI provided a sensitive approach to discriminate between necrotic and viable epiphyseal cartilage and between articular and epiphyseal cartilage, which may be useful for diagnosing and monitoring OC lesions and, potentially, for assessing effectiveness of treatment interventions.

  1. ORGANOGÊNESE INDIRETA A PARTIR DE EXPLANTES FOLIARES E MULTIPLICAÇÃO IN VITRO DE BROTAÇÕES DE Eucalyptus benthamii X Eucalyptus dunnii

    Directory of Open Access Journals (Sweden)

    Yohana de Oliveira-Cauduro

    2014-01-01

    Full Text Available The aims of this research were to evaluate different culture media for indirect organogenesis and shoot multiplication of Eucalyptus benthamii x Eucalyptus dunnii . For organogenesis, leaf explants were used to test the following treatments: two culture media (MS N/2 and JADS supplemented with 0.1 μM 1-naphthaleneacetic acid (NAA and thidiazuron (TDZ (0.1 or 0.5 μ M, with or without PVP- 40 (250 mg L -1 . The percentage of oxidized explants, callus forming explants, explants with anthocyanin,buds, shoots and the shoot number per explant were evaluated. In the multiplication experiment, isolated shoots were cultivated in MS, JADS and WPM media, all supplemented with 1.11 μ M BAP. Four subcultures were carried out every 28 days. In every subculture the explant oxidation, partial or total leaf chlorosis, fresh mass and mean number of shoot per explant were evaluated. The MS N/2 medium supplemented with 0.1 μM NAA and 0.5 μM TDZ promoted the highest rate of organogenesis (8.3% and the culture media MS supplemented with 1.11 μ M BAP the multiplication rate was higher than in the other media, in the first and the second subcultures (9.28 and 9.24, respectively, without differences between the three media in the following subcultures.

  2. PREVALENCE OF LARYNGEAL CARTILAGE CALCIFICATIONS IN MANGALORE POPULATION; A RADIOGRAPHIC STUDY

    Directory of Open Access Journals (Sweden)

    Nandita Shenoy

    2014-10-01

    Full Text Available Soft tissue calcifications in the orofacial region are uncommon and are usually asymptomatic in nature. Some of the common calcifications found are Carotid artery calcifications (CAC, Triticeous cartilage, and Superior cornu of the thyroid cartilage, Tonsilloliths and lymph nodes calcifications. Disordered ossification or calcification of ligaments or cartilages may compress neurovascular structures, may be able to cause serious implications in any surgical intervention in the region, may lead to false neurological differential diagnosis or may be benign in nature without any clinical significance. Ossification and calcification of the laryngeal cartilages have been widely investigated since the original study by Chievitz in 1882 1 . The thyroid, cricoid, and greater part of the arytenoid cartilages consist of hyaline cartilage that undergoes calcification and ossification as part of the ageing process. The thyroid cartilage tends to be visible on the cephalometric and lateral neck radiograph when the ossification starts within the lamina or either of the cornua. The cricoids and arytenoid cartilages also become apparent when the ossification begins within their laminae. Radiographs of the head and neck are used to study the growth and development of skeletal structures can be used for identification of these calcifications 2 . A good understanding of the anatomy and the knowledge of variations in the laryngeal cartilage ossification is important for all clinicians especially while interpreting head and neck radiographs of patients who exhibit anatomical or functional deviations from the normal. The lateral cephalometric radiographs are advised more commonly by an orthodontist to look for occlusion and lateral profile of the patient pre and post orthodontic treatment. They also demonstrate the posterosuperior part of the lamina, and the superior cornu of the thyroid cartilage. Laryngeal and related cartilages like the cricoid and triticeal

  3. Articular Cartilage Evaluation After TruFit Plug Implantation Analyzed by Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC)

    NARCIS (Netherlands)

    Bekkers, J.E.J.; Bartels, L.W.; Vincken, K.L.; Dhert, W.J.A.; Creemers, L.B.; Saris, D.B.F.

    2013-01-01

    Background: Quantitative MRI of articular cartilage has rapidly developed in recent years and provides the clinician with a noninvasive tool to determine the biological consequence of an intervention. Purpose: To evaluate the quality of intra-articular cartilage, using the dGEMRIC scanning techniqu

  4. Co-Expression and Co-Localization of Cartilage Glycoproteins CHI3L1 and Lubricin in Osteoarthritic Cartilage: Morphological, Immunohistochemical and Gene Expression Profiles.

    Science.gov (United States)

    Szychlinska, Marta Anna; Trovato, Francesca Maria; Di Rosa, Michelino; Malaguarnera, Lucia; Puzzo, Lidia; Leonardi, Rosy; Castrogiovanni, Paola; Musumeci, Giuseppe

    2016-01-01

    Osteoarthritis is the most common human arthritis characterized by degeneration of articular cartilage. Several studies reported that levels of human cartilage glycoprotein chitinase 3-like-1 (CHI3L1) are known as a potential marker for the activation of chondrocytes and the progression of Osteoarthritis (OA), whereas lubricin appears to be chondroprotective. The aim of this study was to investigate the co-expression and co-localization of CHI3L1 and lubricin in normal and osteoarthritic rat articular cartilage to correlate their modified expression to a specific grade of OA. Samples of normal and osteoarthritic rat articular cartilage were analyzed by the Kellgren-Lawrence OA severity scores, the Kraus' modified Mankin score and the Histopathology Osteoarthritis Research Society International (OARSI) system for histomorphometric evaluations, and through CHI3L1 and lubricin gene expression, immunohistochemistry and double immuno-staining analysis. The immunoexpression and the mRNA levels of lubricin increased in normal cartilage and decreased in OA cartilage (normal vs. OA, p < 0.01). By contrast, the immunoexpression and the mRNA levels of CHI3L1 increased in OA cartilage and decreased in normal cartilage (normal vs. OA, p < 0.01). Our findings are consistent with reports suggesting that these two glycoproteins are functionally associated with the development of OA and in particular with grade 2/3 of OA, suggesting that in the future they could be helpful to stage the severity and progression of the disease.

