Boundary value problems and partial differential equations
Powers, David L
2005-01-01
Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions* Nearly 900 exercises ranging in difficulty* Many fully worked examples
Fourier analysis and boundary value problems
Gonzalez-Velasco, Enrique A
1996-01-01
Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics.A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field.Key Features* Topics are covered from a historical perspective with biographical information on key contributors to the field* The text contains more than 500 exercises* Includes practical applicati...
A Boundary Value Problem for Introductory Physics?
Grundberg, Johan
2008-01-01
The Laplace equation has applications in several fields of physics, and problems involving this equation serve as paradigms for boundary value problems. In the case of the Laplace equation in a disc there is a well-known explicit formula for the solution: Poisson's integral. We show how one can derive this formula, and in addition two equivalent…
Boundary Value Problems Arising in Kalman Filtering
Directory of Open Access Journals (Sweden)
Sinem Ertürk
2009-01-01
Full Text Available The classic Kalman filtering equations for independent and correlated white noises are ordinary differential equations (deterministic or stochastic with the respective initial conditions. Changing the noise processes by taking them to be more realistic wide band noises or delayed white noises creates challenging partial differential equations with initial and boundary conditions. In this paper, we are aimed to give a survey of this connection between Kalman filtering and boundary value problems, bringing them into the attention of mathematicians as well as engineers dealing with Kalman filtering and boundary value problems.
Boundary Value Problems Arising in Kalman Filtering
Directory of Open Access Journals (Sweden)
Bashirov Agamirza
2008-01-01
Full Text Available The classic Kalman filtering equations for independent and correlated white noises are ordinary differential equations (deterministic or stochastic with the respective initial conditions. Changing the noise processes by taking them to be more realistic wide band noises or delayed white noises creates challenging partial differential equations with initial and boundary conditions. In this paper, we are aimed to give a survey of this connection between Kalman filtering and boundary value problems, bringing them into the attention of mathematicians as well as engineers dealing with Kalman filtering and boundary value problems.
Boundary value problems and dichotomic stability
England, R.; Mattheij, R.M.M.
1988-01-01
Since the conditioning of a boundary value problem (BVP) is closely related to the existence of a dichotomic fundamental solution (i.e., where one set of modes is increasing and a complementary set is decreasing), it is important to have discretization methods that conserve this dichotomy property.
Separable boundary-value problems in physics
Willatzen, Morten
2011-01-01
Innovative developments in science and technology require a thorough knowledge of applied mathematics, particularly in the field of differential equations and special functions. These are relevant in modeling and computing applications of electromagnetic theory and quantum theory, e.g. in photonics and nanotechnology. The problem of solving partial differential equations remains an important topic that is taught at both the undergraduate and graduate level. Separable Boundary-Value Problems in Physics is an accessible and comprehensive treatment of partial differential equations i
Homology in Electromagnetic Boundary Value Problems
Directory of Open Access Journals (Sweden)
Pellikka Matti
2010-01-01
Full Text Available We discuss how homology computation can be exploited in computational electromagnetism. We represent various cellular mesh reduction techniques, which enable the computation of generators of homology spaces in an acceptable time. Furthermore, we show how the generators can be used for setting up and analysis of an electromagnetic boundary value problem. The aim is to provide a rationale for homology computation in electromagnetic modeling software.
Asymptotic boundary value problems for evolution inclusions
Directory of Open Access Journals (Sweden)
Fürst Tomáš
2006-01-01
Full Text Available When solving boundary value problems on infinite intervals, it is possible to use continuation principles. Some of these principles take advantage of equipping the considered function spaces with topologies of uniform convergence on compact subintervals. This makes the representing solution operators compact (or condensing, but, on the other hand, spaces equipped with such topologies become more complicated. This paper shows interesting applications that use the strength of continuation principles and also presents a possible extension of such continuation principles to partial differential inclusions.
Asymptotic boundary value problems for evolution inclusions
Directory of Open Access Journals (Sweden)
Tomáš Fürst
2006-02-01
Full Text Available When solving boundary value problems on infinite intervals, it is possible to use continuation principles. Some of these principles take advantage of equipping the considered function spaces with topologies of uniform convergence on compact subintervals. This makes the representing solution operators compact (or condensing, but, on the other hand, spaces equipped with such topologies become more complicated. This paper shows interesting applications that use the strength of continuation principles and also presents a possible extension of such continuation principles to partial differential inclusions.
Group invariance in engineering boundary value problems
Seshadri, R
1985-01-01
REFEREN CES . 156 9 Transforma.tion of a Boundary Value Problem to an Initial Value Problem . 157 9.0 Introduction . 157 9.1 Blasius Equation in Boundary Layer Flow . 157 9.2 Longitudinal Impact of Nonlinear Viscoplastic Rods . 163 9.3 Summary . 168 REFERENCES . . . . . . . . . . . . . . . . . . 168 . 10 From Nonlinear to Linear Differential Equa.tions Using Transformation Groups. . . . . . . . . . . . . . 169 . 10.1 From Nonlinear to Linear Differential Equations . 170 10.2 Application to Ordinary Differential Equations -Bernoulli's Equation . . . . . . . . . . . 173 10.3 Application to Partial Differential Equations -A Nonlinear Chemical Exchange Process . 178 10.4 Limitations of the Inspectional Group Method . 187 10.5 Summary . 188 REFERENCES . . . . 188 11 Miscellaneous Topics . 190 11.1 Reduction of Differential Equations to Algebraic Equations 190 11.2 Reduction of Order of an Ordinary Differential Equation . 191 11.3 Transformat.ion From Ordinary to Partial Differential Equations-Search for First Inte...
Parallel algorithms for boundary value problems
Lin, Avi
1991-01-01
A general approach to solve boundary value problems numerically in a parallel environment is discussed. The basic algorithm consists of two steps: the local step where all the P available processors work in parallel, and the global step where one processor solves a tridiagonal linear system of the order P. The main advantages of this approach are twofold. First, this suggested approach is very flexible, especially in the local step and thus the algorithm can be used with any number of processors and with any of the SIMD or MIMD machines. Secondly, the communication complexity is very small and thus can be used as easily with shared memory machines. Several examples for using this strategy are discussed.
Mixed Boundary Value Problem on Hypersurfaces
Directory of Open Access Journals (Sweden)
R. DuDuchava
2014-01-01
Full Text Available The purpose of the present paper is to investigate the mixed Dirichlet-Neumann boundary value problems for the anisotropic Laplace-Beltrami equation divC(A∇Cφ=f on a smooth hypersurface C with the boundary Γ=∂C in Rn. A(x is an n×n bounded measurable positive definite matrix function. The boundary is decomposed into two nonintersecting connected parts Γ=ΓD∪ΓN and on ΓD the Dirichlet boundary conditions are prescribed, while on ΓN the Neumann conditions. The unique solvability of the mixed BVP is proved, based upon the Green formulae and Lax-Milgram Lemma. Further, the existence of the fundamental solution to divS(A∇S is proved, which is interpreted as the invertibility of this operator in the setting Hp,#s(S→Hp,#s-2(S, where Hp,#s(S is a subspace of the Bessel potential space and consists of functions with mean value zero.
Positive solutions for a fourth order boundary value problem
Directory of Open Access Journals (Sweden)
Bo Yang
2005-02-01
Full Text Available We consider a boundary value problem for the beam equation, in which the boundary conditions mean that the beam is embedded at one end and free at the other end. Some new estimates to the positive solutions to the boundary value problem are obtained. Some sufficient conditions for the existence of at least one positive solution for the boundary value problem are established. An example is given at the end of the paper to illustrate the main results.
The use of MACSYMA for solving elliptic boundary value problems
Thejll, Peter; Gilbert, Robert P.
1990-01-01
A boundary method is presented for the solution of elliptic boundary value problems. An approach based on the use of complete systems of solutions is emphasized. The discussion is limited to the Dirichlet problem, even though the present method can possibly be adapted to treat other boundary value problems.
On the solvability of initial boundary value problems for nonlinear ...
African Journals Online (AJOL)
In this paper, we study the initial boundary value problems for a non-linear time dependent Schrödinger equation with Dirichlet and Neumann boundary conditions, respectively. We prove the existence and uniqueness of solutions of the initial boundary value problems by using Galerkin's method. Keywords: Initial boundary ...
State-dependent impulses boundary value problems on compact interval
Rachůnková, Irena
2015-01-01
This book offers the reader a new approach to the solvability of boundary value problems with state-dependent impulses and provides recently obtained existence results for state dependent impulsive problems with general linear boundary conditions. It covers fixed-time impulsive boundary value problems both regular and singular and deals with higher order differential equations or with systems that are subject to general linear boundary conditions. We treat state-dependent impulsive boundary value problems, including a new approach giving effective conditions for the solvability of the Dirichlet problem with one state-dependent impulse condition and we show that the depicted approach can be extended to problems with a finite number of state-dependent impulses. We investigate the Sturm–Liouville boundary value problem for a more general right-hand side of a differential equation. Finally, we offer generalizations to higher order differential equations or differential systems subject to general linear boundary...
Boundary Value Problems and Approximate Solutions
African Journals Online (AJOL)
Tadesse
Department of Mathematics, College of Natural and Computational Scineces, Mekelle ..... In this section, the Variational Iteration Method is applied to different forms of .... Some problems in non-Newtonian fluid mechanics, Ph.D. thesis, Wales.
Boundary value problems and Fourier expansions
MacCluer, Charles R
2004-01-01
Based on modern Sobolev methods, this text for advanced undergraduates and graduate students is highly physical in its orientation. It integrates numerical methods and symbolic manipulation into an elegant viewpoint that is consonant with implementation by digital computer. The first five sections form an informal introduction that develops students' physical and mathematical intuition. The following section introduces Hilbert space in its natural environment, and the next six sections pose and solve the standard problems. The final seven sections feature concise introductions to selected topi
The boundary value problems of magnetotail equilibrium
International Nuclear Information System (INIS)
Birn, J.
1991-01-01
The equilibrium problem for the Earth's magnetotail is discussed under the assumption that the boundary of the tail can be prescribed or derived from the force balance with the solar wind. A general solution of this problem is presented for the two-dimensional case, where the dependence on the γ coordinate and the presence of Β gamma are neglected. These solutions are further generalized to include the γ dependence (but no Β gamma ) and an open magnetopause. In this formulation, a solution can be obtained by integration when the magnetopause boundary α(x,y), the total pressure function p(x), and the magnetic flux distribution A b (x,y) at the magnetopause are prescribed. Certain restrictions, however, may limit the free choice of these functions to yield physically reasonable, real solutions. When the interaction with the solar wind is included, the boundary location can no longer be chosen freely but follows from the force balance of the magnetotail with the solar wind. For a simplified description of this force balance a differential equation for the boundary location is derived, which generalizes an earlier result by Coroniti and Kennel (1972). It is shown that solutions of this differential equation are bounded by a maximum tail width if the plasma sheet thickness is limited. Several explicit solutions are presented, illustrating cases with and without tail flaring in the z direction, and including the restrictions of the force balance with the solar wind and of the conservation laws of adiabatic convection in a steady configuration
Boundary-value problems in ODE
Tanriverdi, Tanfer
In this thesis we discuss two problems. The first problem is that of Fanno flow in a tube. In [10] the authors have discussed the mathematics of the Fanno model in much more detail than had been previously been done. The analysis in [10] indicates that the Fanno model becomes relevant, if t indicates the unscaled time and t=et , only when t is at least of order O(e- 1) . Indeed, two most important time scales are when t=O(e-1) and t=O(e- 2) . The authors, in the former case, set t=e- 1t1 (t1=t),x=e -11, and obtain the equation math> 62u6t 21- 62u 6x21=- 2u6 2u6t21 , ( 0.0.1) where u is the velocity of the gas, with p=1,6x1=0 (x1=0). One can follow the solution along the characteristic x1=t1 , and to match with the inviscid behaviour when t1-->0 , u=2+t1 (x1=t1). (0.0.2) In the region t=O(e2) , the authors set t=e2t2, x=e2x2,h= x2t2. For small e , the BC (0.0.02) now becomes u=t2 (x2=t 2), (0.0.3) so that (0.0.1) now has a similarity solution of the form u=t2g( h), u2=e- 1u, and (h2- 1)g'' +4hg'+2g=2g(g+hg' ),' =/ (0.0.4) with g(h)-->2 ash-->1- ,from(0.0.3) (0.0.5) g(h)-->∞ ash-->0- ,(fromthe pressure). ( 0.0.6) In a recent paper [11] the authors discuss the existence of a solution of (0.0.4)-(0.0.6) by using a two dimensional topological shooting method. We also discuss the existence of a solution of (0.0.4)-(0.0.6) by using a shooting method. We first turn the nonlinear ode (0.0.4) into an integral equation and then shoot from the singularity at ∞. The second problem arises when one considers eigenfunction expansions associated with second order ordinary differential equations, as Titchmarsh does in his book. One is concerned with the solutions of the equation - d2ydx2+ q(x)y=ly, (0.0.7) along with certain boundary conditions, where q(x)=-( n2- /)sech 2(x), n=n+/. The problem (0.0.7) has an application in the study of discrete reaction-diffusion equations. Our purpose in this problem is to look in some detail at the equation (0.0.7). We first use contour
Existence results for anisotropic discrete boundary value problems
Directory of Open Access Journals (Sweden)
Avci Avci
2016-06-01
Full Text Available In this article, we prove the existence of nontrivial weak solutions for a class of discrete boundary value problems. The main tools used here are the variational principle and critical point theory.
Numerical solution of fuzzy boundary value problems using Galerkin ...
Indian Academy of Sciences (India)
1 College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China. 2 Department of ... exact solution of fuzzy first-order boundary value problems. (BVPs). ...... edge partial financial support by the Ministerio de Economıa.
On a non-linear pseudodifferential boundary value problem
International Nuclear Information System (INIS)
Nguyen Minh Chuong.
1989-12-01
A pseudodifferential boundary value problem for operators with symbols taking values in Sobolev spaces and with non-linear right-hand side was studied. Existence and uniqueness theorems were proved. (author). 11 refs
Modified Differential Transform Method for Two Singular Boundary Values Problems
Directory of Open Access Journals (Sweden)
Yinwei Lin
2014-01-01
Full Text Available This paper deals with the two singular boundary values problems of second order. Two singular points are both boundary values points of the differential equation. The numerical solutions are developed by modified differential transform method (DTM for expanded point. Linear and nonlinear models are solved by this method to get more reliable and efficient numerical results. It can also solve ordinary differential equations where the traditional one fails. Besides, we give the convergence of this new method.
Heat Kernel Asymptotics of Zaremba Boundary Value Problem
Energy Technology Data Exchange (ETDEWEB)
Avramidi, Ivan G. [Department of Mathematics, New Mexico Institute of Mining and Technology (United States)], E-mail: iavramid@nmt.edu
2004-03-15
The Zaremba boundary-value problem is a boundary value problem for Laplace-type second-order partial differential operators acting on smooth sections of a vector bundle over a smooth compact Riemannian manifold with smooth boundary but with discontinuous boundary conditions, which include Dirichlet boundary conditions on one part of the boundary and Neumann boundary conditions on another part of the boundary. We study the heat kernel asymptotics of Zaremba boundary value problem. The construction of the asymptotic solution of the heat equation is described in detail and the heat kernel is computed explicitly in the leading approximation. Some of the first nontrivial coefficients of the heat kernel asymptotic expansion are computed explicitly.
three solutions for a semilinear elliptic boundary value problem
Indian Academy of Sciences (India)
69
Keywords: The Laplacian operator, elliptic problem, Nehari man- ifold, three critical points, weak solution. 1. Introduction. Let Ω be a smooth bounded domain in RN , N ≥ 3 . In this work, we show the existence of at least three solutions for the semilinear elliptic boundary- value problem: (Pλ).. −∆u = f(x)|u(x)|p−2u(x) + ...
Boundary value problem for Caputo-Hadamard fractional differential equations
Directory of Open Access Journals (Sweden)
Yacine Arioua
2017-09-01
Full Text Available The aim of this work is to study the existence and uniqueness solutions for boundary value problem of nonlinear fractional differential equations with Caputo-Hadamard derivative in bounded domain. We used the standard and Krasnoselskii's fixed point theorems. Some new results of existence and uniqueness solutions for Caputo-Hadamard fractional equations are obtained.
Fourth-order discrete anisotropic boundary-value problems
Directory of Open Access Journals (Sweden)
Maciej Leszczynski
2015-09-01
Full Text Available In this article we consider the fourth-order discrete anisotropic boundary value problem with both advance and retardation. We apply the direct method of the calculus of variations and the mountain pass technique to prove the existence of at least one and at least two solutions. Non-existence of non-trivial solutions is also undertaken.
State space approach to mixed boundary value problems.
Chen, C. F.; Chen, M. M.
1973-01-01
A state-space procedure for the formulation and solution of mixed boundary value problems is established. This procedure is a natural extension of the method used in initial value problems; however, certain special theorems and rules must be developed. The scope of the applications of the approach includes beam, arch, and axisymmetric shell problems in structural analysis, boundary layer problems in fluid mechanics, and eigenvalue problems for deformable bodies. Many classical methods in these fields developed by Holzer, Prohl, Myklestad, Thomson, Love-Meissner, and others can be either simplified or unified under new light shed by the state-variable approach. A beam problem is included as an illustration.
The homogeneous boundary value problem of the thick spherical shell
International Nuclear Information System (INIS)
Linder, F.
1975-01-01
With the aim to solve boundary value problems in the same manner as it is attained at thin shell theory (Superposition of Membrane solution to solution of boundary values), one has to search solutions of the equations of equilibrium of the three dimensional thick shell which produce tensions at the cut edge and are zero on the whole shell surface inside and outside. This problem was solved with the premissions of the linear theory of Elasticity. The gained solution is exact and contains the symmetric and non-symmetric behaviour and is described in relatively short analytical expressions for the deformations and tensions, after the problem of the coupled system had been solved. The static condition of the two surfaces (zero tension) leads to a homogeneous system of complex equations with the index of the Legendre spherical function as Eigenvalue. One symmetrical case is calculated numerically and is compared with the method of finite elements. This comparison results in good accordance. (Auth.)
Positive solutions and eigenvalues of nonlocal boundary-value problems
Directory of Open Access Journals (Sweden)
Jifeng Chu
2005-07-01
Full Text Available We study the ordinary differential equation $x''+lambda a(tf(x=0$ with the boundary conditions $x(0=0$ and $x'(1=int_{eta}^{1}x'(sdg(s$. We characterize values of $lambda$ for which boundary-value problem has a positive solution. Also we find appropriate intervals for $lambda$ so that there are two positive solutions.
Laplace boundary-value problem in paraboloidal coordinates
International Nuclear Information System (INIS)
Duggen, L; Willatzen, M; Voon, L C Lew Yan
2012-01-01
This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a boundary-value problem on a paraboloidal surface. In spite of the complex nature of the former, it is shown that the latter solution can be quite simple. Results are provided for the equipotential surfaces and electric field lines are given near a paraboloidal conductor. (paper)
Partial differential equations and boundary-value problems with applications
Pinsky, Mark A
2011-01-01
Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems-rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate th
Chebyshev Finite Difference Method for Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Boundary
2015-09-01
Full Text Available This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivatives are described in the Caputo sense. Numerical results show that this method is of high accuracy and is more convenient and efficient for solving boundary value problems involving fractional ordinary differential equations. AMS Subject Classification: 34A08 Keywords and Phrases: Chebyshev polynomials, Gauss-Lobatto points, fractional differential equation, finite difference 1. Introduction The idea of a derivative which interpolates between the familiar integer order derivatives was introduced many years ago and has gained increasing importance only in recent years due to the development of mathematical models of a certain situations in engineering, materials science, control theory, polymer modelling etc. For example see [20, 22, 25, 26]. Most fractional order differential equations describing real life situations, in general do not have exact analytical solutions. Several numerical and approximate analytical methods for ordinary differential equation Received: December 2014; Accepted: March 2015 57 Journal of Mathematical Extension Vol. 9, No. 3, (2015, 57-71 ISSN: 1735-8299 URL: http://www.ijmex.com Chebyshev Finite Difference Method for Fractional Boundary Value Problems H. Azizi Taft Branch, Islamic Azad University Abstract. This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivative
Bifurcation of solutions to Hamiltonian boundary value problems
McLachlan, R. I.; Offen, C.
2018-06-01
A bifurcation is a qualitative change in a family of solutions to an equation produced by varying parameters. In contrast to the local bifurcations of dynamical systems that are often related to a change in the number or stability of equilibria, bifurcations of boundary value problems are global in nature and may not be related to any obvious change in dynamical behaviour. Catastrophe theory is a well-developed framework which studies the bifurcations of critical points of functions. In this paper we study the bifurcations of solutions of boundary-value problems for symplectic maps, using the language of (finite-dimensional) singularity theory. We associate certain such problems with a geometric picture involving the intersection of Lagrangian submanifolds, and hence with the critical points of a suitable generating function. Within this framework, we then study the effect of three special cases: (i) some common boundary conditions, such as Dirichlet boundary conditions for second-order systems, restrict the possible types of bifurcations (for example, in generic planar systems only the A-series beginning with folds and cusps can occur); (ii) integrable systems, such as planar Hamiltonian systems, can exhibit a novel periodic pitchfork bifurcation; and (iii) systems with Hamiltonian symmetries or reversing symmetries can exhibit restricted bifurcations associated with the symmetry. This approach offers an alternative to the analysis of critical points in function spaces, typically used in the study of bifurcation of variational problems, and opens the way to the detection of more exotic bifurcations than the simple folds and cusps that are often found in examples.
Nonlinear second-order multivalued boundary value problems
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Department of Mathematics, National Technical University, Zografou Campus,. Athens 15780 ... incorporates gradient systems, evolutionary variational inequalities and the classical boundary value ... We are led to an eventual application.
Partial differential equations & boundary value problems with Maple
Articolo, George A
2009-01-01
Partial Differential Equations and Boundary Value Problems with Maple presents all of the material normally covered in a standard course on partial differential equations, while focusing on the natural union between this material and the powerful computational software, Maple. The Maple commands are so intuitive and easy to learn, students can learn what they need to know about the software in a matter of hours- an investment that provides substantial returns. Maple''s animation capabilities allow students and practitioners to see real-time displays of the solutions of partial differential equations. Maple files can be found on the books website. Ancillary list: Maple files- http://www.elsevierdirect.com/companion.jsp?ISBN=9780123747327 Provides a quick overview of the software w/simple commands needed to get startedIncludes review material on linear algebra and Ordinary Differential equations, and their contribution in solving partial differential equationsIncorporates an early introduction to Sturm-L...
An Adaptive Pseudospectral Method for Fractional Order Boundary Value Problems
Directory of Open Access Journals (Sweden)
Mohammad Maleki
2012-01-01
Full Text Available An adaptive pseudospectral method is presented for solving a class of multiterm fractional boundary value problems (FBVP which involve Caputo-type fractional derivatives. The multiterm FBVP is first converted into a singular Volterra integrodifferential equation (SVIDE. By dividing the interval of the problem to subintervals, the unknown function is approximated using a piecewise interpolation polynomial with unknown coefficients which is based on shifted Legendre-Gauss (ShLG collocation points. Then the problem is reduced to a system of algebraic equations, thus greatly simplifying the problem. Further, some additional conditions are considered to maintain the continuity of the approximate solution and its derivatives at the interface of subintervals. In order to convert the singular integrals of SVIDE into nonsingular ones, integration by parts is utilized. In the method developed in this paper, the accuracy can be improved either by increasing the number of subintervals or by increasing the degree of the polynomial on each subinterval. Using several examples including Bagley-Torvik equation the proposed method is shown to be efficient and accurate.
The boundary value problem for discrete analytic functions
Skopenkov, Mikhail
2013-06-01
This paper is on further development of discrete complex analysis introduced by R.Isaacs, J.Ferrand, R.Duffin, and C.Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete analytic, if for each face the difference quotients along the two diagonals are equal.We prove that the Dirichlet boundary value problem for the real part of a discrete analytic function has a unique solution. In the case when each face has orthogonal diagonals we prove that this solution uniformly converges to a harmonic function in the scaling limit. This solves a problem of S.Smirnov from 2010. This was proved earlier by R.Courant-K.Friedrichs-H.Lewy and L.Lusternik for square lattices, by D.Chelkak-S.Smirnov and implicitly by P.G.Ciarlet-P.-A.Raviart for rhombic lattices.In particular, our result implies uniform convergence of the finite element method on Delaunay triangulations. This solves a problem of A.Bobenko from 2011. The methodology is based on energy estimates inspired by alternating-current network theory. © 2013 Elsevier Ltd.
Solving fuzzy two-point boundary value problem using fuzzy Laplace transform
Ahmad, Latif; Farooq, Muhammad; Ullah, Saif; Abdullah, Saleem
2014-01-01
A natural way to model dynamic systems under uncertainty is to use fuzzy boundary value problems (FBVPs) and related uncertain systems. In this paper we use fuzzy Laplace transform to find the solution of two-point boundary value under generalized Hukuhara differentiability. We illustrate the method for the solution of the well known two-point boundary value problem Schrodinger equation, and homogeneous boundary value problem. Consequently, we investigate the solutions of FBVPs under as a ne...
Spectral combination of spherical gravitational curvature boundary-value problems
PitoÅák, Martin; Eshagh, Mehdi; Šprlák, Michal; Tenzer, Robert; Novák, Pavel
2018-04-01
Four solutions of the spherical gravitational curvature boundary-value problems can be exploited for the determination of the Earth's gravitational potential. In this article we discuss the combination of simulated satellite gravitational curvatures, i.e., components of the third-order gravitational tensor, by merging these solutions using the spectral combination method. For this purpose, integral estimators of biased- and unbiased-types are derived. In numerical studies, we investigate the performance of the developed mathematical models for the gravitational field modelling in the area of Central Europe based on simulated satellite measurements. Firstly, we verify the correctness of the integral estimators for the spectral downward continuation by a closed-loop test. Estimated errors of the combined solution are about eight orders smaller than those from the individual solutions. Secondly, we perform a numerical experiment by considering the Gaussian noise with the standard deviation of 6.5× 10-17 m-1s-2 in the input data at the satellite altitude of 250 km above the mean Earth sphere. This value of standard deviation is equivalent to a signal-to-noise ratio of 10. Superior results with respect to the global geopotential model TIM-r5 are obtained by the spectral downward continuation of the vertical-vertical-vertical component with the standard deviation of 2.104 m2s-2, but the root mean square error is the largest and reaches 9.734 m2s-2. Using the spectral combination of all gravitational curvatures the root mean square error is more than 400 times smaller but the standard deviation reaches 17.234 m2s-2. The combination of more components decreases the root mean square error of the corresponding solutions while the standard deviations of the combined solutions do not improve as compared to the solution from the vertical-vertical-vertical component. The presented method represents a weight mean in the spectral domain that minimizes the root mean square error
Positive Solutions of Two-Point Boundary Value Problems for Monge-Ampère Equations
Directory of Open Access Journals (Sweden)
Baoqiang Yan
2015-01-01
Full Text Available This paper considers the following boundary value problem: ((-u'(tn'=ntn-1f(u(t, 01 is odd. We establish the method of lower and upper solutions for some boundary value problems which generalizes the above equations and using this method we present a necessary and sufficient condition for the existence of positive solutions to the above boundary value problem and some sufficient conditions for the existence of positive solutions.
A numerical solution of a singular boundary value problem arising in boundary layer theory.
Hu, Jiancheng
2016-01-01
In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.
Application of He's variational iteration method to the fifth-order boundary value problems
International Nuclear Information System (INIS)
Shen, S
2008-01-01
Variational iteration method is introduced to solve the fifth-order boundary value problems. This method provides an efficient approach to solve this type of problems without discretization and the computation of the Adomian polynomials. Numerical results demonstrate that this method is a promising and powerful tool for solving the fifth-order boundary value problems
m-POINT BOUNDARY VALUE PROBLEM FOR SECOND ORDER IMPULSIVE DIFFERENTIAL EQUATION AT RESONANCE
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
In his paper,we obtain a general theorem concerning the existence of solutions to an m-point boundary value problem for the second-order differential equation with impulses.Moreover,the result can also be applied to study the usual m-point boundary value problem at resonance without impulses.
Boundary-value problems with free boundaries for elliptic systems of equations
Monakhov, V N
1983-01-01
This book is concerned with certain classes of nonlinear problems for elliptic systems of partial differential equations: boundary-value problems with free boundaries. The first part has to do with the general theory of boundary-value problems for analytic functions and its applications to hydrodynamics. The second presents the theory of quasiconformal mappings, along with the theory of boundary-value problems for elliptic systems of equations and applications of it to problems in the mechanics of continuous media with free boundaries: problems in subsonic gas dynamics, filtration theory, and problems in elastico-plasticity.
Vragov’s boundary value problem for an implicit equation of mixed type
Egorov, I. E.
2017-10-01
We study a Vragov boundary value problem for a third-order implicit equation of mixed type with an arbitrary manifold of type switch. These Sobolev-type equations arise in many important applied problems. Given certain constraints on the coefficients and the right-hand side of the equation, we demonstrate, using nonstationary Galerkin method and regularization method, the unique regular solvability of the boundary value problem. We also obtain an error estimate for approximate solutions of the boundary value problem in terms of the regularization parameter and the eigenvalues of the Dirichlet spectral problem for the Laplace operator.
The vanishing discount problem and viscosity Mather measures. Part 2: boundary value problems
Ishii, Hitoshi; Mitake, Hiroyoshi; Tran, Hung V.
2016-01-01
In arXiv:1603.01051 (Part 1 of this series), we have introduced a variational approach to studying the vanishing discount problem for fully nonlinear, degenerate elliptic, partial differential equations in a torus. We develop this approach further here to handle boundary value problems. In particular, we establish new representation formulas for solutions of discount problems, critical values, and use them to prove convergence results for the vanishing discount problems.
Boundary value problems on the half line in the theory of colloids
Directory of Open Access Journals (Sweden)
Ravi P. Agarwal
2002-01-01
Full Text Available We present existence results for some boundary value problems defined on infinite intervals. In particular our discussion includes a problem which arises in the theory of colloids.
Electromagnetic wave theory for boundary-value problems an advanced course on analytical methods
Eom, Hyo J
2004-01-01
Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.
Existence of solutions to boundary value problem of fractional differential equations with impulsive
Directory of Open Access Journals (Sweden)
Weihua JIANG
2016-12-01
Full Text Available In order to solve the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line, the existence of solutions to the boundary problem is specifically studied. By defining suitable Banach spaces, norms and operators, using the properties of fractional calculus and applying the contraction mapping principle and Krasnoselskii's fixed point theorem, the existence of solutions for the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line is proved, and examples are given to illustrate the existence of solutions to this kind of equation boundary value problems.
A Boundary Value Problem for Hermitian Monogenic Functions
Directory of Open Access Journals (Sweden)
Ricardo Abreu Blaya
2008-02-01
Full Text Available We study the problem of finding a Hermitian monogenic function with a given jump on a given hypersurface in Ã¢Â„Âm,Ã¢Â€Â‰m=2n. Necessary and sufficient conditions for the solvability of this problem are obtained.
Laplace Boundary-Value Problem in Paraboloidal Coordinates
Duggen, L.; Willatzen, M.; Voon, L. C. Lew Yan
2012-01-01
This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a…
Energy Technology Data Exchange (ETDEWEB)
Zou, Li [Dalian Univ. of Technology, Dalian City (China). State Key Lab. of Structural Analysis for Industrial Equipment; Liang, Songxin; Li, Yawei [Dalian Univ. of Technology, Dalian City (China). School of Mathematical Sciences; Jeffrey, David J. [Univ. of Western Ontario, London (Canada). Dept. of Applied Mathematics
2017-06-01
Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.
Numerical Solutions of Fifth Order Boundary Value Problems Using
African Journals Online (AJOL)
Dr A.B.Ahmed
1Department of Mathematics Delta State University, Abraka, Nigeria. 2Department of ..... International Journal of Computational. Mathematics and ... Value Problems using Power Series Approximation Method.Applied. Mathematics,. 7,. 1215-.
Asymptotic Solution of the Theory of Shells Boundary Value Problem
Directory of Open Access Journals (Sweden)
I. V. Andrianov
2007-01-01
Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.
Boundary value problems in time for wave equations on RN
Directory of Open Access Journals (Sweden)
M. W. Smiley
1990-01-01
Full Text Available Let Lλ denote the linear operator associated with the radially symmetric form of the wave operator ∂t2−Δ+λ together with the side conditions of decay to zero as r=‖x‖→+∞ and T-periodicity in time. Thus Lλω=ωtt−(ωrr+N−1rωr+λω, when there are N space variables. For δ,R,T>0 let DT,R=(0,T×(R,+∞ and Lδ2(D denote the weighted L2 space with weight function exp(δr. It is shown that Lλ is a Fredholm operator from dom(Lλ⊂L2(D onto Lδ2(D with non-negative index depending on λ. If [2πj/T]2<λ≤[2π(j+1/T]2 then the index is 2j+1. In addition it is shown that Lλ has a bounded partial inverse Kλ:Lδ2(D→Hδ1(D⋂Lδ∞(D, with all spaces weighted by the function exp(δr. This provides a key ingredient for the analysis of nonlinear problems via the method of alternative problems.
Closed form solution to a second order boundary value problem and its application in fluid mechanics
International Nuclear Information System (INIS)
Eldabe, N.T.; Elghazy, E.M.; Ebaid, A.
2007-01-01
The Adomian decomposition method is used by many researchers to investigate several scientific models. In this Letter, the modified Adomian decomposition method is applied to construct a closed form solution for a second order boundary value problem with singularity
Existence of Three Positive Solutions to Some p-Laplacian Boundary Value Problems
Directory of Open Access Journals (Sweden)
Moulay Rchid Sidi Ammi
2013-01-01
Full Text Available We obtain, by using the Leggett-Williams fixed point theorem, sufficient conditions that ensure the existence of at least three positive solutions to some p-Laplacian boundary value problems on time scales.
On Existence of Solutions to the Caputo Type Fractional Order Three-Point Boundary Value Problems
Directory of Open Access Journals (Sweden)
B.M.B. Krushna
2016-10-01
Full Text Available In this paper, we establish the existence of solutions to the fractional order three-point boundary value problems by utilizing Banach contraction principle and Schaefer's fixed point theorem.
