WorldWideScience

Sample records for boundary stiffness regulates

  1. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation.

    Science.gov (United States)

    Hwang, Jun-Ha; Byun, Mi Ran; Kim, A Rum; Kim, Kyung Min; Cho, Hang Jun; Lee, Yo Han; Kim, Juwon; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2015-01-01

    Mesenchymal stem cell (MSC) differentiation is regulated by the extracellular matrix (ECM) through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ) was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation.

  2. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Jun-Ha Hwang

    Full Text Available Mesenchymal stem cell (MSC differentiation is regulated by the extracellular matrix (ECM through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation.

  3. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    Science.gov (United States)

    Eisenberg, Jessica L; Safi, Asmahan; Wei, Xiaoding; Espinosa, Horacio D; Budinger, GR Scott; Takawira, Desire; Hopkinson, Susan B; Jones, Jonathan CR

    2012-01-01

    Aim The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC) in the lung, including their deposition and organization of extracellular matrix (ECM) proteins. Methods Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy. Results We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM. Conclusions An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung. PMID:23204878

  4. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Jessica L Eisenberg

    2011-01-01

    Full Text Available Jessica L Eisenberg1,2, Asmahan Safi3, Xiaoding Wei3, Horacio D Espinosa3, GR Scott Budinger2, Desire Takawira1, Susan B Hopkinson1, Jonathan CR Jones1,21Department of Cell and Molecular Biology, 2Division of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; 3Department of Mechanical Engineering, Northwestern University, Evanston, IL, USAAim: The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC in the lung, including their deposition and organization of extracellular matrix (ECM proteins.Methods: Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy.Results: We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM.Conclusions: An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung.Keywords: alveolar epithelial cells, fibrosis, extracellular matrix, substrate stiffness

  5. Mechanism of regulation of stem cell differentiation by matrix stiffness.

    Science.gov (United States)

    Lv, Hongwei; Li, Lisha; Sun, Meiyu; Zhang, Yin; Chen, Li; Rong, Yue; Li, Yulin

    2015-05-27

    Stem cell behaviors are regulated by multiple microenvironmental cues. As an external signal, mechanical stiffness of the extracellular matrix is capable of governing stem cell fate determination, but how this biophysical cue is translated into intracellular signaling remains elusive. Here, we elucidate mechanisms by which stem cells respond to microenvironmental stiffness through the dynamics of the cytoskeletal network, leading to changes in gene expression via biophysical transduction signaling pathways in two-dimensional culture. Furthermore, a putative rapid shift from original mechanosensing to de novo cell-derived matrix sensing in more physiologically relevant three-dimensional culture is pointed out. A comprehensive understanding of stem cell responses to this stimulus is essential for designing biomaterials that mimic the physiological environment and advancing stem cell-based clinical applications for tissue engineering.

  6. Matrix Stiffness Regulates Endothelial Cell Proliferation through Septin 9

    Science.gov (United States)

    Yeh, Yi-Ting; Hur, Sung Sik; Chang, Joann; Wang, Kuei-Chun; Chiu, Jeng-Jiann; Li, Yi-Shuan; Chien, Shu

    2012-01-01

    Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs) was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa) in comparison to those with low stiffness (LSG, 1.72 kPa). ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9), the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin αvβ3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation. PMID:23118862

  7. Matrix stiffness regulates endothelial cell proliferation through septin 9.

    Directory of Open Access Journals (Sweden)

    Yi-Ting Yeh

    Full Text Available Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa in comparison to those with low stiffness (LSG, 1.72 kPa. ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9, the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin α(vβ(3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation.

  8. Dynamic-stiffness matrix of embedded and pile foundations by indirect boundary-element method

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, J.P.; Darbre, G.R. (Electrowatt Engineering Services Ltd., Zurich (Switzerland))

    1984-08-01

    The boundary-integral equation method is well suited for the calculation of the dynamic-stiffness matrix of foundations embedded in a layered visco-elastic halfspace (or a transmitting boundary of arbitrary shape), which represents an unbounded domain. It also allows pile groups to be analyzed, taking pile-soil-pile interaction into account. The discretization of this boundary-element method is restricted to the structure-soil interface. All trial functions satisfy exactly the field equations and the radiation condition at infinity. In the indirect boundary-element method distributed source loads of initially unknown intensities act on a source line located in the excavated part of the soil and are determined such that the prescribed boundary conditions on the structure-soil interface are satisfied in an average sense. In the two-dimensional case the variables are expanded in a Fourier integral in the wave number domain, while in three dimensions, Fourier series in the circumferential direction and Bessel functions of the wave number domain, while in three dimensions, Fourier series in the circumferential direction and Bessel functions of the wave number in the radial direction are selected. Accurate results arise with a small number of parameters of the loads acting on a source line which should coincide with the structure-soil interface. In a parametric study the dynamic-stiffness matrices of rectangular foundations of various aspect ratios embedded in a halfplane and in a layer built-in at its base are calculated. For the halfplane, the spring coefficients for the translational directions hardly depend on the embedment, while the corresponding damping coefficients increase for larger embedments, this tendency being more pronounced in the horizontal direction.

  9. Stiffness in 1D matrix product states with periodic boundary conditions

    Science.gov (United States)

    Rossini, Davide; Giovannetti, Vittorio; Fazio, Rosario

    2011-05-01

    We discuss in detail a modified variational matrix product state algorithm for periodic boundary conditions, based on a recent work by Pippan et al (2010 Phys. Rev. B 81 081103(R)), which enables one to study large systems on a ring (composed of N ~ 102 sites). In particular, we introduce a couple of improvements allowing us to enhance the algorithm in terms of stability and reliability. We employ such a method to compute the stiffness of one-dimensional strongly correlated quantum lattice systems. The accuracy of our calculations is tested in the exactly solvable spin-1/2 Heisenberg chain.

  10. Microtubules regulate GEF-H1 in response to extracellular matrix stiffness

    Science.gov (United States)

    Heck, Jessica N.; Ponik, Suzanne M.; Garcia-Mendoza, Maria G.; Pehlke, Carolyn A.; Inman, David R.; Eliceiri, Kevin W.; Keely, Patricia J.

    2012-01-01

    Breast epithelial cells sense the stiffness of the extracellular matrix through Rho-mediated contractility. In turn, matrix stiffness regulates RhoA activity. However, the upstream signaling mechanisms are poorly defined. Here we demonstrate that the Rho exchange factor GEF-H1 mediates RhoA activation in response to extracellular matrix stiffness. We demonstrate the novel finding that microtubule stability is diminished by a stiff three-dimensional (3D) extracellular matrix, which leads to the activation of GEF-H1. Surprisingly, activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway did not contribute to stiffness-induced GEF-H1 activation. Loss of GEF-H1 decreases cell contraction of and invasion through 3D matrices. These data support a model in which matrix stiffness regulates RhoA through microtubule destabilization and the subsequent release and activation of GEF-H1. PMID:22593214

  11. Independent regulation of tumor cell migration by matrix stiffness and confinement

    Science.gov (United States)

    Pathak, Amit; Kumar, Sanjay

    2012-01-01

    Tumor invasion and metastasis are strongly regulated by biophysical interactions between tumor cells and the extracellular matrix (ECM). While the influence of ECM stiffness on cell migration, adhesion, and contractility has been extensively studied in 2D culture, extension of this concept to 3D cultures that more closely resemble tissue has proven challenging, because perturbations that change matrix stiffness often concurrently change cellular confinement. This coupling is particularly problematic given that matrix-imposed steric barriers can regulate invasion speed independent of mechanics. Here we introduce a matrix platform based on microfabrication of channels of defined wall stiffness and geometry that allows independent variation of ECM stiffness and channel width. For a given ECM stiffness, cells confined to narrow channels surprisingly migrate faster than cells in wide channels or on unconstrained 2D surfaces, which we attribute to increased polarization of cell-ECM traction forces. Confinement also enables cells to migrate increasingly rapidly as ECM stiffness rises, in contrast with the biphasic relationship observed on unconfined ECMs. Inhibition of nonmuscle myosin II dissipates this traction polarization and renders the relationship between migration speed and ECM stiffness comparatively insensitive to matrix confinement. We test these hypotheses in silico by devising a multiscale mathematical model that relates cellular force generation to ECM stiffness and geometry, which we show is capable of recapitulating key experimental trends. These studies represent a paradigm for investigating matrix regulation of invasion and demonstrate that matrix confinement alters the relationship between cell migration speed and ECM stiffness. PMID:22689955

  12. Substrate stiffness regulates filopodial activities in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Ren Liou

    Full Text Available Microenvironment stiffening plays a crucial role in tumorigenesis. While filopodia are generally thought to be one of the cellular mechanosensors for probing environmental stiffness, the effects of environmental stiffness on filopodial activities of cancer cells remain unclear. In this work, we investigated the filopodial activities of human lung adenocarcinoma cells CL1-5 cultured on substrates of tunable stiffness using a novel platform. The platform consists of an optical system called structured illumination nano-profilometry, which allows time-lapsed visualization of filopodial activities without fluorescence labeling. The culturing substrates were composed of polyvinyl chloride mixed with an environmentally friendly plasticizer to yield Young's modulus ranging from 20 to 60 kPa. Cell viability studies showed that the viability of cells cultured on the substrates was similar to those cultured on commonly used elastomers such as polydimethylsiloxane. Time-lapsed live cell images were acquired and the filopodial activities in response to substrates with varying degrees of stiffness were analyzed. Statistical analyses revealed that lung cancer cells cultured on softer substrates appeared to have longer filopodia, higher filopodial densities with respect to the cellular perimeter, and slower filopodial retraction rates. Nonetheless, the temporal analysis of filopodial activities revealed that whether a filopodium decides to extend or retract is purely a stochastic process without dependency on substrate stiffness. The discrepancy of the filopodial activities between lung cancer cells cultured on substrates with different degrees of stiffness vanished when the myosin II activities were inhibited by treating the cells with blebbistatin, which suggests that the filopodial activities are closely modulated by the adhesion strength of the cells. Our data quantitatively relate filopodial activities of lung cancer cells with environmental stiffness and

  13. On Stiffness Regulators with Dissipative Injection for Robot Manipulators

    Directory of Open Access Journals (Sweden)

    César Chávez-Olivares

    2015-06-01

    Full Text Available The stiffness controller proposed by Salisbury is an interaction control strategy designed to achieve a desired form of static behavior as regards the interaction of a robot manipulator with the environment. The main idea behind this approach is the simulation of a multidimensional linear spring - or linear elastic material - using the difference between the actual position of the end-effector and a constant position (relaxed point, multiplied by a constant stiffness matrix. In this paper, this idea is generalized with the objective of proposing a controller structure that includes a family of stiffness models based on the idea of linear elastic materials. The new controller structure also includes a damping term in order to have control over energy dissipation, as well as a term added for the purpose of compensating the gravity forces of the links. The stability analysis of the proposed controller was performed in the Lyapunov sense. The new stiffness controller is presented as a case study and compared to other cases, such as the Salisbury controller (Cartesian PD and the tanh-tanh controller. Experimental results using a three degrees-of-freedom direct-drive robot for the evaluation of controllers in a constrained motion task are presented.

  14. Regulating health: transcending disciplinary boundaries.

    Science.gov (United States)

    Seddon, Toby

    2013-03-01

    Health and health care problems can be addressed from multiple disciplinary perspectives. This raises challenges for how to do cross-disciplinary scholarship in ways that are still robust, rigorous and coherent. This paper sets out one particular approach to cross-cutting research--regulation--which has proved extremely fertile for scholars working in diverse fields, from coal mine safety to tax compliance. The first part of the paper considers how regulatory ideas might be applied to health and health care research in general. The second part goes on to sketch out how a regulation perspective on one specific area, illicit drug policy, can open up new directions for research. In conclusion, a future research agenda is outlined for regulatory scholarship on health and health care.

  15. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages

    Science.gov (United States)

    Previtera, Michelle L.; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow–derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness–regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p–NF–κB p65, MyD88, and p–IκBα expression as well as p–NF–κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  16. Role of three-dimensional matrix stiffness in regulating the chemoresistance of hepatocellular carcinoma cells.

    Science.gov (United States)

    Liu, Chang; Liu, Yang; Xie, Hong-Guo; Zhao, Shan; Xu, Xiao-Xi; Fan, Li-Xin; Guo, Xin; Lu, Ting; Sun, Guang-Wei; Ma, Xiao-Jun

    2015-01-01

    Hepatocellular carcinoma (HCC) was the most common primary liver cancer, and its resistance to anti-tumor drugs often caused the death of patients suffering with HCC. Matrix stiffness was reported to be closely related to tumor chemoresistance; however, the relationship between HCC drug resistance and three-dimensional (3D) matrix stiffness is still unclear at present. In this study, alginate gel (ALG) beads with controllable matrix stiffness were used to mimic tumor tissue rigidity, and the role of 3D matrix stiffness in regulating the chemoresistance of HCC cells was investigated by using these ALG beads. It was found that HCC cells in ALG beads with 105 kPa stiffness had highest resistance to paclitaxel, 5-FU, and cisplatin. Although the mechanism was still uncovered, ABC transporters and endoplasmic reticulum stress-related molecules were highly expressed in ALG bead-encapsulated HCC cells compared with two-dimensional-cultured cells, which suggested a very complex mechanism underlying HCC drug resistance in 3D culture conditions. In addition, to mimic the specific stiffness of HCC tumor tissue, or other tumor tissues in vivo, response surface methodology (RSM) was used to build up a prediction mathematical model so that ALG beads with desired matrix stiffness could be prepared by simply changing three factors: molecular weight, G content, and alginate concentration.

  17. On the Influence of Force Distribution and Boundary Condition on Helical Gear Stiffness

    Directory of Open Access Journals (Sweden)

    Niels Leergaard Pedersen

    2015-07-01

    Full Text Available The gear stiffness has a direct influence on the dynamic response of transmission systems that include a gear box, the stiffness also controls the load distribution among the teeth in mesh. The stiffness of a gear tooth varies non-linearly as the contact line with the meshing gear tooth moves along the surface of the tooth and the resulting meshing stiffness also includes discontinuities. The stiffness estimation for helical gears can only be done using full 3D analysis contrary to spur gears where 2D often suffice. Besides the usual gear geometry defined by standards two factors are found to have a large influence on the stiffness. These two factors are the rim thickness included in the stiffness calculation and the contact zone size. In the contact zone the distribution of the load is also shown to be important. Simple possible simplifications in relation to the contact load distribution are presented. The gear stiffness is found using the elastic energy of the loaded tooth. In the finite element calculation the true gear tooth root profile is applied.

  18. On the Influence of Force Distribution and Boundary Condition on Helical Gear Stiffness

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2015-01-01

    The gear stiffness has a direct influence on the dynamic response of transmission systems that include a gear box, the stiffness also controls the load distribution among the teeth in mesh. The stiffness of a gear tooth varies non-linearly as the contact line with the meshing gear tooth moves along...... the surface of the tooth and the resulting meshing stiness also includes discontinuities.The stiffness estimation for helical gears can only be done using full 3D analysis contrary to spur gears where 2D often suce. Besides the usual gear geometry dened by standards two factors are found to have a large....... The gear stiffness is found using the elastic energy of the loaded tooth. In the nite element calculation the true gear tooth root profile is applied....