  5. Co-Expression and Co-Localization of Cartilage Glycoproteins CHI3L1 and Lubricin in Osteoarthritic Cartilage: Morphological, Immunohistochemical and Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Marta Anna Szychlinska

    2016-03-01

    Full Text Available Osteoarthritis is the most common human arthritis characterized by degeneration of articular cartilage. Several studies reported that levels of human cartilage glycoprotein chitinase 3-like-1 (CHI3L1 are known as a potential marker for the activation of chondrocytes and the progression of Osteoarthritis (OA, whereas lubricin appears to be chondroprotective. The aim of this study was to investigate the co-expression and co-localization of CHI3L1 and lubricin in normal and osteoarthritic rat articular cartilage to correlate their modified expression to a specific grade of OA. Samples of normal and osteoarthritic rat articular cartilage were analyzed by the Kellgren–Lawrence OA severity scores, the Kraus’ modified Mankin score and the Histopathology Osteoarthritis Research Society International (OARSI system for histomorphometric evaluations, and through CHI3L1 and lubricin gene expression, immunohistochemistry and double immuno-staining analysis. The immunoexpression and the mRNA levels of lubricin increased in normal cartilage and decreased in OA cartilage (normal vs. OA, p < 0.01. By contrast, the immunoexpression and the mRNA levels of CHI3L1 increased in OA cartilage and decreased in normal cartilage (normal vs. OA, p < 0.01. Our findings are consistent with reports suggesting that these two glycoproteins are functionally associated with the development of OA and in particular with grade 2/3 of OA, suggesting that in the future they could be helpful to stage the severity and progression of the disease.

  6. Assessment of the sensitivity of three North American fish species to disruptors of steroidogenesis using in vitro tissue explants.

    Science.gov (United States)

    Beitel, Shawn C; Doering, Jon A; Patterson, Sarah E; Hecker, Markus

    2014-07-01

    There is concern regarding exposure of aquatic organisms to chemicals that interfere with the endocrine system. One critical mechanism of endocrine disruption is impairment of steroidogenesis that can lead to altered hormone levels, altered or delayed sexual development, and ultimately reproductive failure. With the current large gap in knowledge and a high degree of uncertainty regarding the sensitivity of fishes native to northern ecosystems to endocrine disrupting chemicals (EDCs), the aim of this study was to develop an in vitro gonadal explant assay enabling the assessment of EDCs on sex-steroid production in wild fish species native to North America. Northern pike (Esox lucius), walleye (Sander vitreus), and white sucker (Catostomus commeroni) were sampled from a reference location in Lake Diefenbaker, Saskatchewan, Canada, at spawn and multiple post-spawn time points. Gonads were excised and immediately exposed for 24h to a model inducer (forskolin) or inhibitor (prochloraz) of steroidogenesis in L-15 supplemented media. Furthermore, seasonal profiles of plasma 11-ketotestosterone (11-KT) and 17-β estradiol (E2) concentrations were characterized. Enzyme-linked immunosorbent assays were used to quantify hormone concentrations in plasma and media. The seasonal profile of plasma hormones was significantly correlated with basal in vitro hormone production. Gonad tissue exposed to forskolin showed a concentration-dependent increase in E2 and a general increase in 11-KT. Gonad tissue exposed to prochloraz resulted in a decrease of concentrations of 11-KT and E2. These results illustrated that gonadal tissue is undergoing steroidogenesis in an in vitro setting that is comparable to in vivo hormone profiles, and which is responsive to chemical exposure in a concentration-dependent manner. The seasonal time point during which gonad explants were excised and exposed had an impact on the potency and magnitude of responses, resulting in a seasonal effect on sensitivity

  7. Effects of carbon ion beam irradiation on the shoot regeneration from in vitro axillary bud explants of the Impatiens hawkeri

    Science.gov (United States)

    Zhou, Libin; Zhou, Libin; Li, Wenjian; Li, Ping; Dong, Xicun; Qu, Ying; Ma, Shuang; Li, Qiang