The numerical solution of boundary value problems over an infinite domain
International Nuclear Information System (INIS)
Shepherd, M.; Skinner, R.
1976-01-01
A method is presented for the numerical solution of boundary value problems over infinite domains. An example that illustrates also the strength and accuracy of a numerical procedure for calculating Green's functions is described in detail
Variational methods for boundary value problems for systems of elliptic equations
Lavrent'ev, M A
2012-01-01
Famous monograph by a distinguished mathematician presents an innovative approach to classical boundary value problems. The treatment employs the basic scheme first suggested by Hilbert and developed by Tonnelli. 1963 edition.
On the Approximate Controllability of Some Semilinear Parabolic Boundary-Value Problems
International Nuclear Information System (INIS)
Diaz, J. I.; Henry, J.; Ramos, A. M.
1998-01-01
We prove the approximate controllability of several nonlinear parabolic boundary-value problems by means of two different methods: the first one can be called a Cancellation method and the second one uses the Kakutani fixed-point theorem
On some boundary value problems in quantum statistical mechanics
International Nuclear Information System (INIS)
Angelescu, N.
1978-01-01
The following two topics of equilibrium quantum statistical mechanics are discussed in this thesis: (i) the independence of the thermodynamic limit of grand-canonical pressure on the boundary conditions; (ii) the magnetic properties of free quantum gases. Problem (i) is handled with a functional integration technique. Wiener-type conditional measures are constructed for a given domain and a general class of mixed conditions on its boundary, these measures are used to write down Feynman-Kac formulae for the kernels of exp(-βH), where H is the Hamiltonian of N interacting particles in the given domain. These measures share the property that they assign the same mass as the usual Wiener measure to any set of trajectories not intersecting the boundary. Local estimates on the kernels of exp(-βH) are derived, which imply independence of the pressure on the boundary conditions in the thermodynamic limit. Problem (ii) has a historical development: since Landau's work (1930), much discussion has been devoted to the influence of the finite size on the susceptibility. In finite volume, Dirichlet boundary conditions are imposed, on the ground that they ensure gauge invariance. The thermodynamic limit of the pressure is proved, using again functional integration. The functional measure is now complex but absolutely continuous with respect to Wiener measure, so the usual local estimates hold true. The controversy in the literature was concentrated on the commutativity of the operations of H-derivation and thermodynamic limit, so the existence of this limit for the zero-field susceptibility and its surface term are proved separately, demonstrating this commutativity. The proof relies on the following result of independent interest: the perturbation theory of self-adjoint trace-class semigroups is trace-class convergent and analytic. (author)
Positive solutions for a nonlocal boundary-value problem with vector-valued response
Directory of Open Access Journals (Sweden)
Andrzej Nowakowski
2002-05-01
Full Text Available Using variational methods, we study the existence of positive solutions for a nonlocal boundary-value problem with vector-valued response. We develop duality and variational principles for this problem and present a numerical version which enables the approximation of solutions and gives a measure of a duality gap between primal and dual functional for approximate solutions for this problem.
A priori bounds for solutions of two-point boundary value problems using differential inequalities
International Nuclear Information System (INIS)
Vidossich, G.
1979-01-01
Two point boundary value problems for systems of differential equations are studied with a new approach based on differential inequalities of first order. This leads to the following results: (i) one-sided conditions are enough, in the sense that the inner product is substituted to the norm; (ii) the upper bound exists for practically any kind of equations and boundary value problem if the interval is sufficiently small since it depends on the Peano existence theorem; (iii) the bound seems convenient when the equation has some singularity in t as well as when sigular problems are considered. (author)
Zhu, C
2003-01-01
This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation.
Application of Monte Carlo method to solving boundary value problem of differential equations
International Nuclear Information System (INIS)
Zuo Yinghong; Wang Jianguo
2012-01-01
This paper introduces the foundation of the Monte Carlo method and the way how to generate the random numbers. Based on the basic thought of the Monte Carlo method and finite differential method, the stochastic model for solving the boundary value problem of differential equations is built. To investigate the application of the Monte Carlo method to solving the boundary value problem of differential equations, the model is used to solve Laplace's equations with the first boundary condition and the unsteady heat transfer equation with initial values and boundary conditions. The results show that the boundary value problem of differential equations can be effectively solved with the Monte Carlo method, and the differential equations with initial condition can also be calculated by using a stochastic probability model which is based on the time-domain finite differential equations. Both the simulation results and theoretical analyses show that the errors of numerical results are lowered as the number of simulation particles is increased. (authors)
International Nuclear Information System (INIS)
Zhu, Changjiang; Duan, Renjun
2003-01-01
This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation
B-spline solution of a singularly perturbed boundary value problem arising in biology
International Nuclear Information System (INIS)
Lin Bin; Li Kaitai; Cheng Zhengxing
2009-01-01
We use B-spline functions to develop a numerical method for solving a singularly perturbed boundary value problem associated with biology science. We use B-spline collocation method, which leads to a tridiagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical result is found in good agreement with exact solution.
Numerical solutions of a three-point boundary value problem with an ...
African Journals Online (AJOL)
Numerical solutions of a three-point boundary value problem with an integral condition for a third-order partial differential equation by using Laplace transform method Solutions numeriques d'un probleme pour une classe d'equations differentielles d'ordr.
Yousef, Hamood Mohammed; Ismail, Ahmad Izani
2017-11-01
In this paper, Laplace Adomian decomposition method (LADM) was applied to solve Delay differential equations with Boundary Value Problems. The solution is in the form of a convergent series which is easy to compute. This approach is tested on two test problem. The findings obtained exhibit the reliability and efficiency of the proposed method.
Initial boundary value problems of nonlinear wave equations in an exterior domain
International Nuclear Information System (INIS)
Chen Yunmei.
1987-06-01
In this paper, we investigate the existence and uniqueness of the global solutions to the initial boundary value problems of nonlinear wave equations in an exterior domain. When the space dimension n >= 3, the unique global solution of the above problem is obtained for small initial data, even if the nonlinear term is fully nonlinear and contains the unknown function itself. (author). 10 refs
Numerical Analysis of Forth-Order Boundary Value Problems in Fluid Mechanics and Mathematics
DEFF Research Database (Denmark)
Hosseinzadeh, E.; Barari, Amin; Fouladi, F.
2011-01-01
In this paper He's variational iteration method is used to solve some examples of linear and non-linear forth-order boundary value problems. The first problem compared with homotopy analysis method solution and the other ones with the exact solution. The results show the high accuracy and speed o...
Numerical analysis of fourth-order boundary value problems in fluid mechanics and mathematics
DEFF Research Database (Denmark)
Hosseinzadeh, Elham; Barari, Amin; Fouladi, Fama
2010-01-01
In this paper He's variational iteration method is used to solve some examples of linear and non-linear forth-order boundary value problems. The first problem compared with homotopy analysis method solution and the other ones with the exact solution. The results show the high accuracy and speed o...
International Nuclear Information System (INIS)
Ziqi Sun
1993-01-01
During the past few years a considerable interest has been focused on the inverse boundary value problem for the Schroedinger operator with a scalar (electric) potential. The popularity gained by this subject seems to be due to its connection with the inverse scattering problem at fixed energy, the inverse conductivity problem and other important inverse problems. This paper deals with an inverse boundary value problem for the Schroedinger operator with vector (electric and magnetic) potentials. As in the case of the scalar potential, results of this study would have immediate consequences in the inverse scattering problem for magnetic field at fixed energy. On the other hand, inverse boundary value problems for elliptic operators are of independent interest. The study is partly devoted to the understanding of the inverse boundary value problem for a class of general elliptic operator of second order. Note that a self-adjoint elliptic operator of second order with Δ as its principal symbol can always be written as a Schroedinger operator with vector potentials
Energy Technology Data Exchange (ETDEWEB)
Aarao, J; Bradshaw-Hajek, B H; Miklavcic, S J; Ward, D A, E-mail: Stan.Miklavcic@unisa.edu.a [School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA 5095 (Australia)
2010-05-07
Standard analytical solutions to elliptic boundary value problems on asymmetric domains are rarely, if ever, obtainable. In this paper, we propose a solution technique wherein we embed the original domain into one with simple boundaries where the classical eigenfunction solution approach can be used. The solution in the larger domain, when restricted to the original domain, is then the solution of the original boundary value problem. We call this the extended-domain-eigenfunction method. To illustrate the method's strength and scope, we apply it to Laplace's equation on an annular-like domain.
Initial-boundary value problems associated with the Ablowitz-Ladik system
Xia, Baoqiang; Fokas, A. S.
2018-02-01
We employ the Ablowitz-Ladik system as an illustrative example in order to demonstrate how to analyze initial-boundary value problems for integrable nonlinear differential-difference equations via the unified transform (Fokas method). In particular, we express the solutions of the integrable discrete nonlinear Schrödinger and integrable discrete modified Korteweg-de Vries equations in terms of the solutions of appropriate matrix Riemann-Hilbert problems. We also discuss in detail, for both the above discrete integrable equations, the associated global relations and the process of eliminating of the unknown boundary values.
Algebraic structures in generalized Clifford analysis and applications to boundary value problems
Directory of Open Access Journals (Sweden)
José Játem
2015-12-01
Full Text Available The present article has a threefold purpose: First it is a survey of the algebraic structures of generalized Clifford-type algebras and shows the main results of the corresponding Clifford-type analysis and its application to boundary value problems known so far. Second it is aimed to implement algorithms to provide the fast and accurate computation of boundary value problems for inhomogeneous equations in the framework of the generalized Clifford analysis. Finally it is also aimed to encourage the development of a generalized discrete Clifford analysis.
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan
-, č. 35 (2015), s. 23-50 ISSN 1126-8042 Institutional support: RVO:67985840 Keywords : higher order functional differential equations * Dirichlet boundary value problem * strong singularity Subject RIV: BA - General Mathematics http://ijpam.uniud.it/online_issue/201535/03-Mukhigulashvili.pdf
Existence of positive solutions for a multi-point four-order boundary-value problem
Directory of Open Access Journals (Sweden)
Le Xuan Truong
2011-10-01
Full Text Available The article shows sufficient conditions for the existence of positive solutions to a multi-point boundary-value problem for a fourth-order differential equation. Our main tools are the Guo-Krasnoselskii fixed point theorem and the monotone iterative technique. We also show that the set of positive solutions is compact.
Multiple positive solutions for second order impulsive boundary value problems in Banach spaces
Directory of Open Access Journals (Sweden)
Zhi-Wei Lv
2010-06-01
Full Text Available By means of the fixed point index theory of strict set contraction operators, we establish new existence theorems on multiple positive solutions to a boundary value problem for second-order impulsive integro-differential equations with integral boundary conditions in a Banach space. Moreover, an application is given to illustrate the main result.
A New Numerical Algorithm for Two-Point Boundary Value Problems
Guo, Lihua; Wu, Boying; Zhang, Dazhi
2014-01-01
We present a new numerical algorithm for two-point boundary value problems. We first present the exact solution in the form of series and then prove that the n-term numerical solution converges uniformly to the exact solution. Furthermore, we establish the numerical stability and error analysis. The numerical results show the effectiveness of the proposed algorithm.
Directory of Open Access Journals (Sweden)
Archana Chauhan
2012-12-01
Full Text Available In this article, we establish a general framework for finding solutions for impulsive fractional integral boundary-value problems. Then, we prove the existence and uniqueness of solutions by applying well known fixed point theorems. The obtained results are illustrated with an example for their feasibility.
Geopotential coefficient determination and the gravimetric boundary value problem: A new approach
Sjoeberg, Lars E.
1989-01-01
New integral formulas to determine geopotential coefficients from terrestrial gravity and satellite altimetry data are given. The formulas are based on the integration of data over the non-spherical surface of the Earth. The effect of the topography to low degrees and orders of coefficients is estimated numerically. Formulas for the solution of the gravimetric boundary value problem are derived.
On nonseparated three-point boundary value problems for linear functional differential equations
Czech Academy of Sciences Publication Activity Database
Rontó, András; Rontó, M.
2011-01-01
Roč. 2011, - (2011), s. 326052 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : functional-differential equation * three-point boundary value problem * nonseparated boundary condition Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/326052/
Directory of Open Access Journals (Sweden)
Xiaofeng Zhang
2017-12-01
Full Text Available In this paper, we consider the existence of positive solutions to a singular semipositone boundary value problem of nonlinear fractional differential equations. By applying the fixed point index theorem, some new results for the existence of positive solutions are obtained. In addition, an example is presented to demonstrate the application of our main results.
Three symmetric positive solutions of fourth-order singular nonlocal boundary value problems
Directory of Open Access Journals (Sweden)
Fuyi Xu
2011-12-01
Full Text Available In this paper, we study the existence of three positive solutions of fourth-order singular nonlocal boundary value problems. We show that there exist triple symmetric positive solutions by using Leggett-Williams fixed-point theorem. The conclusions in this paper essentially extend and improve some known results.
Triple solutions for multi-point boundary-value problem with p-Laplace operator
Directory of Open Access Journals (Sweden)
Yansheng Liu
2009-11-01
Full Text Available Using a fixed point theorem due to Avery and Peterson, this article shows the existence of solutions for multi-point boundary-value problem with p-Laplace operator and parameters. Also, we present an example to illustrate the results obtained.
BOUNDARY VALUE PROBLEM FOR A LOADED EQUATION ELLIPTIC-HYPERBOLIC TYPE IN A DOUBLY CONNECTED DOMAIN
Directory of Open Access Journals (Sweden)
O.Kh. Abdullaev
2014-06-01
Full Text Available We study the existence and uniqueness of the solution of one boundary value problem for the loaded elliptic-hyperbolic equation of the second order with two lines of change of type in double-connected domain. Similar results have been received by D.M.Kuryhazov, when investigated domain is one-connected.
Czech Academy of Sciences Publication Activity Database
Lomtatidze, Alexander; Vodstrčil, Petr
2005-01-01
Roč. 84, č. 2 (2005), s. 197-209 ISSN 0003-6811 Institutional research plan: CEZ:AV0Z10190503 Keywords : second order linear functional differential equations * nonnegative solution * two-point boundary value problem Subject RIV: BA - General Mathematics http://www.tandfonline.com/doi/full/10.1080/00036810410001724427
The Method of Subsuper Solutions for Weighted p(r-Laplacian Equation Boundary Value Problems
Directory of Open Access Journals (Sweden)
Zhimei Qiu
2008-10-01
Full Text Available This paper investigates the existence of solutions for weighted p(r-Laplacian ordinary boundary value problems. Our method is based on Leray-Schauder degree. As an application, we give the existence of weak solutions for p(x-Laplacian partial differential equations.
A free-boundary value problem related to auto ignition of ...
African Journals Online (AJOL)
We examine a free boundary value problem related to auto ignition of combustible fluid in insulation materials. The criteria for the existence of similarity solution of the model equations are established. The conditions for the existence of unique solution are also stated. The numerical results which show the influence of ...
Directory of Open Access Journals (Sweden)
Jian Liu
2013-09-01
Full Text Available In this article, we consider the free boundary value problem for one-dimensional compressible bipolar Navier-Stokes-Possion (BNSP equations with density-dependent viscosities. For general initial data with finite energy and the density connecting with vacuum continuously, we prove the global existence of the weak solution. This extends the previous results for compressible NS [27] to NSP.
Czech Academy of Sciences Publication Activity Database
Lomtatidze, Alexander
2016-01-01
Roč. 67, č. 1 (2016), s. 1-129 ISSN 1512-0015 Institutional support: RVO:67985840 Keywords : periodic boundary value problem * positive solution * singular equation Subject RIV: BA - General Mathematics http://rmi.tsu.ge/jeomj/memoirs/vol67/abs67-1.htm
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan; Půža, B.
2015-01-01
Roč. 2015, January (2015), s. 17 ISSN 1687-2770 Institutional support: RVO:67985840 Keywords : higher order nonlinear functional-differential equations * two-point right-focal boundary value problem * strong singularity Subject RIV: BA - General Mathematics Impact factor: 0.642, year: 2015 http://link.springer.com/article/10.1186%2Fs13661-014-0277-1
Boundary-value problems for first and second order functional differential inclusions
Directory of Open Access Journals (Sweden)
Shihuang Hong
2003-03-01
Full Text Available This paper presents sufficient conditions for the existence of solutions to boundary-value problems of first and second order multi-valued differential equations in Banach spaces. Our results obtained using fixed point theorems, and lead to new existence principles.
Remark on periodic boundary-value problem for second-order linear ordinary differential equations
Czech Academy of Sciences Publication Activity Database
Dosoudilová, M.; Lomtatidze, Alexander
2018-01-01
Roč. 2018, č. 13 (2018), s. 1-7 ISSN 1072-6691 Institutional support: RVO:67985840 Keywords : second-order linear equation * periodic boundary value problem * unique solvability Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.954, year: 2016 https://ejde.math.txstate.edu/Volumes/2018/13/abstr.html
Uniqueness in some higher order elliptic boundary value problems in n dimensional domains
Directory of Open Access Journals (Sweden)
C.-P. Danet
2011-07-01
Full Text Available We develop maximum principles for several P functions which are defined on solutions to equations of fourth and sixth order (including a equation which arises in plate theory and bending of cylindrical shells. As a consequence, we obtain uniqueness results for fourth and sixth order boundary value problems in arbitrary n dimensional domains.
Boundary value problems of holomorphic vector functions in 1D QCs
International Nuclear Information System (INIS)
Gao Yang; Zhao Yingtao; Zhao Baosheng
2007-01-01
By means of the generalized Stroh formalism, two-dimensional (2D) problems of one-dimensional (1D) quasicrystals (QCs) elasticity are turned into the boundary value problems of holomorphic vector functions in a given region. If the conformal mapping from an ellipse to a circle is known, a general method for solving the boundary value problems of holomorphic vector functions can be presented. To illustrate its utility, by using the necessary and sufficient condition of boundary value problems of holomorphic vector functions, we consider two basic 2D problems in 1D QCs, that is, an elliptic hole and a rigid line inclusion subjected to uniform loading at infinity. For the crack problem, the intensity factors of phonon and phason fields are determined, and the physical sense of the results relative to phason and the difference between mechanical behaviors of the crack problem in crystals and QCs are figured out. Moreover, the same procedure can be used to deal with the elastic problems for 2D and three-dimensional (3D) QCs
Numerical solution of system of boundary value problems using B-spline with free parameter
Gupta, Yogesh
2017-01-01
This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.
A fast direct solver for boundary value problems on locally perturbed geometries
Zhang, Yabin; Gillman, Adrianna
2018-03-01
Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.
Existence and uniqueness for a two-point interface boundary value problem
Directory of Open Access Journals (Sweden)
Rakhim Aitbayev
2013-10-01
Full Text Available We obtain sufficient conditions, easily verifiable, for the existence and uniqueness of piecewise smooth solutions of a linear two-point boundary-value problem with general interface conditions. The coefficients of the differential equation may have jump discontinuities at the interface point. As an example, the conditions obtained are applied to a problem with typical interface such as perfect contact, non-perfect contact, and flux jump conditions.
Boundary Value Problems for a Super-Sublinear Asymmetric Oscillator: The Exact Number of Solutions
Directory of Open Access Journals (Sweden)
Armands Gritsans
2013-01-01
Full Text Available Properties of asymmetric oscillator described by the equation (i, where and , are studied. A set of such that the problem (i, (ii, and (iii have a nontrivial solution, is called α-spectrum. We give full description of α-spectra in terms of solution sets and solution surfaces. The exact number of nontrivial solutions of the two-parameter Dirichlet boundary value problem (i, and (ii is given.
Directory of Open Access Journals (Sweden)
Hongwu Zhang
2011-08-01
Full Text Available In this article, we study a Cauchy problem for an elliptic equation with variable coefficients. It is well-known that such a problem is severely ill-posed; i.e., the solution does not depend continuously on the Cauchy data. We propose a modified quasi-boundary value regularization method to solve it. Convergence estimates are established under two a priori assumptions on the exact solution. A numerical example is given to illustrate our proposed method.
Directory of Open Access Journals (Sweden)
Salih Yalcinbas
2016-01-01
Full Text Available In this study, a numerical approach is proposed to obtain approximate solutions of nonlinear system of second order boundary value problem. This technique is essentially based on the truncated Fermat series and its matrix representations with collocation points. Using the matrix method, we reduce the problem system of nonlinear algebraic equations. Numerical examples are also given to demonstrate the validity and applicability of the presented technique. The method is easy to implement and produces accurate results.
On the asymptotic of solutions of elliptic boundary value problems in domains with edges
International Nuclear Information System (INIS)
Nkemzi, B.
2005-10-01
Solutions of elliptic boundary value problems in three-dimensional domains with edges may exhibit singularities. The usual procedure to study these singularities is by the application of the classical Mellin transformation or continuous Fourier transformation. In this paper, we show how the asymptotic behavior of solutions of elliptic boundary value problems in general three-dimensional domains with straight edges can be investigated by means of discrete Fourier transformation. We apply this approach to time-harmonic Maxwell's equations and prove that the singular solutions can fully be described in terms of Fourier series. The representation here can easily be used to approximate three-dimensional stress intensity factors associated with edge singularities. (author)
Directory of Open Access Journals (Sweden)
Chen Yuming
2011-01-01
Full Text Available Though boundary value problems for fractional differential equations have been extensively studied, most of the studies focus on scalar equations and the fractional order between 1 and 2. On the other hand, delay is natural in practical systems. However, not much has been done for fractional differential equations with delays. Therefore, in this paper, we consider a boundary value problem of a general delayed nonlinear fractional system. With the help of some fixed point theorems and the properties of the Green function, we establish several sets of sufficient conditions on the existence of positive solutions. The obtained results extend and include some existing ones and are illustrated with some examples for their feasibility.
On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation
Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich
2018-01-01
The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.
Directory of Open Access Journals (Sweden)
Qingkai Kong
2012-02-01
Full Text Available In this paper, we study the existence and multiplicity of positive solutions of a class of nonlinear fractional boundary value problems with Dirichlet boundary conditions. By applying the fixed point theory on cones we establish a series of criteria for the existence of one, two, any arbitrary finite number, and an infinite number of positive solutions. A criterion for the nonexistence of positive solutions is also derived. Several examples are given for demonstration.
Monotone methods for solving a boundary value problem of second order discrete system
Directory of Open Access Journals (Sweden)
Wang Yuan-Ming
1999-01-01
Full Text Available A new concept of a pair of upper and lower solutions is introduced for a boundary value problem of second order discrete system. A comparison result is given. An existence theorem for a solution is established in terms of upper and lower solutions. A monotone iterative scheme is proposed, and the monotone convergence rate of the iteration is compared and analyzed. The numerical results are given.
Uniqueness in the inverse boundary value problem for piecewise homogeneous anisotropic elasticity
Cârstea, Cătălin I.; Honda, Naofumi; Nakamura, Gen
2016-01-01
Consider a three dimensional piecewise homogeneous anisotropic elastic medium $\\Omega$ which is a bounded domain consisting of a finite number of bounded subdomains $D_\\alpha$, with each $D_\\alpha$ a homogeneous elastic medium. One typical example is a finite element model with elements with curvilinear interfaces for an ansiotropic elastic medium. Assuming the $D_\\alpha$ are known and Lipschitz, we are concerned with the uniqueness in the inverse boundary value problem of identifying the ani...
Order Reduction in High-Order Runge-Kutta Methods for Initial Boundary Value Problems
Rosales, Rodolfo Ruben; Seibold, Benjamin; Shirokoff, David; Zhou, Dong
2017-01-01
This paper studies the order reduction phenomenon for initial-boundary-value problems that occurs with many Runge-Kutta time-stepping schemes. First, a geometric explanation of the mechanics of the phenomenon is provided: the approximation error develops boundary layers, induced by a mismatch between the approximation error in the interior and at the boundaries. Second, an analysis of the modes of the numerical scheme is conducted, which explains under which circumstances boundary layers pers...
Discrete quintic spline for boundary value problem in plate deflation theory
Wong, Patricia J. Y.
2017-07-01
We propose a numerical scheme for a fourth-order boundary value problem arising from plate deflation theory. The scheme involves a discrete quintic spline, and it is of order 4 if a parameter takes a specific value, else it is of order 2. We also present a well known numerical example to illustrate the efficiency of our method as well as to compare with other numerical methods proposed in the literature.
Multi-point boundary value problems for linear functional-differential equations
Czech Academy of Sciences Publication Activity Database
Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich
2017-01-01
Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional- differential equations * functional- differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076.xml
Directory of Open Access Journals (Sweden)
Domoshnitsky Alexander
2009-01-01
Full Text Available We obtain the maximum principles for the first-order neutral functional differential equation where , and are linear continuous operators, and are positive operators, is the space of continuous functions, and is the space of essentially bounded functions defined on . New tests on positivity of the Cauchy function and its derivative are proposed. Results on existence and uniqueness of solutions for various boundary value problems are obtained on the basis of the maximum principles.
Directory of Open Access Journals (Sweden)
Long Yuhua
2017-12-01
Full Text Available In this paper, we study second-order nonlinear discrete Robin boundary value problem with parameter dependence. Applying invariant sets of descending flow and variational methods, we establish some new sufficient conditions on the existence of sign-changing solutions, positive solutions and negative solutions of the system when the parameter belongs to appropriate intervals. In addition, an example is given to illustrate our results.
Multi-point boundary value problems for linear functional-differential equations
Czech Academy of Sciences Publication Activity Database
Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich
2017-01-01
Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional-differential equations * functional-differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076. xml
Existence and Estimates of Positive Solutions for Some Singular Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Habib Mâagli
2014-01-01
fractional boundary value problem:Dαu(x=−a(xuσ(x, x∈(0,1 with the conditions limx→0+x2−αu(x=0, u(1=0, where 1<α≤2, σ∈(−1,1, and a is a nonnegative continuous function on (0,1 that may be singular at x=0 or x=1. We also give the global behavior of such a solution.
Positive solutions for a nonlinear periodic boundary-value problem with a parameter
Directory of Open Access Journals (Sweden)
Jingliang Qiu
2012-08-01
Full Text Available Using topological degree theory with a partially ordered structure of space, sufficient conditions for the existence and multiplicity of positive solutions for a second-order nonlinear periodic boundary-value problem are established. Inspired by ideas in Guo and Lakshmikantham [6], we study the dependence of positive periodic solutions as a parameter approaches infinity, $$ lim_{lambdao +infty}|x_{lambda}|=+infty,quadhbox{or}quad lim_{lambdao+infty}|x_{lambda}|=0. $$
Infinitely many solutions for a fourth-order boundary-value problem
Directory of Open Access Journals (Sweden)
Seyyed Mohsen Khalkhali
2012-09-01
Full Text Available In this article we consider the existence of infinitely many solutions to the fourth-order boundary-value problem $$displaylines{ u^{iv}+alpha u''+eta(x u=lambda f(x,u+h(u,quad xin]0,1[cr u(0=u(1=0,cr u''(0=u''(1=0,. }$$ Our approach is based on variational methods and critical point theory.
An initial boundary value problem for modeling a piezoelectric dipolar body
Marin, Marin; Öchsner, Andreas
2018-03-01
This study deals with the first initial boundary value problem in elasticity of piezoelectric dipolar bodies. We consider the most general case of an anisotropic and inhomogeneous elastic body having a dipolar structure. For two different types of restrictions imposed on the problem data, we prove two results regarding the uniqueness of solution, by using a different but accessible method. Then, the mixed problem is transformed in a temporally evolutionary equation on a Hilbert space, conveniently constructed based on the problem data. With the help of a known result from the theory of semigroups of operators, the existence and uniqueness of the weak solution for this equation are proved.
Student Solutions Manual to Boundary Value Problems and Partial Differential Equations
Powers, David L
2005-01-01
This student solutions manual accompanies the text, Boundary Value Problems and Partial Differential Equations, 5e. The SSM is available in print via PDF or electronically, and provides the student with the detailed solutions of the odd-numbered problems contained throughout the book.Provides students with exercises that skillfully illustrate the techniques used in the text to solve science and engineering problemsNearly 900 exercises ranging in difficulty from basic drills to advanced problem-solving exercisesMany exercises based on current engineering applications
Energy Technology Data Exchange (ETDEWEB)
Kaikina, Elena I., E-mail: ekaikina@matmor.unam.mx [Centro de Ciencias Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia CP 58089, Michoacán (Mexico)
2013-11-15
We consider the inhomogeneous Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation, formulated on a half-line. We study traditionally important problems of the theory of nonlinear partial differential equations, such as global in time existence of solutions to the initial-boundary value problem and the asymptotic behavior of solutions for large time.
International Nuclear Information System (INIS)
Kaikina, Elena I.
2013-01-01
We consider the inhomogeneous Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation, formulated on a half-line. We study traditionally important problems of the theory of nonlinear partial differential equations, such as global in time existence of solutions to the initial-boundary value problem and the asymptotic behavior of solutions for large time
About potential of double layer and boundary value problems for Laplace equation
International Nuclear Information System (INIS)
Aleshin, M.V.
1991-01-01
An integral operator raisen by a kernel of the double layer's potential is investigated. The kernel is defined on S (S - two-digit variety of C 2 class presented by a boundary of the finite domain in R 3 ). The operator is considered on C(S). Following results are received: the operator's spectrum belongs to [-1,1]; it's eigenvalues and eigenfunctions may be found by Kellog's method; knowledge of the operator's spectrum is enough to construct it's resolvent. These properties permit to point out the determined interation processes, solving boundary value problems for Laplace equation. One of such processes - solving of Roben problem - is generalized on electrostatic problems. 6 refs
Use of Green's functions in the numerical solution of two-point boundary value problems
Gallaher, L. J.; Perlin, I. E.
1974-01-01
This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.
Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations
Directory of Open Access Journals (Sweden)
Olivier Sarbach
2012-08-01
Full Text Available Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity. The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein's equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.
Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations.
Sarbach, Olivier; Tiglio, Manuel
2012-01-01
Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity. The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein's equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.
Sayevand, K.; Pichaghchi, K.
2018-04-01
In this paper, we were concerned with the description of the singularly perturbed boundary value problems in the scope of fractional calculus. We should mention that, one of the main methods used to solve these problems in classical calculus is the so-called matched asymptotic expansion method. However we shall note that, this was not achievable via the existing classical definitions of fractional derivative, because they do not obey the chain rule which one of the key elements of the matched asymptotic expansion method. In order to accommodate this method to fractional derivative, we employ a relatively new derivative so-called the local fractional derivative. Using the properties of local fractional derivative, we extend the matched asymptotic expansion method to the scope of fractional calculus and introduce a reliable new algorithm to develop approximate solutions of the singularly perturbed boundary value problems of fractional order. In the new method, the original problem is partitioned into inner and outer solution equations. The reduced equation is solved with suitable boundary conditions which provide the terminal boundary conditions for the boundary layer correction. The inner solution problem is next solved as a solvable boundary value problem. The width of the boundary layer is approximated using appropriate resemblance function. Some theoretical results are established and proved. Some illustrating examples are solved and the results are compared with those of matched asymptotic expansion method and homotopy analysis method to demonstrate the accuracy and efficiency of the method. It can be observed that, the proposed method approximates the exact solution very well not only in the boundary layer, but also away from the layer.
The Laplace equation boundary value problems on bounded and unbounded Lipschitz domains
Medková, Dagmar
2018-01-01
This book is devoted to boundary value problems of the Laplace equation on bounded and unbounded Lipschitz domains. It studies the Dirichlet problem, the Neumann problem, the Robin problem, the derivative oblique problem, the transmission problem, the skip problem and mixed problems. It also examines different solutions - classical, in Sobolev spaces, in Besov spaces, in homogeneous Sobolev spaces and in the sense of non-tangential limit. It also explains relations between different solutions. The book has been written in a way that makes it as readable as possible for a wide mathematical audience, and includes all the fundamental definitions and propositions from other fields of mathematics. This book is of interest to research students, as well as experts in partial differential equations and numerical analysis.
Directory of Open Access Journals (Sweden)
Muhammad Aslam Noor
2008-01-01
Full Text Available We suggest and analyze a technique by combining the variational iteration method and the homotopy perturbation method. This method is called the variational homotopy perturbation method (VHPM. We use this method for solving higher dimensional initial boundary value problems with variable coefficients. The developed algorithm is quite efficient and is practically well suited for use in these problems. The proposed scheme finds the solution without any discritization, transformation, or restrictive assumptions and avoids the round-off errors. Several examples are given to check the reliability and efficiency of the proposed technique.
Analytic solution of boundary-value problems for nonstationary model kinetic equations
International Nuclear Information System (INIS)
Latyshev, A.V.; Yushkanov, A.A.
1993-01-01
A theory for constructing the solutions of boundary-value problems for non-stationary model kinetic equations is constructed. This theory was incorrectly presented equation, separation of the variables is used, this leading to a characteristic equation. Eigenfunctions are found in the space of generalized functions, and the eigenvalue spectrum is investigated. An existence and uniqueness theorem for the expansion of the Laplace transform of the solution with respect to the eigenfunctions is proved. The proof is constructive and gives explicit expressions for the expansion coefficients. An application to the Rayleigh problem is obtained, and the corresponding result of Cercignani is corrected
Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method
Sohaib, Muhammad; Haq, Sirajul; Mukhtar, Safyan; Khan, Imad
2018-03-01
An efficient method is proposed to approximate sixth order boundary value problems. The proposed method is based on Legendre wavelet in which Legendre polynomial is used. The mechanism of the method is to use collocation points that converts the differential equation into a system of algebraic equations. For validation two test problems are discussed. The results obtained from proposed method are quite accurate, also close to exact solution, and other different methods. The proposed method is computationally more effective and leads to more accurate results as compared to other methods from literature.
Numerical solution of large nonlinear boundary value problems by quadratic minimization techniques
International Nuclear Information System (INIS)
Glowinski, R.; Le Tallec, P.