  19. Aging impairs smooth muscle-mediated regulation of aortic stiffness: a defect in shock absorption function?

    Science.gov (United States)

    Gao, Yuan Z; Saphirstein, Robert J; Yamin, Rina; Suki, Bela; Morgan, Kathleen G

    2014-10-15

    Increased aortic stiffness is an early and independent biomarker of cardiovascular disease. Here we tested the hypothesis that vascular smooth muscle cells (VSMCs) contribute significantly to aortic stiffness and investigated the mechanisms involved. The relative contributions of VSMCs, focal adhesions (FAs), and matrix to stiffness in mouse aorta preparations at optimal length and with confirmed VSMC viability were separated by the use of small-molecule inhibitors and activators. Using biomechanical methods designed for minimal perturbation of cellular function, we directly quantified changes with aging in aortic material stiffness. An alpha adrenoceptor agonist, in the presence of N(G)-nitro-l-arginine methyl ester (l-NAME) to remove interference of endothelial nitric oxide, increases stiffness by 90-200% from baseline in both young and old mice. Interestingly, increases are robustly suppressed by the Src kinase inhibitor PP2 in young but not old mice. Phosphotyrosine screening revealed, with aging, a biochemical signature of markedly impaired agonist-induced FA remodeling previously associated with Src signaling. Protein expression measurement confirmed a decrease in Src expression with aging. Thus we report here an additive model for the in vitro biomechanical components of the mouse aortic wall in which 1) VSMCs are a surprisingly large component of aortic stiffness at physiological lengths and 2) regulation of the VSMC component through FA signaling and hence plasticity is impaired with aging, diminishing the aorta's normal shock absorption function in response to stressors.

  20. A role for matrix stiffness in the regulation of cardiac side population cell function.

    Science.gov (United States)

    Qiu, Yiling; Bayomy, Ahmad F; Gomez, Marcus V; Bauer, Michael; Du, Ping; Yang, Yanfei; Zhang, Xin; Liao, Ronglih

    2015-05-01

    The mechanical properties of the local microenvironment may have important influence on the fate and function of adult tissue progenitor cells, altering the regenerative process. This is particularly critical following a myocardial infarction, in which the normal, compliant myocardial tissue is replaced with fibrotic, stiff scar tissue. In this study, we examined the effects of matrix stiffness on adult cardiac side population (CSP) progenitor cell behavior. Ovine and murine CSP cells were isolated and cultured on polydimethylsiloxane substrates, replicating the elastic moduli of normal and fibrotic myocardium. Proliferation capacity and cell cycling were increased in CSP cells cultured on the stiff substrate with an associated reduction in cardiomyogeneic differentiation and accelerated cell ageing. In addition, culture on stiff substrate stimulated upregulation of extracellular matrix and adhesion proteins gene expression in CSP cells. Collectively, we demonstrate that microenvironment properties, including matrix stiffness, play a critical role in regulating progenitor cell functions of endogenous resident CSP cells. Understanding the effects of the tissue microenvironment on resident cardiac progenitor cells is a critical step toward achieving functional cardiac regeneration.

  1. Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks.

    Directory of Open Access Journals (Sweden)

    Randy D Trumbower

    Full Text Available BACKGROUND: The human motor system is highly redundant, having more kinematic degrees of freedom than necessary to complete a given task. Understanding how kinematic redundancies are utilized in different tasks remains a fundamental question in motor control. One possibility is that they can be used to tune the mechanical properties of a limb to the specific requirements of a task. For example, many tasks such as tool usage compromise arm stability along specific directions. These tasks only can be completed if the nervous system adapts the mechanical properties of the arm such that the arm, coupled to the tool, remains stable. The purpose of this study was to determine if posture selection is a critical component of endpoint stiffness regulation during unconstrained tasks. METHODOLOGY/PRINCIPAL FINDINGS: Three-dimensional (3D estimates of endpoint stiffness were used to quantify limb mechanics. Most previous studies examining endpoint stiffness adaptation were completed in 2D using constrained postures to maintain a non-redundant mapping between joint angles and hand location. Our hypothesis was that during unconstrained conditions, subjects would select arm postures that matched endpoint stiffness to the functional requirements of the task. The hypothesis was tested during endpoint tracking tasks in which subjects interacted with unstable haptic environments, simulated using a 3D robotic manipulator. We found that arm posture had a significant effect on endpoint tracking accuracy and that subjects selected postures that improved tracking performance. For environments in which arm posture had a large effect on tracking accuracy, the self-selected postures oriented the direction of maximal endpoint stiffness towards the direction of the unstable haptic environment. CONCLUSIONS/SIGNIFICANCE: These results demonstrate how changes in arm posture can have a dramatic effect on task performance and suggest that postural selection is a fundamental

  2. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells.

    Science.gov (United States)

    Haage, Amanda; Schneider, Ian C

    2014-08-01

    The pathogenesis of cancer is often driven by local invasion and metastasis. Recently, mechanical properties of the tumor microenvironment have been identified as potent regulators of invasion and metastasis, while matrix metalloproteinases (MMPs) are classically known as significant enhancers of cancer cell migration and invasion. Here we have been able to sensitively measure MMP activity changes in response to specific extracellular matrix (ECM) environments and cell contractility states. Cells of a pancreatic cancer cell line, Panc-1, up-regulate MMP activities between 3- and 10-fold with increased cell contractility. Conversely, they down-regulate MMP activities when contractility is blocked to levels seen with pan-MMP activity inhibitors. Similar, albeit attenuated, responses are seen in other pancreatic cancer cell lines, BxPC-3 and AsPC-1. In addition, MMP activity was modulated by substrate stiffness, collagen gel concentration, and the degree of collagen cross-linking, when cells were plated on collagen gels ranging from 0.5 to 5 mg/ml that span the physiological range of substrate stiffness (50-2000 Pa). Panc-1 cells showed enhanced MMP activity on stiffer substrates, whereas BxPC-3 and AsPC-1 cells showed diminished MMP activity. In addition, eliminating heparan sulfate proteoglycans using heparinase completely abrogated the mechanical induction of MMP activity. These results demonstrate the first functional link between MMP activity, contractility, and ECM stiffness and provide an explanation as to why stiffer environments result in enhanced cell migration and invasion.

  3. Numerical methods for stiff systems of two-point boundary value problems

    Science.gov (United States)

    Flaherty, J. E.; Omalley, R. E., Jr.

    1983-01-01

    Numerical procedures are developed for constructing asymptotic solutions of certain nonlinear singularly perturbed vector two-point boundary value problems having boundary layers at one or both endpoints. The asymptotic approximations are generated numerically and can either be used as is or to furnish a general purpose two-point boundary value code with an initial approximation and the nonuniform computational mesh needed for such problems. The procedures are applied to a model problem that has multiple solutions and to problems describing the deformation of thin nonlinear elastic beam that is resting on an elastic foundation.

  4. Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration

    Science.gov (United States)

    Pathak, Amit

    2013-01-01

    It is now well established that tumor cell invasion through tissue is strongly regulated by the microstructural and mechanical properties of the extracellular matrix (ECM). However, it remains unclear how these physical microenvironmental inputs are jointly processed with oncogenic lesions to drive invasion. In this study, we address this open question by combining a microfabricated polyacrylamide channel (μPAC) platform that enables independent control of ECM stiffness and confinement with an isogenically-matched breast tumor progression series in which the oncogenes ErbB2 and 14-3-3ζ are overexpressed independently or in tandem. We find that increasing channel confinement and overexpressing ErbB2 both promote cell migration to a similar degree when other parameters are kept constant. In contrast, 14-3-3ζ overexpression slows migration speed, and does so in a fashion that dwarfs effects of ECM confinement and stiffness. We also find that ECM stiffness dramatically enhances cell motility when combined with ErbB2 overexpression, demonstrating that biophysical cues and cell-intrinsic parameters promote cell invasion in an integrative manner. Morphometric analysis of cells inside the μPAC platform reveals that the rapid cell migration induced by narrow channels and ErbB2 overexpression both are accompanied by increased cell polarization. Disruption of this polarization by pharmacological inhibition of Rac GTPase phenocopies 14-3-3ζ overexpression by reducing cell polarization and slowing migration. By systematically measuring migration speed as a function of matrix stiffness and confinement, we also quantify for the first time the sensitivity of migration speed to microchannel properties and transforming potential. These results demonstrate that oncogenic lesions and ECM biophysical properties can synergistically interact to drive invasive migration, and that both inputs may act through common molecular mechanisms to enhance migration speed. PMID:23832051

  5. Substrate stiffness-regulated matrix metalloproteinase output in myocardial cells and cardiac fibroblasts: implications for myocardial fibrosis.

    Science.gov (United States)

    Xie, Jing; Zhang, Quanyou; Zhu, Ting; Zhang, Yanyan; Liu, Bailin; Xu, Jianwen; Zhao, Hucheng

    2014-06-01

    Cardiac fibrosis, an important pathological feature of structural remodeling, contributes to ventricular stiffness, diastolic dysfunction, arrhythmia and may even lead to sudden death. Matrix stiffness, one of the many mechanical factors acting on cells, is increasingly appreciated as an important mediator of myocardial cell behavior. Polydimethylsiloxane (PDMS) substrates were fabricated with different stiffnesses to mimic physiological and pathological heart tissues, and the way in which the elastic modulus of the substrate regulated matrix-degrading gelatinases in myocardial cells and cardiac fibroblasts was explored. Initially, an increase in cell spreading area was observed, concomitant with the increase in PDMS stiffness in both cells. Later, it was demonstrated that the MMP-2 gene expression and protein activity in myocardial cells and cardiac fibroblasts can be enhanced with an increase in PDMS substrate stiffness and, moreover, such gene- and protein-related increases had a significant linear correlation with the elastic modulus. In comparison, the MMP-9 gene and protein expressions were up-regulated in cardiac fibroblasts only, not in myocardial cells. These results implied that myocardial cells and cardiac fibroblasts in the myocardium could sense the stiffness in pathological fibrosis and showed a differential but positive response in the expression of matrix-degrading gelatinases when exposed to an increased stiffening of the matrix in the microenvironment. The phenomenon of cells sensing pathological matrix stiffness can help to increase understanding of the mechanism underlying myocardial fibrosis and may ultimately lead to planning cure strategies.

  6. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Shih, Yu-Ru V; Tseng, Kuo-Fung; Lai, Hsiu-Yu; Lin, Chi-Hung; Lee, Oscar K

    2011-04-01

    Mesenchymal stem cells (MSCs) cultured on extracellular matrices with different stiffness have been shown to possess diverse lineage commitment owing to the extracellular mechanical stimuli sensed by the cells. The aim of this study was to further delineate how matrix stiffness affects intracellular signaling through the mechanotransducers Rho kinase (ROCK) and focal adhesion kinase (FAK) and subsequently regulates the osteogenic phenotype of MSCs. MSCs were cultured in osteogenic medium on tunable polyacrylamide hydrogels coated with type I collagen with elasticities corresponding to Young's modulus of 7.0 ± 1.2 and 42.1 ± 3.2 kPa. Osteogenic differentiation was increased on stiffer matrices, as evident by type I collagen, osteocalcin, and Runx2 gene expressions and alizarin red S staining for mineralization. Western blot analysis demonstrated an increase in kinase activities of ROCK, FAK, and ERK1/2 on stiffer matrices. Inhibition of FAK, an important mediator of osteogenic differentiation, and inhibition of ROCK, a known mechanotransducer of matrix stiffness during osteogenesis, resulted in decreased expression of osteogenic markers during osteogenic induction. In addition, FAK affects osteogenic differentiation through ERK1/2, whereas ROCK regulates both FAK and ERK1/2. Furthermore, α(2)-integrin was upregulated on stiffer matrices during osteogenic induction, and its knockdown by siRNA downregulated the osteogenic phenotype through ROCK, FAK, and ERK1/2. Taken together, our results provide evidence that the matrix rigidity affects the osteogenic outcome of MSCs through mechanotransduction events that are mediated by α(2)-integrin.

  7. Superfluid stiffness in 1D Matrix Product States with periodic boundary conditions

    CERN Document Server

    Rossini, Davide; Fazio, Rosario

    2011-01-01

    We discuss in details a modified variational matrix-product-state algorithm for periodic boundary conditions, based on a recent work by P. Pippan, S.R. White and H.G. Everts, Phys. Rev. B 81, 081103(R) (2010), which enables one to study large systems on a ring (composed of N ~ 10^2 sites). In particular, we introduce a couple of improvements that allow to enhance the algorithm in terms of stability and reliability. We employ such method to characterize the superfluid phase of one-dimensional strongly correlated quantum lattice systems by means of the superfluid density. The accuracy of our calculations is tested in the exactly solvable spin-1/2 Heisenberg chain.

  8. Estimating Gear Teeth Stiffness

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...

  9. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium

    Science.gov (United States)

    Chaudhuri, Ovijit; Koshy, Sandeep T.; Branco da Cunha, Cristiana; Shin, Jae-Won; Verbeke, Catia S.; Allison, Kimberly H.; Mooney, David J.

    2014-10-01

    In vitro models of normal mammary epithelium have correlated increased extracellular matrix (ECM) stiffness with malignant phenotypes. However, the role of increased stiffness in this transformation remains unclear because of difficulties in controlling ECM stiffness, composition and architecture independently. Here we demonstrate that interpenetrating networks of reconstituted basement membrane matrix and alginate can be used to modulate ECM stiffness independently of composition and architecture. We find that, in normal mammary epithelial cells, increasing ECM stiffness alone induces malignant phenotypes but that the effect is completely abrogated when accompanied by an increase in basement-membrane ligands. We also find that the combination of stiffness and composition is sensed through β4 integrin, Rac1, and the PI3K pathway, and suggest a mechanism in which an increase in ECM stiffness, without an increase in basement membrane ligands, prevents normal α6β4 integrin clustering into hemidesmosomes.

  10. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components.

    Science.gov (United States)

    Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer

    2014-09-15

    To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis.

  11. Stiff mutant genes of phycomyces affect turgor pressure and wall mechanical properties to regulate elongation growth rate.

    Science.gov (United States)

    Ortega, Joseph K E; Munoz, Cindy M; Blakley, Scott E; Truong, Jason T; Ortega, Elena L

    2012-01-01

    Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses) and differential elongation growth rate (tropic responses). "Stiff" mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least five genes; madD, E, F, G, and J. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the "growth zone." Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type (WT). A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (-) and C216 geo- (-). Experimental results demonstrate that turgor pressure is larger but irreversible wall deformation rates within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to WT. These findings can explain the diminished tropic responses of the stiff mutant sporangiophores. It is speculated that the defective genes affect the amount of wall-building material delivered to the inner cell wall.