    Accelerated ion beams is an excellent mutagen in plant breeding which can induce higher mutation frequencies and wider mutation spectrum than those of low linear energy transfer (LET) irradiations, such as X-rays (Okamura et al. 2003, Yamaguchi et al. 2003). Mutation breeding operation of two Saintpaulia ionahta cultivars using the method combining plant tissue culture technique and carbon ion beam irradiations were set out at Institute of Modern Physics from 2005 (Zhou et al. 2006). The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiations on regenerated shoots of Impatiens hawkeri from another kind of explants named in vitro axillary buds explants were studied recently. The biology endpoints in this study included relative number of roots (RNR), relative length of roots (RLR), relative height of shoots (RHS), relative number of nodes (RNN), survival fraction (SF) and morphology changes in the regenerated shoots. The experimental results showed that carbon ion beams inhibited the root and stem developments of axillary bud explants more severely than X-rays did. And the 50% lethal dose (LD50 ) is about 23.3 Gy for the carbon ion beam and 49.1 Gy for the X-rays, respectively. Relative biological effectiveness (RBE) of Impatiens hawkeri with respect to X-rays according to 50% SF was about two. Secondly, the percentage of shoots regenerated with malformed shoots including curliness, carnification, nicks in all Impatiens hawkeri axillary bud explants irradiated with carbon ion beam at 20 Gy accounted for 55.6%, while the highest number for the 40 Gy X-ray irradiation was 40%. Last, many regenerated shoots whose vascular bundle fused together were obtained only from explants irradiated with carbon ion beams. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the axillary explants of Impatiens hawkeri is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy

  8. Reduction of Adherence of E. coli O157:H7 to HEp-2 Cells and to Bovine Large Intestinal Mucosal Explants by Colicinogenic E. coli

    OpenAIRE

    A. I. Etcheverría; Arroyo, G. H.; R Alzola; Parma, A. E.

    2011-01-01

    Enterohemorrhagic E. coli strains (EHEC) had emerged as foodborne pathogens and cause in human diarrhea and hemolytic-uremic syndrome. Because of the widespread distribution of EHEC serotypes and O157 and non-O157 in cattle population, its control will require interventions at the farm level such as the administration of probiotics that produce inhibitory metabolites. E. coli O157:H7 shows tissue tropisms for the gastrointestinal tract (GIT) of cattle. The aim of this study was to test the ab...

  9. Stimulation by concanavalin A of cartilage-matrix proteoglycan synthesis in chondrocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W.Q.; Nakashima, K.; Iwamoto, M.; Kato, Y. (Osaka Univ. (Japan))

    1990-06-15

    The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of (35S)sulfate and (3H)glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on (35S)sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on (35S)sulfate incorporation into small proteoglycans and (3H)glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on (35S)sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased (3H)thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.

  10. Lessons from rare diseases of cartilage and bone.

    Science.gov (United States)

    Gallagher, James A; Ranganath, Lakshminarayan R; Boyde, Alan

    2015-06-01

    Studying severe phenotypes of rare syndromes can elucidate disease mechanisms of more common disorders and identify potential therapeutic targets. Lessons from rare bone diseases contributed to the development of the most successful class of bone active agents, the bisphosphonates. More recent research on rare bone diseases has helped elucidate key pathways and identify new targets in bone resorption and bone formation including cathepsin K and sclerostin, for which drugs are now in clinical trials. By contrast, there has been much less focus on rare cartilage diseases and osteoarthritis (OA) remains a common disease with no effective therapy. Investigation of rare cartilage syndromes is identifying new potential targets in OA including GDF5 and lubricin. Research on the arthropathy of the ultra-rare disease alkaptonuria has identified several new features of the OA phenotype, including high density mineralized protrusions (HDMPs) which constitute a newly identified mechanism of joint destruction.

  11. Surgical management of articular cartilage defects in the knee.

    Science.gov (United States)

    Cole, Brian J; Pascual-Garrido, Cecilia; Grumet, Robert C

    2010-01-01

    The treatment of isolated cartilage lesions of the knee is based on several underlying principles, including a predictable reduction in the patient's symptoms, improvements in function and joint congruence, and prevention of progressive damage. Surgical options for cartilage restoration are described as palliative treatments, such as débridement and lavage; reparative, such as marrow stimulation techniques; or restorative, such as osteochondral grafting and autologous chondrocyte implantation. The choice of an appropriate treatment should be made on an individual basis, with consideration for the patient's specific goals (such as pain reduction or functional improvement), physical demand level, prior treatment history, lesion size and location, and a systematic evaluation of the knee that considers comorbidities, including alignment, meniscal status, and ligament integrity. It is important for the physician to be familiar with the indications, surgical techniques, and clinical outcomes of the available treatment options for chondral defects of the knee. PMID:20415379

  12. A stem cell-based approach to cartilage repair.

    Science.gov (United States)

    Johnson, Kristen; Zhu, Shoutian; Tremblay, Matthew S; Payette, Joshua N; Wang, Jianing; Bouchez, Laure C; Meeusen, Shelly; Althage, Alana; Cho, Charles Y; Wu, Xu; Schultz, Peter G

    2012-05-11

    Osteoarthritis (OA) is a degenerative joint disease that involves the destruction of articular cartilage and eventually leads to disability. Molecules that promote the selective differentiation of multipotent mesenchymal stem cells (MSCs) into chondrocytes may stimulate the repair of damaged cartilage. Using an image-based high-throughput screen, we identified the small molecule kartogenin, which promotes chondrocyte differentiation (median effective concentration = 100 nM), shows chondroprotective effects in vitro, and is efficacious in two OA animal models. Kartogenin binds filamin A, disrupts its interaction with the transcription factor core-binding factor β subunit (CBFβ), and induces chondrogenesis by regulating the CBFβ-RUNX1 transcriptional program. This work provides new insights into the control of chondrogenesis that may ultimately lead to a stem cell-based therapy for osteoarthritis. PMID:22491093

  13. Semiquantitative correction of posttraumatic enophthalmos with sliced cartilage grafts.

    Science.gov (United States)

    Matsuo, K; Hirose, T; Furuta, S; Hayashi, M; Watanabe, T

    1989-03-01

    A simple surgical technique for correcting posttraumatic enophthalmos is described. The steps are as follows: (1) a plaster mold is obtained of the patient's face, (2) wax is added to the enophthalmic eye of the plaster mold until it becomes symmetrical, (3) the quantity of wax is measured, and (4) the same amount of sliced costal cartilage is implanted beneath the periosteum of the extended orbital wall behind the vertical axis of the globe. Using this technique, we have successfully treated six patients with traumatic orbital floor defects without complication. This approach is useful for decreasing the orbital volume using a semiquantitative procedure to estimate the amount of graft material required. In this respect, costal cartilage demonstrates a marked advantage, with stability and cosmetic appearance verified over 12 months of follow-up.

