WorldWideScience

Sample records for boundary-value problems

  1. Non-normal Hasemann Boundary Value Problem

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We will discuss the non-normal Hasemann boundary value problem:we may find these results are coincided with those of normal Hasemann boundary value problem and non normal Riemann boundary value problem.

  2. Boundary value problems and partial differential equations

    CERN Document Server

    Powers, David L

    2005-01-01

    Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions* Nearly 900 exercises ranging in difficulty* Many fully worked examples

  3. The nonlinear fixed gravimetric boundary value problem

    Institute of Scientific and Technical Information of China (English)

    于锦海; 朱灼文

    1995-01-01

    The properly-posedness of the nonlinear fixed gravimetric boundary value problem is shown with the help of nonlinear functional analysis and a new iterative method to solve the problem is also given, where each step of the iterative program is reduced to solving one and the same kind of oblique derivative boundary value problem with the same type. Furthermore, the convergence of the iterative program is proved with Schauder estimate of elliptic differential equation.

  4. Riemann Boundary Value Problems for Koch Curve

    Directory of Open Access Journals (Sweden)

    Zhengshun Ruanand

    2012-11-01

    Full Text Available In this study, when L is substituted for Koch curve, Riemann boundary value problems was defined, but generally speaking, Cauchy-type integral is meaningless on Koch curve. When some analytic conditions are attached to functions G (z and g (z, through the limit function of a sequence of Cauchytype integrals, the homogeneous and non-homogeneous Riemann boundary problems on Koch curve are introduced, some similar results was attained like the classical boundary value problems for analytic functions.

  5. Boundary value problems and Markov processes

    CERN Document Server

    Taira, Kazuaki

    1991-01-01

    Focussing on the interrelations of the subjects of Markov processes, analytic semigroups and elliptic boundary value problems, this monograph provides a careful and accessible exposition of functional methods in stochastic analysis. The author studies a class of boundary value problems for second-order elliptic differential operators which includes as particular cases the Dirichlet and Neumann problems, and proves that this class of boundary value problems provides a new example of analytic semigroups both in the Lp topology and in the topology of uniform convergence. As an application, one can construct analytic semigroups corresponding to the diffusion phenomenon of a Markovian particle moving continuously in the state space until it "dies", at which time it reaches the set where the absorption phenomenon occurs. A class of initial-boundary value problems for semilinear parabolic differential equations is also considered. This monograph will appeal to both advanced students and researchers as an introductio...

  6. Fourier analysis and boundary value problems

    CERN Document Server

    Gonzalez-Velasco, Enrique A

    1996-01-01

    Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics.A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field.Key Features* Topics are covered from a historical perspective with biographical information on key contributors to the field* The text contains more than 500 exercises* Includes practical applicati...

  7. Semigroups, boundary value problems and Markov processes

    CERN Document Server

    Taira, Kazuaki

    2014-01-01

    A careful and accessible exposition of functional analytic methods in stochastic analysis is provided in this book. It focuses on the interrelationship between three subjects in analysis: Markov processes, semi groups and elliptic boundary value problems. The author studies a general class of elliptic boundary value problems for second-order, Waldenfels integro-differential operators in partial differential equations and proves that this class of elliptic boundary value problems provides a general class of Feller semigroups in functional analysis. As an application, the author constructs a general class of Markov processes in probability in which a Markovian particle moves both by jumps and continuously in the state space until it 'dies' at the time when it reaches the set where the particle is definitely absorbed. Augmenting the 1st edition published in 2004, this edition includes four new chapters and eight re-worked and expanded chapters. It is amply illustrated and all chapters are rounded off with Notes ...

  8. Riemann boundary value problem for hyperanalytic functions

    Directory of Open Access Journals (Sweden)

    Ricardo Abreu Blaya

    2005-01-01

    Full Text Available We deal with Riemann boundary value problem for hyperanalytic functions. Furthermore, necessary and sufficient conditions for solvability of the problem are derived. At the end the explicit form of general solution for singular integral equations with a hypercomplex Cauchy kernel in the Douglis sense is established.

  9. Boundary Value Problems With Integral Conditions

    Science.gov (United States)

    Karandzhulov, L. I.; Sirakova, N. D.

    2011-12-01

    The weakly perturbed nonlinear boundary value problems (BVP) for almost linear systems of ordinary differential equations (ODE) are considered. We assume that the nonlinear part contain an additional function, which defines the perturbation as singular. Then the Poincare method is not applicable. The problem of existence, uniqueness and construction of a solution of the posed BVP with integral condition is studied.

  10. POSITIVE SOLUTION FOR NONLINEARSINGULAR BOUNDARY VALUE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    吕海深

    2004-01-01

    Under suitable conditions on f(·, u), it is shown that the two-point boundary value problem(φp(u'))'+ λq(t)f(u)=0 in (0, 1),u(0)=u(1)=0,has two positive solution or at least one positive solution for A in a compatible interval.

  11. Initial boundary value problems in mathematical physics

    CERN Document Server

    Leis, Rolf

    2013-01-01

    Based on the author's lectures at the University of Bonn in 1983-84, this book introduces classical scattering theory and the time-dependent theory of linear equations in mathematical physics. Topics include proof of the existence of wave operators, some special equations of mathematical physics, exterior boundary value problems, radiation conditions, and limiting absorption principles. 1986 edition.

  12. Topological invariants in nonlinear boundary value problems

    Energy Technology Data Exchange (ETDEWEB)

    Vinagre, Sandra [Departamento de Matematica, Universidade de Evora, Rua Roma-tilde o Ramalho 59, 7000-671 Evora (Portugal)]. E-mail: smv@uevora.pt; Severino, Ricardo [Departamento de Matematica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)]. E-mail: ricardo@math.uminho.pt; Ramos, J. Sousa [Departamento de Matematica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal)]. E-mail: sramos@math.ist.utl.pt

    2005-07-01

    We consider a class of boundary value problems for partial differential equations, whose solutions are, basically, characterized by the iteration of a nonlinear function. We apply methods of symbolic dynamics of discrete bimodal maps in the interval in order to give a topological characterization of its solutions.

  13. Separable boundary-value problems in physics

    CERN Document Server

    Willatzen, Morten

    2011-01-01

    Innovative developments in science and technology require a thorough knowledge of applied mathematics, particularly in the field of differential equations and special functions. These are relevant in modeling and computing applications of electromagnetic theory and quantum theory, e.g. in photonics and nanotechnology. The problem of solving partial differential equations remains an important topic that is taught at both the undergraduate and graduate level. Separable Boundary-Value Problems in Physics is an accessible and comprehensive treatment of partial differential equations i

  14. Homology in Electromagnetic Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Matti Pellikka

    2010-01-01

    Full Text Available We discuss how homology computation can be exploited in computational electromagnetism. We represent various cellular mesh reduction techniques, which enable the computation of generators of homology spaces in an acceptable time. Furthermore, we show how the generators can be used for setting up and analysis of an electromagnetic boundary value problem. The aim is to provide a rationale for homology computation in electromagnetic modeling software.

  15. Complementary Lidstone Interpolation and Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Pinelas Sandra

    2009-01-01

    Full Text Available We shall introduce and construct explicitly the complementary Lidstone interpolating polynomial of degree , which involves interpolating data at the odd-order derivatives. For we will provide explicit representation of the error function, best possible error inequalities, best possible criterion for the convergence of complementary Lidstone series, and a quadrature formula with best possible error bound. Then, these results will be used to establish existence and uniqueness criteria, and the convergence of Picard's, approximate Picard's, quasilinearization, and approximate quasilinearization iterative methods for the complementary Lidstone boundary value problems which consist of a th order differential equation and the complementary Lidstone boundary conditions.

  16. The GPS-gravimetry boundary value problem

    Institute of Scientific and Technical Information of China (English)

    YU; Jinhai; ZHANG; Chuanding

    2005-01-01

    How to determine the earth's external gravity field with the accuracy of O(T2) by making use of GPS data and gravity values measured on the earth's surface is dealt with in this paper. There are two main steps: to extend these measured values on the earth's surface onto the reference ellipsoid at first and then to seek for the integral solution of the external Neumann problem outside the ellipsoid. In addition, the corresponding judging criteria of accuracy to solve the GPS-gravity boundary value problem are established. The integral solution given in the paper not only contains all frequency-spectral information of the gravity field with the accuracy of O(T2),but is also easily computed. In fact, the solution has great significance for both theory and practice.

  17. Group invariance in engineering boundary value problems

    CERN Document Server

    Seshadri, R

    1985-01-01

    REFEREN CES . 156 9 Transforma.tion of a Boundary Value Problem to an Initial Value Problem . 157 9.0 Introduction . 157 9.1 Blasius Equation in Boundary Layer Flow . 157 9.2 Longitudinal Impact of Nonlinear Viscoplastic Rods . 163 9.3 Summary . 168 REFERENCES . . . . . . . . . . . . . . . . . . 168 . 10 From Nonlinear to Linear Differential Equa.tions Using Transformation Groups. . . . . . . . . . . . . . 169 . 10.1 From Nonlinear to Linear Differential Equations . 170 10.2 Application to Ordinary Differential Equations -Bernoulli's Equation . . . . . . . . . . . 173 10.3 Application to Partial Differential Equations -A Nonlinear Chemical Exchange Process . 178 10.4 Limitations of the Inspectional Group Method . 187 10.5 Summary . 188 REFERENCES . . . . 188 11 Miscellaneous Topics . 190 11.1 Reduction of Differential Equations to Algebraic Equations 190 11.2 Reduction of Order of an Ordinary Differential Equation . 191 11.3 Transformat.ion From Ordinary to Partial Differential Equations-Search for First Inte...

  18. Complementary Lidstone Interpolation and Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Ravi P. Agarwal

    2009-01-01

    Full Text Available We shall introduce and construct explicitly the complementary Lidstone interpolating polynomial P2m(t of degree 2m, which involves interpolating data at the odd-order derivatives. For P2m(t we will provide explicit representation of the error function, best possible error inequalities, best possible criterion for the convergence of complementary Lidstone series, and a quadrature formula with best possible error bound. Then, these results will be used to establish existence and uniqueness criteria, and the convergence of Picard's, approximate Picard's, quasilinearization, and approximate quasilinearization iterative methods for the complementary Lidstone boundary value problems which consist of a (2m+1th order differential equation and the complementary Lidstone boundary conditions.

  19. Spectral integration of linear boundary value problems

    CERN Document Server

    Viswanath, Divakar

    2012-01-01

    Spectral integration is a method for solving linear boundary value problems which uses the Chebyshev series representation of functions to avoid the numerical discretization of derivatives. It is occasionally attributed to Zebib (J. of Computational Physics vol. 53 (1984), p. 443-455) and more often to Greengard (SIAM J. on Numerical Analysis vol. 28 (1991), p. 1071-1080). Its advantage is believed to be its relative immunity to errors that arise when nearby grid points are used to approximate derivatives. In this paper, we reformulate the method of spectral integration by changing it in four different ways. The changes consist of a more convenient integral formulation, a different way to treat and interpret boundary conditions, treatment of higher order problems in factored form, and the use of piecewise Chebyshev grid points. Our formulation of spectral integration is more flexible and powerful as show by its ability to solve a problem that would otherwise take 8192 grid points using only 96 grid points. So...

  20. Mixed Boundary Value Problem on Hypersurfaces

    Directory of Open Access Journals (Sweden)

    R. DuDuchava

    2014-01-01

    Full Text Available The purpose of the present paper is to investigate the mixed Dirichlet-Neumann boundary value problems for the anisotropic Laplace-Beltrami equation divC(A∇Cφ=f on a smooth hypersurface C with the boundary Γ=∂C in Rn. A(x is an n×n bounded measurable positive definite matrix function. The boundary is decomposed into two nonintersecting connected parts Γ=ΓD∪ΓN and on ΓD the Dirichlet boundary conditions are prescribed, while on ΓN the Neumann conditions. The unique solvability of the mixed BVP is proved, based upon the Green formulae and Lax-Milgram Lemma. Further, the existence of the fundamental solution to divS(A∇S is proved, which is interpreted as the invertibility of this operator in the setting Hp,#s(S→Hp,#s-2(S, where Hp,#s(S is a subspace of the Bessel potential space and consists of functions with mean value zero.

  1. Spherical gravitational curvature boundary-value problem

    Science.gov (United States)

    Šprlák, Michal; Novák, Pavel

    2016-08-01

    Values of scalar, vector and second-order tensor parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, the gravitational curvature tensor is decomposed into six parts which are expanded in terms of third-order tensor spherical harmonics. Secondly, gravitational curvature boundary-value problems defined for four combinations of the gravitational curvatures are formulated and solved in spectral and spatial domains. Thirdly, properties of the corresponding sub-integral kernels are investigated. The presented mathematical formulations reveal some important properties of the gravitational curvatures and extend the so-called Meissl scheme, i.e., an important theoretical framework that relates various parameters of the Earth's gravitational field.

  2. Topological structures of boundary value problems in block elements

    Science.gov (United States)

    Babeshko, V. A.; Evdokimova, O. V.; Babeshko, O. M.

    2016-10-01

    Block structures are considered; a boundary value problem for a system of inhomogeneous partial differential equations with constant coefficients is formulated in each block of a structure. The problem of matching solutions to boundary value problems in blocks with each other by topological study of the properties of solutions in the block structure is examined in the conditions of correct solvability of boundary value problems in blocks of the block structure. Some new properties of solutions to boundary value problems in block structures are found that are important for applications.

  3. THIRD-ORDER NONLINEAR SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    王国灿; 金丽

    2002-01-01

    Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solutions method of third order nonlinear boundary value problems by making use of Volterra type integral operator was established.Specific upper and lower solutions were constructed, and existence and asymptotic estimates of solutions under suitable conditions were obtained.The result shows that it seems to be new to apply these techniques to solving these kinds of third order singularly perturbed boundary value problem. An example is given to demonstrate the applications.

  4. Two new algorithms for discrete boundary value problems

    Directory of Open Access Journals (Sweden)

    Ravi P. Agarwal

    1990-01-01

    Full Text Available We propose two new methods of constructing the solutions of linear multi-point discrete boundary value problems. These methods are applied to solve some continuous two-point boundary value problems which are known to be numerically unstable.

  5. A Kind of Boundary Value Problem for Hypermonogenic Function Vectors

    Institute of Scientific and Technical Information of China (English)

    He Ju YANG; Yong Hong XIE; Yu Ying QIAO

    2011-01-01

    By the Plemelj formula and the compressed fixed point theorem, this paper discusses a kind of boundary value problem for hypermonogenic function vectors in Clifford analysis. And the paper proves the existence and uniqueness of the solution to the boundary value problem for hypermonogenic function vectors in Clifford analysis.

  6. A boundary value problem for hypermonogenic functions in Clifford analysis

    Institute of Scientific and Technical Information of China (English)

    QIAO; Yuying

    2005-01-01

    This paper deals with a boundary value problem for hypermonogenic functions in Clifford analysis. Firstly we discuss integrals of quasi-Cauchy's type and get the Plemelj formula for hypermonogenic functions in Clifford analysis, and then we address Riemman boundary value problem for hypermonogenic functions.

  7. THE SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS FOR SEMILINEAR ELLIPTIC EQUATION

    Institute of Scientific and Technical Information of China (English)

    Mo Jiaqi; Yao Jingsun

    2001-01-01

    The singularly perturbed boundary value problems for the semilinear elliptic equation are considered.Under suitable conditions and by using the fixed point theorem,the existence,uniqueness and asymptotic behavior of solution for the boundary value problems are studied.

  8. Initial and boundary value problems for partial functional differential equations

    OpenAIRE

    Ntouyas , S. K.; P. Ch Tsamatos

    1997-01-01

    In this paper we study the existence of solutions to initial and boundary value problems of partial functional differential equations via a fixed-point analysis approach. Using the topological transversality theorem we derive conditions under which an initial or a boundary value problem has a solution.

  9. ON APPROXIMATE CALCULATIONS OF THE EIGENVALUES AND EIGENFUNCTIONS OF BOUNDARY VALUE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS,

    Science.gov (United States)

    BOUNDARY VALUE PROBLEMS, PARTIAL DIFFERENTIAL EQUATIONS ), (* PARTIAL DIFFERENTIAL EQUATIONS , BOUNDARY VALUE PROBLEMS), (*NUMERICAL ANALYSIS, BOUNDARY VALUE PROBLEMS), FUNCTIONS(MATHEMATICS), DIFFERENCE EQUATIONS

  10. Partial differential equations IX elliptic boundary value problems

    CERN Document Server

    Egorov, Yu; Shubin, M

    1997-01-01

    This EMS volume gives an overview of the modern theory of elliptic boundary value problems. The contribution by M.S. Agranovich is devoted to differential elliptic boundary problems, mainly in smooth bounded domains, and their spectral properties. This article continues his contribution to EMS 63. The contribution by A. Brenner and E. Shargorodsky concerns the theory of boundary value problems for elliptic pseudodifferential operators. Problems both with and without the transmission property, as well as parameter-dependent problems are considered. The article by B. Plamenevskij deals with general differential elliptic boundary value problems in domains with singularities.

  11. Pseudo almost periodic solutions to parabolic boundary value inverse problems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We first define the pseudo almost periodic functions in a more general setting.Then we show the existence,uniqueness and stability of pseudo almost periodic solutions of parabolic inverse problems for a type of boundary value problems.

  12. State-dependent impulses boundary value problems on compact interval

    CERN Document Server

    Rachůnková, Irena

    2015-01-01

    This book offers the reader a new approach to the solvability of boundary value problems with state-dependent impulses and provides recently obtained existence results for state dependent impulsive problems with general linear boundary conditions. It covers fixed-time impulsive boundary value problems both regular and singular and deals with higher order differential equations or with systems that are subject to general linear boundary conditions. We treat state-dependent impulsive boundary value problems, including a new approach giving effective conditions for the solvability of the Dirichlet problem with one state-dependent impulse condition and we show that the depicted approach can be extended to problems with a finite number of state-dependent impulses. We investigate the Sturm–Liouville boundary value problem for a more general right-hand side of a differential equation. Finally, we offer generalizations to higher order differential equations or differential systems subject to general linear boundary...

  13. Boundary Value Problems for Boussinesq Type Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fokas, A. S. [Cambridge University, Department of Applied Mathematics and Theoretical Physics (United Kingdom)], E-mail: t.fokas@damtp.cam.ac.uk; Pelloni, B. [University of Reading, Department of Mathematics (United Kingdom)], E-mail: b.pelloni@rdg.ac.uk

    2005-02-15

    We characterise the boundary conditions that yield a linearly well posed problem for the so-called KdV-KdV system and for the classical Boussinesq system. Each of them is a system of two evolution PDEs modelling two-way propagation of water waves. We study these problems with the spatial variable in either the half-line or in a finite interval. The results are obtained by extending a spectral transform approach, recently developed for the analysis of scalar evolution PDEs, to the case of systems of PDEs.The knowledge of the boundary conditions that should be imposed in order for the problem to be linearly well posed can be used to obtain an integral representation of the solution. This knowledge is also necessary in order to conduct numerical simulations for the fully nonlinear systems.

  14. BOUNDARY VALUE PROBLEM TO DYNAMIC EQUATION ON TIME SCALE

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper we consider a nonlinear first-order boundary value problem on a time scale. The existence results of three positive solutions are obtained using fixed point theorems. Finally,examples are presented to illustrate the main results.

  15. Positive Solutions for Higher Order Singular -Laplacian Boundary Value Problems

    Indian Academy of Sciences (India)

    Guoliang Shi; Junhong Zhang

    2008-05-01

    This paper investigates $2m-\\mathrm{th}(m≥ 2)$ order singular -Laplacian boundary value problems, and obtains the necessary and sufficient conditions for existence of positive solutions for sublinear 2-th order singular -Laplacian BVPs on closed interval.

  16. Reconsideration on Homogeneous Quadratic Riemann Boundary Value Problem

    Institute of Scientific and Technical Information of China (English)

    Lu Jian-ke

    2004-01-01

    The homogeneous quadratic Riemann boundary value problem (1) with Hǒlder continuous coefficients for the normal case was considered by the author in 1997. But the solutions obtained there are incomplete. Here its general method of solution is obtained.

  17. Existence results for anisotropic discrete boundary value problems

    Directory of Open Access Journals (Sweden)

    Avci Avci

    2016-06-01

    Full Text Available In this article, we prove the existence of nontrivial weak solutions for a class of discrete boundary value problems. The main tools used here are the variational principle and critical point theory.

  18. BOUNDARY VALUE PROBLEM FOR SECOND ORDER IMPULSIVE DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The author employs the method of upper and lower solutions together with the monotone iterative technique to obtain the existence theorem of minimal and maximal solutions for a boundary value problem of second order impulsive differential equation.

  19. Boundary value problems for partial differential equations with exponential dichotomies

    Science.gov (United States)

    Laederich, Stephane

    We are extending the notion of exponential dichotomies to partial differential evolution equations on the n-torus. This allows us to give some simple geometric criteria for the existence of solutions to certain nonlinear Dirichlet boundary value problems.

  20. Boundary value problems and Fourier expansions

    CERN Document Server

    MacCluer, Charles R

    2004-01-01

    Based on modern Sobolev methods, this text for advanced undergraduates and graduate students is highly physical in its orientation. It integrates numerical methods and symbolic manipulation into an elegant viewpoint that is consonant with implementation by digital computer. The first five sections form an informal introduction that develops students' physical and mathematical intuition. The following section introduces Hilbert space in its natural environment, and the next six sections pose and solve the standard problems. The final seven sections feature concise introductions to selected topi

  1. Boundary value problems and Markov processes

    CERN Document Server

    Taira, Kazuaki

    2009-01-01

    This volume is devoted to a thorough and accessible exposition on the functional analytic approach to the problem of construction of Markov processes with Ventcel' boundary conditions in probability theory. Analytically, a Markovian particle in a domain of Euclidean space is governed by an integro-differential operator, called a Waldenfels operator, in the interior of the domain, and it obeys a boundary condition, called the Ventcel' boundary condition, on the boundary of the domain. Probabilistically, a Markovian particle moves both by jumps and continuously in the state space and it obeys the Ventcel' boundary condition, which consists of six terms corresponding to the diffusion along the boundary, the absorption phenomenon, the reflection phenomenon, the sticking (or viscosity) phenomenon, the jump phenomenon on the boundary, and the inward jump phenomenon from the boundary. In particular, second-order elliptic differential operators are called diffusion operators and describe analytically strong Markov pr...

  2. Fast Integration of One-Dimensional Boundary Value Problems

    Science.gov (United States)

    Campos, Rafael G.; Ruiz, Rafael García

    2013-11-01

    Two-point nonlinear boundary value problems (BVPs) in both unbounded and bounded domains are solved in this paper using fast numerical antiderivatives and derivatives of functions of L2(-∞, ∞). This differintegral scheme uses a new algorithm to compute the Fourier transform. As examples we solve a fourth-order two-point boundary value problem (BVP) and compute the shape of the soliton solutions of a one-dimensional generalized Korteweg-de Vries (KdV) equation.

  3. QUASILINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS WITH DISCONTINUOUS NONLINEARITIES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper we shall consider a discontinuous nonlinear nonmonotone elliptic boundary value problem, i.e. a quasilinear elliptic hemivariational inequality. This kind of problems is strongly motivated by various problems in mechanics. By use of the notion of the generalized gradient of Clarke and the theory of pseudomonotone operators, we will prove the existence of solutions.

  4. Uniqueness and existence for bounded boundary value problems

    NARCIS (Netherlands)

    Ehme, J.; Lanz, A.

    2006-01-01

    The existence and uniqueness of solutions for the boundary value problems with general linear point evaluation boundary conditions is established. We assume that f is bounded and that there is uniqueness on a homogeneous problem and on the linear variational problems. (c) 2005 Elsevier Inc. All righ

  5. Positive solutions of three-point boundary value problems

    Institute of Scientific and Technical Information of China (English)

    MIAO Ye-hong; ZHANG Ji-hui

    2008-01-01

    In this paper,we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian.We then study existence of solutions when the problems are in resonance cases.The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.

  6. RIEMANN BOUNDARY VALUE PROBLEMS WITH GIVEN PRINCIPAL PART

    Institute of Scientific and Technical Information of China (English)

    Li Weifeng; Du Jinyuan

    2009-01-01

    In this article, the authors discuss the Riemann boundary value problems with given principal part. First, authors consider a special case and give a classification of the solution class Rn by the way. And then, they consider the general case. The solvable conditions for this problem and its solutions is obtained when it is solvable.

  7. Nonlinear boundary value problem for biregular functions in Clifford analysis

    Institute of Scientific and Technical Information of China (English)

    黄沙

    1996-01-01

    The biregular function in Clifford analysis is discussed. Plemelj’s formula is obtained andnonlinear boundary value problem: is considered. Applying the methodof integral equations and Schauder fixed-point theorem, the existence of solution for the above problem is proved.

  8. Free Boundary Value Problems for Abstract Elliptic Equations and Applications

    Institute of Scientific and Technical Information of China (English)

    Veli SHAKHMUROV

    2011-01-01

    The free boundary value problems for elliptic differential-operator equations are studied.Several conditions for the uniform maximal regularity with respect to boundary parameters and the Fredholmness in abstract Lp-spaces are given.In application,the nonlocal free boundary problems for finite or infinite systems of elliptic and anisotropic type equations are studied.

  9. Solvability for fractional order boundary value problems at resonance

    Directory of Open Access Journals (Sweden)

    Hu Zhigang

    2011-01-01

    Full Text Available Abstract In this paper, by using the coincidence degree theory, we consider the following boundary value problem for fractional differential equation D 0 + α x ( t = f ( t , x ( t , x ′ ( t , x ″ ( t , t ∈ [ 0 , 1 ] , x ( 0 = x ( 1 , x ′ ( 0 = x ″ ( 0 = 0 , where D 0 + α denotes the Caputo fractional differential operator of order α, 2 < α ≤ 3. A new result on the existence of solutions for above fractional boundary value problem is obtained. Mathematics Subject Classification (2000: 34A08, 34B15.

  10. Solvability for fractional order boundary value problems at resonance

    OpenAIRE

    Hu Zhigang; Liu Wenbin

    2011-01-01

    Abstract In this paper, by using the coincidence degree theory, we consider the following boundary value problem for fractional differential equation D 0 + α x ( t ) = f ( t , x ( t ) , x ′ ( t ) , x ″ ( t ) ) , t ∈ [ 0 , 1 ] , x ( 0 ) = x ( 1 ) , x ′ ( 0 ) = x ″ ( 0 ) = 0 , where D 0 + α denotes the Caputo fractional differential o...

  11. MULTIPLE SOLUTIONS TO AN ASYMPTOTICALLY LINEAR ROBIN BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Under some weaker conditions,we prove the existence of at least two solutions to an asymptotically linear elliptic problem with Robin boundary value condition,using truncation arguments.Our results are also valid for the case of the so-called resonance at infinity.

  12. Non-Homogeneous Riemann Boundary Value Problem with Radicals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The solution of the non-homogeneous Riemann boundary value problem with radicals (1.2)together with its condition of solvability is obtained for arbitrary positive integers p and q, which generalizes the results for the case p=q=2.

  13. Fourth-order discrete anisotropic boundary-value problems

    Directory of Open Access Journals (Sweden)

    Maciej Leszczynski

    2015-09-01

    Full Text Available In this article we consider the fourth-order discrete anisotropic boundary value problem with both advance and retardation. We apply the direct method of the calculus of variations and the mountain pass technique to prove the existence of at least one and at least two solutions. Non-existence of non-trivial solutions is also undertaken.

  14. Robust Monotone Iterates for Nonlinear Singularly Perturbed Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Boglaev Igor

    2009-01-01

    Full Text Available This paper is concerned with solving nonlinear singularly perturbed boundary value problems. Robust monotone iterates for solving nonlinear difference scheme are constructed. Uniform convergence of the monotone methods is investigated, and convergence rates are estimated. Numerical experiments complement the theoretical results.

  15. INITIAL BOUNDARY VALUE PROBLEM FOR A DAMPED NONLINEAR HYPERBOLIC EQUATION

    Institute of Scientific and Technical Information of China (English)

    陈国旺

    2003-01-01

    In the paper, the existence and uniqueness of the generalized global solution and the classical global solution of the initial boundary value problems for the nonlinear hyperbolic equationare proved by Galerkin method and the sufficient conditions of blow-up of solution in finite time are given.

  16. Fourth-order discrete anisotropic boundary-value problems

    OpenAIRE

    2015-01-01

    In this article we consider the fourth-order discrete anisotropic boundary value problem with both advance and retardation. We apply the direct method of the calculus of variations and the mountain pass technique to prove the existence of at least one and at least two solutions. Non-existence of non-trivial solutions is also undertaken.

  17. POSITIVE SOLUTIONS TO FOURTH-ORDER NEUMANN BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, we study a class of fourth-order Neumann boundary value problem (NBVP for short). By virtue of fixed point index and the spectral theory of linear operators, the existence of positive solutions is obtained under the assumption that the nonlinearity satisfies sublinear or superlinear conditions, which are relevant to the first eigenvalue of the corresponding linear operator.

  18. A boundary value problem for the wave equation

    Directory of Open Access Journals (Sweden)

    Nezam Iraniparast

    1999-01-01

    Full Text Available Traditionally, boundary value problems have been studied for elliptic differential equations. The mathematical systems described in these cases turn out to be “well posed”. However, it is also important, both mathematically and physically, to investigate the question of boundary value problems for hyperbolic partial differential equations. In this regard, prescribing data along characteristics as formulated by Kalmenov [5] is of special interest. The most recent works in this area have resulted in a number of interesting discoveries [3, 4, 5, 7, 8]. Our aim here is to extend some of these results to a more general domain which includes the characteristics of the underlying wave equation as a part of its boundary.

  19. Eigenvalues of boundary value problems for higher order differential equations

    OpenAIRE

    Patricia J. Y. Wong; Agarwal, Ravi P.

    1996-01-01

    We shall consider the boundary value problem y ( n ) + λ Q ( t , y , y 1 , ⋅ ⋅ ⋅ , y ( n − 2 ) ) = λ P ( t , y , y 1 , ⋅ ⋅ ⋅ , y ( n − 1 ) ) , n ≥ 2 , t ∈ ( 0 , 1 ) , y ( i ) ( 0 ) = 0 , 0 ≤ i ≤ n − 3 , α y ( n − 2 ) ( 0 ) − β y ( n − 1 ) ( 0 ) = 0 , γ y ( n − 2 ) ( 1 ) + δ y ( n...

  20. A NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEM FOR THE HEAT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    YANJINHAI

    1996-01-01

    The existenoe and limit hehaviour of the solution for a kind of nonloeal noulinear boundary value condition on a part of the boundary is studied for the heat equation, which physicallymeans that the potential is the function of the total flux. When this part of boundary shrinks to a point in a certain way, this condition either results in a Dirac measure or simply disappears in the corresponding problem.

  1. Positive solutions and eigenvalues of nonlocal boundary-value problems

    Directory of Open Access Journals (Sweden)

    Jifeng Chu

    2005-07-01

    Full Text Available We study the ordinary differential equation $x''+lambda a(tf(x=0$ with the boundary conditions $x(0=0$ and $x'(1=int_{eta}^{1}x'(sdg(s$. We characterize values of $lambda$ for which boundary-value problem has a positive solution. Also we find appropriate intervals for $lambda$ so that there are two positive solutions.

  2. Noncontinuous data boundary value problems for Schr(o)dinger equation in Lipschitz domains

    Institute of Scientific and Technical Information of China (English)

    TAO Xiangxing

    2006-01-01

    The noncontinuous data boundary value problems for Schr(o)dinger equations in Lipschitz domains and its progress are pointed out in this paper.Particularly,the Lp boundary value problems with p>1,and Hp boundary value problems with p<1 have been studied.Some open problems about the Besov-Sobolev and Orlicz boundary value problems are given.

  3. Nonlinear Second-Order Multivalued Boundary Value Problems

    Indian Academy of Sciences (India)

    Leszek Gasiński; Nikolaos S Papageorgiou

    2003-08-01

    In this paper we study nonlinear second-order differential inclusions involving the ordinary vector -Laplacian, a multivalued maximal monotone operator and nonlinear multivalued boundary conditions. Our framework is general and unifying and incorporates gradient systems, evolutionary variational inequalities and the classical boundary value problems, namely the Dirichlet, the Neumann and the periodic problems. Using notions and techniques from the nonlinear operatory theory and from multivalued analysis, we obtain solutions for both the `convex' and `nonconvex' problems. Finally, we present the cases of special interest, which fit into our framework, illustrating the generality of our results.

  4. Numerical solution of fuzzy boundary value problems using Galerkin method

    Indian Academy of Sciences (India)

    SMITA TAPASWINI; S CHAKRAVERTY; JUAN J NIETO

    2017-01-01

    This paper proposes a new technique based on Galerkin method for solving nth order fuzzy boundary value problem. The proposed method has been illustrated by considering three different cases depending upon the sign of coefficients with benchmark example problems. To show the applicability of the proposed method, an application problem related to heat conduction has also been studied. The results obtained by the proposed methods are compared with the exact solution and other existing methods for demonstrating the validity and efficiency of the present method.

  5. Numerical Methods and the Solution of Boundary Value Problems.

    Science.gov (United States)

    1979-12-01

    York: The Macmillan Company, 1967. 6. Arfken G. Mathematical Methods for Physicists. New York: Academic Press, 1966. 7. Crandall, S.H. -Engineering...one and two-dimensions. 118 Bibliography 1. Hildebrand, F.B. Methods of Applied Mathematics . New York: Prentice-Hall, Inc., 1952. 2. Hajdin, J. and D...ANUO 1 MERICAL METHODS AND THE SOLUTION OF BOUNDARY VALUE PROBLEMS. (Li weC 79 6 N NELSON UMCLmsZPI I FlTI#WIpwfl-? ii. II.1Ilh Ŗ" MEN Iiii/ I~v I

  6. On Systems of Boundary Value Problems for Differential Inclusions

    Institute of Scientific and Technical Information of China (English)

    Lynn ERBE; Christopher C. TISDELL; Patricia J. Y. WONG

    2007-01-01

    Herein we consider the existence of solutions to second-order,two-point boundary value problems (BVPs) for systems of ordinary differential inclusions.Some new Bernstein –Nagumo condi-tions are presented that ensure a priori on the derivative of solutions to the differential inclusion.These a priori results are then applied,in conjunction with appropriate topological methods,to prove some new existence theorems for solutions to systems of BVPs for differential inclusions.The new conditions allow of the treatment of systems of BVPs without growth restrictions.

  7. Fractional Extensions of some Boundary Value Problems in Oil Strata

    Indian Academy of Sciences (India)

    Mridula Garg; Alka Rao

    2007-05-01

    In the present paper, we solve three boundary value problems related to the temperature field in oil strata - the fractional extensions of the incomplete lumped formulation and lumped formulation in the linear case and the fractional generalization of the incomplete lumped formulation in the radial case. By using the Caputo differintegral operator and the Laplace transform, the solutions are obtained in integral forms where the integrand is expressed in terms of the convolution of some auxiliary functions of Wright function type. A generalization of the Laplace transform convolution theorem, known as Efros’ theorem is widely used.

  8. Chebyshev Finite Difference Method for Fractional Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Boundary

    2015-09-01

    Full Text Available This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivatives are described in the Caputo sense. Numerical results show that this method is of high accuracy and is more convenient and efficient for solving boundary value problems involving fractional ordinary differential equations. AMS Subject Classification: 34A08 Keywords and Phrases: Chebyshev polynomials, Gauss-Lobatto points, fractional differential equation, finite difference 1. Introduction The idea of a derivative which interpolates between the familiar integer order derivatives was introduced many years ago and has gained increasing importance only in recent years due to the development of mathematical models of a certain situations in engineering, materials science, control theory, polymer modelling etc. For example see [20, 22, 25, 26]. Most fractional order differential equations describing real life situations, in general do not have exact analytical solutions. Several numerical and approximate analytical methods for ordinary differential equation Received: December 2014; Accepted: March 2015 57 Journal of Mathematical Extension Vol. 9, No. 3, (2015, 57-71 ISSN: 1735-8299 URL: http://www.ijmex.com Chebyshev Finite Difference Method for Fractional Boundary Value Problems H. Azizi Taft Branch, Islamic Azad University Abstract. This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivative

  9. Partial differential equations & boundary value problems with Maple

    CERN Document Server

    Articolo, George A

    2009-01-01

    Partial Differential Equations and Boundary Value Problems with Maple presents all of the material normally covered in a standard course on partial differential equations, while focusing on the natural union between this material and the powerful computational software, Maple. The Maple commands are so intuitive and easy to learn, students can learn what they need to know about the software in a matter of hours- an investment that provides substantial returns. Maple''s animation capabilities allow students and practitioners to see real-time displays of the solutions of partial differential equations.  Maple files can be found on the books website. Ancillary list: Maple files- http://www.elsevierdirect.com/companion.jsp?ISBN=9780123747327  Provides a quick overview of the software w/simple commands needed to get startedIncludes review material on linear algebra and Ordinary Differential equations, and their contribution in solving partial differential equationsIncorporates an early introduction to Sturm-L...

  10. Green's function solution to spherical gradiometric boundary-value problems

    Science.gov (United States)

    Martinec, Z.

    2003-05-01

    Three independent gradiometric boundary-value problems (BVPs) with three types of gradiometric data, {orr}, {or/,or5} and {o//mo55,o/5}, prescribed on a sphere are solved to determine the gravitational potential on and outside the sphere. The existence and uniqueness conditions on the solutions are formulated showing that the zero- and the first-degree spherical harmonics are to be removed from {or/,or5} and {o//mo55,o/5}, respectively. The solutions to the gradiometric BVPs are presented in terms of Green's functions, which are expressed in both spectral and closed spatial forms. The logarithmic singularity of the Green's function at the point `=0 is investigated for the component orr. The other two Green's functions are finite at this point. Comparisons to the paper by van Gelderen and Rummel [Journal of Geodesy (2001) 75: 1-11] show that the presented solution refines the former solution.

  11. THREE POINT BOUNDARY VALUE PROBLEMS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Mujeeb ur Rehman; Rahmat Ali Khan; Naseer Ahmad Asif

    2011-01-01

    In this paper,we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type cDδ0+u(t) =f(t,u(t),cDσ0+u(t)),t ∈[0,T],u(0) =αu(η),u(T) =βu(η),where1 <δ<2,0<σ< 1,α,β∈R,η∈(0,T),αη(1-β)+(1-α)(T-βη) ≠0 and cDoδ+,cDσ0+ are the Caputo fractional derivatives.We use Schauder fixed point theorem and contraction mapping principle to obtain existence and uniqueness results.Examples are also included to show the applicability of our results.