  12. Interplay of Matrix Stiffness and Cell-Cell Contact in Regulating Differentiation of Stem Cells.

    Science.gov (United States)

    Ye, Kai; Cao, Luping; Li, Shiyu; Yu, Lin; Ding, Jiandong

    2016-08-31

    Stem cells are capable of sensing and responding to the mechanical properties of extracellular matrixes (ECMs). It is well-known that, while osteogenesis is promoted on the stiff matrixes, adipogenesis is enhanced on the soft ones. Herein, we report an "abnormal" tendency of matrix-stiffness-directed stem cell differentiation. Well-defined nanoarrays of cell-adhesive arginine-glycine-aspartate (RGD) peptides were modified onto the surfaces of persistently nonfouling poly(ethylene glycol) (PEG) hydrogels to achieve controlled specific cell adhesion and simultaneously eliminate nonspecific protein adsorption. Mesenchymal stem cells were cultivated on the RGD-nanopatterned PEG hydrogels with the same RGD nanospacing but different hydrogel stiffnesses and incubated in the induction medium to examine the effect of matrix stiffness on osteogenic and adipogenic differentiation extents. When stem cells were kept at a low density during the induction period, the differentiation tendency was consistent with the previous reports in the literature; however, both lineage commitments were favored on the stiff matrices at a high cell density. We interpreted such a complicated stiffness effect at a high cell density in two-dimensional culture as the interplay of matrix stiffness and cell-cell contact. As a result, this study strengthens the essence of the stiffness effect and highlights the combinatory effects of ECM cues and cell cues on stem cell differentiation.

  13. Yes-associated protein regulates the growth of human non-small cell lung cancer in response to matrix stiffness.

    Science.gov (United States)

    Yuan, Yonggang; Zhong, Weiliang; Ma, Ge; Zhang, Baoxiang; Tian, Hui

    2015-06-01

    The Yes‑associated protein (YAP) transcriptional coactivator is recognized as a crucial regulator of human cancer. However, its involvement in human non‑small cell lung cancer (NSCLC) in response to physical cues remains unclear. In this study, substrates with different rigidity were generated in order to evaluate the role of YAP, and its upstream regulators in the Hippo pathway, in the regulation of growth of an NSCLC cell line within particular environments. It was shown that the expression of the YAP protein in SPCA-1 NSCLC cells was significantly increased when cultured on a stiff substrate compared to a soft substrate. However, the expression of phospho‑YAP protein and large tumor suppressor kinase 1 (LATS1) were markedly decreased after culturing on the stiff substrate. Phosphorylation of YAP by LATS1 leads to cytoplasmic retention of YAP, which inhibits its function as a nuclear transcription coactivator. The study also found that the stiff substrate promoted the growth of NSCLC cells in vitro, and an increase in the transcription levels of Survivin, connective tissue growth factor, amphiregulin and Ki67, as well as a decrease in the expression level of YAP in the cytoplasm, and adecrease in p-YAP. In conclusion, the findings showed that the stiffness of the subcellular matrix altered the behavior of NSCLC cells, and that YAP regulated the growth of NSCLC cells in response to matrix stiffness, thereby suggesting a role for the Hippo‑YAP pathway in the response of NSCLC cell growth to specific microenvironments.

  14. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  15. Triceps surae short latency stretch reflexes contribute to ankle stiffness regulation during human running.

    Science.gov (United States)

    Cronin, Neil J; Carty, Christopher P; Barrett, Rod S

    2011-01-01

    During human running, short latency stretch reflexes (SLRs) are elicited in the triceps surae muscles, but the function of these responses is still a matter of controversy. As the SLR is primarily mediated by Ia afferent nerve fibres, various methods have been used to examine SLR function by selectively blocking the Ia pathway in seated, standing and walking paradigms, but stretch reflex function has not been examined in detail during running. The purpose of this study was to examine triceps surae SLR function at different running speeds using Achilles tendon vibration to modify SLR size. Ten healthy participants ran on an instrumented treadmill at speeds between 7 and 15 km/h under 2 Achilles tendon vibration conditions: no vibration and 90 Hz vibration. Surface EMG from the triceps surae and tibialis anterior muscles, and 3D lower limb kinematics and ground reaction forces were simultaneously collected. In response to vibration, the SLR was depressed in the triceps surae muscles at all speeds. This coincided with short-lasting yielding at the ankle joint at speeds between 7 and 12 km/h, suggesting that the SLR contributes to muscle stiffness regulation by minimising ankle yielding during the early contact phase of running. Furthermore, at the fastest speed of 15 km/h, the SLR was still depressed by vibration in all muscles but yielding was no longer evident. This finding suggests that the SLR has greater functional importance at slow to intermediate running speeds than at faster speeds.

  16. Triceps surae short latency stretch reflexes contribute to ankle stiffness regulation during human running.

    Directory of Open Access Journals (Sweden)

    Neil J Cronin

    Full Text Available During human running, short latency stretch reflexes (SLRs are elicited in the triceps surae muscles, but the function of these responses is still a matter of controversy. As the SLR is primarily mediated by Ia afferent nerve fibres, various methods have been used to examine SLR function by selectively blocking the Ia pathway in seated, standing and walking paradigms, but stretch reflex function has not been examined in detail during running. The purpose of this study was to examine triceps surae SLR function at different running speeds using Achilles tendon vibration to modify SLR size. Ten healthy participants ran on an instrumented treadmill at speeds between 7 and 15 km/h under 2 Achilles tendon vibration conditions: no vibration and 90 Hz vibration. Surface EMG from the triceps surae and tibialis anterior muscles, and 3D lower limb kinematics and ground reaction forces were simultaneously collected. In response to vibration, the SLR was depressed in the triceps surae muscles at all speeds. This coincided with short-lasting yielding at the ankle joint at speeds between 7 and 12 km/h, suggesting that the SLR contributes to muscle stiffness regulation by minimising ankle yielding during the early contact phase of running. Furthermore, at the fastest speed of 15 km/h, the SLR was still depressed by vibration in all muscles but yielding was no longer evident. This finding suggests that the SLR has greater functional importance at slow to intermediate running speeds than at faster speeds.

  17. Role of ROCK Isoforms in Regulation of Stiffness Induced Myofibroblast Differentiation in Lung Fibrosis.

    Science.gov (United States)

    Htwe, Su S; Cha, Byung H; Yue, Kan; Khademhosseini, Ali; Knox, Alan J; Ghaemmaghami, Amir M

    2017-02-22

    Fibrosis is a major cause of progressive organ dysfunction in several chronic pulmonary diseases. Rho associated coiled-coil forming kinase (ROCK) has shown to be involved in myofibroblast differentiation driven by altered matrix stiffness in fibrotic state. There are two known ROCK isoforms in human, ROCK1 (ROKβ) and ROCK2 (ROKα), but specific role of each isoform in myofibroblast differentiation in lung fibrosis remains unknown. To study this, we developed a Gelatin methacryloyl (GelMA) hydrogel based culture system with different stiffness levels relevant to healthy and fibrotic lungs. We have shown that stiff matrix and not soft matrix, can induce myofibroblast differentiation with high αSMA expression. Furthermore, our data confirm that the inhibition of ROCK signalling by a pharmacological inhibitor (i.e. Y27632) attenuates stiffness induced αSMA expression and fibre assembly in myofibroblasts. To assess the role of ROCK isoforms in this process we used siRNA to knock down the expression of each isoform. Our data showed that knocking down either ROCK1 or ROCK2 did not result in a reduction in αSMA expression in myofibroblasts on stiff matrix as opposed to soft matrix where αSMA expression was reduced significantly. Paradoxically, on stiff matrix, the absence of one isoform (particularly ROCK2) exaggerated αSMA expression and led to thick fibre assembly. Moreover complete loss of αSMA fibre assembly was seen only in the absence of both ROCK isoforms suggesting that both isoforms are implicated in this process. Overall our results indicate the differential role of ROCK isoforms in myofibroblast differentiation on soft and stiff matrices.

  18. Substratum Stiffness and Latrunculin B Regulate Matrix Gene and Protein Expression in Human Trabecular Meshwork Cells

    Science.gov (United States)

    Thomasy, Sara M.; Wood, Joshua A.; Kass, Philip H.; Murphy, Christopher J.

    2012-01-01

    Purpose. To determine the impact of substratum stiffness and latrunculin-B (Lat-B), on the expression of several matrix proteins that are associated with glaucoma. Methods. Human trabecular meshwork (HTM) cells were cultured on hydrogels possessing stiffness values mimicking those found in normal (5 kPa) and glaucomatous meshworks (75 kPa), or tissue culture polystyrene (TCP; >1 GPa). Cells were treated with 2.0 μM Lat-B in dimethyl sulfoxide (DMSO) or DMSO alone. RT-PCR was used to determine the impact of substratum stiffness and/or Lat-B treatment on the expression of secreted protein, acidic, cysteine rich (SPARC), myocilin, angiopoietin-like factor (ANGPTL)-7, and transglutaminase (TGM)-2. Immunofluorescence was used to assess changes in protein expression. Results. SPARC and myocilin mRNA expression were dramatically increased on the 75 kPa hydrogels and decreased on the 5 kPa hydrogels in comparison to TCP. In contrast, ANGPTL-7 mRNA and TGM-2 mRNA was decreased on the 75 kPa and 5 kPa hydrogels, respectively, in comparison with TCP. Treatment with Lat-B dramatically downregulated both SPARC and myocilin on 75 kPa hydrogels. In contrast, cells grown on TCP produced greater or similar amounts of SPARC and myocilin mRNA after Lat-B treatment. SPARC and myocilin protein expression paralleled changes in mRNA expression. Conclusions. Substratum stiffness impacts HTM matrix gene and protein expression and modulates the impact of Lat-B treatment on the expression of these matrix proteins. Integrating the use of biologically relevant substratum stiffness in the conduction of in vitro experiments gives important insights into HTM cell response to drugs that may more accurately predict responses observed in vivo. PMID:22247475

  19. Swan Queen, shipping, and boundary regulation in fandom

    Directory of Open Access Journals (Sweden)

    Victoria M. Gonzalez

    2016-09-01

    Full Text Available There are a number of fan activities and practices that are subject to regulation. The mechanisms of regulation in shipping, however, are not always clear. Shipping, the fan activity of romantically pairing two fictional characters, has become a popular and contentious facet of fan interaction. The case that will be examined in this article is that of the Swan Queen ship, which pairs two female characters from Once Upon a Time (2011–. The lengths that fans have gone to support and promote this ship led to rather intense discussion and infighting among members of the Once Upon a Time fandom. I utilize comments and posts made on Tumblr to examine the mechanisms that dictate inclusion and exclusion in shipper communities. In doing so, I hope to identify the kinds of shipper activities that are subject to regulation and the kinds of boundaries that this regulation establishes. Shipping is dictated not only by fans' imaginations but also by boundaries that are performed and regulated on digital forums.

  20. Matrix-Stiffness-Regulated Inverse Expression of Krüppel-Like Factor 5 and Krüppel-Like Factor 4 in the Pathogenesis of Renal Fibrosis.

    Science.gov (United States)

    Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer

    2015-09-01

    The proliferation of mouse proximal tubular epithelial cells in ex vivo culture depends on matrix stiffness. Combined analysis of the microarray and experimental data revealed that Krüppel-like factor (Klf)5 was the most up-regulated transcription factor accompanied by the down-regulation of Klf4 when cells were on stiff matrix. These changes were reversed by soft matrix via extracellular signal-regulated kinase (ERK) inactivation. Knockdown of Klf5 or forced expression of Klf4 inhibited stiff matrix-induced cell spreading and proliferation, suggesting that Klf5/Klf4 act as positive and negative regulators, respectively. Moreover, stiff matrix-activated ERK increased the protein level and nuclear translocation of mechanosensitive Yes-associated protein 1 (YAP1), which is reported to prevent Klf5 degradation. Finally, in vivo model of unilateral ureteral obstruction revealed that matrix stiffness-regulated Klf5/Klf4 is related to the pathogenesis of renal fibrosis. In the dilated tubules of obstructed kidney, ERK/YAP1/Klf5/cyclin D1 axis was up-regulated and Klf4 was down-regulated. Inhibition of collagen crosslinking by lysyl oxidase inhibitor alleviated unilateral ureteral obstruction-induced tubular dilatation and proliferation, preserved Klf4, and suppressed the ERK/YAP1/Klf5/cyclin D1 axis. This study unravels a novel mechanism how matrix stiffness regulates cellular proliferation and highlights the importance of matrix stiffness-modulated Klf5/Klf4 in the regulation of renal physiologic functions and fibrosis progression.

  1. Uncertainty quantification of inflow boundary condition and proximal arterial stiffness coupled effect on pulse wave propagation in a vascular network

    CERN Document Server

    Brault, A; Lucor, D

    2016-01-01

    SUMMARY This work aims at quantifying the effect of inherent uncertainties from cardiac output on the sensitivity of a human compliant arterial network response based on stochastic simulations of a reduced-order pulse wave propagation model. A simple pulsatile output form is utilized to reproduce the most relevant cardiac features with a minimum number of parameters associated with left ventricle dynamics. Another source of critical uncertainty is the spatial heterogeneity of the aortic compliance which plays a key role in the propagation and damping of pulse waves generated at each cardiac cycle. A continuous representation of the aortic stiffness in the form of a generic random field of prescribed spatial correlation is then considered. Resorting to a stochastic sparse pseudospectral method, we investigate the spatial sensitivity of the pulse pressure and waves reflection magnitude with respect to the different model uncertainties. Results indicate that uncertainties related to the shape and magnitude of th...

  2. On gear tooth stiffness evaluation

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Jørgensen, Martin Felix

    2014-01-01

    The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...... and secondly the size of the contact. In the FE calculation the true gear tooth root profile is applied. The meshing stiffnesses of gears are highly non-linear, it is however found that the stiffness of an individual tooth can be expressed in a linear form assuming that the contact width is constant. © 2014...

  3. Actin and myosin regulate cytoplasm stiffness in plant cells: a study using optical tweezers.

    Science.gov (United States)

    van der Honing, Hannie S; de Ruijter, Norbert C A; Emons, Anne Mie C; Ketelaar, Tijs

    2010-01-01

    Here, we produced cytoplasmic protrusions with optical tweezers in mature BY-2 suspension cultured cells to study the parameters involved in the movement of actin filaments during changes in cytoplasmic organization and to determine whether stiffness is an actin-related property of plant cytoplasm. Optical tweezers were used to create cytoplasmic protrusions resembling cytoplasmic strands. Simultaneously, the behavior of the actin cytoskeleton was imaged. After actin filament depolymerization, less force was needed to create cytoplasmic protrusions. During treatment with the myosin ATPase inhibitor 2,3-butanedione monoxime, more trapping force was needed to create and maintain cytoplasmic protrusions. Thus, the presence of actin filaments and, even more so, the deactivation of a 2,3-butanedione monoxime-sensitive factor, probably myosin, stiffens the cytoplasm. During 2,3-butanedione monoxime treatment, none of the tweezer-formed protrusions contained filamentous actin, showing that a 2,3-butanedione monoxime-sensitive factor, probably myosin, is responsible for the movement of actin filaments, and implying that myosin serves as a static cross-linker of actin filaments when its motor function is inhibited. The presence of actin filaments does not delay the collapse of cytoplasmic protrusions after tweezer release. Myosin-based reorganization of the existing actin cytoskeleton could be the basis for new cytoplasmic strand formation, and thus the production of an organized cytoarchitecture.

  4. Haemodynamic and extracellular matrix cues regulate the mechanical phenotype and stiffness of aortic endothelial cells.