  14. Semiquantitative correction of posttraumatic enophthalmos with sliced cartilage grafts.

    Science.gov (United States)

    Matsuo, K; Hirose, T; Furuta, S; Hayashi, M; Watanabe, T

    1989-03-01

    A simple surgical technique for correcting posttraumatic enophthalmos is described. The steps are as follows: (1) a plaster mold is obtained of the patient's face, (2) wax is added to the enophthalmic eye of the plaster mold until it becomes symmetrical, (3) the quantity of wax is measured, and (4) the same amount of sliced costal cartilage is implanted beneath the periosteum of the extended orbital wall behind the vertical axis of the globe. Using this technique, we have successfully treated six patients with traumatic orbital floor defects without complication. This approach is useful for decreasing the orbital volume using a semiquantitative procedure to estimate the amount of graft material required. In this respect, costal cartilage demonstrates a marked advantage, with stability and cosmetic appearance verified over 12 months of follow-up. PMID:2919197

  15. A STUDY ON STRUCTURE AND THICKNESS OF ISTHMUS OF CARTILAG E OF PINNA

    Directory of Open Access Journals (Sweden)

    Satyanarayana

    2015-05-01

    Full Text Available INTRODUCTION: A variety of organic and inorganic materials is used as grafts in Ossiculoplasty and reconstruction of the outer attic wall and posterior wall of External Auditory Meatus. Tragal cartilage, Conchal cartilage and septal cartilages are frequently used as auto grafts during Tympanoplasty surgery for reconstruction of Ossicular chain. Cartilage grafts used for Ossicular replacement should be thick, sturdy, easily sculpted and without much elasticity. If the graft has elastic nature it tends to reduce the conduction of sound vibrations. Auricular cartilage is accessible through the same post aural incision used for the mastoid surgery. If the auricular cartilage is palpated for the thickness, one would find that the thickest part is the isthmus. It is felt below and posterior to the inter tragal sulcus. The present study is to measure the thickness of the isthmus part of the auricle cartilage. It also includes study of histology of the cartilage of isthmus to observe the stacks of cells present between the two layers of the perichondrium. MATERIALS AND METHODS: The cartilage of isthmus from 36 cadavers is dissected to measure its thickness and for histology study. Cartilage of isthmus from 36 patients undergoing Modified Radical Mastoidectomy is measured for their thickness and histology is studied. A sterile steel calipers is used to measure the thickness of the cartilage, after exposing the cartilage from posterior aspect during surgery. The tips of the calipers are kept touching the perichondrium on both sides. Thin histology sections are taken after embedding the cartilage in paraffin moulds. Hematoxyline and Eosin stain is used to study the histology. The thickest portion of the cartilage is sculpted to be used as a strut in Type III Tympanoplasty. OBSERVATIONS: The thickness of the cartilage varied from 2.1 to 3mm. The number of stacks of chondrocytes varied from 5 to 7. The physical nature of the cartilage is sturdy and easily

  16. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges

    Energy Technology Data Exchange (ETDEWEB)

    Lu Hongxu; Ko, Young-Gwang; Kawazoe, Naoki; Chen Guoping, E-mail: Guoping.Chen@nims.go.jp [Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-08-15

    Three-dimensional porous scaffolds play an important role in tissue engineering and regenerative medicine. Structurally, these porous scaffolds should have an open and interconnected porous architecture to facilitate a homogeneous cell distribution. Moreover, the scaffolds should be mechanically strong to support new tissue formation. We developed a novel type of funnel-like collagen sponge using embossing ice particulates as a template. The funnel-like collagen sponges could promote the homogeneous cell distribution, ECM production and chondrogenesis. However, the funnel-like collagen sponges deformed during cell culture due to their weak mechanical strength. To solve this problem, we reinforced the funnel-like collagen sponges with a knitted poly(D,L-lactic-co-glycolic acid) (PLGA) mesh by hybridizing these two types of materials. The hybrid scaffolds were used to culture bovine articular chondrocytes. The cell adhesion, distribution, proliferation and chondrogenesis were investigated. The funnel-like structure promoted the even cell distribution and homogeneous ECM production. The PLGA knitted mesh protected the scaffold from deformation during cell culture. Histological and immunohistochemical staining and cartilaginous gene expression analyses revealed the cartilage-like properties of the cell/scaffold constructs after in vivo implantation. The hybrid scaffold, composed of a funnel-like collagen sponge and PLGA mesh, would be a useful tool for cartilage tissue engineering.