1984-01-01
The objective of this paper is to describe the numerical treatment of large highly nonlinear two or three dimensional boundary value problems by quadratic minimization techniques. In all the different situations where these techniques were applied, the methodology remains the same and is organized as follows: 1) derive a variational formulation of the original boundary value problem, and approximate it by Galerkin methods; 2) transform this variational formulation into a quadratic minimization problem (least squares methods) or into a sequence of quadratic minimization problems (augmented lagrangian decomposition); 3) solve each quadratic minimization problem by a conjugate gradient method with preconditioning, the preconditioning matrix being sparse, positive definite, and fixed once for all in the iterative process. This paper will illustrate the methodology above on two different examples: the description of least squares solution methods and their application to the solution of the unsteady Navier-Stokes equations for incompressible viscous fluids; the description of augmented lagrangian decomposition techniques and their application to the solution of equilibrium problems in finite elasticity
A simple finite element method for boundary value problems with a Riemann–Liouville derivative
Jin, Bangti; Lazarov, Raytcho; Lu, Xiliang; Zhou, Zhi
2016-01-01
© 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-^{1} in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and ^{L2}(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.
A simple finite element method for boundary value problems with a Riemann–Liouville derivative
Jin, Bangti
2016-02-01
© 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-^{1} in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and ^{L2}(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.
Boundary value problems of the circular cylinders in the strain-gradient theory of linear elasticity
International Nuclear Information System (INIS)
Kao, B.G.
1979-11-01
Three boundary value problems in the strain-gradient theory of linear elasticity are solved for circular cylinders. They are the twisting of circular cylinder, uniformly pressuring of concentric circular cylinder, and pure-bending of simply connected cylinder. The comparisons of these solutions with the solutions in classical elasticity and in couple-stress theory reveal the differences in the stress fields as well as the apparent stress fields due to the influences of the strain-gradient. These aspects of the strain-gradient theory could be important in modeling the failure behavior of structural materials
Directory of Open Access Journals (Sweden)
Chuanzhi Bai
2010-06-01
Full Text Available This paper deals with the existence of positive solutions for a boundary value problem involving a nonlinear functional differential equation of fractional order $\\alpha$ given by $ D^{\\alpha} u(t + f(t, u_t = 0$, $t \\in (0, 1$, $2 < \\alpha \\le 3$, $ u^{\\prime}(0 = 0$, $u^{\\prime}(1 = b u^{\\prime}(\\eta$, $u_0 = \\phi$. Our results are based on the nonlinear alternative of Leray-Schauder type and Krasnosel'skii fixed point theorem.
Investigation of solutions of state-dependent multi-impulsive boundary value problems
Czech Academy of Sciences Publication Activity Database
Rontó, András; Rachůnková, I.; Rontó, M.; Rachůnek, L.
2017-01-01
Roč. 24, č. 2 (2017), s. 287-312 ISSN 1072-947X R&D Projects: GA ČR(CZ) GA14-06958S Institutional support: RVO:67985840 Keywords : state-dependent multi-impulsive systems * non-linear boundary value problem * parametrization technique Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0084/gmj-2016-0084.xml
A combined analytic-numeric approach for some boundary-value problems
Directory of Open Access Journals (Sweden)
Mustafa Turkyilmazoglu
2016-02-01
Full Text Available A combined analytic-numeric approach is undertaken in the present work for the solution of boundary-value problems in the finite or semi-infinite domains. Equations to be treated arise specifically from the boundary layer analysis of some two and three-dimensional flows in fluid mechanics. The purpose is to find quick but accurate enough solutions. Taylor expansions at either boundary conditions are computed which are next matched to the other asymptotic or exact boundary conditions. The technique is applied to the well-known Blasius as well as Karman flows. Solutions obtained in terms of series compare favorably with the existing ones in the literature.
Investigation of solutions of state-dependent multi-impulsive boundary value problems
Czech Academy of Sciences Publication Activity Database
Rontó, András; Rachůnková, I.; Rontó, M.; Rachůnek, L.
2017-01-01
Roč. 24, č. 2 (2017), s. 287-312 ISSN 1072-947X R&D Projects: GA ČR(CZ) GA14-06958S Institutional support: RVO:67985840 Keywords : state-dependent multi-impulsive systems * non-linear boundary value problem * parametrization technique Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0084/gmj-2016-0084. xml
Extension Theory and Krein-type Resolvent Formulas for Nonsmooth Boundary Value Problems
DEFF Research Database (Denmark)
Abels, Helmut; Grubb, Gerd; Wood, Ian Geoffrey
2014-01-01
The theory of selfadjoint extensions of symmetric operators, and more generally the theory of extensions of dual pairs, was implemented some years ago for boundary value problems for elliptic operators on smooth bounded domains. Recently, the questions have been taken up again for nonsmooth domains....... In the present work we show that pseudodifferential methods can be used to obtain a full characterization, including Kreĭn resolvent formulas, of the realizations of nonselfadjoint second-order operators on
Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations
Nakamura, Gen; Vashisth, Manmohan
2017-01-01
In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...
Two-point boundary value and Cauchy formulations in an axisymmetrical MHD equilibrium problem
International Nuclear Information System (INIS)
Atanasiu, C.V.; Subbotin, A.A.
1999-01-01
In this paper we present two equilibrium solvers for axisymmetrical toroidal configurations, both based on the expansion in poloidal angle method. The first one has been conceived as a two-point boundary value solver in a system of coordinates with straight field lines, while the second one uses a well-conditioned Cauchy formulation of the problem in a general curvilinear coordinate system. In order to check the capability of our moment methods to describe equilibrium accurately, a comparison of the moment solutions with analytical solutions obtained for a Solov'ev equilibrium has been performed. (author)
Solving inverse two-point boundary value problems using collage coding
Kunze, H.; Murdock, S.
2006-08-01
The method of collage coding, with its roots in fractal imaging, is the central tool in a recently established rigorous framework for solving inverse initial value problems for ordinary differential equations (Kunze and Vrscay 1999 Inverse Problems 15 745-70). We extend these ideas to solve the following inverse problem: given a function u(x) on [A, B] (which may be the interpolation of data points), determine a two-point boundary value problem on [A, B] which admits u(x) as a solution as closely as desired. The solution of such inverse problems may be useful in parameter estimation or determination of potential functional forms of the underlying differential equation. We discuss ways to improve results, including the development of a partitioning scheme. Several examples are considered.
International Nuclear Information System (INIS)
Semenova, V.N.
2016-01-01
A boundary value problem for a nonlinear second order differential equation has been considered. A numerical method has been proposed to solve this problem using power series. Results of numerical experiments have been presented in the paper [ru
International Nuclear Information System (INIS)
Alexeyeva, L.A.
2001-01-01
Investigation of diffraction processes of seismic waves on underground tunnels and pipelines with use of mathematical methods is related to solving boundary value problems (BVP) for hyperbolic system of differential equations in domains with cylindrical cavities when seismic disturbances propagate along boundaries with subsonic or transonic speeds. Also such classes of problems appear when it's necessary to study the behavior of underground constructions and Stress-strain State of environment. But in this case the velocities of running loads are less than velocities of wave propagation in surrounding medium. At present similar problems were solved only for constructions of circular cylindrical form with use of methods of full and not full dividing of variables. For cylindrical constructions of complex cross section strong mathematical theories for solving these problems were absent.(author)
Variational Iteration Method for Fifth-Order Boundary Value Problems Using He's Polynomials
Directory of Open Access Journals (Sweden)
Muhammad Aslam Noor
2008-01-01
Full Text Available We apply the variational iteration method using He's polynomials (VIMHP for solving the fifth-order boundary value problems. The proposed method is an elegant combination of variational iteration and the homotopy perturbation methods and is mainly due to Ghorbani (2007. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discritization, linearization, or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed technique solves nonlinear problems without using Adomian's polynomials can be considered as a clear advantage of this algorithm over the decomposition method.
Existence of solutions to fractional boundary-value problems with a parameter
Directory of Open Access Journals (Sweden)
Ya-Ning Li
2013-06-01
Full Text Available This article concerns the existence of solutions to the fractional boundary-value problem $$displaylines{ -frac{d}{dt} ig(frac{1}{2} {}_0D_t^{-eta}+ frac{1}{2}{}_tD_{T}^{-eta}igu'(t=lambda u(t+abla F(t,u(t,quad hbox{a.e. } tin[0,T], cr u(0=0,quad u(T=0. }$$ First for the eigenvalue problem associated with it, we prove that there is a sequence of positive and increasing real eigenvalues; a characterization of the first eigenvalue is also given. Then under different assumptions on the nonlinearity F(t,u, we show the existence of weak solutions of the problem when $lambda$ lies in various intervals. Our main tools are variational methods and critical point theorems.
Directory of Open Access Journals (Sweden)
Hoi Ying Wong
2013-01-01
Full Text Available Turbo warrants are liquidly traded financial derivative securities in over-the-counter and exchange markets in Asia and Europe. The structure of turbo warrants is similar to barrier options, but a lookback rebate will be paid if the barrier is crossed by the underlying asset price. Therefore, the turbo warrant price satisfies a partial differential equation (PDE with a boundary condition that depends on another boundary-value problem (BVP of PDE. Due to the highly complicated structure of turbo warrants, their valuation presents a challenging problem in the field of financial mathematics. This paper applies the homotopy analysis method to construct an analytic pricing formula for turbo warrants under stochastic volatility in a PDE framework.
Solving Singular Two-Point Boundary Value Problems Using Continuous Genetic Algorithm
Directory of Open Access Journals (Sweden)
Omar Abu Arqub
2012-01-01
Full Text Available In this paper, the continuous genetic algorithm is applied for the solution of singular two-point boundary value problems, where smooth solution curves are used throughout the evolution of the algorithm to obtain the required nodal values. The proposed technique might be considered as a variation of the finite difference method in the sense that each of the derivatives is replaced by an appropriate difference quotient approximation. This novel approach possesses main advantages; it can be applied without any limitation on the nature of the problem, the type of singularity, and the number of mesh points. Numerical examples are included to demonstrate the accuracy, applicability, and generality of the presented technique. The results reveal that the algorithm is very effective, straightforward, and simple.
Quasisolutions of Inverse Boundary-Value Problem of Aerodynamics for Dense Airfoil Grids
Directory of Open Access Journals (Sweden)
A.M. Elizarov
2016-12-01
Full Text Available In the process of turbomachinery development, it is of great importance to accurately design impellers and select their blade shape. One of the promising approaches to solving this problem is based on the theory of inverse boundary-value problems in aerodynamics. It helps to develop methods for profiling airfoil grids with predetermined properties in the same way as it is done for isolated airfoils. In this paper, methods have been worked out to find quasisolutions of the inverse boundary-value problem in aerodynamics for a plane airfoil grid. Two methods of quasisolution have been described. The first “`formal” method is similar, in its essence, to the method used for construction of quasisolution for an isolated airfoil. It has been shown that such quasisolutions provide satisfactory results for grids having a sufficiently large relative airfoil pitch. If pitch values are low, this method is unacceptable, because “modified” velocity distribution in some areas is significantly different from the original one in this case. For this reason, areas with significant changes in the angle of the tangent line appear in the airfoil contour and the flow region becomes multivalent. To satisfy the conditions of solvability in the case of grids having a small airfoil pitch, a new quasisolution construction method taking into account the specifics of the problem has been suggested. The desired effect has been achieved due to changes in the weighting function of the minimized functional. The comparison of the results of construction of the new quasisolution with the results obtained by the “formal” method has demonstrated that the constructed airfoils are very similar when the pitch is large. In the case of dense grids, it is clear that preference should be given to the second method, as it brings less distortion to the initial velocity distribution and, thus, allows to physically find an actual airfoil contour.
Directory of Open Access Journals (Sweden)
Mabrouk Briki
2016-05-01
Full Text Available In this paper, a fourth-order boundary value problem on the half-line is considered and existence of solutions is proved using a minimization principle and the mountain pass theorem.
Directory of Open Access Journals (Sweden)
Ureña Antonio J
2002-01-01
Full Text Available A generalization of the well-known Hartman–Nagumo inequality to the case of the vector ordinary -Laplacian and classical degree theory provide existence results for some associated nonlinear boundary value problems.
METHOD OF GREEN FUNCTIONS IN MATHEMATICAL MODELLING FOR TWO-POINT BOUNDARY-VALUE PROBLEMS
Directory of Open Access Journals (Sweden)
E. V. Dikareva
2015-01-01
Full Text Available Summary. In many applied problems of control, optimization, system theory, theoretical and construction mechanics, for problems with strings and nods structures, oscillation theory, theory of elasticity and plasticity, mechanical problems connected with fracture dynamics and shock waves, the main instrument for study these problems is a theory of high order ordinary differential equations. This methodology is also applied for studying mathematical models in graph theory with different partitioning based on differential equations. Such equations are used for theoretical foundation of mathematical models but also for constructing numerical methods and computer algorithms. These models are studied with use of Green function method. In the paper first necessary theoretical information is included on Green function method for multi point boundary-value problems. The main equation is discussed, notions of multi-point boundary conditions, boundary functionals, degenerate and non-degenerate problems, fundamental matrix of solutions are introduced. In the main part the problem to study is formulated in terms of shocks and deformations in boundary conditions. After that the main results are formulated. In theorem 1 conditions for existence and uniqueness of solutions are proved. In theorem 2 conditions are proved for strict positivity and equal measureness for a pair of solutions. In theorem 3 existence and estimates are proved for the least eigenvalue, spectral properties and positivity of eigenfunctions. In theorem 4 the weighted positivity is proved for the Green function. Some possible applications are considered for a signal theory and transmutation operators.
Comments on the comparison of global methods for linear two-point boundary value problems
International Nuclear Information System (INIS)
de Boor, C.; Swartz, B.
1977-01-01
A more careful count of the operations involved in solving the linear system associated with collocation of a two-point boundary value problem using a rough splines reverses results recently reported by others in this journal. In addition, it is observed that the use of the technique of ''condensation of parameters'' can decrease the computer storage required. Furthermore, the use of a particular highly localized basis can also reduce the setup time when the mesh is irregular. Finally, operation counts are roughly estimated for the solution of certain linear system associated with two competing collocation methods; namely, collocation with smooth splines and collocation of the equivalent first order system with continuous piecewise polynomials
Exact multiplicity results for quasilinear boundary-value problems with cubic-like nonlinearities
Directory of Open Access Journals (Sweden)
Idris Addou
2000-01-01
Full Text Available We consider the boundary-value problem $$displaylines{ -(varphi_p (u'' =lambda f(u mbox{ in }(0,1 cr u(0 = u(1 =0,, }$$ where $p>1$, $lambda >0$ and $varphi_p (x =| x|^{p-2}x$. The nonlinearity $f$ is cubic-like with three distinct roots 0=a less than b less than c. By means of a quadrature method, we provide the exact number of solutions for all $lambda >0$. This way we extend a recent result, for $p=2$, by Korman et al. cite{KormanLiOuyang} to the general case $p>1$. We shall prove that when 1less than $pleq 2$ the structure of the solution set is exactly the same as that studied in the case $p=2$ by Korman et al. cite{KormanLiOuyang}, and strictly different in the case $p>2$.
Positive Solutions of Three-Order Delayed Periodic Boundary Value Problems
Directory of Open Access Journals (Sweden)
Na Wang
2017-01-01
Full Text Available Our main purpose is to consider the existence of positive solutions for three-order two-point boundary value problem in the following form: u′′′(t+ρ3u(t=f(t,u(t-τ, 0≤t≤2π, u(i(0=u(i(2π, i=1,2, u(t=σ, -τ≤t≤0, where σ,ρ, and τ are given constants satisfying τ∈(0,π/2. Some inequality conditions on ρ3u-f(t,u guaranteeing the existence and nonexistence of positive solutions are presented. Our discussion is based on the fixed point theorem in cones.
Convergence Analysis of the Preconditioned Group Splitting Methods in Boundary Value Problems
Directory of Open Access Journals (Sweden)
Norhashidah Hj. Mohd Ali
2012-01-01
Full Text Available The construction of a specific splitting-type preconditioner in block formulation applied to a class of group relaxation iterative methods derived from the centred and rotated (skewed finite difference approximations has been shown to improve the convergence rates of these methods. In this paper, we present some theoretical convergence analysis on this preconditioner specifically applied to the linear systems resulted from these group iterative schemes in solving an elliptic boundary value problem. We will theoretically show the relationship between the spectral radiuses of the iteration matrices of the preconditioned methods which affects the rate of convergence of these methods. We will also show that the spectral radius of the preconditioned matrices is smaller than that of their unpreconditioned counterparts if the relaxation parameter is in a certain optimum range. Numerical experiments will also be presented to confirm the agreement between the theoretical and the experimental results.
Solution matching for a three-point boundary-value problem on atime scale
Directory of Open Access Journals (Sweden)
Martin Eggensperger
2004-07-01
Full Text Available Let $mathbb{T}$ be a time scale such that $t_1, t_2, t_3 in mathbb{T}$. We show the existence of a unique solution for the three-point boundary value problem $$displaylines{ y^{DeltaDeltaDelta}(t = f(t, y(t, y^Delta(t, y^{DeltaDelta}(t, quad t in [t_1, t_3] cap mathbb{T},cr y(t_1 = y_1, quad y(t_2 = y_2, quad y(t_3 = y_3,. }$$ We do this by matching a solution to the first equation satisfying a two-point boundary conditions on $[t_1, t_2] cap mathbb{T}$ with a solution satisfying a two-point boundary conditions on $[t_2, t_3] cap mathbb{T}$.
Directory of Open Access Journals (Sweden)
Omar Abu Arqub
2014-01-01
Full Text Available The purpose of this paper is to present a new kind of analytical method, the so-called residual power series, to predict and represent the multiplicity of solutions to nonlinear boundary value problems of fractional order. The present method is capable of calculating all branches of solutions simultaneously, even if these multiple solutions are very close and thus rather difficult to distinguish even by numerical techniques. To verify the computational efficiency of the designed proposed technique, two nonlinear models are performed, one of them arises in mixed convection flows and the other one arises in heat transfer, which both admit multiple solutions. The results reveal that the method is very effective, straightforward, and powerful for formulating these multiple solutions.
Elliptic boundary value problems with fractional regularity data the first order approach
Amenta, Alex
2018-01-01
In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy-Sobolev and Besov spaces. The authors use the so-called "first order approach" which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations. This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis.
Lower and Upper Solutions Method for Positive Solutions of Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
R. Darzi
2013-01-01
Full Text Available We apply the lower and upper solutions method and fixed-point theorems to prove the existence of positive solution to fractional boundary value problem D0+αut+ft,ut=0, 0
Positive solutions for second-order boundary-value problems with phi-Laplacian
Directory of Open Access Journals (Sweden)
Diana-Raluca Herlea
2016-02-01
Full Text Available This article concerns the existence, localization and multiplicity of positive solutions for the boundary-value problem $$\\displaylines{ \\big(\\phi(u' \\big '+f(t,u =0, \\cr u(0 - a u'(0 = u'(1= 0, }$$ where $f:[0,1]\\times \\mathbb{R}_{+}\\to \\mathbb{R}_{+}$ is a continuous function and $\\phi :\\mathbb{R}\\to (-b,b$ is an increasing homeomorphism with $\\phi (0=0$. We obtain existence, localization and multiplicity results of positive solutions using Krasnosel'skii fixed point theorem in cones, and a weak Harnack type inequality. Concerning systems, the localization is established by the vector version of Krasnosel'skii theorem, where the compression-expansion conditions are expressed on components.
Analytic solutions to a family of boundary-value problems for Ginsburg-Landau type equations
Vassilev, V. M.; Dantchev, D. M.; Djondjorov, P. A.
2017-10-01
We consider a two-parameter family of nonlinear ordinary differential equations describing the behavior of a critical thermodynamic system, e.g., a binary liquid mixture, of film geometry within the framework of the Ginzburg-Landau theory by means of the order-parameter. We focus on the case in which the confining surfaces are strongly adsorbing but prefer different components of the mixture, i.e., the order-parameter tends to infinity at one of the boundaries and to minus infinity at the other one. We assume that the boundaries of the system are positioned at a finite distance from each other and give analytic solutions to the corresponding boundary-value problems in terms of Weierstrass and Jacobi elliptic functions.
Numerical continuation methods for dynamical systems path following and boundary value problems
Krauskopf, Bernd; Galan-Vioque, Jorge
2007-01-01
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel''s 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects ...
A symmetric solution of a multipoint boundary value problem at resonance
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available We apply a coincidence degree theorem of Mawhin to show the existence of at least one symmetric solution of the nonlinear second-order multipoint boundary value problem u ″ ( t = f ( t , u ( t , | u ′ ( t | , t ∈ ( 0 , 1 , u ( 0 = ∑ i = 1 n μ i u ( ξ i , u ( 1 − t = u ( t , t ∈ ( 0 , 1 ] , where 0 < ξ 1 < ξ 2 < … ≤ ξ n 1 / 2 , ∑ i = 1 n μ i = 1 , f : [ 0 , 1 ] × ℝ 2 → ℝ with f ( t , x , y = f ( 1 − t , x , y , ( t , x , y ∈ [ 0 , 1 ] × ℝ 2 , satisfying the Carathéodory conditions.
Nonlinear Elliptic Boundary Value Problems at Resonance with Nonlinear Wentzell Boundary Conditions
Directory of Open Access Journals (Sweden)
Ciprian G. Gal
2017-01-01
Full Text Available Given a bounded domain Ω⊂RN with a Lipschitz boundary ∂Ω and p,q∈(1,+∞, we consider the quasilinear elliptic equation -Δpu+α1u=f in Ω complemented with the generalized Wentzell-Robin type boundary conditions of the form bx∇up-2∂nu-ρbxΔq,Γu+α2u=g on ∂Ω. In the first part of the article, we give necessary and sufficient conditions in terms of the given functions f, g and the nonlinearities α1, α2, for the solvability of the above nonlinear elliptic boundary value problems with the nonlinear boundary conditions. In other words, we establish a sort of “nonlinear Fredholm alternative” for our problem which extends the corresponding Landesman and Lazer result for elliptic problems with linear homogeneous boundary conditions. In the second part, we give some additional results on existence and uniqueness and we study the regularity of the weak solutions for these classes of nonlinear problems. More precisely, we show some global a priori estimates for these weak solutions in an L∞-setting.
Gazzola, Filippo; Sweers, Guido
2010-01-01
This monograph covers higher order linear and nonlinear elliptic boundary value problems in bounded domains, mainly with the biharmonic or poly-harmonic operator as leading principal part. Underlying models and, in particular, the role of different boundary conditions are explained in detail. As for linear problems, after a brief summary of the existence theory and Lp and Schauder estimates, the focus is on positivity or - since, in contrast to second order equations, a general form of a comparison principle does not exist - on “near positivity.” The required kernel estimates are also presented in detail. As for nonlinear problems, several techniques well-known from second order equations cannot be utilized and have to be replaced by new and different methods. Subcritical, critical and supercritical nonlinearities are discussed and various existence and nonexistence results are proved. The interplay with the positivity topic from the ﬁrst part is emphasized and, moreover, a far-reaching Gidas-Ni-Nirenbe...
International Nuclear Information System (INIS)
Boisseau, Bruno; Forgacs, Peter; Giacomini, Hector
2007-01-01
A new (algebraic) approximation scheme to find global solutions of two-point boundary value problems of ordinary differential equations (ODEs) is presented. The method is applicable for both linear and nonlinear (coupled) ODEs whose solutions are analytic near one of the boundary points. It is based on replacing the original ODEs by a sequence of auxiliary first-order polynomial ODEs with constant coefficients. The coefficients in the auxiliary ODEs are uniquely determined from the local behaviour of the solution in the neighbourhood of one of the boundary points. The problem of obtaining the parameters of the global (connecting) solutions, analytic at one of the boundary points, reduces to find the appropriate zeros of algebraic equations. The power of the method is illustrated by computing the approximate values of the 'connecting parameters' for a number of nonlinear ODEs arising in various problems in field theory. We treat in particular the static and rotationally symmetric global vortex, the skyrmion, the Abrikosov-Nielsen-Olesen vortex, as well as the 't Hooft-Polyakov magnetic monopole. The total energy of the skyrmion and of the monopole is also computed by the new method. We also consider some ODEs coming from the exact renormalization group. The ground-state energy level of the anharmonic oscillator is also computed for arbitrary coupling strengths with good precision. (fast track communication)
Initial-Boundary Value Problem Solution of the Nonlinear Shallow-water Wave Equations
Kanoglu, U.; Aydin, B.
2014-12-01
The hodograph transformation solutions of the one-dimensional nonlinear shallow-water wave (NSW) equations are usually obtained through integral transform techniques such as Fourier-Bessel transforms. However, the original formulation of Carrier and Greenspan (1958 J Fluid Mech) and its variant Carrier et al. (2003 J Fluid Mech) involve evaluation integrals. Since elliptic integrals are highly singular as discussed in Carrier et al. (2003), this solution methodology requires either approximation of the associated integrands by smooth functions or selection of regular initial/boundary data. It should be noted that Kanoglu (2004 J Fluid Mech) partly resolves this issue by simplifying the resulting integrals in closed form. Here, the hodograph transform approach is coupled with the classical eigenfunction expansion method rather than integral transform techniques and a new analytical model for nonlinear long wave propagation over a plane beach is derived. This approach is based on the solution methodology used in Aydın & Kanoglu (2007 CMES-Comp Model Eng) for wind set-down relaxation problem. In contrast to classical initial- or boundary-value problem solutions, here, the NSW equations are formulated to yield an initial-boundary value problem (IBVP) solution. In general, initial wave profile with nonzero initial velocity distribution is assumed and the flow variables are given in the form of Fourier-Bessel series. The results reveal that the developed method allows accurate estimation of the spatial and temporal variation of the flow quantities, i.e., free-surface height and depth-averaged velocity, with much less computational effort compared to the integral transform techniques such as Carrier et al. (2003), Kanoglu (2004), Tinti & Tonini (2005 J Fluid Mech), and Kanoglu & Synolakis (2006 Phys Rev Lett). Acknowledgments: This work is funded by project ASTARTE- Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV
Valent, Tullio
1988-01-01
In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be sides being quite spontaneous, allows us to consider a great many inter esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b]...
Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis
Rahman, M. A.; Ahmed, U.; Uddin, M. S.
2013-08-01
A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement
On Solutions of the Integrable Boundary Value Problem for KdV Equation on the Semi-Axis
International Nuclear Information System (INIS)
Ignatyev, M. Yu.
2013-01-01
This paper is concerned with the Korteweg–de Vries (KdV) equation on the semi-axis. The boundary value problem with inhomogeneous integrable boundary conditions is studied. We establish some characteristic properties of solutions of the problem. Also we construct a wide class of solutions of the problem using the inverse spectral method.
Two-dimensional boundary-value problem for ion-ion diffusion
International Nuclear Information System (INIS)
Tuszewski, M.; Lichtenberg, A.J.
1977-01-01
Like-particle diffusion is usually negligible compared with unlike-particle diffusion because it is two orders higher in spatial derivatives. When the ratio of the ion gyroradius to the plasma transverse dimension is of the order of the fourth root of the mass ratio, previous one-dimensional analysis indicated that like-particle diffusion is significant. A two-dimensional boundary-value problem for ion-ion diffusion is investigated. Numerical solutions are found with models for which the nonlinear partial differential equation reduces to an ordinary fourth-order differential equation. These solutions indicate that the ion-ion losses are higher by a factor of six for a slab geometry, and by a factor of four for circular geometry, than estimated from dimensional analysis. The solutions are applied to a multiple mirror experiment stabilized with a quadrupole magnetic field which generates highly elliptical flux surfaces. It is found that the ion-ion losses dominate the electron-ion losses and that these classical radial losses contribute to a significant decrease of plasma lifetime, in qualitiative agreement with the experimental results
Directory of Open Access Journals (Sweden)
Min Jia
2012-01-01
Full Text Available We study a model arising from porous media, electromagnetic, and signal processing of wireless communication system -tαx(t=f(t,x(t,x'(t,x”(t,…,x(n-2(t, 0
Zhai, Chengbo; Hao, Mengru
2014-01-01
By using Krasnoselskii's fixed point theorem, we study the existence of at least one or two positive solutions to a system of fractional boundary value problems given by -D(0+)(ν1)y1(t) = λ1a1(t)f(y1(t), y2(t)), - D(0+)(ν2)y2(t) = λ2a2(t)g(y1(t), y2(t)), where D(0+)(ν) is the standard Riemann-Liouville fractional derivative, ν1, ν2 ∈ (n - 1, n] for n > 3 and n ∈ N, subject to the boundary conditions y1((i))(0) = 0 = y ((i))(0), for 0 ≤ i ≤ n - 2, and [D(0+)(α)y1(t)] t=1 = 0 = [D(0+ (α)y2(t)] t=1, for 1 ≤ α ≤ n - 2, or y1((i))(0) = 0 = y ((i))(0), for 0 ≤ i ≤ n - 2, and [D(0+)(α)y1(t)] t=1 = ϕ1(y1), [D(0+)(α)y2(t)] t=1 = ϕ2(y2), for 1 ≤ α ≤ n - 2, ϕ1, ϕ2 ∈ C([0,1], R). Our results are new and complement previously known results. As an application, we also give an example to demonstrate our result.
Directory of Open Access Journals (Sweden)
Lingju Kong
2013-04-01
Full Text Available We study the existence of multiple solutions to the boundary value problem $$displaylines{ frac{d}{dt}Big(frac12{}_0D_t^{-eta}(u'(t+frac12{}_tD_T^{-eta}(u'(t Big+lambda abla F(t,u(t=0,quad tin [0,T],cr u(0=u(T=0, }$$ where $T>0$, $lambda>0$ is a parameter, $0leqeta<1$, ${}_0D_t^{-eta}$ and ${}_tD_T^{-eta}$ are, respectively, the left and right Riemann-Liouville fractional integrals of order $eta$, $F: [0,T]imesmathbb{R}^Nomathbb{R}$ is a given function. Our interest in the above system arises from studying the steady fractional advection dispersion equation. By applying variational methods, we obtain sufficient conditions under which the above equation has at least three solutions. Our results are new even for the special case when $eta=0$. Examples are provided to illustrate the applicability of our results.
International Nuclear Information System (INIS)
Mugge, J.W.
1979-10-01
The collisional plasma transport problem is formulated as an initial boundary value problem for general characteristic boundary conditions. Starting from the full set of hydrodynamic and electrodynamic equations an expansion in the electron-ion mass ratio together with a multiple timescale method yields simplified equations on each timescale. On timescales where many collisions have taken place for the simplified equations the initial boundary value problem is formulated. Through the introduction of potentials a two-dimensional scalar formulation in terms of quasi-linear integro-differential equations of second order for a domain consisting of plasma and vacuum sub-domains is obtained. (Auth.)
International Nuclear Information System (INIS)
Nazarov, S A
1999-01-01
We describe a wide class of boundary-value problems for which the application of elliptic theory can be reduced to elementary algebraic operations and which is characterized by the following polynomial property: the sesquilinear form corresponding to the problem degenerates only on some finite-dimensional linear space P of vector polynomials. Under this condition the boundary-value problem is elliptic, and its kernel and cokernel can be expressed in terms of P. For domains with piecewise-smooth boundary or infinite ends (conic, cylindrical, or periodic), we also present fragments of asymptotic formulae for the solutions, give specific versions of general conditional theorems on the Fredholm property (in particular, by modifying the ordinary weighted norms), and compute the index of the operator corresponding to the boundary-value problem. The polynomial property is also helpful for asymptotic analysis of boundary-value problems in thin domains and junctions of such domains. Namely, simple manipulations with P permit one to find the size of the system obtained by dimension reduction as well as the orders of the differential operators occurring in that system and provide complete information on the boundary layer structure. The results are illustrated by examples from elasticity and hydromechanics
Directory of Open Access Journals (Sweden)
Gai Gongqi
2011-01-01
Full Text Available Abstract This article studies the boundary value problems for the third-order nonlinear singular difference equations Δ 3 u ( i - 2 + λ a ( i f ( i , u ( i = 0 , i ∈ [ 2 , T + 2 ] , satisfying five kinds of different boundary value conditions. This article shows the existence of positive solutions for positone and semi-positone type. The nonlinear term may be singular. Two examples are also given to illustrate the main results. The arguments are based upon fixed point theorems in a cone. MSC [2008]: 34B15; 39A10.
Plestenjak, Bor; Gheorghiu, Călin I.; Hochstenbach, Michiel E.
2015-10-01
In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu's system, Lamé's system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited occasionally to solve such equations numerically, MEPs remain less well known, and the variety of available numerical methods is not wide. The classical approach of discretizing the equations using standard finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently. The aim of this paper is to change this perspective. We show that by combining spectral collocation methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems both very efficiently and accurately. We improve on several previous results available in the literature, and also present a MATLAB toolbox for solving a wide range of problems.
Directory of Open Access Journals (Sweden)
K.R. Prasad
2015-11-01
Full Text Available In this paper, we establish the existence of at least three positive solutions for a system of (p,q-Laplacian fractional order two-point boundary value problems by applying five functionals fixed point theorem under suitable conditions on a cone in a Banach space.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper, we consider a two-point boundary value problem for a system of second order ordinary differential equations. Under some conditions, we show the existence of positive solution to the system of second order ordinary differential equa-tions.
Czech Academy of Sciences Publication Activity Database
Kiguradze, I.; Šremr, Jiří
2011-01-01
Roč. 74, č. 17 (2011), s. 6537-6552 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear differential system * non-local boundary value problem * solvability Subject RIV: BA - General Mathematics Impact factor: 1.536, year: 2011 http://www.sciencedirect.com/science/article/pii/S0362546X11004573
Czech Academy of Sciences Publication Activity Database
Escudero, C.; Hakl, Robert; Peral, I.; Torres, P.J.
2014-01-01
Roč. 37, č. 6 (2014), s. 793-807 ISSN 0170-4214 Institutional support: RVO:67985840 Keywords : singular boundary value problem * epitaxial growth * radial solution Subject RIV: BA - General Mathematics Impact factor: 0.918, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/mma.2836/full
Directory of Open Access Journals (Sweden)
Mitsuhiro Nakao
2014-01-01
Full Text Available We prove the existence and uniqueness of a global decaying solution to the initial boundary value problem for the quasilinear wave equation with Kelvin-Voigt dissipation and a derivative nonlinearity. To derive the required estimates of the solutions we employ a 'loan' method and use a difference inequality on the energy.
Dujardin, G. M.