    Science.gov (United States)

    Collins, Caitlin; Osborne, Lukas D; Guilluy, Christophe; Chen, Zhongming; O'Brien, E Tim; Reader, John S; Burridge, Keith; Superfine, Richard; Tzima, Ellie

    2014-06-11

    Endothelial cells (ECs) lining blood vessels express many mechanosensors, including platelet endothelial cell adhesion molecule-1 (PECAM-1), that convert mechanical force into biochemical signals. While it is accepted that mechanical stresses and the mechanical properties of ECs regulate vessel health, the relationship between force and biological response remains elusive. Here we show that ECs integrate mechanical forces and extracellular matrix (ECM) cues to modulate their own mechanical properties. We demonstrate that the ECM influences EC response to tension on PECAM-1. ECs adherent on collagen display divergent stiffening and focal adhesion growth compared with ECs on fibronectin. This is because of protein kinase A (PKA)-dependent serine phosphorylation and inactivation of RhoA. PKA signalling regulates focal adhesion dynamics and EC compliance in response to shear stress in vitro and in vivo. Our study identifies an ECM-specific, mechanosensitive signalling pathway that regulates EC compliance and may serve as an atheroprotective mechanism that maintains blood vessel integrity in vivo.

  5. Regulating mechanical tension at compartment boundaries in Drosophila.

    Science.gov (United States)

    Michel, Marcus; Dahmann, Christian

    2016-10-01

    During animal development, cells with similar function and fate often stay together and sort out from cells with different fates. In Drosophila wing imaginal discs, cells of anterior and posterior fates are separated by a straight compartment boundary. Separation of anterior and posterior cells requires the homeodomain-containing protein Engrailed, which is expressed in posterior cells. Engrailed induces the expression of the short-range signaling molecule Hedgehog in posterior cells and confines Hedgehog signal transduction to anterior cells. Transduction of the Hedgehog signal in anterior cells is required for the separation of anterior and posterior cells. Previous work showed that this separation of cells involves a local increase in mechanical tension at cell junctions along the compartment boundary. However, how mechanical tension was locally increased along the compartment boundary remained unknown. A recent paper now shows that the difference in Hedgehog signal transduction between anterior and posterior cells is necessary and sufficient to increase mechanical tension. The local increase in mechanical tension biases junctional rearrangements during cell intercalations to maintain the straight shape of the compartment boundary. These data highlight how developmental signals can generate patterns of mechanical tension important for tissue organization.

  6. Loss of miR-203 regulates cell shape and matrix adhesion through ROBO1/Rac/FAK in response to stiffness

    Science.gov (United States)

    Le, Lily Thao-Nhi; Cazares, Oscar; Mouw, Janna K.; Chatterjee, Sharmila; Macias, Hector; Moran, Angel; Ramos, Jillian; Keely, Patricia J.; Weaver, Valerie M.

    2016-01-01

    Breast tumor progression is accompanied by changes in the surrounding extracellular matrix (ECM) that increase stiffness of the microenvironment. Mammary epithelial cells engage regulatory pathways that permit dynamic responses to mechanical cues from the ECM. Here, we identify a SLIT2/ROBO1 signaling circuit as a key regulatory mechanism by which cells sense and respond to ECM stiffness to preserve tensional homeostasis. We observed that Robo1 ablation in the developing mammary gland compromised actin stress fiber assembly and inhibited cell contractility to perturb tissue morphogenesis, whereas SLIT2 treatment stimulated Rac and increased focal adhesion kinase activity to enhance cell tension by maintaining cell shape and matrix adhesion. Further investigation revealed that a stiff ECM increased Robo1 levels by down-regulating miR-203. Consistently, patients whose tumor expressed a low miR-203/high Robo1 expression pattern exhibited a better overall survival prognosis. These studies show that cells subjected to stiffened environments up-regulate Robo1 as a protective mechanism that maintains cell shape and facilitates ECM adherence. PMID:26975850

  7. Loss of miR-203 regulates cell shape and matrix adhesion through ROBO1/Rac/FAK in response to stiffness.

    Science.gov (United States)

    Le, Lily Thao-Nhi; Cazares, Oscar; Mouw, Janna K; Chatterjee, Sharmila; Macias, Hector; Moran, Angel; Ramos, Jillian; Keely, Patricia J; Weaver, Valerie M; Hinck, Lindsay

    2016-03-14

    Breast tumor progression is accompanied by changes in the surrounding extracellular matrix (ECM) that increase stiffness of the microenvironment. Mammary epithelial cells engage regulatory pathways that permit dynamic responses to mechanical cues from the ECM. Here, we identify a SLIT2/ROBO1 signaling circuit as a key regulatory mechanism by which cells sense and respond to ECM stiffness to preserve tensional homeostasis. We observed that Robo1 ablation in the developing mammary gland compromised actin stress fiber assembly and inhibited cell contractility to perturb tissue morphogenesis, whereas SLIT2 treatment stimulated Rac and increased focal adhesion kinase activity to enhance cell tension by maintaining cell shape and matrix adhesion. Further investigation revealed that a stiff ECM increased Robo1 levels by down-regulating miR-203. Consistently, patients whose tumor expressed a low miR-203/high Robo1 expression pattern exhibited a better overall survival prognosis. These studies show that cells subjected to stiffened environments up-regulate Robo1 as a protective mechanism that maintains cell shape and facilitates ECM adherence.

  8. THE DIFFERENTIAL REGULATION OF CELL MOTILE ACTIVITY THROUGH MATRIX STIFFNESS AND POROSITY IN THREE DIMENSIONAL COLLAGEN MATRICES

    Science.gov (United States)

    Miron-Mendoza, Miguel; Seemann, Joachim; Grinnell, Frederick

    2010-01-01

    In three dimensional collagen matrices, cell motile activity results in collagen translocation, cell spreading and cell migration. Cells can penetrate into the matrix as well as spread and migrate along its surface. In the current studies, we quantitatively characterize collagen translocation, cell spreading and cell migration in relationship to collagen matrix stiffness and porosity. Collagen matrices prepared with 1 to 4 mg/ml collagen exhibited matrix stiffness (storage modulus measured by oscillating rheometry) increasing from 4 to 60 Pa and matrix porosity (measured by scanning electron microscopy) decreasing from 4 to 1 μm2. Over this collagen concentration range, the consequences of cell motile activity changed markedly. As collagen concentration increased, cells no longer were able to cause translocation of collagen fibrils. Cell migration increased and cell spreading changed from dendritic to more flattened and polarized morphology depending on location of cells within or on the surface of the matrix. Collagen translocation appeared to depend primarily on matrix stiffness, whereas cell spreading and migration were less dependent on matrix stiffness and more dependent on collagen matrix porosity. PMID:20537378

  9. Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: implications to performance.

    Science.gov (United States)

    Horita, T; Komi, P V; Nicol, C; Kyröläinen, H

    2002-11-01

    The purpose of the present study was to investigate the interaction between the pre-landing activities and the stiffness regulation of the knee joint musculoskeletal system and the takeoff speed during a drop jump (DJ). Nine healthy male subjects performed a DJ test from the height of 50 cm. The surface electromyographic (EMG) activity of the vastus lateralis (VL) muscle was recorded to evaluate both the pre-landing and post-landing muscle activation levels. Simultaneous recording of the jumping motion and ground reaction force was performed by a high-speed video camera (100 frames x s(-1)), and a force platform was employed to allow joint moment analysis. Joint stiffness was calculated by a linear regression of the knee joint moment/angle relationship. Elasticity of the knee extensor muscle during DJ was estimated by means of a four-element muscle model consisting of a parallel elastic component, a series elastic component (SEC), a viscous damper, and a contractile element. DJ performance correlated positively with the positive peak power of the knee joint (P knee joint at the end of stretch (P power of the ankle joint. The knee joint moment at the end of stretch correlated with the SEC stiffness during the transmission phase from the end of the initial impact to the onset of the concentric action (P knee extensors (P analysis showed that the SEC stiffness during the transmission phase of the knee joint can be explained by a combination of the pre-activity of the VL muscle and the knee joint angular velocity at touchdown (F = 5.76, P knee extensor muscle in conjunction with the muscle contractile property play a major role in regulating the performance in DJ.

  10. Stiff railguns

    Science.gov (United States)

    Weldon, W. F.; Bacon, J. L.; Weeks, D. A.; Zowarka, R. C., Jr.

    1991-01-01

    Stiff guns have been operated with both plasma and solid armatures. A performance gain was seen in the plasma railgun as stiffness was increased. A stiff gun will help to maintain the bore shape and preserve the integrity of the seam between rail and insulator under the extreme asymmetric loads sustained during high-pressure operation. The hydraulically preloaded moly and ceramic gun has been fired six times at pressures as high as 87 ksi, and the bore still holds roughing vacuum up to two hours after the test. The elimination of seam leakage helps control bore erosion associated with plasma reconstitution from the rail and plasma perturbation that might result in loss-initiating instabilities. Reduced rail deflection allows solid and transitioning armatures to track the bore surface. An analysis of the strain energy associated with the deflection of the railgun structure is presented, and this mechanism is found to be a small fraction of the energy associated with armature loss and the rail resistive loss.

  11. A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis.

    Science.gov (United States)

    Kular, Jasreen; Scheer, Kaitlin G; Pyne, Natasha T; Allam, Amr H; Pollard, Anthony N; Magenau, Astrid; Wright, Rebecca L; Kolesnikoff, Natasha; Moretti, Paul A; Wullkopf, Lena; Stomski, Frank C; Cowin, Allison J; Woodcock, Joanna M; Grimbaldeston, Michele A; Pitson, Stuart M; Timpson, Paul; Ramshaw, Hayley S; Lopez, Angel F; Samuel, Michael S

    2015-12-21

    ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel pharmacological agent accelerated wound healing 2-fold. Patient samples of chronic non-healing wounds overexpressed 14-3-3ζ, while cutaneous SCCs had reduced 14-3-3ζ. These results reveal a novel 14-3-3ζ-dependent mechanism that negatively regulates mechano-reciprocity, suggesting new therapeutic opportunities.

  12. Keratin 8/18 Regulation of Cell Stiffness-Extracellular Matrix Interplay through Modulation of Rho-Mediated Actin Cytoskeleton Dynamics

    Science.gov (United States)

    Bordeleau, François; Myrand Lapierre, Marie-Eve; Sheng, Yunlong; Marceau, Normand

    2012-01-01

    Cell mechanical activity generated from the interplay between the extracellular matrix (ECM) and the actin cytoskeleton is essential for the regulation of cell adhesion, spreading and migration during normal and cancer development. Keratins are the intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatic epithelial cell IFs are made solely of keratins 8/18 (K8/K18), hallmarks of all simple epithelia. Notably, our recent work on these epithelial cells has revealed a key regulatory function for K8/K18 IFs in adhesion/migration, through modulation of integrin interactions with ECM, actin adaptors and signaling molecules at focal adhesions. Here, using K8-knockdown rat H4 hepatoma cells and their K8/K18-containing counterparts seeded on fibronectin-coated substrata of different rigidities, we show that the K8/K18 IF-lacking cells lose their ability to spread and exhibit an altered actin fiber organization, upon seeding on a low-rigidity substratum. We also demonstrate a concomitant reduction in local cell stiffness at focal adhesions generated by fibronectin-coated microbeads attached to the dorsal cell surface. In addition, we find that this K8/K18 IF modulation of cell stiffness and actin fiber organization occurs through RhoA-ROCK signaling. Together, the results uncover a K8/K18 IF contribution to the cell stiffness-ECM rigidity interplay through a modulation of Rho-dependent actin organization and dynamics in simple epithelial cells. PMID:22685604

  13. Keratin 8/18 regulation of cell stiffness-extracellular matrix interplay through modulation of Rho-mediated actin cytoskeleton dynamics.

    Directory of Open Access Journals (Sweden)

    François Bordeleau

    Full Text Available Cell mechanical activity generated from the interplay between the extracellular matrix (ECM and the actin cytoskeleton is essential for the regulation of cell adhesion, spreading and migration during normal and cancer development. Keratins are the intermediate filament (IF proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatic epithelial cell IFs are made solely of keratins 8/18 (K8/K18, hallmarks of all simple epithelia. Notably, our recent work on these epithelial cells has revealed a key regulatory function for K8/K18 IFs in adhesion/migration, through modulation of integrin interactions with ECM, actin adaptors and signaling molecules at focal adhesions. Here, using K8-knockdown rat H4 hepatoma cells and their K8/K18-containing counterparts seeded on fibronectin-coated substrata of different rigidities, we show that the K8/K18 IF-lacking cells lose their ability to spread and exhibit an altered actin fiber organization, upon seeding on a low-rigidity substratum. We also demonstrate a concomitant reduction in local cell stiffness at focal adhesions generated by fibronectin-coated microbeads attached to the dorsal cell surface. In addition, we find that this K8/K18 IF modulation of cell stiffness and actin fiber organization occurs through RhoA-ROCK signaling. Together, the results uncover a K8/K18 IF contribution to the cell stiffness-ECM rigidity interplay through a modulation of Rho-dependent actin organization and dynamics in simple epithelial cells.

  14. Uncertainty quantification of inflow boundary condition and proximal arterial stiffness-coupled effect on pulse wave propagation in a vascular network.

    Science.gov (United States)

    Brault, Antoine; Dumas, Laurent; Lucor, Didier

    2016-12-10

    This work aims at quantifying the effect of inherent uncertainties from cardiac output on the sensitivity of a human compliant arterial network response based on stochastic simulations of a reduced-order pulse wave propagation model. A simple pulsatile output form is used to reproduce the most relevant cardiac features with a minimum number of parameters associated with left ventricle dynamics. Another source of significant uncertainty is the spatial heterogeneity of the aortic compliance, which plays a key role in the propagation and damping of pulse waves generated at each cardiac cycle. A continuous representation of the aortic stiffness in the form of a generic random field of prescribed spatial correlation is then considered. Making use of a stochastic sparse pseudospectral method, we investigate the sensitivity of the pulse pressure and waves reflection magnitude over the arterial tree with respect to the different model uncertainties. Results indicate that uncertainties related to the shape and magnitude of the prescribed inlet flow in the proximal aorta can lead to potent variation of both the mean value and standard deviation of blood flow velocity and pressure dynamics due to the interaction of different wave propagation and reflection features. Lack of accurate knowledge in the stiffness properties of the aorta, resulting in uncertainty in the pulse wave velocity in that region, strongly modifies the statistical response, with a global increase in the variability of the quantities of interest and a spatial redistribution of the regions of higher sensitivity. These results will provide some guidance in clinical data acquisition and future coupling of arterial pulse wave propagation reduced-order model with more complex beating heart models.

  15. Activation of Yes-Associated Protein in Low-Grade Meningiomas Is Regulated by Merlin, Cell Density, and Extracellular Matrix Stiffness.