  12. An Adaptive Pseudospectral Method for Fractional Order Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Mohammad Maleki

    2012-01-01

    Full Text Available An adaptive pseudospectral method is presented for solving a class of multiterm fractional boundary value problems (FBVP which involve Caputo-type fractional derivatives. The multiterm FBVP is first converted into a singular Volterra integrodifferential equation (SVIDE. By dividing the interval of the problem to subintervals, the unknown function is approximated using a piecewise interpolation polynomial with unknown coefficients which is based on shifted Legendre-Gauss (ShLG collocation points. Then the problem is reduced to a system of algebraic equations, thus greatly simplifying the problem. Further, some additional conditions are considered to maintain the continuity of the approximate solution and its derivatives at the interface of subintervals. In order to convert the singular integrals of SVIDE into nonsingular ones, integration by parts is utilized. In the method developed in this paper, the accuracy can be improved either by increasing the number of subintervals or by increasing the degree of the polynomial on each subinterval. Using several examples including Bagley-Torvik equation the proposed method is shown to be efficient and accurate.

  13. The Nonlinear Predator-Prey Singularly Perturbed Robin Initial Boundary Value Problems for Reaction Diffusion System

    Institute of Scientific and Technical Information of China (English)

    莫嘉琪

    2003-01-01

    The nonlinear predator-prey singularly perturbed Robin initial boundary value problems for reaction diffusion systems were considered. Under suitable conditions, using theory of differential inequalities the existence and asymptotic behavior of solution for initial boundary value problems were studied.

  14. A Priori Estimates for Solutions of Boundary Value Problems for Fractional-Order Equations

    CERN Document Server

    Alikhanov, A A

    2011-01-01

    We consider boundary value problems of the first and third kind for the diffusionwave equation. By using the method of energy inequalities, we find a priori estimates for the solutions of these boundary value problems.

  15. A CLASS OF SINGULARLY PERTURBED ROBIN BOUNDARY VALUE PROBLEMS FOR SEMILINEAR ELLIPTIC EQUATION

    Institute of Scientific and Technical Information of China (English)

    MoJiaqi

    2001-01-01

    The singularly perturbed Robin boundary value problems for the semilinear elliptic equation are considered. Under suitable conditions and by using the fixed point theorem the existence ,uniqueness and asymptotic behavior of solution for the boundary value problems are studied.

  16. The boundary value problem for discrete analytic functions

    KAUST Repository

    Skopenkov, Mikhail

    2013-06-01

    This paper is on further development of discrete complex analysis introduced by R.Isaacs, J.Ferrand, R.Duffin, and C.Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete analytic, if for each face the difference quotients along the two diagonals are equal.We prove that the Dirichlet boundary value problem for the real part of a discrete analytic function has a unique solution. In the case when each face has orthogonal diagonals we prove that this solution uniformly converges to a harmonic function in the scaling limit. This solves a problem of S.Smirnov from 2010. This was proved earlier by R.Courant-K.Friedrichs-H.Lewy and L.Lusternik for square lattices, by D.Chelkak-S.Smirnov and implicitly by P.G.Ciarlet-P.-A.Raviart for rhombic lattices.In particular, our result implies uniform convergence of the finite element method on Delaunay triangulations. This solves a problem of A.Bobenko from 2011. The methodology is based on energy estimates inspired by alternating-current network theory. © 2013 Elsevier Ltd.

  17. Chebyshev-Fourier Spectral Methods for Nonperiodic Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Bojan Orel

    2014-01-01

    Full Text Available A new class of spectral methods for solving two-point boundary value problems for linear ordinary differential equations is presented in the paper. Although these methods are based on trigonometric functions, they can be used for solving periodic as well as nonperiodic problems. Instead of using basis functions periodic on a given interval −1,1, we use functions periodic on a wider interval. The numerical solution of the given problem is sought in terms of the half-range Chebyshev-Fourier (HCF series, a reorganization of the classical Fourier series using half-range Chebyshev polynomials of the first and second kind which were first introduced by Huybrechs (2010 and further analyzed by Orel and Perne (2012. The numerical solution is constructed as a HCF series via differentiation and multiplication matrices. Moreover, the construction of the method, error analysis, convergence results, and some numerical examples are presented in the paper. The decay of the maximal absolute error according to the truncation number N for the new class of Chebyshev-Fourier-collocation (CFC methods is compared to the decay of the error for the standard class of Chebyshev-collocation (CC methods.

  18. Dirichlet-Neumann bracketing for boundary-value problems on graphs

    Directory of Open Access Journals (Sweden)

    Sonja Currie

    2005-08-01

    Full Text Available We consider the spectral structure of second order boundary-value problems on graphs. A variational formulation for boundary-value problems on graphs is given. As a consequence we can formulate an analogue of Dirichlet-Neumann bracketing for boundary-value problems on graphs. This in turn gives rise to eigenvalue and eigenfunction asymptotic approximations.

  19. Boundary-Value Problems for Weakly Nonlinear Delay Differential Systems

    Directory of Open Access Journals (Sweden)

    A. Boichuk

    2011-01-01

    Full Text Available Conditions are derived of the existence of solutions of nonlinear boundary-value problems for systems of n ordinary differential equations with constant coefficients and single delay (in the linear part and with a finite number of measurable delays of argument in nonlinearity: ż(t=Az(t-τ+g(t+εZ(z(hi(t,t,ε,  t∈[a,b], assuming that these solutions satisfy the initial and boundary conditions z(s:=ψ(s if s∉[a,b],  lz(⋅=α∈Rm. The use of a delayed matrix exponential and a method of pseudoinverse by Moore-Penrose matrices led to an explicit and analytical form of sufficient conditions for the existence of solutions in a given space and, moreover, to the construction of an iterative process for finding the solutions of such problems in a general case when the number of boundary conditions (defined by a linear vector functional l does not coincide with the number of unknowns in the differential system with a single delay.

  20. Finite element method for solving geodetic boundary value problems

    Science.gov (United States)

    Fašková, Zuzana; Čunderlík, Róbert; Mikula, Karol

    2010-02-01

    The goal of this paper is to present the finite element scheme for solving the Earth potential problems in 3D domains above the Earth surface. To that goal we formulate the boundary-value problem (BVP) consisting of the Laplace equation outside the Earth accompanied by the Neumann as well as the Dirichlet boundary conditions (BC). The 3D computational domain consists of the bottom boundary in the form of a spherical approximation or real triangulation of the Earth’s surface on which surface gravity disturbances are given. We introduce additional upper (spherical) and side (planar and conical) boundaries where the Dirichlet BC is given. Solution of such elliptic BVP is understood in a weak sense, it always exists and is unique and can be efficiently found by the finite element method (FEM). We briefly present derivation of FEM for such type of problems including main discretization ideas. This method leads to a solution of the sparse symmetric linear systems which give the Earth’s potential solution in every discrete node of the 3D computational domain. In this point our method differs from other numerical approaches, e.g. boundary element method (BEM) where the potential is sought on a hypersurface only. We apply and test FEM in various situations. First, we compare the FEM solution with the known exact solution in case of homogeneous sphere. Then, we solve the geodetic BVP in continental scale using the DNSC08 data. We compare the results with the EGM2008 geopotential model. Finally, we study the precision of our solution by the GPS/levelling test in Slovakia where we use terrestrial gravimetric measurements as input data. All tests show qualitative and quantitative agreement with the given solutions.

  1. Introduction to Mathematical Physics. Calculus of Variations and Boundary-value Problems

    OpenAIRE

    Adamyan, V. M.; Sushko, M. Ya.

    2013-01-01

    This book considers posing and the methods of solving simple linear boundary-value problems in classical mathematical physics. The questions encompassed include: the fundamentals of calculus of variations; one-dimensional boundary-value problems in the oscillation and heat conduction theories, with a detailed analysis of the Sturm-Liouville boundary-value problem and substantiation of the Fourier method; sample solutions of the corresponding problems in two and three dimensions, with essentia...

  2. Existence of Positive Solutions for Higher Order Boundary Value Problem on Time Scales

    Institute of Scientific and Technical Information of China (English)

    XIE DA-PENG; LIU YANG; SUN MING-ZHE; Li Yong

    2013-01-01

    In this paper,we investigate the existence of positive solutions of a class higher order boundary value problems on time scales.The class of boundary value problems educes a four-point (or three-point or two-point) boundary value problems,for which some similar results are established.Our approach relies on the Krasnosel'skii fixed point theorem.The result of this paper is new and extends previously known results.

  3. The RH boundary value problem of the k-monogenic functions

    Science.gov (United States)

    Bu, Yude; Du, Jinyuan

    2008-11-01

    In this paper we study the Riemann and Hilbert problems of k-monogenic functions. By using Euler operator, we transform the boundary value problem of k-monogenic functions into the boundary value problems of monogenic functions. Then by the Almansi-type theorem of k-monogenic functions, we get the solutions of these problems.

  4. Parallel implementation of domain decomposition methods for the solution of elliptic boundary-value problems

    Energy Technology Data Exchange (ETDEWEB)

    Gazzaniga, G.; Sacchi, G. [Istituto di Analisi Numerica, Pavia (Italy)

    1995-12-01

    Different Domain Decomposition techniques for the solution of elliptic boundary-value problems are considered. The results of the implementation on a parallel distributed memory architecture are discussed.

  5. Robin Boundary Value Problem for One-Dimensional Landau-Lifshitz Equations

    Institute of Scientific and Technical Information of China (English)

    Shi Jin DING; Jin Rui HUANG; Xiao E LIU

    2012-01-01

    In this paper,we are concerned with the existence and uniqueness of global smooth solution for the Robin boundary value problem of Landau-Lifshitz equations in one dimension when the boundary value depends on time t.Furthermore,by viscosity vanishing approach,we get the existence and uniqueness of the problem without Gilbert damping term when the boundary value is independent of t.

  6. Higher order non-local (n-1,1) conjugate type boundary value problems

    Science.gov (United States)

    Webb, J. R. L.

    2009-05-01

    We show how some recent work of Webb and Infante, which gave a unified method of tackling many nonlocal boundary value problems, can be applied to some higher order boundary value problems with more general nonlocal boundary conditions than previously studied. This improves some recent work on problems with conjugate type boundary conditions.

  7. Existence of Solutions for Nonlinear Four-Point -Laplacian Boundary Value Problems on Time Scales

    Directory of Open Access Journals (Sweden)

    Topal SGulsan

    2009-01-01

    Full Text Available We are concerned with proving the existence of positive solutions of a nonlinear second-order four-point boundary value problem with a -Laplacian operator on time scales. The proofs are based on the fixed point theorems concerning cones in a Banach space. Existence result for -Laplacian boundary value problem is also given by the monotone method.

  8. Initial and Boundary Value Problems for Two-Dimensional Non-hydrostatic Boussinesq Equations

    Institute of Scientific and Technical Information of China (English)

    沈春; 孙梅娜

    2005-01-01

    Based on the theory of stratification, the weU-posedness of the initial and boundary value problems for the system of twodimensional non-hydrostatic Boussinesq equations was discussed. The sufficient and necessary conditions of the existence and uniqueness for the solution of the equations were given for some representative initial and boundary value problems. Several special cases were discussed.

  9. EXISTENCE AND NONEXISTENCE OF POSITIVE SOLUTIONS TO A THREE-POINT BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper, we are concerned with the existence and nonexistence of positive solutions to a three-point boundary value problems. By Krasnoselskii's fixed point theorem in Banach space, we obtain sufficient conditions for the existence and non-existence of positive solutions to the above three-point boundary value problems.

  10. m-POINT BOUNDARY VALUE PROBLEM FOR SECOND ORDER IMPULSIVE DIFFERENTIAL EQUATION AT RESONANCE

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In his paper,we obtain a general theorem concerning the existence of solutions to an m-point boundary value problem for the second-order differential equation with impulses.Moreover,the result can also be applied to study the usual m-point boundary value problem at resonance without impulses.

  11. NUMERICAL SOLUTIONS OF DISCONTINUOUS BOUNDARY VALUE PROBLEMS FOR GENERAL ELLIPTIC COMPLEX EQUATIONS OF FIRST ORDER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper,authors discuss the numerical methods of general discontinuous boundary value problems for elliptic complex equations of first order.They first give the well posedness of general discontinuous boundary value problems,reduce the discontinuousboundary value problems to a variation problem,and then find the numerical solutions ofabove problem by the finite element method.Finally authors give some error-estimates of the foregoing numerical solutions.

  12. Global Weak Solutions of Initial Boundary Value Problem for Boltzmann-Poisson System with Absorbing Boundary

    Institute of Scientific and Technical Information of China (English)

    崔国忠; 张志平; 等

    2002-01-01

    This paper deals with the initial boundary value value problem for the Boltzmann-Poisson system ,which arises in semiconductor physics,with absorbing boundary.The global existence of weak solutions is proved by using the stability of velocity averages and the compactness results on L1-theory under weaker conditons on initial boundary values.

  13. THE SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS FOR SEMILINEAR ELLIPTIC EQUATION OF HIGHER ORDER

    Institute of Scientific and Technical Information of China (English)

    Chen Songlin; Mo Jiaqi

    2000-01-01

    The singularly perturbed boundary value problems for the semilinear elliptic equation of higher order are considered. Under suitable conditions and by using the fixed point theoren the existence, uniqueness and asymp totic behavior of solution for the boundary value tproblems are studied.

  14. The Nonlinear Singularly Perturbed Initial Boundary Value Problems of Nonlocal Reaction Diffusion Systems

    Institute of Scientific and Technical Information of China (English)

    Jia-qi Mo; Wan-tao Lin

    2006-01-01

    In this paper the singularly perturbed initial boundary value problems for the nonlocal reaction diffusion system are considered. Using the iteration method and the comparison theorem, the existence and its asymptotic behavior of the solution for the problem are studied.

  15. MULTIPLE POSITIVE SOLUTIONS TO SOME SECOND-ORDER m-POINT BOUNDARY VALUE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Shen Chunfang

    2009-01-01

    Multiplicity of positive solutions to some second order m-point boundary value problems are considered. By fixed-point theorems in a cone, some new results are obtained. The associated Green's function of these problems are also given.

  16. POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEM FOR A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    LiHongyu; SunJingxian

    2005-01-01

    By using topological method, we study a class of boundary value problem for a system of nonlinear ordinary differential equations. Under suitable conditions,we prove the existence of positive solution of the problem.

  17. Boundary value problems on the half line in the theory of colloids

    Directory of Open Access Journals (Sweden)

    Ravi P. Agarwal

    2002-01-01

    Full Text Available We present existence results for some boundary value problems defined on infinite intervals. In particular our discussion includes a problem which arises in the theory of colloids.

  18. A Boundary Value Problem for Hermitian Monogenic Functions

    Directory of Open Access Journals (Sweden)

    Reyes JuanBory

    2008-01-01

    Full Text Available Abstract We study the problem of finding a Hermitian monogenic function with a given jump on a given hypersurface in . Necessary and sufficient conditions for the solvability of this problem are obtained.

  19. Variation-difference method for solving boundary value problems for linear elliptic complex equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper deals with boundary value problems for linear uniformly elliptic systems. First the general linear uniformly elliptic system of the first order equations is reduced to complex form, and then the compound boundary value problem for the complex equations of the first order is discussed. The approximate solutions of the boundary value problem are found by the variation-difference method, and the error estimates for the approximate solutions are derived.Finally the approximate method of the oblique derivative problem for linear uniformly elliptic equations of the second or der is introduced.

  20. Electromagnetic wave theory for boundary-value problems an advanced course on analytical methods

    CERN Document Server

    Eom, Hyo J

    2004-01-01

    Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.

  1. Existence of solutions to boundary value problem of fractional differential equations with impulsive

    Directory of Open Access Journals (Sweden)

    Weihua JIANG

    2016-12-01

    Full Text Available In order to solve the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line, the existence of solutions to the boundary problem is specifically studied. By defining suitable Banach spaces, norms and operators, using the properties of fractional calculus and applying the contraction mapping principle and Krasnoselskii's fixed point theorem, the existence of solutions for the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line is proved, and examples are given to illustrate the existence of solutions to this kind of equation boundary value problems.

  2. PERIODIC BOUNDARY VALUE PROBLEM AND CAUCHY PROBLEM OF THE GENERALIZED CUBIC DOUBLE DISPERSION EQUATION

    Institute of Scientific and Technical Information of China (English)

    Chen Guowang; Xue Hongxia

    2008-01-01

    In this article, the existence, uniqueness and regularities of the global gener-alized solution and global classical solution for the periodic boundary value problem and the Cauchy problem of the general cubic double dispersion equation utt -uxx-auxxtt+bux4 - duxxt= f(u)xx are proved, and the sufficient conditions of blow-up of the solutions for the Cauchy problems in finite time are given.

  3. Laplace Boundary-Value Problem in Paraboloidal Coordinates

    Science.gov (United States)

    Duggen, L.; Willatzen, M.; Voon, L. C. Lew Yan

    2012-01-01

    This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a…

  4. A Boundary Value Problem for Hermitian Monogenic Functions

    Directory of Open Access Journals (Sweden)

    Ricardo Abreu Blaya

    2008-02-01

    Full Text Available We study the problem of finding a Hermitian monogenic function with a given jump on a given hypersurface in ℝm, m=2n. Necessary and sufficient conditions for the solvability of this problem are obtained.

  5. SINGULARLY PERTURBED NONLINEAR BOUNDARY VALUE PROBLEM FOR A KIND OF VOLTERRA TYPE FUNCTIONAL DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    鲁世平

    2003-01-01

    By employing the theory of differential inequality and some analysis methods, a nonlinear boundary value problem subject to a general kind of second-order Volterra functional differential equation was considered first. Then, by constructing the right-side layer function and the outer solution, a nonlinear boundary value problem subject to a kind of second- order Volterra functional differential equation with a small parameter was studied further. By using the differential mean value theorem and the technique of upper and lower solution, a new result on the existence of the solutions to the boundary value problem is obtained, and a uniformly valid asymptotic expansions of the solution is given as well.

  6. The Boundary Value Problem for Elliptic Equation in the Corner Domain

    CERN Document Server

    Zhidkov, E P

    2000-01-01

    This work is devoted to the studies of the solution behavior of the boundary value problem for a nonlinear elliptic equation in the corner domain. The formulation of the boundary value problem arises in magnitostatics when finding the magnetic field distribution by the method of two scalar potentials in the domain comprising ferromagnetic and vacuum. The problem nonlinearity is stipulated by the dependence of the medium properties (magnetic permeability) on the solution to be found. In connection with that the solution of such a problem has to be found by numerical methods, a question arises about the behavior of the boundary value problem solution around the angular point of the ferromagnetic. This work shows that if the magnetic permeability function meets certain requirments, the corresponding solution of the boundary value problem will have a limited gradient.

  7. Unbounded Periodic Solutions to Serrin's Overdetermined Boundary Value Problem

    Science.gov (United States)

    Fall, Mouhamed Moustapha; Minlend, Ignace Aristide; Weth, Tobias

    2017-02-01

    We study the existence of nontrivial unbounded domains {Ω} in RN such that the overdetermined problem {-Δ u = 1 quad in Ω}, quad u = 0, quad partial_{ν} u = const quad on partial Ω admits a solution u. By this, we complement Serrin's classification result from 1971, which yields that every bounded domain admitting a solution of the above problem is a ball in RN. The domains we construct are periodic in some variables and radial in the other variables, and they bifurcate from a straight (generalized) cylinder or slab. We also show that these domains are uniquely self Cheeger relative to a period cell for the problem.

  8. Contrast structure for singular singularly perturbed boundary value problem

    Institute of Scientific and Technical Information of China (English)

    王爱峰; 倪明康

    2014-01-01

    The step-type contrast structure for a singular singularly perturbed problem is shown. By use of the method of boundary function, the formal asymptotic expansion is constructed. At the same time, based on sewing orbit smooth, the existence of the step-type solution and the uniform validity of the asymptotic expansion are proved. Finally, an example is given to demonstrate the effectiveness of the present results.

  9. EXISTENCE FOR SECOND-ORDER FOUR-POINT BOUNDARY VALUE PROBLEM AT RESONANCE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper is concerned with the existence of solutions for a second-order four-point boundary value problem at resonance. The main methods depend on the technique of the upper and lower solutions and the coincidence degree theory.

  10. EXISTENCE OF TRIPLE POSITIVE SOLUTIONS TO A MULTI-POINT BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    We apply a fixed point theorem to verify the existence of at least three positive solutions to a multi-point boundary value problem with p-Laplacian. Existence criteria which ensure the existence of triple positive solutions are established.

  11. SOLVABILITY FOR FRACTIONAL-ORDER TWO-POINT BOUNDARY VALUE PROBLEM AT RESONANCE

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper, we are concerned with the existence of solution to a boundary value problem of nonlinear fractional differential equation at resonance. By means of the coincidence degree theory, the existence of solution is obtained.

  12. INITIAL-BOUNDARY VALUE PROBLEM FOR THE LANDAU-LIFSHITZ SYSTEM WITH APPLIED FIELD

    Institute of Scientific and Technical Information of China (English)

    Guo Boling; Ding Shijin

    2000-01-01

    In this paper, the existence and partial regularity of weak solution to the initial-boundary value problem of Landau-Lifshitz equations with applied fields in a 2D bounded domain are obtained by the penalty method.

  13. EXISTENCE AND ITERATION OF POSITIVE SYMMETRIC SOLUTIONS TO A MULTI-POINT BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,we consider the existence of symmetric solutions to a nonlinear second order multi-point boundary value problem,and establish corresponding iterative schemes based on the monotone iterative method.

  14. ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR NEUMANN BOUNDARY VALUE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    SunYan; XuBenlong; SunYongping

    2005-01-01

    By using fixed point index theory, we consider the existence of positive solutions for singular nonlinear Neumann boundary value problems. Our main results extend and improve many known results even for non-singular cases.

  15. LIMIT BEHAVIOUR OF SOLUTIONS TO EQUIVALUED SURFACE BOUNDARY VALUE PROBLEM FOR PARABOLIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    LI Fengquan

    2002-01-01

    In this paper, we discuss the limit behaviour of solutions to equivalued surface boundary value problem for parabolic equations when the equivalued surface boundary shrinks to a point and the space dimension of the domain is two or more.

  16. ON THE EXISTENCE AND UNIQUENESS OFSOLUTIONS FOR 2nTH-ORDER BOUNDARY VALUE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    PeiMinghe; SungKagChang

    2005-01-01

    In this paper, by using the Leray-Schauder continuation theorem, we establish the existence and uniqueness theorems of solutions of two-point boundary value problems for 2nth-order nonlinear differential equations with nonlinear growth.

  17. Existence and uniqueness of solutions for a Neumann boundary-value problem

    Directory of Open Access Journals (Sweden)

    Safia Benmansour

    2011-09-01

    Full Text Available In this article, we show the existence and uniqueness of positive solutions for perturbed Neumann boundary-value problems of second-order differential equations. We use a fixed point theorem for general $alpha$-concave operators.

  18. Existence of Three Positive Solutions to Some p-Laplacian Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Moulay Rchid Sidi Ammi

    2013-01-01

    Full Text Available We obtain, by using the Leggett-Williams fixed point theorem, sufficient conditions that ensure the existence of at least three positive solutions to some p-Laplacian boundary value problems on time scales.

  19. Robin-Type Boundary Value Problem of Nonlinear Differential Equation with Fractional Order Derivative

    Institute of Scientific and Technical Information of China (English)

    Liu YANG; Zongmin QIAO

    2012-01-01

    In this paper,the existence and multiplicity of positive solutions for Robin type boundary value problem of differential equation involving the Riemann-Liouville fractional order derivative are established.

  20. MULTIPLE POSITIVE SOLUTIONS TO FOURTH-ORDER SINGULAR BOUNDARY VALUE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,using the Krasnaselskii's fixed point theory in cones and localization method,under more general conditions,the existence of n positive solutions to a class of fourth-order singular boundary value problems is considered.

  1. Asymptotic Solution of the Theory of Shells Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    I. V. Andrianov

    2007-01-01

    Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.

  2. EXISTENCE OF SOLUTIONS TO A THIRD-ORDER THREE-POINT BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper,we study the existence of solutions to a third-order three-point boundary value problem.By imposing certain restrictions on the nonlinear term,we prove the existence of at least one solution to the boundary value problem by the method of lower and upper solutions.We are interested in the construction of lower and upper solutions.

  3. INHOMOGENEOUS INITIAL-BOUNDARY VALUE PROBLEM FOR GINZBURG-LANDAU EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    杨灵娥; 郭柏灵; 徐海祥

    2004-01-01

    Some integral identities of smooth solution of inhomogeneous initial boundary value problem of Ginzburg-Landau equations were deduced, by which a priori estimates of the square norm on boundary of normal derivative and the square norm of partial derivatives were obtained. Then the existence of global weak solution of inhomogeneous initial-boundary value problem of Ginzburg-Landau equations was proved by the method of approximation technique and a priori estimates and making limit.

  4. Solutions to Boundary Value Problem of Nonlinear Impulsive Differential Equation of Fractional Order*

    Institute of Scientific and Technical Information of China (English)

    SU XIN-WEI

    2011-01-01

    This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects. The arguments are based upon Schauder and Banach fixed-point theorems. We improve and generalize the results presented in [B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Analysis: Hybrid Systems, 3(2009), 251258].

  5. Asymptotic behavior of elliptic boundary-value problems with some small coefficients

    Directory of Open Access Journals (Sweden)

    Senoussi Guesmia

    2008-04-01

    Full Text Available The aim of this paper is to analyze the asymptotic behavior of the solutions to elliptic boundary-value problems where some coefficients become negligible on a cylindrical part of the domain. We show that the dimension of the space can be reduced and find estimates of the rate of convergence. Some applications to elliptic boundary-value problems on domains becoming unbounded are also considered.

  6. GLOBAL BEHAVIOR OF POSITIVE SOLUTIONS TO A KIND OF THREE-POINT BOUNDARY VALUE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, using the fixed-point index theorems and the cone theory we study the structure of the positive solutions to a kind of second-order three-point boundary value problems. We obtain the result which guarantee that the positive solution set of the three-point boundary value problem has a continuum, which means that there exists a nonempty, closed and connected subset.

  7. Wavelets, turbulence, and boundary value problems for partial differential equations

    Science.gov (United States)

    Weiss, John E.

    1995-04-01

    In this paper the qualitative properties of an inviscid, incompressible two-dimensional fluid are examined by numerical methods based on the compactly supported wavelets (the wavelet- Galerkin method). In particular, we examine the behavior of the spatial gradients of the vorticity. The growth of these gradients is related to the transfer of enstrophy (integral of squared vorticity) to the small-scales of the fluid motion. Implicit time differencing and wavelet-Galerkin space discretization allow a direct investigation of the long time behavior of the inviscid fluid. The effects of hyperviscosity on the long time limit are examined. To solve boundary problems we developed a new numerical method for the solution of partial differential equations in nonseparable domains. The method uses a wavelet-Galerkin solver with a nontrivial adaptation of the standard capacitance matrix method. The numerical solutions exhibit spectral convergence with regard to the order of the compactly supported, Daubechies wavelet basis. Furthermore, the rate of convergence is found to be independent of the geometry. We solve the Helmholtz equation since, for the indefinite case, the solutions have qualitative properties that well illustrate the applications of our method.

  8. Numerical investigation of the boundary value problem for the carleman system of equations

    Directory of Open Access Journals (Sweden)

    Vasilyeva Ol’ga Aleksandrovna

    2016-12-01

    Full Text Available The boundary value problem for the Carleman system of equations is considered. The problem is investigated numerically for initial conditions which are perturbed nonnegative stationary solutions of the problem. First point of the paper is numerical investigation of solution of the boundary value problem with perturbed positive stationary solutions as an initial condition. The time dependence of the maximum deviation of the solution of the stationary solution problem of stationary solutions is investigated. The results of numerical problem solution are presented. The time dependence of the energy of perturbations of stationary solutions of the problem is presented. The solution stabilization to the stationary solution problem is obtained. The solution stabilization time is compared with stabilization time in periodic case. Second point of the paper is numerical investigation of solution of the boundary-value problem with perturbed zero stationary solutions as an initial condition. The results of numerical problem solution are presented.

  9. A Kind of Boundary Element Methods for Boundary Value Problem of Helmholtz Equation

    Institute of Scientific and Technical Information of China (English)

    张然; 姜正义; 马富明

    2004-01-01

    Problems for electromagnetic scattering are of significant importance in many areas of technology. In this paper we discuss the scattering problem of electromagnetic wave incident by using boundary element method associated with splines. The problem is modelled by a boundary value problem for the Helmholtz eouation

  10. Numerical methods for stiff systems of two-point boundary value problems

    Science.gov (United States)

    Flaherty, J. E.; Omalley, R. E., Jr.

    1983-01-01

    Numerical procedures are developed for constructing asymptotic solutions of certain nonlinear singularly perturbed vector two-point boundary value problems having boundary layers at one or both endpoints. The asymptotic approximations are generated numerically and can either be used as is or to furnish a general purpose two-point boundary value code with an initial approximation and the nonuniform computational mesh needed for such problems. The procedures are applied to a model problem that has multiple solutions and to problems describing the deformation of thin nonlinear elastic beam that is resting on an elastic foundation.

  11. Existence Theorems for Nonlinear Boundary Value Problems for Second Order Differential Inclusions

    Science.gov (United States)

    Kandilakis, Dimitrios A.; Papageorgiou, Nikolaos S.

    1996-11-01

    In this paper we consider a nonlinear two-point boundary value problem for second order differential inclusions. Using the Leray-Schauder principle and its multivalued analog due to Dugundji-Granas, we prove existence theorems for convex and nonconvex problems. Our results are quite general and incorporate as special cases several classes of problems which are of interest in the literature.

  12. Lie and Conditional Symmetries of a Class of Nonlinear (1 + 2-Dimensional Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Roman Cherniha

    2015-08-01

    Full Text Available A new definition of conditional invariance for boundary value problems involving a wide range of boundary conditions (including initial value problems as a special case is proposed. It is shown that other definitions worked out in order to find Lie symmetries of boundary value problems with standard boundary conditions, followed as particular cases from our definition. Simple examples of direct applicability to the nonlinear problems arising in applications are demonstrated. Moreover, the successful application of the definition for the Lie and conditional symmetry classification of a class of (1 + 2-dimensional nonlinear boundary value problems governed by the nonlinear diffusion equation in a semi-infinite domain is realised. In particular, it is proven that there is a special exponent, k ≠ —2, for the power diffusivity uk when the problem in question with non-vanishing flux on the boundary admits additional Lie symmetry operators compared to the case k ≠ —2. In order to demonstrate the applicability of the symmetries derived, they are used for reducing the nonlinear problems with power diffusivity uk and a constant non-zero flux on the boundary (such problems are common in applications and describing a wide range of phenomena to (1 + 1-dimensional problems. The structure and properties of the problems obtained are briefly analysed. Finally, some results demonstrating how Lie invariance of the boundary value problem in question depends on the geometry of the domain are presented.

  13. Direct approach for solving nonlinear evolution and two-point boundary value problems

    Indian Academy of Sciences (India)

    Jonu Lee; Rathinasamy Sakthivel

    2013-12-01

    Time-delayed nonlinear evolution equations and boundary value problems have a wide range of applications in science and engineering. In this paper, we implement the differential transform method to solve the nonlinear delay differential equation and boundary value problems. Also, we present some numerical examples including time-delayed nonlinear Burgers equation to illustrate the validity and the great potential of the differential transform method. Numerical experiments demonstrate the use and computational efficiency of the method. This method can easily be applied to many nonlinear problems and is capable of reducing the size of computational work.

  14. Free boundary value problems for a class of generalized diffusion equation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The transport behavior of free boundary value problems for a class of generalized diffusion equations was studied. Suitable similarity transformations were used to convert the problems into a class of singular nonlinear two-point boundary value problems and similarity solutions were numerical presented for different representations of heat conduction function, convection function, heat flux function, and power law parameters by utilizing the shooting technique. The results revealed the flux transfer mechanism and the character as well as the effects of parameters on the solutions.

  15. An Approximate Solution for Boundary Value Problems in Structural Engineering and Fluid Mechanics

    Directory of Open Access Journals (Sweden)

    A. Barari

    2008-01-01

    Full Text Available Variational iteration method (VIM is applied to solve linear and nonlinear boundary value problems with particular significance in structural engineering and fluid mechanics. These problems are used as mathematical models in viscoelastic and inelastic flows, deformation of beams, and plate deflection theory. Comparison is made between the exact solutions and the results of the variational iteration method (VIM. The results reveal that this method is very effective and simple, and that it yields the exact solutions. It was shown that this method can be used effectively for solving linear and nonlinear boundary value problems.

  16. Higher-order Lidstone boundary value problems for elliptic partial differential equations

    Science.gov (United States)

    Wang, Yuan-Ming

    2005-08-01

    The aim of this paper is to show the existence and uniqueness of a solution for a class of 2nth-order elliptic Lidstone boundary value problems where the nonlinear functions depend on the higher-order derivatives. Sufficient conditions are given for the existence and uniqueness of a solution. It is also shown that there exist two sequences which converge monotonically from above and below, respectively, to the unique solution. The approach to the problem is by the method of upper and lower solutions together with monotone iterative technique for nonquasimonotone functions. All the results are directly applicable to 2nth-order two-point Lidstone boundary value problems.

  17. Existence and uniqueness of entropy solution to initial boundary value problem for the inviscid Burgers equation

    CERN Document Server

    Zhu, C

    2003-01-01

    This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation.

  18. Existence and uniqueness of entropy solution to initial boundary value problem for the inviscid Burgers equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Changjiang; Duan, Renjun [Laboratory of Nonlinear Analysis, Department of Mathematics, Central China Normal University, Wuhan 430079, People' s Republic of China (China)

    2003-02-28

    This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation.

  19. On the Solutions of Some Boundary Value Problems for the General Kdv Equation

    Energy Technology Data Exchange (ETDEWEB)

    Ignatyev, M. Yu., E-mail: mikkieram@gmail.com [Saratov State University, Department of Mathematics (Russian Federation)

    2014-12-15

    This paper is concerned with a class of partial differential equations, which are linear combinations, with constant coefficients, of the classical flows of the KdV hierarchy. A boundary value problem with inhomogeneous boundary conditions of a certain special form is studied. We construct some class of solutions of the problem using the inverse spectral method.

  20. Some properties of eigenvalues and generalized eigenvectors of one boundary-value problem

    Science.gov (United States)

    Olgar, Hayati; Mukhtarov, Oktay; Aydemir, Kadriye

    2016-08-01

    We investigate a discontinuous boundary value problem which consists of a Sturm-Liouville equation with piece-wise continuous potential together with eigenparameter-dependent boundary conditions and supplementary transmission conditions. We establish some spectral properties of the considered problem. In particular it is shown that the generalized eigen-functions form a Riesz basis of the adequate Hilbert space.

  1. EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS TO THIRD-ORDER PERIODIC BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The existence and multiplicity of positive solutions to a periodic boundary value problem for nonlinear third-order ordinary differential equation are established, based on the zero point theorem concerning cone expansion and compression of order type. Our main approach is different from the previous papers on the existence of multiple positive solutions to the similar problem.

  2. EXISTENCE THEOREM ABOUT MULTIPLE POSITIVE SOLUTIONS TO p-LAPLACIAN BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper,we apply a fixed point theorem to verify the existence of multiple positive solutions to a p-Laplacian boundary value problem.Sufficient conditions are established which guarantee the existence of multiple positive solutions to the problem.

  3. ON SOLUTION OF A KIND OF RIEMANN BOUNDARY VALUE PROBLEM WITH SQUARE ROOTS

    Institute of Scientific and Technical Information of China (English)

    路见可

    2002-01-01

    Solution of the Riemann boundary value problem with square roots (1.1)for analytic functions proposed in [1] is reconsidered, which was solved under certain assumptions on the branch points appeared. Here, the work is continued without these assumptions and the problem is solved in the general case.

  4. Solvability of Boundary Value Problem at Resonance for Third-Order Functional Differential Equations

    Indian Academy of Sciences (India)

    Pinghua Yang; Zengji Du; Weigao Ge

    2008-05-01

    This paper is devoted to the study of boundary value problem of third-order functional differential equations. We obtain some existence results for the problem at resonance under the condition that the nonlinear terms is bounded or generally unbounded. In this paper we mainly use the topological degree theory.

  5. Numerical Analysis of Forth-Order Boundary Value Problems in Fluid Mechanics and Mathematics

    DEFF Research Database (Denmark)

    Hosseinzadeh, E.; Barari, Amin; Fouladi, F.

    2011-01-01

    In this paper He's variational iteration method is used to solve some examples of linear and non-linear forth-order boundary value problems. The first problem compared with homotopy analysis method solution and the other ones with the exact solution. The results show the high accuracy and speed...

  6. Numerical analysis of fourth-order boundary value problems in fluid mechanics and mathematics

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Barari, Amin; Fouladi, Fama

    2010-01-01

    In this paper He's variational iteration method is used to solve some examples of linear and non-linear forth-order boundary value problems. The first problem compared with homotopy analysis method solution and the other ones with the exact solution. The results show the high accuracy and speed...

  7. EXISTENCE OF SOLUTIONS TO BOUNDARY VALUE PROBLEMS FOR IMPULSIVE DEFFERENTIAL EQUATIONS WITH DELAYED ARGUMENTS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,we study the existence and approximation of solution to boundary value problems for impulsive differential equations with delayed arguments.Sufficient conditions are established for the existence of a unique solution or extremal ones to the given problem.A monotone iterative technique is applied.

  8. Discrete approximations for singularly perturbed boundary value problems with parabolic layers

    NARCIS (Netherlands)

    Farrell, P.A.; Hemker, P.W.; Shishkin, G.I.

    1995-01-01

    Singularly perturbed boundary value problems for equations of elliptic and parabolic type are studied. For small values of the perturbation parameter, parabolic boundary layers appear in these problems. If classical discretisation methods are used, the solution of the finite difference scheme and th

  9. Well-posedness of boundary-value problems for partial differential equations of even order

    Directory of Open Access Journals (Sweden)

    Djumaklych Amanov

    2014-04-01

    Full Text Available In this article, we establish the well-posedness of two boundary value problems for 2k-th order partial differential equations. It is shown that the solvability of these problems depends on the evenness and oddness of the number k.

  10. Well-posedness of boundary-value problems for partial differential equations of even order

    OpenAIRE

    Djumaklych Amanov; Allaberen Ashyralyev

    2014-01-01

    In this article, we establish the well-posedness of two boundary value problems for 2k-th order partial differential equations. It is shown that the solvability of these problems depends on the evenness and oddness of the number k.

  11. Verified solutions of two-point boundary value problems for nonlinear oscillators

    Science.gov (United States)

    Bünger, Florian

    Using techniques introduced by Nakao [4], Oishi [5, 6] and applied by Takayasu, Oishi, Kubo [11, 12] to certain nonlinear two-point boundary value problems (see also Rump [7], Chapter 15), we provide a numerical method for verifying the existence of weak solutions of two-point boundary value problems of the form -u″ = a(x, u) + b(x, u)u‧, 0 b are functions that fulfill some regularity properties. The numerical approximation is done by cubic spline interpolation. Finally, the method is applied to the Duffing, the van der Pol and the Toda oscillator. The rigorous numerical computations were done with INTLAB [8].