2009-01-01
This paper deals with the asymptotic behaviour of the solutions of linear initial boundary value problems with constant coefficients on the half-line and on finite intervals. We assume that the boundary data are periodic in time and we investigate
Directory of Open Access Journals (Sweden)
Svatoslav Stanêk
2008-03-01
Full Text Available The paper presents an existence principle for solving a large class of nonlocal regular discrete boundary value problems with the ÃÂ†-Laplacian. Applications of the existence principle to singular discrete problems are given.
The Initial and Neumann Boundary Value Problem for a Class Parabolic Monge-Ampère Equation
Directory of Open Access Journals (Sweden)
Juan Wang
2013-01-01
Full Text Available We consider the existence, uniqueness, and asymptotic behavior of a classical solution to the initial and Neumann boundary value problem for a class nonlinear parabolic equation of Monge-Ampère type. We show that such solution exists for all times and is unique. It converges eventually to a solution that satisfies a Neumann type problem for nonlinear elliptic equation of Monge-Ampère type.
Barton, Ariel
2016-01-01
This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted L^p classes. The authors establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given L^p space automatically assures their solvability in an extended range of Besov spaces; (3) Well-posedness for the non-homogeneous boundary value problems. In particular, the authors prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for operators with real, not necessarily symmetric, coefficients.
Directory of Open Access Journals (Sweden)
Zulqurnain Sabir
2014-06-01
Full Text Available In this paper, computational intelligence technique are presented for solving multi-point nonlinear boundary value problems based on artificial neural networks, evolutionary computing approach, and active-set technique. The neural network is to provide convenient methods for obtaining useful model based on unsupervised error for the differential equations. The motivation for presenting this work comes actually from the aim of introducing a reliable framework that combines the powerful features of ANN optimized with soft computing frameworks to cope with such challenging system. The applicability and reliability of such methods have been monitored thoroughly for various boundary value problems arises in science, engineering and biotechnology as well. Comprehensive numerical experimentations have been performed to validate the accuracy, convergence, and robustness of the designed scheme. Comparative studies have also been made with available standard solution to analyze the correctness of the proposed scheme.
Directory of Open Access Journals (Sweden)
Weidong Lv
2015-01-01
Full Text Available By means of Schauder’s fixed point theorem and contraction mapping principle, we establish the existence and uniqueness of solutions to a boundary value problem for a discrete fractional mixed type sum-difference equation with the nonlinear term dependent on a fractional difference of lower order. Moreover, a suitable choice of a Banach space allows the solutions to be unbounded and two representative examples are presented to illustrate the effectiveness of the main results.
Directory of Open Access Journals (Sweden)
Zhang Xuemei
2009-01-01
Full Text Available By constructing available upper and lower solutions and combining the Schauder's fixed point theorem with maximum principle, this paper establishes sufficient and necessary conditions to guarantee the existence of as well as positive solutions for a class of singular boundary value problems on time scales. The results significantly extend and improve many known results for both the continuous case and more general time scales. We illustrate our results by one example.
Directory of Open Access Journals (Sweden)
Zhang Peiguo
2011-01-01
Full Text Available Abstract By obtaining intervals of the parameter λ, this article investigates the existence of a positive solution for a class of nonlinear boundary value problems of second-order differential equations with integral boundary conditions in abstract spaces. The arguments are based upon a specially constructed cone and the fixed point theory in cone for a strict set contraction operator. MSC: 34B15; 34B16.
Directory of Open Access Journals (Sweden)
Jufang Wang
2013-01-01
Full Text Available We establish the existence of triple positive solutions of an m-point boundary value problem for the nonlinear singular second-order differential equations of mixed type with a p-Laplacian operator by Leggett-William fixed point theorem. At last, we give an example to demonstrate the use of the main result of this paper. The conclusions in this paper essentially extend and improve the known results.
Zafar, Junaid
2012-01-01
The geometrical relationship between the cut-off and propagating planes of any waveguide system is a prerequisite for any design process. The characterization of cut-off planes and optimisation are challenging for numerical methods, closed-form solutions are always preferred. In this paper Maxwells coupled field equations are used to characterise twin E-plane and H-plane slab loaded boundary value problems. The single mode bandwidths and dispersion characteristics of these structures are pres...
Kovalenko, S. S.
2014-01-01
We present the group classification of one class of (1+3)-dimensional nonlinear boundary-value problems of the Stefan type that simulate the processes of melting and evaporation of metals. The results obtained are used for the construction of the exact solution of one boundary-value problem from the class under study.
Ardalan, A.; Safari, A.; Grafarend, E.
2003-04-01
A new ellipsoidal gravimetric-satellite altimetry boundary value problem has been developed and successfully tested. This boundary value problem has been constructed for gravity observables of the type (i) gravity potential (ii) gravity intensity (iii) deflection of vertical and (iv) satellite altimetry data. The developed boundary value problem is enjoying the ellipsoidal nature and as such can take advantage of high precision GPS observations in the set-up of the problem. The highlights of the solution are as follows: begin{itemize} Application of ellipsoidal harmonic expansion up to degree/order and ellipsoidal centrifugal field for the reduction of global gravity and isostasy effects from the gravity observable at the surface of the Earth. Application of ellipsoidal Newton integral on the equal area map projection surface for the reduction of residual mass effects within a radius of 55 km around the computational point. Ellipsoidal harmonic downward continuation of the residual observables from the surface of the earth down to the surface of reference ellipsoid using the ellipsoidal height of the observation points derived from GPS. Restore of the removed effects at the application points on the surface of reference ellipsoid. Conversion of the satellite altimetry derived heights of the water bodies into potential. Combination of the downward continued gravity information with the potential equivalent of the satellite altimetry derived heights of the water bodies. Application of ellipsoidal Bruns formula for converting the potential values on the surface of the reference ellipsoid into the geoidal heights (i.e. ellipsoidal heights of the geoid) with respect to the reference ellipsoid. Computation of the high-resolution geoid of Iran has successfully tested this new methodology!
Directory of Open Access Journals (Sweden)
Ruzanna Kh. Makaova
2017-12-01
Full Text Available In this paper we study the boundary value problem for a degenerating third order equation of hyperbolic type in a mixed domain. The equation under consideration in the positive part of the domain coincides with the Hallaire equation, which is a pseudoparabolic type equation. Moreover, in the negative part of the domain it coincides with a degenerating hyperbolic equation of the first kind, the particular case of the Bitsadze–Lykov equation. The existence and uniqueness theorem for the solution is proved. The uniqueness of the solution to the problem is proved with the Tricomi method. Using the functional relationships of the positive and negative parts of the domain on the degeneration line, we arrive at the convolution type Volterra integral equation of the 2nd kind with respect to the desired solution by a derivative trace. With the Laplace transform method, we obtain the solution of the integral equation in its explicit form. At last, the solution to the problem under study is written out explicitly as the solution of the second boundary-value problem in the positive part of the domain for the Hallaire equation and as the solution to the Cauchy problem in the negative part of the domain for a degenerate hyperbolic equation of the first kind.
Directory of Open Access Journals (Sweden)
J. Gwinner
2013-01-01
Full Text Available The purpose of this paper is twofold. Firstly we consider nonlinear nonsmooth elliptic boundary value problems, and also related parabolic initial boundary value problems that model in a simplified way steady-state unilateral contact with Tresca friction in solid mechanics, respectively, stem from nonlinear transient heat conduction with unilateral boundary conditions. Here a recent duality approach, that augments the classical Babuška-Brezzi saddle point formulation for mixed variational problems to twofold saddle point formulations, is extended to the nonsmooth problems under consideration. This approach leads to variational inequalities of mixed form for three coupled fields as unknowns and to related differential mixed variational inequalities in the time-dependent case. Secondly we are concerned with the stability of the solution set of a general class of differential mixed variational inequalities. Here we present a novel upper set convergence result with respect to perturbations in the data, including perturbations of the associated nonlinear maps, the nonsmooth convex functionals, and the convex constraint set. We employ epiconvergence for the convergence of the functionals and Mosco convergence for set convergence. We impose weak convergence assumptions on the perturbed maps using the monotonicity method of Browder and Minty.
Directory of Open Access Journals (Sweden)
Meiqiang Feng
2009-01-01
Full Text Available By constructing available upper and lower solutions and combining the Schauder's fixed point theorem with maximum principle, this paper establishes sufficient and necessary conditions to guarantee the existence of Cld[0,1]𝕋 as well as CldΔ[0,1]𝕋 positive solutions for a class of singular boundary value problems on time scales. The results significantly extend and improve many known results for both the continuous case and more general time scales. We illustrate our results by one example.
Li, Zhiyuan; Huang, Xinchi; Yamamoto, Masahiro
2018-01-01
In this paper, we discuss an initial-boundary value problem (IBVP) for the multi-term time-fractional diffusion equation with x-dependent coefficients. By means of the Mittag-Leffler functions and the eigenfunction expansion, we reduce the IBVP to an equivalent integral equation to show the unique existence and the analyticity of the solution for the equation. Especially, in the case where all the coefficients of the time-fractional derivatives are non-negative, by the Laplace and inversion L...
Guillemin, F.; Knessl, C.; Leeuwaarden, van J.S.H.
2014-01-01
Contrary to what we claimed in [5], the solution to the Riemann–Hilbert problem (4) considered in [5] for some domain Dx is in general not the restriction to Dx of the solution to the modified Riemann–Hilbert problem (6) in [5]. This occurs only when Dx is a circle, which is not the case considered
Directory of Open Access Journals (Sweden)
George N. Galanis
2005-10-01
Full Text Available In this paper we prove the existence of positive solutions for the three-point singular boundary-value problem$$ -[phi _{p}(u']'=q(tf(t,u(t,quad 0
International Nuclear Information System (INIS)
Akbar, M.M.; D'Eath, P.D.
2003-01-01
The classical boundary-value problem of the Einstein field equations is studied with an arbitrary cosmological constant, in the case of a compact (S 3 ) boundary given a biaxial Bianchi-IX positive-definite three-metric, specified by two radii (a,b). For the simplest, four-ball, topology of the manifold with this boundary, the regular classical solutions are found within the family of Taub-NUT-(anti)de Sitter metrics with self-dual Weyl curvature. For arbitrary choice of positive radii (a,b), we find that there are three solutions for the infilling geometry of this type. We obtain exact solutions for them and for their Euclidean actions. The case of negative cosmological constant is investigated further. For reasonable squashing of the three-sphere, all three infilling solutions have real-valued actions which possess a 'cusp catastrophe' structure with a non-self-intersecting 'catastrophe manifold' implying that the dominant contribution comes from the unique real positive-definite solution on the ball. The positive-definite solution exists even for larger deformations of the three-sphere, as long as a certain inequality between a and b holds. The action of this solution is proportional to -a 3 for large a (∼b) and hence larger radii are favoured. The same boundary-value problem with more complicated interior topology containing a 'bolt' is investigated in a forthcoming paper
Solvability of fractional multi-point boundary-value problems with p-Laplacian operator at resonance
Directory of Open Access Journals (Sweden)
Tengfei Shen
2014-02-01
Full Text Available In this article, we consider the multi-point boundary-value problem for nonlinear fractional differential equations with $p$-Laplacian operator: $$\\displaylines{ D_{0^+}^\\beta \\varphi_p (D_{0^+}^\\alpha u(t = f(t,u(t,D_{0^+}^{\\alpha - 2} u(t,D_{0^+}^{\\alpha - 1} u(t, D_{0^+}^\\alpha u(t,\\quad t \\in (0,1, \\cr u(0 = u'(0=D_{0^+}^\\alpha u(0 = 0,\\quad D_{0^+}^{\\alpha - 1} u(1 = \\sum_{i = 1}^m {\\sigma_i D_{0^+}^{\\alpha - 1} u(\\eta_i } , }$$ where $2 < \\alpha \\le 3$, $0 < \\beta \\le 1$, $3 < \\alpha + \\beta \\le 4$, $\\sum_{i = 1}^m {\\sigma_i } = 1$, $D_{0^+}^\\alpha$ is the standard Riemann-Liouville fractional derivative. $\\varphi_{p}(s=|s|^{p-2}s$ is p-Laplacians operator. The existence of solutions for above fractional boundary value problem is obtained by using the extension of Mawhin's continuation theorem due to Ge, which enrich konwn results. An example is given to illustrate the main result.
Searching spectrum points of difference initial-boundary value problems with using GAS
International Nuclear Information System (INIS)
Mazepa, N.E.
1989-01-01
A new algorithm for searching spectrum points is proposed. The difference schemes which approximate systems of linear differential equations of hyperbolic type with constant coefficients and in one space dimension are considered. For important class of practiclas problems this algorithm reduces the hard spectrum calculation problem to the polynomial equation solution. For complicated analytic manipulations connected with realization of this algorithm the computation algebraic system REDUCE is used. 28 refs
On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation
Directory of Open Access Journals (Sweden)
Mesloub Said
2008-01-01
Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.
Directory of Open Access Journals (Sweden)
A. Anguraj
2014-02-01
Full Text Available We study in this paper,the existence of solutions for fractional integro differential equations with impulsive and integral conditions by using fixed point method. We establish the Sufficient conditions and unique solution for given problem. An Example is also explained to the main results.
Kot, V. A.
2017-11-01
The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.
A new approach to non-local boundary value problems for ordinary differential systems
Czech Academy of Sciences Publication Activity Database
Rontó, András; Rontó, M.; Shchobak, N.
2015-01-01
Roč. 250, č. 1 (2015), s. 689-700 ISSN 0096-3003 Institutional support: RVO:67985840 Keywords : non-local problem * parametrisation * successive approximations Subject RIV: BA - General Mathematics Impact factor: 1.345, year: 2015 http://www.sciencedirect.com/science/article/pii/S0096300314015434
The mixed boundary value problem, Krein resolvent formulas and spectral asymptotic estimates
DEFF Research Database (Denmark)
Grubb, Gerd
2011-01-01
For a second-order symmetric strongly elliptic operator A on a smooth bounded open set in Rn, the mixed problem is defined by a Neumann-type condition on a part Σ+ of the boundary and a Dirichlet condition on the other part Σ−. We show a Kreĭn resolvent formula, where the difference between its...... to the area of Σ+, in the case where A is principally equal to the Laplacian...
Directory of Open Access Journals (Sweden)
Alexander N. Kvitko
2017-01-01
Full Text Available An algorithm for constructing a control function that transfers a wide class of stationary nonlinear systems of ordinary differential equations from an initial state to a final state under certain control restrictions is proposed. The algorithm is designed to be convenient for numerical implementation. A constructive criterion of the desired transfer possibility is presented. The problem of an interorbital flight is considered as a test example and it is simulated numerically with the presented method.
Favini, Angelo; Rocca, Elisabetta; Schimperna, Giulio; Sprekels, Jürgen
2017-01-01
This volume gathers contributions in the field of partial differential equations, with a focus on mathematical models in phase transitions, complex fluids and thermomechanics. These contributions are dedicated to Professor Gianni Gilardi on the occasion of his 70th birthday. It particularly develops the following thematic areas: nonlinear dynamic and stationary equations; well-posedness of initial and boundary value problems for systems of PDEs; regularity properties for the solutions; optimal control problems and optimality conditions; feedback stabilization and stability results. Most of the articles are presented in a self-contained manner, and describe new achievements and/or the state of the art in their line of research, providing interested readers with an overview of recent advances and future research directions in PDEs.
Fayolle, Guy; Malyshev, Vadim
2017-01-01
This monograph aims to promote original mathematical methods to determine the invariant measure of two-dimensional random walks in domains with boundaries. Such processes arise in numerous applications and are of interest in several areas of mathematical research, such as Stochastic Networks, Analytic Combinatorics, and Quantum Physics. This second edition consists of two parts. Part I is a revised upgrade of the first edition (1999), with additional recent results on the group of a random walk. The theoretical approach given therein has been developed by the authors since the early 1970s. By using Complex Function Theory, Boundary Value Problems, Riemann Surfaces, and Galois Theory, completely new methods are proposed for solving functional equations of two complex variables, which can also be applied to characterize the Transient Behavior of the walks, as well as to find explicit solutions to the one-dimensional Quantum Three-Body Problem, or to tackle a new class of Integrable Systems. Part II borrows spec...
Convergence of a continuous BGK model for initial boundary-value problems for conservation laws
Directory of Open Access Journals (Sweden)
Driss Seghir
2001-11-01
Full Text Available We consider a scalar conservation law in the quarter plane. This equation is approximated in a continuous kinetic Bhatnagar-Gross-Krook (BGK model. The convergence of the model towards the unique entropy solution is established in the space of functions of bounded variation, using kinetic entropy inequalities, without special restriction on the flux nor on the equilibrium problem's data. As an application, we establish the hydrodynamic limit for a $2imes2$ relaxation system with general data. Also we construct a new family of convergent continuous BGK models with simple maxwellians different from the $chi$ models.
Boundary value problems for the 2nd-order Seiberg-Witten equations
Directory of Open Access Journals (Sweden)
Celso Melchiades Doria
2005-02-01
Full Text Available It is shown that the nonhomogeneous Dirichlet and Neuman problems for the 2nd-order Seiberg-Witten equation on a compact 4-manifold X admit a regular solution once the nonhomogeneous Palais-Smale condition Ã¢Â„Â‹ is satisfied. The approach consists in applying the elliptic techniques to the variational setting of the Seiberg-Witten equation. The gauge invariance of the functional allows to restrict the problem to the Coulomb subspace Ã°ÂÂ’ÂžÃŽÂ±Ã¢Â„Â of configuration space. The coercivity of the Ã°ÂÂ’Â®Ã°ÂÂ’Â²ÃŽÂ±-functional, when restricted into the Coulomb subspace, imply the existence of a weak solution. The regularity then follows from the boundedness of LÃ¢ÂˆÂž-norms of spinor solutions and the gauge fixing lemma.
Numerical solution of singularity-perturbed two-point boundary-value problems
International Nuclear Information System (INIS)
Masenge, R.W.P.
1993-07-01
Physical processes which involve transportation of slowly diffusing substances in a fast-flowing medium are mathematically modelled by so-called singularly-perturbed second order convection diffusion differential equations in which the convective first order terms dominate over the diffusive second order terms. In general, analytical solutions of such equations are characterized by having sharp solution fronts in some sections of the interior and/or the boundary of the domain of solution. The presence of these (usually very narrow) layer regions in the solution domain makes the task of globally approximating such solutions by standard numerical techniques very difficult. In this expository paper we use a simple one-dimensional prototype problem as a vehicle for analysing the nature of the numerical approximation difficulties involved. In the sequel we present, without detailed derivation, two practical numerical schemes which succeed in varying degrees in numerically resolving the layer of the solution to the prototype problem. (author). 3 refs, 1 fig., 1 tab
Directory of Open Access Journals (Sweden)
Liu Yang
2007-10-01
Full Text Available By using coincidence degree theory of Mawhin, existence results for some higher order resonance multipoint boundary value problems with one dimensional p-Laplacian operator are obtained.
Applications of Voronoi and Delaunay Diagrams in the solution of the geodetic boundary value problem
Directory of Open Access Journals (Sweden)
C. A. B. Quintero
Full Text Available Voronoi and Delaunay structures are presented as discretization tools to be used in numerical surface integration aiming the computation of geodetic problems solutions, when under the integral there is a non-analytical function (e. g., gravity anomaly and height. In the Voronoi approach, the target area is partitioned into polygons which contain the observed point and no interpolation is necessary, only the original data is used. In the Delaunay approach, the observed points are vertices of triangular cells and the value for a cell is interpolated for its barycenter. If the amount and distribution of the observed points are adequate, gridding operation is not required and the numerical surface integration is carried out by point-wise. Even when the amount and distribution of the observed points are not enough, the structures of Voronoi and Delaunay can combine grid with observed points in order to preserve the integrity of the original information. Both schemes are applied to the computation of the Stokes' integral, the terrain correction, the indirect effect and the gradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area.
Directory of Open Access Journals (Sweden)
Idris Addou
2000-07-01
Full Text Available We study boundary-value problems of the type $$displaylines{ -(varphi_{p}( u' ' =lambda f( u ,hbox{ in }(0,1 cr u( 0 =u( 1 =0, }$$ where $p>1$, $varphi_{p}( x =left| x ight| ^{p-2}x$, and $lambda >0$. We provide multiplicity results when $f$ behaves like a cubic with three distinct roots, at which it satisfies Lipschitz-type conditions involving a parameter $q>1$. We shall show how changes in the position of $q$ with respect to $p$ lead to different behavior of the solution set. When dealing with sign-changing solutions, we assume that $f$ is {it half-odd}; a condition generalizing the usual oddness. We use a quadrature method.
Directory of Open Access Journals (Sweden)
Suheel Abdullah Malik
2014-01-01
Full Text Available We present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE and its boundary conditions is formulated. The optimization of the unknown adjustable parameters contained in the fitness function is performed by the hybrid heuristic computation algorithm based on genetic algorithm (GA, interior point algorithm (IPA, and active set algorithm (ASA. The efficiency and the viability of the proposed method are confirmed by solving three examples from physiology. The obtained approximate solutions are found in excellent agreement with the exact solutions as well as some conventional numerical solutions.
Dujardin, G. M.
2009-08-12
This paper deals with the asymptotic behaviour of the solutions of linear initial boundary value problems with constant coefficients on the half-line and on finite intervals. We assume that the boundary data are periodic in time and we investigate whether the solution becomes time-periodic after sufficiently long time. Using Fokas\\' transformation method, we show that, for the linear Schrödinger equation, the linear heat equation and the linearized KdV equation on the half-line, the solutions indeed become periodic for large time. However, for the same linear Schrödinger equation on a finite interval, we show that the solution, in general, is not asymptotically periodic; actually, the asymptotic behaviour of the solution depends on the commensurability of the time period T of the boundary data with the square of the length of the interval over. © 2009 The Royal Society.
Elliptic boundary value problems
Maz'ya, V G; Plamenevskii, B A; Stupyali, L; Plamenevskii, B A
1984-01-01
The papers in this volume have been selected, translated, and edited from publications not otherwise translated into English under the auspices of the AMS-ASL-IMS Committee on Translations from Russian and Other Foreign Languages.
Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.
2012-10-01
A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.
Vagh, Hardik A.; Baghai-Wadji, Alireza
2008-12-01
Current technological challenges in materials science and high-tech device industry require the solution of boundary value problems (BVPs) involving regions of various scales, e.g. multiple thin layers, fibre-reinforced composites, and nano/micro pores. In most cases straightforward application of standard variational techniques to BVPs of practical relevance necessarily leads to unsatisfactorily ill-conditioned analytical and/or numerical results. To remedy the computational challenges associated with sub-sectional heterogeneities various sophisticated homogenization techniques need to be employed. Homogenization refers to the systematic process of smoothing out the sub-structural heterogeneities, leading to the determination of effective constitutive coefficients. Ordinarily, homogenization involves a sophisticated averaging and asymptotic order analysis to obtain solutions. In the majority of the cases only zero-order terms are constructed due to the complexity of the processes involved. In this paper we propose a constructive scheme for obtaining homogenized solutions involving higher order terms, and thus, guaranteeing higher accuracy and greater robustness of the numerical results. We present
Directory of Open Access Journals (Sweden)
Nguyen Manh Hung
2008-03-01
Full Text Available In this paper, we consider the second initial boundary value problem for strongly general Schrodinger systems in both the finite and the infinite cylinders $Q_T, 0
Energy Technology Data Exchange (ETDEWEB)
Bazalii, B V; Degtyarev, S P [Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk (Ukraine)
2013-07-31
An elliptic boundary-value problem for second-order equations with nonnegative characteristic form is investigated in the situation when there is a weak degeneracy on the boundary of the domain. A priori estimates are obtained for solutions and the problem is proved to be solvable in some weighted Hölder spaces. Bibliography: 18 titles.
Directory of Open Access Journals (Sweden)
Jing Niu
2013-01-01
reproducing kernel on infinite interval is obtained concisely in polynomial form for the first time. Furthermore, as a particular effective application of this method, we give an explicit representation formula for calculation of reproducing kernel in reproducing kernel space with boundary value conditions.
Beshtokov, M. Kh.
2017-12-01
Boundary value problems for loaded third-order pseudo-parabolic equations with variable coefficients are considered. A priori estimates for the solutions of the problems in the differential and difference formulations are obtained. These a priori estimates imply the uniqueness and stability of the solution with respect to the initial data and the right-hand side on a layer, as well as the convergence of the solution of each difference problem to the solution of the corresponding differential problem.
Beshtokov, M. Kh.
2016-10-01
A nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients is considered. For solving this problem, a priori estimates in the differential and difference forms are obtained. The a priori estimates imply the uniqueness and stability of the solution on a layer with respect to the initial data and the right-hand side and the convergence of the solution of the difference problem to the solution of the differential problem.
Directory of Open Access Journals (Sweden)
Shihuang Hong
2009-01-01
Full Text Available We present sufficient conditions for the existence of at least twin or triple positive solutions of a nonlinear four-point singular boundary value problem with a p-Laplacian dynamic equation on a time scale. Our results are obtained via some new multiple fixed point theorems.
Directory of Open Access Journals (Sweden)
Yanmei Sun
2012-01-01
Full Text Available By using the Leggett-Williams fixed theorem, we establish the existence of multiple positive solutions for second-order nonhomogeneous Sturm-Liouville boundary value problems with linear functional boundary conditions. One explicit example with singularity is presented to demonstrate the application of our main results.
Directory of Open Access Journals (Sweden)
Wei Han
2008-01-01
Full Text Available Several existence theorems of twin positive solutions are established for a nonlinear m-point boundary value problem of third-order p-Laplacian dynamic equations on time scales by using a fixed point theorem. We present two theorems and four corollaries which generalize the results of related literature. As an application, an example to demonstrate our results is given. The obtained conditions are different from some known results.
A Third-Order p-Laplacian Boundary Value Problem Solved by an SL(3,ℝ Lie-Group Shooting Method
Directory of Open Access Journals (Sweden)
Chein-Shan Liu
2013-01-01
Full Text Available The boundary layer problem for power-law fluid can be recast to a third-order p-Laplacian boundary value problem (BVP. In this paper, we transform the third-order p-Laplacian into a new system which exhibits a Lie-symmetry SL(3,ℝ. Then, the closure property of the Lie-group is used to derive a linear transformation between the boundary values at two ends of a spatial interval. Hence, we can iteratively solve the missing left boundary conditions, which are determined by matching the right boundary conditions through a finer tuning of r∈[0,1]. The present SL(3,ℝ Lie-group shooting method is easily implemented and is efficient to tackle the multiple solutions of the third-order p-Laplacian. When the missing left boundary values can be determined accurately, we can apply the fourth-order Runge-Kutta (RK4 method to obtain a quite accurate numerical solution of the p-Laplacian.
Heaslet, Max A; Lomax, Harvard
1948-01-01
A direct analogy is established between the use of source-sink and doublet distributions in the solution of specific boundary-value problems in subsonic wing theory and the corresponding problems in supersonic theory. The correct concept of the "finite part" of an integral is introduced and used in the calculation of the improper integrals associated with supersonic doublet distributions. The general equations developed are shown to include several previously published results and particular examples are given for the loading on rolling and pitching triangular wings with supersonic leading edges.
Directory of Open Access Journals (Sweden)
George L. Karakostas
2006-08-01
Full Text Available We provide sufficient conditions for the existence of positive solutions of a three-point boundary value problem concerning a second order delay differential equation with damping and forcing term whose the delayed part is an actively bounded function, a meaning introduced in [19]. By writing the damping term as a difference of two factors one can extract more information on the solutions. (For instance, in an application, given in the last section, we can give the exact value of the norm of the solution.
Czech Academy of Sciences Publication Activity Database
Dilna, N.; Rontó, András
2010-01-01
Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9
International Nuclear Information System (INIS)
Hung, Nguyen M
1999-01-01
An existence and uniqueness theorem for generalized solutions of the first initial-boundary-value problem for strongly hyperbolic systems in bounded domains is established. The question of estimates in Sobolev spaces of the derivatives with respect to time of the generalized solution is discussed. It is shown that the smoothness of generalized solutions with respect to time is independent of the structure of the boundary of the domain but depends on the coefficients of the right-hand side. Results on the smoothness of the generalized solution and its asymptotic behaviour in a neighbourhood of a conical boundary point are also obtained
Czech Academy of Sciences Publication Activity Database
Rontó, András; Samoilenko, A. M.
2007-01-01
Roč. 41, - (2007), s. 115-136 ISSN 1512-0015 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : two-point problem * functional differential equation * singular boundary problem Subject RIV: BA - General Mathematics
International Nuclear Information System (INIS)
Pereira, Luis Carlos Martins
1998-06-01
New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)
Directory of Open Access Journals (Sweden)
Volodymyr S. Il'kiv
2016-11-01
Full Text Available We study a problem with integral boundary conditions in the time coordinate for a system of Lame equations of dynamic elasticity theory of an arbitrary dimension. We find necessary and sufficient conditions for the existence and uniqueness of solution in the class of almost periodic functions in the spatial variables. To solve the problem of small denominators arising while constructing solutions, we use the metric approach.
Directory of Open Access Journals (Sweden)
Chi-Chang Wang
2013-09-01
Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.
Directory of Open Access Journals (Sweden)
Khaleghi Moghadam Mohsen
2017-08-01
Full Text Available Triple solutions are obtained for a discrete problem involving a nonlinearly perturbed one-dimensional p(k-Laplacian operator and satisfying Dirichlet boundary conditions. The methods for existence rely on a Ricceri-local minimum theorem for differentiable functionals. Several examples are included to illustrate the main results.
Energy Technology Data Exchange (ETDEWEB)
Jamet, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-07-01
This report gives a general presentation of barrier theory for finite difference operators, with its applications to some boundary value problems. (author) [French] Ce rapport est un expose synthetique de la theorie des barrieres pour les operateurs aux differences finies et ses applications a certaines classes de problemes lineaires elliptiques du 'type de Dirichlet'. (auteur)
Ebaid, Abdelhalim; Wazwaz, Abdul-Majid; Alali, Elham; Masaedeh, Basem S.
2017-03-01
Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.
Gielis, Johan; Caratelli, Diego; Fougerolle, Yohan; Ricci, Paolo Emilio; Tavkelidze, Ilia; Gerats, Tom
2012-01-01
Gielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt algorithm allows for efficient and robust reconstruction of Gielis curves, including self-intersecting and asymmetric curves, without increasing the overall complexity of the algorithm. Then, we show how complex curves of k-type can be constructed and how solutions to the Dirichlet problem for the Laplace equation on these complex domains can be derived using a semi-Fourier method. In all three methods, descriptive and computational power and efficiency is obtained in a surprisingly simple way. PMID:23028417
Nakagawa, Y.
1980-01-01
A method of analysis for the MHD initial-boundary problem is presented in which the model's formulation is based on the method of nearcharacteristics developed by Werner (1968) and modified by Shin and Kot (1978). With this method, the physical causality relationship can be traced from the perturbation to the response as in the method of characteristics, while achieving the advantage of a considerable reduction in mathematical procedures. The method offers the advantage of examining not only the evolution of nonforce free fields, but also the changes of physical conditions in the atmosphere accompanying the evolution of magnetic fields. The physical validity of the method is demonstrated with examples, and their significance in interpreting observations is discussed.
Initial-boundary-value problem of the self-gravitating scalar field in the Bondi-Sachs gauge
International Nuclear Information System (INIS)
Frittelli, Simonetta; Gomez, Roberto
2007-01-01
It is shown that, in the Bondi-Sachs gauge that fixes the speed of incoming light rays to the value 1, the Einstein equations coupled to a scalar field in spherical symmetry are cast into a symmetric-hyperbolic system of equations for the scalar field, lapse and shift as fundamental variables. In this system of equations, the lapse and shift are incoming characteristic fields, and the scalar field has three components: incoming, outgoing and static. A constraint-preserving boundary condition is prescribed by imposing the projection of the Einstein equation normal to the boundary at the outer value of the radial coordinate. The boundary condition specifies one of the two incoming metric fields. The remaining incoming metric field and the incoming scalar field component need to be specified arbitrarily. Numerical simulations of the scattering of the scalar field by a black hole in the nonlinear regime are presented that illustrate interesting facts about black-hole physics and the behavior of the characteristic variables of the problem
International Nuclear Information System (INIS)
Olschewski, J.; Stein, E.; Wagner, W.; Wetjen, D.
1981-01-01
This paper is a first step in the development of thermodynamically consistent material equations for inelastic materials, such as polycrystalline rock salt. In this context it is of particular importance to reduce the number and the structure of the internal variables, in order to allow for a fit with available experimental data. As an example this is demonstrated in detail in the case of the so-called dislocation model. As physical non-linearities and in addition also geometrical non-linearities lead to an inhomogeneous deformation - and stress state even in the case of simple samples, boundary value problems have to be studied, in order to test the material equations. For this purpose the finite element method has been used. (orig./HP) [de
Feehan, Paul M. N.
2017-09-01
We prove existence of solutions to boundary value problems and obstacle problems for degenerate-elliptic, linear, second-order partial differential operators with partial Dirichlet boundary conditions using a new version of the Perron method. The elliptic operators considered have a degeneracy along a portion of the domain boundary which is similar to the degeneracy of a model linear operator identified by Daskalopoulos and Hamilton [9] in their study of the porous medium equation or the degeneracy of the Heston operator [21] in mathematical finance. Existence of a solution to the partial Dirichlet problem on a half-ball, where the operator becomes degenerate on the flat boundary and a Dirichlet condition is only imposed on the spherical boundary, provides the key additional ingredient required for our Perron method. Surprisingly, proving existence of a solution to this partial Dirichlet problem with ;mixed; boundary conditions on a half-ball is more challenging than one might expect. Due to the difficulty in developing a global Schauder estimate and due to compatibility conditions arising where the ;degenerate; and ;non-degenerate boundaries; touch, one cannot directly apply the continuity or approximate solution methods. However, in dimension two, there is a holomorphic map from the half-disk onto the infinite strip in the complex plane and one can extend this definition to higher dimensions to give a diffeomorphism from the half-ball onto the infinite ;slab;. The solution to the partial Dirichlet problem on the half-ball can thus be converted to a partial Dirichlet problem on the slab, albeit for an operator which now has exponentially growing coefficients. The required Schauder regularity theory and existence of a solution to the partial Dirichlet problem on the slab can nevertheless be obtained using previous work of the author and C. Pop [16]. Our Perron method relies on weak and strong maximum principles for degenerate-elliptic operators, concepts of
International Nuclear Information System (INIS)
Zhidkov, P.E.