    Science.gov (United States)

    Tanahashi, Kuniaki; Natsume, Atsushi; Ohka, Fumiharu; Motomura, Kazuya; Alim, Adiljan; Tanaka, Ichidai; Senga, Takeshi; Harada, Ichiro; Fukuyama, Ryuichi; Sumiyoshi, Naoyuki; Sekido, Yoshitaka; Wakabayashi, Toshihiko

    2015-07-01

    The NF2 gene product Merlin is a protein containing ezrin, radixin, and moesin domains; it is a member of the 4.1 protein superfamily associated with the membrane cytoskeleton and also interacts with cell surface molecules. The mammalian Hippo cascade, a downstream signaling cascade of merlin, inactivates the Yes-associated protein (YAP). Yes-associated protein is activated by loss of the NF2 gene and functions as an oncogene in meningioma cells; however, the factors controlling YAP expression, phosphorylation, and subcellular localization in meningiomas have not been fully elucidated. Here, we demonstrate that merlin expression is heterogeneous in 1 NF2 gene-negative and 3 NF2 gene-positive World Health Organization grade I meningiomas. In the NF2 gene-positive meningiomas, regions with low levels of merlin (tumor rims) had greater numbers of cells with nuclear YAP versus regions with high merlin levels (tumor cores). Merlin expression and YAP phosphorylation were also affected by cell density in the IOMM-Lee and HKBMM human meningioma cell lines; nuclear localization of YAP was regulated by cell density and extracellular matrix (ECM) stiffness in IOMM-Lee cells. These results suggest that cell density and ECM stiffness may contribute to the heterogeneous loss of merlin and increased nuclear YAP expression in human meningiomas.

  16. A Comparison of the Regulation of Health Professional Boundaries across OECD Countries

    Directory of Open Access Journals (Sweden)

    Ivy Lynn Bourgeault

    2013-06-01

    Full Text Available Increased attention has been paid recently to the issue of the regulation of professional boundaries. In this paper, we undertake an international comparison of the regulation of health professional boundaries across the OECD countries of Canada, the U.S., the U.K. and Australia. Our case studies focus on the inter-professional boundary negotiation between medicine and nursing and the intra-professional boundary negotiation between domestic and internationally trained physicians. Our analysis draws upon the complementary interdisciplinary theoretical perspectives of institutional economics and the concept of professional closure from the sociology of professions. In applying these lenses to the two case studies in these four country contexts, we reveal that there has been a shift in the context of professional regulation towards a more coordinated national approach to licensure. There has also been a broad scale move towards breaking down at least the regulatory barriers to inter-professional collaboration between physicians and nurses which has included the expansion of the scope of nursing practice to take up traditionally exclusive domains of medicine. The seemingly protectionist professional regulatory policies vis-a-vis international medical graduates also seem to be breaking down primarily through government measures. Overall, there has been an increased permeability of professional boundaries both inter-professionally and intra-professionally, and market-oriented systems seem to be in a better position to overcome medical dominance than state-led ones, even though they do not change the main rules of regulation at the macro-level.

  17. Instantons near a tachyonic top in anti de Sitter and the no-boundary regulator

    CERN Document Server

    Lee, Bum-Hoon; Ro, Daeho; Yeom, Dong-han

    2014-01-01

    We investigate instantons near the tachyonic top in the anti de Sitter (AdS) background. If the mass around the hill-top is above the Breitenlohner-Freedman (BF) bound, then the top is classically stable. When the BF bound is satisfied, it is already known that there can exist instantons with a non-zero probability, though fine-tunings of the potential are required. On the other hand, we may consider the possibility to obtain instantons with a non-zero probability for more natural shape of potentials. We found that the no-boundary regulator is useful to assign a non-zero probability for general instantons near the tachyonic top within a consistent framework. To use the no-boundary regulator, we need to introduce the complexification of fields. One interesting feature is that, for these AdS instantons, the classicality may not be satisfied after the Wick rotation and hence after the nucleation. This magnifies a novel difference between dS and AdS; a semi-classical boundary observer in AdS may notice the disper...

  18. Dynamic stiffness of suction caissons - vertical vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.; Andersen, Lars

    2006-12-15

    The dynamic response of offshore wind turbines are affected by the properties of the foundation and the subsoil. The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three-dimensional coupled Boundary Element/Finite Element model. Comparisons are made with known analytical and numerical solutions in order to evaluate the static and dynamic behaviour of the Boundary Element/Finite Element model. The vertical frequency dependent stiffness has been determined for different combinations of the skirt length, Poisson's ratio and the ratio between soil stiffness and skirt stiffness. Finally the dynamic behaviour at high frequencies is investigated. (au)

  19. Stiff person syndrome.

    Science.gov (United States)

    Ciccoto, Giuseppe; Blaya, Maike; Kelley, Roger E

    2013-02-01

    Recognizing stiff person syndrome is clinically important. It is uncommon, characterized by body stiffness associated with painful muscle spasms, and varies in location and severity. It is subdivided into stiff trunk versus stiff limb presentation, and as a progressive encephalomyelitis. Stiff person-type syndrome also reflects a paraneoplastic picture. Most patients demonstrate exaggerated lumbar lordosis. Roughly 60% of patients have antiglutamic acid decarboxylase antibodies in the blood and the cerebrospinal fluid. The differential diagnosis includes many severe conditions. There are reports of response to muscle relaxants, immunosuppressants, intravenous gamma globulin, plasma exchange, a number of anticonvulsants, and botulinum toxin.

  20. Stiffness of compression devices

    Directory of Open Access Journals (Sweden)

    Giovanni Mosti

    2013-03-01

    Full Text Available This issue of Veins and Lymphatics collects papers coming from the International Compression Club (ICC Meeting on Stiffness of Compression Devices, which took place in Vienna on May 2012. Several studies have demonstrated that the stiffness of compression products plays a major role for their hemodynamic efficacy. According to the European Committee for Standardization (CEN, stiffness is defined as the pressure increase produced by medical compression hosiery (MCH per 1 cm of increase in leg circumference.1 In other words stiffness could be defined as the ability of the bandage/stockings to oppose the muscle expansion during contraction.

  1. Posttraumatic stiff elbow

    Directory of Open Access Journals (Sweden)

    Ravi Mittal

    2017-01-01

    Full Text Available Posttraumatic stiff elbow is a frequent and disabling complication and poses serious challenges for its management. In this review forty studies were included to know about the magnitude of the problem, causes, pathology, prevention, and treatment of posttraumatic stiff elbow. These studies show that simple measures such as internal fixation, immobilization in extension, and early motion of elbow joint are the most important steps that can prevent elbow stiffness. It also supports conservative treatment in selected cases. There are no clear guidelines about the choice between the numerous procedures described in literature. However, this review article disproves two major beliefs-heterotopic ossification is a bad prognostic feature, and passive mobilization of elbow causes elbow stiffness.

  2. Posttraumatic stiff elbow

    Science.gov (United States)

    Mittal, Ravi

    2017-01-01

    Posttraumatic stiff elbow is a frequent and disabling complication and poses serious challenges for its management. In this review forty studies were included to know about the magnitude of the problem, causes, pathology, prevention, and treatment of posttraumatic stiff elbow. These studies show that simple measures such as internal fixation, immobilization in extension, and early motion of elbow joint are the most important steps that can prevent elbow stiffness. It also supports conservative treatment in selected cases. There are no clear guidelines about the choice between the numerous procedures described in literature. However, this review article disproves two major beliefs-heterotopic ossification is a bad prognostic feature, and passive mobilization of elbow causes elbow stiffness.

  3. Waves in geomaterials exhibiting negative stiffness behaviour

    Science.gov (United States)

    Esin, Maxim; Dyskin, Arcady; Pasternak, Elena

    2016-04-01

    Negative stiffness denotes the type of material behaviour when the force applied to the body decreases the body's deformation increases. Some geomaterials, for instance, rocks, demonstrate behaviour of this type at certain loads: during the compression tests the loading curves exhibit descending branch (post-peak softening). One of the possible mechanisms of the negative stiffness appearance in geomaterials is rotation of non-spherical grains. It is important to emphasize that in this case the descending branch may be reversible given that the testing machine is stiff enough (in general case it means an importance of boundary conditions). Existence of geomaterials with a negative modulus associated with rotations may have significant importance. In particular, important is understanding of the wave propagation in such materials. We study the stability of geomaterials with negative stiffness inclusions and wave propagation in it using two approaches: Cosserat continuum and discrete mass-spring models. In both cases we consider the rotational degrees of freedom in addition to the conventional translational ones. We show that despite non positiveness of the energy the materials with negative stiffness elements can be stable if certain conditions are met. In the case of Cosserat continuum the Cosserat shear modulus (the modulus relating the non-symmetrical part of shear stress and internal rotations) is allowed to assume negative values as long as its value does not exceed the value of the standard (positive) shear modulus. In the case of discrete mass-spring systems (with translational and rotational springs) the concentration of negative stiffness springs and the absolute values of negative spring stiffness are limited. The critical concentration when the system loses stability and the amplitude of the oscillations tends to infinity is equal to 1/2 and 3/5 for two- and three-dimensional cases respectively.

  4. Stiff Quantum Polymers

    OpenAIRE

    Kleinert, H

    2007-01-01

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  5. Dynamic stiffness of suction caissons

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars

    The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear...... of the skirt length, Poisson's ratio and the ratio between soil stiffness and skirt stiffness. Finally the dynamic behaviour at high frequencies is investigated....... viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three...

  6. Genetics of Stiff Child Syndrome

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-11-01

    Full Text Available A Chinese boy with a DYT1 gene mutation presented with muscle stiffness, painful muscle spasms, myoclonus, and dystonia, compatible with stiff child syndrome, and is reported from Queen Mary Hospital, the University of Hong Kong.

  7. Vibration control via stiffness switching of magnetostrictive transducers

    Science.gov (United States)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-04-01

    In this paper, a computational study is presented of structural vibration control that is realized by switching a magneto-strictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magneto-strictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magneto-strictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magneto-strictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magneto-strictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.

  8. High-gain adaptive regulator for a string equation with uncertain harmonic disturbance under boundary output feedback control

    Institute of Scientific and Technical Information of China (English)

    Baozhu GUO; Wei GUO

    2003-01-01

    This paper considers the boundary stabilization and parameter estimation of a one-dimensional wave equation in the case when one end is fixed and control and harmonic disturbance with uncertain amplitude are input at another end. A high-gain adaptive regulator is designed in terms of measured collocated end velocity. The existence and uniqueness of the classical solution of the closed-loop system is proven. It is shown that the state of the system approaches the standstill as time goes to infitv and meanwhile, the estimated parameter converges to the unknown parameter.

  9. Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries

    Directory of Open Access Journals (Sweden)

    Meritxell Reverter

    2014-05-01

    Full Text Available Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN. Here, using Chinese hamster ovary (CHO Niemann-Pick type C1 (NPC1 mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6 accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs. This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.

  10. Collaborative jurisdiction in the regulation of electric utilities: A new look at jurisdictional boundaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    This conference is one of several activities initiated by FERC, DOE and NARUC to improve the dialogue between Federal and State regulators and policymakers. I am pleased to be here to participate in this conference and to address, with you, electricity issues of truly national significance. I would like to commend Ashley Brown and the NARUC Electricity Committee for its foresight in devising a conference on these issues at this critical juncture in the regulation of the electric utility industry. I also would like to commend Chairman Allday and the FERC for their efforts to improve communication between Federal and State electricity regulators; both through FERC`s Public Conference on Electricity Issues that was held last June, and through the FERC/NARUC workshops that are scheduled to follow this conference. These collaborative efforts are important and necessary steps in addressing successfully the many issues facing the electric utility industry those who regulate it, and those who depend upon it - in other words, about everyone.

  11. Pharmacological modulation of arterial stiffness.

    LENUS (Irish Health Repository)

    Boutouyrie, Pierre

    2011-09-10

    Arterial stiffness has emerged as an important marker of cardiovascular risk in various populations and reflects the cumulative effect of cardiovascular risk factors on large arteries, which in turn is modulated by genetic background. Arterial stiffness is determined by the composition of the arterial wall and the arrangement of these components, and can be studied in humans non-invasively. Age and distending pressure are two major factors influencing large artery stiffness. Change in arterial stiffness with drugs is an important endpoint in clinical trials, although evidence for arterial stiffness as a therapeutic target still needs to be confirmed. Drugs that independently affect arterial stiffness include antihypertensive drugs, mostly blockers of the renin-angiotensin-aldosterone system, hormone replacement therapy and some antidiabetic drugs such as glitazones. While the quest continues for \\'de-stiffening drugs\\

  12. Monitoring the Bending Stiffness of DNA

    Science.gov (United States)

    Yuan, Chongli; Lou, Xiongwen; Rhoades, Elizabeth; Chen, Huimin; Archer, Lynden

    2007-03-01

    In eukaryotic cells, the accessibility of genomic sequences provides an inherent regulation mechanism for gene expression through variations in bending stiffness encoded by the nucleic acid sequence. Cyclization of dsDNA is the prevailing method for determining DNA bending stiffness. Recent cyclization data for short dsDNA raises several fundamental questions about the soundness of the cyclization method, particularly in cases where the probability of highly bent DNA conformations is low. We herein evaluate the role of T4 DNA ligase in the cyclization reaction by inserting an environmental sensitive base analogue, 2-amino purine, to the DNA molecule. By monitoring the 2-AP fluorescence under standard cyclization conditions, it is found that in addition to trapping highly-bent cyclic DNA conformations, T4 DNA ligase enhances the apparent base pair flip out rate, thus exaggerating the measured flexibility. This result is further confirmed using fluorescence anisotropy experiments. We show that fluorescence resonance energy transfer (FRET) measurements on suitably labeled dsDNA provides an alternative approach for quantifying the bending stiffness of short fragments. DNA bending stiffness results obtained using FRET are compared with literature values.

  13. A Reply to Stiff and Boster.

    Science.gov (United States)

    Petty, Richard E.; And Others

    1987-01-01

    Addresses the major errors and misconceptions perpetuated by Stiff and Boster's response to criticism of Stiff's 1986 article. Focuses on the major conceptual and methodological issues of Stiff's model. (NKA)

  14. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  15. Fabrication of Janus hydrogels with stiffness gradient using drop coalescence

    Science.gov (United States)

    Lee, Donghee; Golden, Kale; Ryu, Sangjin

    2016-11-01

    The stiffness of the extracellular matrix (ECM) regulates cellular behaviors, and polyacrylamide (PAAM) gels with stiffness gradient have been used to simulate inhomogeneous ECM and to study the effects of the ECM stiffness on cells. Such hydrogel substrates with stiffness gradient can be fabricated with relatively complicated methods using microfluidics and moving masks. In our study, we develop a simpler method for fabricating Janus hydrogel which has a gradient of stiffness. Two prepolymer solutions were prepared for soft and stiff gel compositions, respectively, and one drop of each solution was placed on a hydrophobic patterned glass. Then, these two drops were gently squeezed by another glass being slowly lowered until coalescence, and gel polymerization was initiated after a certain time period for mixing. The motion of the drops was guided by the hydrophobic pattern. AFM nano-indentation showed that the fabricated Janus PAAM gels have a stiffness gradient which could be controlled by increasing mixing time. This study was supported by Bioengineering for Human Health Grant from UNL and UNMC.

  16. The dynamic stiffness matrix of two-dimensional elements: application to Kirchhoff's plate continuous elements

    Science.gov (United States)

    Casimir, J. B.; Kevorkian, S.; Vinh, T.

    2005-10-01

    This paper describes a procedure for building the dynamic stiffness matrix of two-dimensional elements with free edge boundary conditions. The dynamic stiffness matrix is the basis of the continuous element method. Then, the formulation is used to build a Kirchhoff rectangular plate element. Gorman's method of boundary condition decomposition and Levy's series are used to obtain the strong solution of the elementary problem. A symbolic computation software partially performs the construction of the dynamic stiffness matrix from this solution. The performances of the element are evaluated from comparisons with harmonic responses of plates obtained by the finite element method.