  12. Adaptation of a two-point boundary value problem solver to a vector-multiprocessor environment

    Energy Technology Data Exchange (ETDEWEB)

    Wright, S.J. (Mathematics Dept., North Carolina State Univ., Raleigh, NC (US)); Pereyra, V. (Weidlinger Associates, Los Angeles, CA (US))

    1990-05-01

    Systems of linear equations arising from finite-difference discretization of two-point boundary value problems have coefficient matrices that are sparse, with most or all of the nonzeros clustered in blocks near the main diagonal. Some efficiently vectorizable algorithms for factorizing these types of matrices and solving the corresponding linear systems are described. The relative effectiveness of the different algorithms varies according to the distribution of initial, final, and coupled end conditions. The techniques described can be extended to handle linear systems arising from other methods for two-point boundary value problems, such as multiple shooting and collocation. An application to seismic ray tracing is discussed.

  13. Mixed Boundary Value Problems in Mechanics of Materials ``Some Reflections on Forty Years of Solving Mixed Boundary Value Problems in Inhomogeneous Elasticity''

    Science.gov (United States)

    Erdogan, Fazil

    2008-02-01

    In this lecture after some introductory remarks, first certain concepts relating to the mixed boundary value problems in mechanics of materials and in potential theory will be defined and typical examples from crack and contact mechanics demonstrating unique applications of the singular integral equations will be described. Then the methods of solution of the singular integral equations based mostly on the solution by orthogonal polynomials will very briefly be outlined and some future research particularly in the field of fracture mechanics will be discussed.

  14. THE NONLINEAR BOUNDARY VALUE PROBLEM FOR A CLASS OF INTEGRO-DIFFERENTIAL SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Rongrong Tang

    2006-01-01

    In this paper, using the theory of differential inequalities, we study the nonlinear boundary value problem for a class of integro-differential system. Under appropriate assumptions, the existence of solution is proved and the uniformly valid asymptotic expansions for arbitrary n-th order approximation and the estimation of remainder term are obtained simply and conveniently.

  15. POSITIVE SOLUTIONS TO SYSTEMS OF SECOND ORDER NONLOCAL BOUNDARY VALUE PROBLEMS WITH FIRST ORDER DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper investigates the existence of positive solutions to systems of second order nonlocal boundary value problems with first order derivatives, in which the nonlinear term is not required to be continuous and involves first order derivatives. The main tool used in this paper is a fixed point index theory in a cone.

  16. Positive Solutions of Singular Boundary Value Problem of Negative Exponent Emden–Fowler Equation

    Indian Academy of Sciences (India)

    Yuxia Wang; Xiyu Liu

    2003-05-01

    This paper investigates the existence of positive solutions of a singular boundary value problem with negative exponent similar to standard Emden–Fowler equation. A necessary and sufficient condition for the existence of [0, 1] positive solutions as well as 1[0, 1] positive solutions is given by means of the method of lower and upper solutions with the Schauder fixed point theorem.

  17. Positive solutions of multi-point boundary value problem of fractional differential equation

    Directory of Open Access Journals (Sweden)

    De-xiang Ma

    2015-07-01

    Full Text Available By means of two fixed-point theorems on a cone in Banach spaces, some existence and multiplicity results of positive solutions of a nonlinear fractional differential equation boundary value problem are obtained. The proofs are based upon some properties of Green’s function, which are also the key of the paper.

  18. EXISTENCE OF SOLUTIONS TO 2m-ORDER PERIODIC BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper, we are concerned with the existence of nontrivial solutions to a 2m-order nonlinear periodic boundary value problem. By the infinite dimensional Morse theory, under some conditions on nonlinear term, we obtain that there exist at least two nontrivial solutions.

  19. POSITIVE SOLUTIONS TO A SECOND-ORDER m-POINT BOUNDARY VALUE PROBLEM ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    Liu Yang; Chunfang Shen

    2009-01-01

    By a fixed point theorem in a cone,the existence of at least three positive solutions to a class of second-order multi-point boundary value problem for dynamic equation on time scales with the nonlinear term depends on the first order derivative is studied.

  20. Boundary-value problems for first and second order functional differential inclusions

    Directory of Open Access Journals (Sweden)

    Shihuang Hong

    2003-03-01

    Full Text Available This paper presents sufficient conditions for the existence of solutions to boundary-value problems of first and second order multi-valued differential equations in Banach spaces. Our results obtained using fixed point theorems, and lead to new existence principles.

  1. Existence of global solutions to free boundary value problems for bipolar Navier-Stokes-Possion systems

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2013-09-01

    Full Text Available In this article, we consider the free boundary value problem for one-dimensional compressible bipolar Navier-Stokes-Possion (BNSP equations with density-dependent viscosities. For general initial data with finite energy and the density connecting with vacuum continuously, we prove the global existence of the weak solution. This extends the previous results for compressible NS [27] to NSP.

  2. Initial-boundary value problems for a class of nonlinear thermoelastic plate equations

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian-Wen; Rong Xiao-Liang; Wu Run-Heng

    2009-01-01

    This paper studies initial-boundary value problems for a class of nonlinear thermoelastic plate equations. Under some certain initial data and boundary conditions,it obtains an existence and uniqueness theorem of global weak solutions of the nonlinear thermoelstic plate equations,by means of the Galerkin method. Moreover,it also proves the existence of strong and classical solutions.

  3. EXISTENCE OF POSITIVE SOLUTIONS TO SINGULAR SUBLINEAR SEMIPOSITONE NEUMANN BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The existence of positive solutions to a singular sublinear semipositone Neumann boundary value problem is considered. In this paper,the nonlinearity term is not necessary to be bounded from below and the function q(t) is allowed to be singular at t = 0 and t = 1.

  4. NONTRIVIAL SOLUTIONS TO SINGULAR BOUNDARY VALUE PROBLEMS FOR FOURTH-ORDER DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The singular boundary value problems for fourth-order differential equations are considered under some conditions concerning the first eigenvalues of the relevant linear operators. Sufficient conditions which guarantee the existence of nontrivial solutions are obtained. We use the topological degree to prove our main results.

  5. THREE-POINT BOUNDARY VALUE PROBLEM FOR p-LAPLACIAN DIFFERENTIAL EQUATION AT RESONANCE

    Institute of Scientific and Technical Information of China (English)

    Minggang Zong; Wenyi Cai

    2009-01-01

    By topological degree theory, the three-point boundary value problem for p-Laplacian differential equation at resonance is studied. Some new results on the existence of so-lutions are obtained, which improve and extend some known ones in the previous literatures.

  6. EXISTENCE AND UNIQUENESS RESULTS FOR NONLINEAR THIRD-ORDER BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper,we investigate a nonlinear third-order three-point boundary value problem. By several well-known fixed point theorems,the existence of positive solutions is discussed. Besides,the uniqueness results are obtained by imposing growth restrictions on f.

  7. PERIODIC BOUNDARY VALUE PROBLEM FOR NONLINEAR INTEGRO-DIFFERENTIAL EQUATION OF MIXED TYPE ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    Yepeng Xing; Qiong Wang; Valery G. Romanovski

    2009-01-01

    We prove several new comparison results and develop the monotone iterative tech-nique to show the existence of extremal solutions to a kind of periodic boundary value problem (PBVP) for nonlinear integro-differential equation of mixed type on time scales.

  8. EXISTENCE OF SOLUTIONS TO A CLASS OF NONLINEAR n-DIMENSIONAL DISCRETE BOUNDARY VALUE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper,using the critical point theory,we obtain a new result on the existence of the solutions to a class of n-dimensional discrete boundary value problems.Results obtained extend or improve the existing ones.

  9. The Graviton in the AdS-CFT correspondence Solution via the Dirichlet Boundary value problem

    CERN Document Server

    Mück, W

    1998-01-01

    Using the AdS-CFT correspondence we calculate the two point function of CFT energy momentum tensors. The AdS gravitons are considered by explicitly solving the Dirichlet boundary value problem for $x_0=\\epsilon$. We consider this treatment as complementary to existing work, with which we make contact.

  10. On Third Order Stable Difference Scheme for Hyperbolic Multipoint Nonlocal Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    Ozgur Yildirim

    2015-01-01

    Full Text Available This paper presents a third order of accuracy stable difference scheme for the approximate solution of multipoint nonlocal boundary value problem of the hyperbolic type in a Hilbert space with self-adjoint positive definite operator. Stability estimates for solution of the difference scheme are obtained. Some results of numerical experiments that support theoretical statements are presented.

  11. Existence of Multiple Positive Solutions for Singular Impulsive Boundary Value Problems in Banach Space

    Institute of Scientific and Technical Information of China (English)

    徐西安

    2004-01-01

    In this paper, we first obtain some New results about the existence of multiple positive solutions for singular impulsive boundary value problems, and then to illustrate our main results we studied the existence of multiple positive solutions for an infinite system of scalar equations.

  12. Symmetric solutions of singular nonlocal boundary value problems for systems of differential equation

    Institute of Scientific and Technical Information of China (English)

    KANG Ping; YAO Jianli

    2009-01-01

    In this paper, we investigate the existence of symmetric solutions of singular nonlocal boundary value problems for systems of differential equations. Our analysis relies on a nonlinear alternative of Leray - schauder type. Our results presented here unify, generalize and significantly improve many known results in the literature.

  13. Solvability of 2n-order m-point boundary value problem at resonance

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The existence of solutions for the 2n-order m-point boundary value problem at resonance is obtained by using the coincidence degree theory of Mawhin.We give an example to demonstrate our result.The interest is that the nonlinear term may be noncontinuous.

  14. Boundary Value Problems for First-Order Impulsive Functional q-Integrodifference Equations

    Directory of Open Access Journals (Sweden)

    Jessada Tariboon

    2014-01-01

    Full Text Available We discuss the existence and uniqueness of solutions for a first-order boundary value problem for impulsive functional qk-integrodifference equations. The main results are obtained with the aid of some classical fixed point theorems. Illustrative examples are also presented.

  15. Positive Solutions for Multipoint Boundary Value Problems for Singular Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Mohamed Jleli

    2014-01-01

    Full Text Available A class of nonlinear multipoint boundary value problems for singular fractional differential equations is considered. By means of a coupled fixed point theorem on ordered sets, some results on the existence and uniqueness of positive solutions are obtained.

  16. Solvability for a Class of Abstract Two-Point Boundary Value Problems Derived from Optimal Control

    Directory of Open Access Journals (Sweden)

    Wang Lianwen

    2007-01-01

    Full Text Available The solvability for a class of abstract two-point boundary value problems derived from optimal control is discussed. By homotopy technique existence and uniqueness results are established under some monotonic conditions. Several examples are given to illustrate the application of the obtained results.

  17. Solvability for a Class of Abstract Two-Point Boundary Value Problems Derived from Optimal Control

    Directory of Open Access Journals (Sweden)

    Lianwen Wang

    2008-01-01

    Full Text Available The solvability for a class of abstract two-point boundary value problems derived from optimal control is discussed. By homotopy technique existence and uniqueness results are established under some monotonic conditions. Several examples are given to illustrate the application of the obtained results.

  18. A smart nonstandard finite difference scheme for second order nonlinear boundary value problems

    NARCIS (Netherlands)

    Erdogan, Utku; Ozis, Turgut

    2011-01-01

    A new kind of finite difference scheme is presented for special second order nonlinear two point boundary value problems. An artificial parameter is introduced in the scheme. Symbolic computation is proposed for the construction of the scheme. Local truncation error of the method is discussed. Numer

  19. Multiple Positive Solutions for Singular Periodic Boundary Value Problems of Impulsive Differential Equations in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Hongxia Fan

    2011-01-01

    Full Text Available By means of the fixed point theory of strict set contraction operators, we establish a new existence theorem on multiple positive solutions to a singular boundary value problem for second-order impulsive differential equations with periodic boundary conditions in a Banach space. Moreover, an application is given to illustrate the main result.

  20. The Method of Subsuper Solutions for Weighted p(r-Laplacian Equation Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Zhimei Qiu

    2008-10-01

    Full Text Available This paper investigates the existence of solutions for weighted p(r-Laplacian ordinary boundary value problems. Our method is based on Leray-Schauder degree. As an application, we give the existence of weak solutions for p(x-Laplacian partial differential equations.

  1. Multiple Positive Solutions of Boundary Value Problems for Systems of Nonlinear Third-Order Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Yaohong LI; Xiaoyan ZHANG

    2013-01-01

    In this paper,we consider boundary value problems for systems of nonlinear thirdorder differential equations.By applying the fixed point theorems of cone expansion and compression of norm type and Leggett-Williams fixed point theorem,the existence of multiple positive solutions is obtained.As application,we give some examples to demonstrate our results.

  2. Existence of Two Solutions of Nonlinear m-Point Boundary Value Problems

    Institute of Scientific and Technical Information of China (English)

    任景莉; 葛渭高

    2003-01-01

    Sufficient conditions for the existence of at least two positive solutions of a nonlinear m-points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.

  3. POSITIVE SOLUTIONS TO SINGULAR SECOND ORDER PERIODIC BOUNDARY VALUE PROBLEM WITH SIGN-CHANGING NONLINEARITIES

    Institute of Scientific and Technical Information of China (English)

    Shanying Zhu

    2009-01-01

    This paper deals with the existence of positive solutions to the singular second-order periodic boundary value problem, We obtain the existence results of positive solutions by the fixed point index theory. The results obtained extend and complement some known results.

  4. Symbolic Iterative Solution of Boundary Value Problems for Partial Differential Equations

    OpenAIRE

    Semiyari, Hamid

    2016-01-01

    In this article we introduce a simple straightforward and powerful method involving symbolic manipulation, Picard iteration, and auxiliary variables for approximating solutions of partial differential boundary value problems. The method is easy to implement, computationally efficient, and it is highly accurate. The output of the method is a function that approximates the exact solution.

  5. Study of the forward Dirichlet boundary value problem for the two-dimensional Electrical Impedance Equation

    CERN Document Server

    T, M P Ramirez

    2012-01-01

    Using a conjecture that allows to approach separable-variables conductivity functions, the elements of the Modern Pseudoanalytic Function Theory are used, for the first time, to numerically solve the Dirichlet boundary value problem of the two-dimensional Electrical Impedance Equation, when the conductivity function arises from geometrical figures, located within bounded domains.

  6. Contact of boundary-value problems and nonlocal problems in mathematical models of heat transfer

    Science.gov (United States)

    Lyashenko, V.; Kobilskaya, O.

    2015-10-01

    In this paper the mathematical models in the form of nonlocal problems for the two-dimensional heat equation are considered. Relation of a nonlocal problem and a boundary value problem, which describe the same physical heating process, is investigated. These problems arise in the study of the temperature distribution during annealing of the movable wire and the strip by permanent or periodically operating internal and external heat sources. The first and the second nonlocal problems in the mobile area are considered. Stability and convergence of numerical algorithms for the solution of a nonlocal problem with piecewise monotone functions in the equations and boundary conditions are investigated. Piecewise monotone functions characterize the heat sources and heat transfer conditions at the boundaries of the area that is studied. Numerous experiments are conducted and temperature distributions are plotted under conditions of internal and external heat sources operation. These experiments confirm the effectiveness of attracting non-local terms to describe the thermal processes. Expediency of applying nonlocal problems containing nonlocal conditions - thermal balance conditions - to such models is shown. This allows you to define heat and mass transfer as the parameters of the process control, in particular heat source and concentration of the substance.

  7. An improved iterative technique for solving nonlinear doubly singular two-point boundary value problems

    Science.gov (United States)

    Roul, Pradip

    2016-06-01

    This paper presents a new iterative technique for solving nonlinear singular two-point boundary value problems with Neumann and Robin boundary conditions. The method is based on the homotopy perturbation method and the integral equation formalism in which a recursive scheme is established for the components of the approximate series solution. This method does not involve solution of a sequence of nonlinear algebraic or transcendental equations for the unknown coefficients as in some other iterative techniques developed for singular boundary value problems. The convergence result for the proposed method is established in the paper. The method is illustrated by four numerical examples, two of which have physical significance: The first problem is an application of the reaction-diffusion process in a porous spherical catalyst and the second problem arises in the study of steady-state oxygen-diffusion in a spherical cell with Michaelis-Menten uptake kinetics.

  8. Fourth-Order Four-Point Boundary Value Problem: A Solutions Funnel Approach

    Directory of Open Access Journals (Sweden)

    Panos K. Palamides

    2012-01-01

    Full Text Available We investigate the existence of positive or a negative solution of several classes of four-point boundary-value problems for fourth-order ordinary differential equations. Although these problems do not always admit a (positive Green's function, the obtained solution is still of definite sign. Furthermore, we prove the existence of an entire continuum of solutions. Our technique relies on the continuum property (connectedness and compactness of the solutions funnel (Kneser's Theorem, combined with the corresponding vector field.

  9. SINGULARLY PERTURBED SEMI-LINEAR BOUNDARY VALUE PROBLEM WITH DISCONTINUOUS FUNCTION

    Institute of Scientific and Technical Information of China (English)

    Ding Haiyun; Ni Mingkang; Lin Wuzhong; Cao Yang

    2012-01-01

    A class of singularly perturbed semi-linear boundary value problems with discontinuous functions is examined in this article.Using the boundary layer function method,the asymptotic solution of such a problem is given and shown to be uniformly effective. The existence and uniqueness of the solution for the system is also proved.Numerical result is presented as an illustration to the theoretical result.

  10. MULTIPLE POSITIVE SOLUTIONS TO A SINGULAR THIRD-ORDER THREE-POINT BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,we study a singular third-order three-point boundary value problem. By a fixed point theorem of cone expansion-compression type due to Krasnosel'skii,we obtain various new results on the existence of two positive solutions to the problem,whose coefficient is allowed to have suitable singularities. Finally,we give an example to verify our results.

  11. Modified quasi-boundary value method for Cauchy problems of elliptic equations with variable coefficients

    Directory of Open Access Journals (Sweden)

    Hongwu Zhang

    2011-08-01

    Full Text Available In this article, we study a Cauchy problem for an elliptic equation with variable coefficients. It is well-known that such a problem is severely ill-posed; i.e., the solution does not depend continuously on the Cauchy data. We propose a modified quasi-boundary value regularization method to solve it. Convergence estimates are established under two a priori assumptions on the exact solution. A numerical example is given to illustrate our proposed method.

  12. Nonlinear boundary value problems for first order impulsive integro-differential equations

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    1989-01-01

    Full Text Available In this paper, we investigate a class of first order impulsive integro-differential equations subject to certain nonlinear boundary conditions and prove, with the help of upper and lower solutions, that the problem has a solution lying between the upper and lower solutions. We also develop monotone iterative technique and show the existence of multiple solutions of a class of periodic boundary value problems.

  13. Solvability of a class of second-order quasilinear boundary value problems

    Institute of Scientific and Technical Information of China (English)

    Qing-liu YAO

    2009-01-01

    The second-order quasilinear boundary value problems are considered when the nonlinear term is singular and the limit growth function at the infinite exists. With the introduction of the height function of the nonlinear term on a bounded set and the consideration of the integration of the height function, the existence of the solution is proven. The existence theorem shows that the problem has a solution ff the integration of the limit growth function has an appropriate value.

  14. SOME BOUNDARY VALUE PROBLEMS FOR NONLINEAR DEGENERATE ELLIPTIC EQUATIONS OF SECOND ORDER

    Institute of Scientific and Technical Information of China (English)

    Wen Guochun

    2007-01-01

    The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension, the existence of solutions of the above problem is proved. In this article, the complex analytic method is used, namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed, afterwards the above problem for the degenerate elliptic equations of second order is solved.

  15. Generalized solutions of initial-boundary value problems for second-order hyperbolic systems

    Science.gov (United States)

    Alexeyeva, L. A.; Zakir'yanova, G. K.

    2011-07-01

    The method of boundary integral equations is developed as applied to initial-boundary value problems for strictly hyperbolic systems of second-order equations characteristic of anisotropic media dynamics. Based on the theory of distributions (generalized functions), solutions are constructed in the space of generalized functions followed by passing to integral representations and classical solutions. Solutions are considered in the class of singular functions with discontinuous derivatives, which are typical of physical problems describing shock waves. The uniqueness of the solutions to the initial-boundary value problems is proved under certain smoothness conditions imposed on the boundary functions. The Green's matrix of the system and new fundamental matrices based on it are used to derive integral analogues of the Gauss, Kirchhoff, and Green formulas for solutions and solving singular boundary integral equations.

  16. On explicit and numerical solvability of parabolic initial-boundary value problems

    Directory of Open Access Journals (Sweden)

    Lepsky Olga

    2006-01-01

    Full Text Available A homogeneous boundary condition is constructed for the parabolic equation in an arbitrary cylindrical domain ( being a bounded domain, and being the identity operator and the Laplacian which generates an initial-boundary value problem with an explicit formula of the solution . In the paper, the result is obtained not just for the operator , but also for an arbitrary parabolic differential operator , where is an elliptic operator in of an even order with constant coefficients. As an application, the usual Cauchy-Dirichlet boundary value problem for the homogeneous equation in is reduced to an integral equation in a thin lateral boundary layer. An approximate solution to the integral equation generates a rather simple numerical algorithm called boundary layer element method which solves the 3D Cauchy-Dirichlet problem (with three spatial variables.

  17. The characteristic mixed finite element method and analysis for three-dimensional moving boundary value problem

    Institute of Scientific and Technical Information of China (English)

    袁益让

    1996-01-01

    The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. This thesis, from actual conditions such as the effects of gravitation, buoyancy and capillary pressure, puts forward for the two class boundary value problem a kind of characteristic mixed finite element scheme by making use of the change of region, time step modified techniques of handling boundary value condition, negative norm estimate and the theory of prior estimates. Optimal order estimates in L2 norm are derived for the error in approximate solutions. Thus the well-known theoretical problem proposed by J. Douglas, Jr has been thoroughly and completely solved.

  18. The initial boundary value problem for free-evolution formulations of General Relativity

    CERN Document Server

    Hilditch, David

    2016-01-01

    We consider the initial boundary value problem for free-evolution formulations of general relativity coupled to a parametrized family of coordinate conditions that includes both the moving puncture and harmonic gauges. We concentrate primarily on boundaries that are geometrically determined by the outermost normal observer to spacelike slices of the foliation. We present high-order-derivative boundary conditions for the gauge, constraint violating and gravitational wave degrees of freedom of the formulation. Second order derivative boundary conditions are presented in terms of the conformal variables used in numerical relativity simulations. Using Kreiss-Agranovich-Metivier theory we demonstrate, in the frozen coefficient approximation, that with sufficiently high order derivative boundary conditions the initial boundary value problem can be rendered boundary stable. The precise number of derivatives required depends on the gauge. For a choice of the gauge condition that renders the system strongly hyperbolic...

  19. Positive solutions of a singular fractional boundary value problem with a fractional boundary condition

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Lyons

    2017-01-01

    Full Text Available For \\(\\alpha\\in(1,2]\\, the singular fractional boundary value problem \\[D^{\\alpha}_{0^+}x+f\\left(t,x,D^{\\mu}_{0^+}x\\right=0,\\quad 0\\lt t\\lt 1,\\] satisfying the boundary conditions \\(x(0=D^{\\beta}_{0^+}x(1=0\\, where \\(\\beta\\in(0,\\alpha-1]\\, \\(\\mu\\in(0,\\alpha-1]\\, and \\(D^{\\alpha}_{0^+}\\, \\(D^{\\beta}_{0^+}\\ and \\(D^{\\mu}_{0^+}\\ are Riemann-Liouville derivatives of order \\(\\alpha\\, \\(\\beta\\ and \\(\\mu\\ respectively, is considered. Here \\(f\\ satisfies a local Carathéodory condition, and \\(f(t,x,y\\ may be singular at the value 0 in its space variable \\(x\\. Using regularization and sequential techniques and Krasnosel'skii's fixed point theorem, it is shown this boundary value problem has a positive solution. An example is given.

  20. EXISTENCE OF SOLUTIONS OF A FAMILY OF NONLINEAR BOUNDARY VALUE PROBLEMS IN L2-SPACES

    Institute of Scientific and Technical Information of China (English)

    WeiLi; ZhouHaiyun

    2005-01-01

    By using the perturbation results of sums of ranges of accretive mappings of Calvert and Gupta (1978),the abstract results on the existence of solutions of a family of nonlinear boundary value problems in L2 (Ω) are studied. The equation discussed in this paper and the methods used here are extension and complement to the corresponding results of Wei Li and He Zhen's previous papers. Especially,some new techniques are used in this paper.

  1. GLOBAL SOLUTIONS TO AN INITIAL BOUNDARY VALUE PROBLEM FOR THE MULLINS EQUATION

    Institute of Scientific and Technical Information of China (English)

    Hans-Dieter Alber; Zhu Peicheng

    2007-01-01

    In this article we study the global existence of solutions to an initial boundary value problem for the Mullins equation which describes the groove development at the grain boundaries of a heated polycrystal, both the Dirichlet and the Neumann boundary conditions are considered. For the classical solution we also investigate the large time behavior, it is proved that the solution converges to a constant, in the L∞(Ω)-norm, as time tends to infinity.

  2. Maximum Principles and Boundary Value Problems for First-Order Neutral Functional Differential Equations

    Directory of Open Access Journals (Sweden)

    Domoshnitsky Alexander

    2009-01-01

    Full Text Available We obtain the maximum principles for the first-order neutral functional differential equation where , and are linear continuous operators, and are positive operators, is the space of continuous functions, and is the space of essentially bounded functions defined on . New tests on positivity of the Cauchy function and its derivative are proposed. Results on existence and uniqueness of solutions for various boundary value problems are obtained on the basis of the maximum principles.

  3. Infinitely many solutions to superlinear second order m-point boundary value problems

    OpenAIRE

    Chen Xiaoqiang; Ma Ruyun; Gao Chenghua

    2011-01-01

    Abstract We consider the boundary value problem u ″ ( x ) + g ( u ( x ) ) + p ( x , u ( x ) , u ′ ( x ) ) = 0 , x ∈ ( 0 , 1 ) , u ( 0 ) = 0 , u ( 1 ) = ∑ i = 1 m - 2 α i u ( η i ) , where: (1) m ≥ 3, ηi ∈ (0, 1) and αi > 0 with A : = ∑ i = 1 m - 2 α i < 1 ; (2) g : ℝ → ℝ is continuous and sat...

  4. Solvability of a three-point nonlinear boundary-value problem

    Directory of Open Access Journals (Sweden)

    Assia Guezane-Lakoud

    2010-09-01

    Full Text Available Using the Leray Schauder nonlinear alternative, we prove the existence of a nontrivial solution for the three-point boundary-value problem $$displaylines{ u''+f(t,u= 0,quad 0

  5. Infinitely many solutions for a fourth-order boundary-value problem

    Directory of Open Access Journals (Sweden)

    Seyyed Mohsen Khalkhali

    2012-09-01

    Full Text Available In this article we consider the existence of infinitely many solutions to the fourth-order boundary-value problem $$displaylines{ u^{iv}+alpha u''+eta(x u=lambda f(x,u+h(u,quad xin]0,1[cr u(0=u(1=0,cr u''(0=u''(1=0,. }$$ Our approach is based on variational methods and critical point theory.

  6. Positive solutions for a nonlinear periodic boundary-value problem with a parameter

    Directory of Open Access Journals (Sweden)

    Jingliang Qiu

    2012-08-01

    Full Text Available Using topological degree theory with a partially ordered structure of space, sufficient conditions for the existence and multiplicity of positive solutions for a second-order nonlinear periodic boundary-value problem are established. Inspired by ideas in Guo and Lakshmikantham [6], we study the dependence of positive periodic solutions as a parameter approaches infinity, $$ lim_{lambdao +infty}|x_{lambda}|=+infty,quadhbox{or}quad lim_{lambdao+infty}|x_{lambda}|=0. $$

  7. Accurate numerical schemes for approximating initial-boundary value problems for systems of conservation laws

    CERN Document Server

    Mishra, Siddhartha

    2011-01-01

    Solutions of initial-boundary value problems for systems of conservation laws depend on the underlying viscous mechanism, namely different viscosity operators lead to different limit solutions. Standard numerical schemes for approximating conservation laws do not take into account this fact and converge to solutions that are not necessarily physically relevant. We design numerical schemes that incorporate explicit information about the underlying viscosity mechanism and approximate the physically relevant solution. Numerical experiments illustrating the robust performance of these schemes are presented.

  8. Existence of Sign-changing Solution for Three-point Boundary Value Problems

    Institute of Scientific and Technical Information of China (English)

    LI Chun-yan; SU Ya-juan

    2012-01-01

    In this paper,by using the fixed-point index theory,we study the existence of sign-changing solution of some three-point boundary value problems {y″(t) + f(y) =0, t ∈ [0,1],y′(0) =0, y( 1 ) =αy(η),where 0 < a < 1,0 < η < 1,f:R → R is continuous,strictly increasing and f(0) =0.

  9. Solution of the boundary value problem for optimal escape in continuous stochastic systems and maps.

    OpenAIRE

    S; Beri; Mannella, R.; Luchinsky, Dmitry G.; Silchenko, A. N.; McClintock, Peter V. E.

    2005-01-01

    Topologies of invariant manifolds and optimal trajectories are investigated in stochastic continuous systems and maps. A topological method is introduced that simplifies the solution of boundary value problems: The activation energy is calculated as a function of a set of parameters characterizing the initial conditions of the escape path. The method is applied explicitly to compute the optimal escape path and the activation energy for a variety of dynamical systems and maps.

  10. IMPULSIVE BOUNDARY VALUE PROBLEMS FOR STURM-LIOUVILLE TYPE DIFFERENTIAL INCLUSIONS

    Institute of Scientific and Technical Information of China (English)

    Yicheng LIU; Jun WU; Zhixiang LI

    2007-01-01

    In this paper, the authors investigate the existence of solutions of impulsive boundary value problems for Sturm-Liouville type differential inclusions which admit non-convex-valued multifunctions on right hand side. Two results under weaker conditions are presented. The methods rely on a fixed point theorem for contraction multi-valued maps due to Covitz and Nadler and Schaefer's fixed point theorem combined with lower semi-continuous multi-valued operators with decomposable values.

  11. Analytic decomposition and numerical procedure for solving the singular boundary value problem arising in viscous flows

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An efficient analytical decomposition technique was presented for solving the singular nonlinear boundary value problem arising in viscous flow when the Crocco variable was introduced. The approximate analytical solution may be represented in terms of a rapid convergent power series with elegantly computable terms. The reliability and efficiency of the approximate solutions were verified by numerical ones in the literature. The approximate analytical solutions can be successfully applied to give the values of skin friction coefficient.

  12. Boundary-value problems for ordinary differential equations with matrix coefficients containing a spectral parameter

    OpenAIRE

    2007-01-01

    In the present work, we study a multi-point boundary-value problem for an ordinary differential equation with matrix coefficients containing a spectral parameter in the boundary conditions. Assuming some regularity conditions, we show that the characteristic determinant has an infinite number of zeros, and specify their asymptotic behavior. Using the asymptotic behavior of Green matrix on contours expending at infinity, we establish the series expansion formula of sufficiently smooth function...

  13. Monotone methods for solving a boundary value problem of second order discrete system

    Directory of Open Access Journals (Sweden)

    Wang Yuan-Ming

    1999-01-01

    Full Text Available A new concept of a pair of upper and lower solutions is introduced for a boundary value problem of second order discrete system. A comparison result is given. An existence theorem for a solution is established in terms of upper and lower solutions. A monotone iterative scheme is proposed, and the monotone convergence rate of the iteration is compared and analyzed. The numerical results are given.

  14. Numerical Solution of Seventh-Order Boundary Value Problems by a Novel Method

    Directory of Open Access Journals (Sweden)

    Mustafa Inc

    2014-01-01

    Full Text Available We demonstrate the efficiency of reproducing kernel Hilbert space method on the seventh-order boundary value problems satisfying boundary conditions. These results have been compared with the results that are obtained by variational iteration method (VIM, homotopy perturbation method (HPM, Adomian decomposition method (ADM, variation of parameters method (VPM, and homotopy analysis method (HAM. Obtained results show that our method is very effective.

  15. POSITIVE SOLUTIONS TO BOUNDARY VALUE PROBLEM OF FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper,we establish sufficient conditions for the existence of positive solutions to a general class of integral boundary value problem(BVP) of nonlinear fractional functional differential equation.A differential operator is taken in the RiemannLiouville sense.Our analysis relies on the Krasnosel'skii fixed-point theorem in cones.We also give examples to illustrate the applicability of our results.

  16. Boundary value problems for systems of linear partial differential equations and propagation of microanalyticity

    OpenAIRE

    Oaku, Toshinori

    1986-01-01

    We give a general formulation of boundary value problems in the framework of hyperfunctions both for systems of linear partial differential equations with non-characteristic boundary and for Fuchsian systems of partial differential equations in a unified manner. We also give a microlocal formulation, which enables us to prove new results on propagation of micro-analyticity up to the boundary for solutions of systems micro-hyperbolic in a weak sense.

  17. VAGO method for the solution of elliptic second-order boundary value problems

    CERN Document Server

    Vabishchevich, Nikolay P

    2010-01-01

    Mathematical physics problems are often formulated using differential oprators of vector analysis - invariant operators of first order, namely, divergence, gradient and rotor operators. In approximate solution of such problems it is natural to employ similar operator formulations for grid problems, too. The VAGO (Vector Analysis Grid Operators) method is based on such a methodology. In this paper the vector analysis difference operators are constructed using the Delaunay triangulation and the Voronoi diagrams. Further the VAGO method is used to solve approximately boundary value problems for the general elliptic equation of second order. In the convection-diffusion-reaction equation the diffusion coefficient is a symmetric tensor of second order.

  18. Student Solutions Manual to Boundary Value Problems and Partial Differential Equations

    CERN Document Server

    Powers, David L

    2005-01-01

    This student solutions manual accompanies the text, Boundary Value Problems and Partial Differential Equations, 5e. The SSM is available in print via PDF or electronically, and provides the student with the detailed solutions of the odd-numbered problems contained throughout the book.Provides students with exercises that skillfully illustrate the techniques used in the text to solve science and engineering problemsNearly 900 exercises ranging in difficulty from basic drills to advanced problem-solving exercisesMany exercises based on current engineering applications

  19. Existence and uniqueness of entropy solution to initial boundary value problem for the inviscid Burgers equation

    Science.gov (United States)

    Zhu, Changjiang; Duan, Renjun

    2003-02-01

    This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation \\left\\{\\begin{array}{@{}l@{\\qquad}l@{}} u_t+\\big(\\frac{u^2}{2}\\big)_x=0 x\\gt0\\quad t\\gt0\\\\ u(x,0)=u_0(x) x\\geq0\\\\ u(0,t)=0 t\\geq0. \\end{array}\\right. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation.

  20. Upwind finite difference method for miscible oil and water displacement problem with moving boundary values

    Institute of Scientific and Technical Information of China (English)

    Yi-rang YUAN; Chang-feng LI; Cheng-shun YANG; Yu-ji HAN

    2009-01-01

    The research of the miscible oil and water displacement problem with moving boundary values is of great value to the history of oil-gas transport and accumulation in the basin evolution as well as to the rational evaluation in prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values. For the two-dimensional bounded region, the upwind finite difference schemes are proposed. Some techniques, such as the calculus of variations, the change of variables, and the theory of a priori estimates, are used. The optimal order l2-norm estimates are derived for the errors in the approximate solutions. The research is important both theoretically and practically for the model analysis in the field, the model numerical method, and the software development.

  1. Lyapunov inequalities for the periodic boundary value problem at higher eigenvalues

    CERN Document Server

    Canada, Antonio

    2009-01-01

    This paper is devoted to provide some new results on Lyapunov type inequalities for the periodic boundary value problem at higher eigenvalues. Our main result is derived from a detailed analysis on the number and distribution of zeros of nontrivial solutions and their first derivatives, together with the study of some special minimization problems, where the Lagrange multiplier Theorem plays a fundamental role. This allows to obtain the optimal constants. Our applications include the Hill's equation where we give some new conditions on its stability properties and also the study of periodic and nonlinear problems at resonance where we show some new conditions which allow to prove the existence and uniqueness of solutions.

  2. PERIODIC BOUNDARY VALUE PROBLEM OF QUASILINEAR SYSTEM%拟线性系统周期边值问题

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The existence and uniqueness results about quasilinear periodic boundary value problems are established by using the global inverse function theorem and the result about the existence and uniquencess of periodic solutions for the periodic boundary value problem of nonhomogeneous linear periodic system.

  3. EXISTENCE OF SOLUTIONS TO AN m-POINT BOUNDARY VALUE PROBLEM OF THIRD ORDER ODE’S AT RESONANCE

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,we study an m-point boundary value problem of third order ODEs at resonance. We prove some existence results for the m-point boundary value problem at resonance by the coincidence degree theory of [8,9]. Our result is new. Meanwhile,an example is presented to demonstrate the main result.

  4. Existence of countably many positive solutions for nth-order m-point boundary-value problems on time scales

    Directory of Open Access Journals (Sweden)

    Zhiyong Wang

    2008-09-01

    Full Text Available In this paper, we study the existence of positive solutions for the nonlinear nth-order with m-point singular boundary-value problem. By using the fixed point index theory and a new fixed point theorem in cones, the existence of countably many positive solutions for a nonlinear singular boundary value problem are obtained.

  5. Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations

    Directory of Open Access Journals (Sweden)

    Olivier Sarbach

    2012-08-01

    Full Text Available Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity. The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein's equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.

  6. Multiple positive solutions for singular semipositone nonlinear integral boundary-value problems on infinite intervals

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-03-01

    Full Text Available In this article, we study the existence of multiple positive solutions for singular semipositone boundary-value problem (BVP with integral boundary conditions on infinite intervals. By using the properties of the Green's function and the Guo-Krasnosel'skii fixed point theorem, we obtain the existence of multiple positive solutions under conditions concerning the nonlinear functions. The method in this article can be used for a large number of problems. We illustrate the validity of our results with an example in the last section.

  7. Nonlinear systems of differential inequalities and solvability of certain boundary value problems

    Directory of Open Access Journals (Sweden)

    Tvrdý Milan

    2001-01-01

    Full Text Available In the paper we present some new existence results for nonlinear second order generalized periodic boundary value problems of the form These results are based on the method of lower and upper functions defined as solutions of the system of differential inequalities associated with the problem and their relation to the Leray–Schauder topological degree of the corresponding operator. Our main goal consists in a fairly general definition of these functions as couples from . Some conditions ensuring their existence are indicated, as well.

  8. The Modified Adomian Decomposition Method for Nonlinear Fractional Boundary Value Problems

    Institute of Scientific and Technical Information of China (English)

    WANG Jie

    2012-01-01

    We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem Dα0+u(x)=f(x,u(x)), 0<x<1, 3<α≤4u(0) =α0, u″(0) =α2 (1)u(1) =β0, u″(1) =β2where Dα0+u is Caputo fractional derivative and α0,α2,β0,β2 is not zero at all,and f:[0,1] x R → R is continuous.The calculated numerical results show reliability and efficiency of the algorithm given.The numerical procedure is tested on linear and nonlinear problems.