1998-01-01
We consider the problem u''=f(u 2 )u (0 2 ) (for r→∞) = -∞. It is known that this problem possesses a sequence of solutions {u n } n=0,1,2... such that the nth solution u x (x) has precisely n roots in the interval (0,1). We prove the existence of a constant s 0 0 , an arbitrary above-described sequence of solutions of our problem is a basis of the space H s (0, 1)
Directory of Open Access Journals (Sweden)
Ghasem Alizadeh Afrouzi
2006-10-01
Full Text Available In this paper, we establish an equivalent statement to minimax inequality for a special class of functionals. As an application, we prove the existence of three solutions to the Dirichlet problem $$displaylines{ -u''(x+m(xu(x =lambda f(x,u(x,quad xin (a,b,cr u(a=u(b=0, }$$ where $lambda>0$, $f:[a,b]imes mathbb{R}o mathbb{R}$ is a continuous function which changes sign on $[a,b]imes mathbb{R}$ and $m(xin C([a,b]$ is a positive function.
Boundary-value problems in cosmological dynamics
Nusser, Adi
2008-08-01
The dynamics of cosmological gravitating system is governed by the Euler and the Poisson equations. Tiny fluctuations near the big bang singularity are amplified by gravitational instability into the observed structure today. Given the current distribution of galaxies and assuming initial homogeneity, dynamic reconstruction methods have been developed to derive the cosmic density and velocity fields back in time. The reconstruction method described here is based on a least action principle formulation of the dynamics of collisionless particles (representing galaxies). Two observational data sets will be considered. The first is the distribution of galaxies which is assumed to be an fair tracer of the mass density field of the dark matter. The second set is measurements of the peculiar velocities (deviations from pure Hubble flow) of galaxies. Given the first data set, the reconstruction method recovers the associated velocity field which can then be compared with the second data set. This comparison constrains the nature of the dark matter and the relation between mass and light in the Universe.
Initial value methods for boundary value problems
Meyer, Gunter H
1973-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Recursive recovery of Markov transition probabilities from boundary value data
Energy Technology Data Exchange (ETDEWEB)
Patch, Sarah Kathyrn [Univ. of California, Berkeley, CA (United States)
1994-04-01
In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requires finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 x 2 x 2 problem, is solved.
Energy Technology Data Exchange (ETDEWEB)
Pereira, Luis Carlos Martins
1998-06-15
New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)
Boundary value problemfor multidimensional fractional advection-dispersion equation
Directory of Open Access Journals (Sweden)
Khasambiev Mokhammad Vakhaevich
2015-05-01
Full Text Available In recent time there is a very great interest in the study of differential equations of fractional order, in which the unknown function is under the symbol of fractional derivative. It is due to the development of the theory of fractional integro-differential theory and application of it in different fields.The fractional integrals and derivatives of fractional integro-differential equations are widely used in modern investigations of theoretical physics, mechanics, and applied mathematics. The fractional calculus is a very powerful tool for describing physical systems, which have a memory and are non-local. Many processes in complex systems have nonlocality and long-time memory. Fractional integral operators and fractional differential operators allow describing some of these properties. The use of the fractional calculus will be helpful for obtaining the dynamical models, in which integro-differential operators describe power long-time memory by time and coordinates, and three-dimensional nonlocality for complex medium and processes.Differential equations of fractional order appear when we use fractal conception in physics of the condensed medium. The transfer, described by the operator with fractional derivatives at a long distance from the sources, leads to other behavior of relatively small concentrations as compared with classic diffusion. This fact redefines the existing ideas about safety, based on the ideas on exponential velocity of damping. Fractional calculus in the fractal theory and the systems with memory have the same importance as the classic analysis in mechanics of continuous medium.In recent years, the application of fractional derivatives for describing and studying the physical processes of stochastic transfer is very popular too. Many problems of filtration of liquids in fractal (high porous medium lead to the need to study boundary value problems for partial differential equations in fractional order.In this paper the
RBF Multiscale Collocation for Second Order Elliptic Boundary Value Problems
Farrell, Patricio; Wendland, Holger
2013-01-01
In this paper, we discuss multiscale radial basis function collocation methods for solving elliptic partial differential equations on bounded domains. The approximate solution is constructed in a multilevel fashion, each level using compactly
The boundary value problem for discrete analytic functions
Skopenkov, Mikhail
2013-01-01
This paper is on further development of discrete complex analysis introduced by R.Isaacs, J.Ferrand, R.Duffin, and C.Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete
RBF Multiscale Collocation for Second Order Elliptic Boundary Value Problems
Farrell, Patricio
2013-01-01
In this paper, we discuss multiscale radial basis function collocation methods for solving elliptic partial differential equations on bounded domains. The approximate solution is constructed in a multilevel fashion, each level using compactly supported radial basis functions of smaller scale on an increasingly fine mesh. On each level, standard symmetric collocation is employed. A convergence theory is given, which builds on recent theoretical advances for multiscale approximation using compactly supported radial basis functions. We are able to show that the convergence is linear in the number of levels. We also discuss the condition numbers of the arising systems and the effect of simple, diagonal preconditioners, now proving rigorously previous numerical observations. © 2013 Society for Industrial and Applied Mathematics.
Numerical solution of fuzzy boundary value problems using Galerkin ...
Indian Academy of Sciences (India)
Home; Journals; Sadhana; Volume 42; Issue 1 ... College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China; Department of Mathematics, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751 024, India; Department of Mathematics, National Institute of Technology, Rourkela, ...
On numerical-analytic techniques for boundary value problems
Czech Academy of Sciences Publication Activity Database
Rontó, András; Rontó, M.; Shchobak, N.
2012-01-01
Roč. 12, č. 3 (2012), s. 5-10 ISSN 1335-8243 Institutional support: RVO:67985840 Keywords : numerical-analytic method * periodic successive approximations * Lyapunov-Schmidt method Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/aeei.2012.12.issue-3/v10198-012-0035-1/v10198-012-0035-1.xml?format=INT
Boundary value problems for multi-term fractional differential equations
Daftardar-Gejji, Varsha; Bhalekar, Sachin
2008-09-01
Multi-term fractional diffusion-wave equation along with the homogeneous/non-homogeneous boundary conditions has been solved using the method of separation of variables. It is observed that, unlike in the one term case, solution of multi-term fractional diffusion-wave equation is not necessarily non-negative, and hence does not represent anomalous diffusion of any kind.
Alam Khan, Najeeb; Razzaq, Oyoon Abdul
2016-03-01
In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.
Directory of Open Access Journals (Sweden)
Zhigang Hu
2014-01-01
Full Text Available In this paper, we apply the method of the Nehari manifold to study the fractional differential equation (d/dt((1/2 0Dt-β(u′(t+(1/2 tDT-β(u′(t= f(t,u(t, a.e. t∈[0,T], and u0=uT=0, where 0Dt-β, tDT-β are the left and right Riemann-Liouville fractional integrals of order 0≤β<1, respectively. We prove the existence of a ground state solution of the boundary value problem.
Biala, T A; Jator, S N
2015-01-01
In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.
Dragt, A. J.; Roberts, P.; Stasevich, T. J.; Dragt, A. Bodoh-Creed A. J.; Roberts, P.; Stasevich, T. J.; Bodoh-Creed, A.; Walstrom, P. L.
2010-01-01
Three-dimensional field distributions from realistic beamline elements can be obtained only by measurement or by numerical solution of a boundary-value problem. In numerical charged-particle map generation, fields along a reference trajectory are differentiated multiple times. Any attempt to differentiate directly such field data multiple times is soon dominated by "noise" due to finite meshing and/or measurement errors. This problem can be overcome by the use of field data on a surface outsi...
Thin-film superconducting rings in the critical state: the mixed boundary value approach
Brambilla, Roberto; Grilli, Francesco
2015-02-01
In this paper, we describe the critical state of a thin superconducting ring (and of a perfectly conducting ring as a limiting case) as a mixed boundary value problem. The disc is characterized by a three-part boundary division of the positive real axis, so this work is an extension of the procedure used in a previous work of ours for describing superconducting discs and strips, which are characterized by a two-part boundary division of the real axis. Here, we present the mathematical tools to solve this kind of problems—the Erdélyi-Kober operators—in a frame that can be immediately used. Contrary to the two-part problems considered in our previous work, three-part problems do not generally have analytical solutions and the numerical work takes on a significant heaviness. Nevertheless, this work is remunerated by three clear advantages: firstly, all the cases are afforded in the same way, without the necessity of any brilliant invention or ability; secondly, in the case of superconducting rings, the penetration of the magnetic field in the internal/external rims is a result of the method itself and does not have to be imposed, as it is commonly done with other methods presented in the literature; thirdly, the method can be extended to investigate even more complex cases (four-part problems). In this paper, we consider the cases of rings in uniform field and with transport current, with or without flux trapping in the hole and the case without net current, corresponding to a cut ring (washer), as used in some SQUID applications.
The SMM Model as a Boundary Value Problem Using the Discrete Diffusion Equation
Campbell, Joel
2007-01-01
A generalized single step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.
International Nuclear Information System (INIS)
Andrianov, I.V.; Danishevsky, V.V.
1994-01-01
Asymptotic approaches for nonlinear dynamics of continual system are developed well for the infinite in spatial variables. For the systems with finite sizes we have an infinite number of resonance, and Poincare-Lighthill-Go method does riot work. Using of averaging procedure or method of multiple scales leads to the infinite systems of nonlinear algebraic or ordinary differential equations systems and then using truncation method. which does not gives possibility to obtain all important properties of the solutions
Directory of Open Access Journals (Sweden)
Qiying Wei
2009-01-01
Full Text Available By using the well-known Schauder fixed point theorem and upper and lower solution method, we present some existence criteria for positive solution of an -point singular -Laplacian dynamic equation on time scales with the sign changing nonlinearity. These results are new even for the corresponding differential (=ℝ and difference equations (=ℤ, as well as in general time scales setting. As an application, an example is given to illustrate the results.
Formal solution of the Navier-Stokes initial- and boundary-value problem for incompressible fluids
International Nuclear Information System (INIS)
Alankus, T.
1984-01-01
A general formal solution of the integral equivalent of Navier-Stokes equation for incompressible viscous fluids is presented through a linear operator acting on the functionals of solenoidal vector fields. This solution operator is completely determined by the Green functions of Laplace and diffusion equations corresponding to the flow region
Directory of Open Access Journals (Sweden)
Johnny Henderson
2016-01-01
Full Text Available We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with two parameters, subject to coupled integral boundary conditions.
Antiperiodic Boundary Value Problems for Second-Order Impulsive Ordinary Differential Equations
Directory of Open Access Journals (Sweden)
2009-02-01
Full Text Available We consider a second-order ordinary differential equation with antiperiodic boundary conditions and impulses. By using Schaefer's fixed-point theorem, some existence results are obtained.
Wireless three-hop networks with stealing II : exact solutions through boundary value problems
Guillemin, F.; Knessl, C.; Leeuwaarden, van J.S.H.
2013-01-01
We study the stationary distribution of a random walk in the quarter plane arising in the study of three-hop wireless networks with stealing. Our motivation is to find exact tail asymptotics (beyond logarithmic estimates) for the marginal distributions, which requires an exact solution for the
Directory of Open Access Journals (Sweden)
Guotao Wang
2012-01-01
Full Text Available We study nonlinear impulsive differential equations of fractional order with irregular boundary conditions. Some existence and uniqueness results are obtained by applying standard fixed-point theorems. For illustration of the results, some examples are discussed.
Domoshnitsky, Alexander; Volinsky, Irina
2014-01-01
The impulsive delay differential equation is considered (Lx)(t) = x'(t) + ∑(i=1)(m) p(i)(t)x(t - τ(i) (t)) = f(t), t ∈ [a, b], x(t j) = β(j)x(t(j - 0)), j = 1,…, k, a = t0 equation are obtained.
Existence of Triple Positive Solutions for Second-Order Discrete Boundary Value Problems
Directory of Open Access Journals (Sweden)
Yanping Guo
2007-01-01
Full Text Available By using a new fixed-point theorem introduced by Avery and Peterson (2001, we obtain sufficient conditions for the existence of at least three positive solutions for the equation Δ2x(k−1+q(kf(k,x(k,Δx(k=0, for k∈{1,2,…,n−1}, subject to the following two boundary conditions: x(0=x(n=0 or x(0=Δx(n−1=0, where n≥3.
Alber, Hans-Dieter
1998-01-01
This book contributes to the mathematical theory of systems of differential equations consisting of the partial differential equations resulting from conservation of mass and momentum, and of constitutive equations with internal variables. The investigations are guided by the objective of proving existence and uniqueness, and are based on the idea of transforming the internal variables and the constitutive equations. A larger number of constitutive equations from the engineering sciences are presented. The book is therefore suitable not only for specialists, but also for mathematicians seeking for an introduction in the field, and for engineers with a sound mathematical background.
A three-point Taylor algorithm for three-point boundary value problems
J.L. López; E. Pérez Sinusía; N.M. Temme (Nico)
2011-01-01
textabstractWe consider second-order linear differential equations $\\varphi(x)y''+f(x)y'+g(x)y=h(x)$ in the interval $(-1,1)$ with Dirichlet, Neumann or mixed Dirichlet-Neumann boundary conditions given at three points of the interval: the two extreme points $x=\\pm 1$ and an interior point
Analysis of the Diffuse Domain Method for Second Order Elliptic Boundary Value Problems
Burger, Martin; Elvetun, Ole; Schlottbom, Matthias
2017-01-01
The diffuse domain method for partial differential equations on complicated geometries recently received strong attention in particular from practitioners, but many fundamental issues in the analysis are still widely open. In this paper, we study the diffuse domain method for approximating second
A constructive approach to boundary value problems with state-dependent impulses
Czech Academy of Sciences Publication Activity Database
Rachůnková, I.; Rachůnek, L.; Rontó, András; Rontó, M.
2016-01-01
Roč. 274, February (2016), s. 726-744 ISSN 0096-3003 Institutional support: RVO:67985840 Keywords : non-linear system of differential equation * impulse effect * parameterization * successive approximations Subject RIV: BA - General Mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300315015234
International Nuclear Information System (INIS)
Saitoh, Ayumu; Kamitani, Atsushi; Takayama, Teruou; Nakamura, Hiroaki
2016-01-01
The extended boundary-node method (X-BNM) with the hierarchical-matrix (H-matrix) method has been developed and its performance has been investigated numerically. The results of computations show that the solver speed of the X-BNM with the H-matrix method is much faster than that of the standard X-BNM for the case where the number of boundary nodes exceeds a certain limit. Furthermore, the accuracy of the X-BNM with the H-matrix method is almost equal to that of the standard X-BNM. From these results, it is found that the H-matrix method is useful as the acceleration technique of the X-BNM. (author)
On non-linear boundary value problems and parametrisation at multiple nodes
Czech Academy of Sciences Publication Activity Database
Rontó, András; Rontó, M.; Varha, J.
2016-01-01
Roč. 2016, Č. 80 (2016), s. 1-18 ISSN 1417-3875 Institutional support: RVO:67985840 Keywords : non-local boundary conditions * parametrisation * successive approximations * interval division Subject RIV: BA - General Mathematics Impact factor: 0.926, year: 2016 http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=5302
Directory of Open Access Journals (Sweden)
Alexander Domoshnitsky
2014-01-01
Full Text Available The impulsive delay differential equation is considered (Lx(t=x′(t+∑i=1mpi(tx(t-τi(t=f(t, t∈[a,b], x(tj=βjx(tj-0, j=1,…,k, a=t0
On solutions of some fractional $m$-point boundary value problems at resonance
Directory of Open Access Journals (Sweden)
Zhanbing Bai
2010-06-01
is considered, where $1< \\alpha \\leq 2,$ is a real number, $D_{0+}^\\alpha$ and $I_{0+}^{\\alpha}$ are the standard Riemann-Liouville differentiation and integration, and $f:[0,1]\\times R^2 \\to R$ is continuous and $e \\in L^1[0,1]$, and $\\eta_i \\in (0, 1, \\beta_i \\in R, i=1,2, \\cdots, m-2$, are given constants such that $\\sum_{i=1}^{m-2}\\beta_i=1$. By using the coincidence degree theory, some existence results of solutions are established.
Brito, Irene; Mena, Filipe C
2017-08-01
We prove that, for a given spherically symmetric fluid distribution with tangential pressure on an initial space-like hypersurface with a time-like boundary, there exists a unique, local in time solution to the Einstein equations in a neighbourhood of the boundary. As an application, we consider a particular elastic fluid interior matched to a vacuum exterior.
Introduction to partial differential equations from Fourier series to boundary-value problems
Broman, Arne
2010-01-01
This well-written, advanced-level text introduces students to Fourier analysis and some of its applications. The self-contained treatment covers Fourier series, orthogonal systems, Fourier and Laplace transforms, Bessel functions, and partial differential equations of the first and second orders. Over 260 exercises with solutions reinforce students' grasp of the material. 1970 edition.
Directory of Open Access Journals (Sweden)
TIAN Jialei
2015-11-01
Full Text Available By using the ground as the boundary, Molodensky problem usually gets the solution in form of series. Higher order terms reflect the correction between a smooth surface and the ground boundary. Application difficulties arise from not only computational complexity and stability maintenance, but also data-intensiveness. Therefore, in this paper, starting from the application of external gravity disturbance, Green formula is used on digital terrain surface. In the case of ignoring the influence of horizontal component of the integral, the expression formula of external disturbance potential determined by boundary value consisted of ground gravity anomalies and height anomaly difference are obtained, whose kernel function is reciprocal of distance and Poisson core respectively. With this method, there is no need of continuation of ground data. And kernel function is concise, and suitable for the stochastic computation of external disturbing gravity field.
Tangential boundary values of Laplace transforms. Applications to Muntz-Szasz type approximation
Sedletskii, A. M.
2003-02-01
We consider the Laplace transforms (LT) of functions in L^q(\\mathbb R_+), 1, with a slowly varying weight. We prove that if the weight satisfies certain conditions, then each LT of this class has tangential boundary values almost everywhere on the imaginary axis, and the structure of the corresponding neighbourhoods depends on the weight only. This result is applied to distinguish a wide class of weighted L^p spaces on the half-line such that the Szasz condition is not necessary for the completeness of the system \\exp(-\\lambda_n t) in these spaces.
Tangential boundary values of Laplace transforms. Applications to Muntz-Szasz type approximation
Energy Technology Data Exchange (ETDEWEB)
Sedletskii, A M [M.V. Lomonosov Moscow State University, Moscow (Russian Federation)
2003-02-28
We consider the Laplace transforms (LT) of functions in L{sup q}(R{sub +}), 1boundary values almost everywhere on the imaginary axis, and the structure of the corresponding neighbourhoods depends on the weight only. This result is applied to distinguish a wide class of weighted L{sup p} spaces on the half-line such that the Szasz condition is not necessary for the completeness of the system exp(-{lambda}{sub n}t) in these spaces.
On Perturbation Solutions for Axisymmetric Bending Boundary Values of a Deep Thin Spherical Shell
Directory of Open Access Journals (Sweden)
Rong Xiao
2014-01-01
Full Text Available On the basis of the general theory of elastic thin shells and the Kirchhoff-Love hypothesis, a fundamental equation for a thin shell under the moment theory is established. In this study, the author derives Reissner’s equation with a transverse shear force Q1 and the displacement component w. These basic unknown quantities are derived considering the axisymmetry of the deep, thin spherical shell and manage to constitute a boundary value question of axisymmetric bending of the deep thin spherical shell under boundary conditions. The asymptotic solution is obtained by the composite expansion method. At the end of this paper, to prove the correctness and accuracy of the derivation, an example is given to compare the numerical solution by ANSYS and the perturbation solution. Meanwhile, the effects of material and geometric parameters on the nonlinear response of axisymmetric deep thin spherical shell under uniform external pressure are also analyzed in this paper.
Energy Technology Data Exchange (ETDEWEB)
Massopust, P.R.
1997-08-01
All solutions of an in its angular coordinates continuously perturbed Laplace-Beltrami equation in the open unit ball IB{sup n+2} {contained_in} IR{sup n+2}, n {ge} 1, are characterized. Moreover, it is shown that such pertubations yield distributional boundary values which are different from, but algebraically and topologically equivalent to, the hyperfunctions of Lions & Magenes. This is different from the case of radially perturbed Laplace-Beltrami operators (cf. [7]) where one has stability of distributional boundary values under such perturbations.
Directory of Open Access Journals (Sweden)
M. R. Islam
2011-06-01
Full Text Available A boundary value of velocity of data gathering node (DGN and a critical value for training overhead beyond which the cooperative communication in wireless sensor network will not be feasible is proposed in this paper. Multiple Input Multiple Outputs (MIMO cooperative communication is taken as an application. The performance in terms of energy efficiency and delay for a combination of two transmitting and two receiving antennas is analyzed. The results show that a set of critical value of velocity and training overhead pair is present for the long haul communication from the sensors to the data gathering node. Later a graphical relation between boundary value of training overhead and velocity is simulated. A mathematical relation between velocity and training overhead is also developed. The effects of several parameters on training overhead and velocity are analyzed.
Kvitko, A. N.
2018-01-01
An algorithm convenient for numerical implementation is proposed for constructing differentiable control functions that transfer a wide class of nonlinear nonstationary systems of ordinary differential equations from an initial state to a given point of the phase space. Constructive sufficient conditions imposed on the right-hand side of the controlled system are obtained under which this transfer is possible. The control of a robotic manipulator is considered, and its numerical simulation is performed.
International Nuclear Information System (INIS)
Frittelli, Simonetta; Gomez, Roberto
2004-01-01
We show how the use of the normal projection of the Einstein tensor as a set of boundary conditions relates to the propagation of the constraints, for two representations of the Einstein equations with vanishing shift vector: the Arnowitt-Deser-Misner formulation, which is ill posed, and the Einstein-Christoffel formulation, which is symmetric hyperbolic. Essentially, the components of the normal projection of the Einstein tensor that act as nontrivial boundary conditions are linear combinations of the evolution equations with the constraints that are not preserved at the boundary, in both cases. In the process, the relationship of the normal projection of the Einstein tensor to the recently introduced 'constraint-preserving' boundary conditions becomes apparent
International Nuclear Information System (INIS)
Amirkhanov, I.V.; Zhidkov, E.P.; Konnova, S.V.
2000-01-01
For the case of spherical-symmetrical potential we have considered the convergence of the solution of singular-perturbated Schroedinger equation of the 4th order to the solution of the corresponding standard nonrelativistic Schroedinger equation by numerical and analytical methods. The questions of existence of the solutions are explored. Numerical results are given. (author)
Borden, Brett; Luscombe, James
2017-10-01
Physics is expressed in the language of mathematics; it is deeply ingrained in how physics is taught and how it's practiced. A study of the mathematics used in science is thus a sound intellectual investment for training as scientists and engineers. This first volume of two is centered on methods of solving partial differential equations and the special functions introduced. This text is based on a course offered at the Naval Postgraduate School (NPS) and while produced for NPS needs, it will serve other universities well.
Directory of Open Access Journals (Sweden)
Bila Adolphe Kyelem
2017-04-01
Full Text Available In this article, we prove the existence of solutions for some discrete nonlinear difference equations subjected to a potential boundary type condition. We use a variational technique that relies on Szulkin's critical point theory, which ensures the existence of solutions by ground state and mountain pass methods.
International Nuclear Information System (INIS)
Afuwape, A.U.; Omari, P.
1987-11-01
This paper deals with the solvability of the nonlinear operator equations in normed spaces Lx=EGx+f, where L is a linear map with possible nontrivial kernel. Applications are given to the existence of periodic solutions for the third order scalar differential equation x'''+ax''+bx'+cx+g(t,x)=p(t), under various conditions on the interaction of g(t,x)/x with spectral configurations of a, b and c. (author). 48 refs
International Nuclear Information System (INIS)
Miranda-Alonso, S.
1991-01-01
A Cauchy-Riemann problem is solved for the case of the linearized equations for long waves. The initial-values are amplitudes and phases measured at the coast. No boundary values are made use of. This inverse-problem is solved by starting the calculations at the coast and continuing outwards to the open ocean in a rectangular areas with one side at the coast and the other three at the open ocean. The initial values were expanded into the complex plane to get a platform to perform with the calculations. This non-well-posed problem was solved by means of two different mathematical techniques for comparison. The results produced with the inverse model were compared with those produced with a 'classical' model initialized at the three open boundaries with the results of the inverse model. The oscillating systems produced by both models were quite similar, giving validity to this invese modeling approach which should be a useful technique to solve problems when only initial values are known. (orig.)
Analysis of Blasius Equation for Flat-Plate Flow with Infinite Boundary Value
DEFF Research Database (Denmark)
Miansari, M. O.; Miansari, M. E.; Barari, Amin
2010-01-01
to the linear part and deduced from the nonlinear section. The results reveal that HPM is very effective, convenient, and quite accurate to both linear and nonlinear problems. It is predicted that HPM can be widely applied in engineering. Some plots and numerical results are presented to show the reliability...
Directory of Open Access Journals (Sweden)
Zunnunov R.T.
2010-04-01
Full Text Available In this paper the existence and uniqueness of the solution of the nonlocal boundary value problem for the mixed type equation in unbounded domain are proved.In this paper the existence and uniqueness of the solution of the non-local boundary value problem for the mixed type equation in unbounded domain are proved.
On solution of the integral equations for the potential problems of two circular-strips
Directory of Open Access Journals (Sweden)
C. Sampath
1988-01-01
Dirichlet and Newmann boundary value problems of two equal infinite coaxial circular strips in various branches of potential theory. For illustration, these solutions are applied to solve some boundary value problems in electrostatics, hydrodynamics, and expressions for the physical quantities of interest are derived.
Well-posedness of nonlocal parabolic differential problems with dependent operators.
Ashyralyev, Allaberen; Hanalyev, Asker
2014-01-01
The nonlocal boundary value problem for the parabolic differential equation v'(t) + A(t)v(t) = f(t) (0 ≤ t ≤ T), v(0) = v(λ) + φ, 0 exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.
Directory of Open Access Journals (Sweden)
Manfred Möller
2013-01-01
Full Text Available Considered is a regular fourth order ordinary differential equation which depends quadratically on the eigenvalue parameter λ and which has separable boundary conditions depending linearly on λ. It is shown that the eigenvalues lie in the closed upper half plane or on the imaginary axis and are symmetric with respect to the imaginary axis. The first four terms in the asymptotic expansion of the eigenvalues are provided.
Directory of Open Access Journals (Sweden)
Yuji Liu
2003-12-01
Full Text Available In this article, we study the differential equation $$ (-1^{n-p} x^{(n}(t=f(t,x(t,x'(t,dots,x^{(n-1}(t, $$ subject to the multi-point boundary conditions $$displaylines{ x^{(i}(0=0 quad hbox{for }i=0,1,dots,p-1,cr x^{(i}(1=0 quad hbox{for }i=p+1,dots,n-1,cr sum_{i=1}^malpha_ix^{(p}(xi_i=0, }$$ where $1le ple n-1$. We establish sufficient conditions for the existence of at least one solution at resonance and another at non-resonance. The emphasis in this paper is that $f$ depends on all higher-order derivatives. Examples are given to illustrate the main results of this article.
Directory of Open Access Journals (Sweden)
Fuyi Xu
2010-04-01
\\end{array}\\right.$$ where $1\\leq k\\leq s\\leq m-2, a_i, b_i\\in(0,+\\infty$ with $0<\\sum_{i=1}^{k}b_{i}-\\sum_{i=k+1}^{s}b_{i}<1, 0<\\sum_{i=1}^{m-2}a_{i}<1, 0<\\xi_1<\\xi_2<\\cdots<\\xi_{m-2}<\\rho(T$, $f\\in C( [0,+\\infty,[0,+\\infty$, $a(t$ may be singular at $t=0$. We show that there exist two positive solutions by using two different fixed point theorems respectively. As an application, some examples are included to illustrate the main results. In particular, our criteria extend and improve some known results.
Directory of Open Access Journals (Sweden)
Vadim L. Khaikov
2018-01-01
Full Text Available The estimating of a projectile initial velocity is formulated as a two-point boundary value problem. To solve it, the data of a Doppler Radar or the results of solving the Cauchy problem can be used. The projectile initial velocity v0 estimation process is based on the numerical solution of a system of ordinary differential equations and the bisection method. The iterative calculating process is interrupted when a predetermined accuracy of a projectile initial velocity and a predetermined value of the width of velocity's search interval is reached. In the article, the block diagram of the algorithm for the projectile initial velocity process is developed. The Mathcad program code for mathematical modeling and a computer simulation of the projectile initial velocity estimation process for a 57mm armor-piercing projectile of ZIS-2 anti-tank gun 1943 model is given. / Задача оценки начальной скорости снаряда сформулирована в виде двухточечной граничной задачи. Для её решения могут быть использованы данные доплеровского измерителя скорости или результаты решения задачи Коши. Приведен алгоритм оценки v0, базирующийся на совокупности численного решения системы дифференциальных уравнений (СДУ полёта снаряда и метода бисекции. Итерационный процесс оценки начальной скорости прерывается при достижении заранее назначенной величины погрешности и заблаговременно установленного значения ширины интервала поиска. В статье представлена блок-схема алгоритма
Numerical methods for hyperbolic differential functional problems
Directory of Open Access Journals (Sweden)
Roman Ciarski
2008-01-01
Full Text Available The paper deals with the initial boundary value problem for quasilinear first order partial differential functional systems. A general class of difference methods for the problem is constructed. Theorems on the error estimate of approximate solutions for difference functional systems are presented. The convergence results are proved by means of consistency and stability arguments. A numerical example is given.
On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass
Il'yasov, Ya. Sh.
2017-03-01
For semilinear elliptic equations -Δ u = λ| u| p-2 u-| u| q-2 u, boundary value problems in bounded and unbounded domains are considered. In the plane of exponents p × q, the so-called curves of critical exponents are defined that divide this plane into domains with qualitatively different properties of the boundary value problems and the corresponding parabolic equations. New solvability conditions for boundary value problems, conditions for the stability and instability of stationary solutions, and conditions for the existence of global solutions to parabolic equations are found.
Modern problems in applied analysis
Rogosin, Sergei
2018-01-01
This book features a collection of recent findings in Applied Real and Complex Analysis that were presented at the 3rd International Conference “Boundary Value Problems, Functional Equations and Applications” (BAF-3), held in Rzeszow, Poland on 20-23 April 2016. The contributions presented here develop a technique related to the scope of the workshop and touching on the fields of differential and functional equations, complex and real analysis, with a special emphasis on topics related to boundary value problems. Further, the papers discuss various applications of the technique, mainly in solid mechanics (crack propagation, conductivity of composite materials), biomechanics (viscoelastic behavior of the periodontal ligament, modeling of swarms) and fluid dynamics (Stokes and Brinkman type flows, Hele-Shaw type flows). The book is addressed to all readers who are interested in the development and application of innovative research results that can help solve theoretical and real-world problems.
hp Spectral element methods for three dimensional elliptic problems
Indian Academy of Sciences (India)
elliptic boundary value problems on non-smooth domains in R3. For Dirichlet problems, ... of variable degree bounded by W. Let N denote the number of layers in the geomet- ric mesh ... We prove a stability theorem for mixed problems when the spectral element functions vanish ..... Applying Theorem 3.1,. ∫ r l. |Mu|2dx −.
Inverse problems in linear transport theory
International Nuclear Information System (INIS)
Dressler, K.
1988-01-01
Inverse problems for a class of linear kinetic equations are investigated. The aim is to identify the scattering kernel of a transport equation (corresponding to the structure of a background medium) by observing the 'albedo' part of the solution operator for the corresponding direct initial boundary value problem. This means to get information on some integral operator in an integrodifferential equation through on overdetermined boundary value problem. We first derive a constructive method for solving direct halfspace problems and prove a new factorization theorem for the solutions. Using this result we investigate stationary inverse problems with respect to well posedness (e.g. reduce them to classical ill-posed problems, such as integral equations of first kind). In the time-dependent case we show that a quite general inverse problem is well posed and solve it constructively. (orig.)
Semidefinite linear complementarity problems
International Nuclear Information System (INIS)
Eckhardt, U.
1978-04-01
Semidefinite linear complementarity problems arise by discretization of variational inequalities describing e.g. elastic contact problems, free boundary value problems etc. In the present paper linear complementarity problems are introduced and the theory as well as the numerical treatment of them are described. In the special case of semidefinite linear complementarity problems a numerical method is presented which combines the advantages of elimination and iteration methods without suffering from their drawbacks. This new method has very attractive properties since it has a high degree of invariance with respect to the representation of the set of all feasible solutions of a linear complementarity problem by linear inequalities. By means of some practical applications the properties of the new method are demonstrated. (orig.) [de
Coefficient Inverse Problem for Poisson's Equation in a Cylinder
Solov'ev, V. V.
2011-01-01
The inverse problem of determining the coefficient on the right-hand side of Poisson's equation in a cylindrical domain is considered. The Dirichlet boundary value problem is studied. Two types of additional information (overdetermination) can be specified: (i) the trace of the solution to the
Keulen, van T.A.C.; Gillot, J.; Jager, de A.G.; Steinbuch, M.
2014-01-01
This paper presents a numerical solution for scalar state constrained optimal control problems. The algorithm rewrites the constrained optimal control problem as a sequence of unconstrained optimal control problems which can be solved recursively as a two point boundary value problem. The solution
Goswami, Deepjyoti; Pani, Amiya K.
2011-01-01
In this article, we propose and analyze an alternate proof of a priori error estimates for semidiscrete Galerkin approximations to a general second order linear parabolic initial and boundary value problem with rough initial data. Our analysis
On a variational principle for shape optimization and elliptic free boundary problems
Directory of Open Access Journals (Sweden)
Raúl B. González De Paz
2009-02-01
Full Text Available A variational principle for several free boundary value problems using a relaxation approach is presented. The relaxed Energy functional is concave and it is defined on a convex set, so that the minimizing points are characteristic functions of sets. As a consequence of the first order optimality conditions, it is shown that the corresponding sets are domains bounded by free boundaries, so that the equivalence of the solution of the relaxed problem with the solution of several free boundary value problem is proved. Keywords: Calculus of variations, optimization, free boundary problems.
Numerical solution of pipe flow problems for generalized Newtonian fluids
International Nuclear Information System (INIS)
Samuelsson, K.