  17. Analytical theory for shape stiffness

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The shape stiffness of mill m is defined as the crosswise rigidity of the unit width of steel plate, that is, m=k/b. By differentiating the steel plate crown equation in the vector model of steel plate shape, a new concise equation for the shape stiffness, kc=m+q, is obtained. Furthermore, by combining the calculation equation for steel plate crown derived from Castigliano's theorem, an analytical calculation equation for the shape rigidity of rolled steel plate is derived. The correctness and practicability of the theory for the shape stiffness are demonstrated by comparing the results from the numerical calculation with the practical data of a rolling mill.

  18. Analytical theory for shape stiffness

    Institute of Scientific and Technical Information of China (English)

    张进之

    2000-01-01

    The shape stiffness of mill m is defined as the crosswise rigidity of the unit width of steel plate, that is, m = k/b. By differentiating the steel plate crown equation in the vector model of steel plate shape, a new concise equation for the shape stiffness, kc = m + q, is obtained. Furthermore, by combining the calculation equation for steel plate crown derived from Castigliano’s theorem, an analytical calculation equation for the shape rigidity of rolled steel plate is derived. The correctness and practicability of the theory for the shape stiffness are demonstrated by comparing the results from the numerical calculation with the practical data of a rolling mill.

  19. Molecular Cues Guiding Matrix Stiffness in Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Takaoki Saneyasu

    2016-01-01

    Full Text Available Tissue and matrix stiffness affect cell properties during morphogenesis, cell growth, differentiation, and migration and are altered in the tissue remodeling following injury and the pathological progression. However, detailed molecular mechanisms underlying alterations of stiffness in vivo are still poorly understood. Recent engineering technologies have developed powerful techniques to characterize the mechanical properties of cell and matrix at nanoscale levels. Extracellular matrix (ECM influences mechanical tension and activation of pathogenic signaling during the development of chronic fibrotic diseases. In this short review, we will focus on the present knowledge of the mechanisms of how ECM stiffness is regulated during the development of liver fibrosis and the molecules involved in ECM stiffness as a potential therapeutic target for liver fibrosis.

  20. Molecular Cues Guiding Matrix Stiffness in Liver Fibrosis

    Science.gov (United States)

    Saneyasu, Takaoki; Akhtar, Riaz

    2016-01-01

    Tissue and matrix stiffness affect cell properties during morphogenesis, cell growth, differentiation, and migration and are altered in the tissue remodeling following injury and the pathological progression. However, detailed molecular mechanisms underlying alterations of stiffness in vivo are still poorly understood. Recent engineering technologies have developed powerful techniques to characterize the mechanical properties of cell and matrix at nanoscale levels. Extracellular matrix (ECM) influences mechanical tension and activation of pathogenic signaling during the development of chronic fibrotic diseases. In this short review, we will focus on the present knowledge of the mechanisms of how ECM stiffness is regulated during the development of liver fibrosis and the molecules involved in ECM stiffness as a potential therapeutic target for liver fibrosis. PMID:27800489

  1. Morphological Computation of Haptic Perception of a Controllable Stiffness Probe.

    Directory of Open Access Journals (Sweden)

    Nantachai Sornkarn

    Full Text Available When people are asked to palpate a novel soft object to discern its physical properties such as texture, elasticity, and even non-homogeneity, they not only regulate probing behaviors, but also the co-contraction level of antagonistic muscles to control the mechanical impedance of fingers. It is suspected that such behavior tries to enhance haptic perception by regulating the function of mechanoreceptors at different depths of the fingertips and proprioceptive sensors such as tendon and spindle sensors located in muscles. In this paper, we designed and fabricated a novel two-degree of freedom variable stiffness indentation probe to investigate whether the regulation of internal stiffness, indentation, and probe sweeping velocity (PSV variables affect the accuracy of the depth estimation of stiff inclusions in an artificial silicon phantom using information gain metrics. Our experimental results provide new insights into not only the biological phenomena of haptic perception but also new opportunities to design and control soft robotic probes.

  2. Level Classifications of Foundation Stiffness

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    2007-01-01

    This article describes a foundation module developed and implemented in both HAWC and FLEX capable of to simulate the frequency dependent stiffness and damping of foundations e.g. pile, gravitation and bucket foundations.......This article describes a foundation module developed and implemented in both HAWC and FLEX capable of to simulate the frequency dependent stiffness and damping of foundations e.g. pile, gravitation and bucket foundations....

  3. An AFM-based stiffness clamp for dynamic control of rigidity.

    Science.gov (United States)

    Webster, Kevin D; Crow, Ailey; Fletcher, Daniel A

    2011-03-08

    Atomic force microscopy (AFM) has become a powerful tool for measuring material properties in biology and imposing mechanical boundary conditions on samples from single molecules to cells and tissues. Constant force or constant height can be maintained in an AFM experiment through feedback control of cantilever deflection, known respectively as a 'force clamp' or 'position clamp'. However, stiffness, the third variable in the Hookean relation F = kx that describes AFM cantilever deflection, has not been dynamically controllable in the same way. Here we present and demonstrate a 'stiffness clamp' that can vary the apparent stiffness of an AFM cantilever. This method, employable on any AFM system by modifying feedback control of the cantilever, allows rapid and reversible tuning of the stiffness exposed to the sample in a way that can decouple the role of stiffness from force and deformation. We demonstrated the AFM stiffness clamp on two different samples: a contracting fibroblast cell and an expanding polyacrylamide hydrogel. We found that the fibroblast, a cell type that secretes and organizes the extracellular matrix, exhibited a rapid, sub-second change in traction rate (dF/dt) and contraction velocity (dx/dt) in response to step changes in stiffness between 1-100 nN/µm. This response was independent of the absolute contractile force and cell height, demonstrating that cells can react directly to changes in stiffness alone. In contrast, the hydrogel used in our experiment maintained a constant expansion velocity (dx/dt) over this range of stiffness, while the traction rate (dF/dt) changed with stiffness, showing that passive materials can also behave differently in different stiffness environments. The AFM stiffness clamp presented here, which is applicable to mechanical measurements on both biological and non-biological samples, may be used to investigate cellular mechanotransduction under a wide range of controlled mechanical boundary conditions.

  4. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    Science.gov (United States)

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  5. Estimation of Stiffness Parameter on the Common Carotid Artery

    Science.gov (United States)

    Koya, Yoshiharu; Mizoshiri, Isao; Matsui, Kiyoaki; Nakamura, Takashi

    The arteriosclerosis is on the increase with an aging or change of our living environment. For that reason, diagnosis of the common carotid artery using echocardiogram is doing to take precautions carebropathy. Up to the present, several methods to measure stiffness parameter of the carotid artery have been proposed. However, they have analyzed at the only one point of common carotid artery. In this paper, we propose the method of analysis extended over a wide area of common carotid artery. In order to measure stiffness parameter of common carotid artery from echocardiogram, it is required to detect two border curves which are boundaries between vessel wall and blood. The method is composed of two steps. The first step is the detection of border curves, and the second step is the calculation of stiffness parameter using diameter of common carotid artery. Experimental results show the validity of the proposed method.

  6. Dynamic stiffness matrix of partial-interaction composite beams

    Directory of Open Access Journals (Sweden)

    Guangjian Bao

    2015-03-01

    Full Text Available Composite beams have a wide application in building and bridge engineering because of their advantages of mechanical properties, constructability and economic performance. Unlike static characteristics, the methods of studying the dynamic characteristics of partial-interaction composite beams were limited, especially dynamic stiffness matrix method. In this article, the dynamic stiffness matrix of partial-interaction composite beams was derived based on the assumption of the Euler–Bernoulli beam theory, and then it was used to predict the frequencies of the free vibration of the single-span composite beams with various boundary conditions or different axial forces. The corresponding vibration modes and buckling loads were also obtained. From the comparison with the existing results, the numerical results obtained by the proposed method agreed reasonably with those in the literatures. The dynamic stiffness matrix method is an accurate method which can determine natural vibration frequencies and vibration mode shapes in any precision theoretically. As a result, when the higher precision or natural frequencies of higher order are required, the dynamic stiffness matrix method is superior when compared to other approximate and numerical methods. The dynamic stiffness matrix method can also be combined with the finite-element method to calculate the free vibration frequencies and natural mode shapes of composite beams in complex conditions.

  7. Stiffness after total knee arthroplasty.

    Science.gov (United States)

    Manrique, Jorge; Gomez, Miguel M; Parvizi, Javad

    2015-04-01

    Stiffness after total knee arthroplasty (TKA) adversely affects outcome and impacts patient function. Various risk factors for stiffness after TKA have been identified, including reduced preoperative knee range of motion, history of prior knee surgery, etiology of arthritis, incorrect positioning or oversizing of components, and incorrect gap balancing. Mechanical and associated causes, such as infection, arthrofibrosis, complex regional pain syndrome, and heterotopic ossification, secondary gain issues have also been identified. Management of stiffness following TKA can be challenging. The condition needs to be assessed and treated in a staged manner. A nonsurgical approach is the first step. Manipulation under anesthesia may be considered within the first 3 months after the index TKA, if physical therapy fails to improve the range of motion. Beyond this point, consideration should be given to surgical intervention such as lysis of adhesions, either arthroscopically or by open arthrotomy. If the cause of stiffness is deemed to be surgical error, such as component malpositioning, revision arthroplasty is indicated. The purpose of this article is to evaluate the various aspects of management of stiffness after TKA.

  8. Extracellular matrix stiffness dictates Wnt expression through integrin pathway.

    Science.gov (United States)

    Du, Jing; Zu, Yan; Li, Jing; Du, Shuyuan; Xu, Yipu; Zhang, Lang; Jiang, Li; Wang, Zhao; Chien, Shu; Yang, Chun

    2016-02-08

    It is well established that extracellular matrix (ECM) stiffness plays a significant role in regulating the phenotypes and behaviors of many cell types. However, the mechanism underlying the sensing of mechanical cues and subsequent elasticity-triggered pathways remains largely unknown. We observed that stiff ECM significantly enhanced the expression level of several members of the Wnt/β-catenin pathway in both bone marrow mesenchymal stem cells and primary chondrocytes. The activation of β-catenin by stiff ECM is not dependent on Wnt signals but is elevated by the activation of integrin/ focal adhesion kinase (FAK) pathway. The accumulated β-catenin then bound to the wnt1 promoter region to up-regulate the gene transcription, thus constituting a positive feedback of the Wnt/β-catenin pathway. With the amplifying effect of positive feedback, this integrin-activated β-catenin/Wnt pathway plays significant roles in mediating the enhancement of Wnt signal on stiff ECM and contributes to the regulation of mesenchymal stem cell differentiation and primary chondrocyte phenotype maintenance. The present integrin-regulated Wnt1 expression and signaling contributes to the understanding of the molecular mechanisms underlying the regulation of cell behaviors by ECM elasticity.

  9. Arterial Stiffness: Recommendations and Standardization

    Science.gov (United States)

    Townsend, Raymond R.

    2017-01-01

    The use of arterial stiffness measurements in longitudinal cohorts of normal populations, hypertensive patients, diabetic patients, healthy elderly, and patients on hemodialysis have confirmed the value of this important measure of arterial health, and established its complementary role to measures of blood pressure. Its contribution to understanding cardiovascular and mortality risk beyond blood pressure measurements has moved measures of arterial stiffness into the ranks of factors such as elevated cholesterol, diabetes, and left ventricular hypertrophy in considering cardiovascular risk. The recent international collaboration's publication of reference ranges for normal people and those with hypertension, along with the American Heart Association's recent scientific statement on standardizing arterial stiffness measurements are important aspects to consider in future studies employing these valuable methods, particularly as interventions that not only lower blood pressure but improve arterial function are tested in the clinical arena. PMID:28275588

  10. Lase Ultrasonic Web Stiffness tester

    Energy Technology Data Exchange (ETDEWEB)

    Tim Patterson, Ph.D., IPST at Ga Tech

    2009-01-12

    The objective is to provide a sensor that uses non-contact, laser ultrasonics to measure the stiffness of paper during the manufacturing process. This will allow the manufacturer to adjust the production process in real time, increase filler content, modify fiber refining and as result produce a quality product using less energy. The sensor operates by moving back and forth across the paper web, at pre-selected locations firing a laser at the sheet, measuring the out-of-plane velocity of the sheet then using that measurement to calculate sheet stiffness.

  11. Axial Dynamic Stiffness of Tubular Piles in Viscoelastic Soil

    Directory of Open Access Journals (Sweden)

    Mehdi Bayat

    2016-09-01

    Full Text Available Large offshore wind turbines are founded on jacket structures. In this study, an elastic full-space jacket structure foundation in an elastic and viscoelastic medium is investigated by using boundary integral equations. The jacket structure foundation is modeled as a hollow, long circular cylinder when the dynamic vertical excitation is applied. The smooth surface along the entire interface is considered. The Betti reciprocal theorem along with Somigliana’s identity and Green’s function are employed to drive the dynamic stiffness of jacket structures. Modes of the resonance and anti-resonance are presented in series of Bessel’s function. Important responses, such as dynamic stiffness and phase angle, are compared for different values of the loss factor as the material damping, Young’s modulus and Poisson’s ratio in a viscoelastic soil. Results are verified with known results reported in the literature. It is observed that the dynamic stiffness fluctuates with the loss factor, and the turning point is independent of the loss factor while the turning point increases with load frequency. It is seen that the non-dimensional dynamic stiffness is dependent on Young’s modulus and Poisson’s ratio, whilst the phase angle is independent of the properties of the soil. It is shown that the non-dimensional dynamic stiffness changes linearly with high-frequency load. The conclusion from the results of this study is that the material properties of soil are significant parameters in the dynamic stiffness of jacket structures, and the presented approach can unfold the behavior of soil and give an approachable physical meaning for wave propagation.

  12. EXPLICIT BOUNDS OF EIGENVALUES FOR STIFFNESS MATRICES BY QUADRATIC HIERARCHICAL BASIS METHOD

    Institute of Scientific and Technical Information of China (English)

    Sang Dong KIM; Byeong Chun SHIN

    2003-01-01

    The bounds for the eigenvalues of the stiffness matrices in the finite element discretization corresponding to Lu := -u" with zero boundary conditions by quadratic hierarchical basis are shown explicitly. The condition number of the resulting system behaves like O(1/h)where h is the mesh size. We also analyze a main diagonal preconditioner of the stiffness matrix which reduces the condition number of the preconditioned system to O(1).

  13. Exercise Helps Ease Arthritis Pain and Stiffness

    Science.gov (United States)

    ... pain, and helps combat fatigue. Of course, when stiff and painful joints are already bogging you down, ... can make your joints even more painful and stiff. That's because keeping your muscles and surrounding tissue ...

  14. Explicit Time-Stepping for Stiff ODEs

    CERN Document Server

    Eriksson, Kenneth; Logg, Anders; 10.1137/S1064827502409626

    2012-01-01

    We present a new strategy for solving stiff ODEs with explicit methods. By adaptively taking a small number of stabilizing small explicit time steps when necessary, a stiff ODE system can be stabilized enough to allow for time steps much larger than what is indicated by classical stability analysis. For many stiff problems the cost of the stabilizing small time steps is small, so the improvement is large. We illustrate the technique on a number of well-known stiff test problems.