  9. Variational Homotopy Perturbation Method for Solving Higher Dimensional Initial Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam Noor

    2008-01-01

    Full Text Available We suggest and analyze a technique by combining the variational iteration method and the homotopy perturbation method. This method is called the variational homotopy perturbation method (VHPM. We use this method for solving higher dimensional initial boundary value problems with variable coefficients. The developed algorithm is quite efficient and is practically well suited for use in these problems. The proposed scheme finds the solution without any discritization, transformation, or restrictive assumptions and avoids the round-off errors. Several examples are given to check the reliability and efficiency of the proposed technique.

  10. OpenMP for 3D potential boundary value problems solved by PIES

    Science.gov (United States)

    KuŻelewski, Andrzej; Zieniuk, Eugeniusz

    2016-06-01

    The main purpose of this paper is examination of an application of modern parallel computing technique OpenMP to speed up the calculation in the numerical solution of parametric integral equations systems (PIES). The authors noticed, that solving more complex boundary problems by PIES sometimes requires large computing time. This paper presents the use of OpenMP and fast C++ linear algebra library Armadillo for boundary value problems modelled by 3D Laplace's equation and solved using PIES. The testing example shows that the use of mentioned technologies significantly increases speed of calculations in PIES.

  11. Discrete singular convolution mapping methods for solving singular boundary value and boundary layer problems

    Science.gov (United States)

    Pindza, Edson; Maré, Eben

    2017-03-01

    A modified discrete singular convolution method is proposed. The method is based on the single (SE) and double (DE) exponential transformation to speed up the convergence of the existing methods. Numerical computations are performed on a wide variety of singular boundary value and singular perturbed problems in one and two dimensions. The obtained results from discrete singular convolution methods based on single and double exponential transformations are compared with each other, and with the existing methods too. Numerical results confirm that these methods are considerably efficient and accurate in solving singular and regular problems. Moreover, the method can be applied to a wide class of nonlinear partial differential equations.

  12. Boundary-value problems for ordinary differential equations with matrix coefficients containing a spectral parameter

    Directory of Open Access Journals (Sweden)

    Mohamed Denche

    2007-01-01

    Full Text Available In the present work, we study a multi-point boundary-value problem for an ordinary differential equation with matrix coefficients containing a spectral parameter in the boundary conditions. Assuming some regularity conditions, we show that the characteristic determinant has an infinite number of zeros, and specify their asymptotic behavior. Using the asymptotic behavior of Green matrix on contours expending at infinity, we establish the series expansion formula of sufficiently smooth functions in terms of residuals solutions to the given problem. This formula actually gives the completeness of root functions as well as the possibility of calculating the coefficients of the series.

  13. Solution of Seventh Order Boundary Value Problems by Variation of Parameters Method

    Directory of Open Access Journals (Sweden)

    Muzammal Iftikhar

    2013-01-01

    Full Text Available The induction motor behavior is represented by a fifth order differential equation model. Addition of a torque correction factor to this model accurately reproduces the transient torques and instantaneous real and reactive power flows of the full seventh order differential equation model. The aim of this study is to solve the seventh order boundary value problems and the variation of parameters method is used for this purpose. The approximate solutions of the problems are obtained in terms of rapidly convergent series. Two numerical examples have been given to illustrate the efficiency and implementation of the method.

  14. Petrov-Galerkin Spectral Element Method for Mixed Inhomogeneous Boundary Value Problems on Polygons

    Institute of Scientific and Technical Information of China (English)

    Hongli JIA; Benyu GUO

    2010-01-01

    The authors investigate Petrov-Galerkin spectral element method.Some results on Legendre irrational quasi-orthogonal approximations are established,which play important roles in Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems of partial differential equations defined on polygons.As examples of applications,spectral element methods for two model problems,with the spectral accuracy in certain Jacobi weighted Sobolev spaces,are proposed.The techniques developed in this paper are also applicable to other higher order methods.

  15. Boundary-value problems for wave equations with data on the whole boundary

    Directory of Open Access Journals (Sweden)

    Makhmud A. Sadybekov

    2016-10-01

    Full Text Available In this article we propose a new formulation of boundary-value problem for a one-dimensional wave equation in a rectangular domain in which boundary conditions are given on the whole boundary. We prove the well-posedness of boundary-value problem in the classical and generalized senses. To substantiate the well-posedness of this problem it is necessary to have an effective representation of the general solution of the problem. In this direction we obtain a convenient representation of the general solution for the wave equation in a rectangular domain based on d'Alembert classical formula. The constructed general solution automatically satisfies the boundary conditions by a spatial variable. Further, by setting different boundary conditions according to temporary variable, we get some functional or functional-differential equations. Thus, the proof of the well-posedness of the formulated problem is reduced to question of the existence and uniqueness of solutions of the corresponding functional equations.

  16. Second-order schemes for a boundary value problem with Neumann's boundary conditions

    Science.gov (United States)

    Dehghan, Mehdi

    2002-01-01

    A new second-order finite difference scheme based on the (3, 3) alternating direction implicit method and a new second-order finite difference technique based on the (5, 5) implicit formula are discussed for solving a nonlocal boundary value problem for the two-dimensional diffusion equation with Neumann's boundary conditions. While sharing some common features with the one-dimensional models, the solution of two-dimensional equations are substantially more difficult, thus some considerations are taken to be able to extend some ideas of the one-dimensional case. Using a suitable transformation the solution of this problem is equivalent to the solution of two other problems. The former, which is a one-dimensional nonlocal boundary value problem giving the value of [mu] through using the unconditionally stable standard implicit (3, 1) backward time-centred space (denoted BTCS) scheme. Using this result the second problem will be changed to a classical two-dimensional diffusion equation with Neumann's boundary conditions which will be solved numerically by using the unconditionally stable alternating direction implicit (3, 3) technique or the fully implicit finite difference scheme. The results of a numerical example are given and computation times are presented. Error estimates derived in the maximum norm are also tabulated.

  17. A simple finite element method for boundary value problems with a Riemann–Liouville derivative

    KAUST Repository

    Jin, Bangti

    2016-02-01

    © 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-1 in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and L2(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.

  18. Solving Directly Two Point Non Linear Boundary Value Problems Using Direct Adams Moulton Method

    Directory of Open Access Journals (Sweden)

    Zanariah A. Majid

    2011-01-01

    Full Text Available Problem statement: In this study, a direct method of Adams Moulton type was developed for solving non linear two point Boundary Value Problems (BVPs directly. Most of the existence researches involving BVPs will reduced the problem to a system of first order Ordinary Differential Equations (ODEs. This approach is very well established but it obviously will enlarge the systems of first order equations. However, the direct method in this research will solved the second order BVPs directly without reducing it to first order ODEs. Approach: Lagrange interpolation polynomial was applied in the derivation of the proposed method. The method was implemented using constant step size via shooting technique in order to determine the approximated solutions. The shooting technique will employ the Newton’s method for checking the convergent of the guessing values for the next iteration. Results: Numerical results confirmed that the direct method gave better accuracy and converged faster compared to the existing method. Conclusion: The proposed direct method is suitable for solving two point non linear boundary value problems.

  19. General theory of spherically symmetric boundary-value problems of the linear transport theory.

    Science.gov (United States)

    Kanal, M.

    1972-01-01

    A general theory of spherically symmetric boundary-value problems of the one-speed neutron transport theory is presented. The formulation is also applicable to the 'gray' problems of radiative transfer. The Green's function for the purely absorbing medium is utilized in obtaining the normal mode expansion of the angular densities for both interior and exterior problems. As the integral equations for unknown coefficients are regular, a general class of reduction operators is introduced to reduce such regular integral equations to singular ones with a Cauchy-type kernel. Such operators then permit one to solve the singular integral equations by the standard techniques due to Muskhelishvili. We discuss several spherically symmetric problems. However, the treatment is kept sufficiently general to deal with problems lacking azimuthal symmetry. In particular the procedure seems to work for regions whose boundary coincides with one of the coordinate surfaces for which the Helmholtz equation is separable.

  20. A NEW EFFICIENT METHOD TO BOUNDARY VALUE PROBLEM FOR BALLISTIC ROCKET GUIDANCE

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The exploitation of rocket guidance technology on the basis of the guidance law of Space Shuttle and Pegasus rocket was performed. A new efficient method of numerical iteration solution to the boundary value problem was put forward. The numerical simulation results have shown that the method features good performances of stability, robustness, high precision, and algebraic formulas in real computation. By virtue of modern DSP (digital signal processor) high speed chip technology, the algorithm can be used in real time and can adapt to the requirements of the big primary bias of rocket guidance.

  1. Boundary Value Problems for Singular Second-Order Functional Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Hui-zhao Liu; Da-qing Jiang; Yan Wang

    2002-01-01

    Positive solutions to the boundary value problem,{y"=-f(x,y(w(x))),0〈x〈1,αy(x)-βy′(x)=ξ(x),a≤x≤0,γy(x)+δy′(x)=η(x),1≤x≤b, are obtained by applying the Schauder fixed point theorem, where w(x) is a continuous function defined on [0,1] and f(x,y) is a function defined on (0,1)× (0,∞), which satisfies certain restrictions and may have singularity at y=0. The result corrects and improves an existence theorem due to Erbe and Kong[1].

  2. Positive Solutions to a Generalized Second-Order Difference Equation with Summation Boundary Value Problem

    OpenAIRE

    Thanin Sitthiwirattham; Jessada Tariboon

    2012-01-01

    By using Krasnoselskii's fixed point theorem, we study the existence of positive solutions to the three-point summation boundary value problem ${\\Delta }^{2}u(t-1)+a(t)f(u(t))=0$ , $t\\in \\{1,2,\\dots ,T\\}$ , $u(0)=\\beta {\\sum }_{s=1}^{\\eta }u(s)$ , $u(T+1)=\\alpha {\\sum }_{s=1}^{\\eta }u(s)$ , where $f$ is continuous, $T\\ge 3$ is a fixed positive integer, $\\eta \\in \\{1,2,...,T-1\\}$ , $0

  3. Extension Theory and Krein-type Resolvent Formulas for Nonsmooth Boundary Value Problems

    DEFF Research Database (Denmark)

    Abels, Helmut; Grubb, Gerd; Wood, Ian Geoffrey

    2014-01-01

    The theory of selfadjoint extensions of symmetric operators, and more generally the theory of extensions of dual pairs, was implemented some years ago for boundary value problems for elliptic operators on smooth bounded domains. Recently, the questions have been taken up again for nonsmooth domains....... In the present work we show that pseudodifferential methods can be used to obtain a full characterization, including Kreĭn resolvent formulas, of the realizations of nonselfadjoint second-order operators on View the MathML source

  4. Free boundary value problem to 3D spherically symmetric compressible Navier-Stokes-Poisson equations

    Science.gov (United States)

    Kong, Huihui; Li, Hai-Liang

    2017-02-01

    In the paper, we consider the free boundary value problem to 3D spherically symmetric compressible isentropic Navier-Stokes-Poisson equations for self-gravitating gaseous stars with γ -law pressure density function for 6/5 <γ ≤ 4/3. For stress-free boundary condition and zero flow density continuously across the free boundary, the global existence of spherically symmetric weak solutions is shown, and the regularity and long time behavior of global solution are investigated for spherically symmetric initial data with the total mass smaller than a critical mass.

  5. A MIXED ELECTRIC BOUNDARY VALUE PROBLEM FOR AN ANTI-PLANE PIEZOELECTRIC CRACK

    Institute of Scientific and Technical Information of China (English)

    ttnAngZlaenyu; KuangZhenbang

    2003-01-01

    The analytical continuation method is adopted to solve a mixed electric boundary value problem for a piezoelectric medium under anti-plane deformation. The crack face is partly conductive and partly impermeable. The results show that the stress intensity factor is identical with the mode III stress intensity factor independent of the conducting length. But the electric field and the electric displacement are dependent on the electric boundary conditions on the crack faces and are singular not only at the crack tips but also at the junctures between the impermeable part and conducting portions.

  6. Fixed set theorems for discrete dynamics and nonlinear boundary-value problems

    Directory of Open Access Journals (Sweden)

    Robert Brooks

    2011-05-01

    Full Text Available We consider self-mappings of Hausdorff topological spaces which map compact sets to compact sets and establish the existence of invariant (fixed sets. The fixed set results are used to provide fixed set analogues of well-known fixed point theorems. An algorithm is employed to compute the existence of fixed sets which are self-similar in a generalized sense. Some numerical examples are given. The utility of the abstract result is further illustrated via the study of a boundary value problem for a system of differential equations

  7. Cubic Hermite Collocation Method for Solving Boundary Value Problems with Dirichlet, Neumann, and Robin Conditions

    Directory of Open Access Journals (Sweden)

    Ishfaq Ahmad Ganaie

    2014-01-01

    Full Text Available Cubic Hermite collocation method is proposed to solve two point linear and nonlinear boundary value problems subject to Dirichlet, Neumann, and Robin conditions. Using several examples, it is shown that the scheme achieves the order of convergence as four, which is superior to various well known methods like finite difference method, finite volume method, orthogonal collocation method, and polynomial and nonpolynomial splines and B-spline method. Numerical results for both linear and nonlinear cases are presented to demonstrate the effectiveness of the scheme.

  8. A combined analytic-numeric approach for some boundary-value problems

    Directory of Open Access Journals (Sweden)

    Mustafa Turkyilmazoglu

    2016-02-01

    Full Text Available A combined analytic-numeric approach is undertaken in the present work for the solution of boundary-value problems in the finite or semi-infinite domains. Equations to be treated arise specifically from the boundary layer analysis of some two and three-dimensional flows in fluid mechanics. The purpose is to find quick but accurate enough solutions. Taylor expansions at either boundary conditions are computed which are next matched to the other asymptotic or exact boundary conditions. The technique is applied to the well-known Blasius as well as Karman flows. Solutions obtained in terms of series compare favorably with the existing ones in the literature.

  9. Existence of Positive Solutions to Boundary Value Problem for a Nonlinear Fractional Differential Equation

    Institute of Scientific and Technical Information of China (English)

    SONG Li-mei; WENG Pei-xuan

    2012-01-01

    In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α ∈ (3,4],where the fractional derivative D0α+ is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.

  10. The Cauchy Boundary Value Problems on Closed Piecewise Smooth Manifolds in Cn

    Institute of Scientific and Technical Information of China (English)

    Liang Yu LIN; Chun Hui QIU

    2004-01-01

    Suppose that D is a bounded domain with a piecewise C1 smooth boundary in Cn. Let ψ∈ C1+α((б)D). By using the Hadamard principal value of the higher order singular integral and solid angle coefficient method of points on the boundary, we give the Plemelj formula of the higher order singular integral with the Bochner-Martinelli kernel, which has integral density ψ. Moreover,by means of the Plemelj formula and methods of complex partial differential equations, we discuss the corresponding Cauchy boundary value problem with the Bochner-Martinelli kernel on a closed piecewise smooth manifold and obtain its unique branch complex harmonic solution.

  11. Characteristic Finite Difference Methods for Moving Boundary Value Problem of Numerical Simulation of Oil Deposit

    Institute of Scientific and Technical Information of China (English)

    袁益让

    1994-01-01

    The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary value problem. This paper puts forward a kind of characteristic finite difference schemes, and derives from them optimal order estimates in l~2 norm for the error in the approximate solutions. The research is important both theoretically and practically for the model analysis in the field, for model numerical method and for software development.

  12. Solvability on boundary-value problems of elasticity of three-dimensional quasicrystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given,in which the matrix expression is used. In terms of Korn inequality and theory of function space, we prove the uniqueness of the weak solution. This gives an extension of existence theorem of solution for classical elasticity to that of quasicrystals, and develops the weak solution theory of elasticity of 2D quasicrystals given by the second author of the paper and his students.

  13. A (k, n-k) Conjugate Boundary Value Problem with Semip ositone Nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Yao Qing-liu; Shi Shao-yun

    2015-01-01

    The existence of positive solution is proved for a (k, n−k) conjugate boundary value problem in which the nonlinearity may make negative values and may be singular with respect to the time variable. The main results of Agarwal et al. (Agarwal R P, Grace S R, O’Regan D. Semipositive higher-order differential equa-tions. Appl. Math. Letters, 2004, 14: 201–207) are extended. The basic tools are the Hammerstein integral equation and the Krasnosel’skii’s cone expansion-compression technique.

  14. Numerical study of a parametric parabolic equation and a related inverse boundary value problem

    Science.gov (United States)

    Mustonen, Lauri

    2016-10-01

    We consider a time-dependent linear diffusion equation together with a related inverse boundary value problem. The aim of the inverse problem is to determine, based on observations on the boundary, the nonhomogeneous diffusion coefficient in the interior of an object. The method in this paper relies on solving the forward problem for a whole family of diffusivities by using a spectral Galerkin method in the high-dimensional parameter domain. The evaluation of the parametric solution and its derivatives is then completely independent of spatial and temporal discretizations. In the case of a quadratic approximation for the parameter dependence and a direct solver for linear least squares problems, we show that the evaluation of the parametric solution does not increase the complexity of any linearized subproblem arising from a Gauss-Newtonian method that is used to minimize a Tikhonov functional. The feasibility of the proposed algorithm is demonstrated by diffusivity reconstructions in two and three spatial dimensions.

  15. Stability of semidiscrete approximations for hyperbolic initial-boundary-value problems: An eigenvalue analysis

    Science.gov (United States)

    Warming, Robert F.; Beam, Richard M.

    1986-01-01

    A hyperbolic initial-boundary-value problem can be approximated by a system of ordinary differential equations (ODEs) by replacing the spatial derivatives by finite-difference approximations. The resulting system of ODEs is called a semidiscrete approximation. A complication is the fact that more boundary conditions are required for the spatially discrete approximation than are specified for the partial differential equation. Consequently, additional numerical boundary conditions are required and improper treatment of these additional conditions can lead to instability. For a linear initial-boundary-value problem (IBVP) with homogeneous analytical boundary conditions, the semidiscrete approximation results in a system of ODEs of the form du/dt = Au whose solution can be written as u(t) = exp(At)u(O). Lax-Richtmyer stability requires that the matrix norm of exp(At) be uniformly bounded for O less than or = t less than or = T independent of the spatial mesh size. Although the classical Lax-Richtmyer stability definition involves a conventional vector norm, there is no known algebraic test for the uniform boundedness of the matrix norm of exp(At) for hyperbolic IBVPs. An alternative but more complicated stability definition is used in the theory developed by Gustafsson, Kreiss, and Sundstrom (GKS). The two methods are compared.

  16. Variational solution about over-determined geodetic boundary value problem and its related theories

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new solving method for Laplace equation with over-determined geodetic boundary conditions is pro- posed in the paper, with the help of minimizing some kinds of quadratic functional in calculus of variation. At first, the so-called variational solution for over-determined geodetic boundary value problem is defined in terms of principles in calculus of variation. Then theoretical properties related with the solution are derived, especially for its existence, uniqueness and optimal approximation. And then the computational method of the solution is discussed, and its expression is exhibited under the case that all boundaries are spheres. Finally an arithmetic example about EGM96 gravity field model is given, and the computational results show that the proposed method can efficiently raise accuracy to deal with gravity data. In all, the variational solution of over-determined geodetic boundary value problem can not only fit to deal with many kinds of gravity data in a united form, but also has strict mathematical basements.

  17. About one special boundary value problem for multidimensional parabolic integro-differential equation

    Science.gov (United States)

    Khairullin, Ermek

    2016-08-01

    In this paper we consider a special boundary value problem for multidimensional parabolic integro-differential equation with boundary conditions that contains as a boundary condition containing derivatives of order higher than the order of the equation. The solution is sought in the form of a thermal potential of a double layer. Shows lemma of finding the limits of the derivatives of the unknown function in the neighborhood of the hyperplane. Using the boundary condition and lemma obtained integral-differential equation (IDE) of parabolic operators, whĐţre an unknown function under the integral contains higher-order space variables derivatives. IDE is reduced to a singular integral equation (SIE), when an unknown function in the spatial variables satisfies the Holder. The characteristic part is solved in the class of distribution function using method of transformation of Fourier-Laplace. Found an algebraic condition for the transition to the classical generalized solution. Integral equation of the resolvent for the characteristic part of SIE is obtained. Integro-differential equation is reduced to the Volterra-Fredholm type integral equation of the second kind by method of regularization. It is shown that the solution of SIE is a solution of IDE. Obtain a theorem on the solvability of the boundary value problem of multidimensional parabolic integro-differential equation, when a known function of the spatial variables belongs to the Holder class and satisfies the solvability conditions.

  18. Variational Iteration Method for Fifth-Order Boundary Value Problems Using He's Polynomials

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam Noor

    2008-01-01

    Full Text Available We apply the variational iteration method using He's polynomials (VIMHP for solving the fifth-order boundary value problems. The proposed method is an elegant combination of variational iteration and the homotopy perturbation methods and is mainly due to Ghorbani (2007. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discritization, linearization, or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed technique solves nonlinear problems without using Adomian's polynomials can be considered as a clear advantage of this algorithm over the decomposition method.

  19. Spectral Shifted Jacobi Tau and Collocation Methods for Solving Fifth-Order Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    A. H. Bhrawy

    2011-01-01

    Full Text Available We have presented an efficient spectral algorithm based on shifted Jacobi tau method of linear fifth-order two-point boundary value problems (BVPs. An approach that is implementing the shifted Jacobi tau method in combination with the shifted Jacobi collocation technique is introduced for the numerical solution of fifth-order differential equations with variable coefficients. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplify the problem. Shifted Jacobi collocation method is developed for solving nonlinear fifth-order BVPs. Numerical examples are performed to show the validity and applicability of the techniques. A comparison has been made with the existing results. The method is easy to implement and gives very accurate results.

  20. Mixed Initial-Boundary Value Problem for Telegraph Equation in Domain with Variable Borders

    Directory of Open Access Journals (Sweden)

    V. A. Ostapenko

    2012-01-01

    Full Text Available Mixed initial-boundary value problem for telegraph equation in domain with variable borders is considered. On one part of domain’s border are the boundary conditions of the first type, on other part of the boundary are set boundary conditions of the second type. Besides, the sizes of area are variable. The solution of such problem demands development of special methods. With the help of consecutive application of procedure of construction waves reflected from borders of domain, it is possible to obtain the solution of this problem in quadratures. In addition, for construction of the waves reflected from mobile border, it is necessary to apply the procedure specially developed for these purposes.

  1. Renormalization-group symmetries for solutions of nonlinear boundary value problems

    CERN Document Server

    Kovalev, V F

    2008-01-01

    Approximately 10 years ago, the method of renormalization-group symmetries entered the field of boundary value problems of classical mathematical physics, stemming from the concepts of functional self-similarity and of the Bogoliubov renormalization group treated as a Lie group of continuous transformations. Overwhelmingly dominating practical quantum field theory calculations, the renormalization-group method formed the basis for the discovery of the asymptotic freedom of strong nuclear interactions and underlies the Grand Unification scenario. This paper describes the logical framework of a new algorithm based on the modern theory of transformation groups and presents the most interesting results of application of the method to differential and/or integral equation problems and to problems that involve linear functionals of solutions. Examples from nonlinear optics, kinetic theory, and plasma dynamics are given, where new analytical solutions obtained with this algorithm have allowed describing the singular...

  2. Experimental studies on illposed singularly perturbed boundary value problems for parabolic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Hans-Juergen, E-mail: reinhardt@mathematik.uni-siegen.de [Department of Mathematics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Str. 3, D-57072 Siegen (Germany)

    2011-04-01

    In this paper singularly perturbed parabolic initial-boundary value problems are considered which, in addition, are illposed. The latter means that at one end of the 1-d spatial domain two conditions (for the solution and its spatial derivative) are given while on the other end the corresponding quantities are to be determined. It is well-known that such problems are illposed in the mathematical sense. Here, in addition, boundary layers may occur which make the problems more difficult. For relatively simple examples numerical experiments have been carried out and numerical results are shown. The Conjugate Gradient Methods is used to find the desired quantities iteratively. It will be explained what has to be done in any iteration step. A regularisation is performed by means of discretization and by determining an optimal final iteration step via a stopping rule.

  3. Boundary value problem for the solution of magnetic cutoff rigidities and some special applications

    Science.gov (United States)

    Edmonds, Larry

    1987-01-01

    Since a planet's magnetic field can sometimes provide a spacecraft with some protection against cosmic ray and solar flare particles, it is important to be able to quantify this protection. This is done by calculating cutoff rigidities. An alternate to the conventional method (particle trajectory tracing) is introduced, which is to treat the problem as a boundary value problem. In this approach trajectory tracing is only needed to supply boundary conditions. In some special cases, trajectory tracing is not needed at all because the problem can be solved analytically. A differential equation governing cutoff rigidities is derived for static magnetic fields. The presense of solid objects, which can block a trajectory and other force fields are not included. A few qualititative comments, on existence and uniqueness of solutions, are made which may be useful when deciding how the boundary conditions should be set up. Also included are topics on axially symmetric fields.

  4. Mixed Initial-Boundary Value Problem for the Capillary Wave Equation

    Directory of Open Access Journals (Sweden)

    B. Juarez Campos

    2016-01-01

    Full Text Available We study the mixed initial-boundary value problem for the capillary wave equation: iut+u2u=∂x3/2u,  t>0,  x>0;  u(x,0=u0(x,  x>0; u(0,t+βux(0,t=h(t,  t>0, where ∂x3/2u=(1/2π∫0∞sign⁡x-y/x-yuyy(y dy. We prove the global in-time existence of solutions of IBV problem for nonlinear capillary equation with inhomogeneous Robin boundary conditions. Also we are interested in the study of the asymptotic behavior of solutions.

  5. On existence and uniqueness of positive solutions to a class of fractional boundary value problems

    Directory of Open Access Journals (Sweden)

    Caballero J

    2011-01-01

    Full Text Available Abstract The purpose of this paper is to investigate the existence and uniqueness of positive solutions for the following fractional boundary value problem D 0 + α u ( t + f ( t , u ( t = 0 , 0 < t < 1 , u ( 0 = u ( 1 = u ′ ( 0 = 0 , where 2 < α ≤ 3 and D 0 + α is the Riemann-Liouville fractional derivative. Our analysis relies on a fixed-point theorem in partially ordered metric spaces. The autonomous case of this problem was studied in the paper [Zhao et al., Abs. Appl. Anal., to appear], but in Zhao et al. (to appear, the question of uniqueness of the solution is not treated. We also present some examples where we compare our results with the ones obtained in Zhao et al. (to appear. 2010 Mathematics Subject Classification: 34B15

  6. Homotopy deform method for reproducing kernel space for nonlinear boundary value problems

    Indian Academy of Sciences (India)

    MIN-QIANG XU; YING-ZHEN LIN

    2016-10-01

    In this paper, the combination of homotopy deform method (HDM) and simplified reproducing kernel method (SRKM) is introduced for solving the boundary value problems (BVPs) of nonlinear differential equations. The solution methodology is based on Adomian decomposition and reproducing kernel method (RKM). By the HDM, the nonlinear equations can be converted into a series of linear BVPs. After that, the simplified reproducing kernel method, which not only facilitates the reproducing kernel but also avoids the time-consuming Schmidt orthogonalization process, is proposed to solve linear equations. Some numerical test problems including ordinary differential equations and partial differential equations are analysed to illustrate the procedure and confirm the performance of the proposed method. The results faithfully reveal that our algorithm is considerably accurate and effective as expected.

  7. An efficient and simple approximate technique for solving nonlinear initial and boundary-value problems

    Science.gov (United States)

    Kounadis, A. N.

    1992-05-01

    An efficient and easily applicable, approximate analytic technique for the solution of nonlinear initial and boundary-value problems associated with nonlinear ordinary differential equations (O.D.E.) of any order and variable coefficients, is presented. Convergence, uniqueness and upper bound error estimates of solutions, obtained by the successive approximations scheme of the proposed technique, are thoroughly established. Important conclusions regarding the improvement of convergence for large time and large displacement solutions in case of nonlinear initial-value problems are also assessed. The proposed technique is much more efficient than the perturbations schemes for establishing the large postbuckling response of structural systems. The efficiency, simplicity and reliability of the proposed technique is demonstrated by two illustrative examples for which available numerical results exist.

  8. A Hartman-Nagumo inequality for the vector ordinary p-Laplacian and applications to nonlinear boundary value problems

    OpenAIRE

    Mawhin, Jean; Ure??a, Antonio J.

    2002-01-01

    A generalization of the well-known Hartman-Nagumo inequality to the case of the vector ordinary p-Laplacian and classical degree theory provide existence results for some associated nonlinear boundary value problems.

  9. A Hartman–Nagumo inequality for the vector ordinary -Laplacian and applications to nonlinear boundary value problems

    Directory of Open Access Journals (Sweden)

    Ureña Antonio J

    2002-01-01

    Full Text Available A generalization of the well-known Hartman–Nagumo inequality to the case of the vector ordinary -Laplacian and classical degree theory provide existence results for some associated nonlinear boundary value problems.

  10. EXISTENCE AND MULTIPLE EXISTENCE OF POSITIVE SOLUTIONS TO SECOND-ORDER m-POINT BOUNDARY VALUE PROBLEM ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By different fixed point theorems in cones, sufficient conditions for the existence and multiple existence of positive solutions to a class of second-order multi-point boundary value problem for dynamic equation on time scales are obtained.

  11. Existence and uniqueness for boundary-value problem with additional single point conditions of the Stokes-Bitsadze system

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir

    2012-11-01

    Full Text Available This article shows the uniqueness of a solution to a Bitsadze system of equations, with a boundary-value problem that has four additional single point conditions. It also shows how to construct the solution.

  12. GLOBAL C1 SOLUTION TO THE INITIAL-BOUNDARY VALUE PROBLEM FOR DIAGONAL HYPERBOLIC SYSTEMS WITH LINEARLY DEGENERATE CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    Li Ta-tsien(李大潜); Peng Yue-Jun

    2003-01-01

    Abstract We prove that the C0 boundedness of solution impliesthe global existence and uniqueness of C1 solution to the initial-boundary value problem for linearly degenerate quasilinear hyperbolic systems of diagonal form with nonlinear boundary conditions. Thus, if the C1 solution to the initial-boundary value problem blows up in a finite time, then the solution itself must tend to the infinity at the starting point of singularity.

  13. On explicit and numerical solvability of parabolic initial-boundary value problems

    Directory of Open Access Journals (Sweden)

    Olga Lepsky

    2006-05-01

    Full Text Available A homogeneous boundary condition is constructed for the parabolic equation (∂t+I−Δu=f in an arbitrary cylindrical domain Ω×ℝ (Ω⊂ℝn being a bounded domain, I and Δ being the identity operator and the Laplacian which generates an initial-boundary value problem with an explicit formula of the solution u. In the paper, the result is obtained not just for the operator ∂t+I−Δ, but also for an arbitrary parabolic differential operator ∂t+A, where A is an elliptic operator in ℝn of an even order with constant coefficients. As an application, the usual Cauchy-Dirichlet boundary value problem for the homogeneous equation (∂t+I−Δu=0 in Ω×ℝ is reduced to an integral equation in a thin lateral boundary layer. An approximate solution to the integral equation generates a rather simple numerical algorithm called boundary layer element method which solves the 3D Cauchy-Dirichlet problem (with three spatial variables.

  14. METHOD OF GREEN FUNCTIONS IN MATHEMATICAL MODELLING FOR TWO-POINT BOUNDARY-VALUE PROBLEMS

    Directory of Open Access Journals (Sweden)

    E. V. Dikareva

    2015-01-01

    Full Text Available Summary. In many applied problems of control, optimization, system theory, theoretical and construction mechanics, for problems with strings and nods structures, oscillation theory, theory of elasticity and plasticity, mechanical problems connected with fracture dynamics and shock waves, the main instrument for study these problems is a theory of high order ordinary differential equations. This methodology is also applied for studying mathematical models in graph theory with different partitioning based on differential equations. Such equations are used for theoretical foundation of mathematical models but also for constructing numerical methods and computer algorithms. These models are studied with use of Green function method. In the paper first necessary theoretical information is included on Green function method for multi point boundary-value problems. The main equation is discussed, notions of multi-point boundary conditions, boundary functionals, degenerate and non-degenerate problems, fundamental matrix of solutions are introduced. In the main part the problem to study is formulated in terms of shocks and deformations in boundary conditions. After that the main results are formulated. In theorem 1 conditions for existence and uniqueness of solutions are proved. In theorem 2 conditions are proved for strict positivity and equal measureness for a pair of solutions. In theorem 3 existence and estimates are proved for the least eigenvalue, spectral properties and positivity of eigenfunctions. In theorem 4 the weighted positivity is proved for the Green function. Some possible applications are considered for a signal theory and transmutation operators.

  15. POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR SECOND-ORDER SINGULAR NONLINEAR DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    李仁贵; 刘立山

    2001-01-01

    New existence results are presented for the singular second-order nonlinear boundary value problems u" + g(t)f(u) = 0, 0 < t < 1, au(0) - βu′(0) = 0,γu(1) +δu'(l) = 0 under the conditions 0 ≤ fn+ < M1, m1 < f∞-≤∞ or 0 ≤ f∞+<M1, m1 < f 0-≤ ∞, where f +0= limu→of(u)/u, f∞-= limu-→∞(u)/u, f0-=limu-→of(u)/u, f+∞= limu→=f(u)/u, g may be singular att = 0 and/ort = 1 . Theproof uses a fixed point theorem in cone theory.

  16. Positive Solutions to a Generalized Second-Order Difference Equation with Summation Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    Thanin Sitthiwirattham

    2012-01-01

    Full Text Available By using Krasnoselskii's fixed point theorem, we study the existence of positive solutions to the three-point summation boundary value problem Δ2u(t-1+a(tf(u(t=0, t∈{1,2,…,T}, u(0=β∑s=1ηu(s, u(T+1=α∑s=1ηu(s, where f is continuous, T≥3 is a fixed positive integer, η∈{1,2,...,T-1}, 0<α<(2T+2/η(η+1, 0<β<(2T+2-αη(η+1/η(2T-η+1, and Δu(t-1=u(t-u(t-1. We show the existence of at least one positive solution if f is either superlinear or sublinear.

  17. Solution matching for a three-point boundary-value problem on atime scale

    Directory of Open Access Journals (Sweden)

    Martin Eggensperger

    2004-07-01

    Full Text Available Let $mathbb{T}$ be a time scale such that $t_1, t_2, t_3 in mathbb{T}$. We show the existence of a unique solution for the three-point boundary value problem $$displaylines{ y^{DeltaDeltaDelta}(t = f(t, y(t, y^Delta(t, y^{DeltaDelta}(t, quad t in [t_1, t_3] cap mathbb{T},cr y(t_1 = y_1, quad y(t_2 = y_2, quad y(t_3 = y_3,. }$$ We do this by matching a solution to the first equation satisfying a two-point boundary conditions on $[t_1, t_2] cap mathbb{T}$ with a solution satisfying a two-point boundary conditions on $[t_2, t_3] cap mathbb{T}$.

  18. Numerical continuation methods for dynamical systems path following and boundary value problems

    CERN Document Server

    Krauskopf, Bernd; Galan-Vioque, Jorge

    2007-01-01

    Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel''s 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects ...

  19. C*-Algebra approach to the index theory of boundary value problems

    CERN Document Server

    Melo, Severino; Schick, Thomas

    2012-01-01

    Boutet de Monvel's calculus provides a pseudodifferential framework which encompasses the classical differential boundary value problems. In an extension of the concept of Lopatinski and Shapiro, it associates to each operator two symbols: a pseudodifferential principal symbol, which is a bundle homomorphism, and an operator-valued boundary symbol. Ellipticity requires the invertibility of both. If the underlying manifold is compact, elliptic elements define Fredholm operators. Boutet de Monvel showed how then the index can be computed in topological terms. The crucial observation is that elliptic operators can be mapped to compactly supported $K$-theory classes on the cotangent bundle over the interior of the manifold. The Atiyah-Singer topological index map, applied to this class, then furnishes the index of the operator. Based on this result, Fedosov, Rempel-Schulze and Grubb have given index formulas in terms of the symbols. In this paper we survey previous work how C*-algebra K-theory can be used to give...

  20. An efficient numerical technique for the solution of nonlinear singular boundary value problems

    Science.gov (United States)

    Singh, Randhir; Kumar, Jitendra

    2014-04-01

    In this work, a new technique based on Green's function and the Adomian decomposition method (ADM) for solving nonlinear singular boundary value problems (SBVPs) is proposed. The technique relies on constructing Green's function before establishing the recursive scheme for the solution components. In contrast to the existing recursive schemes based on the ADM, the proposed technique avoids solving a sequence of transcendental equations for the undetermined coefficients. It approximates the solution in the form of a series with easily computable components. Additionally, the convergence analysis and the error estimate of the proposed method are supplemented. The reliability and efficiency of the proposed method are demonstrated by several numerical examples. The numerical results reveal that the proposed method is very efficient and accurate.

  1. Direct fifth order block method for solving second order Neumann and singular perturbed boundary value problem

    Science.gov (United States)

    Hasni, Mohd Mughti; Majid, Zanariah Abdul; Senu, Norazak; Rajalingam, Sokkalingam; Daud, Hanita; Daud, Muhamad Azlan

    2016-11-01

    This paper presents a four point block one-step method for solving directly boundary value problems (BVP) with Neumann boundary conditions and Singular Perturnbation BVPs. This method is formulated using Lagrange interpolating polynomial. The block method will solve the second order linear Neumann and Singular Perturbation BVPs directly without reducing it to the system of first order differential equations. This direct method will compute four points simultaneously within a block using constant step size. This method will be used together with linear shooting technique to construct the solutions. The implementation is based on the predictor and corrector formulas. Numerical results are given to show the efficiency of this method compared to the existing methods.

  2. Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, M.C.; Tran, P.X.

    2006-01-01

    We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.

  3. THE HILBERT BOUNDARY VALUE PROBLEM FOR GENERALIZED ANALYTIC FUNCTIONS IN CLIFFORD ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Zhongwei SI; Jinyuan DU

    2013-01-01

    Let R0,n be the real Clifford algebra generated by e1,e2,…,en satisfying eiej +ejei =-2δij,i,j =1,2,…,n.e0 is the unit element.Let Ω be an open set.A function f is called left generalized analytic in Ω if f satisfies the equation Lf =0,(0.1)where L =q0e0(δ)x0 + q1e1(δ)x1 + … +qnen(δ)xn,qi > 0,i =0,1,…,n.In this article,we first give the kernel function.for the generalized analytic function.Further,the Hilbert boundary value problem for generalized analytic functions in Rn+1+ will be investigated.

  4. Modelling of hydrogen thermal desorption spectrum in nonlinear dynamical boundary-value problem

    Science.gov (United States)

    Kostikova, E. K.; Zaika, Yu V.

    2016-11-01

    One of the technological challenges for hydrogen materials science (including the ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermal desorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a distributed boundary-value problem of thermal desorption and a numerical method for TDS spectrum simulation, where only integration of a nonlinear system of low order (compared with, e.g., the method of lines) ordinary differential equations (ODE) is required. This work is supported by the Russian Foundation for Basic Research (project 15-01-00744).