  17. Regulation of lubricin/superficial zone protein by Wnt signalling in bovine synoviocytes.

    Science.gov (United States)

    Inui, Atsuyuki; Iwakura, Takashi; Hari Reddi, A

    2016-02-01

    Lubricin, homologous to superficial zone protein (SZP), functions as a boundary lubricant in articular cartilage and plays an essential role in the maintenance of joint function and homeostasis. Wnt signalling plays a key role in joint development, including synovial joint formation, and several Wnt proteins are expressed in the synovium and articular cartilage in arthritis. The aim of this study was to determine the role of Wnt signalling on SZP accumulation in synoviocytes. Isolated synoviocytes from bovine knee joints were cultured with Wnt proteins (Wnt-3a and Wnt-5a) and antagonists or agonists of the Wnt-β-catenin pathway or Wnt-Ca(2+) pathway in serum-free chemically defined medium. SZP accumulation in the culture medium was determined by enzyme-linked immunosorbent assay. Wnt-3a suppressed SZP accumulation via a Wnt-β-catenin-dependent pathway. In contrast, Wnt-5a stimulated SZP accumulation via a β-catenin independent pathway. The present investigation provides novel insights into the role of the Wnt signalling pathways in SZP accumulation in synoviocytes and their roles in the homeostasis of normal joints.

  18. ANATOMICAL STUDIES OF IN VITRO ORGANOGENESIS INDUCED IN LEAF-DERIVED EXPLANTS OF PASSIONFRUIT ESTUDOS ANATÔMICOS DA ORGANOGÊNESE IN VITRO INDUZIDA EM EXPLANTES DE FOLHA DE MARACUJÁ

    OpenAIRE

    BEATRIZ APPEZZATO DA GLORIA; MARIA LUCIA CARNEIRO VIEIRA; MARCELO CARNIER DORNELAS

    1999-01-01

    With the aim of studying the organogenesis in vitro in Passiflora edulis Sims f. flavicarpa Deg., the passionfruit, leaf-derived explants were cultured on media containing NAA or BAP and incubated either in continuous darkness or in light. The histological events leading to de novo organ formation were evaluated. Darkness induces rhizogenesis in the presence of NAA, whereas direct shoot regeneration is stimulated by light and BAP. This latter condition is recommended for passionfruit micropro...

  19. Human sclera maintains common characteristics with cartilage throughout evolution.

    Directory of Open Access Journals (Sweden)

    Yuko Seko

    Full Text Available BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia.

  20. Striation patterns in serrated blade stabs to cartilage.

    Science.gov (United States)

    Pounder, Derrick J; Reeder, Francesca D

    2011-05-20

    Stab wounds were made in porcine cartilage with 13 serrated knives, amongst which 4 were drop-point and 9 straight-spine; 9 coarsely serrated, 3 finely serrated and 1 with mixed pattern serrations. The walls of the stab tracks were cast with dental impression material, and the casts photographed together with the knife blades for comparison. All 13 serrated blades produced an "irregularly regular" pattern of striations on cartilage in all stabbings. Unusual and distinctive blade serration patterns produced equally distinctive wound striation patterns. A reference collection of striation patterns and corresponding blades might prove useful for striation pattern analysis. Drop-point blades produced similar striations to straight-spine blades except that the striations were not parallel but rather fan-shaped, converging towards the wound exit. The fan-shaped striation pattern characteristic of drop-point blades is explained by the initial lateral movement of the blade through the cartilage imposed by the presence of the drop point shape. It appears that the greater the overall angle of the drop point, the shorter the blade length over which the drop point occurs, and the closer the first serration is to the knife tip, the more obvious is the fan-shaped pattern. We anticipate that micro-irregularities producing individualising characteristics in non-serrated drop point blades, provided they were located at the tip opposite the drop point, should also show a fan-shaped pattern indicative of a drop point blade. The examination of the walls of stab wounds to cartilage represents an under-utilised source of forensic information to assist in knife identification.

  1. Advances in the Surgical Management of Articular Cartilage Defects

    OpenAIRE

    Stein, Spencer; Strauss, Eric; Bosco, Joseph

    2013-01-01

    Objective: The purpose of this review is to gain insight into the latest methods of articular cartilage implantation (ACI) and to detail where they are in the Food and Drug Administration approval and regulatory process. Design: A PubMed search was performed using the phrase “Autologous Chondrocyte Implantation” alone and with the words second generation and third generation. Additionally, clinicaltrials.gov was searched for the names of the seven specific procedures and the parent company we...

  2. Preserved irradiated homologous cartilage implants in canine eyelids

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, W.; Linberg, J.V.; McCormick, S. (West Virginia Univ. School of Medicine, Morgantown (USA))

    1985-01-01

    Preserved irradiated homologous costal cartilage implants were placed in six canine lower lids for a period of 7-12 weeks. The three implants placed under a covering of conjunctiva simulating current clinical technique were well tolerated and demonstrated little change. Exposed implants produced obvious clinical inflammation and two of three exposed grafts disappeared during the 4- to 5-week interval. The single exposed implant that was retained demonstrated partial epithelialization but suffered extensive absorption and remodeling.

  3. Bone and cartilage wedge technique in posttraumatic enophthalmos treatment

    OpenAIRE

    Lieger, O; Zix, J; Kruse, A; Goldblum, D.