  15. Energy-Efficient Variable Stiffness Actuators

    NARCIS (Netherlands)

    Visser, Ludo C.; Carloni, Raffaella; Stramigioli, Stefano

    2011-01-01

    Variable stiffness actuators are a particular class of actuators that is characterized by the property that the apparent output stiffness can be changed independent of the output position. To achieve this, variable stiffness actuators consist of a number of elastic elements and a number of actuated

  16. Shoulder Stiffness : Current Concepts and Concerns

    NARCIS (Netherlands)

    Itoi, Eiji; Arce, Guillermo; Bain, Gregory I.; Diercks, Ronald L.; Guttmann, Dan; Imhoff, Andreas B.; Mazzocca, Augustus D.; Sugaya, Hiroyuki; Yoo, Yon-Sik

    2016-01-01

    Shoulder stiffness can be caused by various etiologies such as immobilization, trauma, or surgical interventions. The Upper Extremity Committee of ISAKOS defined the term "frozen shoulder" as idiopathic stiff shoulder, that is, without a known cause. Secondary stiff shoulder is a term that should be

  17. Response to Bagavathiannan and Van Acker's "Transgenes and national boundaries - The need for international regulations": Biotechnology developers and regulators already consider transgene movement across national boundaries and the environmental risks posed by adventitious presence of unapproved events are overstated.

    Science.gov (United States)

    Nickson, Thomas E; Raybould, Alan F

    2009-01-01

    Bagavathiannan and Van Acker propose greater international cooperation and information sharing in risk assessment for biotechnology-derived crops because pollen- and seed-mediated gene flow across political boundaries may lead to the adventitious presence of unapproved transgenes at sites along the borders of neighboring countries. However, they fail to convince us that something is wrong with the current situation and provide no details of how it could be improved.

  18. A numerical model for pipelaying on nonlinear soil stiffness seabed

    Institute of Scientific and Technical Information of China (English)

    昝英飞; 韩端锋; 袁利毫; 李志刚

    2016-01-01

    The J-lay method is regarded as one of the most feasible methods to lay a pipeline in deep water and ultra-deep water. A numerical model that accounts for the nonlinear soil stiffness is developed in this study to evaluate a J-lay pipeline. The pipeline considered in this model is divided into two parts: the part one is suspended in water, and the part two is laid on the seabed. In addition to the boundary conditions at the two end points of the pipeline, a special set of the boundary conditions is required at the touchdown point that connects the two parts of the pipeline. The two parts of the pipeline are solved by a numerical iterative method and the finite difference method, respectively. The proposed numerical model is validated for a special case using a catenary model and a numerical model with linear soil stiffness. A good agreement in the pipeline configuration, the tension force and the bending moment is obtained among these three models. Furthermore, the present model is used to study the importance of the nonlinear soil stiffness. Finally, the parametric study is performed to study the effect of the mudline shear strength, the gradient of the soil shear strength, and the outer diameter of the pipeline on the pipelaying solution.

  19. Negative stiffness in gear contact

    Directory of Open Access Journals (Sweden)

    Půst L.

    2015-12-01

    Full Text Available The tooth contact stiffness is very often included in dynamic mathematical models of gear drives. It is an important value for calculation of torsion eigenfrequencies as well as the dynamic properties of the whole transmission systems. Planetary gear drives have several advantages over simple parallel axis gears, especially due to theirs compact design and great torque-to-weight ratio caused by multiple parallel paths. However, the dimensional or mounting errors can cause that some planets have the tendency to take more load than the others. One of the ways how to improve load sharing is the application of flexible planetary pins or by using a free central wheel. However in such cases, the wheels motion is defined in one rotation coordinate and two translation coordinates — tangential and radial. The reaction force at radial change of axis distance is usually neglected. The focus of this contribution is to derive the stiffness of this radial connection and to analyse the influence of radial stiffness on planetary gear dynamics.

  20. In-plane dynamic stiffness matrix for a free orthotropic plate

    Science.gov (United States)

    Ghorbel, O.; Casimir, J. B.; Hammami, L.; Tawfiq, I.; Haddar, M.

    2016-03-01

    The aim of this paper is to describe a procedure for computing the dynamic stiffness matrix relative to the in-plane effect for an orthotropic rectangular plate. The dynamic stiffness matrix is calculated for free edge boundary conditions. The formulation is based on strong solutions for the equations of motion for an orthotropic plate obtained with the Levy series and a Gorman decomposition of the free boundary conditions. The results obtained for the in-plane harmonic response are validated by the Finite Element Method.

  1. Augmented feedback of COM and COP modulates the regulation of quiet human standing relative to the stability boundary.

    Science.gov (United States)

    Kilby, Melissa C; Slobounov, Semyon M; Newell, Karl M

    2016-06-01

    The experiment manipulated real-time kinematic feedback of the motion of the whole body center of mass (COM) and center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions to investigate the variables actively controlled in quiet standing of young adults. The feedback reflected the current 2D postural positions within the 2D functional stability boundary that was scaled to 75%, 30% and 12% of its original size. The findings showed that the distance of both COP and COM to the respective stability boundary was greater during the feedback trials compared to a no feedback condition. However, the temporal safety margin of the COP, that is, the virtual time-to-contact (VTC), was higher without feedback. The coupling relation of COP-COM showed stable in-phase synchronization over all of the feedback conditions for frequencies below 1Hz. For higher frequencies (up to 5Hz), there was progressive reduction of COP-COM synchronization and local adaptation under the presence of augmented feedback. The findings show that the augmented feedback of COM and COP motion differentially and adaptively influences spatial and temporal properties of postural motion relative to the stability boundary while preserving the organization of the COM-COP coupling in postural control.

  2. Measurement and Treatment of Passive Muscle Stiffness

    DEFF Research Database (Denmark)

    Kirk, Henrik

    This PhD thesis is based on research conducted at the University of Copenhagen and Helene Elsass Center from 2012 to 2015. Measurements and treatment of passive muscle stiffness in people with cerebral palsy (CP) comprise the focus of the thesis. The thesis summarizes the results from four studies...... stiffness. I introduce how to evaluate and distinguish between passive muscle stiffness and reflex-mediated stiffness in research and in clinical practice. Furthermore, I present ”the Portable Spasticity Assessment Device”, which was developed as a part of the PhD study. I discuss the validity......-mediated stiffness was considered a major problem. However, this study shows that significantly reduced RFD and increased passive muscle stiffness, rather than reflex-mediated stiffness, are the major contributors to impaired gait function in adults with CP, compared with neurologically healthy subjects. The third...

  3. Three-Dimensional Stiff Graphene Scaffold on Neural Stem Cells Behavior.

    Science.gov (United States)

    Ma, Qinqin; Yang, Lingyan; Jiang, Ziyun; Song, Qin; Xiao, Miao; Zhang, Dong; Ma, Xun; Wen, Tieqiao; Cheng, Guosheng

    2016-12-21

    Physical cues of the scaffolds, elasticity, and stiffness significantly guide adhesion, proliferation, and differentiation of stem cells. In addressable microenvironments constructed by three-dimensional graphene foams (3D-GFs), neural stem cells (NSCs) interact with and respond to the structural geometry and mechanical properties of porous scaffolds. Our studies aim to investigate NSC behavior on the various stiffness of 3D-GFs. Two kinds of 3D-GFs scaffolds present soft and stiff properties with elasticity moduli of 30 and 64 kPa, respectively. Stiff scaffold enhanced NSC attachment and proliferation with vinculin and integrin gene expression were up-regulated by 2.3 and 1.5 folds, respectively, compared with the soft one. Meanwhile, up-regulated Ki67 expression and almost no variation of nestin expression in a group of the stiff scaffold were observed, implying that the stiff substrate fosters NSC growth and keeps the cells in an active stem state. Furthermore, NSCs grown on stiff scaffold exhibited enhanced differentiation to astrocytes. Interestingly, differentiated neurons on stiff scaffold are suppressed since growth associated protein-43 expression was significantly improved by 5.5 folds.

  4. Matrix Stiffness Modulates Proliferation, Chemotherapeutic Response and Dormancy in Hepatocellular Carcinoma Cells

    Science.gov (United States)

    Schrader, Jörg; Gordon-Walker, Timothy T; Aucott, Rebecca L; van Deemter, Mariëlle; Quaas, Alexander; Walsh, Shaun; Benten, Daniel; Forbes, Stuart J; Wells, Rebecca G; Iredale, John P

    2010-01-01

    There is increasing evidence that the physical environment is a critical mediator of tumor behavior. Hepatocellular carcinoma (HCC) develops within an altered biomechanical environment and increasing matrix stiffness is a strong predictor of HCC development. The aim of this study was to establish whether changes in matrix stiffness, which are characteristic of inflammation and fibrosis, regulate HCC cell proliferation and chemotherapeutic response. Using an in vitro system of “mechanically-tunable” matrix-coated polyacrylamide gels, matrix stiffness was modeled across a pathophysiologically-relevant range, corresponding to values encountered in normal and fibrotic livers. Results Increasing matrix stiffness was found to promote HCC cell proliferation. The proliferative index (assessed by Ki67 staining) of Huh7 and HepG2 cells was 2.7-fold and 12.2-fold higher, respectively, when the cells were cultured on stiff (12kPa) versus soft (1kPa) supports. This was associated with stiffness-dependent regulation of basal and HGF-stimulated mitogenic signaling through extracellular regulated kinase (ERK), protein kinase B (PKB/Akt) and signal transducer and activator of transcription 3 (STAT3). β1-integrin and focal adhesion kinase (FAK) were found to modulate stiffness-dependent HCC cell proliferation. Following treatment with cisplatin, we observed reduced apoptosis in HCC cells cultured on a stiff versus soft (physiological) supports. Interestingly, however, surviving cells from soft supports had significantly higher clonogenic capacity than surviving cells from a stiff microenvironment. This was associated with enhanced expression of cancer stem cell markers, including CD44, CD133, c-kit, CXCR4, octamer-4 (OCT4) and NANOG. Conclusion Increasing matrix stiffness promotes proliferation and chemotherapeutic resistance, whereas a soft environment induces reversible cellular dormancy and stem cell characteristics in HCC. This has implications for both the treatment of

  5. Dynamic stiffness matrix development and free vibration analysis of a moving beam

    Science.gov (United States)

    Banerjee, J. R.; Gunawardana, W. D.

    2007-06-01

    The dynamic stiffness matrix of a moving Bernoulli-Euler beam is developed and used to investigate its free flexural vibration characteristics. In order to develop the dynamic stiffness matrix, it is necessary to derive and solve the governing differential equation of motion of the moving beam in closed analytical form. The solution is then used to obtain the general expressions for both responses and loads. Boundary conditions are applied to determine the constants in the general solution, leading to the formation of the frequency dependent dynamic stiffness matrix of the moving beam, relating the amplitudes of the harmonically varying loads to those of the corresponding responses. The application of the resulting dynamic stiffness matrix using the Wittrick-Williams algorithm is demonstrated by some illustrative examples. Numerical results for both simply supported and fixed-fixed end conditions of the beam are discussed, and wherever possible, some are compared with those available in the literature.

  6. Stiffness estimation of a parallel kinematic machine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a simple yet comprehensive approach to quickly estimating the stiff-ness of a tripod-based parallel kinematic machine. This approach can be implemented in two steps. Inthe first step, the machine structure is decomposed into two substructures associated with the machineframe and parallel mechanism. The stiffness models of these two substructures are formulated bymeans of virtual work principle. This is followed by the second step that enables the stiffness model ofthe machine structure as a whole to be achieved by linear superposition. The 3D representations of themachine stiffness within the usable workspace are depicted and the contributions of different componentrigidities to the machine stiffness are discussed. The result is compared with that obtained through finiteelement analysis.

  7. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    Science.gov (United States)

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID

  8. The wave equation for stiff strings and piano tuning

    CERN Document Server

    Gràcia, Xavier

    2016-01-01

    We study the wave equation for a string with stiffness. We solve the equation and provide a uniqueness theorem with suitable boundary conditions. For a pinned string we compute the spectrum, which is slightly inharmonic. Therefore, the widespread scale of 12 equal divisions of the just octave is not the best choice to tune instruments like the piano. Basing in the theory of dissonance, we provide a way to tune the piano in order to improve its consonance. A good solution is obtained by tuning a note and its fifth by minimizing their beats.

  9. Numerical Analysis of Plastic Gear Stiffness

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper established practical 3-D gear models to study the stiffness influencing factors of a loaded gear by finite element method, such as friction parameters, material properties, and gear structures. The research shows that, in elastic deformation, gear stiffness increases when sliding friction ability of contact pair decreases;meanwhile, the gear structure, especially asymmetric design in gear's shaft direction will also decrease gear stiffness.

  10. Renormalized Volumes with Boundary

    CERN Document Server

    Gover, A Rod

    2016-01-01

    We develop a general regulated volume expansion for the volume of a manifold with boundary whose measure is suitably singular along a separating hypersurface. The expansion is shown to have a regulator independent anomaly term and a renormalized volume term given by the primitive of an associated anomaly operator. These results apply to a wide range of structures. We detail applications in the setting of measures derived from a conformally singular metric. In particular, we show that the anomaly generates invariant (Q-curvature, transgression)-type pairs for hypersurfaces with boundary. For the special case of anomalies coming from the volume enclosed by a minimal hypersurface ending on the boundary of a Poincare--Einstein structure, this result recovers Branson's Q-curvature and corresponding transgression. When the singular metric solves a boundary version of the constant scalar curvature Yamabe problem, the anomaly gives generalized Willmore energy functionals for hypersurfaces with boundary. Our approach ...

  11. WAY TO DETERMINE STIFFNESS FUNCTION OF STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    WANG De-ming; GAI Bing-zheng

    2005-01-01

    For calculating the stiffness function of a structure, the differential equation of the vibration of the structure was divided into the differential equation on the original stiffness function that was known, and Fredholm integral equation of the first kind on the undetermined stiffness function that was unknown. And the stable solutions of the integral equation, when the smooth factor was equal to zero, was solved by the extrapolation with p smooth factors. So the stiffness function of the structure is obtained. Applied examples show that the method is feasible and effective.

  12. A new approach to determine press stiffness

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    A new procedure is proposed for measuring press stiffness, including separated horizontal and vertical loading of the press frame. The load can be eccentrically positioned for measuring rotational stiffnesses. Two loading devices and corresponding measuring equipment for registration of press...... deflections are designed. The press stiffness is presented as a 6 by 6 flexibility matrix. The approach has been tested by measuring the stiffness of a 5000 kN O-frame, ring element, hydraulic press, a 10000 kN O-frame, pillar element, hydraulic press and a 10000 kN O-frame, ring element mechanical press...