  5. A coupled BEM-FEM method for finite strain magneto-elastic boundary-value problems

    Science.gov (United States)

    Nedjar, B.

    2016-12-01

    The first objective of this contribution is the formulation of nonlinear problems in magneto-elasticity involving finite geometry of the surrounding free space. More specifically for the magnetic part of the problem, the surrounding free space is described by means of a boundary integral equation for which boundary elements are used that are appropriately coupled with the finite element discretization used inside the material. The second objective is to develop a numerical strategy to solve the strongly coupled magneto-mechanics problem at hand. Herein we provide a staggered scheme consisting of a magnetostatic resolution employing the above coupled BEM-FEM procedure at fixed deformation, followed by a mechanical resolution at fixed magnetic fields. This decoupled method renders the whole solution strategy very appealing since, among others, the first BEM-FEM resolution is linear for some prototype models, and the remaining mechanical resolution is analogous to nowadays classical nonlinear elastostatic problems in the finite strain range. Some nonlinear boundary-value problems are simulated to demonstrate the applicability of the proposed framework.

  6. Hybrid state vector methods for structural dynamic and aeroelastic boundary value problems

    Science.gov (United States)

    Lehman, L. L.

    1982-01-01

    A computational technique is developed that is suitable for performing preliminary design aeroelastic and structural dynamic analyses of large aspect ratio lifting surfaces. The method proves to be quite general and can be adapted to solving various two point boundary value problems. The solution method, which is applicable to both fixed and rotating wing configurations, is based upon a formulation of the structural equilibrium equations in terms of a hybrid state vector containing generalized force and displacement variables. A mixed variational formulation is presented that conveniently yields a useful form for these state vector differential equations. Solutions to these equations are obtained by employing an integrating matrix method. The application of an integrating matrix provides a discretization of the differential equations that only requires solutions of standard linear matrix systems. It is demonstrated that matrix partitioning can be used to reduce the order of the required solutions. Results are presented for several example problems in structural dynamics and aeroelasticity to verify the technique and to demonstrate its use. These problems examine various types of loading and boundary conditions and include aeroelastic analyses of lifting surfaces constructed from anisotropic composite materials.

  7. Initial-Boundary Value Problem Solution of the Nonlinear Shallow-water Wave Equations

    Science.gov (United States)

    Kanoglu, U.; Aydin, B.

    2014-12-01

    The hodograph transformation solutions of the one-dimensional nonlinear shallow-water wave (NSW) equations are usually obtained through integral transform techniques such as Fourier-Bessel transforms. However, the original formulation of Carrier and Greenspan (1958 J Fluid Mech) and its variant Carrier et al. (2003 J Fluid Mech) involve evaluation integrals. Since elliptic integrals are highly singular as discussed in Carrier et al. (2003), this solution methodology requires either approximation of the associated integrands by smooth functions or selection of regular initial/boundary data. It should be noted that Kanoglu (2004 J Fluid Mech) partly resolves this issue by simplifying the resulting integrals in closed form. Here, the hodograph transform approach is coupled with the classical eigenfunction expansion method rather than integral transform techniques and a new analytical model for nonlinear long wave propagation over a plane beach is derived. This approach is based on the solution methodology used in Aydın & Kanoglu (2007 CMES-Comp Model Eng) for wind set-down relaxation problem. In contrast to classical initial- or boundary-value problem solutions, here, the NSW equations are formulated to yield an initial-boundary value problem (IBVP) solution. In general, initial wave profile with nonzero initial velocity distribution is assumed and the flow variables are given in the form of Fourier-Bessel series. The results reveal that the developed method allows accurate estimation of the spatial and temporal variation of the flow quantities, i.e., free-surface height and depth-averaged velocity, with much less computational effort compared to the integral transform techniques such as Carrier et al. (2003), Kanoglu (2004), Tinti & Tonini (2005 J Fluid Mech), and Kanoglu & Synolakis (2006 Phys Rev Lett). Acknowledgments: This work is funded by project ASTARTE- Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV

  8. Numerical solutions of boundary value problems for variable coefficient generalized KdV equations using Lie symmetries

    Science.gov (United States)

    Vaneeva, O. O.; Papanicolaou, N. C.; Christou, M. A.; Sophocleous, C.

    2014-09-01

    The exhaustive group classification of a class of variable coefficient generalized KdV equations is presented, which completes and enhances results existing in the literature. Lie symmetries are used for solving an initial and boundary value problem for certain subclasses of the above class. Namely, the found Lie symmetries are applied in order to reduce the initial and boundary value problem for the generalized KdV equations (which are PDEs) to an initial value problem for nonlinear third-order ODEs. The latter problem is solved numerically using the finite difference method. Numerical solutions are computed and the vast parameter space is studied.

  9. Boundary value problems of finite elasticity local theorems on existence, uniqueness, and analytic dependence on data

    CERN Document Server

    Valent, Tullio

    1988-01-01

    In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be­ sides being quite spontaneous, allows us to consider a great many inter­ esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis­ tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b]...

  10. Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Nemat Nyamoradi

    2013-01-01

    Full Text Available We consider a system of boundary value problems for fractional differential equation given by D0+βϕp(D0+αu(t=λ1a1(tf1(u(t,v(t, t∈(0,1, D0+βϕp(D0+αv(t=λ2a2(tf2(u(t,v(t, t∈(0,1, where 1<α, β≤2, 2<α+β≤4, λ1, λ2 are eigenvalues, subject either to the boundary conditions D0+αu(0=D0+αu(1=0, u(0=0, D0+β1u(1-Σi=1m-2a1i D0+β1u(ξ1i=0, D0+αv(0=D0+αv(1=0, v(0=0, D0+β1v(1-Σi=1m-2a2i D0+β1v(ξ2i=0 or D0+αu(0=D0+αu(1=0, u(0=0, D0+β1u(1-Σi=1m-2a1i D0+β1u(ξ1i=ψ1(u, D0+αv(0=D0+αv(1=0, v(0=0, D0+β1v(1-Σi=1m-2a2i D0+β1v(ξ2i=ψ2(v, where 0<β1<1, α-β1-1≥0 and ψ1, ψ2:C([0,1]→[0, ∞ are continuous functions. The Krasnoselskiis fixed point theorem is applied to prove the existence of at least one positive solution for both fractional boundary value problems. As an application, an example is given to demonstrate some of main results.

  11. On Solutions of the Integrable Boundary Value Problem for KdV Equation on the Semi-Axis

    Energy Technology Data Exchange (ETDEWEB)

    Ignatyev, M. Yu., E-mail: ignatievmu@info.sgu.ru [Saratov State University, Department of Mathematics (Russian Federation)

    2013-03-15

    This paper is concerned with the Korteweg-de Vries (KdV) equation on the semi-axis. The boundary value problem with inhomogeneous integrable boundary conditions is studied. We establish some characteristic properties of solutions of the problem. Also we construct a wide class of solutions of the problem using the inverse spectral method.

  12. ON SOLVABILITY OF A BOUNDARY VALUE PROBLEM FOR A NONHOMOGENEOUS BIHARMONIC EQUATION WITH A BOUNDARY OPERATOR OF A FRACTIONAL ORDER

    Institute of Scientific and Technical Information of China (English)

    A.S. BERDYSHEV; A. CABADA; B.Kh. TURMETOV

    2014-01-01

    This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouville sense. The considered problem is a generalization of the known Dirichlet and Neumann problems.

  13. On Boundary-Value Problems for the Laplacian in Bounded Domains with Micro Inhomogeneous Structure of the Boundaries

    Institute of Scientific and Technical Information of China (English)

    Gregory A. CHECHKIN; Rustem R. GADYL'SHIN

    2007-01-01

    We consider boundary-value problems with rapidly alternating types of boundary condi- tions. We present the classification of homogenized (limit) problems depending on the ratio of small parameters, which characterize the diameter of parts of the boundary with different types of boundary conditions. Also we study the respective spectral problem of this type.

  14. SOLUTIONS TO DISCRETE MULTIPARAMETER PERIODIC BOUNDARY VALUE PROBLEMS INVOLVING THE p-LAPLACIAN VIA CRITICAL POINT THEORY

    Institute of Scientific and Technical Information of China (English)

    高承华

    2014-01-01

    In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value problems in [G. Bonanno and P. Candito, Appl. Anal., 88(4) (2009), pp. 605-616], we construct two new strong maximum principles and obtain that the boundary value problem has three positive solutions for λ and µ in some suitable intervals. The approaches we use are the critical point theory.

  15. Existence of solutions to boundary value problems arising from the fractional advection dispersion equation

    Directory of Open Access Journals (Sweden)

    Lingju Kong

    2013-04-01

    Full Text Available We study the existence of multiple solutions to the boundary value problem $$displaylines{ frac{d}{dt}Big(frac12{}_0D_t^{-eta}(u'(t+frac12{}_tD_T^{-eta}(u'(t Big+lambda abla F(t,u(t=0,quad tin [0,T],cr u(0=u(T=0, }$$ where $T>0$, $lambda>0$ is a parameter, $0leqeta<1$, ${}_0D_t^{-eta}$ and ${}_tD_T^{-eta}$ are, respectively, the left and right Riemann-Liouville fractional integrals of order $eta$, $F: [0,T]imesmathbb{R}^Nomathbb{R}$ is a given function. Our interest in the above system arises from studying the steady fractional advection dispersion equation. By applying variational methods, we obtain sufficient conditions under which the above equation has at least three solutions. Our results are new even for the special case when $eta=0$. Examples are provided to illustrate the applicability of our results.

  16. Uniqueness and Asymptotic Behavior of Positive Solutions for a Fractional-Order Integral Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    Min Jia

    2012-01-01

    Full Text Available We study a model arising from porous media, electromagnetic, and signal processing of wireless communication system -tαx(t=f(t,x(t,x'(t,x”(t,…,x(n-2(t,  0boundary value problem for fractional differential equation are obtained. Our analysis relies on Schauder's fixed-point theorem and upper and lower solution method.

  17. Acceleration of multiple solution of a boundary value problem involving a linear algebraic system

    Science.gov (United States)

    Gazizov, Talgat R.; Kuksenko, Sergey P.; Surovtsev, Roman S.

    2016-06-01

    Multiple solution of a boundary value problem that involves a linear algebraic system is considered. New approach to acceleration of the solution is proposed. The approach uses the structure of the linear system matrix. Particularly, location of entries in the right columns and low rows of the matrix, which undergo variation due to the computing in the range of parameters, is used to apply block LU decomposition. Application of the approach is considered on the example of multiple computing of the capacitance matrix by method of moments used in numerical electromagnetics. Expressions for analytic estimation of the acceleration are presented. Results of the numerical experiments for solution of 100 linear systems with matrix orders of 1000, 2000, 3000 and different relations of variated and constant entries of the matrix show that block LU decomposition can be effective for multiple solution of linear systems. The speed up compared to pointwise LU factorization increases (up to 15) for larger number and order of considered systems with lower number of variated entries.

  18. Interior and exterior solutions for boundary value problems in composite elastic and viscous media

    Directory of Open Access Journals (Sweden)

    D. L. Jain

    1985-01-01

    Full Text Available We present the solutions for the boundary value problems of elasticity when a homogeneous and isotropic solid of an arbitrary shape is embedded in an infinite homogeneous isotropic medium of different properties. The solutions are obtained inside both the guest and host media by an integral equation technique. The boundaries considered are an oblong, a triaxial ellipsoid and an elliptic cyclinder of a finite height and their limiting configurations in two and three dimensions. The exact interior and exterior solutions for an ellipsoidal inclusion and its limiting configurations are presented when the infinite host medium is subjected to a uniform strain. In the case of an oblong or an elliptic cylinder of finite height the solutions are approximate. Next, we present the formula for the energy stored in the infinite host medium due to the presence of an arbitrary symmetrical void in it. This formula is evaluated for the special case of a spherical void. Finally, we analyse the change of shape of a viscous incompressible ellipsoidal region embedded in a slowly deforming fluid of a different viscosity. Two interesting limiting cases are discussed in detail.

  19. Solution of the Boundary Value Problems with Boundary Conditions in the Form of Gravitational Curvatures

    Science.gov (United States)

    Sprlak, M.; Novak, P.; Pitonak, M.; Hamackova, E.

    2015-12-01

    Values of scalar, vectorial and second-order tensorial parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and are well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. This fact may be documented by the terrestrial experiments Dulkyn and Magia, as well as by the proposal of the gravity-dedicated satellite mission called OPTIMA. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, we derive integral transforms between the gravitational potential and gravitational curvatures, i.e., we find analytical solutions of the boundary value problems with gravitational curvatures as boundary conditions. Secondly, properties of the corresponding Green kernel functions are studied in the spatial and spectral domains. Thirdly, the correctness of the new analytical solutions is tested in a simulation study. The presented mathematical apparatus reveal important properties of the gravitational curvatures. It also extends the Meissl scheme, i.e., an important theoretical paradigm that relates various parameters of the Earth's gravitational field.

  20. Positive Solutions for Class of State Dependent Boundary Value Problems with Fractional Order Differential Operators

    Directory of Open Access Journals (Sweden)

    Dongyuan Liu

    2015-01-01

    Full Text Available We consider the following state dependent boundary-value problem D0+αy(t-pD0+βg(t,y(σ(t+f(t,y(τ(t=0, 0

  1. Multiple positive solutions to nonlinear boundary value problems of a system for fractional differential equations.

    Science.gov (United States)

    Zhai, Chengbo; Hao, Mengru

    2014-01-01

    By using Krasnoselskii's fixed point theorem, we study the existence of at least one or two positive solutions to a system of fractional boundary value problems given by -D(0+)(ν1)y1(t) = λ1a1(t)f(y1(t), y2(t)), - D(0+)(ν2)y2(t) = λ2a2(t)g(y1(t), y2(t)), where D(0+)(ν) is the standard Riemann-Liouville fractional derivative, ν1, ν2 ∈ (n - 1, n] for n > 3 and n ∈ N, subject to the boundary conditions y1((i))(0) = 0 = y ((i))(0), for 0 ≤ i ≤ n - 2, and [D(0+)(α)y1(t)] t=1 = 0 = [D(0+ (α)y2(t)] t=1, for 1 ≤ α ≤ n - 2, or y1((i))(0) = 0 = y ((i))(0), for 0 ≤ i ≤ n - 2, and [D(0+)(α)y1(t)] t=1 = ϕ1(y1), [D(0+)(α)y2(t)] t=1 = ϕ2(y2), for 1 ≤ α ≤ n - 2, ϕ1, ϕ2 ∈ C([0,1], R). Our results are new and complement previously known results. As an application, we also give an example to demonstrate our result.

  2. On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis

    Directory of Open Access Journals (Sweden)

    D. Goos

    2015-01-01

    Full Text Available We consider the time-fractional derivative in the Caputo sense of order α∈(0, 1. Taking into account the asymptotic behavior and the existence of bounds for the Mainardi and the Wright function in R+, two different initial-boundary-value problems for the time-fractional diffusion equation on the real positive semiaxis are solved. Moreover, the limit when α↗1 of the respective solutions is analyzed, recovering the solutions of the classical boundary-value problems when α = 1, and the fractional diffusion equation becomes the heat equation.

  3. Investigation of Boundary-Value Problems for the Equation of High Order with Small Parameter at a Higher Derivative

    CERN Document Server

    Amirkhanov, I V; Sarker, N R; Sarhadov, I

    2004-01-01

    In this work the solutions of different boundary-value problems are retrieved analytically and numerically for the equation of high order with small parameter at a higher derivative. The analysis of these solutions is given. It is found that for some variants of symmetric boundary conditions the solutions of a boundary-value problem for the equations of the 4th, 6th, $\\ldots$ orders transfer into the solution of a Schrödinger equation at $\\varepsilon \\to 0$ ($\\varepsilon $ is small parameter). The retrieved solutions with different knots are orthogonal among themselves. The results of numerical calculations are given.

  4. Analyticity of solutions of analytic non-linear general elliptic boundary value problems,and some results about linear problems

    Institute of Scientific and Technical Information of China (English)

    WANG Rouhuai

    2006-01-01

    The main aim of this paper is to discuss the problem concerning the analyticity of the solutions of analytic non-linear elliptic boundary value problems.It is proved that if the corresponding first variation is regular in Lopatinski(i) sense,then the solution is analytic up to the boundary.The method of proof really covers the case that the corresponding first variation is regularly elliptic in the sense of Douglis-Nirenberg-Volevich,and hence completely generalize the previous result of C.B.Morrey.The author also discusses linear elliptic boundary value problems for systems of ellip tic partial differential equations where the boundary operators are allowed to have singular integral operators as their coefficients.Combining the standard Fourier transform technique with analytic continuation argument,the author constructs the Poisson and Green's kernel matrices related to the problems discussed and hence obtain some representation formulae to the solutions.Some a priori estimates of Schauder type and Lp type are obtained.

  5. A reconstruction algorithm based on topological gradient for an inverse problem related to a semilinear elliptic boundary value problem

    Science.gov (United States)

    Beretta, Elena; Manzoni, Andrea; Ratti, Luca

    2017-03-01

    In this paper we develop a reconstruction algorithm for the solution of an inverse boundary value problem dealing with a semilinear elliptic partial differential equation of interest in cardiac electrophysiology. The goal is the detection of small inhomogeneities located inside a domain Ω , where the coefficients of the equation are altered, starting from observations of the solution of the equation on the boundary \\partial Ω . Exploiting theoretical results recently achieved in [13], we implement a reconstruction procedure based on the computation of the topological gradient of a suitable cost functional. Numerical results obtained for several test cases finally assess the feasibility and the accuracy of the proposed technique.

  6. On a new nonlocal boundary value problem for an equation of the mixed parabolic-hyperbolic type

    Science.gov (United States)

    Dildabek, Gulnar

    2016-12-01

    In this work a new nonlocal boundary value problem for an equation of the mixed type is formulated. This equation is parabolic-hyperbolic and belongs to the first kind because the line of type change is not a characteristic of the equation. Non-local condition binds points on boundaries of the parabolic and hyperbolic parts of the domain with each other. This problem is generalization of the well-known problems of Frankl type. A boundary value problem for the heat equation with conditions of the Samarskii-Ionlin type arises in solving this problem. Unlike the existing publications of the other authors related to the theme it is necessary to note that in this papers the nonlocal problems were considered in rectangular domains. But in our formulation of the problem the hyperbolic part of the domain coincides with a characteristic triangle. Unique strong solvability of the formulated problem is proved.

  7. Positive solutions of boundary value problem for singular positone and semi-positone third-order difference equations

    Directory of Open Access Journals (Sweden)

    Gai Gongqi

    2011-01-01

    Full Text Available Abstract This article studies the boundary value problems for the third-order nonlinear singular difference equations Δ 3 u ( i - 2 + λ a ( i f ( i , u ( i = 0 , i ∈ [ 2 , T + 2 ] , satisfying five kinds of different boundary value conditions. This article shows the existence of positive solutions for positone and semi-positone type. The nonlinear term may be singular. Two examples are also given to illustrate the main results. The arguments are based upon fixed point theorems in a cone. MSC [2008]: 34B15; 39A10.

  8. Sufficient conditions for functions to form Riesz bases in L_2 and applications to nonlinear boundary-value problems

    OpenAIRE

    Peter E. Zhidkov

    2001-01-01

    We find sufficient conditions for systems of functions to be Riesz bases in $L_2(0,1)$. Then we improve a theorem presented in [13] by showing that a ``standard'' system of solutions of a nonlinear boundary-value problem, normalized to 1, is a Riesz basis in $L_2(0,1)$. The proofs in this article use Bari's theorem.

  9. GLOBAL WEAKLY DISCONTINUOUS SOLUTIONS TO A KIND OF MIXED INITIAL-BOUNDARY VALUE PROBLEM FOR INHOMOGENEOUS QUASILINEAR HYPERBOLIC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    GUO Fei

    2007-01-01

    In this paper we study the mixed initial-boundary value problem for inhomogeneous quasilinear hyperbolic systems in the domain D={(t,x)| t≥O,x≥O}.Under the assumption that the source term satisfies the matching condition,a sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solution is given.

  10. Numerical solution of the homogeneous Neumann boundary value problem on domains with a thin layer of random thickness

    Science.gov (United States)

    Dambrine, M.; Greff, I.; Harbrecht, H.; Puig, B.

    2017-02-01

    The present article is dedicated to the numerical solution of homogeneous Neumann boundary value problems on domains with a thin layer of different conductivity and of random thickness. By changing the boundary condition, the boundary value problem given on the random domain can be transformed into a boundary value problem on a fixed domain. The randomness is then contained in the coefficients of the new boundary condition. This thin coating can be expressed by a random Ventcell boundary condition and yields a second order accurate solution in the scale parameter ε of the layer's thickness. With the help of the Karhunen-Loève expansion, we transform this random boundary value problem into a deterministic, parametric one with a possibly high-dimensional parameter y. Based on the decay of the random fluctuations of the layer's thickness, we prove rates of decay of the derivatives of the random solution with respect to this parameter y which are robust in the scale parameter ε. Numerical results validate our theoretical findings.

  11. Existence and Uniqueness of Solution to Nonlinear Boundary Value Problems with Sign-Changing Green’s Function

    Directory of Open Access Journals (Sweden)

    Peiguo Zhang

    2013-01-01

    Full Text Available By using the cone theory and the Banach contraction mapping principle, the existence and uniqueness results are established for nonlinear higher-order differential equation boundary value problems with sign-changing Green’s function. The theorems obtained are very general and complement previous known results.

  12. CALCULUS OF VARIATIONS WITH DIRICHLET BOUNDARY VALUE PROBLEM FOR PERTURBED SECOND-ORDER DIFFERENTIAL EQUATIONS ON A HALF-LINE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Dirichlet boundary value problems for perturbed second-order differential equations on a half line are investigated in this paper. The methods mainly depend on the calculus of variations to the classical functionals. Sufficient conditions are obtained for the existence of the solutions.

  13. Multiple positive solutions for singular boundary-value problems with derivative dependence on finite and infinite intervals

    Directory of Open Access Journals (Sweden)

    Baoqiang Yan

    2006-07-01

    Full Text Available In this paper, Krasnoselskii's theorem and the fixed point theorem of cone expansion and compression are improved. Using the results obtained, we establish the existence of multiple positive solutions for the singular second-order boundary-value problems with derivative dependance on finite and infinite intervals.

  14. Existence of solutions of nonlinear two-point boundary value problems for 4nth-order nonlinear differential equation

    Institute of Scientific and Technical Information of China (English)

    高永馨

    2002-01-01

    Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equation y(4n)= f( t,y,y' ,y",… ,y(4n-1) ) (a) with the boundary conditions g2i(y(2i) (a) ,y(2i+1) (a)) = 0,h2i(y(2i) (c) ,y(2i+1) (c)) = 0, (I= 0,1,…,2n - 1 ) (b) where the functions f, gi and hi are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equation y(n) = f(t,y,y',y",… ,y(n-1)) many results have been given at the present time. But the existence of solutions of boundary value problem (a), (b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, I.e. Existence of solutions of the boundary value problem. Y(4n) = f(t,y,y',y",… ,y(4n-1) ) a2iy(2i) (at) + a2i+1y(2i+1) (a) = b2i ,c2iy(2O ( c ) + c2i+1y(2i+1) ( c ) = d2i, ( I = 0,1 ,…2n - 1) has not been dealt with in previous works.

  15. POSITIVE SOLUTIONS TO A CLASS OF SECOND-ORDER SINGULAR SEMIPOSITIVE NEUMANN BOUNDARY VALUE PROBLEM WITH GENERAL FORM

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By constructing an explicit Green function and using the fixed point index theory on a cone, we present some existence results of positive solutions to a class of second-order singular semipositive Neumann boundary value problem, where the nonlinear term is allowed to be nonnegative and unbounded.

  16. Existence and Uniqueness of Positive Solution for a Singular Nonlinear Second-Order -Point Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    Lv Xuezhe

    2010-01-01

    Full Text Available Abstract The existence and uniqueness of positive solution is obtained for the singular second-order -point boundary value problem for , , , where , , are constants, and can have singularities for and/or and for . The main tool is the perturbation technique and Schauder fixed point theorem.

  17. The Existence and Multiplicity of Positive Solutions for a Third-order Three-point Boundary Value Problem

    Institute of Scientific and Technical Information of China (English)

    Qing-liu Yao

    2003-01-01

    The existence of n positive solutions for a class of third-order three-point boundary value problems is investigated, where n is an arbitrary natural number. The main tool is Krasnosel'skii fixed point theorem on the cone.

  18. SUCCESSIVELY ITERATIVE TECHNIQUE OF SIGN-CHANGING SOLUTION TO A NONLINEAR THIRD-ORDER BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The iterative technique of sign-changing solution is studied for a nonlinear third-order two-point boundary value problem, where the nonlinear term has the time sin-gularity. By applying the monotonically iterative technique, an existence theorem is established and two useful iterative schemes are obtained.

  19. Two-point boundary value problems and exact controllability for several kinds of linear and nonlinear wave equations

    Energy Technology Data Exchange (ETDEWEB)

    Kong Dexing [Department of Mathematics, Zhejiang University, Hangzhou 310027 (China); Sun Qingyou, E-mail: qysun@cms.zju.edu.cn [Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)

    2011-04-01

    All articles must In this paper we introduce some new concepts for second-order hyperbolic equations: two-point boundary value problem, global exact controllability and exact controllability. For several kinds of important linear and nonlinear wave equations arising from physics and geometry, we prove the existence of smooth solutions of the two-point boundary value problems and show the global exact controllability of these wave equations. In particular, we investigate the two-point boundary value problem for one-dimensional wave equation defined on a closed curve and prove the existence of smooth solution which implies the exact controllability of this kind of wave equation. Furthermore, based on this, we study the two-point boundary value problems for the wave equation defined on a strip with Dirichlet or Neumann boundary conditions and show that the equation still possesses the exact controllability in these cases. Finally, as an application, we introduce the hyperbolic curvature flow and obtain a result analogous to the well-known theorem of Gage and Hamilton for the curvature flow of plane curves.

  20. 奇摄动非线性边值问题%THE SINGULARLY PERTURBED NONLINEAR BOUNDARY VALUE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    莫嘉琪

    2000-01-01

    The singularly perturbed nonlinear boundary value problems are considered.Using the stretched variable and the method of boundary layer correction,the formal asymptotic expansion of solution is obtained.And then the uniform validity of solution is proved by using the differential inequalities.

  1. The Third Initial-boundary Value Problem for a Class of Parabolic Monge-Ampère Equations

    Institute of Scientific and Technical Information of China (English)

    Lü BO-QIANG; LI FENG-QUAN

    2012-01-01

    For the more general parabolic Monge-Ampère equations defined by the operator F(D2u + σ(x)),the existence and uniqueness of the admissible solution to the third initial-boundary value problem for the equation are established.A new structure condition which is used to get a priori estimate is established.

  2. EXISTENCE OF POSITIVE SOLUTION TO TWO-POINT BOUNDARY VALUE PROBLEM FOR A SYSTEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we consider a two-point boundary value problem for a system of second order ordinary differential equations. Under some conditions, we show the existence of positive solution to the system of second order ordinary differential equa-tions.

  3. The Existence of Positive Solution for Singular Boundary Value Problems of First Order Differential Equation on Unbounded Domains

    Institute of Scientific and Technical Information of China (English)

    Xing-qiu Zhang; Jing-xian Sun

    2009-01-01

    By constructing a special cone and using cone compression and expansion fixed point theorem,this paper presents some existence results of positive solutions of singular boundary value problem on unbounded domains for a class of first order differential equation.As applications of the main results,two examples are given at the end of this paper.

  4. HIGH ACCURACY FINITE VOLUME ELEMENT METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    王同科

    2002-01-01

    In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs fromthe high order generalized difference methods. It is proved that the method has optimal order er-ror estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.

  5. MULTIPLE POSITIVE SOLUTIONS TO BOUNDARY VALUE PROBLEMS OF DELAY DIFFERENTIAL EQUATIONS WITH DENUMBERABLE SINGULARITIES ON INFINITE INTERVAL

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper deals with the existence of denumberable positive solutions to boundary value problems of delay differential equations with denumberable singularities on infinite intervals. By the fixed-point index theory and a new fixed-point theorem in cones, the existence of denumberable positive solutions is obtained under some suitable growth conditions imposed on the nonlinear term.

  6. On Solution of the Integrable Initial Boundary Value Problem for KdV Equation on the Semi-axis

    Energy Technology Data Exchange (ETDEWEB)

    Ignatyev, Mikhail Yurievich, E-mail: mikkieram@gmail.com [Saratov State University, Department of Mathematics (Russian Federation)

    2013-12-15

    This paper is concerned with the Korteweg-de Vries (KdV) equation on the right semi-axis. The initial boundary value problem with inhomogeneous integrable boundary conditions is studied. We show that, under some conditions on the initial data the problem has a solution and provide the procedure for constructing this solution. The procedure is based on the inverse spectral method and consists of several steps reducing to either solving some linear problems or calculations via some explicit formulas.

  7. POSITIVE SOLUTIONS TO A SINGULAR nTH ORDER THREE-POINT BOUNDARY VALUE PROBLEM WITH SIGN CHANGING NONLINEARITY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, we consider a singular nth order three-point boundary value problem with sign changing nonlinearity. By the method of lower solution and topology degree theorem, we investigate the existence of positive solutions to the above problem. Moreover, the associated Green’s function for the above problem is also given. The results of this paper are new and extend the previous known results.

  8. The Optimal Homotopy Asymptotic Method for the Solution of Higher-Order Boundary Value Problems in Finite Domains

    Directory of Open Access Journals (Sweden)

    Javed Ali

    2012-01-01

    Full Text Available We solve some higher-order boundary value problems by the optimal homotopy asymptotic method (OHAM. The proposed method is capable to handle a wide variety of linear and nonlinear problems effectively. The numerical results given by OHAM are compared with the exact solutions and the solutions obtained by Adomian decomposition (ADM, variational iteration (VIM, homotopy perturbation (HPM, and variational iteration decomposition method (VIDM. The results show that the proposed method is more effective and reliable.

  9. Nonexistence and Existence of Multiple Positive Solutions for Superlinear Three-point Boundary Value Problems via Index Theory

    Institute of Scientific and Technical Information of China (English)

    Bao-qiang Yan; Donal O'Regan; Ravi P.Agarwal

    2008-01-01

    This paper discusses both the nonexistence of positive solutions for second-order three-point bound ary value problems when the nonlinear term f(t,x,y) is superlinear in y at y=0 and the existence of multiple positive solutions for second-order three-point boundary value problems when the nonlinear term f(t,x,y) is superlinear in x at +∞.

  10. Characteristic finite difference method and application for moving boundary value problem of coupled system

    Institute of Scientific and Technical Information of China (English)

    YUAN Yi-rang; LI Chang-feng; YANG Cheng-shun; HAN Yu-ji

    2008-01-01

    The coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values. A kind of characteristic finite difference schemes is put forward, from which optimal order estimates in l2 norm are derived for the error in the approximate solutions. The research is important both theoretically and practically for the model analysis in the field, the model numerical method and software development.

  11. Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations

    OpenAIRE

    Lomtatidze, A. (Alexander)

    2016-01-01

    The aim of the present article is to get efficient conditions for the solvability of the periodic boundary value problém $$ u''=f(t,u);quad u(0)=u(omega),;; u'(0)=u'(omega), $$ where the function $fcolon[0,omega]times,]0,+infty[,tobbr$ satisfies local Ca-ra-th'{e}o-do-ry conditions, i.e., it may have ''singularity'' for $u=0$. For this purpose, first the technique of differential inequalities is developed and the question on existence and uniqueness of a~positive solution of the linear problé...

  12. Elliptic boundary value problems and construction of Lp-strong feller processes with singular drift and reflection

    CERN Document Server

    Baur, Benedict

    2014-01-01

    Benedict Baur presents modern functional analytic methods for construction and analysis of Feller processes in general and diffusion processes in particular. Topics covered are: Construction of Lp-strong Feller processes using Dirichlet form methods, regularity for solutions of elliptic boundary value problems, construction of elliptic diffusions with singular drift and reflection, Skorokhod decomposition and applications to Mathematical Physics like finite particle systems with singular interaction. Emphasize is placed on the handling of singular drift coefficients, as well as on the discussion of pointwise and pathwise properties of the constructed processes rather than just the quasi-everywhere properties commonly known from the general Dirichlet form theory. Contents Construction of Lp-Strong Feller Processes Elliptic Boundary Value Problems Skorokhod Decomposition for Reflected Diffusions with Singular Drift Particle Systems with singular interaction Target Groups Graduate and PhD students, researchers o...

  13. Triple Positive Solutions to a Third-order Three-point Boundary Value Problem with p-Laplacian Operator

    Institute of Scientific and Technical Information of China (English)

    TAN Hui-xuan; FENG Han-ying; FENG Xing-fang; DU Ya-tao

    2015-01-01

    In this paper, we consider the three-point boundary value problem (φp(uˊˊ(t)))ˊ +a(t)f(t, u(t), uˊ(t), uˊˊ(t)) = 0, t ∈ [0, 1] subject to the boundary conditions u(0) =βuˊ(0), uˊ(1) = αuˊ(η), uˊˊ(0) = 0, where φp(s) = |s|p−2s with p > 1, 0 < α, η < 1 and 0 ≤ β < 1. Applying a fixed point theorem due to Avery and Peterson, we study the existence of at least three positive solutions to the above boundary value problem.

  14. Positive Solutions for Fourth-order Delay Differential Equation of Boundary Value Problem with p-Laplacian

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-chuan; ZHOU Zong-fu

    2014-01-01

    In this work, we investigate the following fourth-order delay differential equation of boundary value problem with p-Laplacian(Φp(u000))0(t)+a(t)f(t, u(t−τ), u0(t))=0, 0boundary value problem with p-Laplacian has at least one positive solution. Some corresponding examples are presented to illustrate the application of our main results.

  15. Sufficient conditions for functions to form Riesz bases in L_2 and applications to nonlinear boundary-value problems

    Directory of Open Access Journals (Sweden)

    Peter E. Zhidkov

    2001-12-01

    Full Text Available We find sufficient conditions for systems of functions to be Riesz bases in $L_2(0,1$. Then we improve a theorem presented in [13] by showing that a ``standard'' system of solutions of a nonlinear boundary-value problem, normalized to 1, is a Riesz basis in $L_2(0,1$. The proofs in this article use Bari's theorem.

  16. Self-Adjointness of the Dirac Hamiltonian for a Class of Non-Uniformly Elliptic Boundary Value Problems

    CERN Document Server

    Finster, Felix

    2015-01-01

    We consider a boundary value problem for the Dirac equation in a four-dimensional, smooth, asymptotically flat Lorentzian manifold admitting a Killing field which is timelike near and tangential to the boundary. A self-adjoint extension of the Dirac Hamiltonian is constructed. Our results also apply to the situation that the space-time includes horizons, where the Hamiltonian fails to be elliptic.

  17. Positive solutions for Neumann boundary value problems of nonlinear second-order integro-differential equations in ordered Banach spaces

    OpenAIRE

    Liang Yue; Yang He

    2011-01-01

    Abstract The paper deals with the existence of positive solutions for Neumann boundary value problems of nonlinear second-order integro-differential equations - u ″ ( t ) + M u ( t ) = f ( t , u ( t ) , ( S u ) ( t ) ) , 0 < t < 1 , u ′ ( 0 ) = u ′ ( 1 ) = θ and u ″ ( t ) + M u ( t ) = f ( t , u ( t ) , ( S u ) ( t ) ) , 0 < t < 1 , u ′ ( 0 ) ...

  18. Uniqueness of positive solutions for fractional q-difference boundary-value problems with p-Laplacian operator

    Directory of Open Access Journals (Sweden)

    Fenghua Miao

    2013-07-01

    Full Text Available In this article, we study the fractional q-difference boundary-value problems with p-Laplacian operator $$displaylines{ D_{q}^{gamma}(phi_p(D_{q}^{alpha}u(t + f(t,u(t=0, quad 0 1. By using a fixed-point theorem in partially ordered sets, we obtain sufficient conditions for the existence and uniqueness of positive and nondecreasing solutions.

  19. Existence of Positive Solutions of Generalized Sturm-Liouville Boundary Value Problems for a Singular Differential Equation

    Institute of Scientific and Technical Information of China (English)

    Jing Bao YANG; Zhong Li WEI

    2011-01-01

    By employing the fixed point theorem of cone expansion and compression of norm type,we investigate the existence of positive solutions of generalized Sturm-Liouville boundary value problems for a nonlinear singular differential equation with a parameter.Some sufficient conditions for the existence of positive solutions are established.In the last section,an example is presented to illustrate the applications of our main results.

  20. Existence of positive solutions for nonlocal second-order boundary value problem with variable parameter in Banach spaces

    Directory of Open Access Journals (Sweden)

    Zhang Peiguo

    2011-01-01

    Full Text Available Abstract By obtaining intervals of the parameter λ, this article investigates the existence of a positive solution for a class of nonlinear boundary value problems of second-order differential equations with integral boundary conditions in abstract spaces. The arguments are based upon a specially constructed cone and the fixed point theory in cone for a strict set contraction operator. MSC: 34B15; 34B16.

  1. Solvability of Third-order Three-point Boundary Value Problems with Carathéodory Nonlinearity

    Institute of Scientific and Technical Information of China (English)

    YAO QING-LIU; Shi Shao-yun

    2012-01-01

    A class of third-order three-point boundary value problems is considered,where the nonlinear term is a Carathéodory function.By introducing a height function and considering the integration of this height function,an existence theorem of solution is proved when the limit growth function exists.The main tools are the Lebesgue dominated convergence theorem and the Schauder fixed point theorem.

  2. THE UPWIND FINITE DIFFERENCE METHOD FOR MOVING BOUNDARY VALUE PROBLEM OF COUPLED SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Yuan Yirang

    2011-01-01

    Coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values. The upwind finite difference schemes applicable to parallel arith- metic are put forward and two-dimensional and three-dimensional schemes are used to form a complete set. Some techniques, such as change of variables, calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order dif- ference operators and prior estimates, are adopted. The estimates in 12 norm are derived to determine the error in the approximate solution. This method was already applied to the numerical simulation of migration-accumulation of oil resources.

  3. Maximum principles for a class of nonlinear second-order elliptic boundary value problems in divergence form

    Directory of Open Access Journals (Sweden)

    Cristian Enache

    2006-06-01

    Full Text Available For a class of nonlinear elliptic boundary value problems in divergence form, we construct some general elliptic inequalities for appropriate combinations of u(x and |∇u|2, where u(x are the solutions of our problems. From these inequalities, we derive, using Hopf's maximum principles, some maximum principles for the appropriate combinations of u(x and |∇u|2, and we list a few examples of problems to which these maximum principles may be applied.