    2010-01-01

    OBJECTIVE: To evaluate a new surgical method, using calvarial bone graft combined with a wedge of irradiated homologous costal cartilage, for the revision repair of posttraumatic enophthalmos. METHODS: This retrospective study was performed from January 1, 2003, through December 31, 2007. Eight patients were diagnosed as having unilateral posttraumatic enophthalmos. All the patients had previously undergone insufficient primary repair of their orbital fractures. In the revision surgery a ...

  4. Familial osteochondritis dissecans a dysplasia of articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.; Middleton, R.

    1985-03-01

    Two cases of osteochondritis dissecans in a boy and his mother are described. In the son only the knee and elbow joints and the epiphysis of the right second metacarpal were involved, whereas the mother showed early generalised degenerative joint disease associated with many large loose bodies in one knee. The authors speculate that familial osteochondritis dissecans is a dysplasia of articular cartilage caused by abnormal chondrocyte metabolism.

  5. Detection of a Novel Bovine Lymphotropic Herpesvirus

    OpenAIRE

    Rovnak, Joel; Quackenbush, Sandra L.; Reyes, Richard A.; Baines, Joel D.; Parrish, Colin R.; Casey, James W.

    1998-01-01

    Degenerate PCR primers which amplify a conserved region of the DNA polymerase genes of the herpesvirus family were used to provide sequence evidence for a new bovine herpesvirus in bovine B-lymphoma cells and peripheral blood mononuclear cells (PBMC). The sequence of the resultant amplicon was found to be distinct from those of known herpesvirus isolates. Alignment of amino acid sequences demonstrated 70% identity with ovine herpesvirus 2, 69% with alcelaphine herpesvirus 1, 65% with bovine h...

  6. Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis.

    Science.gov (United States)

    Asahara, Hiroshi

    2016-08-01

    MicroRNAs (miRNAs), which are small (~21 nucleotides) non-coding RNAs, are important players in endochondral ossification, articular cartilage homeostasis, and arthritis pathogenesis. Comprehensive and genetic analyses of cartilage-specific or cartilage-related miRNAs have provided new information on cartilage development, homeostasis, and related diseases. State-of-the-art combinatorial approaches, including transcription-activator like effector nuclease (TALEN)/clustered regularly interspaced short palindromic repeats (CRISPR) technique for targeting miRNAs and high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation for identifying target messenger RNAs, should be used to determine complex miRNA networks and miRNA-dependent cartilage regulation. Use of advanced drug delivery systems involving cartilage-specific miRNAs will accelerate the application of these new findings in arthritis therapy. PMID:27622175

  7. Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis

    Science.gov (United States)

    2016-01-01

    MicroRNAs (miRNAs), which are small (~21 nucleotides) non-coding RNAs, are important players in endochondral ossification, articular cartilage homeostasis, and arthritis pathogenesis. Comprehensive and genetic analyses of cartilage-specific or cartilage-related miRNAs have provided new information on cartilage development, homeostasis, and related diseases. State-of-the-art combinatorial approaches, including transcription-activator like effector nuclease (TALEN)/clustered regularly interspaced short palindromic repeats (CRISPR) technique for targeting miRNAs and high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation for identifying target messenger RNAs, should be used to determine complex miRNA networks and miRNA-dependent cartilage regulation. Use of advanced drug delivery systems involving cartilage-specific miRNAs will accelerate the application of these new findings in arthritis therapy. PMID:27622175

  8. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul-Rehman Phull

    2016-01-01

    Full Text Available Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes.

  9. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Science.gov (United States)

    Eo, Seong-Hui; Abbas, Qamar; Ahmed, Madiha

    2016-01-01

    Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes. PMID:27631002

  10. Supramolecular design of self-assembling nanofibers for cartilage regeneration.

    Science.gov (United States)

    Shah, Ramille N; Shah, Nirav A; Del Rosario Lim, Marc M; Hsieh, Caleb; Nuber, Gordon; Stupp, Samuel I

    2010-02-23

    Molecular and supramolecular design of bioactive biomaterials could have a significant impact on regenerative medicine. Ideal regenerative therapies should be minimally invasive, and thus the notion of self-assembling biomaterials programmed to transform from injectable liquids to solid bioactive structures in tissue is highly attractive for clinical translation. We report here on a coassembly system of peptide amphiphile (PA) molecules designed to form nanofibers for cartilage regeneration by displaying a high density of binding epitopes to transforming growth factor beta-1 (TGFbeta-1). Growth factor release studies showed that passive release of TGFbeta-1 was slower from PA gels containing the growth factor binding sites. In vitro experiments indicate these materials support the survival and promote the chondrogenic differentiation of human mesenchymal stem cells. We also show that these materials can promote regeneration of articular cartilage in a full thickness chondral defect treated with microfracture in a rabbit model with or even without the addition of exogenous growth factor. These results demonstrate the potential of a completely synthetic bioactive biomaterial as a therapy to promote cartilage regeneration. PMID:20133666

  11. Class characteristics of serrated knife stabs to cartilage.

    Science.gov (United States)

    Pounder, Derrick J; Cormack, Lesley; Broadbent, Elizabeth; Millar, John

    2011-06-01

    A total of 136 stab wounds were made in cartilage with 8 serrated knives and 72 stabs with 4 nonserrated knives. The walls of the stab track were documented by photography, cast with dental impression material, and the casts photographed. Staining the translucent cartilage surface with blue or green food dye improved photography. Serrated blades produced striations on cartilage in all stabbings. Patterns of blade serration beyond the broad categories of coarse and fine were recognizable. The overall pattern of striations was "irregularly regular." The distance between the blade-spine wound end and the first serration striation is a class characteristic of the knife which produced the defect, as are distances to the subsequent serration striations, which become ever close together and eventually merge near the blade-edge wound end. Serrated knives may be ground (scalloped) on either the left side or the right side of the blade and this class characteristic is identifiable from the walls of the wound track, on which the scalloped blade surface produces broad ridges and narrow striation valleys, with a reverse image on the opposing wound wall. A drop point serrated blade consistently produced an additional oblique mark angled from the blade-spine wound end, accurately reflecting the shape of the blade tip, and representing a chatter mark.