1993-01-01
In this work we study the stationary laminar flow of incompressible generalized Newtonian fluids in a pipe with constant arbitrary cross-section. The resulting nonlinear boundary value problems can be written in a variational formulation and solved using finite elements and the augmented Lagrangian method. The solution of the boundary value problem is obtained by finding a saddle point of the augmented Lagrangian. In the algorithm the nonlinear part of the equations is treated locally and the solution is obtained by iteration between this nonlinear problem and a global linear problem. For the solution of the linear problem we use the SSOR preconditioned conjugate gradient method. The approximating problem is solved on a sequence of adaptively refined grids. A scheme for adjusting the value of the crucial penalization parameter of the augmented Lagrangian is proposed. Applications to pipe flow and a problem from the theory of capacities are given. (author) (34 refs.)
Regularity of spectral fractional Dirichlet and Neumann problems
DEFF Research Database (Denmark)
Grubb, Gerd
2016-01-01
Consider the fractional powers and of the Dirichlet and Neumann realizations of a second-order strongly elliptic differential operator A on a smooth bounded subset Ω of . Recalling the results on complex powers and complex interpolation of domains of elliptic boundary value problems by Seeley in ...
Approximate solutions of some problems of scattering of surface ...
Indian Academy of Sciences (India)
A Choudhary
Abstract. A class of mixed boundary value problems (bvps), occurring in the study of scattering of surface water waves by thin vertical rigid barriers placed in water of finite depth, is examined for their approximate solutions. Two different placings of vertical barriers are analyzed, namely, (i) a partially immersed barrier and.
Nonconforming h-p spectral element methods for elliptic problems
Indian Academy of Sciences (India)
In [6,7,13,14] h-p spectral element methods for solving elliptic boundary value problems on polygonal ... Let M denote the number of corner layers and W denote the number of degrees of .... β is given by Theorem 2.2 of [3] which can be stated.
Nefedov, Nikolay
2017-02-01
This is an extended variant of the paper presented at MURPHYS-HSFS 2016 conference in Barcelona. We discuss further development of the asymptotic method of differential inequalities to investigate existence and stability of sharp internal layers (fronts) for nonlinear singularly perturbed periodic parabolic problems and initial boundary value problems with blow-up of fronts for reaction-diffusion-advection equations. In particular, we consider periodic solutions with internal layer in the case of balanced reaction. For the initial boundary value problems we prove the existence of fronts and give their asymptotic approximation including the new case of blowing-up fronts. This case we illustrate by the generalised Burgers equation.
The Numerical Solution of the Equilibrium Problem for a Stretchable Elastic Beam
Mehdiyeva, G. Y.; Aliyev, A. Y.
2017-08-01
The boundary value problem under consideration describes the equilibrium of an elastic beam that is stretched or contracted by specified forces. The left end of the beam is free of load, and the right end is rigidly lapped. To solve the problem numerically, an appropriate difference problem is constructed. Solving the difference problem, we obtain an approximate solution of the problem. We estimate the approximate solution of the stated problem.
International Nuclear Information System (INIS)
Xunjing, L.
1981-12-01
The vector-valued measure defined by the well-posed linear boundary value problems is discussed. The maximum principle of the optimal control problem with non-convex constraint is proved by using the vector-valued measure. Especially, the necessary conditions of the optimal control of elliptic systems is derived without the convexity of the control domain and the cost function. (author)
POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS
Directory of Open Access Journals (Sweden)
FAOUZI HADDOUCHI
2015-11-01
Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.
Statistical perspectives on inverse problems
DEFF Research Database (Denmark)
Andersen, Kim Emil
of the interior of an object from electrical boundary measurements. One part of this thesis concerns statistical approaches for solving, possibly non-linear, inverse problems. Thus inverse problems are recasted in a form suitable for statistical inference. In particular, a Bayesian approach for regularisation...... problem is given in terms of probability distributions. Posterior inference is obtained by Markov chain Monte Carlo methods and new, powerful simulation techniques based on e.g. coupled Markov chains and simulated tempering is developed to improve the computational efficiency of the overall simulation......Inverse problems arise in many scientific disciplines and pertain to situations where inference is to be made about a particular phenomenon from indirect measurements. A typical example, arising in diffusion tomography, is the inverse boundary value problem for non-invasive reconstruction...
The nonlocal problem for a hyperbolic equation with Bessel operator in a rectangular domain
Directory of Open Access Journals (Sweden)
Natalya V. Zaitseva
2016-12-01
Full Text Available We consider a boundary value problem for a hyperbolic equation with Bessel differential operator in a rectangular domain with integral nonlocal boundary value condition of the first kind. The equivalence between boundary value problem with integral nonlocal condition of the first kind and a local boundary value problem with mixed boundary conditions of the first and third kinds is proved. The existence and uniqueness of solution of the equivalent problem are established by means of the spectral method. At the uniqueness proof the completeness of the eigenfunction system of the spectral problem is used . At the existence proof the assessment of coefficients of series, the asymptotic formula for Bessel function of the first kind and asymptotic formula for eigenvalues are used. Sufficient conditions on the functions defining initial data of the problem are received. The solution of the problem is obtained in explicit form. The solution is obtained in the form of the Fourier–Bessel series. Its convergence is proved in the class of regular solutions.
Domain decomposition method for solving elliptic problems in unbounded domains
International Nuclear Information System (INIS)
Khoromskij, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.
1991-01-01
Computational aspects of the box domain decomposition (DD) method for solving boundary value problems in an unbounded domain are discussed. A new variant of the DD-method for elliptic problems in unbounded domains is suggested. It is based on the partitioning of an unbounded domain adapted to the given asymptotic decay of an unknown function at infinity. The comparison of computational expenditures is given for boundary integral method and the suggested DD-algorithm. 29 refs.; 2 figs.; 2 tabs
An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology
Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca
2017-10-01
In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \
On the solvability of Dirichlet problem for the weighted p-Laplacian
Directory of Open Access Journals (Sweden)
Ewa Szlachtowska
2012-01-01
Full Text Available The paper investigates the existence and uniqueness of weak solutions for a non-linear boundary value problem involving the weighted \\(p\\-Laplacian. Our approach is based on variational principles and representation properties of the associated spaces.
The unified method: III. Nonlinearizable problems on the interval
International Nuclear Information System (INIS)
Lenells, J; Fokas, A S
2012-01-01
Boundary value problems for integrable nonlinear evolution PDEs formulated on the finite interval can be analyzed by the unified method introduced by one of the authors and extensively used in the literature. The implementation of this general method to this particular class of problems yields the solution in terms of the unique solution of a matrix Riemann–Hilbert problem formulated in the complex k-plane (the Fourier plane), which has a jump matrix with explicit (x, t)-dependence involving six scalar functions of k, called the spectral functions. Two of these functions depend on the initial data, whereas the other four depend on all boundary values. The most difficult step of the new method is the characterization of the latter four spectral functions in terms of the given initial and boundary data, i.e. the elimination of the unknown boundary values. Here, we present an effective characterization of the spectral functions in terms of the given initial and boundary data. We present two different characterizations of this problem. One is based on the analysis of the so-called global relation, on the analysis of the equations obtained from the global relation via certain transformations leaving the dispersion relation of the associated linearized PDE invariant and on the computation of the large k asymptotics of the eigenfunctions defining the relevant spectral functions. The other is based on the analysis of the global relation and on the introduction of the so-called Gelfand–Levitan–Marchenko representations of the eigenfunctions defining the relevant spectral functions. We also show that these two different characterizations are equivalent and that in the limit when the length of the interval tends to infinity, the relevant formulas reduce to the analogous formulas obtained recently for the case of boundary value problems formulated on the half-line. (paper)
Solving the Stokes problem on a massively parallel computer
DEFF Research Database (Denmark)
Axelsson, Owe; Barker, Vincent A.; Neytcheva, Maya
2001-01-01
boundary value problem for each velocity component, are solved by the conjugate gradient method with a preconditioning based on the algebraic multi‐level iteration (AMLI) technique. The velocity is found from the computed pressure. The method is optimal in the sense that the computational work...... is proportional to the number of unknowns. Further, it is designed to exploit a massively parallel computer with distributed memory architecture. Numerical experiments on a Cray T3E computer illustrate the parallel performance of the method....
A finite difference method for free boundary problems
Fornberg, Bengt
2010-04-01
Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax-based optimization procedure to rapidly solve a wide range of elliptic-type free boundary value problems. © 2009 Elsevier B.V. All rights reserved.
Multiple Scale Reaction-Diffusion-Advection Problems with Moving Fronts
Nefedov, Nikolay
2016-06-01
In this work we discuss the further development of the general scheme of the asymptotic method of differential inequalities to investigate stability and motion of sharp internal layers (fronts) for nonlinear singularly perturbed parabolic equations, which are called in applications reaction-diffusion-advection equations. Our approach is illustrated for some new important cases of initial boundary value problems. We present results on stability and on the motion of the fronts.
Numerical solution of electrostatic problems of the accelerator project VICKSI
International Nuclear Information System (INIS)
Janetzki, U.
1975-03-01
In this work, the numerical solution to a few of the electrostatic problems is dealt with which have occured within the framework of the heavy ion accelerator project VICKSI. By means of these selected examples, the versatile applicability of the numerical method is to be demonstrated, and simultaneously assistance is given for the solution of similar problems. The numerical process for solving ion-optics problems consists generally of two steps. In the first step, the potential distribution for a given boundary value problem is iteratively calculated for the Laplace equation, and then the image characteristics of the electostatic lense are investigated using the Raytrace method. (orig./LH) [de
Directory of Open Access Journals (Sweden)
Dang Quang A
2013-02-01
Full Text Available In this paper we consider a mixed boundary value problem for biharmonic equation of the Airy stress function which models a crack problem of a solid elastic plate. An iterative method for reducing the problem to a sequence of mixed problems for Poisson equations is proposed and investigated. The convergence of the method is established theoretically and illustrated on many numerical experiments.
Directory of Open Access Journals (Sweden)
V. Rukavishnikov
2014-01-01
Full Text Available The existence and uniqueness of the Rv-generalized solution for the first boundary value problem and a second order elliptic equation with coordinated and uncoordinated degeneracy of input data and with strong singularity solution on all boundary of a two-dimensional domain are established.
SEACAS Theory Manuals: Part 1. Problem Formulation in Nonlinear Solid Mechancis
Energy Technology Data Exchange (ETDEWEB)
Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.
1998-08-01
This report gives an introduction to the basic concepts and principles involved in the formulation of nonlinear problems in solid mechanics. By way of motivation, the discussion begins with a survey of some of the important sources of nonlinearity in solid mechanics applications, using wherever possible simple one dimensional idealizations to demonstrate the physical concepts. This discussion is then generalized by presenting generic statements of initial/boundary value problems in solid mechanics, using linear elasticity as a template and encompassing such ideas as strong and weak forms of boundary value problems, boundary and initial conditions, and dynamic and quasistatic idealizations. The notational framework used for the linearized problem is then extended to account for finite deformation of possibly inelastic solids, providing the context for the descriptions of nonlinear continuum mechanics, constitutive modeling, and finite element technology given in three companion reports.
Mixed problems for linear symmetric hyperbolic systems with characteristic boundary conditions
International Nuclear Information System (INIS)
Secchi, P.
1994-01-01
We consider the initial-boundary value problem for symmetric hyperbolic systems with characteristic boundary of constant multiplicity. In the linear case we give some results about the existence of regular solutions in suitable functions spaces which take in account the loss of regularity in the normal direction to the characteristic boundary. We also consider the equations of ideal magneto-hydrodynamics under perfectly conducting wall boundary conditions and give some results about the solvability of such mixed problem. (author). 16 refs
Non-linear analytic and coanalytic problems (Lp-theory, Clifford analysis, examples)
International Nuclear Information System (INIS)
Dubinskii, Yu A; Osipenko, A S
2000-01-01
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the 'orthogonal' sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented
Non-linear analytic and coanalytic problems ( L_p-theory, Clifford analysis, examples)
Dubinskii, Yu A.; Osipenko, A. S.
2000-02-01
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the "orthogonal" sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.
Uniqueness Theorem for the Inverse Aftereffect Problem and Representation the Nodal Points Form
Directory of Open Access Journals (Sweden)
A. Neamaty
2015-03-01
Full Text Available In this paper, we consider a boundary value problem with aftereffect on a finite interval. Then, the asymptotic behavior of the solutions, eigenvalues, the nodal points and the associated nodal length are studied. We also calculate the numerical values of the nodal points and the nodal length. Finally, we prove the uniqueness theorem for the inverse aftereffect problem by applying any dense subset of the nodal points.
Uniqueness Theorem for the Inverse Aftereffect Problem and Representation the Nodal Points Form
A. Neamaty; Sh. Akbarpoor; A. Dabbaghian
2015-01-01
In this paper, we consider a boundary value problem with aftereffect on a finite interval. Then, the asymptotic behavior of the solutions, eigenvalues, the nodal points and the associated nodal length are studied. We also calculate the numerical values of the nodal points and the nodal length. Finally, we prove the uniqueness theorem for the inverse aftereffect problem by applying any dense subset of the nodal points.
Boundary integral equation methods in eigenvalue problems of elastodynamics and thin plates
Kitahara, M
1985-01-01
The boundary integral equation (BIE) method has been used more and more in the last 20 years for solving various engineering problems. It has important advantages over other techniques for numerical treatment of a wide class of boundary value problems and is now regarded as an indispensable tool for potential problems, electromagnetism problems, heat transfer, fluid flow, elastostatics, stress concentration and fracture problems, geomechanical problems, and steady-state and transient electrodynamics.In this book, the author gives a complete, thorough and detailed survey of the method. It pro
Well-Posedness of Nonlocal Parabolic Differential Problems with Dependent Operators
Directory of Open Access Journals (Sweden)
Allaberen Ashyralyev
2014-01-01
Full Text Available The nonlocal boundary value problem for the parabolic differential equation v'(t+A(tv(t=f(t (0≤t≤T, v(0=v(λ+φ, 0<λ≤T in an arbitrary Banach space E with the dependent linear positive operator A(t is investigated. The well-posedness of this problem is established in Banach spaces C0β,γ(Eα-β of all Eα-β-valued continuous functions φ(t on [0,T] satisfying a Hölder condition with a weight (t+τγ. New Schauder type exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.
Computational approach to Thornley's problem by bivariate operational calculus
Bazhlekova, E.; Dimovski, I.
2012-10-01
Thornley's problem is an initial-boundary value problem with a nonlocal boundary condition for linear onedimensional reaction-diffusion equation, used as a mathematical model of spiral phyllotaxis in botany. Applying a bivariate operational calculus we find explicit representation of the solution, containing two convolution products of special solutions and the arbitrary initial and boundary functions. We use a non-classical convolution with respect to the space variable, extending in this way the classical Duhamel principle. The special solutions involved are represented in the form of fast convergent series. Numerical examples are considered to show the application of the present technique and to analyze the character of the solution.
Data completion problems solved as Nash games
International Nuclear Information System (INIS)
Habbal, A; Kallel, M
2012-01-01
The Cauchy problem for an elliptic operator is formulated as a two-player Nash game. Player (1) is given the known Dirichlet data, and uses as strategy variable the Neumann condition prescribed over the inaccessible part of the boundary. Player (2) is given the known Neumann data, and plays with the Dirichlet condition prescribed over the inaccessible boundary. The two players solve in parallel the associated Boundary Value Problems. Their respective objectives involve the gap between the non used Neumann/Dirichlet known data and the traces of the BVP's solutions over the accessible boundary, and are coupled through a difference term. We prove the existence of a unique Nash equilibrium, which turns out to be the reconstructed data when the Cauchy problem has a solution. We also prove that the completion algorithm is stable with respect to noise, and present two 3D experiments which illustrate the efficiency and stability of our algorithm.
Belmiloudi, A.; Mahé, F.
2014-01-01
International audience; The paper investigates boundary optimal controls and parameter estimates to the well-posedness nonlinear model of dehydration of thermic problems. We summarize the general formulations for the boundary control for initial-boundary value problem for nonlinear partial differential equations modeling the heat transfer and derive necessary optimality conditions, including the adjoint equation, for the optimal set of parameters minimizing objective functions J. Numerical si...
An analog computer method for solving flux distribution problems in multi region nuclear reactors
Energy Technology Data Exchange (ETDEWEB)
Radanovic, L; Bingulac, S; Lazarevic, B; Matausek, M [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)
1963-04-15
The paper describes a method developed for determining criticality conditions and plotting flux distribution curves in multi region nuclear reactors on a standard analog computer. The method, which is based on the one-dimensional two group treatment, avoids iterative procedures normally used for boundary value problems and is practically insensitive to errors in initial conditions. The amount of analog equipment required is reduced to a minimum and is independent of the number of core regions and reflectors. (author)
Some problems in steady-state thermal conductivity with variable heat transfer rate
International Nuclear Information System (INIS)
Malov, Yu.I.; Martinson, L.K.; Pavlov, K.B.
1975-01-01
Some boundary-value problems of steady heat conductivity with an alternating heat exchange coefficient have been solved for a cylindrical region. The solutions have been performed as expansion in series with respect to eigenfunctions with the coefficients consistent with infinite systems of linear algebraic equations. A reduction method has been substantiated for those systems. The paper presents results of calculation of the temperature distribution inside the infinite cylinder with concrete tasks of heat exchange coefficient variations on the cylinder surface
Numerical treatment of elliptic BVP with several solutions and of MHD equilibrium problems
International Nuclear Information System (INIS)
Meyer-Spasche, R.
1975-12-01
It is found out empirically that Newton iteration and difference methods are very suitable for the numerical treatment of elliptic boundary value problems (Lu)(x) = f(x,u(x)) in D c R 2 , u/deltaD = g having several solutions. Some convergence theorems for these methods are presented. Some notable numerical examples are given, including bifurcation diagrams, which are interesting in themselves and show also the applicability of the methods developed. (orig./WB) [de
Ruzhansky, Michael; Suragan, Durvudkhan
2015-01-01
We propose the analogues of boundary layer potentials for the sub-Laplacian on homogeneous Carnot groups/stratified Lie groups and prove continuity results for them. In particular, we show continuity of the single layer potential and establish the Plemelj type jump relations for the double layer potential. We prove sub-Laplacian adapted versions of the Stokes theorem as well as of Green's first and second formulae on homogeneous Carnot groups. Several applications to boundary value problems a...
Layer potentials, Kac's problem, and refined Hardy inequality on homogeneous Carnot groups
Ruzhansky, Michael; Suragan, Durvudkhan
2017-01-01
We propose the analogues of boundary layer potentials for the sub-Laplacian on homogeneous Carnot groups/stratified Lie groups and prove continuity results for them. In particular, we show continuity of the single layer potential and establish the Plemelj type jump relations for the double layer potential. We prove sub-Laplacian adapted versions of the Stokes theorem as well as of Green's first and second formulae on homogeneous Carnot groups. Several applications to boundary value problems a...
International Nuclear Information System (INIS)
Gartling, D.K.
1978-04-01
The theoretical background for the finite element computer program, NACHOS, is presented in detail. The NACHOS code is designed for the two-dimensional analysis of viscous incompressible fluid flows, including the effects of heat transfer. A general description of the fluid/thermal boundary value problems treated by the program is described. The finite element method and the associated numerical methods used in the NACHOS code are also presented. Instructions for use of the program are documented in SAND77-1334
Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator
Vabishchevich, P. N.
2018-03-01
A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.
The unified method: I. Nonlinearizable problems on the half-line
International Nuclear Information System (INIS)
Fokas, A S; Lenells, J
2012-01-01
Boundary value problems for integrable nonlinear evolution PDEs formulated on the half-line can be analyzed by the unified method introduced by one of the authors and used extensively in the literature. The implementation of this general method to this particular class of problems yields the solution in terms of the unique solution of a matrix Riemann–Hilbert problem formulated in the complex k-plane (the Fourier plane), which has a jump matrix with explicit (x, t)-dependence involving four scalar functions of k, called the spectral functions. Two of these functions depend on the initial data, whereas the other two depend on all boundary values. The most difficult step of the new method is the characterization of the latter two spectral functions in terms of the given initial and boundary data, i.e. the elimination of the unknown boundary values. For certain boundary conditions, called linearizable, this can be achieved simply using algebraic manipulations. Here, we present an effective characterization of the spectral functions in terms of the given initial and boundary data for the general case of non-linearizable boundary conditions. This characterization is based on the analysis of the so-called global relation, on the analysis of the equations obtained from the global relation via certain transformations leaving the dispersion relation of the associated linearized PDE invariant and on the computation of the large k asymptotics of the eigenfunctions defining the relevant spectral functions. (paper)
Isospectral Flows for the Inhomogeneous String Density Problem
Górski, Andrzej Z.; Szmigielski, Jacek
2018-02-01
We derive isospectral flows of the mass density in the string boundary value problem corresponding to general boundary conditions. In particular, we show that certain class of rational flows produces in a suitable limit all flows generated by polynomials in negative powers of the spectral parameter. We illustrate the theory with concrete examples of isospectral flows of discrete mass densities which we prove to be Hamiltonian and for which we provide explicit solutions of equations of motion in terms of Stieltjes continued fractions and Hankel determinants.
Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions
Directory of Open Access Journals (Sweden)
Golovaty Yuriy
2017-04-01
Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.
Nonlinear triple-point problems on time scales
Directory of Open Access Journals (Sweden)
Douglas R. Anderson
2004-04-01
Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0
Hörmander spaces, interpolation, and elliptic problems
Mikhailets, Vladimir A; Malyshev, Peter V
2014-01-01
The monograph gives a detailed exposition of the theory of general elliptic operators (scalar and matrix) and elliptic boundary value problems in Hilbert scales of Hörmander function spaces. This theory was constructed by the authors in a number of papers published in 2005-2009. It is distinguished by a systematic use of the method of interpolation with a functional parameter of abstract Hilbert spaces and Sobolev inner product spaces. This method, the theory and their applications are expounded for the first time in the monographic literature. The monograph is written in detail and in a
Renormgroup symmetries in problems of nonlinear geometrical optics
International Nuclear Information System (INIS)
Kovalev, V.F.
1996-01-01
Utilization and further development of the previously announced approach [1,2] enables one to construct renormgroup symmetries for a boundary value problem for the system of equations which describes propagation of a powerful radiation in a nonlinear medium in geometrical optics approximation. With the help of renormgroup symmetries new rigorous and approximate analytical solutions of nonlinear geometrical optics equations are obtained. Explicit analytical expressions are presented that characterize spatial evolution of laser beam which has an arbitrary intensity dependence at the boundary of the nonlinear medium. (author)
New complex variable meshless method for advection—diffusion problems
International Nuclear Information System (INIS)
Wang Jian-Fei; Cheng Yu-Min
2013-01-01
In this paper, an improved complex variable meshless method (ICVMM) for two-dimensional advection—diffusion problems is developed based on improved complex variable moving least-square (ICVMLS) approximation. The equivalent functional of two-dimensional advection—diffusion problems is formed, the variation method is used to obtain the equation system, and the penalty method is employed to impose the essential boundary conditions. The difference method for two-point boundary value problems is used to obtain the discrete equations. Then the corresponding formulas of the ICVMM for advection—diffusion problems are presented. Two numerical examples with different node distributions are used to validate and inestigate the accuracy and efficiency of the new method in this paper. It is shown that ICVMM is very effective for advection—diffusion problems, and has a good convergent character, accuracy, and computational efficiency
Reconstruction Methods for Inverse Problems with Partial Data
DEFF Research Database (Denmark)
Hoffmann, Kristoffer
This thesis presents a theoretical and numerical analysis of a general mathematical formulation of hybrid inverse problems in impedance tomography. This includes problems from several existing hybrid imaging modalities such as Current Density Impedance Imaging, Magnetic Resonance Electrical...... Impedance Tomography, and Ultrasound Modulated Electrical Impedance Tomography. After giving an introduction to hybrid inverse problems in impedance tomography and the mathematical tools that facilitate the related analysis, we explain in detail the stability properties associated with the classification...... of a linearised hybrid inverse problem. This is done using pseudo-differential calculus and theory for overdetermined boundary value problem. Using microlocal analysis we then present novel results on the propagation of singularities, which give a precise description of the distinct features of solutions...
Boundary values as Hamiltonian variables. II. Graded structures
International Nuclear Information System (INIS)
Soloviev, Vladimir O.
2002-01-01
It is shown that the new formula for the field theory Poisson brackets arises naturally in the proposed extension of the formal variational calculus incorporating divergences. The linear spaces of local functionals, evolutionary vector fields, functional forms, multi-vectors and differential operators become graded with respect to divergences. The bilinear operations, such as the action of vector fields onto functionals, the commutator of vector fields, the interior product of forms and vectors and the Schouten-Nijenhuis bracket are compatible with the grading. A definition of the adjoint graded operator is proposed and antisymmetric operators are constructed with the help of boundary terms. The fulfilment of the Jacobi identity for the new Poisson brackets is shown to be equivalent to vanishing of the Schouten-Nijenhuis bracket of the Poisson bivector with itself
Uniqueness theorems for variational problems by the method of transformation groups
Reichel, Wolfgang
2004-01-01
A classical problem in the calculus of variations is the investigation of critical points of functionals {\\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\\cal L} and the underlying space V does {\\cal L} have at most one critical point? A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group G of transformations of V, which strictly reduces the values of {\\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity.
Azis, Moh. Ivan; Kasbawati; Haddade, Amiruddin; Astuti Thamrin, Sri
2018-03-01
A boundary element method (BEM) is obtained for solving a boundary value problem of homogeneous anisotropic media governed by diffusion-convection equation. The application of the BEM is shown for two particular pollutant transport problems of Tello river and Unhas lake in Makassar Indonesia. For the two particular problems a variety of the coefficients of diffusion and the velocity components are taken. The results show that the solutions vary as the parameters change. And this suggests that one has to be careful in measuring or determining the values of the parameters.
problem for the damped Boussinesq equation
Directory of Open Access Journals (Sweden)
Vladimir V. Varlamov
1997-01-01
Full Text Available For the damped Boussinesq equation utt−2butxx=−αuxxxx+uxx+β(u2xx,x∈(0,π,t>0;α,b=const>0,β=const∈R1, the second initial-boundary value problem is considered with small initial data. Its classical solution is constructed in the form of a series in small parameter present in the initial conditions and the uniqueness of solutions is proved. The long-time asymptotics is obtained in the explicit form and the question of the blow up of the solution in a certain case is examined. The possibility of passing to the limit b→+0 in the constructed solution is investigated.
Solving potential field problems in composite media with complicated geometries
International Nuclear Information System (INIS)
Yeh, H.
1977-01-01
Recently, Yeh developed a method of solving potential field problems for complicated geometries and theorems of piecewise continuous eigenfunctions which can be used to solve boundary-value problems in composite media by the separation of variables. This paper shows that by a proper arrangement of matching conditions and boundary conditions, this method and these theorems can be applied simultaneously so that the problems in composite media with complicated geometries can be solved. To illustrate this, a heat-conduction problem in a composite cylinder with an abrupt change in cross-section area is solved. Also presented in this paper are the method of handling the nonhomogeneous boundary conditions for composite media and the extension of one of the above-mentioned theorems to include imperfect contact on material boundaries
Dinesh Kumar, S.; Nageshwar Rao, R.; Pramod Chakravarthy, P.
2017-11-01
In this paper, we consider a boundary value problem for a singularly perturbed delay differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior layers arising from the delay term. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method.
International Nuclear Information System (INIS)
Sakhnovich, Alexander
2008-01-01
A Borg–Marchenko-type uniqueness theorem (in terms of the Weyl function) is obtained here for the system auxiliary to the N-wave equation. A procedure to solve the inverse problem is used for this purpose. The asymptotic condition on the Weyl function, under which the inverse problem is uniquely solvable, is completed by a new and simple sufficient condition on the potential, which implies this asymptotic condition. The evolution of the Weyl function is discussed and the solution of an initial-boundary-value problem for the N-wave equation follows. Explicit solutions of an inverse problem are obtained. The system with a shifted argument is treated
... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady. You may ... related injuries, such as a hip fracture. Some balance problems are due to problems in the inner ...
[Population problem, comprehension problem].
Tallon, F
1993-08-01
Overpopulation of developing countries in general, and Rwanda in particular, is not just their problem but a problem for developed countries as well. Rapid population growth is a key factor in the increase of poverty in sub-Saharan Africa. Population growth outstrips food production. Africa receives more and more foreign food, economic, and family planning aid each year. The Government of Rwanda encourages reduced population growth. Some people criticize it, but this criticism results in mortality and suffering. One must combat this ignorance, but attitudes change slowly. Some of these same people find the government's acceptance of family planning an invasion of their privacy. Others complain that rich countries do not have campaigns to reduce births, so why should Rwanda do so? The rate of schooling does not increase in Africa, even though the number of children in school increases, because of rapid population growth. Education is key to improvements in Africa's socioeconomic growth. Thus, Africa, is underpopulated in terms of potentiality but overpopulated in terms of reality, current conditions, and possibilities of overexploitation. Africa needs to invest in human resources. Families need to save, and to so, they must refrain from having many children. Africa should resist the temptation to waste, as rich countries do, and denounce it. Africa needs to become more independent of these countries, but structural adjustment plans, growing debt, and rapid population growth limit national independence. Food aid is a means for developed countries to dominate developing countries. Modernization through foreign aid has had some positive effects on developing countries (e.g., improved hygiene, mortality reduction), but these also sparked rapid population growth. Rwandan society is no longer traditional, but it is also not yet modern. A change in mentality to fewer births, better quality of life for living infants, better education, and less burden for women must occur
Introduction to inverse problems for differential equations
Hasanov Hasanoğlu, Alemdar
2017-01-01
This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here a...
TOPICAL REVIEW: The stability for the Cauchy problem for elliptic equations
Alessandrini, Giovanni; Rondi, Luca; Rosset, Edi; Vessella, Sergio
2009-12-01
We discuss the ill-posed Cauchy problem for elliptic equations, which is pervasive in inverse boundary value problems modeled by elliptic equations. We provide essentially optimal stability results, in wide generality and under substantially minimal assumptions. As a general scheme in our arguments, we show that all such stability results can be derived by the use of a single building brick, the three-spheres inequality. Due to the current absence of research funding from the Italian Ministry of University and Research, this work has been completed without any financial support.
Stability of stationary solutions for inflow problem on the micropolar fluid model
Yin, Haiyan
2017-04-01
In this paper, we study the asymptotic behavior of solutions to the initial boundary value problem for the micropolar fluid model in a half-line R+:=(0,∞). We prove that the corresponding stationary solutions of the small amplitude to the inflow problem for the micropolar fluid model are time asymptotically stable under small H1 perturbations in both the subsonic and degenerate cases. The microrotation velocity brings us some additional troubles compared with Navier-Stokes equations in the absence of the microrotation velocity. The proof of asymptotic stability is based on the basic energy method.
On the Problem of Filtration to an Imperfect Gallery in a Pressureless Bed
Bereslavskii, É. N.; Dudina, L. M.
2018-01-01
The problem of plane steady-state filtration in a pressureless bed to an imperfect gallery in the presence of evaporation from the flow free surface is considered. To study such type of flow, a mixed boundary-value problem of the theory of analytical functions is formulated and solved with application of the Polubarinova-Kochina method. Based on the model suggested, an algorithm for computing the discharge of the gallery and the ordinate of free surface emergence to the impermeable screen is developed. A detailed hydrodynamic analysis of the influence of all physical parameters of the model on the desired filtration characteristics is given.
Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin
2016-01-01
This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.
Variational methods for problems from plasticity theory and for generalized Newtonian fluids
Fuchs, Martin
2000-01-01
Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids.
On rational approximation methods for inverse source problems
Rundell, William
2011-02-01
The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Such is the ubiquity of these problems, the underlying model can lead to a partial differential equation of any of the major types, but here we focus on the case of steady-state electrostatic or thermal imaging and consider boundary value problems for Laplace\\'s equation. Our inclusions are interior forces with compact support and our data consists of a single measurement of (say) voltage/current or temperature/heat flux on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler "equivalent point source" problem, and which uses a Newton scheme to improve the corresponding initial approximation. © 2011 American Institute of Mathematical Sciences.
On rational approximation methods for inverse source problems
Rundell, William; Hanke, Martin
2011-01-01
The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Such is the ubiquity of these problems, the underlying model can lead to a partial differential equation of any of the major types, but here we focus on the case of steady-state electrostatic or thermal imaging and consider boundary value problems for Laplace's equation. Our inclusions are interior forces with compact support and our data consists of a single measurement of (say) voltage/current or temperature/heat flux on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler "equivalent point source" problem, and which uses a Newton scheme to improve the corresponding initial approximation. © 2011 American Institute of Mathematical Sciences.
Mkhitaryan, S. M.
2018-04-01
A class of mixed boundary-value problems of mathematical theory of elasticity dealing with interaction between stress concentrators of different types (such as cracks, absolutely rigid thin inclusions, punches, and stringers) and an elastic semi-infinite plate is considered. The method of Mellin integral transformation is used to reduce solving these problems to solving singular integral equations (SIE). After the governing SIE are solved, the following characteristics of the problem are determined: tangential contact stresses under stringers, dislocation density on the crack edges, breaking stresses outside the cracks on their line of location, the stress intensity factor (SIF), crack openings, jumps of contact stresses on the edges of inclusions.
... Staying Safe Videos for Educators Search English Español Speech Problems KidsHealth / For Teens / Speech Problems What's in ... a person's ability to speak clearly. Some Common Speech and Language Disorders Stuttering is a problem that ...
Directory of Open Access Journals (Sweden)
Muhammad Aslam Noor
2004-01-01
Full Text Available We consider a new class of equilibrium problems, known as hemiequilibrium problems. Using the auxiliary principle technique, we suggest and analyze a class of iterative algorithms for solving hemiequilibrium problems, the convergence of which requires either pseudomonotonicity or partially relaxed strong monotonicity. As a special case, we obtain a new method for hemivariational inequalities. Since hemiequilibrium problems include hemivariational inequalities and equilibrium problems as special cases, the results proved in this paper still hold for these problems.