  4. Positive Solutions of Sub-Linear Semi-Positone Boundary Value Problem System%次线性半正微分边值系统的正解

    Institute of Scientific and Technical Information of China (English)

    徐西安

    2008-01-01

    In this paper,we study the existence of positive solutions of a sub-linear semi-positone differential boundary value problems system with positive parameter.We prove that the semipositone differential boundary value problems system has at least one positive solution for the parameter sufficiently large.

  5. Positive Solutions for Nonlinear nth-Order Singular Nonlocal Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Xin'an Hao

    2007-04-01

    Full Text Available We study the existence and multiplicity of positive solutions for a class of nth-order singular nonlocal boundary value problemsu(n(t+a(tf(t,u=0, t∈(0,1, u(0=0, u'(0=0, …,u(n−2(0=0, αu(η=u(1, where 0<η<1,  0<αηn−1 <1. The singularity may appear at t=0 and/or t=1. The Krasnosel'skii-Guo theorem on cone expansion and compression is used in this study. The main results improve and generalize the existing results.

  6. Solvability of boundary value problems in the geometrically and physically nonlinear theory of shallow shells of Timoshenko type

    Science.gov (United States)

    Timergaliev, S. N.

    2009-06-01

    This paper deals with the proof of the existence of solutions of a geometrically and physically nonlinear boundary value problem for shallow Timoshenko shells with the transverse shear strains taken into account. The shell edge is assumed to be partly fixed. It is proposed to study the problem by a variational method based on searching the points of minimum of the total energy functional for the shell-load system in the space of generalized displacements. We show that there exists a generalized solution of the problemon which the total energy functional attains its minimum on a weakly closed subset of the space of generalized displacements.

  7. ON THE EXISTENCE OF SOLUTION OF A NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEM ARISING FROM A LIQUID METAL FLOW

    Institute of Scientific and Technical Information of China (English)

    Cheng Xiaoliang; Ying Weiting

    2005-01-01

    In this paper, we discuss the existence of solution of a nonlinear two-point boundary value problem with a positive parameter Q arising in the study of surfacetension-induced flows of a liquid metal or semiconductor. By applying the Schauder's fixed-point theorem, we prove that the problem admits a solution for 0 ≤ Q ≤ 14.306.It improves the result of 0 ≤ Q < 1 in [2] and 0 ≤ Q ≤ 13.213 in [3].

  8. Application of Two-Parameter Extrapolation for Solution of Boundary-Value Problem on Semi-Axis

    CERN Document Server

    Zhidkov, E P

    2000-01-01

    A method for refining approximate eigenvalues and eigenfunctions for a boundary-value problem on a half-axis is suggested. To solve the problem numerically, one has to solve a problem on a finite segment [0,R] instead of the original problem on the interval [0,\\infty). This replacement leads to eigenvalues' and eigenfunctions' errors. To choose R beforehand for obtaining their required accuracy is often impossible. Thus, one has to resolve the problem on [0,R] with larger R. If there are two eigenvalues or two eigenfunctions that correspond to different segments, the suggested method allows one to improve the accuracy of the eigenvalue and the eigenfunction for the original problem by means of extrapolation along the segment. This approach is similar to Richardson's method. Moreover, a two-parameter extrapolation is described. It is combination of the extrapolation along the segment and Richardson's extrapolation along a discretization step.

  9. On the roles of minimization and linearization in least-squares finite element models of nonlinear boundary-value problems

    Science.gov (United States)

    Payette, G. S.; Reddy, J. N.

    2011-05-01

    In this paper we examine the roles of minimization and linearization in the least-squares finite element formulations of nonlinear boundary-values problems. The least-squares principle is based upon the minimization of the least-squares functional constructed via the sum of the squares of appropriate norms of the residuals of the partial differential equations (in the present case we consider L2 norms). Since the least-squares method is independent of the discretization procedure and the solution scheme, the least-squares principle suggests that minimization should be performed prior to linearization, where linearization is employed in the context of either the Picard or Newton iterative solution procedures. However, in the least-squares finite element analysis of nonlinear boundary-value problems, it has become common practice in the literature to exchange the sequence of application of the minimization and linearization operations. The main purpose of this study is to provide a detailed assessment on how the finite element solution is affected when the order of application of these operators is interchanged. The assessment is performed mathematically, through an examination of the variational setting for the least-squares formulation of an abstract nonlinear boundary-value problem, and also computationally, through the numerical simulation of the least-squares finite element solutions of both a nonlinear form of the Poisson equation and also the incompressible Navier-Stokes equations. The assessment suggests that although the least-squares principle indicates that minimization should be performed prior to linearization, such an approach is often impractical and not necessary.

  10. THE EXISTENCE OF SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS INVOLVING THE p-LAPLACIAN OPERATOR IN Ls-SPACES

    Institute of Scientific and Technical Information of China (English)

    WEI Li; ZHOU Haiyun

    2005-01-01

    By using the perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert and Gupta, we study the abstract results on the existence of a solution u ∈ Ls (Ω) of nonlinear boundary value problems involving the p-Laplacian operator, where2 ≤ s < +∞, and 2N/N+1 < p ≤ 2 for N(≥ 1) which denotes the dimension of RN. To obtain the result, some new techniques are used in this paper. The equation discussed in this paper and our methods here are extension and complement to the corresponding results of L. Wei and Z. He.

  11. Multiple positive solutions for singular m-point boundary-value problems with nonlinearities depending on the derivative

    Directory of Open Access Journals (Sweden)

    Baoqiang Yan

    2008-10-01

    Full Text Available Using the fixed point theorem in cones, this paper shows the existence of multiple positive solutions for the singular $m$-point boundary-value problem $$displaylines{ x''(t+a(tf(t,x(t,x'(t=0,quad 0

  12. Extended cubic B-spline method for solving a linear system of second-order boundary value problems.

    Science.gov (United States)

    Heilat, Ahmed Salem; Hamid, Nur Nadiah Abd; Ismail, Ahmad Izani Md

    2016-01-01

    A method based on extended cubic B-spline is proposed to solve a linear system of second-order boundary value problems. In this method, two free parameters, [Formula: see text] and [Formula: see text], play an important role in producing accurate results. Optimization of these parameters are carried out and the truncation error is calculated. This method is tested on three examples. The examples suggest that this method produces comparable or more accurate results than cubic B-spline and some other methods.

  13. Mathematical methods for a class of mixed boundary-value problems of planar pentagonal quasicrystal and some solutions

    Institute of Scientific and Technical Information of China (English)

    范天佑; 郭玉翠

    1997-01-01

    The mathematical theory of elasticity for planar pentagonal quasicrystals is developed and some analytic solutions for a class of mixed boundary-value problems (corresponding to a Griffith crack) of the theory are offered.An alternate procedure and a direct integral approach are proposed.Some analytical solutions are constructed and the stress and displacement fields of a Griffith crack in the quasicrystals are determined.A basis for further studying the mechanical behavior of the material related to planar defects is provided.

  14. On a difference scheme for nonlocal heat transfer boundary-value problem

    Science.gov (United States)

    Akhymbek, Meiram E.; Sadybekov, Makhmud A.

    2016-08-01

    In this paper, we propose a new method of solving nonlocal problems for the heat equation with finite difference method. The main important feature of these problems is their non-self-adjointness. This non-self-adjointness causes major difficulties in their analytical and numerical solving. The problems, which boundary conditions do not possess strong regularity, are less studied. The scope of study of the paper justifies possibility of building a stable difference scheme with weights for abovementioned type of problems.

  15. Koch曲线上的齐次Riemann边值问题%Homogeneous Riemann Boundary Value Problems for Koch Curve

    Institute of Scientific and Technical Information of China (English)

    阮正顺; 罗艾花

    2012-01-01

    当L为典型的分形曲线-Koch曲线时,提出了Riemann边值问题,但在一般情况下,在Koch曲线上所做的Cauchy型积分无意义.当对已知函数G(z),g(z)增加一定的解析条件,同时利用一列Cauchy型积分的极限函数,对定义在Koch曲线上的齐次Riemann边值问题进行了讨论,并得到与经典解析函数边值问题相类似的结果.%In this paper, when Lis substituted for Koch curve, Riemann boundary value problems was defined, but generally speaking, Cauchy-type integral is meaningless on Koch curve. When some analytic conditions are attached to functions G(z)and g(z), through the limit function of a sequence of Cauchy-type integrals, the homogeneous Riemann boundary problems on Koch curve are introduced, some similar results was attained with the classical boundary value problems for analytic functions.

  16. Mathematical apparatus for boundary value problems in gravity field studies and the geometry of the solution domain

    Science.gov (United States)

    Holota, Petr; Nesvadba, Otakar

    2014-05-01

    In geodesy mathematical techniques for gravity field studies that rest on the concept of the so-called classical solution of boundary value problems, have a rather traditional position. Nevertheless, the range of the tools for treating problems in this field is much wider. For instance the concept of the weak solution met with a considerable attention. From this point of view the approach is associated with constructing the respective integral kernels or Green's function in case we consider the classical solution concept or with the choice and constructing basis functions in case we are lucking for the weak solution of the problem. Within the tools considered we discuss also the use of reproducing kernels. In both the cases (classical or weak) the construction of the apparatus above represents and important technical step. It is not elementary, but for a number of fundamental boundary value problems the solution is known, in particular in the case of a spherical solution domain. The sphere, however, is rather far from the real shape of the Earth, which is interpreted here in terms of a functional analytic norm. The distance has a negative effect on any attempt to reach the solution of the boundary value problems considered (and to bridge the departure of the Earth's surface from the sphere) by an iteration procedure based on a successive application of a solution technique developed for the spherical boundary. From this point of view the construction of the integral kernels and basis functions for an oblate ellipsoid of revolution means a step closer towards reality. In this contribution we on the one hand give an overview of the results already achieved and subsequently develop the topic. The summation of series of ellipsoidal harmonics is one of the key problems in this connection. Hypergeometric functions and series are applied too. We also show where the use of Legendre elliptic integrals adds to the solution of the problem. It is interesting that they do not

  17. Positive solutions of three-point boundary-value problems for p-Laplacian singular differential equations

    Directory of Open Access Journals (Sweden)

    George N. Galanis

    2005-10-01

    Full Text Available In this paper we prove the existence of positive solutions for the three-point singular boundary-value problem$$ -[phi _{p}(u']'=q(tf(t,u(t,quad 0boundary-value problem remains away from the origin for the case where the nonlinearity is sublinear and so we avoid its singularity at $u=0$.

  18. Solvability of fractional multi-point boundary-value problems with p-Laplacian operator at resonance

    Directory of Open Access Journals (Sweden)

    Tengfei Shen

    2014-02-01

    Full Text Available In this article, we consider the multi-point boundary-value problem for nonlinear fractional differential equations with $p$-Laplacian operator: $$\\displaylines{ D_{0^+}^\\beta \\varphi_p (D_{0^+}^\\alpha u(t = f(t,u(t,D_{0^+}^{\\alpha - 2} u(t,D_{0^+}^{\\alpha - 1} u(t, D_{0^+}^\\alpha u(t,\\quad t \\in (0,1, \\cr u(0 = u'(0=D_{0^+}^\\alpha u(0 = 0,\\quad D_{0^+}^{\\alpha - 1} u(1 = \\sum_{i = 1}^m {\\sigma_i D_{0^+}^{\\alpha - 1} u(\\eta_i } , }$$ where $2 < \\alpha \\le 3$, $0 < \\beta \\le 1$, $3 < \\alpha + \\beta \\le 4$, $\\sum_{i = 1}^m {\\sigma_i } = 1$, $D_{0^+}^\\alpha$ is the standard Riemann-Liouville fractional derivative. $\\varphi_{p}(s=|s|^{p-2}s$ is p-Laplacians operator. The existence of solutions for above fractional boundary value problem is obtained by using the extension of Mawhin's continuation theorem due to Ge, which enrich konwn results. An example is given to illustrate the main result.

  19. Numerical Solutions for the Eighth-Order Initial and Boundary Value Problems Using the Second Kind Chebyshev Wavelets

    Directory of Open Access Journals (Sweden)

    Xiaoyong Xu

    2015-01-01

    Full Text Available A collocation method based on the second kind Chebyshev wavelets is proposed for the numerical solution of eighth-order two-point boundary value problems (BVPs and initial value problems (IVPs in ordinary differential equations. The second kind Chebyshev wavelets operational matrix of integration is derived and used to transform the problem to a system of algebraic equations. The uniform convergence analysis and error estimation for the proposed method are given. Accuracy and efficiency of the suggested method are established through comparing with the existing quintic B-spline collocation method, homotopy asymptotic method, and modified decomposition method. Numerical results obtained by the present method are in good agreement with the exact solutions available in the literatures.

  20. The residual velocity method applied to a steady free boundary-value problem of vector Laplacian type

    Science.gov (United States)

    Chen, Wan; Wetton, Brian

    2009-02-01

    We consider a free boundary-value problem based on a simplified model of two-phase flow in porous media. The model has two independent variables on each side of the free interface. At the interface at steady state, five mixed Dirichlet and Neumann conditions are given. The movement of the interface in time-dependent situations can be reduced to a normal motion proportional to the residual in one of the steady-state interface conditions (the elliptic interior problems and the other interface conditions are satisfied at each time). Following previous work, we consider the use of other residuals for the normal velocity that have superior numerical properties. The well-posedness criteria for this vector example are particularly clear. The advantages of the correctly chosen, non-physical residual velocities are demonstrated in numerical computations. Although the finite-difference implementation in this work is not applicable to general problems, it has superior performance to previous implementations.

  1. LIMIT BEHAVIOUR OF SOLUTIONS TO EQUIVALUED SURFACE BOUNDARY VALUE PROBLEM FOR PARABOLIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    LiFengquan

    2002-01-01

    In this paper,we discuss the limit behaviour of solutions to equivalued surface boundayr value problem for parabolic equatiopns when the equivalued surface boundary shriks to a point and the space dimension of the domain is two or more.

  2. Nonlocal Four-Point Boundary Value Problem for the Singularly Perturbed Semilinear Differential Equations

    Directory of Open Access Journals (Sweden)

    Vrabel Robert

    2011-01-01

    Full Text Available Abstract This paper deals with the existence and asymptotic behavior of the solutions to the singularly perturbed second-order nonlinear differential equations. For example, feedback control problems, such as the steady states of the thermostats, where the controllers add or remove heat, depending upon the temperature detected by the sensors in other places, can be interpreted with a second-order ordinary differential equation subject to a nonlocal four-point boundary condition. Singular perturbation problems arise in the heat transfer problems with large Peclet numbers. We show that the solutions of mathematical model, in general, start with fast transient which is the so-called boundary layer phenomenon, and after decay of this transient they remain close to the solution of reduced problem with an arising new fast transient at the end of considered interval. Our analysis relies on the method of lower and upper solutions.

  3. Optimization of the Forcing Term for the Solution of Two-Point Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Gianni Arioli

    2013-01-01

    by standard methods of constrained optimization, for example, with Lagrange multipliers. We provide an application of this algorithm to the planar restricted three body problem in order to study the planning of low-thrust transfer orbits.

  4. On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation

    Directory of Open Access Journals (Sweden)

    Mesloub Said

    2008-01-01

    Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.

  5. Monotone Iterative Method for Set-valued Quasilinear Elliptic Boundary Value Problems

    Institute of Scientific and Technical Information of China (English)

    SUN Le-lin; XU Di-hong; CHENG Jian; Li Rong-hua

    2001-01-01

    @@1. Problem and Assumptions This paper deals with the solutions of the following differential inclusion problem: Au ∈f(x,u), x ∈ Ω; (1) u =0, x∈ Ω, whereAu(x)=Ω RN is a bounded domain with piecewise Lipschitz boundary Ω , Du = (D1 u, D2 u,…,DNu), Diu = , i = 1,2,…, N, and f: Ω × R→2R is a set-valued unction.

  6. On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation

    Directory of Open Access Journals (Sweden)

    Said Mesloub

    2008-03-01

    Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.

  7. An accurate boundary value problem solver applied to scattering from cylinders with corners

    CERN Document Server

    Helsing, Johan

    2012-01-01

    In this paper we consider the classic problems of scattering of waves from perfectly conducting cylinders with piecewise smooth boundaries. The scattering problems are formulated as integral equations and solved using a Nystr\\"om scheme where the corners of the cylinders are efficiently handled by a method referred to as Recursively Compressed Inverse Preconditioning (RCIP). This method has been very successful in treating static problems in non-smooth domains and the present paper shows that it works equally well for the Helmholtz equation. In the numerical examples we specialize to scattering of E- and H-waves from a cylinder with one corner. Even at a size kd=1000, where k is the wavenumber and d the diameter, the scheme produces at least 13 digits of accuracy in the electric and magnetic fields everywhere outside the cylinder.

  8. Boundary value problems for the nd-order Seiberg-Witten equations

    Directory of Open Access Journals (Sweden)

    Doria Celso Melchiades

    2005-01-01

    Full Text Available It is shown that the nonhomogeneous Dirichlet and Neuman problems for the nd-order Seiberg-Witten equation on a compact -manifold admit a regular solution once the nonhomogeneous Palais-Smale condition is satisfied. The approach consists in applying the elliptic techniques to the variational setting of the Seiberg-Witten equation. The gauge invariance of the functional allows to restrict the problem to the Coulomb subspace of configuration space. The coercivity of the -functional, when restricted into the Coulomb subspace, imply the existence of a weak solution. The regularity then follows from the boundedness of -norms of spinor solutions and the gauge fixing lemma.

  9. The mixed boundary value problem, Krein resolvent formulas and spectral asymptotic estimates

    DEFF Research Database (Denmark)

    Grubb, Gerd

    2011-01-01

    For a second-order symmetric strongly elliptic operator A on a smooth bounded open set in Rn, the mixed problem is defined by a Neumann-type condition on a part Σ+ of the boundary and a Dirichlet condition on the other part Σ−. We show a Kreĭn resolvent formula, where the difference between its r...

  10. Boundary Value Technique for Initial Value Problems Based on Adams-Type Second Derivative Methods

    Science.gov (United States)

    Jator, S. N.; Sahi, R. K.

    2010-01-01

    In this article, we propose a family of second derivative Adams-type methods (SDAMs) of order up to 2k + 2 ("k" is the step number) for initial value problems. The methods are constructed through a continuous approximation of the SDAM which is obtained by multistep collocation. The continuous approximation is used to obtain initial value methods,…

  11. Towards parameter limits of displacement boundary value problems for Mohr-Coulomb models

    NARCIS (Netherlands)

    Rohe, A.

    2013-01-01

    To solve problems in geotechnical engineering often numerical methods such as the Finite Element Method (FEM) are used. This method can be applied for example for the calculation of the strength of dikes, the determination of the stability of (rail)road embankments, the prediction of deformations du

  12. Initial-boundary value problems for second order systems of partial differential equations

    CERN Document Server

    Kreiss, Heinz-Otto; Petersson, N Anders

    2010-01-01

    We develop a well-posedness theory for second order systems in bounded domains where boundary phenomena like glancing and surface waves play an important role. Attempts have previously been made to write a second order system consisting of n equations as a larger first order system. Unfortunately, the resulting first order system consists, in general, of more than 2n equations which leads to many complications, such as side conditions which must be satisfied by the solution of the larger first order system. Here we will use the theory of pseudo-differential operators combined with mode analysis. There are many desirable properties of this approach: 1) The reduction to first order systems of pseudo-differential equations poses no difficulty and always gives a system of 2n equations. 2) We can localize the problem, i.e., it is only necessary to study the Cauchy problem and halfplane problems with constant coefficients. 3) The class of problems we can treat is much larger than previous approaches based on "integ...

  13. ASYMPTOTICS OF INITIAL BOUNDARY VALUE PROBLEMS OF BIPOLAR HYDRODYNAMIC MODEL FOR SEMICONDUCTORS

    Institute of Scientific and Technical Information of China (English)

    Ju Qiangchang

    2004-01-01

    In this paper, we study the asymptotic behavior of the solutions to the bipolar hydrodynamic model with Dirichlet boundary conditions. It is shown that the initial boundary problem of the model admits a global smooth solution which decays to the steady state exponentially fast.

  14. Random walks in the quarter plane algebraic methods, boundary value problems, applications to queueing systems and analytic combinatorics

    CERN Document Server

    Fayolle, Guy; Malyshev, Vadim

    2017-01-01

    This monograph aims to promote original mathematical methods to determine the invariant measure of two-dimensional random walks in domains with boundaries. Such processes arise in numerous applications and are of interest in several areas of mathematical research, such as Stochastic Networks, Analytic Combinatorics, and Quantum Physics. This second edition consists of two parts. Part I is a revised upgrade of the first edition (1999), with additional recent results on the group of a random walk. The theoretical approach given therein has been developed by the authors since the early 1970s. By using Complex Function Theory, Boundary Value Problems, Riemann Surfaces, and Galois Theory, completely new methods are proposed for solving functional equations of two complex variables, which can also be applied to characterize the Transient Behavior of the walks, as well as to find explicit solutions to the one-dimensional Quantum Three-Body Problem, or to tackle a new class of Integrable Systems. Part II borrows spec...

  15. POSlTlVE SOLUTl0NS 0F A FOURTH 0RDER BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    RenLishun

    2003-01-01

    The existence of positive solutions of the nonlinear fourth order problem u(4)(x)=λα(x)f(u(x)),u(0)=u′(0)=u′(1)=um(1)=0 is studied,where a:[0,1]→R may change sign,f(0)>0,λ>0 is sufficiently small.Our approach is based on the Leray-Schauder fixed point theorem.

  16. A Numerical Method for a Singularly Perturbed Three-Point Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    Musa Çakır

    2010-01-01

    Full Text Available The purpose of this paper is to present a uniform finite difference method for numerical solution of nonlinear singularly perturbed convection-diffusion problem with nonlocal and third type boundary conditions. The numerical method is constructed on piecewise uniform Shishkin type mesh. The method is shown to be convergent, uniformly in the diffusion parameter ε, of first order in the discrete maximum norm. Some numerical experiments illustrate in practice the result of convergence proved theoretically.

  17. On the Beam Functions Spectral Expansions for Fourth-Order Boundary Value Problems

    Science.gov (United States)

    Papanicolaou, N. C.; Christov, C. I.

    2007-10-01

    In this paper we develop further the Galerkin technique based on the so-called beam functions with application to nonlinear problems. We make use of the formulas expressing a product of two beam functions into a series with respect to the system. First we prove that the overall convergence rate for a fourth-order linear b.v.p is algebraic fifth order, provided that the derivatives of the sought function up to fifth order exist. It is then shown that the inclusion of a quadratic nonlinear term in the equation does not degrade the fifth-order convergence. We validate our findings on a model problem which possesses analytical solution in the linear case. The agreement between the beam-Galerkin solution and the analytical solution for the linear problem is better than 10-12 for 200 terms. We also show that the error introduced by the expansion of the nonlinear term is lesser than 10-9. The beam-Galerkin method outperforms finite differences due to its superior accuracy whilst its advantage over the Chebyshev-tau method is attributed to the smaller condition number of the matrices involved in the former.

  18. Periodic Boundary Value Problems for Functional Differential Equations%带滞后项的非线性微分方程的周期边值问题

    Institute of Scientific and Technical Information of China (English)

    祁爱琴; 高丽; 张全信

    2009-01-01

    The periodic boundary value problems for nonlinear functional differential equa-tions was discussed.The existence of maximal and minimal solutions was obtained when the lower and upper solutions satisfied the formal or reverse order.

  19. The Solution of Two-Point Boundary Value Problem of a Class of Duffing-Type Systems with Non-C1 Perturbation Term

    Directory of Open Access Journals (Sweden)

    Jiang Zhengxian

    2009-01-01

    Full Text Available This paper deals with a two-point boundary value problem of a class of Duffing-type systems with non-C1 perturbation term. Several existence and uniqueness theorems were presented.

  20. Convergence of a continuous BGK model for initial boundary-value problems for conservation laws

    Directory of Open Access Journals (Sweden)

    Driss Seghir

    2001-11-01

    Full Text Available We consider a scalar conservation law in the quarter plane. This equation is approximated in a continuous kinetic Bhatnagar-Gross-Krook (BGK model. The convergence of the model towards the unique entropy solution is established in the space of functions of bounded variation, using kinetic entropy inequalities, without special restriction on the flux nor on the equilibrium problem's data. As an application, we establish the hydrodynamic limit for a $2imes2$ relaxation system with general data. Also we construct a new family of convergent continuous BGK models with simple maxwellians different from the $chi$ models.

  1. Boundary value problems for the 2nd-order Seiberg-Witten equations

    Directory of Open Access Journals (Sweden)

    Celso Melchiades Doria

    2005-02-01

    Full Text Available It is shown that the nonhomogeneous Dirichlet and Neuman problems for the 2nd-order Seiberg-Witten equation on a compact 4-manifold X admit a regular solution once the nonhomogeneous Palais-Smale condition ℋ is satisfied. The approach consists in applying the elliptic techniques to the variational setting of the Seiberg-Witten equation. The gauge invariance of the functional allows to restrict the problem to the Coulomb subspace 𝒞αℭ of configuration space. The coercivity of the 𝒮𝒲α-functional, when restricted into the Coulomb subspace, imply the existence of a weak solution. The regularity then follows from the boundedness of L∞-norms of spinor solutions and the gauge fixing lemma.

  2. General Boundary-Value Problems for the Heat Conduction Equation with Piecewise-Continuous Coefficients

    Science.gov (United States)

    Tatsii, R. M.; Pazen, O. Yu.

    2016-03-01

    A constructive scheme for the construction of a solution of a mixed problem for the heat conduction equation with piecewise-continuous coefficients coordinate-dependent in the final interval is suggested and validated in the present work. The boundary conditions are assumed to be most general. The scheme is based on: the reduction method, the concept of quasi-derivatives, the currently accepted theory of the systems of linear differential equations, the Fourier method, and the modified method of eigenfunctions. The method based on this scheme should be related to direct exact methods of solving mixed problems that do not employ the procedures of constructing Green's functions or integral transformations. Here the theorem of eigenfunction expansion is adapted for the case of coefficients that have discontinuity points of the 1st kind. The results obtained can be used, for example, in investigating the process of heat transfer in a multilayer slab under conditions of ideal thermal contact between the layers. A particular case of piecewise-continuous coefficients is considered. A numerical example of calculation of a temperature field in a real four-layer building slab under boundary conditions of the 3rd kind (conditions of convective heat transfer) that model the phenomenon of fire near one of the external surfaces is given.

  3. Boundary Value Problem for Analysis of Portal Double-Row Stabilizing Piles

    Directory of Open Access Journals (Sweden)

    Cheng Huang

    2013-01-01

    Full Text Available This paper presents a new numerical approach for computing the internal force and displacement of portal double-row piles used to stabilize potential landslide. First, the new differential equations governing the mechanical behaviour of the stabilizing pile are formulated and the boundary conditions are mathematically specified. Then, the problem is numerically solved by the high-accuracy Runge-Kutta finite difference method. A program package has been developed in MATLAB depending on the proposed algorithm. Illustrative examples are presented to demonstrate the validity of the developed program. In short, the proposed approach is a practical new idea for analyzing the portal double-row stabilizing pile as a useful supplement to traditional methods such as FEM.

  4. An iterative HAM approach for nonlinear boundary value problems in a semi-infinite domain

    Science.gov (United States)

    Zhao, Yinlong; Lin, Zhiliang; Liao, Shijun

    2013-09-01

    In this paper, we propose an iterative approach to increase the computation efficiency of the homotopy analysis method (HAM), a analytic technique for highly nonlinear problems. By means of the Schmidt-Gram process (Arfken et al., 1985) [15], we approximate the right-hand side terms of high-order linear sub-equations by a finite set of orthonormal bases. Based on this truncation technique, we introduce the Mth-order iterative HAM by using each Mth-order approximation as a new initial guess. It is found that the iterative HAM is much more efficient than the standard HAM without truncation, as illustrated by three nonlinear differential equations defined in an infinite domain as examples. This work might greatly improve the computational efficiency of the HAM and also the Mathematica package BVPh for nonlinear BVPs.

  5. Application of Splines to the Numerical Solution of Two-Point Boundary- Value Problems

    Science.gov (United States)

    1978-12-01

    Computer Journal, Vol. 12, No. 2, May 1969, pp. 188-192. Kamke , E. Differentialgleichungen L~sungsmethoden and I.JSsungen, I, 6. Auflage, p. 558, Eq... KAMKE A R 0 0 8 6 7 1 | 0 : 2 9 WED MAY lOe 1978 ND I M JCASE N NT JOUT LPRNT LN(]IRN 2 5 0 | 51 3 0 0 | | 11 ] TOL RSC O, 0 5 t O 0 0 0 D - O...E D C - T R - 7 8 - 5 9 OC T 0 3 0 C O P S PROBLEM FROM KAMKE X I 0 , 0 2 1 . 3 3 o 0 0 - 0 1 3 2 , 0 6 0 8 3 - O l 4 3 . 0 6 3 3 D - 0

  6. Boundary value problem for one-dimensional fractional differential advection-dispersion equation

    Directory of Open Access Journals (Sweden)

    Khasambiev Mokhammad Vakhaevich

    2014-07-01

    Full Text Available An equation commonly used to describe solute transport in aquifers has attracted more attention in recent years. After a formal study of some aspects of the advection-diffusion equation, basically from the mathematical point of view with the solution of a differential equation with fractional derivative, the main interest to this problem shifted onto physical aspects of the dynamical system, such as the total energy and the dynamical response. In this regard it should be pointed out that the interaction with environment is expressed in terms of stochastic arrow of time. This allows one also to reach a progress in one more issue. Formerly the equation of advection-diffusion was not obtained from any physical principles. However, mainly the success concerns linear fractional systems. In fact, there are many cases in which linear treatments are not sufficient. The more general systems described by nonlinear fractional differential equations have not been studied enough. The ordinary calculus brings out clearly that essentially new phenomena occur in nonlinear systems, which generally cannot occur in linear systems. Due to vast range of application of the fractional advection-dispersion equation, a lot of work has been done to find numerical solution and fundamental solution of this equation. The research on the analytical solution of initial-boundary problem for space-fractional advection-dispersion equation is relatively new and is still at an early stage of development. In this paper, we will take use of the method of variable separation to solve space-fractional advection-dispersion equation with initial boundary data.

  7. Existence of Positive Solutions for Two-Point Boundary Value Problems of Nonlinear Finite Discrete Fractional Differential Equations and Its Application

    OpenAIRE

    Caixia Guo; Jianmin Guo; Ying Gao; Shugui Kang

    2016-01-01

    This paper is concerned with the two-point boundary value problems of nonlinear finite discrete fractional differential equations. On one hand, we discuss some new properties of the Green function. On the other hand, by using the main properties of Green function and the Krasnoselskii fixed point theorem on cones, some sufficient conditions for the existence of at least one or two positive solutions for the boundary value problem are established.

  8. New Approach for Solving a Class of Doubly Singular Two-Point Boundary Value Problems Using Adomian Decomposition Method

    Directory of Open Access Journals (Sweden)

    Randhir Singh

    2012-01-01

    Full Text Available We propose two new modified recursive schemes for solving a class of doubly singular two-point boundary value problems. These schemes are based on Adomian decomposition method (ADM and new proposed integral operators. We use all the boundary conditions to derive an integral equation before establishing the recursive schemes for the solution components. Thus we develop recursive schemes without any undetermined coefficients while computing successive solution components, whereas several previous recursive schemes have done so. This modification also avoids solving a sequence of nonlinear algebraic or transcendental equations for the undetermined coefficients with multiple roots, which is required to complete calculation of the solution by several earlier modified recursion schemes using the ADM. The approximate solution is computed in the form of series with easily calculable components. The effectiveness of the proposed approach is tested by considering four examples and results are compared with previous known results.

  9. A Multi-Point, Boundary-Value Problem, Collocation Toolbox for the Continuation of sets of Constrained Orbit Segments

    DEFF Research Database (Denmark)

    Dankowicz, Harry; Schilder, Frank

    This paper presents a collocation toolbox for multi-point, boundary-value problems. This toolbox has been recently developed by the authors to support general-purpose parameter continuation of sets of constrained orbit segments, such as i) segmented trajectories in hybrid dynamical systems......, for example, mechanical systems with impacts, friction, and switching control, ii) homoclinic orbits represented by an equilibrium point and a finite-time trajectory that starts and ends near this equilibrium point, and iii) collections of trajectories that represent quasi-periodic invariant tori...... the continuation of families of periodic orbits in a hybrid dynamical system with impacts and friction as well as detection and constrained continuation of selected degeneracies characteristic of such systems, such as grazing and switching-sliding bifurcations....

  10. Multiple positive solutions for fourth-order three-point p-Laplacian boundary-value problems

    Directory of Open Access Journals (Sweden)

    Hanying Feng

    2007-02-01

    Full Text Available In this paper, we study the three-point boundary-value problem for a fourth-order one-dimensional $p$-Laplacian differential equation $$ ig(phi_p(u''(tig''+ a(tfig(u(tig=0, quad tin (0,1, $$ subject to the nonlinear boundary conditions: $$displaylines{ u(0=xi u(1,quad u'(1=eta u'(0,cr (phi _{p}(u''(0' =alpha _{1}(phi _{p}(u''(delta', quad u''(1=sqrt[p-1]{eta _{1}}u''(delta, }$$ where $phi_{p}(s=|s|^{p-2}s$, $p>1$. Using the five functional fixed point theorem due to Avery, we obtain sufficient conditions for the existence of at least three positive solutions.

  11. Positive Solution of Multi-Point Boundary Value Problems for the One-Dimensional p-Laplacian with Singularities

    Institute of Scientific and Technical Information of China (English)

    De-xiang Ma; Wei-gao Ge; Xue-gang Chen

    2005-01-01

    In this paper, we obtain positive solution to the following multi-point singular boundary value problem with p-Laplacian operator,{(φp(u'))' + q(t)f(t,u,u') = 0, 0 < t < 1,{u(0)=n∑i=1αiu(ξi),u'(1)=n∑i=1βiu'(ξi),whereφp(s)=|s|p-2s, p≥2;ξi∈(0, 1)(i=1,2,...,n),0≤αi,βi<1(i=1,2,...,n),0≤n∑i=1αi,n∑i=1β<1,and q(t) may be singular at t= 0, 1; f(t, u, u') may be singular at u'= 0.

  12. New version of Optimal Homotopy Asymptotic Method for the solution of nonlinear boundary value problems in finite and infinite intervals

    Directory of Open Access Journals (Sweden)

    Liaqat Ali

    2016-09-01

    Full Text Available In this research work a new version of Optimal Homotopy Asymptotic Method is applied to solve nonlinear boundary value problems (BVPs in finite and infinite intervals. It comprises of initial guess, auxiliary functions (containing unknown convergence controlling parameters and a homotopy. The said method is applied to solve nonlinear Riccati equations and nonlinear BVP of order two for thin film flow of a third grade fluid on a moving belt. It is also used to solve nonlinear BVP of order three achieved by Mostafa et al. for Hydro-magnetic boundary layer and micro-polar fluid flow over a stretching surface embedded in a non-Darcian porous medium with radiation. The obtained results are compared with the existing results of Runge-Kutta (RK-4 and Optimal Homotopy Asymptotic Method (OHAM-1. The outcomes achieved by this method are in excellent concurrence with the exact solution and hence it is proved that this method is easy and effective.

  13. The Existence of Solutions to a Class of Multi-point Boundary Value Problem of Fractional Differential Equation

    Institute of Scientific and Technical Information of China (English)

    Xiaohong HAO; Zongfu ZHOU

    2013-01-01

    In this paper,we consider the following multi-point boundary value problem of fractional differential equation Dα0+u(t) =f(t,u(t),Dα-10+ u(t),Dα+20u(t),Dα-30u(t)),t ∈ (0,1),I4-α0+u(0) =0,Dα-10+u(0) =nΣi=1αi Dα-10+u(ξi),Dα-20+u(1) =nΣj=1 βjDα-20+ u(ηj),Dα-30+u(1)-Dα-30+u(0) =Dα-20+2u(1/2),where 3 < α ≤ 4 is a real number.By applying Mawhin coincidence degree theory and constructing suitable operators,some existence results of solutions can be established.

  14. Asymptotics of linear initial boundary value problems with periodic boundary data on the half-line and finite intervals

    KAUST Repository

    Dujardin, G. M.

    2009-08-12

    This paper deals with the asymptotic behaviour of the solutions of linear initial boundary value problems with constant coefficients on the half-line and on finite intervals. We assume that the boundary data are periodic in time and we investigate whether the solution becomes time-periodic after sufficiently long time. Using Fokas\\' transformation method, we show that, for the linear Schrödinger equation, the linear heat equation and the linearized KdV equation on the half-line, the solutions indeed become periodic for large time. However, for the same linear Schrödinger equation on a finite interval, we show that the solution, in general, is not asymptotically periodic; actually, the asymptotic behaviour of the solution depends on the commensurability of the time period T of the boundary data with the square of the length of the interval over. © 2009 The Royal Society.

  15. Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution

    Science.gov (United States)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2012-10-01

    A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.

  16. On the use of rational-function fitting methods for the solution of 2D Laplace boundary-value problems

    CERN Document Server

    Hochman, Amit; White, Jacob K

    2011-01-01

    A computational scheme for solving 2D Laplace boundary-value problems using rational functions as the basis functions is described. The scheme belongs to the class of desingularized methods, for which the location of singularities and testing points is a major issue that is addressed by the proposed scheme, in the context of the 2D Laplace equation. Well-established rational-function fitting techniques are used to set the poles, while residues are determined by enforcing the boundary conditions in the least-squares sense at the nodes of rational Gauss-Chebyshev quadrature rules. Numerical results show that errors approaching the machine epsilon can be obtained for sharp and almost sharp corners, nearly-touching boundaries, and almost-singular boundary. We show various examples of these cases in which the method yields compact solutions, requiring fewer basis functions than the Nystr\\"{o}m method, for the same accuracy. A scheme for solving fairly large-scale problems is also presented.

  17. 楔形域上Modified-Helmholtz方程的混合边值问题%Mixed Boundary Value Problem for the Modified Helmholtz Equation in a Wedge

    Institute of Scientific and Technical Information of China (English)

    黄民海

    2011-01-01

    A spectral transform method for solving initial boundary-value problems for linear and for integral nonlinear PDEs has been introduced recently by Fokas.By using this method,the mixed boundary value problem for the modified Helmholtz equation in a wedge is discussed.The problem is changed to solve a Riemann-Hilbert boundary value problem.Finally,the integral representation of the solution is obtained in closed form.%考虑一类楔形域上Modified-Helmholtz方程的混合边值问题.利用新型的Fokas谱变换方法,将问题转化为求解一类Riemann-Hilbert边值问题,从而得到了方程解的封闭积分表达式.