  12. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis

    Science.gov (United States)

    Adán, Norma; Guzmán-Morales, Jessica; Ledesma-Colunga, Maria G.; Perales-Canales, Sonia I.; Quintanar-Stéphano, Andrés; López-Barrera, Fernando; Méndez, Isabel; Moreno-Carranza, Bibiana; Triebel, Jakob; Binart, Nadine; Martínez de la Escalera, Gonzalo; Thebault, Stéphanie; Clapp, Carmen

    2013-01-01

    Chondrocytes are the only cells in cartilage, and their death by apoptosis contributes to cartilage loss in inflammatory joint diseases, such as rheumatoid arthritis (RA). A putative therapeutic intervention for RA is the inhibition of apoptosis-mediated cartilage degradation. The hormone prolactin (PRL) frequently increases in the circulation of patients with RA, but the role of hyperprolactinemia in disease activity is unclear. Here, we demonstrate that PRL inhibits the apoptosis of cultured chondrocytes in response to a mixture of proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) by preventing the induction of p53 and decreasing the BAX/BCL-2 ratio through a NO-independent, JAK2/STAT3–dependent pathway. Local treatment with PRL or increasing PRL circulating levels also prevented chondrocyte apoptosis evoked by injecting cytokines into the knee joints of rats, whereas the proapoptotic effect of cytokines was enhanced in PRL receptor–null (Prlr–/–) mice. Moreover, eliciting hyperprolactinemia in rats before or after inducing the adjuvant model of inflammatory arthritis reduced chondrocyte apoptosis, proinflammatory cytokine expression, pannus formation, bone erosion, joint swelling, and pain. These results reveal the protective effect of PRL against inflammation-induced chondrocyte apoptosis and the therapeutic potential of hyperprolactinemia to reduce permanent joint damage and inflammation in RA. PMID:23908112

  13. Elemental and structural studies at the bone-cartilage interface

    Energy Technology Data Exchange (ETDEWEB)

    Kaabar, W., E-mail: w.kaabar@surrey.ac.uk [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Daar, E. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bunk, O. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Farquharson, M.J. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1 (Canada); Laklouk, A. [Al-Fateh University, Tripoli (Libya); Bailey, M.; Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Gundogdu, O. [Umuttepe Campus, University of Kocaeli, 41380 Kocaeli (Turkey); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2011-10-01

    Micro-Proton Induced X-ray Emission ({mu}-PIXE) and Proton Induced Gamma-ray Emission (PIGE) techniques were employed in the investigation of trace and essential elements distribution in normal and diseased human femoral head sections affected by osteoarthritis (OA). PIGE was exploited in the determination of elements of low atomic number z<15 such as Na and F whereas elements with z>15 viz Ca, Z, P and S were determined by PIXE. Accumulations of key elements in the bone and cartilage sections were observed, significant S and Na concentrations being found in the cartilage region particularly in normal tissues. Zn showed enhanced concentrations at the bone-cartilage interface. At a synchrotron facility, small angle X-ray scattering (SAXS) was utilized on a decalcified human femoral head section affected by OA, direct measurements being made of spatial alterations of collagen fibres. The SAXS results showed a slight decrease in the axial periodicity between normal collagen type I and that in diseased tissue in various sites, in contrast with the findings of others.

  14. Development of Atomic Force Microscope for Arthroscopic Knee Cartilage Inspection

    Science.gov (United States)

    Imer, Raphaël; Akiyama, Terunobu; de Rooij, Nicolaas F.; Stolz, Martin; Aebi, Ueli; Friederich, Niklaus F.; Koenig, Uwe; Wirz, Dieter; Daniels, A. U.; Staufer, Urs

    2006-03-01

    A recent study, based on ex vivo unconfined compression testing of normal, diseased, and enzymatically altered cartilage, revealed that a scanning force microscope (SFM), used as a nano-intender, is sensitive enough to enable measurement of alterations in the biomechanical properties of cartilage. Based on these ex vivo measurements, we have designed a quantitative diagnosis tool, the scanning force arthroscope (SFA), able to perform in vivo measurements during a standard arthroscopic procedure. For stabilizing and positioning the instrument relative to the surface under investigation, a pneumatic system has been developed. A segmented piezoelectric tube was used to perform the indentation displacement, and a pyramidal nanometer-scale silicon tip mounted on a cantilever with an integrated deflection sensor measured the biomechanical properties of cartilage. Mechanical means were designed to protect the fragile cantilever during the insertion of the instrument into the knee joint. The stability of the pneumatic stage was checked with a prototype SFA. In a series of tests, load-displacement curves were recorded in a knee phantom and, more recently, in a pig’s leg.

  15. Insights from amphioxus into the evolution of vertebrate cartilage.

    Directory of Open Access Journals (Sweden)

    Daniel Meulemans

    Full Text Available Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm.