Modelling and solution of contact problem for infinite plate and cross-shaped embedment
Directory of Open Access Journals (Sweden)
O.B. Kozin
2016-09-01
Full Text Available Development of efficient methods of determination of an intense-strained state of thin-walled constructional designs with inclusions, reinforcements and other stress raisers is an important problem both with theoretical, and from the practical point of view, considering their wide practical application. Aim: The aim of this research is to develop the analytical mathematical method of studying of an intense-strained state of infinite plate with cross-shaped embedment at a bend. Materials and Methods: The method of boundary elements is an efficient way of the boundary value problems solution for systems of differential equations. The methods based on boundary integral equations get wide application in many branches of science and technique, calculation of plates and shells. One of methods of solution of a numerous class of the integral equations and systems arising on the basis of a method of boundary integral equations is the analytical method of construction of these equations and systems to Riemann problems with their forthcoming decision. Results: The integral equation for the analysis of deflections and the analysis of an intense-strained state of a thin rigid plate with rigid cross-shaped embedment is received. The precise solution of this boundary value problem is received by reduction to a Riemann problem and its forthcoming solution. An asymptotical behavior of contact efforts at the ends of embedment is investigated.
Lectures on nonlinear evolution equations initial value problems
Racke, Reinhard
2015-01-01
This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...
The Inverse Problem of Identification of Hydrogen Permeability Model
Directory of Open Access Journals (Sweden)
Yury V. Zaika
2018-01-01
Full Text Available One of the technological challenges for hydrogen materials science is the currently active search for structural materials with important applications (including the ITER project and gas-separation plants. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones. The article presents boundary value problems of hydrogen permeability and thermal desorption with dynamical boundary conditions. A numerical method is developed for TDS spectrum simulation, where only integration of a nonlinear system of low order ordinary differential equations is required. The main final output of the article is a noise-resistant algorithm for solving the inverse problem of parametric identification for the aggregated experiment where desorption and diffusion are dynamically interrelated (without the artificial division of studies into the diffusion limited regime (DLR and the surface limited regime (SLR.
Some fluid dynamical problems in astrophysics
International Nuclear Information System (INIS)
Drury, L.O.
1979-06-01
Certain aspects of the cosmic turbulence theory of galaxy formation are considered. Using a generalized form of a transformation due to Kurskov and Ozernoi I exhibit a formal equivalence between the problem of turbulence in an expanding universe containing a coupled matter-radiation fluid and in a non-expanding fluid with a time-dependent viscosity. This enables me to extend the Olson-Sachs formula for vorticity generation in cosmic turbulence to a matter-radiation fluid and to show that, the turbulence can not have an inertial subrange at the epoch of recombination. The linear inviscid stability of axisymmetric flows is considered. Using the projective form of the perturbation equations I obtain a simple proof of a generalised Richardson criterion which holds for all boundary conditions which do not actively feed energy to the perturbation. Further analysis shows the uniform density and pressure discs with self-similar rotation laws, are stable to perturbations which are incompressible in character, but that instability is a generic feature of differentially rotating compressible systems. The problem of numerically solving boundary value problems of the Orr-Sommerfeld type by shooting methods is considered, and a unifying geometrical interpretation of the principal methods is described. (author)
Explaining the Mind: Problems, Problems
Harnad, Stevan
2001-01-01
The mind/body problem is the feeling/function problem: How and why do feeling systems feel? The problem is not just "hard" but insoluble (unless one is ready to resort to telekinetic dualism). Fortunately, the "easy" problems of cognitive science (such as the how and why of categorization and language) are not insoluble. Five books (by Damasio, Edelman/Tononi...
On the use Pontryagin's maximum principle in the reactor profiling problem
International Nuclear Information System (INIS)
Silko, P.P.
1976-01-01
The optimal given power profile approximation problem in nuclear reactors is posed as one of physical profiling problems in terms of the theory of optimal processes. It is necessary to distribute the concentration of the profiling substance in a certain nuclear reactor in such a way that the power profile obtained in the core would be as near as possible to the given profile. It is suggested that the original system of differential equations describing the behaviour of neutrons in a reactor and some applied requirements may be written in the form of usual differential equations of the first order. The integral quadratic criterion evaluating a deviation of the power profile obtained in a reactor from the given one is used as a purpose function. The initial state is given, the control aim is determined as the necessity of transfer of a control object from the initial state to the given set of finite states known as a purpose set. A class of permissible controls consists of measurable functions in the given range. On solving the formulated problem Pontryagin's maximum principle is used. As an example, the power profile flattening problem is considered, for which a program in Fortran-4 for the 'Minsk-32' computer has been written. The optimal reactor parameters calculated by this program at various boundary values of the control are presented. It is noticed that a type of the optimal reactor configuration depends on boundary values of the control
Asymptotic behavior of positive solutions of a semilinear Dirichlet problem in the annulus
Directory of Open Access Journals (Sweden)
Safa Dridi
2015-01-01
Full Text Available In this paper, we establish existence and asymptotic behavior of a positive classical solution to the following semilinear boundary value problem: \\[-\\Delta u=q(xu^{\\sigma }\\;\\text{in}\\;\\Omega,\\quad u_{|\\partial\\Omega}=0.\\] Here \\(\\Omega\\ is an annulus in \\(\\mathbb{R}^{n}\\, \\(n\\geq 3\\, \\(\\sigma \\lt 1\\ and \\(q\\ is a positive function in \\(\\mathcal{C}_{loc}^{\\gamma }(\\Omega \\, \\(0\\lt\\gamma \\lt 1\\, satisfying some appropriate assumptions related to Karamata regular variation theory. Our arguments combine a method of sub- and supersolutions with Karamata regular variation theory.
Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem
DEFF Research Database (Denmark)
Delbary, Fabrice; Knudsen, Kim
2014-01-01
to the generalized Laplace equation. The 3D problem was solved in theory in late 1980s using complex geometrical optics solutions and a scattering transform. Several approximations to the reconstruction method have been suggested and implemented numerically in the literature, but here, for the first time, a complete...... computer implementation of the full nonlinear algorithm is given. First a boundary integral equation is solved by a Nystrom method for the traces of the complex geometrical optics solutions, second the scattering transform is computed and inverted using fast Fourier transform, and finally a boundary value...
A numerical method for finding sign-changing solutions of superlinear Dirichlet problems
Energy Technology Data Exchange (ETDEWEB)
Neuberger, J.M.
1996-12-31
In a recent result it was shown via a variational argument that a class of superlinear elliptic boundary value problems has at least three nontrivial solutions, a pair of one sign and one which sign changes exactly once. These three and all other nontrivial solutions are saddle points of an action functional, and are characterized as local minima of that functional restricted to a codimension one submanifold of the Hilbert space H-0-1-2, or an appropriate higher codimension subset of that manifold. In this paper, we present a numerical Sobolev steepest descent algorithm for finding these three solutions.
... know the exact cause of your prostate problem. Prostatitis The cause of prostatitis depends on whether you ... prostate problem in men older than age 50. Prostatitis If you have a UTI, you may be ...
International Nuclear Information System (INIS)
2005-01-01
This article presents the general problems as natural disasters, consequences of global climate change, public health, the danger of criminal actions, the availability to information about problems of environment
... Staying Safe Videos for Educators Search English Español Learning Problems KidsHealth / For Kids / Learning Problems What's in ... for how to make it better. What Are Learning Disabilities? Learning disabilities aren't contagious, but they ...
... Read MoreDepression in Children and TeensRead MoreBMI Calculator Ankle ProblemsFollow this chart for more information about problems that can cause ankle pain. Our trusted Symptom Checker is written and ...
Directory of Open Access Journals (Sweden)
W. Sinkala
2012-01-01
Full Text Available We use Lie symmetry analysis to solve a boundary value problem that arises in chemical engineering, namely, mass transfer during the contact of a solid slab with an overhead flowing fluid. This problem was earlier tackled using Adomian decomposition method (Fatoorehchi and Abolghasemi 2011, leading to the Adomian series form of solution. It turns out that the application of Lie group analysis yields an elegant form of the solution. After introducing the governing mathematical model and some preliminaries of Lie symmetry analysis, we compute the Lie point symmetries admitted by the governing equation and use these to construct the desired solution as an invariant solution.
Kaltenbacher, Barbara; Klassen, Andrej
2018-05-01
In this paper we provide a convergence analysis of some variational methods alternative to the classical Tikhonov regularization, namely Ivanov regularization (also called the method of quasi solutions) with some versions of the discrepancy principle for choosing the regularization parameter, and Morozov regularization (also called the method of the residuals). After motivating nonequivalence with Tikhonov regularization by means of an example, we prove well-definedness of the Ivanov and the Morozov method, convergence in the sense of regularization, as well as convergence rates under variational source conditions. Finally, we apply these results to some linear and nonlinear parameter identification problems in elliptic boundary value problems.
International Nuclear Information System (INIS)
Quang A, Dang; Hai, Truong Ha
2014-01-01
Very recently in the work S imple Iterative Method for Solving Problems for Plates with Partial Internal Supports, Journal of Engineering Mathematics, DOI: 10.1007/s10665-013-9652-7 (in press) , we proposed a numerical method for solving some problems of plates on one and two line partial internal supports (LPIS). In the essence they are problems with strongly mixed boundary conditions for biharmonic equation. Using this method we reduced the problems to a sequence of boundary value problems for the Poisson equation with weakly mixed boundary conditions, which are easily solved numerically. The advantages of the method over other ones were shown. In this paper we apply the method to plates on internal supports of more complicated configurations. Namely, we consider the case of three LPIS and the case of the cross support. The convergence of the method is established theoretically and its efficiency is confirmed on numerical experiments
A remark on some nonlinear elliptic problems
Directory of Open Access Journals (Sweden)
Lucio Boccardo
2002-10-01
Full Text Available We shall prove an existence result of $W_0^{1,p}(Omega$ solutions for the boundary value problem $$displylines{ -mathop{m div} a(x, u,abla u=F quadmbox{in }Omegacr u=0quadmbox{on }partialOmega }$$ with right hand side in $W^{-1,p'}(Omega$. The features of the equation are that no restrictions on the growth of the function $a(x,s,xi$ with respect to $s$ are assumed and that $a(x,s,xi$ with respect to $xi$ is monotone, but not strictly monotone. We overcome the difficulty of the uncontrolled growth of $a$ thanks to a suitable definition of solution (similar to the one introduced in cite{B6} for the study of the Dirichlet problem in $L^1$ and the difficulty of the not strict monotonicity thanks to a technique (the $L^1$-version of Minty's Lemma similar to the one used in cite{BO}.
DEFF Research Database (Denmark)
Christensen, Anders Bøggild; Rasmussen, Tove; Bundesen, Peter Verner
Sociale problemer kan betragtes som selve udgangspunktet for socialt arbejde, hvor ambitionen er at råde bod på problemerne og sikre, at udsatte borgere får en bedre tilværelse. Det betyder også, at diskussionen af sociale problemer er afgørende for den sociale grundfaglighed. I denne bog sætter en...... række fagfolk på tværs af det danske socialfaglige felt fokus på sociale problemer. Det diskuteres, hvad vi overhovedet forstår ved sociale problemer, hvordan de opstår, hvilke konsekvenser de har, og ikke mindst hvordan man som fagprofessionel håndterer sociale problemer i det daglige arbejde. Bogen er...... skrevet som lærebog til professionsuddannelser, hvor sociale problemer udgør en dimension, bl.a. socialrådgiver-, pædagog- og sygeplejerskeuddannelserne....
Exact Asymptotic Expansion of Singular Solutions for the (2+1-D Protter Problem
Directory of Open Access Journals (Sweden)
Lubomir Dechevski
2012-01-01
Full Text Available We study three-dimensional boundary value problems for the nonhomogeneous wave equation, which are analogues of the Darboux problems in ℝ2. In contrast to the planar Darboux problem the three-dimensional version is not well posed, since its homogeneous adjoint problem has an infinite number of classical solutions. On the other hand, it is known that for smooth right-hand side functions there is a uniquely determined generalized solution that may have a strong power-type singularity at one boundary point. This singularity is isolated at the vertex of the characteristic light cone and does not propagate along the cone. The present paper describes asymptotic expansion of the generalized solutions in negative powers of the distance to this singular point. We derive necessary and sufficient conditions for existence of solutions with a fixed order of singularity and give a priori estimates for the singular solutions.
Explicit solution of Riemann-Hilbert problems for the Ernst equation
Klein, C.; Richter, O.
1998-01-01
Riemann-Hilbert problems are an important solution technique for completely integrable differential equations. They are used to introduce a free function in the solutions which can be used at least in principle to solve initial or boundary value problems. But even if the initial or boundary data can be translated into a Riemann-Hilbert problem, it is in general impossible to obtain explicit solutions. In the case of the Ernst equation, however, this is possible for a large class because the matrix problem can be shown to be gauge equivalent to a scalar one on a hyperelliptic Riemann surface that can be solved in terms of theta functions. As an example we discuss the rigidly rotating dust disk.
... Read MoreDepression in Children and TeensRead MoreBMI Calculator Hearing ProblemsLoss in the ability to hear or discriminate ... This flow chart will help direct you if hearing loss is a problem for you or a ...
Singular problems in shell theory. Computing and asymptotics
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Palencia, Evariste [Institut Jean Le Rond d' Alembert, Paris (France); Millet, Olivier [La Rochelle Univ. (France). LEPTIAB; Bechet, Fabien [Metz Univ. (France). LPMM
2010-07-01
It is known that deformations of thin shells exhibit peculiarities such as propagation of singularities, edge and internal layers, piecewise quasi inextensional deformations, sensitive problems and others, leading in most cases to numerical locking phenomena under several forms, and very poor quality of computations for small relative thickness. Most of these phenomena have a local and often anisotropic character (elongated in some directions), so that efficient numerical schemes should take them in consideration. This book deals with various topics in this context: general geometric formalism, analysis of singularities, numerical computing of thin shell problems, estimates for finite element approximation (including non-uniform and anisotropic meshes), mathematical considerations on boundary value problems in connection with sensitive problems encountered for very thin shells; and others. Most of numerical computations presented here use an adaptive anisotropic mesh procedure which allows a good computation of the physical peculiarities on one hand, and the possibility to perform automatic computations (without a previous mathematical description of the singularities) on the other. The book is recommended for PhD students, postgraduates and researchers who want to improve their knowledge in shell theory and in particular in the areas addressed (analysis of singularities, numerical computing of thin and very thin shell problems, sensitive problems). The lecture of the book may not be continuous and the reader may refer directly to the chapters concerned. (orig.)
Šilhavá, Marie
2009-01-01
This diploma thesis concentrates on problem posing from the students' point of view. Problem posing can be either seen as a teaching method which can be used in the class, or it can be used as a tool for researchers or teachers to assess the level of students' understanding of the topic. In my research, I compare three classes, one mathematics specialist class and two generalist classes, in their ability of problem posing. As an assessment tool it seemed that mathemathics specialists were abl...
DEFF Research Database (Denmark)
Skovhus, Randi Boelskifte; Thomsen, Rie
2017-01-01
This article introduces a method to critical reviews and explores the ways in which problems have been formulated in knowledge production on career guidance in Denmark over a 10-year period from 2004 to 2014. The method draws upon the work of Bacchi focussing on the ‘What's the problem represented...... to be’ (WPR) approach. Forty-nine empirical studies on Danish youth career guidance were included in the study. An analysis of the issues in focus resulted in nine problem categories. One of these, ‘targeting’, is analysed using the WPR approach. Finally, the article concludes that the WPR approach...... provides a constructive basis for a critical analysis and discussion of the collective empirical knowledge production on career guidance, stimulating awareness of problems and potential solutions among the career guidance community....
... For Consumers Consumer Information by Audience For Women Sleep Problems Share Tweet Linkedin Pin it More sharing ... 101 KB) En Español Medicines to Help You Sleep Tips for Better Sleep Basic Facts about Sleep ...
... such as sores, are very common. Follow this chart for more information about mouth problems in adults. ... cancers. See your dentist if sharp or rough teeth or dental work are causing irritation. Start OverDiagnosisThis ...
... our e-newsletter! Aging & Health A to Z Kidney Problems Basic Facts & Information The kidneys are two ... kidney (renal) diseases are called nephrologists . What are Kidney Diseases? For about one-third of older people, ...
Ruggeri, Fabrizio
2016-05-12
In this work we develop a Bayesian setting to infer unknown parameters in initial-boundary value problems related to linear parabolic partial differential equations. We realistically assume that the boundary data are noisy, for a given prescribed initial condition. We show how to derive the joint likelihood function for the forward problem, given some measurements of the solution field subject to Gaussian noise. Given Gaussian priors for the time-dependent Dirichlet boundary values, we analytically marginalize the joint likelihood using the linearity of the equation. Our hierarchical Bayesian approach is fully implemented in an example that involves the heat equation. In this example, the thermal diffusivity is the unknown parameter. We assume that the thermal diffusivity parameter can be modeled a priori through a lognormal random variable or by means of a space-dependent stationary lognormal random field. Synthetic data are used to test the inference. We exploit the behavior of the non-normalized log posterior distribution of the thermal diffusivity. Then, we use the Laplace method to obtain an approximated Gaussian posterior and therefore avoid costly Markov Chain Monte Carlo computations. Expected information gains and predictive posterior densities for observable quantities are numerically estimated using Laplace approximation for different experimental setups.
Directory of Open Access Journals (Sweden)
Nahed S. Hussein
2014-01-01
Full Text Available A numerical boundary integral scheme is proposed for the solution to the system of eld equations of plane. The stresses are prescribed on one-half of the circle, while the displacements are given. The considered problem with mixed boundary conditions in the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a singularity at each of the two separation points, thought to be of logarithmic type. The results are discussed and boundary plots are given. We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical schemes is discussed.
Kellerer, Hans; Pisinger, David
2004-01-01
Thirteen years have passed since the seminal book on knapsack problems by Martello and Toth appeared. On this occasion a former colleague exclaimed back in 1990: "How can you write 250 pages on the knapsack problem?" Indeed, the definition of the knapsack problem is easily understood even by a non-expert who will not suspect the presence of challenging research topics in this area at the first glance. However, in the last decade a large number of research publications contributed new results for the knapsack problem in all areas of interest such as exact algorithms, heuristics and approximation schemes. Moreover, the extension of the knapsack problem to higher dimensions both in the number of constraints and in the num ber of knapsacks, as well as the modification of the problem structure concerning the available item set and the objective function, leads to a number of interesting variations of practical relevance which were the subject of intensive research during the last few years. Hence, two years ago ...
Solution of the Dirichlet Problem for the Poisson's Equation in a Multidimensional Infinite Layer
Directory of Open Access Journals (Sweden)
O. D. Algazin
2015-01-01
Full Text Available The paper considers the multidimensional Poisson equation in the domain bounded by two parallel hyperplanes (in the multidimensional infinite layer. For an n-dimensional half-space method of solving boundary value problems for linear partial differential equations with constant coefficients is a Fourier transform to the variables in the boundary hyperplane. The same method can be used for an infinite layer, as is done in this paper in the case of the Dirichlet problem for the Poisson equation. For strip and infinite layer in three-dimensional space the solutions of this problem are known. And in the three-dimensional case Green's function is written as an infinite series. In this paper, the solution is obtained in the integral form and kernels of integrals are expressed in a finite form in terms of elementary functions and Bessel functions. A recurrence relation between the kernels of integrals for n-dimensional and (n + 2 -dimensional layers was obtained. In particular, is built the Green's function of the Laplace operator for the Dirichlet problem, through which the solution of the problem is recorded. Even in three-dimensional case we obtained new formula compared to the known. It is shown that the kernel of the integral representation of the solution of the Dirichlet problem for a homogeneous Poisson equation (Laplace equation is an approximate identity (δ-shaped system of functions. Therefore, if the boundary values are generalized functions of slow growth, the solution of the Dirichlet problem for the homogeneous equation (Laplace is written as a convolution of kernels with these functions.
Directory of Open Access Journals (Sweden)
Imed Bachar
2014-01-01
Full Text Available We are interested in the following fractional boundary value problem: Dαu(t+atuσ=0, t∈(0,∞, limt→0t2-αu(t=0, limt→∞t1-αu(t=0, where 1<α<2, σ∈(-1,1, Dα is the standard Riemann-Liouville fractional derivative, and a is a nonnegative continuous function on (0,∞ satisfying some appropriate assumptions related to Karamata regular variation theory. Using the Schauder fixed point theorem, we prove the existence and the uniqueness of a positive solution. We also give a global behavior of such solution.
Directory of Open Access Journals (Sweden)
Emran Tohidi
2013-01-01
Full Text Available The idea of approximation by monomials together with the collocation technique over a uniform mesh for solving state-space analysis and optimal control problems (OCPs has been proposed in this paper. After imposing the Pontryagins maximum principle to the main OCPs, the problems reduce to a linear or nonlinear boundary value problem. In the linear case we propose a monomial collocation matrix approach, while in the nonlinear case, the general collocation method has been applied. We also show the efficiency of the operational matrices of differentiation with respect to the operational matrices of integration in our numerical examples. These matrices of integration are related to the Bessel, Walsh, Triangular, Laguerre, and Hermite functions.
DEFF Research Database (Denmark)
Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari
2010-01-01
and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However......, as with other analytical techniques, certain limitations restrict the wide application of perturbation methods, most important of which is the dependence of these methods on the existence of a small parameter in the equation. Disappointingly, the majority of nonlinear problems have no small parameter at all......Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...
Energy Technology Data Exchange (ETDEWEB)
Maliassov, S.Y. [Texas A& M Univ., College Station, TX (United States)
1996-12-31
An approach to the construction of an iterative method for solving systems of linear algebraic equations arising from nonconforming finite element discretizations with nonmatching grids for second order elliptic boundary value problems with anisotropic coefficients is considered. The technique suggested is based on decomposition of the original domain into nonoverlapping subdomains. The elliptic problem is presented in the macro-hybrid form with Lagrange multipliers at the interfaces between subdomains. A block diagonal preconditioner is proposed which is spectrally equivalent to the original saddle point matrix and has the optimal order of arithmetical complexity. The preconditioner includes blocks for preconditioning subdomain and interface problems. It is shown that constants of spectral equivalence axe independent of values of coefficients and mesh step size.
Baronti, Marco; van der Putten, Robertus; Venturi, Irene
2016-01-01
This book, intended as a practical working guide for students in Engineering, Mathematics, Physics, or any other field where rigorous calculus is needed, includes 450 exercises. Each chapter starts with a summary of the main definitions and results, which is followed by a selection of solved exercises accompanied by brief, illustrative comments. A selection of problems with indicated solutions rounds out each chapter. A final chapter explores problems that are not designed with a single issue in mind but instead call for the combination of a variety of techniques, rounding out the book’s coverage. Though the book’s primary focus is on functions of one real variable, basic ordinary differential equations (separation of variables, linear first order and constant coefficients ODEs) are also discussed. The material is taken from actual written tests that have been delivered at the Engineering School of the University of Genoa. Literally thousands of students have worked on these problems, ensuring their real-...
... Home › Aging & Health A to Z › Thyroid Problems Font size A A A Print Share Glossary Basic ... enough thyroid hormone, usually of the thyroxine (T4) type of hormone. Your T4 levels can drop temporarily ...
... fully trust your sense of balance. Loss of balance also raises the risk of falls. This is a serious and even life-threatening ... 65. Balance disorders are serious because of the risk of falls. But occasionally balance problems may warn of another health condition, such ...
Application of the Least Squares Method in Axisymmetric Biharmonic Problems
Directory of Open Access Journals (Sweden)
Vasyl Chekurin
2016-01-01
Full Text Available An approach for solving of the axisymmetric biharmonic boundary value problems for semi-infinite cylindrical domain was developed in the paper. On the lateral surface of the domain homogeneous Neumann boundary conditions are prescribed. On the remaining part of the domain’s boundary four different biharmonic boundary pieces of data are considered. To solve the formulated biharmonic problems the method of least squares on the boundary combined with the method of homogeneous solutions was used. That enabled reducing the problems to infinite systems of linear algebraic equations which can be solved with the use of reduction method. Convergence of the solution obtained with developed approach was studied numerically on some characteristic examples. The developed approach can be used particularly to solve axisymmetric elasticity problems for cylindrical bodies, the heights of which are equal to or exceed their diameters, when on their lateral surface normal and tangential tractions are prescribed and on the cylinder’s end faces various types of boundary conditions in stresses in displacements or mixed ones are given.
Isac, George
1992-01-01
The study of complementarity problems is now an interesting mathematical subject with many applications in optimization, game theory, stochastic optimal control, engineering, economics etc. This subject has deep relations with important domains of fundamental mathematics such as fixed point theory, ordered spaces, nonlinear analysis, topological degree, the study of variational inequalities and also with mathematical modeling and numerical analysis. Researchers and graduate students interested in mathematical modeling or nonlinear analysis will find here interesting and fascinating results.
International Nuclear Information System (INIS)
Bickerton, George E.
1997-01-01
Although there were not reasons to deplore against major activity release from any of the 110 industrial reactors authorized to operate in US, the nuclear incident that occurred at the Three Mile Island Plant in 1979 urged the public conscience toward the necessity of readiness to cope with events of this type. The personnel of the Emergency Planning Office functioning in the frame of US Department of Agriculture has already participated in around 600 intervention drillings on a federal, local or state scale to plan, test or asses radiological emergency plans or to intervene locally. These exercises allowed acquiring a significant experience in elaborating emergency plans, planning the drillings, working out scenarios and evaluation of the potential impact of accidents from the agricultural point of view. We have also taken part in different international drillings among which the most recent are INEX 1 and RADEX 94. We have found on these occasions that the agricultural problems are essential preoccupations in most of the cases no matter if the context is international, national, local or of state level. The paper poses problems specifically related to milk, fruits and vegetables, soils, meat and meat products. Finally the paper discusses issues like drilling planning, alarm and notification, sampling strategy, access authorizations for farmers, removing of contamination wastes. A number of social, political and economical relating problems are also mentioned
A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems
Directory of Open Access Journals (Sweden)
S. S. Motsa
2013-01-01
Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.
Classical solutions of mixed problems for quasilinear first order PFDEs on a cylindrical domain
Directory of Open Access Journals (Sweden)
Wojciech Czernous
2014-01-01
Full Text Available We abandon the setting of the domain as a Cartesian product of real intervals, customary for first order PFDEs (partial functional differential equations with initial boundary conditions. We give a new set of conditions on the possibly unbounded domain \\(\\Omega\\ with Lipschitz differentiable boundary. Well-posedness is then reliant on a variant of the normal vector condition. There is a neighbourhood of \\(\\partial\\Omega\\ with the property that if a characteristic trajectory has a point therein, then its every earlier point lies there as well. With local assumptions on coefficients and on the free term, we prove existence and Lipschitz dependence on data of classical solutions on \\((0,c\\times\\Omega\\ to the initial boundary value problem, for small \\(c\\. Regularity of solutions matches this domain, and the proof uses the Banach fixed-point theorem. Our general model of functional dependence covers problems with deviating arguments and integro-differential equations.
Directory of Open Access Journals (Sweden)
Robert SZABO
2011-12-01
Full Text Available The dispersion relations, appearing in the analysis of the stability of a gas flow in a straight acoustically-lined duct with respect to perturbations produced by a time harmonic source, beside the wave number and complex frequency contain the solution of a boundary value problem of the Pridmore-Brown equation depending on the wave number and frequency. For this reason, in practice the dispersion relations are rarely simple enough for carried out the zeros. The determination of zeros of these dispersion relations is crucial for the prediction of the perturbation attenuation or amplification. In this paper an approximation of the dispersion relations is given. Our approach preserves the general character of the mean flow, the general Pridmore-Brown equation and it’s only in the shear flow that we replace the exact solution of the boundary value problem with its Taylor polynomial approximate. In this way new approximate dispersion relations are obtained which zero’s can be found by computer.
International Nuclear Information System (INIS)
Lukash, V.N.
1983-01-01
Information discussed at the 18th General Assembly of the International Astronomical Union and Symposium on ''Early Universe Evolution and Its Modern Structure'' on the problems of relic radiation, Hubble expansion, spatial structure and physics of the early Universe is presented. The spectrum of relic radioemission differs but slightly from the equilibrium one in the maximum range. In G. Smith (USA) opinion such difference may be caused by any radiosources radiating in the same wave range. The absence of unanimous opinion of astronomers on Hubble constant value is pointed out. G.Tam-man (Switzerland) estimates the Hubble constant 50+-7 km/s. J. Voculer (USA) gives a twice greater value. Such divergence is ca sed by various methods of determining distances up to remote galaxies and galaxy clusters. Many reports deal with large-scale Universe structure. For the first time considered are the processes which occurred in the epoch at times about 10 -35 c from the beginning of the Universe expansion. Such possibility is presented by the theory of ''great unification'' which permits to explain some fundamental properties of the Universe: spatial uniformity of isotropic expansion, existence of small primary density perturbations
Unsupervised neural networks for solving Troesch's problem
International Nuclear Information System (INIS)
Raja Muhammad Asif Zahoor
2014-01-01
In this study, stochastic computational intelligence techniques are presented for the solution of Troesch's boundary value problem. The proposed stochastic solvers use the competency of a feed-forward artificial neural network for mathematical modeling of the problem in an unsupervised manner, whereas the learning of unknown parameters is made with local and global optimization methods as well as their combinations. Genetic algorithm (GA) and pattern search (PS) techniques are used as the global search methods and the interior point method (IPM) is used for an efficient local search. The combination of techniques like GA hybridized with IPM (GA-IPM) and PS hybridized with IPM (PS-IPM) are also applied to solve different forms of the equation. A comparison of the proposed results obtained from GA, PS, IPM, PS-IPM and GA-IPM has been made with the standard solutions including well known analytic techniques of the Adomian decomposition method, the variational iterational method and the homotopy perturbation method. The reliability and effectiveness of the proposed schemes, in term of accuracy and convergence, are evaluated from the results of statistical analysis based on sufficiently large independent runs. (interdisciplinary physics and related areas of science and technology)
FEM × DEM: a new efficient multi-scale approach for geotechnical problems with strain localization
Directory of Open Access Journals (Sweden)
Nguyen Trung Kien
2017-01-01
Full Text Available The paper presents a multi-scale modeling of Boundary Value Problem (BVP approach involving cohesive-frictional granular materials in the FEM × DEM multi-scale framework. On the DEM side, a 3D model is defined based on the interactions of spherical particles. This DEM model is built through a numerical homogenization process applied to a Volume Element (VE. It is then paired with a Finite Element code. Using this numerical tool that combines two scales within the same framework, we conducted simulations of biaxial and pressuremeter tests on a cohesive-frictional granular medium. In these cases, it is known that strain localization does occur at the macroscopic level, but since FEMs suffer from severe mesh dependency as soon as shear band starts to develop, the second gradient regularization technique has been used. As a consequence, the objectivity of the computation with respect to mesh dependency is restored.
Application of spectral Lanczos decomposition method to large scale problems arising geophysics
Energy Technology Data Exchange (ETDEWEB)
Tamarchenko, T. [Western Atlas Logging Services, Houston, TX (United States)
1996-12-31
This paper presents an application of Spectral Lanczos Decomposition Method (SLDM) to numerical modeling of electromagnetic diffusion and elastic waves propagation in inhomogeneous media. SLDM approximates an action of a matrix function as a linear combination of basis vectors in Krylov subspace. I applied the method to model electromagnetic fields in three-dimensions and elastic waves in two dimensions. The finite-difference approximation of the spatial part of differential operator reduces the initial boundary-value problem to a system of ordinary differential equations with respect to time. The solution to this system requires calculating exponential and sine/cosine functions of the stiffness matrices. Large scale numerical examples are in a good agreement with the theoretical error bounds and stability estimates given by Druskin, Knizhnerman, 1987.
Goswami, Deepjyoti
2011-09-01
In this article, we propose and analyze an alternate proof of a priori error estimates for semidiscrete Galerkin approximations to a general second order linear parabolic initial and boundary value problem with rough initial data. Our analysis is based on energy arguments without using parabolic duality. Further, it follows the spirit of the proof technique used for deriving optimal error estimates for finite element approximations to parabolic problems with smooth initial data and hence, it unifies both theories, that is, one for smooth initial data and other for nonsmooth data. Moreover, the proposed technique is also extended to a semidiscrete mixed method for linear parabolic problems. In both cases, optimal L2-error estimates are derived, when the initial data is in L2. A superconvergence phenomenon is also observed, which is then used to prove L∞-estimates for linear parabolic problems defined on two-dimensional spatial domain again with rough initial data. Copyright © Taylor & Francis Group, LLC.
Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D
2014-01-01
The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique.
Parshin, D. A.; Manzhirov, A. V.
2018-04-01
Quasistatic mechanical problems on additive manufacturing aging viscoelastic solids are investigated. The processes of piecewise-continuous accretion of such solids are considered. The consideration is carried out in the framework of linear mechanics of growing solids. A theorem about commutativity of the integration over an arbitrary surface increasing in the solid growing process and the time-derived integral operator of viscoelasticity with a limit depending on the solid point is proved. This theorem provides an efficient way to construct on the basis of Saint-Venant principle solutions of nonclassical boundary-value problems for describing the mechanical behaviour of additively formed solids with integral satisfaction of boundary conditions on the surfaces expanding due to the additional material influx to the formed solid. The constructed solutions will retrace the evolution of the stress-strain state of the solids under consideration during and after the processes of their additive formation. An example of applying the proved theorem is given.
Memon, Sajid; Nataraj, Neela; Pani, Amiya Kumar
2012-01-01
In this article, a posteriori error estimates are derived for mixed finite element Galerkin approximations to second order linear parabolic initial and boundary value problems. Using mixed elliptic reconstructions, a posteriori error estimates in L∞(L2)- and L2(L2)-norms for the solution as well as its flux are proved for the semidiscrete scheme. Finally, based on a backward Euler method, a completely discrete scheme is analyzed and a posteriori error bounds are derived, which improves upon earlier results on a posteriori estimates of mixed finite element approximations to parabolic problems. Results of numerical experiments verifying the efficiency of the estimators have also been provided. © 2012 Society for Industrial and Applied Mathematics.
International Nuclear Information System (INIS)
Goncalves Filho, O.J.A.