  18. Generalized form of boundary value problems method for material modeled as micro-polar media subjecting to the thermo-mechanical interaction

    Science.gov (United States)

    Zhang, Xiaomin; Zhang, Long; Chu, Zhongxiang; Peng, Song

    2016-09-01

    In this paper, the periodic structure material is modeled as the continuum homogeneous micro-polar media subjecting to thermo-mechanical interaction. Meanwhile, a series of equivalent quantities such as the equivalent stress, couple stress, displacement gradient and torsion tensor were defined by the integral forms of the boundary values of the external surface force, moment, displacement and the angular displacement, and were proved to satisfy the equivalence conditions of virtual work. Based on above works, the displacement boundary value problem was established to deduce the equivalent constitutive equation. Assume the representative volume element is composed of the spatial cross-framework, and applying the boundary value problem of displacement on frame structures, the equivalent elastic coefficients, temperature coefficients of equivalent stress and the temperature gradient coefficients of equivalent couple stress are deduced. In addition, themethod can also be extended to the stress boundary value problem to deduce the equivalent constitutive equation. The calculations indicate that the equivalent result can be obtained from the two kinds of boundary value problems.

  19. Positive solutions to boundary-value problems of p-Laplacian fractional differential equations with a parameter in the boundary

    Directory of Open Access Journals (Sweden)

    Zhenlai Han

    2012-11-01

    Full Text Available In this article, we consider the following boundary-value problem of nonlinear fractional differential equation with $p$-Laplacian operator $$displaylines{ D_{0+}^eta(phi_p(D_{0+}^alpha u(t+a(tf(u=0, quad 01$, $phi_p^{-1}=phi_q$, $1/p+1/q=1$, $0leqslantgamma<1$, $0leqslantxileqslant1$, $lambda>0$ is a parameter, $a:(0,1o [0,+infty$ and $f:[0,+inftyo[0,+infty$ are continuous. By the properties of Green function and Schauder fixed point theorem, several existence and nonexistence results for positive solutions, in terms of the parameter $lambda$ are obtained. The uniqueness of positive solution on the parameter $lambda$ is also studied. Some examples are presented to illustrate the main results.

  20. LONG TIME BEHAVIOR FOR SOLUTION OF INITIAL-BOUNDARY VALUE PROBLEM OF ONE CLASS OF SYSTEMS WITH MULTIDIMENSIONAL INHOMOGENEOUS GBBM EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    FANG Shao-mei; GUO Bo-ling

    2005-01-01

    The following initial-boundary value problem for the systems with multidimensional inhomogeneous generalized Benjamin-Bona-Mahony (GBBM)equations is reviewed. The existence of global attractors of this problem was proved by means of a uniform priori estimate for time.

  1. A boundary-value problem in weighted Hölder spaces for elliptic equations which degenerate at the boundary of the domain

    Energy Technology Data Exchange (ETDEWEB)

    Bazalii, B V; Degtyarev, S P [Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk (Ukraine)

    2013-07-31

    An elliptic boundary-value problem for second-order equations with nonnegative characteristic form is investigated in the situation when there is a weak degeneracy on the boundary of the domain. A priori estimates are obtained for solutions and the problem is proved to be solvable in some weighted Hölder spaces. Bibliography: 18 titles.

  2. Existence and smoothness of solutions to second initial boundary value problems for Schrodinger systems in cylinders with non-smooth bases

    Directory of Open Access Journals (Sweden)

    Nguyen Manh Hung

    2008-03-01

    Full Text Available In this paper, we consider the second initial boundary value problem for strongly general Schrodinger systems in both the finite and the infinite cylinders $Q_T, 0problem are given.

  3. A fast semi-implicit algorithm for problems of mixed type. [initial-boundary value problems modeled by partial differential equations

    Science.gov (United States)

    Frederickson, P. O.; Wessel, W. R.

    1979-01-01

    Certain physical processes are modeled by partial differential equations which are parabolic over part of the domain and elliptic over the remainder. A family of semi-implicit algorithms which are well suited to initial-boundary value problems of this mixed type is discussed. One important feature of these algorithms is the use of an approximate inverse for the solution of the implicit linear system. A strong error analysis results in an estimate of the total error as a function of approximate inverse error e and time step h.

  4. Examples of Systems of Functions Being Riesz Bases in L_{2}(0,1). Application to a Nonlinear Boundary Value Problem

    CERN Document Server

    Zhidkov, P E

    2001-01-01

    We establish examples of systems of functions being Riesz bases in L_{2}(0,1). We then apply this result to improve a theorem presented in [9] showing that an arbitrary "standard" system of solutions of a nonlinear boundary value problem, normalized to 1 in the same space, is a Riesz basis in this space. The proofs in this work are quite elementary.

  5. Existence of 2m-1 Positive Solutions for Sturm-Liouville Boundary Value Problems with Linear Functional Boundary Conditions on the Half-Line

    Directory of Open Access Journals (Sweden)

    Yanmei Sun

    2012-01-01

    Full Text Available By using the Leggett-Williams fixed theorem, we establish the existence of multiple positive solutions for second-order nonhomogeneous Sturm-Liouville boundary value problems with linear functional boundary conditions. One explicit example with singularity is presented to demonstrate the application of our main results.

  6. On the weak solution of a three-point boundary value problem for a class of parabolic equations with energy specification

    Directory of Open Access Journals (Sweden)

    Abdelfatah Bouziani

    2003-01-01

    Full Text Available This paper deals with weak solution in weighted Sobolev spaces, of three-point boundary value problems which combine Dirichlet and integral conditions, for linear and quasilinear parabolic equations in a domain with curved lateral boundaries. We, firstly, prove the existence, uniqueness, and continuous dependence of the solution for the linear equation. Next, analogous results are established for the quasilinear problem, using an iterative process based on results obtained for the linear problem.

  7. A priori estimates for the solution of the first boundary-value problem for a class of second-order parabolic systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamynin, L I; Khimchenko, B N

    2001-08-31

    We consider two classes of second-order parabolic matrix-vector systems (with solutions u element of M{sub mx1}, m{>=}2) that can be reduced to a single second-order parabolic equation for a scalar function v=, where p element of M{sub mx1} is a fixed stochastic constant vector. We consider the first boundary-value problem for a scalar second-order parabolic equation (with unbounded coefficients) in a domain unbounded with respect to x under the assumption of strong absorption at infinity. We obtain an a priori estimate for solutions of the first boundary-value problem in the generalized Tikhonov-Taecklind classes. (The problem under investigation has at most one solution in these classes.)

  8. Fucik spectrum,sign-changing and multiple solutions for semilinear elliptic boundary value problems with jumping nonlinearities at zero and infinity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper,Fucik spectrum,ordinary differential equation theory of Banach spaces and Morse theory are used to study semilinear elliptic boundary value problems with jumping nonlinearities at zero or infinity,and some new results on the existence of nontrivial solutions,multiple solutions and sign-changing solutions are obtained.In one case seven nontrivial solutions are got.The techniques have independent interest.

  9. A Third-Order p-Laplacian Boundary Value Problem Solved by an SL(3,ℝ Lie-Group Shooting Method

    Directory of Open Access Journals (Sweden)

    Chein-Shan Liu

    2013-01-01

    Full Text Available The boundary layer problem for power-law fluid can be recast to a third-order p-Laplacian boundary value problem (BVP. In this paper, we transform the third-order p-Laplacian into a new system which exhibits a Lie-symmetry SL(3,ℝ. Then, the closure property of the Lie-group is used to derive a linear transformation between the boundary values at two ends of a spatial interval. Hence, we can iteratively solve the missing left boundary conditions, which are determined by matching the right boundary conditions through a finer tuning of r∈[0,1]. The present SL(3,ℝ Lie-group shooting method is easily implemented and is efficient to tackle the multiple solutions of the third-order p-Laplacian. When the missing left boundary values can be determined accurately, we can apply the fourth-order Runge-Kutta (RK4 method to obtain a quite accurate numerical solution of the p-Laplacian.

  10. Initial and Boundary Value Problems for Two-Dimensional Non-hydrostatic Boussinesq Equations%二维非静力Boussinesq方程组的初边值问题

    Institute of Scientific and Technical Information of China (English)

    沈春; 孙梅娜

    2005-01-01

    Based on the theory of stratification, the well-posedness of the initial and boundary value problems for the system of two-dimensional non-hydrostatic Boussinesq equations was discussed. The sufficient and necessary conditions of the existence and uniqueness for the solution of the equations were given for some representative initial and boundary value problems. Several special cases were discussed.

  11. A CLASS OF SINGULARLY PERTURBED ROBIN BOUNDARY VALUE PROBLEMS FOR SEMILINEAR ELLIPTIC EQUATION%一类半线性椭圆型方程奇摄动Robin边值问题

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    . The singularly perturbed Robin boundary value problems for the semilinear elliptic equation are considered.Under suitable conditions and by using the fixed point theorem the existence,uniqueness and asymptotic behavior of solution for the boundary value problems are studied.Received:2000-10-07.

  12. Recursive Differentiation Method for Boundary Value Problems: Application to Analysis of a Beam-Column on an Elastic Foundation

    Directory of Open Access Journals (Sweden)

    Taha Mohamed

    2014-06-01

    Full Text Available In the present work, the recursive differentiation method (RDM is introduced and implemented to obtain analytical solutions for differential equations governing different types of boundary value prob- lems (BVP. Then, the method is applied to investigate the static behaviour of a beam-column resting on a two parameter foundation subjected to different types of lateral loading. The analytical solutions obtained using RDM and Adomian decomposition method (ADM are found similar but the RDM requires less mathematical effort. It is indicated that the RDM is reliable, straightforward and efficient for investigation of BVP in finite domains. Several examples are solved to describe the method and the obtained results reveal that the method is convenient for solving linear, nonlinear and higher order ordinary differential equations. However, it is indicated that, in the case of beam-columns resting on foundations, the beam-column may be buckled in a higher mode rather than a lower one, then the critical load in that case is that accompanies the higher mode. This result is very important to avoid static instability as it is widely common that the buckling load of the first buckling mode is always the smaller one, which is true only in the case of the beam-columns without foundations.

  13. Numerical Algorithm Based on Quintic Nonpolynomial Spline for Solving Third-Order Boundary Value Problems Associated with Draining and Coating Flows

    Institute of Scientific and Technical Information of China (English)

    Pankaj Kumar SRIVASTAVA; Manoj KUMAR

    2012-01-01

    A numerical algorithm is developed for the approximation of the solution to certain boundary value problems involving the third-order ordinary differential equation associated with draining and coating flows.The authors show that the approximate solutions obtained by the numerical algorithm developed by using nonpolynomial quintic spline functions are better than those produced by other spline and domain decomposition methods.The algorithm is tested on two problems associated with draining and coating flows to demonstrate the practical usefulness of the approach.

  14. 一阶混合型方程组的间断边值问题%DISCONTINUOUS BOUNDARY VALUE PROBLEMS FOR FIRSTORDER SYSTEMS OF MIXED TYPE

    Institute of Scientific and Technical Information of China (English)

    闻国椿; 杨丕文

    2001-01-01

    This paper deals with discontinuous boundary value problems for first order linear systems of mixed (elliptic-hyperbolic) type equations in a simply connected domain.Firstly, we derive the representation of solutions of the above boundary value problems for the mixed system, and then by using the method of successive iteration, the existence and uniqueness of solutions for the above problems are proved. From these results, we can derive the result on the Tricomi problem for Lavrent'ev-Bitsadze equation uxx+sgnyuyy=0 obtained by A.V.Bitsadze.%本文论讨单连通区域上一阶线性混合型(椭圆—双曲型)方程组的间断边值问题.我们首先给出混合型方程组特别是最简单的混合型方程组解的表示式,然后使用逐次逼近法,证明上述边值问题解的存在性与唯一性.由以上结果,可导出A.V.Bitsadze所得的Lavrent’ev-Bitsadze方程:uxx+sgnyuyy=0的Tricomi问题的可解性.

  15. Global Weak Solutions of Initial Boundary Value Problem for Boltzmann-Poisson System with Absorbing Boundary%具吸收边界的Bolzmann-Poisson方程组初边值问题的整体弱解

    Institute of Scientific and Technical Information of China (English)

    崔国忠; 张志平; 江成顺

    2002-01-01

    This paper deals with the initial boundary value problem for the BoltzmannPoisson system, which arises in semiconductor physics, with absorbing boundary. The global existence of weak solutions is proved by using the stability of velocity averages and the compactness results on L1-theory under weaker conditons on initial boundary values.

  16. Positive solutions of a three-point boundary-value problem for differential equations with damping and actively bounded delayed forcing term

    Directory of Open Access Journals (Sweden)

    George L. Karakostas

    2006-08-01

    Full Text Available We provide sufficient conditions for the existence of positive solutions of a three-point boundary value problem concerning a second order delay differential equation with damping and forcing term whose the delayed part is an actively bounded function, a meaning introduced in [19]. By writing the damping term as a difference of two factors one can extract more information on the solutions. (For instance, in an application, given in the last section, we can give the exact value of the norm of the solution.

  17. A modified quasi-boundary value method for a class of abstract parabolic ill-posed problems

    Directory of Open Access Journals (Sweden)

    S. Djezzar

    2006-02-01

    Full Text Available We study a final value problem for first-order abstract differential equation with positive self-adjoint unbounded operator coefficient. This problem is ill-posed. Perturbing the final condition, we obtain an approximate nonlocal problem depending on a small parameter. We show that the approximate problems are well posed and that their solutions converge if and only if the original problem has a classical solution. We also obtain estimates of the solutions of the approximate problems and a convergence result of these solutions. Finally, we give explicit convergence rates.

  18. A priori estimates for the existence of a solution for a multi-point boundary value problem

    Directory of Open Access Journals (Sweden)

    Trofimchuk Sergei

    2000-01-01

    Full Text Available Let , , , , with be given. Let be such that , be given. This paper is concerned with the problem of obtaining Poincaré type a priori estimates of the form . The study of such estimates is motivated by the problem of existence of a solution for the Caratheodory equation , , satisfying boundary conditions . This problem was studied earlier by Gupta et al. (Jour. Math. Anal. Appl. 189 (1995, 575–584 when the 's, all had the same sign.

  19. On an algorithm for solving boundary-value problems for systems of first-order partial differential equations with constant coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Pleshchinskaya, I.E.; Pleshchinskii, N.B.

    1995-05-20

    In this paper the authors study linear systems of first-order partial differential equations u{sub x} + Au{sub y} + Bu = O, where A and B are given constant square matrices and u is an unknown vector-valued function with values in an m-dimensional real or complex vector space. We exhibit cases in which the general solution of the system (1) can be expressed in terms of solutions of coupled second-order partial differential equations and the derivations of these solutions. Then the solution of boundary-value problems for the system (1) with a boundary condition of the form u = f reduces to the successive solution of boundary-value problems of the same type for such equations. 1{degree}. Consider the simplest special case of the system u{sub x} + Au{sub y} = O. We shall assume that A is a complex-valued matrix and u a complex-vector-valued function.

  20. Mathematical study of boundary-value problems within the framework of Steigmann-Ogden model of surface elasticity

    Science.gov (United States)

    Eremeyev, Victor A.; Lebedev, Leonid P.

    2016-03-01

    Mathematical questions pertaining to linear problems of equilibrium dynamics and vibrations of elastic bodies with surface stresses are studied. We extend our earlier results on existence of weak solutions within the Gurtin-Murdoch model to the Steigmann-Ogden model of surface elasticity using techniques from the theory of Sobolev's spaces and methods of functional analysis. The Steigmann-Ogden model accounts for the bending stiffness of the surface film; it is a generalization of the Gurtin-Murdoch model. Weak setups of the problems, based on variational principles formulated, are employed. Some uniqueness-existence theorems for weak solutions of static and dynamic problems are proved in energy spaces via functional analytic methods. On the boundary surface, solutions to the problems under consideration are smoother than those for the corresponding problems of classical linear elasticity and those described by the Gurtin-Murdoch model. The weak setups of eigenvalue problems for elastic bodies with surface stresses are based on the Rayleigh and Courant variational principles. For the problems based on the Steigmann-Ogden model, certain spectral properties are established. In particular, bounds are placed on the eigenfrequencies of an elastic body with surface stresses; these demonstrate the increase in the body rigidity and the eigenfrequencies compared with the situation where the surface stresses are neglected.

  1. Use Residual Correction Method and Monotone Iterative Technique to Calculate the Upper and Lower Approximate Solutions of Singularly Perturbed Non-linear Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2013-09-01

    Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.

  2. Fucik spectrum,sign-changing and multiple solutions for semilinear elliptic boundary value problems with jumping nonlinearities at zero and infinity

    Institute of Scientific and Technical Information of China (English)

    LI; Shujie

    2001-01-01

    [1]Martin Schecher,The Fucik spectrum,Indiana University Mathematics Journal,1994,43(4):1139-1157.[2]Dancer,E.N.,Remarks on jumping nonlinearities,in Topics in Nonlinear Analysis (eds.Escher,Simonett),Basel:Birkhauser,1999,101-116.[3]Dancer,E.N.,Du Yihong,Existence of changing sign solutions for semilinear problems with jumping nonlinearities at zero,Proceedings of the Royal Society of Edinburgh,1994,124A:1165-1176.[4]Dancer,E.N.,Du Yihong,Multiple solutions of some semilinear elliptic equations via generalized conley index,Journal of Mathematical Analysis and Applications,1995,189:848-871.[5]Li Shujie,Zhang Zhitao,Sign-changing solutions and multiple solutions theorems for semilinear elliptic boundary value problems with jumping nonlinearities,Acta Mathematica Sinica,2000,16(1):113-122.[6]Chang Kung-ching,Li Shujie,Liu Jiaquan,Remarks on multiple solutions for asymptotically linear elliptic boundary value problems.Topological methods for Nonlinear Analysis,Journal of the Juliusz Schauder Center,1994,3:179-187.[7]Alfonso Castro,Jorge Cossio,Multiple solutions for a nonlinear Dirichlet problem,SIAM J.Math.Anal.,1994,25(6):1554-1561.[8]Alfonso Castro,Jorge Cossio,John M.Neuberger,A sign-changing solution for a superlinear Dirichlet problem,Rocky Mountain J.M.,1997,27:1041-1053.[9]Alfonso Castro,Jorge Cossio,John M.Neuberger,A minimax principle,index of the critical point,and existence of sign-changing solutions to Elliptic boundary value problems,E.J.Diff.Eqn.,1998 (2):1-18.[10]Thomas Bartsch,Wang Zhiqiang,On the existence of sign-changing solutions for semilinear Dirichlet problems,Topological Methods in Nonlinear Analysis,Journal of the Juliusz Schauder Center,1996,(7):115-131.[11]Li Shujie,Zhang Zhitao,Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity,Discrete and Continuous Dynamical System,1999,5(3):489-493.[12]Mawhin,J.,Willem,M.,Critical Point Theory and

  3. On a character of the forced vibrations of two-layer plate in the second boundary value problem

    Directory of Open Access Journals (Sweden)

    Poghosyan H. M.

    2007-06-01

    Full Text Available The three-dimensional dynamic problem of the elasticity theory on forced vibration of orthotropic plate at coulomb friction between layers is solved by the asymptotic method. The bottom obverse surface is subject to external dynamic influences, and top - is rigidly fixed. The common asymptotic solution of the problem is found. The closed solution for particular type of problems is found. The resonance arising conditions are established. It is known, that constant tangential displacements acting to the second layer do not influence in stress-strain state of the first layer. It is shown, that the same phenomenon with the big accuracy remains in force at linearly varying on coordinates influences.

  4. 一类四阶边值问题的变号解%Sign-changing Solutions to Fourth-order Boundary Value Problem

    Institute of Scientific and Technical Information of China (English)

    李宇华

    2011-01-01

    The problem U(4) (t) = f (t ,U) , t ∈ (o, 1) with the boundary value conditions u″ (0) = u″ (1) = O ,u (O)=u(l) =O is studied by using topological degree and Morse theory. Under some conditions, we obtain this problem has at least six solutions,including two positive solutions, two negative solutions and two sign-changing solutions.%利用拓扑度理论和Morse理论研究方程u(4)(t)=f(t,u),t∈(0,1),且带有边界条件u"(0)=u"(1)=0,u(0)=u(1)=0.在一定条件下,得到此问题有六个解,其中两个正解,两个负解,两个变号解.

  5. Calculation of the effective thermal properties of the composites based on the finite element solutions of the boundary value problems

    Science.gov (United States)

    Vdovichenko, I. I.; Yakovlev, M. Ya; Vershinin, A. V.; Levin, V. A.

    2016-11-01

    One of the key problems of mechanics of composite materials is an estimation of effective properties of composite materials. This article describes the algorithms for numerical evaluation of the effective thermal conductivity and thermal expansion of composites. An algorithm of effective thermal conductivity evaluation is based on sequential solution of boundary problems of thermal conductivity with different boundary conditions (in the form of the temperature on the boundary) on representative volume element (RVE) of composite with subsequent averaging of the resulting vector field of heat flux. An algorithm of effective thermal expansion evaluation is based on the solution of the boundary problem of elasticity (considering the thermal expansion) on a RVE of composite material with subsequent averaging of a resulting strain tensor field. Numerical calculations were performed with the help of Fidesys Composite software module of CAE Fidesys using the finite element method. The article presents the results of numerical calculations of the effective coefficients of thermal conductivity and thermoelasticity for two types of composites (single-layer fiber and particulate materials) in comparison with the analytical estimates. The comparison leads to the conclusion about the correctness of algorithms and program developed.

  6. Positive Solutions for Nonlinear Second-Order Boundary Value Problem of Delay Differential Equation%非线性二阶时滞微分方程边值问题的正解

    Institute of Scientific and Technical Information of China (English)

    李志龙

    2008-01-01

    In this paper, we study the nonlinear second-order boundary value problem of delay differential equation. Without the assumption of the nonnegativity of f, we still obtain the existence of the positive solution.

  7. The Migration Equation of the Moisture in Soil with Nonlinear Initial Boundary Value Problem%湿气迁移方程的非线性初边值问题

    Institute of Scientific and Technical Information of China (English)

    杨茂; 陈建军

    1999-01-01

    In this paper,combining Riemann's method with the fixed point theory effectively,we proved that the migration equation of the moisture in soil with nonlinear initial boundary value problem has unique classical solution.

  8. Iterative method for the numerical solution of a system of integral equations for the heat conduction initial boundary value problem

    Science.gov (United States)

    Svetushkov, N. N.

    2016-11-01

    The paper deals with a numerical algorithm to reduce the overall system of integral equations describing the heat transfer process at any geometrically complex area (both twodimensional and three-dimensional), to the iterative solution of a system of independent onedimensional integral equations. This approach has been called "string method" and has been used to solve a number of applications, including the problem of the detonation wave front for the calculation of heat loads in pulse detonation engines. In this approach "the strings" are a set of limited segments parallel to the coordinate axes, into which the whole solving area is divided (similar to the way the strings are arranged in a tennis racket). Unlike other grid methods where often for finding solutions, the values of the desired function in the region located around a specific central point here in each iteration step is determined by the solution throughout the length of the one-dimensional "string", which connects the two end points and set them values and determine the temperature distribution along all the strings in the first step of an iterative procedure.

  9. Аsymptotic solution of a class thermoelasticity nonclassical boundary value problems for the package of an orthotropic plate of variable thickness

    Directory of Open Access Journals (Sweden)

    Aghalovyan M.L.

    2014-03-01

    Full Text Available We solve the non-classical boundary value problem for an orthotropic packet when on one of its front surface the corresponding components of the stress tensor are equal to zero and sets the value of the displacement vector. The task, in particular, is modeling the behavior of the lithospheric plates of the Earth, or a specific region of the earth's crust subject to tectonic movements of the fixed seismic stations, GPS and other measuring instruments. On the basis of three-dimensional equations of thermo-elasticity asymptotic method derived recurrence equations allow for a package of orthotropic layers of varying thickness. We derive recursive formulas for determining the components of the stress tensor and the displacement vector.

  10. Solvability of boundary value problems with Riemann-Stieltjes Δ-integral conditions for second-order dynamic equations on time scales at resonance

    Directory of Open Access Journals (Sweden)

    Li Yongkun

    2011-01-01

    Full Text Available Abstract In this paper, by making use of the coincidence degree theory of Mawhin, the existence of the nontrivial solution for the boundary value problem with Riemann-Stieltjes Δ-integral conditions on time scales at resonance x Δ Δ ( t = f ( t , x ( t , x Δ ( t + e ( t , a . e . t ∈ [ 0 , T ] T , x Δ ( 0 = 0 , x ( T = ∫ 0 T x σ ( s Δ g ( s is established, where f : [ 0 , T ] T × ℝ × ℝ → ℝ satisfies the Carathéodory conditions and e : [ 0 , T ] T → ℝ is a continuous function and g : [ 0 , T ] T → ℝ is an increasing function with ∫ 0 T Δ g ( s = 1 . An example is given to illustrate the main results.

  11. New algorithms for solving third- and fifth-order two point boundary value problems based on nonsymmetric generalized Jacobi Petrov-Galerkin method.

    Science.gov (United States)

    Doha, E H; Abd-Elhameed, W M; Youssri, Y H

    2015-09-01

    Two families of certain nonsymmetric generalized Jacobi polynomials with negative integer indexes are employed for solving third- and fifth-order two point boundary value problems governed by homogeneous and nonhomogeneous boundary conditions using a dual Petrov-Galerkin method. The idea behind our method is to use trial functions satisfying the underlying boundary conditions of the differential equations and the test functions satisfying the dual boundary conditions. The resulting linear systems from the application of our method are specially structured and they can be efficiently inverted. The use of generalized Jacobi polynomials simplify the theoretical and numerical analysis of the method and also leads to accurate and efficient numerical algorithms. The presented numerical results indicate that the proposed numerical algorithms are reliable and very efficient.

  12. K-复调和函数的Schwarz边值问题%Schwarz's boundary value problem for K- complex harmonic function

    Institute of Scientific and Technical Information of China (English)

    张建元; 刘俊; 张毅敏; 张昕

    2012-01-01

    In the paper,the Schwarz's type mixed K- integral is defined and studied within elliptic domain B(0, R) (k): | z(k) | ≤R to obtain the solutions of Schwarz's boundary value problem within K-complex harmonic function. The conclusion is the continuation and application of the solution K- complex harmonic function with the corresponding theories of the analytic function and harmonic function.%在椭圆域B(0,R)(k)={z:|z(k)|≤R}上定义和讨论了Schwarz混合型K-积分,并用它来求K-复调和函数类H(D(k))中的Schwarz边值问题的解.所得结论包含了前人的有关结果.

  13. The Existence and Uniqueness of a New Boundary Value Problem (Type of Problem “E” for Linear System Equations of the Mixed Hyperbolic-Elliptic Type in the Multivariate Dimension with the Changing Time Direction

    Directory of Open Access Journals (Sweden)

    Mahammad A. Nurmammadov

    2015-01-01

    Full Text Available The existence and uniqueness of the boundary value problem for linear systems equations of the mixed hyperbolic-elliptic type in the multivariate domain with the changing time direction are studied. Applying methods of functional analysis, “ε-regularizing” continuation by the parameter and by means of prior estimates, the existence and uniqueness of generalized and regular solutions of a boundary problem are established in a weighted Sobolev space.

  14. The Upwind Finite Difference Method for Three-dimensional Moving Boundary Value Problem%三维动边值问题的迎风差分方法

    Institute of Scientific and Technical Information of China (English)

    袁益让; 李长峰

    2012-01-01

    可压缩可混溶油、水三维渗流动边值问题的研究,对重建盆地发育中油气资源运移、聚集的历史和评估油气资源的勘探与开发有重要的价值,其数学模型是一组非线性耦合偏微分方程组的动边值问题.该文对有界域的动边值问题提出一类新的二阶修正迎风差分格式,应用区域变换、变分形式、能量方法、差分算子乘积交换性理论、高阶差分算子的分解、微分方程先验估计的理论和技巧,得到了最佳l2误差估计结果.该方法已成功应用到油资评估的数值模拟中.它对这一领域的模型分析,数值方法和软件研制均有重要的价值.%The research of the three-dimensional compressible miscible (oil and water) displace-ment problem with moving boundary values is of great value to the history of oil-gas transport and accumulation in basin evolution, as well as to the rational evaluation in prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values. For a generic case of three-dimensional bounded region, the authors put forward a kind of upwind finite difference schemes and make use the calculus of variations, the change of variables and the theory of a priori estimates and techniques. Optimal order estimates in l2 norm are derived for the errors in approximate solutions. The research is important both theoretically and practically for model analysis in the field, model numerical method and software development. Thus, the well-known problem is solved.

  15. A Parameter-Uniform Finite Difference Method for a Coupled System of Convection-Diffusion Two-Point Boundary Value Problems

    Institute of Scientific and Technical Information of China (English)

    Eugene O'Riordan; Jeanne Stynes; Martin Stynes

    2008-01-01

    A system of m (≥ 2) linear convection-diffusion two-point boundary value problems is examined, where the diffusion term in each equation is multiplied by a small parameter e and the equations are coupled through their convective and reactive terms via matrices B and A respectively. This system is in general singularly perturbed. Unlike the case of a single equation, it does not satisfy a conventional maximum princi-ple. Certain hypotheses are placed on the coupling matrices B and A that ensure exis-tence and uniqueness of a solution to the system and also permit boundary layers in the components of this solution at only one endpoint of the domain; these hypotheses can be regarded as a strong form of diagonal dominance of B. This solution is decomposed into a sum of regular and layer components. Bounds are established on these compo-nents and their derivatives to show explicitly their dependence on the small parameterε. Finally, numerical methods consisting of upwinding on piecewise-uniform Shishkin meshes are proved to yield numerical solutions that are essentially first-order conver-gent, uniformly in ε, to the true solution in the discrete maximum norm. Numerical results on Shishkin meshes are presented to support these theoretical bounds.

  16. 一类边值问题的三重正凹解%Triple Positive Concave Solutions of A Kind of Boundary Value Problem

    Institute of Scientific and Technical Information of China (English)

    张琦; 李福义

    2005-01-01

    Consider the boundary value problem -u(6)(t)=f(u(t),-u″(t),u(4)(t)),t∈[0,1],u(0)=u′(1)=u″(0)=u(″′)(1)=u(4)(0)=u(4)(1)=0,where f≥0, the boundary conditions are different from the Lidstone boundary conditions.By using the Leggett-Williams Fixed Point Theroem,a sufficient condition for the existence of triple positive concave solutions of BVP is obtained.%研究边值问题-u(6)(t)=f(u(t),-u″(t),u(4)(t)),t∈[0,1],u(0)=u′(1)=0,u″(0)=u(″′)(1)=0,u(4)(0)=u(4)(1)=0,其中f≥0.其边值条件不同于Lidstone边值条件,应用Leggett-Williams不动点定理得到边值问题存在三重正解的充分条件.

  17. A Singular Quasilinear Elliptic Boundary Value Problem%关于一个拟线性椭圆边值问题的研究

    Institute of Scientific and Technical Information of China (English)

    王俊禹; 郑大伟; 高文杰

    2003-01-01

    A boundary value problem of a nonlinear partial differential equation with the N-dimensional p-Laplacian as the principal part is studied. The nonlinear term in the equation may have singularity and discontinuity in its variables. A typical form of the equation is the well-known Emden-Fowler equation with negative exponent. The existence and uniqueness results are obtained via a perturbation technique, the Schauder fixed point theorem and careful analysis of the property of the solutions.%本文研究一个主部为N维P-Laplace微分算子的非线性偏微分方程的边值问题.方程中的非线性项关于其变量可以具有奇性和间断性.这类方程的一种典型情形是大家熟知的具负指数的Emden-Fowler方程.本文利用摄动技巧,Schauder不动点定理,经对解的性质的精细分析,获得了解的存在性和唯一性结果.

  18. K调和函数的狄利克雷边值问题%Dirichlet's Boundary Value Problem for K-Harmonic Function

    Institute of Scientific and Technical Information of China (English)

    张建元

    2011-01-01

    In this paper,the Poisson integral is defined and studied within the elliptic domain B(0,ρ)(k)={z:|z(k)|≤ρ,0〈ρ〈+∞} to obtain the solutions of Dirichlet's and Schwarz's boundary value problem within K-harmonic function.The conclusion is the continuation and application of the corresponding results of the analytic function and harmonic function in the K-harmonic function.%在椭圆域B(0,ρ)(k)={z:|z(k)|≤ρ,0〈ρ〈+∞}上定义和讨论了泊松积分,并用它来求K-调和函数的狄利克雷和施瓦兹边值问题的解,所得结论是解析函数与调和函数的相应理论在K-解析(调和)函数中的继续和应用.

  19. Asymptotic of the Solutions to the Initial Boundary Value Problem for the Diffusion Equations for Semiconductors%半导体中扩散方程初始边界问题的解的渐近性

    Institute of Scientific and Technical Information of China (English)

    王文彬; 刘淑梅

    2005-01-01

    In this paper, we study the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and initial value, we prove that the smooth solutions to these evolutionary problems tend to the unique stationary solution exponentially as time tends to infinity.

  20. 催化剂反应中一类非线性边值问题的有限元配点法%FINITE ELEMENT COLLOCATION METHOD FOR A CLASS OF NONLINEAR BOUNDARY VALUE PROBLEM FOR CATALYTIC REACTORS

    Institute of Scientific and Technical Information of China (English)

    彭丽

    2002-01-01

    The finite element solution of two points boundary value problem for nonlinear ordinary differential equation is studied by using the collocation-Galerkin method.The Jacobi points are introduced to establish high orders of accuracy for the approximate solution.Numerical results are presented for a sample problem.

  1. 最小二乘法求解三类卫星重力梯度边值问题%Solving Three Types of Satellite Gravity Gradient Boundary Value Problems by Least-Squares

    Institute of Scientific and Technical Information of China (English)

    徐新禹; 李建成; 邹贤才; 褚永海

    2007-01-01

    The principle and method for solving three types of satellite gravity gradient boundary value problems by least-squares are discussed in detail. Also, kernel function expressions of the least-squares solution of three geodetic boundary value problems with the observations {Γzz},{Γxz,Γyz} and {Γzz -Γyy,2Γxy} are presented. From the results of recovering gravity field using simulated gravity gradient tensor data, we can draw a conclusion that satellite gravity gradient integral formulas derived from least-squares are valid and rigorous for recovering the gravity field.

  2. 论椭圆型方程边值问题与变分问题的等价性%Equivalence of Variation Problem to Boundary Value Problem of Elliptic Partial Differential Equation

    Institute of Scientific and Technical Information of China (English)

    夏必腊; 王金山; 许道军

    2012-01-01

    证明了椭圆型偏微分方程边值问题等价于一个泛函变分的极值问题,指出了将这类偏微分方程边值问题转换为等价的泛函变分极值问题后所带来的好处.%It is proved that the Elliptic Partial Differential Equation with boundary value problem and the problem in the variation calculus are equivalent. The advantages of this kind of transformation was given.

  3. 2n阶非线性微分方程的第二边值问题%Second Boundary Value Problems for 2n-th Order Nonlinear Differential Equations

    Institute of Scientific and Technical Information of China (English)

    吕显瑞; 徐庆; 高广学

    2002-01-01

    Sufficient conditions for the existence and uniqueness of second boundary value problems of two kinds of even order nonlinear differential equations are obtained. The proofs are based on the lemma on bilinear form, developed by A.C.Lazer, Schauder fixed point theorem and the Leray-Schauder degree theory, respectively.

  4. 一阶随机微分方程的边值问题%Boundary Value Problems for First Order Stochastic Differential Equations

    Institute of Scientific and Technical Information of China (English)

    王妍; 韩月才

    2007-01-01

    In this paper,we present a new technique to study nonlinear stochastic differential equations with periodic boundary value condition (in the sense of expectation).Our main idea is to decompose the stochastic process into a deterministic term and a new stochastic term with zero mean value.Then by using the contraction mapping principle and Leray-Schauder fixed point theorem,we obtain the existence theorem.Finally,we explain our main results by an elementary example.

  5. The Riemann-Hilbert Boundary Value Problem for General Elliptic Complex Equations of Second Order%二阶复椭圆 Riemann-Hilbert 边值问题

    Institute of Scientific and Technical Information of China (English)

    黄沙; 闻国椿

    2000-01-01

    This paper deals with the Riemann-Hilbert boundary value problem for general nonlinear elliptic complex equations of second order. Firstly we propose the Riemann-Hilbert problem and its well posedness, and then we give the representation of solutions for the modified boundary value problem and prove its solvability, and finally derive solvability conditions of the original Riemann-Hilbert problem.%讨论了一般二阶非线性椭圆复方程的Riemann-Hilbert边值问题. 首先给出Riemann-Hilbert问题及其适应性的概念,其次给出改进后的边值问题解的表述并证明了它的可解性,最后导出原Riemann-Hilbert边值问题的可解条件.

  6. 源于膨胀波边界层理论中的一类奇异边值问题%Singular Nonlinear Boundary Value Problems Arising in the Boundary Layer Behind Expansion Wave

    Institute of Scientific and Technical Information of China (English)

    徐云滨; 郑连存

    2008-01-01

    A class of singular nonlinear boundary value problems arising in the boundary layer behind expansion wave are studied. Sufficient conditions for the existence and uniqueness of positive solutions to the problems are established by utilizing the monotonic approaching technique. And a theoretical estimate formula for skin friction coefficient is presented. The numerical solution is presented by using the shoot method. The reliability and efficiency of the theoretical prediction are verified by numerical results.

  7. 广义解析函数的RD2H复合边值问题%THE RD2H COMPOUND BOUNDARY VALUE PROBLEM FOR GENERALIZED ANALYTIC FUNCTION

    Institute of Scientific and Technical Information of China (English)

    田大增; 李子植

    2000-01-01

    The RD2H compound boundary value problem for the elliptic partial differential equation system of first order with the boundary condition including second order derivate is studied.This problem is solved by the method of elimination.It is changed into equivalent Hilbert boundary value problem for generalized analytic vector functions.With the help of the theory singular integral equation system,solvable result is also given.%研究了一阶线性椭圆型偏微分方程的边界条件中含有二阶微商的RD2H复合边值问题,利用消去法将其化为等价的广义解析向量的Hilbert边值问题,并利用奇异积分方程组的理论给出了问题的可解性结果.

  8. Positive Solutions of Singular Impulsive Emden-Fowler Boundary Value Problem with Negative Exponent%负指数的脉冲EMDEN-FOWLER方程奇异边值问题的正解

    Institute of Scientific and Technical Information of China (English)

    代丽美

    2007-01-01

    In this paper,we first give the method of lower and upper solutions for the existence of positive solutions to a singular impulsive boundary value problem by means of the fixed point theorem,then obtain a necessary and sufficient condition for the existence of positive solution of Emden-Fowler singular impulsive boundary value problem by using the method of lower and upper solutions.%利用不动点定理得到了脉冲奇异混合边值问题的上下解方法,并且利用此方法得到了负指数的脉冲Emden-Fowler方程奇异混合边值问题正解存在的充分必要条件.

  9. EXISTENCE AND UNIQUENESS FOR SECOND-ORDER VECTOR BOUNDARY VALUE PROBLEM OF NONLINEAR SYSTEMS%二阶非线性系统向量边值问题解的存在性与惟一性

    Institute of Scientific and Technical Information of China (English)

    杜增吉; 林晓洁; 葛渭高

    2005-01-01

    This paper is concerned with the following second-order vector boundary value problem:x″=f(t,Sx,x,x′),0<t<1,x(0)=A,g(x(1),x′(1))=B,where x,f,g,A and B are n-vectors.Under appropriate assumptions,existence and uniqueness of solutions are obtained by using upper and lower solutions method.