  16. Plant regeneration of Rhabdadenia Ragonesei (Apocynaceae by in vitro culturing of leaf explants REGENERACIÓN DE PLANTAS DE RHABDADENIA RAGONESEI (APOCYNACEAE POR CULTIVO IN VITRO DE EXPLANTES FOLIARES

    Directory of Open Access Journals (Sweden)

    Eduardo Flachsland

    2010-08-01

    Full Text Available Plants of Rhabdadenia Ragonesei Woodson (Apocynaceae were regenerated in vitro from leaves explants. The procedure employed includes: 1 Surface sterilization of leaves by immersion in 70% ethanol (10 s followed by 1,1%NaOCl (15 min and three wash with sterile distilled water. 2 Callus and buds induction by culture on Murashige and Skoog medium (MS + 3 mg/L benzyladenine (BAP. 3 Subculture of callus and buds on MS + 1 mg/L BAP, and 4 Rooting on MS + 0.5 mg/L naftalenacetic acid Se regeneraron plantas de Rhabdadenia Ragonesei Woodson (Apocynaceae mediante el cultivo in vitro de explantes foliares en condiciones ambientales controladas. El procedimiento consistió en: 1 Desinfección de las hojas por inmersión en etanol al 70% (10 s seguida de Inmersión en NaOCl al 1,1% (15 min y lavado tres veces con agua destilada estéril. 2 Inducción de callos y yemas mediante el cultivo de explantes foliares en el medio de Murashige y Skoog (MS + 3 mg/L de benciladenina (BAP. 3 Subcultivo de callos y yemas en MS + 1 mg/L de BAP y 4 Enraizamiento de los vastagos obtenidos en MS + 0,5 mg/L de ácido naftalenacético

  17. Bovine Chymosin: A Computational Study of Recognition and Binding of Bovine κ-Casein

    DEFF Research Database (Denmark)

    Palmer, David S.; Christensen, Anders Uhrenholt; Sørensen, Jesper;

    2010-01-01

    Bovine chymosin is an aspartic protease that selectively cleaves the milk protein κ-casein. The enzyme is widely used to promote milk clotting in cheese manufacturing. We have developed models of residues 97-112 of bovine κ-casein complexed with bovine chymosin, using ligand docking, conformation...

  18. Mycobacterium bovis (Bovine Tuberculosis) in Humans

    Science.gov (United States)

    Mycobacterium bovis (Bovine Tuberculosis) in Humans What is Mycobacterium bovis ? In the United States, the majority of tuberculosis (TB) cases in people are caused by Mycobacterium tuberculosis ( ...

  19. Analysis of explanted ePTFE cardiovascular grafts (modified BT shunt)

    Energy Technology Data Exchange (ETDEWEB)

    Doble, Mukesh [Department of Biotechnology, Indian Institute of Technology, Chennai 600 036 (India); Makadia, Nilesh; Pavithran, Sreeja; Kumar, R Suresh [Department of Pediatric Cardiology, Institute of Cardio-Vascular Diseases, Madras Medical Mission, Chennai, 600 037 (India)], E-mail: mukeshd@iitm.ac.in

    2008-09-01

    Structural, chemical, mechanical and surface changes were studied in expanded polytetrafluroethylene vascular grafts explanted from children undergoing planned surgical management of congenital heart disease. These grafts were implanted when recipients were aged 7 days to 8 years (median-48 weeks) and they had been in circulation for a period of 10-52 months (median-74 weeks). While no chemical changes were observed in the shunt, on average the tensile strength had decreased by 50%, total elongation by 61% and crystallinity by 3%. No salt deposits were observed on the surface of the graft. Soluble and insoluble proteins were bound to the polymer surface, which had made the surface hydrophilic. The external surface roughness had increased by 254.5 and the internal surface roughness by 2.6 times the initial value. The fine polymer structure had become fused and clumped. The fusing of strands on the polymer surface became more pronounced with longer duration of implantation. In one instance of previously documented graft stenosis, the heat capacity was found to be more than that of the unimplanted sample, indicating an increase in crystallinity. A longer period of study with a larger sample size would likely shed more light on the relation between physico-chemical changes and graft stenosis.

  20. From Single Cells to Engineered and Explanted Tissues: New Perspectives in Bacterial Infection Biology.

    Science.gov (United States)

    Bergmann, Simone; Steinert, Michael

    2015-01-01

    Cell culture techniques are essential for studying host-pathogen interactions. In addition to the broad range of single cell type-based two-dimensional cell culture models, an enormous amount of coculture systems, combining two or more different cell types, has been developed. These systems enable microscopic visualization and molecular analyses of bacterial adherence and internalization mechanisms and also provide a suitable setup for various biochemical, immunological, and pharmacological applications. The implementation of natural or synthetical scaffolds elevated the model complexity to the level of three-dimensional cell culture. Additionally, several transwell-based cell culture techniques are applied to study bacterial interaction with physiological tissue barriers. For keeping highly differentiated phenotype of eukaryotic cells in ex vivo culture conditions, different kinds of microgravity-simulating rotary-wall vessel systems are employed. Furthermore, the implementation of microfluidic pumps enables constant nutrient and gas exchange during cell cultivation and allows the investigation of long-term infection processes. The highest level of cell culture complexity is reached by engineered and explanted tissues which currently pave the way for a more comprehensive view on microbial pathogenicity mechanisms. PMID:26404465