1987-01-01
This work aims to describe the computer code EVP2D developed for the elastoviscoplastic-damage analysis of mettalic components, with particular emphasis dedicated to the problem of creep damage and rupture. After a brief introduction of the basic concepts and procedures of Continuum Damage Mechanics, the constitutive equations implemented are presented. Next, the finite element approximation proposed for solution of the initial boundary value problem of interest is discussed, particularly the numerical algorithms used for time integration of the creep strain rate and damage rate equations, and the numerical procedures adopted for dealing with the presense of partially or fully ruptured finite elements in the mesh. As a pratical application, the rupture behaviour of a biaxially tension loaded plate containing a central circular hole is examined. Finally, future developments of the code, which include as prioritiesthe treatment of ciyclic loads and the description of the anisotropic feature of creep damage evolution, are briefly introduced. (author) [pt
Energy Technology Data Exchange (ETDEWEB)
Bloechle, B.; Manteuffel, T.; McCormick, S.; Starke, G.
1996-12-31
Many physical phenomena are modeled as scalar second-order elliptic boundary value problems with discontinuous coefficients. The first-order system least-squares (FOSLS) methodology is an alternative to standard mixed finite element methods for such problems. The occurrence of singularities at interface corners and cross-points requires that care be taken when implementing the least-squares finite element method in the FOSLS context. We introduce two methods of handling the challenges resulting from singularities. The first method is based on a weighted least-squares functional and results in non-conforming finite elements. The second method is based on the use of singular basis functions and results in conforming finite elements. We also share numerical results comparing the two approaches.
Singular Solutions to a (3 + 1-D Protter-Morawetz Problem for Keldysh-Type Equations
Directory of Open Access Journals (Sweden)
Nedyu Popivanov
2017-01-01
Full Text Available We study a boundary value problem for (3 + 1-D weakly hyperbolic equations of Keldysh type (problem PK. The Keldysh-type equations are known in some specific applications in plasma physics, optics, and analysis on projective spaces. Problem PK is not well-posed since it has infinite-dimensional cokernel. Actually, this problem is analogous to a similar one proposed by M. Protter in 1952, but for Tricomi-type equations which, in part, are closely connected with transonic fluid dynamics. We consider a properly defined, in a special function space, generalized solution to problem PK for which existence and uniqueness theorems hold. It is known that it may have a strong power-type singularity at one boundary point even for very smooth right-hand sides of the equation. In the present paper we study the asymptotic behavior of the generalized solutions of problem PK at the singular point. There are given orthogonality conditions on the right-hand side of the equation, which are necessary and sufficient for the existence of a generalized solution with fixed order of singularity.
A non-standard optimal control problem arising in an economics application
Directory of Open Access Journals (Sweden)
Alan Zinober
2013-04-01
Full Text Available A recent optimal control problem in the area of economics has mathematical properties that do not fall into the standard optimal control problem formulation. In our problem the state value at the final time the state, y(T = z, is free and unknown, and additionally the Lagrangian integrand in the functional is a piecewise constant function of the unknown value y(T. This is not a standard optimal control problem and cannot be solved using Pontryagin's Minimum Principle with the standard boundary conditions at the final time. In the standard problem a free final state y(T yields a necessary boundary condition p(T = 0, where p(t is the costate. Because the integrand is a function of y(T, the new necessary condition is that y(T should be equal to a certain integral that is a continuous function of y(T. We introduce a continuous approximation of the piecewise constant integrand function by using a hyperbolic tangent approach and solve an example using a C++ shooting algorithm with Newton iteration for solving the Two Point Boundary Value Problem (TPBVP. The minimising free value y(T is calculated in an outer loop iteration using the Golden Section or Brent algorithm. Comparative nonlinear programming (NP discrete-time results are also presented.
Regularization and computational methods for precise solution of perturbed orbit transfer problems
Woollands, Robyn Michele
The author has developed a suite of algorithms for solving the perturbed Lambert's problem in celestial mechanics. These algorithms have been implemented as a parallel computation tool that has broad applicability. This tool is composed of four component algorithms and each provides unique benefits for solving a particular type of orbit transfer problem. The first one utilizes a Keplerian solver (a-iteration) for solving the unperturbed Lambert's problem. This algorithm not only provides a "warm start" for solving the perturbed problem but is also used to identify which of several perturbed solvers is best suited for the job. The second algorithm solves the perturbed Lambert's problem using a variant of the modified Chebyshev-Picard iteration initial value solver that solves two-point boundary value problems. This method converges over about one third of an orbit and does not require a Newton-type shooting method and thus no state transition matrix needs to be computed. The third algorithm makes use of regularization of the differential equations through the Kustaanheimo-Stiefel transformation and extends the domain of convergence over which the modified Chebyshev-Picard iteration two-point boundary value solver will converge, from about one third of an orbit to almost a full orbit. This algorithm also does not require a Newton-type shooting method. The fourth algorithm uses the method of particular solutions and the modified Chebyshev-Picard iteration initial value solver to solve the perturbed two-impulse Lambert problem over multiple revolutions. The method of particular solutions is a shooting method but differs from the Newton-type shooting methods in that it does not require integration of the state transition matrix. The mathematical developments that underlie these four algorithms are derived in the chapters of this dissertation. For each of the algorithms, some orbit transfer test cases are included to provide insight on accuracy and efficiency of these
A Bayesian setting for an inverse problem in heat transfer
Ruggeri, Fabrizio; Sawlan, Zaid A; Scavino, Marco; Tempone, Raul
2014-01-01
In this work a Bayesian setting is developed to infer the thermal conductivity, an unknown parameter that appears into heat equation. Temperature data are available on the basis of cooling experiments. The realistic assumption that the boundary data are noisy is introduced, for a given prescribed initial condition. We show how to derive the global likelihood function for the forward boundary-initial condition problem, given the values of the temperature field plus Gaussian noise. We assume that the thermal conductivity parameter can be modelled a priori through a lognormal distributed random variable or by means of a space-dependent stationary lognormal random field. In both cases, given Gaussian priors for the time-dependent Dirichlet boundary values, we marginalize out analytically the joint posterior distribution of and the random boundary conditions, TL and TR, using the linearity of the heat equation. Synthetic data are used to carry out the inference. We exploit the concentration of the posterior distribution of , using the Laplace approximation and therefore avoiding costly MCMC computations.
A Bayesian setting for an inverse problem in heat transfer
Ruggeri, Fabrizio
2014-01-06
In this work a Bayesian setting is developed to infer the thermal conductivity, an unknown parameter that appears into heat equation. Temperature data are available on the basis of cooling experiments. The realistic assumption that the boundary data are noisy is introduced, for a given prescribed initial condition. We show how to derive the global likelihood function for the forward boundary-initial condition problem, given the values of the temperature field plus Gaussian noise. We assume that the thermal conductivity parameter can be modelled a priori through a lognormal distributed random variable or by means of a space-dependent stationary lognormal random field. In both cases, given Gaussian priors for the time-dependent Dirichlet boundary values, we marginalize out analytically the joint posterior distribution of and the random boundary conditions, TL and TR, using the linearity of the heat equation. Synthetic data are used to carry out the inference. We exploit the concentration of the posterior distribution of , using the Laplace approximation and therefore avoiding costly MCMC computations.
Direct and inverse problems in dispersive time-of-flight photocurrent revisited
Sagues, Francesc; Sokolov, Igor M.
2017-10-01
Using the fact that the continuous time random walk (CTRW) scheme is a random process subordinated to a simple random walk under the operational time given by the number of steps taken by the walker up to a given time, we revisit the problem of strongly dispersive transport in disordered media, which first lead Scher and Montroll to introducing the power law waiting time distributions. Using a subordination approach permits to disentangle the complexity of the problem, separating the solution of the boundary value problem (which is solved on the level of normal diffusive transport) from the influence of the waiting times, which allows for the solution of the direct problem in the whole time domain (including short times, out of reach of the initial approach), and simplifying strongly the analysis of the inverse problem. This analysis shows that the current traces do not contain information sufficient for unique restoration of the waiting time probability densities, but define a single-parametric family of functions that can be restored, all leading to the same photocurrent forms. The members of the family have the power-law tails which differ only by a prefactor, but may look astonishingly different at their body. The same applies to the multiple trapping model, mathematically equivalent to a special limiting case of CTRW. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Class and Home Problems: Optimization Problems
Anderson, Brian J.; Hissam, Robin S.; Shaeiwitz, Joseph A.; Turton, Richard
2011-01-01
Optimization problems suitable for all levels of chemical engineering students are available. These problems do not require advanced mathematical techniques, since they can be solved using typical software used by students and practitioners. The method used to solve these problems forces students to understand the trends for the different terms…
Simultaneous boundary value and material parameter estimation using imperfect compression data
CSIR Research Space (South Africa)
Jansen van Rensburg, GJ
2014-09-01
Full Text Available Data is available for different hard metal samples tested in compression using a modified tensile test specimen. Three strain gauges were placed 120 degrees apart around the circumference of the centre of the test section. The spread of the strain...
Tangential boundary values of Laplace transforms. Applications to Muntz-Szasz type approximation
International Nuclear Information System (INIS)
Sedletskii, A M
2003-01-01
We consider the Laplace transforms (LT) of functions in L q (R + ), 1 p spaces on the half-line such that the Szasz condition is not necessary for the completeness of the system exp(-λ n t) in these spaces
Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI
Gupta, Anjali; Pahuja, Gunjan
2017-08-01
The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).
International Nuclear Information System (INIS)
Vrankar, L.; Turk, G.; Runovc, F.; Kansa, E.J.
2006-01-01
Many heat-transfer problems involve a change of phase of material due to solidification or melting. Applications include: the safety studies of nuclear reactors (molten core concrete interaction), the drilling of high ice-content soil, the storage of thermal energy, etc. These problems are often called Stefan's or moving boundary value problems. Mathematically, the interface motion is expressed implicitly in an equation for the conservation of thermal energy at the interface (Stefan's conditions). This introduces a non-linear character to the system which treats each problem somewhat uniquely. The exact solution of phase change problems is limited exclusively to the cases in which e.g. the heat transfer regions are infinite or semi-infinite one dimensional-space. Therefore, solution is obtained either by approximate analytical solution or by numerical methods. Finite-difference methods and finite-element techniques have been used extensively for numerical solution of moving boundary problems. Recently, the numerical methods have focused on the idea of using a mesh-free methodology for the numerical solution of partial differential equations based on radial basis functions. In our case we will study solid-solid transformation. The numerical solutions will be compared with analytical solutions. Actually, in our work we will examine usefulness of radial basis functions (especially multiquadric-MQ) for one-dimensional Stefan's problems. The position of the moving boundary will be simulated by moving grid method. The resultant system of RBF-PDE will be solved by affine space decomposition. (author)
Cost-effective computations with boundary interface operators in elliptic problems
International Nuclear Information System (INIS)
Khoromskij, B.N.; Mazurkevich, G.E.; Nikonov, E.G.
1993-01-01
The numerical algorithm for fast computations with interface operators associated with the elliptic boundary value problems (BVP) defined on step-type domains is presented. The algorithm is based on the asymptotically almost optimal technique developed for treatment of the discrete Poincare-Steklov (PS) operators associated with the finite-difference Laplacian on rectangles when using the uniform grid with a 'displacement by h/2'. The approach can be regarded as an extension of the method proposed for the partial solution of the finite-difference Laplace equation to the case of displaced grids and mixed boundary conditions. It is shown that the action of the PS operator for the Dirichlet problem and mixed BVP can be computed with expenses of the order of O(Nlog 2 N) both for arithmetical operations and computer memory needs, where N is the number of unknowns on the rectangle boundary. The single domain algorithm is applied to solving the multidomain elliptic interface problems with piecewise constant coefficients. The numerical experiments presented confirm almost linear growth of the computational costs and memory needs with respect to the dimension of the discrete interface problem. 14 refs., 3 figs., 4 tabs
New Boundary Constraints for Elliptic Systems used in Grid Generation Problems
Kaul, Upender K.; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper discusses new boundary constraints for elliptic partial differential equations as used in grid generation problems in generalized curvilinear coordinate systems. These constraints, based on the principle of local conservation of thermal energy in the vicinity of the boundaries, are derived using the Green's Theorem. They uniquely determine the so called decay parameters in the source terms of these elliptic systems. These constraints' are designed for boundary clustered grids where large gradients in physical quantities need to be resolved adequately. It is observed that the present formulation also works satisfactorily for mild clustering. Therefore, a closure for the decay parameter specification for elliptic grid generation problems has been provided resulting in a fully automated elliptic grid generation technique. Thus, there is no need for a parametric study of these decay parameters since the new constraints fix them uniquely. It is also shown that for Neumann type boundary conditions, these boundary constraints uniquely determine the solution to the internal elliptic problem thus eliminating the non-uniqueness of the solution of an internal Neumann boundary value grid generation problem.
On some nonlinear problems arising in the physics of ionized gases
International Nuclear Information System (INIS)
Hilhorst-Goldman, D.
1981-01-01
The author reports results obtained by rigorous analysis of a nonlinear differential equation for the electron density nsub(e) in a specific type of electrical discharge. The problem is essentially two-dimensional. She discusses in particular the escape of electrons to infinity above a critical temperature and the boundary layer exhibited by nsub(e) near zero temperature. A singular boundary value problem arising in a pre-breakdown gas discharge is discussed. A Coulomb gas is considered in a special experimental situation: the pre-breakdown gas discharge between two electrodes. The equation for the negative charge density can be formulated as a nonlinear parabolic equation degenerate at the origin. The existence and uniqueness of the solution are proved as well as the asymptotic stability of its unique steady state. Some results are also given about the rate of convergence. The variational characterisation of the limit solution of a singular perturbation problem and variational analysis of a perturbed free boundary problem are considered. (Auth./C.F.)
... Problems Diabetes, Sexual, & Bladder Problems Clinical Trials Preventing Diabetes Problems View or Print All Sections Heart Disease & ... to help control symptoms and restore intimacy. Depression & Diabetes Depression is common among people with a chronic, ...
Reeves, Charles A.
2000-01-01
Uses the chicken problem for sixth grade students to scratch the surface of systems of equations using intuitive approaches. Provides students responses to the problem and suggests similar problems for extensions. (ASK)
Problems in differential equations
Brenner, J L
2013-01-01
More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.
On the Dirichlet problem for an elliptic equation
Directory of Open Access Journals (Sweden)
Anatolii K. Gushchin
2015-03-01
Full Text Available It is well known that the concept of a generalized solution from the Sobolev space $ W_2 ^ 1 $ of the Dirichlet problem for a second order elliptic equation is not a generalization of the classical solution sensu stricto: not every continuous function on the domain boundary is a trace of some function from $ W_2 ^ 1$. The present work is dedicated to the memory of Valentin Petrovich Mikhailov, who proposed a generalization of both these concepts. In the Mikhailov's definition the boundary values of the solution are taken from the $ L_2 $; this definition extends naturally to the case of boundary functions from $ L_p$, $p> 1 $. Subsequently, the author of this work has shown that solutions have the property $ (n-1 $-dimensional continuity; $ n $ is a dimension of the space in which we consider the problem. This property is similar to the classical definition of uniform continuity, but traces of this function on the measures from a special class should be considered instead of values of the function at points. This class is a little more narrow than the class of Carleson measures. The trace of function on the measure is an element of $ L_p $ with respect to this measure. The property $ (n-1 $-dimensional continuity makes it possible to give another definition of the solution of the Dirichlet problem (a definition of $(n-1$-dimensionally continuous solution, which is in the form close to the classical one. This definition does not require smoothness of the boundary. The Dirichlet problem in the Mikhailov's formulation and especially for the $(n-1$-dimensionally continuous solution was studied insufficiently (in contrast to the cases of classical and generalized solutions. First of all, it refers to conditions on the right side of the equation, in which the Dirichlet problem is solvable. In this article the new results in this direction are presented. In addition, we discuss the conditions on the coefficients of the equation and the conditions on
A note on the solution of general Falkner-Skan problem by two novel semi-analytical techniques
Directory of Open Access Journals (Sweden)
Ahmed Khidir
2015-12-01
Full Text Available The aim of this paper is to give a presentation of two new iterative methods for solving non-linear differential equations, they are successive linearisation method and spectral homotopy perturbation method. We applied these techniques on the non-linear boundary value problems of Falkner-Skan type. The methods used to find a recursive former for higher order equations that are solved using the Chebyshev spectral method to find solutions that are accurate and converge rapidly to the full numerical solution. The methods are illustrated by progressively applying the technique to the Blasius boundary layer equation, the Falkner-Skan equation and finally, the magnetohydrodynamic (MHD Falkner-Skan equation. The solutions are compared to other methods in the literature such as the homotopy analysis method and the spectral-homotopy analysis method with focus on the accuracy and convergence of this new techniques.
Cheryl A. Smith
2008-01-01
Diagnosing Christmas tree problems can be a challenge, requiring a basic knowledge of plant culture and physiology, the effect of environmental influences on plant health, and the ability to identify the possible causes of plant problems. Developing a solution or remedy to the problem depends on a proper diagnosis, a process that requires recognition of a problem and...
Islamic Education Research Problem
Directory of Open Access Journals (Sweden)
Abdul Muthalib
2012-04-01
Full Text Available This paper will discuss Islamic educational studies that is reviewing how to find, limit and define problems and problem-solving concepts. The central question of this paper is to describe how to solve the problem in Islamic educational research. A researcher or educator who has the knowledge, expertise, or special interest on education for example is usually having a sensitivity to issues relating to educational research. In the research dimension of religious education, there are three types of problems, namely: Problems foundation, structural problems and operational issues. In doing research in Islamic education someone should understand research problem, limiting and formulating the problem, how to solve the problem, other problem relating to the point of research, and research approach.
Inverse Problem for Two-Dimensional Discrete Schr`dinger Equation
Serdyukova, S I
2000-01-01
For two-dimensional discrete Schroedinger equation the boundary-value problem in rectangle M times N with zero boundary conditions is solved. It's stated in this work, that inverse problem reduces to reconstruction of C symmetric five-diagonal matrix with given spectrum and given first k(M,N), 1<-k
The Markov moment problem and extremal problems
Kreĭn, M G; Louvish, D
1977-01-01
In this book, an extensive circle of questions originating in the classical work of P. L. Chebyshev and A. A. Markov is considered from the more modern point of view. It is shown how results and methods of the generalized moment problem are interlaced with various questions of the geometry of convex bodies, algebra, and function theory. From this standpoint, the structure of convex and conical hulls of curves is studied in detail and isoperimetric inequalities for convex hulls are established; a theory of orthogonal and quasiorthogonal polynomials is constructed; problems on limiting values of integrals and on least deviating functions (in various metrics) are generalized and solved; problems in approximation theory and interpolation and extrapolation in various function classes (analytic, absolutely monotone, almost periodic, etc.) are solved, as well as certain problems in optimal control of linear objects.
Differential equations problem solver
Arterburn, David R
2012-01-01
REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and
Sleep problems are a common side effect during cancer treatment. Learn how a polysomnogram can assess sleep problems. Learn about the benefits of managing sleep disorders in men and women with cancer.
The internal percolation problem
International Nuclear Information System (INIS)
Bezsudnov, I.V.; Snarskii, A.A.
2010-01-01
The internal percolation problem (IP) as a new type of the percolation problem is introduced and investigated. In spite of the usual (or external) percolation problem (EP) when the percolation current flows from the top to the bottom of the system, in IP case the voltage is applied through bars which are present in the hole located within the system. The EP problem has two major parameters: M-size of the system and a 0 -size of inclusions, bond size, etc. The IP problem holds one parameter more: size of the hole L. Numerical simulation shows that the critical indexes of conductance for the IP problem are very close to those in the EP problem. On the contrary, the indexes of the relative spectral noise density of 1/f noise and higher moments differ from those in the EP problem. The basics of these facts is discussed.
Challenging problems in algebra
Posamentier, Alfred S
1996-01-01
Over 300 unusual problems, ranging from easy to difficult, involving equations and inequalities, Diophantine equations, number theory, quadratic equations, logarithms, more. Detailed solutions, as well as brief answers, for all problems are provided.
Choate, Joyce S.
1990-01-01
The initial step of a strategic process for solving mathematical problems, "studying the question," is discussed. A lesson plan for teaching students to identify and revise arithmetic problems is presented, involving directed instruction and supervised practice. (JDD)
International Nuclear Information System (INIS)
Weinberg, S.
1989-01-01
Cosmological constant problem is discussed. History of the problem is briefly considered. Five different approaches to solution of the problem are described: supersymmetry, supergravity, superstring; anthropic approach; mechamism of lagrangian alignment; modification of gravitation theory and quantum cosmology. It is noted that approach, based on quantum cosmology is the most promising one
Hayes, John R.
This book, designed for a college course on general problem-solving skills, focuses on skills that can be used by anyone in solving problems that occur in everyday life. Part I considers theory and practice: understanding problems, search, and protocol analysis. Part II discusses memory and knowledge acquisition: the structure of human memory,…
The rational complementarity problem
Heemels, W.P.M.H.; Schumacher, J.M.; Weiland, S.
1999-01-01
An extension of the linear complementarity problem (LCP) of mathematical programming is the so-called rational complementarity problem (RCP). This problem occurs if complementarity conditions are imposed on input and output variables of linear dynamical input/state/output systems. The resulting
The triangle scheduling problem
Dürr, Christoph; Hanzálek, Zdeněk; Konrad, Christian; Seddik, Yasmina; Sitters, R.A.; Vásquez, Óscar C.; Woeginger, Gerhard
2017-01-01
This paper introduces a novel scheduling problem, where jobs occupy a triangular shape on the time line. This problem is motivated by scheduling jobs with different criticality levels. A measure is introduced, namely the binary tree ratio. It is shown that the Greedy algorithm solves the problem to
Pollution problems plague Poland
International Nuclear Information System (INIS)
Bajsarowicz, J.F.
1989-01-01
Poland's environmental problems are said to stem from investments in heavy industries that require enormous quantities of power and from the exploitation of two key natural resources: coal and sulfur. Air and water pollution problems and related public health problems are discussed
Classifying IS Project Problems
DEFF Research Database (Denmark)
Munk-Madsen, Andreas
2006-01-01
The literature contains many lists of IS project problems, often in the form of risk factors. The problems sometimes appear unordered and overlapping, which reduces their usefulness to practitioners as well as theoreticians. This paper proposes a list of criteria for formulating project problems...
Inverse problems of geophysics
International Nuclear Information System (INIS)
Yanovskaya, T.B.
2003-07-01
This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given
Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids
Energy Technology Data Exchange (ETDEWEB)
Scheichl, Robert [Univ. of Bath (United Kingdom). Dept. of Mathematical Sciences; Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zikatanov, Ludmil T. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mathematics
2012-06-21
We generalize the analysis of classical multigrid and two-level overlapping Schwarz methods for 2nd order elliptic boundary value problems to problems with large discontinuities in the coefficients that are not resolved by the coarse grids or the subdomain partition. The theoretical results provide a recipe for designing hierarchies of standard piecewise linear coarse spaces such that the multigrid convergence rate and the condition number of the Schwarz preconditioned system do not depend on the coefficient variation or on any mesh parameters. One assumption we have to make is that the coarse grids are sufficiently fine in the vicinity of cross points or where regions with large diffusion coefficients are separated by a narrow region where the coefficient is small. We do not need to align them with possible discontinuities in the coefficients. The proofs make use of novel stable splittings based on weighted quasi-interpolants and weighted Poincaré-type inequalities. Finally, numerical experiments are included that illustrate the sharpness of the theoretical bounds and the necessity of the technical assumptions.
Directory of Open Access Journals (Sweden)
Aang Nuryaman
2012-11-01
Full Text Available The governing equations describing the methane oxidation process in reverse flow reactor are given by a set of convective-diffusion equations with a nonlinear reaction term, where temperature and methane conversion are dependent variables. In this study, the process is assumed to be one-dimensional pseudo homogeneous model and takes place with a certain reaction rate in which the whole process of reactor is still workable. Thus, the reaction rate can proceed at a fixed temperature. Under this condition, we restrict ourselves to solve the equations for the conversion only. From the available data, it turns out that the ratio of the diffusion term to the reaction term is small. Hence, this ratio is considered as small parameter in our model and this leads to a singular perturbation problem. In the vicinity of small parameter in front of higher order term, the numerical difficulties will be found. Here, we present an analytical solution by means of matched asymptotic expansions. Result shows that, up to and including the first order of approximation, the solution is in agreement with the exact and numerical solutions of the boundary value problem.
Analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation
International Nuclear Information System (INIS)
Durand, B.; Durand, L.
1983-01-01
We construct an analytic solution to the spinless S-wave Salpeter equation for two quarks interacting via a Coulomb potential, [2(-del 2 +m 2 )/sup 1/2/-M-α/r] psi(r) = 0, by transforming the momentum-space form of the equation into a mapping or boundary-value problem for analytic functions. The principal part of the three-dimensional wave function is identical to the solution of a one-dimensional Salpeter equation found by one of us and discussed here. The remainder of the wave function can be constructed by the iterative solution of an inhomogeneous singular integral equation. We show that the exact bound-state eigenvalues for the Coulomb problem are M/sub n/ = 2m/(1+α 2 /4n 2 )/sup 1/2/, n = 1,2,..., and that the wave function for the static interaction diverges for r→0 as C(mr)/sup -nu/, where #betta# = (α/π)(1+α/π+...) is known exactly
Multiresolution strategies for the numerical solution of optimal control problems
Jain, Sachin
There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a
Hajipour, Mojtaba; Jajarmi, Amin
2018-02-01
Using the Pontryagin's maximum principle for a time-delayed optimal control problem results in a system of coupled two-point boundary-value problems (BVPs) involving both time-advance and time-delay arguments. The analytical solution of this advance-delay two-point BVP is extremely difficult, if not impossible. This paper provides a discrete general form of the numerical solution for the derived advance-delay system by applying a finite difference θ-method. This method is also implemented for the infinite-time horizon time-delayed optimal control problems by using a piecewise version of the θ-method. A matrix formulation and the error analysis of the suggested technique are provided. The new scheme is accurate, fast and very effective for the optimal control of linear and nonlinear time-delay systems. Various types of finite- and infinite-time horizon problems are included to demonstrate the accuracy, validity and applicability of the new technique.
Energy Technology Data Exchange (ETDEWEB)
Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory
2010-01-01
In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.
Creativity for Problem Solvers
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui
2009-01-01
This paper presents some modern and interdisciplinary concepts about creativity and creative processes specially related to problem solving. Central publications related to the theme are briefly reviewed. Creative tools and approaches suitable to support problem solving are also presented. Finally......, the paper outlines the author’s experiences using creative tools and approaches to: Facilitation of problem solving processes, strategy development in organisations, design of optimisation systems for large scale and complex logistic systems, and creative design of software optimisation for complex non...
Perturbed asymptotically linear problems
Bartolo, R.; Candela, A. M.; Salvatore, A.
2012-01-01
The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...
The stochastic goodwill problem
Marinelli, Carlo
2003-01-01
Stochastic control problems related to optimal advertising under uncertainty are considered. In particular, we determine the optimal strategies for the problem of maximizing the utility of goodwill at launch time and minimizing the disutility of a stream of advertising costs that extends until the launch time for some classes of stochastic perturbations of the classical Nerlove-Arrow dynamics. We also consider some generalizations such as problems with constrained budget and with discretionar...
Bruce L. Parker
1991-01-01
As entomologists, we sometimes like to think of an insect pest problem as simply a problem with an insect and its host. Our jobs would be much easier if that were the case, but of course, it is never that simple. There are many other factors besides the insect, and each one must be fully considered to understand the problem and develop effective management solutions....
Raffo Lecca, Eduardo
2014-01-01
This is a famous problem from the annals of literature in operations research. G. Dantzig in [1] refers to W.W. Jacobs with his paper "The Caterer Problem" Nav. Log Res. Quart. 1 1954; as well as Gaddum, Hoffman and Sokolowsky "On the Solution of the Caterer Problem" Naval Res Logist. Quart., Vol.1, No. 3, september, 1954, and William Prager "On the Caterer Problem" of Management Sci, Vol 3, No. 1 october 1956 and Management Sci, Vol 3, No. 2 january 1957. Subsequently both G. Hadley presents...
Araki,Naoki
2018-01-01
The Problem of Evil has been discussed as one of the major problems in monotheism. “Why does Almighty God allow evil to exist?” Various solutions to this problem have been proposed, including the Free Will Defence. But none of them is convincing. The Problem of Evil has an assumption, which is that God exists. One of the proofs of God’s existence is René Descartes’s Ontological Argument. But none of them is persuasive. Every logic has its own assumption, which needs to be verified. So this pr...
Singh, Devraj
2015-01-01
Numerical Problems in Physics, Volume 1 is intended to serve the need of the students pursuing graduate and post graduate courses in universities with Physics and Materials Science as subject including those appearing in engineering, medical, and civil services entrance examinations. KEY FEATURES: * 29 chapters on Optics, Wave & Oscillations, Electromagnetic Field Theory, Solid State Physics & Modern Physics * 540 solved numerical problems of various universities and ompetitive examinations * 523 multiple choice questions for quick and clear understanding of subject matter * 567 unsolved numerical problems for grasping concepts of the various topic in Physics * 49 Figures for understanding problems and concept
DEFF Research Database (Denmark)
Foss, Kirsten; Foss, Nicolai Juul
2006-01-01
as a general approach to problem solving. We apply these Simonian ideas to organisational issues, specifically new organisational forms. Specifically, Simonian ideas allow us to develop a morphology of new organisational forms and to point to some design problems that characterise these forms.......Two of Herbert Simon's best-known papers are 'The Architecture of Complexity' and 'The Structure of Ill-Structured Problems.' We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...
International Nuclear Information System (INIS)
Egorov, Yurii V
2013-01-01
We consider the classical problem on the tallest column which was posed by Euler in 1757. Bernoulli-Euler theory serves today as the basis for the design of high buildings. This problem is reduced to the problem of finding the potential for the Sturm-Liouville equation corresponding to the maximum of the first eigenvalue. The problem has been studied by many mathematicians but we give the first rigorous proof of the existence and uniqueness of the optimal column and we give new formulae which let us find it. Our method is based on a new approach consisting in the study of critical points of a related nonlinear functional. Bibliography: 6 titles.
Shielding benchmark problems, (2)
International Nuclear Information System (INIS)
Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Shin, Kazuo; Tada, Keiko.
1980-02-01
Shielding benchmark problems prepared by Working Group of Assessment of Shielding Experiments in the Research Committee on Shielding Design in the Atomic Energy Society of Japan were compiled by Shielding Laboratory in Japan Atomic Energy Research Institute. Fourteen shielding benchmark problems are presented newly in addition to twenty-one problems proposed already, for evaluating the calculational algorithm and accuracy of computer codes based on discrete ordinates method and Monte Carlo method and for evaluating the nuclear data used in codes. The present benchmark problems are principally for investigating the backscattering and the streaming of neutrons and gamma rays in two- and three-dimensional configurations. (author)
Directory of Open Access Journals (Sweden)
Radovanović Saša Ž.
2014-01-01
Full Text Available The author explains the link between fundamental ontology and metontology in Heidegger's thought. In this context, he raises the question about art as a metontological problem. Then he goes to show that the problem of metontology stems from imanent transformation of fundamental ontology. In this sense, two aspects of the problem of existence assume relevance, namely, universality and radicalism. He draws the conclusion that metontology and art as its problem, as opposed to fundamental ontology, were not integrated into Heidegger's later thought.
Combinatorial problems and exercises
Lovász, László
2007-01-01
The main purpose of this book is to provide help in learning existing techniques in combinatorics. The most effective way of learning such techniques is to solve exercises and problems. This book presents all the material in the form of problems and series of problems (apart from some general comments at the beginning of each chapter). In the second part, a hint is given for each exercise, which contains the main idea necessary for the solution, but allows the reader to practice the techniques by completing the proof. In the third part, a full solution is provided for each problem. This book w
International Nuclear Information System (INIS)
Braun, H.P.
1979-01-01
With the aim of obtaining microstructural information of multi-component materials fracture-mechanical calculations on continuum-mechanical models of fiber composites were performed. There were ideal sections of material permitting the formulation of suitable mixed boundary value problems of static thermoelasticity whose solutions could be obtained by means of appropriate numerical methods from continuum mechanics. As model loads exclusively thermally induced residual stresses were assumed, being of special interest because of the thermomechanically inhomogeneous structure of composite materials on one hand and having got decisive significance for a number of important areas of application as e.g. aero-space industry, reactor technology and chemical apparatus engineering on the other. The results evaluated numerically are exemplarily examined by means of photoelasticity. (orig./IHOE) [de
International Nuclear Information System (INIS)
Finsterle, S.
1997-11-01
This report contains a collection of ITOUGH2 sample problems. It complements the ITOUGH2 User's Guide [Finsterle, 1997a], and the ITOUGH2 Command Reference [Finsterle, 1997b]. ITOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis. It is based on the TOUGH2 simulator for non-isothermal multiphase flow in fractured and porous media [Preuss, 1987, 1991a]. The report ITOUGH2 User's Guide [Finsterle, 1997a] describes the inverse modeling framework and provides the theoretical background. The report ITOUGH2 Command Reference [Finsterle, 1997b] contains the syntax of all ITOUGH2 commands. This report describes a variety of sample problems solved by ITOUGH2. Table 1.1 contains a short description of the seven sample problems discussed in this report. The TOUGH2 equation-of-state (EOS) module that needs to be linked to ITOUGH2 is also indicated. Each sample problem focuses on a few selected issues shown in Table 1.2. ITOUGH2 input features and the usage of program options are described. Furthermore, interpretations of selected inverse modeling results are given. Problem 1 is a multipart tutorial, describing basic ITOUGH2 input files for the main ITOUGH2 application modes; no interpretation of results is given. Problem 2 focuses on non-uniqueness, residual analysis, and correlation structure. Problem 3 illustrates a variety of parameter and observation types, and describes parameter selection strategies. Problem 4 compares the performance of minimization algorithms and discusses model identification. Problem 5 explains how to set up a combined inversion of steady-state and transient data. Problem 6 provides a detailed residual and error analysis. Finally, Problem 7 illustrates how the estimation of model-related parameters may help compensate for errors in that model
Long, James D.
Schools need to meet unique problems through the development of special classroom management techniques. Factors which contribute to classroom problems include lack of supervision at home, broken homes, economic deprivation, and a desire for peer attention. The educational atmosphere should encourage creativity for both the student and the…
Inverse logarithmic potential problem
Cherednichenko, V G
1996-01-01
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.