  10. Boundary value problems for 2n-order p-Laplacian difference equations containing both advance and retardation%含超前和滞后量的2n阶p-Laplacian差分方程边值问题

    Institute of Scientific and Technical Information of China (English)

    周展; 王倩

    2014-01-01

    考虑含超前与滞后量的2n阶p-Laplace差分方程边值问题。首先,引入一个合适的希尔伯特空间并在此空间上定义一个泛函使其临界点对应于边值问题的解。然后,建立几个不等式并利用临界点理论获得泛函临界点的存在性。由此得到边值问题解的存在性的一些充分条件。本文结果推广和改进了最近文献的相关结论。%In this paper , we consider the boundary value problems for a 2n-order p-Laplacian difference equa-tion containing both advance and retardation .First, we introduce a suitable Hilbert space and define a function-al on this space such that the critical points of the functional correspond to the solutions of the boundary value problem.Then, by several established inequalities and critical point theory , we obtain the existence of critical points of the functional .Thus, sufficient conditions of the existence of solutions of the boundary value problems are obtained .Our results generalize and improve some recent ones .

  11. 用边界元法计算静电场第四类非混合边值问题%Computation of the fourth non-mixed boundary-value problems of electrostatic field by boundary element method

    Institute of Scientific and Technical Information of China (English)

    彭兵

    2000-01-01

    A modified boundary element method(BEM) is presented for computation of the fourth non-mixed boundary-value problems,of electrostatic field.The BEM equation is de-rived,and the equation of constraint is presented.By theoretical analyzing and calculating engineering examples,it is proven that the BEM is a more effective approach to computation of the fourth non-mixed boundary-value problems of electrostatic field,it may obtain better calculating results and is applicable to calculating electrostatic field engineering problems of the fourth non-mixed boundary-value problems.%本文提出用边界元法计算介质分区均匀情况下的静电场第四类非混合边值问题,推导出用边界元法计算第四类非混合边值问题的边界元方程组。理论分析和实例计算结果表明:边界元法是计算第四类非混合边值问题的一种有效方法,不仅具有较高的算精度,而且可以很方便地应用于静电场工程问题的设计与计算。

  12. The Hamilton-Jacobi theory for solving two-point boundary value problems: Theory and numerics with application to spacecraft formation flight, optimal control and the study of phase space structure

    Science.gov (United States)

    Guibout, Vincent M.

    This dissertation has been motivated by the need for new methods to address complex problems that arise in spacecraft formation design. As a direct result of this motivation, a general methodology for solving two-point boundary value problems for Hamiltonian systems has been found. Using the Hamilton-Jacobi theory in conjunction with the canonical transformation induced by the phase flow, it is shown that generating functions solve two-point boundary value problems. Traditional techniques for addressing these problems are iterative and require an initial guess. The method presented in this dissertation solves boundary value problems at the cost of a single function evaluation, although it requires knowledge of at least one generating function. Properties of this method are presented. Specifically, we show that it includes perturbation theory and generalizes it to nonlinear systems. Most importantly, it predicts the existence of multiple solutions and allows one to recover all of these solutions. To demonstrate the efficiency of this approach, an algorithm for computing the generating functions is proposed and its convergence properties are studied. As the method developed in this work is based on the Hamiltonian structure of the problem, particular attention must be paid to the numerics of the algorithm. To address this, a general framework for studying the discretization of certain dynamical systems is developed. This framework generalizes earlier work on discretization of Lagrangian and Hamiltonian systems on tangent and cotangent bundles respectively. In addition, it provides new insights into some symplectic integrators and leads to a new discrete Hamilton-Jacobi theory. Most importantly, it allows one to discretize optimal control problems. In particular, a discrete maximum principle is presented. This dissertation also investigates applications of the proposed method to solve two-point boundary value problems. In particular, new techniques for designing

  13. An Existence Theorem of Solution for a Singular Third-order Two-point Boundary Value Problem%奇异三阶两点边值问题解的一个存在定理

    Institute of Scientific and Technical Information of China (English)

    姚庆六

    2008-01-01

    By constructing suitable Banach space.an existence theorem is established under a condition of linear growth for the third-order boundary value problem u'"(t)+f(t,u(t),t'(t),u"(t))=0,0<t<1,u(0)=u'(0)=u'(1)=0,where the nonlinear term contains first and second derivatives of unknown function.In this theorem the nonlinear term f(t,u,v,w)may be singular at t=0 and t=1.The main ingredient is Leray-Schauder nonlinear alternative.

  14. Existence of Solutions to Langevin Fractional Order with Nonlocal Dirichlet Boundary Value Problems%分数阶朗之万方程的非局部狄利克雷边值问题解的存在性

    Institute of Scientific and Technical Information of China (English)

    郭秀清; 王旭焕

    2013-01-01

    讨论了分数阶Langevin方程的非局部狄利克雷边值问题,利用Leray-Schauder's和压缩映像原理,分别得到了方程的解的存在及唯一性.%In this paper,a new type of Langevin equation with fractional orders with Nonlocal Dirichlet Boundary Value Problems is considered.By using Leray-Schauder's fixed point theorem and Banach's contraction mapping principle,we obtain the existence and uniqueness results of the solution.

  15. 正指数超线性Emden-Fowler方程奇异边值问题的正解%Positive Solutions of Singular Boundary Value Problems ofPositive Exponent Superlinear Emden-Fowler Equations

    Institute of Scientific and Technical Information of China (English)

    毛安民

    2000-01-01

    This paper studies the existence of positivesolutions of singular boundary value problems of positive exponentsuperlinear Emden-Fowler equations. A necessary and sufficient conditionfor the existence of C1 [0,1] positive solutions is given by meansof function approximation with the fixed point theorems.%本文利用函数逼近和不动点理论给出了正指数超线性Emden-Fowler方程奇异边值问题有C1[0,1]正解的充分必要条件.

  16. Existence of Solutions of Boundary Value Problems for Forth Order Ordinary Differential Equations under Compactness Condition%紧型条件下四阶两点边值问题解的存在性

    Institute of Scientific and Technical Information of China (English)

    张栋

    2012-01-01

    Based on the fixed-point theorem and topological degree of condensing mapping,the existence and uniqueness of the solutions for boundary value problems of forth order differential equation in Banach space is proved precisely to calculate the spectral radius of linear operation and the measure of noncampactness.%通过对线性方程算子谱半径的论证及算子非紧性测度的讨论,利用凝聚场的拓扑度及不动点定理讨论了Banach空间四阶常微分方程边值问题解的存在性.

  17. Existence of Positive Solutions for Nonlinear Robin Boundary Value Problems in Banach Spaces%有序Banach空间非线性Robin边值问题正解的存在性

    Institute of Scientific and Technical Information of China (English)

    李小龙

    2012-01-01

    The existence of positive solutions for nonlinear Robin boundary value problem in an ordered Banach spaces was discussed. An existence result of positive solutions was obtained by employing a new estimate of noncompactness measure and the fixed point index theory of condensing mapping.%讨论有序Banach空间E中的非线性Robin边值问题正解的存在性,通过非紧性测度的估计技巧与凝聚映射的不动点指数理论获得该问题正解的存在性结果.

  18. On Resonance and Unique Existence for Semi-linear Elliptic Boundary Value Problem%共振条件下半线性椭圆偏微分方程边值问题解的存在唯一性

    Institute of Scientific and Technical Information of China (English)

    孙世全; 李维国

    2001-01-01

    利用极小极大原理,在共振条件下,证明了一个半线性椭圆偏微分方程Direchlet边值问题广义解的存在唯一性定理,从而推广了已知的一些结果.%In this paper,with the use of a min max principle. under a resonance condition,a unique existence of generalized solution to the Direchlet boundary value problem of the semi-linear elliptic partial differential equations is given,and this extended partially the results that was known.

  19. Generalized conjugate gradient method for the numerical solution of elliptic partial differential equations. [Solution of sparse, symmetric, positive-definite systems of linear equations arising from discretization of boundary-value problems for elliptic partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Concus, P.; Golub, G.H.; O' Leary, D.P.

    1976-01-01

    A generalized conjugate gradient method is considered for solving sparse, symmetric, positive-definite systems of linear equations, principally those arising from the discretization of boundary value problems for elliptic partial differential equations. The method is based on splitting off from the original coefficient matrix a symmetric, positive-definite one which corresponds to a more easily solvable system of equations, and then accelerating the associated iteration by using conjugate gradients. Optimality and convergence properties are presented, and the relation to other methods is discussed. Several splittings for which the method seems particularly effective are also discussed; and for some, numerical examples are given. 1 figure, 1 table. (auth)

  20. Finding Solutions to the Picard Boundary Value Problem via Homotopy Method%用同伦方法求Picard边值问题的解

    Institute of Scientific and Technical Information of China (English)

    李兰; 徐旭

    2008-01-01

    This paper deals with the problem of finding solutions to the Picard boundary problem. In our approach, by means of the homotopy method, the equation considered is linked to a simpler equation by introducing a parameter. We first find the solutions of the simpler equation, and give a priori estimates of" the equa tion we considered, and then one can obtain the solutions of Picard boundary problem by following the path of solutions of Cauchy problem.

  1. The Existence and Uniqueness of the Solution for Perio dical Boundary Value Problems of 2k th Order Differential Equations with Resonance

    Institute of Scientific and Technical Information of China (English)

    FENG Yan-qing; WANG Zhong-ying

    2014-01-01

    In this paper, a new set of sufficient conditions related to an initial value problem and global homeomorphism is obtained in discussing the existence and uniqueness of 2π-periodic solution for 2kth order differential equations with resonance. The key role is played by nonnegative auxiliary scalar coercive function. The result of this paper generalizes some existed theorems.

  2. 半线性积分微分方程的初边值问题%The Initial-Boundary Value Problem for Semilinear Integral-Differential Equotions

    Institute of Scientific and Technical Information of China (English)

    曾有栋; 陈祖墀

    2001-01-01

    介绍了一类椭圆型方程的非局部特征值问题.通过在一个Sobolev空间选取特 殊基,并利用Faedo-Galerkin方法和能量估计讨论了问题当F(u,x,t)是一类具体函 数时的整体解的存在性与唯一性;当F(u,x,t)=|u|P-1u时,研究了解的爆破问 题;最后,利用极大单调算子理论证明了问题的关于时间的周期解的存在性与唯一 性.%A non-local eigenvalue problem is studied for a kind of elliptic equations. Since the maxi mum principle in partial differential equations is invalid for this kind of equations, the super-sub solu tion method can not be applied. By choosing a special base in a Sobolev space, applying the Faedo Galerkin method and the energy estimates we get, in Section 3, the existence and the uniqueness of the global solution to the above problem for certain functions F. In Section 4, we consider the blowing-up situation of the solution to the problem for a specified F. We get that if the initial data u0 ≠ 0 and the energy of u is non-positive, then the solution of the problem must blow up in a finite time. Finally, using the theory of maximal monotonic operators, the existence and uniqueness of the periodic solution to the problem is considered and it is proved that there is only one periodic solution provided f( x, t ) ∈ LP'(Q) where Q=Ω x (0, T ).

  3. 多圆环柱域上解析函数边值问题再论%Further Discussion on the Boundary Value Problem for Analytic Functions in Several Circular Ring Cylinder Domain

    Institute of Scientific and Technical Information of China (English)

    王莉萍

    2001-01-01

    In this paper,we discuss the general case of the Riemann- Hilbertboundary value problem for analytic functions of several complex variabl es in several circular ring cylinder domain.Through the transformation of analyt ic functions, we have derived the solvability for the ordinary Riemann-Hilbert boundary value problems for an analytic function of several complex variables. A nd we present the integral expressions of the solution.%讨论多圆环柱域上多个复变量的解析函数的一般形式的Riemann-Hilbert边值问题。通过函数的解析变换,导出了解析函数一般形式的Riemann-Hilbert边值问题的可解性,并给出了解的积分表达式。

  4. 一类四阶边值问题的正解%POSITIVE SOLUTIONS OF A FOURTH ORDER BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    任立顺

    2003-01-01

    The existence of positive solutions of the nonlinear fourth order problem u(4)(x) = λa(x)f(u(x)),u(0) = u'(0) = u'(1) = u"'(1) = 0 is studied, where a:[0,1]→R may change sign, f(0)>0,λ>0 is sufficiently smallOurapproach is based on the Leray-Schauder fixed point theorem.

  5. On the solvability conditions of the first boundary value problem for a system of elliptic equations that strongly degenerate at a point

    Directory of Open Access Journals (Sweden)

    Rutkauskas Stasys

    2011-01-01

    Full Text Available Abstract A system of elliptic equations which are irregularly degenerate at an inner point is considered in this article. The equations are weakly coupled by a matrix that has multiple zero eigenvalue and corresponding to it adjoint vectors. Two statements of a well-posed Dirichlet type problem in the class of smooth functions are given and sufficient conditions on the existence and uniqueness of the solutions are obtained.

  6. On the existence of solutions of one nonlinear boundary-value problem for shallow shells of Timoshenko type with simply supported edges

    Science.gov (United States)

    Timergaliev, S. N.; Kharasova, L. S.

    2016-11-01

    Solvability of one system of nonlinear second order partial differential equations with given initial conditions is considered in an arbitrary field. Reduction of the initial system of equations to one nonlinear operator equation is used to study the problem. The solvability is established with the use of the principle of contracting mappings. The method used in these studies is based on the integral representations for the displacements. These representations are constructed with the use of general solutions to the inhomogeneous Cauchy-Riemann equation.

  7. A minimax inequality for a class of functionals and applications to the existence of solutions for two-point boundary-value problems

    Directory of Open Access Journals (Sweden)

    Ghasem Alizadeh Afrouzi

    2006-10-01

    Full Text Available In this paper, we establish an equivalent statement to minimax inequality for a special class of functionals. As an application, we prove the existence of three solutions to the Dirichlet problem $$displaylines{ -u''(x+m(xu(x =lambda f(x,u(x,quad xin (a,b,cr u(a=u(b=0, }$$ where $lambda>0$, $f:[a,b]imes mathbb{R}o mathbb{R}$ is a continuous function which changes sign on $[a,b]imes mathbb{R}$ and $m(xin C([a,b]$ is a positive function.

  8. The theory of discrete barriers and its applications to linear boundary-value problems of the 'Dirichlet type'; Theorie des barrieres discretes et applications a des problemes lineaires elliptiques du ''type de dirichlet''

    Energy Technology Data Exchange (ETDEWEB)

    Jamet, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    This report gives a general presentation of barrier theory for finite difference operators, with its applications to some boundary value problems. (author) [French] Ce rapport est un expose synthetique de la theorie des barrieres pour les operateurs aux differences finies et ses applications a certaines classes de problemes lineaires elliptiques du 'type de Dirichlet'. (auteur)

  9. Existence of Positive Solutions for the Boundary Value Problems of Nonlinear Elliptic Partial Differential Equations%非线性椭圆型偏微分方程边值问题正解的存在性

    Institute of Scientific and Technical Information of China (English)

    陆海霞

    2013-01-01

    首先研究通过椭圆型偏微分方程歧点的连通分支的性质,然后得到椭圆型偏微分方程边值问题至少有一个正解存在结果.主要研究方法是全局分歧理论.%In this paper,the properties of the connected component containing the bifurcation points of a nonlinear elliptic partial differential equation is firstly studied.Then the existence of at least one positive solution for the boundary value problems of the equation is proved.The method to show our main results is the global bifurcation theol.

  10. Dirichlet boundary value problem with variable growth

    Institute of Scientific and Technical Information of China (English)

    董增福; 付永强

    2004-01-01

    In this paper, we study higher order elliptic partial differential equations with variable growth, and obtain the existence of solutions in the setting of W'n,p(χ) spaces by means of an abstract result for variational inequalities obtained by Gossez and Mustonen. Our result generalizes the corresponding one of Kovacik and Rakosntk.

  11. 格林函数变号的三阶周期边值问题%Third-order periodic boundary value problems with sign-changing Green’s function

    Institute of Scientific and Technical Information of China (English)

    陈彬

    2016-01-01

    研究了三阶非线性周期边值问题u"(t)+a(t)u(t)=λb(t)f(u(t)),a.e t∈[0,2π], u(i)(0)=u(i)(2π),i=0,1,2正解的存在性。其中 a0,b0,线性问题u"(t)+a(t)u(t)=0,a.e t∈[0,2π], u(i)(0)=u(i)(2π),i=0,1,2的格林函数 G(t,s)在[0,2π]×[0,2π]上变号。%We study the existence of positive solutions of nonlinear periodic boundary value problems u"(t)+a(t)u(t)=λb(t)f(u(t)),a.e t∈[0,2π], u(i)(0)=u(i)(2π),i=0,1 ,2 where a0,b0 and the Green’s function of the linear problem u"(t)+a(t)u(t)=0,a.e t∈[0,2π], u(i)(0)=u(i)(2π),i=0,1 ,2 may change sign on [0,2π]×[0,2π].

  12. Recursive recovery of Markov transition probabilities from boundary value data

    Energy Technology Data Exchange (ETDEWEB)

    Patch, Sarah Kathyrn [Univ. of California, Berkeley, CA (United States)

    1994-04-01

    In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requires finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 x 2 x 2 problem, is solved.

  13. 非线性偏微分方程边值问题的优化算法研究与应用%Study and application of optimization algorithm about nonlinear partial differential equations with boundary value problem

    Institute of Scientific and Technical Information of China (English)

    侯祥林; 刘铁林; 翟中海

    2011-01-01

    针对椭圆类非线性偏微分方程边值问题,以差分法和动态设计变量优化算法为基础,以离散网格点未知函数值为设计变量,以离散网格点的差分方程组构建为复杂程式化形式的目标函数.提出一种求解离散网格点处未知函数值的优化算法.编制了求解未知离散点函数值的通用程序.求解了具体算例.通过与解析解对比,表明了本文提出求解算法的有效性和精确性,将为更复杂工程问题分析提供良好的解决方法.%For elliptic nonlinear partial differential equations with boundary value problem, based on difference method and dynamic design variable optimization method, by taking unknown function value on discrete net point as design variables, difference equation of all the discrete net points is constructed as an objective function. A kind of optimization algorithm about solving unknown function value on discrete net point is proposed. Universal computing program is designed. Practical example is analyzed. By comparing the computing result with the analytical solution, effectiveness and feasibility are verified. Thus complicated nonlinear mathematical physics equations can be solved by the numerical calculation method.

  14. Numerical Computing for a Class of Free Multipoint Boundary Value Problem of O. D. E in the Intervention of Exchange Rate%汇率干预中的多点自由边值问题的数值计算方法

    Institute of Scientific and Technical Information of China (English)

    赵连霞; 朱正佑; 秦成林

    2005-01-01

    In this paper by means of generalized shooting method and homotopy technique a numerical method was given for computing free multipoint boundary value problem proposed in the intervention of exchange rate by Cadenillas and Fernando Zapatero. A numerical example was given for illustrating the validity of this method.

  15. Three Nonnegative Solutions of Three-Point Boundary Value Problem for Second-Order Impulsive Differential Equations%一类二阶脉冲微分方程三点边值问题三个非负解的存在性

    Institute of Scientific and Technical Information of China (English)

    贾梅; 刘锡平

    2008-01-01

    The paper studies the existence of three nonnegative solutions to a type of threepoint boundary value problem for second-order impulsive differential equations, and obtains the sufficient conditions for existence of three nonnegative solutions by means of the Leggett-Williams's fixed point theorem.

  16. Analytical Solution of Two-Point Boundary Value Problem for Spacecraft Relative Motion%航天器相对运动的两点边界值问题解析解

    Institute of Scientific and Technical Information of China (English)

    苑云霞; 岳晓奎; 娄云峰

    2011-01-01

    The two-point boundary value problem (TPBVP) of a leader-follower spacecraft formation flying was studied. Aiming at unperturbed elliptical reference orbits, the state transfer matrix representing actual relative position and velocity was derived, and the first-order analytical solution of TPBVP is obtained, which can deal with the problems of the specified rendezvous time, fuel optimization and compromise between fuel and time, and is applicable to the periodic and non-periodic relative motion. The simulation results show that the normalized accuracy of this solution achieves 10~6 level. Furthermore, the fuel cost of relative transfer increases with eccentricity increasing, and decreases with semi-major axis increasing, and appears periodic change with initial true anomaly increasing, and decreases as the transfer time increasing.%针对无摄椭圆轨道,推导了表示真实相对位置速度的状态转移矩阵,进而推导出了相对运动两点边界值问题的一阶解析解.所得结果不仅可指定转移时间、还可在时间范围内进行全局的燃料优化或在时间和燃料两者间折中;对于周期和非周期的相对运动均适用.仿真结果表明此解的归一化精度达到10-6.进一步的仿真发现相对转移过程的燃料消耗会随目标轨道偏心率的增加而增加;随长半轴的增加而减少;随初始真近点角的增加呈现周期性变化;随着转移时间增加,燃料消耗的总趋势是减少的.

  17. Efficient Smoothing for Boundary Value Models

    Science.gov (United States)

    1989-12-29

    IEEE Transactions on Automatic Control , vol. 29, pp. 803-821, 1984. [2] A. Bagchi and H. Westdijk, "Smoothing...and likelihood ratio for Gaussian boundary value processes," IEEE Transactions on Automatic Control , vol. 34, pp. 954-962, 1989. [3] R. Nikoukhah et...77-96, 1988. [6] H. L. Weinert and U. B. Desai, "On complementary models and fixed- interval smoothing," IEEE Transactions on Automatic Control ,

  18. 次线性Emden—Fowler方程两点边值问题的C[0,1]正解的唯一性%The uniqueness of the C[ 0,1 ] positive solution of the two-point boundary value problem of the sublinear Emden-Fowler equations

    Institute of Scientific and Technical Information of China (English)

    刘炳; 闫宝强

    2012-01-01

    Two-point boundary value problem of the sublinear Emden-Fowler equations has been addressed in many literatures, but the uniqueness of the C[0,1 ] positive solution has not been investigated. We employ monotone iterative method to address such problem and derive the uniqueness of the C[ 0,1 ] positive solution of the boundary value problem of such equations.%次线性Emden-Fowler方程两点边值问题在很多文献中用到,但对于该类问题的C[0,1]正解的唯一性还没有研究。本文利用单调迭代方法,对这一问题进行了研究,得出了该类方程两点边值问题的C[0,1]正解是存在且唯一的。

  19. On the Mixed Initial-Boundary Value Problem of a Semiconductor Equation System with Heat-Effect%具热效应的半导体方程组的混合初边值问题

    Institute of Scientific and Technical Information of China (English)

    孙福芹; 管平

    2001-01-01

    讨论考虑热效应时半导体器件中电子电流、空穴电流和静电位等载流子运动的数学模型,这是一个非线性抛物椭圆型耦合偏微分方程组的混合初边值问题.在假定初值n0(x),p0(x)∈L∞+(Ω),边值等正则性条件下,利用先验估计、紧性原理和Schauder不动点定理,证明了弱解的整体存在性.%A mathematical model arising in semiconductor device, whichdescribes the transport of carriers such as current of electrons, current of holes and electrostatic potential in the device with heat-effect, is considered. The model is a coupled nonlinear partial differential equation system of parabolic-elliptic type subject to mixed initial-boundary values. We prove the global existence of the weak solution under appropriate regularity conditions such as initial values n0(x),p0(x)∈L∞+(Ω), boundary values by means of a priori estimates, compactness principle and Schauder fixed point theory.

  20. Existence of Solutions to Nonlinear Langevin Equation Involving Two Fractional Orders with Boundary Value Conditions

    Directory of Open Access Journals (Sweden)

    Chen Yi

    2011-01-01

    Full Text Available We study a boundary value problem to Langevin equation involving two fractional orders. The Banach fixed point theorem and Krasnoselskii's fixed point theorem are applied to establish the existence results.

  1. 一类二阶常系数非齐次线性微分方程及边值问题的解法%The Solution of a Particular 2nd-order Nonhomogeneous Linear Ordinary Differential Equation with Constant Coefficients and Boundary Value Problem

    Institute of Scientific and Technical Information of China (English)

    李培超; 李培伦; 黎波; 葛良燕

    2011-01-01

    利用非齐次方程通解方法和Green函数法给出了非齐次项为点源函数的二阶常系数线性常微分方程及边值问题的求解方法和公式.然后以渗流力学一类具体问题为例进行了论证.结果表明这两种方法在本质上是一致的,所得到的结果是相互吻合的.该点源解可用于分析相关边值问题,并可用来求解具有一般非齐次项的微分方程及相关定解问题.%Utilizing methods of general solution and Green's function, the solution of a 2nd_order linear ordinary differential equation (ODE) and the corresponding boundary value problem with a nonhomogeneous term in the form of point source function is presented. Then it i8 validated by a practical problem in the field of porous media flow. It indicates that the above two methods are consistent with each other in essence. The presented solution is of great use to analyze the relevant boundary value problems. Moreover, the methods in this paper can be applied to solve the linear ODE and the related definite problems with a general nonhomogeneous term.

  2. New formulations on the finite element method for boundary value problems with internal/external boundary layers; Novas formulacoes de elementos finitos para problemas de valor de contorno com camadas limite interna/externa

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luis Carlos Martins

    1998-06-15

    New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)

  3. 一类具有Riemann-Liouville分数阶积分条件的分数阶微分方程边值问题%Boundary value problem of a class of fractional differential equation with Riemann-Liouville fractional integral conditions

    Institute of Scientific and Technical Information of China (English)

    李耀红; 张海燕

    2014-01-01

    研究了一类具有Riemann-Liouville分数阶积分条件的新分数阶微分方程边值问题,其非线性项包含Caputo型分数阶导数。将该问题转化为等价的积分方程,应用Leray-Schauder不动点定理结合一个范数形式的新不等式,获得了解的存在性充分条件,推广和改进了已有的结果,并给出了应用实例。%A class of boundary value problem of fractional differential equation with Riemann-Liouville fractional integral conditions is investigated, which involves the Caputo fractional derivative in nonlinear terms and can be reduced to the equivalent integral equation. By using Leray-Schauder fixed point theory combined with a new inequality of norm form, some sufficient conditions on the exitence of solution for boundary value problem are established. Some known results are extended and improved. An example is given to illustrate the application of the result.

  4. Boundary value problemfor multidimensional fractional advection-dispersion equation

    Directory of Open Access Journals (Sweden)

    Khasambiev Mokhammad Vakhaevich

    2015-05-01

    Full Text Available In recent time there is a very great interest in the study of differential equations of fractional order, in which the unknown function is under the symbol of fractional derivative. It is due to the development of the theory of fractional integro-differential theory and application of it in different fields.The fractional integrals and derivatives of fractional integro-differential equations are widely used in modern investigations of theoretical physics, mechanics, and applied mathematics. The fractional calculus is a very powerful tool for describing physical systems, which have a memory and are non-local. Many processes in complex systems have nonlocality and long-time memory. Fractional integral operators and fractional differential operators allow describing some of these properties. The use of the fractional calculus will be helpful for obtaining the dynamical models, in which integro-differential operators describe power long-time memory by time and coordinates, and three-dimensional nonlocality for complex medium and processes.Differential equations of fractional order appear when we use fractal conception in physics of the condensed medium. The transfer, described by the operator with fractional derivatives at a long distance from the sources, leads to other behavior of relatively small concentrations as compared with classic diffusion. This fact redefines the existing ideas about safety, based on the ideas on exponential velocity of damping. Fractional calculus in the fractal theory and the systems with memory have the same importance as the classic analysis in mechanics of continuous medium.In recent years, the application of fractional derivatives for describing and studying the physical processes of stochastic transfer is very popular too. Many problems of filtration of liquids in fractal (high porous medium lead to the need to study boundary value problems for partial differential equations in fractional order.In this paper the

  5. 一类三阶常微分方程非线性三点边值问题解的存在性%Existence of Solutions of a Nonlinear Three-Point Boundary Value Problem for Third-Order Ordinary Differential Equations

    Institute of Scientific and Technical Information of China (English)

    沈建和; 周哲彦; 余赞平

    2009-01-01

    In this paper,existence of solutions of third-order differential equationy (t) = f(t,y(t),y'(t),y"(t))with nonlinear three-point boundary condition g(y(a),y'(a),y"(a)) = 0,h(y(b),y'(b))=0,I(y(c),y'(c),y"(c)) = 0is obtained by embedding Leray-Schauder degree theory in upper and lower solutions method,where a,b,c ∈ R,a < b< c; f:[a,c] × R3a → R,g:R3 → R,h:R2→R and I:R3 → Rare continuous functions.The existence result is obtained by defining the suitable upper and lower solutions and introducing an appropriate auxiliary boundary value problem.As an application,an example with an explicit solution is given to demonstrate the validity of the results in this paper.

  6. Existence and uniqueness of solutions of nonlinear two-point boundary value problems for fourth order differential equations%四阶微分方程非线性两点边值问题解的存在唯一性

    Institute of Scientific and Technical Information of China (English)

    高永馨; 谢燕华

    2012-01-01

    利用上下解方法,讨论了四阶微分方程非线性两点边值问题y(4) =f(x,y,y′,y″,y(′″)),y(b) =b0,y′(b) =b1,y″(b) =h(y″(a)),g(y(a),y(b),y′(a),y′(b),y″(a),y″(b),y(′″)(a),y(′″)(b)) =0解的存在唯一性.%By using the method of upper - lower solution,the existence and uniquenss of solutions of nonlinear two -point boundary value problems for fourth order differential equation y(4) =f(x,y,y′,y″,y(′″)),y(b) =b0,y′(b) =b1,y″(b) =h(y″(a)),g(y(a),y(b),y′(a),y′(b),y″(a),y″(b),y(′″)(a),y(′″)(b)) =0 are investigated.

  7. 具有变号非线性项的奇异三点边值问题正解的存在性和不存在性%The Nonexistence and Existence of Singular Three-point Boundary Value Problems with Sign-changing Nonlinearities

    Institute of Scientific and Technical Information of China (English)

    闫宝强

    2011-01-01

    This paper discusses singular three-point boundary value problems y″(t) + a(t)f (t, y(t), y′(t)) = 0, 0 < t< 1, y′(0) = 0, y(1) = αy(η),where 0 < α < 1, 0 <η < 1, f changes sign and may be singular at y = 0 and y′ = 0%该文讨论奇异三点边值问题y"(t)+a(t)f(t,y(t),y'(t))=0,0<t<1,y'(0)=0,y(1)=αy(η)正解的存在与不存在性,这里0<α<1,0<η<1,f变号且在y=0和y'=0具有奇异性.

  8. RBF Multiscale Collocation for Second Order Elliptic Boundary Value Problems

    KAUST Repository

    Farrell, Patricio

    2013-01-01

    In this paper, we discuss multiscale radial basis function collocation methods for solving elliptic partial differential equations on bounded domains. The approximate solution is constructed in a multilevel fashion, each level using compactly supported radial basis functions of smaller scale on an increasingly fine mesh. On each level, standard symmetric collocation is employed. A convergence theory is given, which builds on recent theoretical advances for multiscale approximation using compactly supported radial basis functions. We are able to show that the convergence is linear in the number of levels. We also discuss the condition numbers of the arising systems and the effect of simple, diagonal preconditioners, now proving rigorously previous numerical observations. © 2013 Society for Industrial and Applied Mathematics.

  9. Periodic and Boundary Value Problems for Second Order Differential Equations

    Indian Academy of Sciences (India)

    Nikolaos S Papageorgiou; Francesca Papalini

    2001-02-01

    In this paper we study second order scalar differential equations with Sturm–Liouville and periodic boundary conditions. The vector field (, , ) is Caratheodory and in some instances the continuity condition on or is replaced by a monotonicity type hypothesis. Using the method of upper and lower solutions as well as truncation and penalization techniques, we show the existence of solutions and extremal solutions in the order interval determined by the upper and lower solutions. Also we establish some properties of the solutions and of the set they form.

  10. Numerical solution of an edge flame boundary value problem

    Science.gov (United States)

    Shields, Benjamin; Freund, Jonathan; Pantano, Carlos

    2016-11-01

    We study edge flames for modeling extinction, reignition, and flame lifting in turbulent non-premixed combustion. An adaptive resolution finite element method is developed for solving a strained laminar edge flame in the intrinsic moving frame of reference of a spatially evolving shear layer. The variable-density zero Mach Navier-Stokes equations are used to solve for both advancing and retreating edge flames. The eigenvalues of the system are determined simultaneously (implicitly) with the scalar fields using a Schur complement strategy. A homotopy transformation over density is used to transition from constant- to variable-density, and pseudo arc-length continuation is used for parametric tracing of solutions. Full details of the edge flames as a function of strain and Lewis numbers will be discussed. This material is based upon work supported [in part] by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  11. Boundary-value problems for two-dimensional canonical systems

    NARCIS (Netherlands)

    Hassi, Seppo; De Snoo, H; Winkler, Henrik

    2000-01-01

    The two-dimensional canonical system Jy' = -lHy where the nonnegative Hamiltonian matrix function H(x) is trace-normed on (0,∞) has been studied in a function-theoretic way by L. de Branges. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necess

  12. On weak solvability of boundary value problems for elliptic systems

    OpenAIRE

    Ponce, Felipe; Lebedev, Leonid,; Rendón, Leonardo

    2013-01-01

    Este artículo trata sobre la existencia y unicidad de una solución débil para sistemas elípticos de ecuaciones diferenciales parciales con condiciones de frontera mixtas. La demostración se basa en la determinación de la coercividad de formas bilineales, relacionadas con el sistema de ecuaciones, las cuales dependen de las derivadas de primer orden de funciones vectoriales enRn. La condición de coercividad se relaciona con desigualdades tipo Korn. El resultado se ilustra mediante un ejemplo d...

  13. Positive solutions of some nonlocal boundary value problems

    Directory of Open Access Journals (Sweden)

    Gennaro Infante

    2003-01-01

    employed. In particular, we do not require all the parameters occurring in the boundary conditions to be positive. Our results allow more general behaviour for the nonlinear term than being either sub- or superlinear.

  14. Inverse Boundary Value Problems for Systems of Partial Differential Equations.

    Science.gov (United States)

    Eskin, Gregory; Ralston, James

    2003-04-01

    We describe the main results and the ideas of the proofs in the papers of Eskin2, Eskin and Ralston4 (see References). In addition, we simplify the construction of asymptotic solutions in Eskin2, using the results of Eskin and Ralston4, and we simplify the proof of estimate (21) that was given in Eskin and Ralston4.

  15. Iinitial-Boundary Value Problems for Thin-Walled Beam System with Coupled Flexural-Torsional Load%一类弯曲与扭转联合作用下的薄壁梁系统的初边值问题

    Institute of Scientific and Technical Information of China (English)

    牛丽芳; 段周波

    2012-01-01

    The initial-boundary value problem was studied in given Sobolve spaces. The problem involved a class of nonlinear partial differential equations describing coupled flexural and torsional oscillations of thin-walled beam. By using Faedo-Galerkin method, the existence and uniqueness of the solutions of the proposed problem was proved through the appropriate manipulation of variable coefficient and nonlinear items.%在给定的Sobolve空间中,研究了一类非线性梁方程组的初边值问题.描述了弯曲和扭转联合作用下薄壁梁的振动问题,利用Faedo-Galerkin方法,通过对变系数及非线性项的处理,证明了该系统在一定初边值条件下整体强解的存在、唯一性,为力学中此类振动问题的研究和计算提供了数学依据.

  16. The Efficient Monte-Carlo Method in Solving the Initial-Boundary Value Problem of Partial Differential Equations%高效蒙特卡罗方法在偏微分方程初边值问题中的应用

    Institute of Scientific and Technical Information of China (English)

    游皎; 李万爱

    2015-01-01

    The primary principle of Monte Carlo method in solving the initial-boundary value problem for partial differential equations is introduced.And an improved strategy to solve the slow speed problem in computations with large grid points and random walks is proposed.Through the theoretical analysis and numerical validation, the improved strategy not only takes much less computational time, but also gives more accurate results comparing to the traditional methods under the same conditions.%介绍了蒙特卡罗方法求解偏微分方程初边值问题的基本原理,并针对该方法在多节点、多游动次数计算中速度慢的问题,提出了一种改进方案。通过理论分析和算例验证,在相同计算条件下与传统方法相比,该改进方案不仅大大减少了计算时间,而且降低了误差,这将使蒙特卡罗方法得到更广泛的应用。

  17. WEIGHTED HOLOMORPHIC BESOV SPACES AND THEIR BOUNDARY VALUES

    Institute of Scientific and Technical Information of China (English)

    V. S. Guliyev; Zhijian Wu

    2005-01-01

    We study weighted holomorphic Besov spaces and their boundary values. Under certain restrictions on the weighted function and parameters, we establish the equivalent norms for holomorphic functions in terms of their boundary functions. Some results about embedding and interpolation are also included.

  18. On the Reciprocity of State Vectors in Boundary Value Models

    Science.gov (United States)

    1989-09-22

    34 IEEE Transactions on Automatic Control , vol. 29, pp. 803-821, 1984. [31 A. Bagchi and H. Westdijk, "Smoothing and likelihood ratio for Gaussian...boundary value processes," IEEE Transactions on Automatic Control , vol. 34, pp. 954-962, 1989. [41 J.-P. Carmichael, J.-C. Massd, and R. Theodorescu

  19. 非线性2n阶微分方程的非线性两点边值问题解的存在性%Existence of solutions to nonlinear two-point boundary value problems for 2nth-order nonlinear differential equation

    Institute of Scientific and Technical Information of China (English)

    高永馨; 谢燕华

    2009-01-01

    利用上下解的方法研究了非线性2n阶常微分方程Y~((2n))=f(t,y,y',…,y~((2n-1))满足如下边界条件条件g_0(y(a),y'(a))=0,g_1(y'(a),y"(a),…,y~((2n-3))(a))=0,g_2(y~((2n-2))(a),y~((2n-1))(a))=0,h_0(y(c),y'(c),y"(c))=0,h_i(y~((i))(c),Y(i+1)(c))=0(i=3,4,…,2n-2).的非线性两点边值问题解的存在性.%By using the method of upper-lower solutions,the sufficient conditions are given for the existence of solutions to nonlinear two point boundary value problems for nonlinear 2nth-order differential equation y~((2n))=f(t,y,y',...,y~((2n-1))) with the boundary conditions g_0(y(a),y'(a)) =0,g_1(y'(a),y"(a),...,y~((2n-3))(a)) =0,g_2(y~((2n-2))(a),y~((2n-1))(a)) =0,h_0(y(c),y'(c),y"(c))=0,h_i(y~((i))(c),y~((i+1))(c))=0(i=3,4,...,2n-2).

  20. An efficient computer based wavelets approximation method to solve Fuzzy boundary value differential equations

    Science.gov (United States)

    Alam Khan, Najeeb; Razzaq, Oyoon Abdul

    2016-03-01

    In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.