  13. A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling.

    Science.gov (United States)

    Bae, Yong Ho; Mui, Keeley L; Hsu, Bernadette Y; Liu, Shu-Lin; Cretu, Alexandra; Razinia, Ziba; Xu, Tina; Puré, Ellen; Assoian, Richard K

    2014-06-17

    Tissue and extracellular matrix (ECM) stiffness is transduced into intracellular stiffness, signaling, and changes in cellular behavior. Integrins and several of their associated focal adhesion proteins have been implicated in sensing ECM stiffness. We investigated how an initial sensing event is translated into intracellular stiffness and a biologically interpretable signal. We found that a pathway consisting of focal adhesion kinase (FAK), the adaptor protein p130Cas (Cas), and the guanosine triphosphatase Rac selectively transduced ECM stiffness into stable intracellular stiffness, increased the abundance of the cell cycle protein cyclin D1, and promoted S-phase entry. Rac-dependent intracellular stiffening involved its binding partner lamellipodin, a protein that transmits Rac signals to the cytoskeleton during cell migration. Our findings establish that mechanotransduction by a FAK-Cas-Rac-lamellipodin signaling module converts the external information encoded by ECM stiffness into stable intracellular stiffness and mechanosensitive cell cycling. Thus, lamellipodin is important not only in controlling cellular migration but also for regulating the cell cycle in response to mechanical signals.

  14. Microenvironmental stiffness enhances glioma cell proliferation by stimulating epidermal growth factor receptor signaling.

    Directory of Open Access Journals (Sweden)

    Vaibhavi Umesh

    Full Text Available The aggressive and rapidly lethal brain tumor glioblastoma (GBM is associated with profound tissue stiffening and genomic lesions in key members of the epidermal growth factor receptor (EGFR pathway. Previous studies from our laboratory have shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling.

  15. Vertical Dynamic Stiffness of Offshore Foundations

    DEFF Research Database (Denmark)

    Latini, Chiara; Cisternino, Michele; Zania, Varvara

    2016-01-01

    ) is investigated by numerical analyses of representative finite element models. The 3D numerical model is compared and validated with existing analytical solutions. A parametric study is carried out analyzing the effect of the slenderness ratio Hp/d and the height and the stiffness of the soil layer on the dynamic...... stiffness and damping....

  16. Stiff person syndrome: a case report.

    Science.gov (United States)

    Kelly, Patricia A; Kuberski, Carolyn

    2014-08-01

    The case report features a patient who had a diagnosis of a common type of breast cancer with an uncommon neurologic syndrome. She had extreme pain and progressive stiffness with cognitive and functional decline. This article includes the pathogenesis and treatment options for a rare, but treatable, autoimmune disorder of malignancy called stiff person syndrome.

  17. Arterial Stiffness and Dialysis Calcium Concentration

    Directory of Open Access Journals (Sweden)

    Fabrice Mac-Way

    2011-01-01

    Full Text Available Arterial stiffness is the major determinant of isolated systolic hypertension and increased pulse pressure. Aortic stiffness is also associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, hypertension, and general population. Hemodynamically, arterial stiffness results in earlier aortic pulse wave reflection leading to increased cardiac workload and decreased myocardial perfusion. Although the clinical consequence of aortic stiffness has been clearly established, its pathophysiology in various clinical conditions still remains poorly understood. The aim of the present paper is to review the studies that have looked at the impact of dialysis calcium concentration on arterial stiffness. Overall, the results of small short-term studies suggest that higher dialysis calcium is associated with a transient but significant increase in arterial stiffness. This calcium dependant increase in arterial stiffness is potentially explained by increased vascular smooth muscle tone of the conduit arteries and is not solely explained by changes in mean blood pressure. However, the optimal DCa remains to be determined, and long term studies are required to evaluate its impact on the progression of arterial stiffness.

  18. Stiffness Control of Surgical Continuum Manipulators

    Science.gov (United States)

    Mahvash, Mohsen; Dupont, Pierre E.

    2013-01-01

    This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot’s coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions. PMID:24273466

  19. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  20. Measurement and Treatment of Passive Muscle Stiffness

    DEFF Research Database (Denmark)

    Kirk, Henrik

    2016-01-01

    This PhD thesis is based on research conducted at the University of Copenhagen and Helene Elsass Center from 2012 to 2015. Measurements and treatment of passive muscle stiffness in people with cerebral palsy (CP) comprise the focus of the thesis. The thesis summarizes the results from four studies......, which aimed to investigate: 1) The development of a clinical method to evaluate and distinguish neural (reflex mediated stiffness) and non-neural (passive muscle stiffness) components of muscle stiffness in adults with CP by objective and reliable measurements 2) The association between increased......, and good correlation to measurements from a stationary dynamometer. The second part of the thesis discusses the finding of a significant correlation between gait function, reduced rate of force development (RFD), and increased passive muscle stiffness in adults with CP. Previously, the reflex...

  1. Determination of 6 stiffnesses for a press

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Eriksen, Morten; Wanheim, Tarras

    2000-01-01

    the workpiece will result in deflections of the press, which will decrease the tolerances of the component. At present, it is possible to measure the reaction forces from the workpiece, for instance by use of the model material technique as described in [1-2]. If the stiffness and clearances of the press...... is known too, the final dimensions can be predicted by divide the force by the stiffness and add the clearance. If the stiffness of the press is known, it is possible to optimize the orientation of the workpiece too, so the direction, in which the best tolerances is demanded, is equal to the direction...... in which the press has the highest stiffness. Furthermore, knowledge about the stiffnesses of all presses in a production system makes it possible to choose the press which best fit to a specific process....

  2. Generalized formula for the surface stiffness of fluid-saturated porous media containing parallel pore channels

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, P.B.; Nayfeh, A.H. [Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio 45221 (United States)

    1995-09-25

    The surface stiffness of a fluid-saturated porous solid is defined as the ratio between a small change in capillary pressure and the average displacement of the boundary due to the resulting rise or fall of the fluid level in the pore channels. When the surface pores are structurally open, the surface stiffness is entirely due to the stiffness of the microscopic fluid membranes extended by capillary forces over the surface pores. Due to interfacial tension between the immiscible wetting fluid in the pores and nonwetting fluid (air) above the surface, essentially closed-pore boundary conditions can prevail at the interface. It has recently been shown that the surface stiffness of a porous material containing cylindrical pores can be calculated simply as the surface tension of the saturating fluid divided by the static permeability of the porous solid [P. B. Nagy, Appl. Phys. Lett. {bold 60}, 2735 (1992)]. In this letter, we show that the same simple relationship can be generalized for the surface stiffness of fluid-saturated porous media containing parallel prismatic pore channels of any number, size, or shape. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Dynamic stiffness matrix of a rectangular plate for the general case

    Science.gov (United States)

    Banerjee, J. R.; Papkov, S. O.; Liu, X.; Kennedy, D.

    2015-04-01

    The dynamic stiffness matrix of a rectangular plate for the most general case is developed by solving the bi-harmonic equation and finally casting the solution in terms of the force-displacement relationship of the freely vibrating plate. Essentially the frequency dependent dynamic stiffness matrix of the plate when all its sides are free is derived, making it possible to achieve exact solution for free vibration of plates or plate assemblies with any boundary conditions. Previous research on the dynamic stiffness formulation of a plate was restricted to the special case when the two opposite sides of the plate are simply supported. This restriction is quite severe and made the general purpose application of the dynamic stiffness method impossible. The theory developed in this paper overcomes this long-lasting restriction. The research carried out here is basically fundamental in that the bi-harmonic equation which governs the free vibratory motion of a plate in harmonic oscillation is solved in an exact sense, leading to the development of the dynamic stiffness method. It is significant that the ingeniously sought solution presented in this paper is completely general, covering all possible cases of elastic deformations of the plate. The Wittrick-Williams algorithm is applied to the ensuing dynamic stiffness matrix to provide solutions for some representative problems. A carefully selected sample of mode shapes is also presented.

  4. Genetic determinants of arterial stiffness: Results from the Rotterdam Study

    NARCIS (Netherlands)

    M.P.S. Sie (Mark)

    2007-01-01

    textabstractArterial stiffness increases with age. It is also associated with various diseases, such as diabetes mellitus and hypertension. Recently, arterial stiffness has also been found to independently predict cardiovascular disease. The pathogenesis of arterial stiffness, however, has n

  5. Matrix stiffness-mediated effects on stemness characteristics occurring in HCC cells.

    Science.gov (United States)

    You, Yang; Zheng, Qiongdan; Dong, Yinying; Xie, Xiaoying; Wang, Yaohui; Wu, Sifan; Zhang, Lan; Wang, Yingcong; Xue, Tongchun; Wang, Zhiming; Chen, Rongxin; Wang, Yanhong; Cui, Jiefeng; Ren, Zhenggang

    2016-05-31

    Matrix stiffness as an important physical attribute of extracellular matrix exerts significant impacts on biological behaviors of cancer cells such as growth, proliferation, motility, metabolism and invasion. However, its influence on cancer stemness still remains elusive. Here, we explore whether matrix stiffness-mediated effects on stemness characteristics occur in HCC cells. As the substrate stiffness increased, HCC cells exhibited high proportion of cells with CD133(+)/EpCAM(+), high expression levels of CD133, EpCAM, Nanog and SOX2, greater self-renewing ability and oxaliplatin resistance. Simultaneously, their phosphorylation levels of Akt and mTOR, as well as p-4E-BP and SOX2 expressions were also obviously upregulated. Conversely, knockdown of integrin β1 partially attenuated higher stiffness-mediated stemness characteristics in HCC cells, and reversed the phosphorylation levels of Akt and mTOR, and expressions of p-4E-BP and SOX2, suggesting that integrin β1 may deliver higher stiffness signal into HCC cells and activate mTOR signaling pathway. Additionally, mTOR inhibitor suppressed the mTOR phosphorylation level and expression levels of p-4E-BP and SOX2 in HCC cells grown on higher stiffness substrate, as well as depressed their stemness properties significantly, favoring a regulating role of mTOR signaling pathway in matrix stiffness-mediated effects on stemness. In summary, matrix stiffness may be involved in the process of stemness regulation via activating integrin β1/Akt/mTOR/SOX2 signaling pathway. To the best of our knowledge, this study first reveals a novel regulating pathway to direct the stemness characteristics in HCC cells.

  6. Stiff substrates enhance cultured neuronal network activity.

    Science.gov (United States)

    Zhang, Quan-You; Zhang, Yan-Yan; Xie, Jing; Li, Chen-Xu; Chen, Wei-Yi; Liu, Bai-Lin; Wu, Xiao-an; Li, Shu-Na; Huo, Bo; Jiang, Lin-Hua; Zhao, Hu-Cheng

    2014-08-28

    The mechanical property of extracellular matrix and cell-supporting substrates is known to modulate neuronal growth, differentiation, extension and branching. Here we show that substrate stiffness is an important microenvironmental cue, to which mouse hippocampal neurons respond and integrate into synapse formation and transmission in cultured neuronal network. Hippocampal neurons were cultured on polydimethylsiloxane substrates fabricated to have similar surface properties but a 10-fold difference in Young's modulus. Voltage-gated Ca(2+) channel currents determined by patch-clamp recording were greater in neurons on stiff substrates than on soft substrates. Ca(2+) oscillations in cultured neuronal network monitored using time-lapse single cell imaging increased in both amplitude and frequency among neurons on stiff substrates. Consistently, synaptic connectivity recorded by paired recording was enhanced between neurons on stiff substrates. Furthermore, spontaneous excitatory postsynaptic activity became greater and more frequent in neurons on stiff substrates. Evoked excitatory transmitter release and excitatory postsynaptic currents also were heightened at synapses between neurons on stiff substrates. Taken together, our results provide compelling evidence to show that substrate stiffness is an important biophysical factor modulating synapse connectivity and transmission in cultured hippocampal neuronal network. Such information is useful in designing instructive scaffolds or supporting substrates for neural tissue engineering.

  7. The endogenous fluorescence of fibroblast in collagen gels as indicator of stiffness of the extracellular matrix

    Science.gov (United States)

    Padilla-Martinez, J. P.; Ortega-Martinez, A.; Franco, W.

    2016-03-01

    The stiffness or rigidity of the extracellular matrix (ECM) regulates cell response. Established mechanical tests to measure stiffness, such as indentation and tensile tests, are invasive and destructive to the sample. Endogenous or native molecules to cells and ECM components, like tryptophan and cross-links of collagen, display fluorescence upon irradiation with ultraviolet light. Most likely, the concentration of these endogenous fluorophores changes as the stiffness of the ECM changes. In this work we investigate the endogenous fluorescence of collagen gels containing fibroblasts as a non-invasive non-destructive method to measure stiffness of the ECM. Human fibroblast cells were cultured in three-dimensional gels of type I collagen (50,000 cells/ml). This construct is a simple model of tissue contraction. During contraction, changes in the excitation-emission matrix (a fluorescence map in the 240-520/290-530 nm range) of constructs were measured with a spectrofluoremeter, and changes in stiffness were measured with a standard indentation test over 16 days. Results show that a progressive increase in fluorescence of the 290/340 nm excitation-emission pair correlates with a progressive increase in stiffness (r=0.9, α=0.5). The fluorescence of this excitation-emission pair is ascribed to tryptophan and variations in the fluorescence of this pair correlate with cellular proliferation. In this tissue model, the endogenous functional fluorescence of proliferating fibroblast cells is a biomechanical marker of stiffness of the ECM.

  8. Effect of crack orientation statistics on effective stiffness of mircocracked solid

    DEFF Research Database (Denmark)

    Kushch, V.I.; Sevostianov, I.; Mishnaevsky, Leon

    2009-01-01

    provides reducing the boundary-value problem to an ordinary, well-posed set of linear algebraic equations. The exact finite form expression of the effective stiffness tensor has been obtained by analytical averaging the strain and stress fields. The convergence study has been performed: the statistically...... meaningful results obtained show dependence of the effective elastic stiffness on angular scattering of cracks. Comparison has been made with the selected simple micromechanical models, namely, non-interaction approximation, differential scheme and modified differential scheme. It is found that, among...... these models, the differential scheme provides the best fit of the numerical data. (C) 2008 Elsevier Ltd. All rights reserved....

  9. Accelerated Solutions for Transcendental Stiffness Matrix Eigenproblems

    Directory of Open Access Journals (Sweden)

    F.W. Williams

    1996-01-01

    Full Text Available This article outlines many existing and forthcoming methods that can be used alone, or in various combinations, to accelerate the solutions of the transcendental stiffness matrix eigenproblems that arise when the stiffness matrix is assembled from exact member stiffnesses, which are obtained by solving the member differential equations exactly. Thus distributed member mass and/or the flexural effect of axial loading are incorporated exactly, and the solutions are the natural frequencies for vibration problems or the critical load factors for buckling problems.

  10. Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation

    Science.gov (United States)

    Swift, Joe; Ivanovska, Irena L.; Buxboim, Amnon; Harada, Takamasa; Dingal, P. C. Dave P.; Pinter, Joel; Pajerowski, J. David; Spinler, Kyle R.; Shin, Jae-Won; Tewari, Manorama; Rehfeldt, Florian; Speicher, David W.; Discher, Dennis E.

    2014-01-01

    Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination. PMID:23990565

  11. Stiff Neck, Torticollis, and Pseudotumor Cerebri

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-05-01

    Full Text Available Three prepubertal children diagnosed with pseudotumor cerebri and presenting with stiff neck and torticollis are reported from Schneider Children’s Medical Center, Sackler School of Medicine, Tel Aviv, Israel.

  12. Observed variations of monopile foundation stiffness

    DEFF Research Database (Denmark)

    Kallehave, Dan; Thilsted, C.L.; Diaz, Alberto Troya

    2015-01-01

    The soil-structure stiffness of monopile foundations for offshore wind turbines has a high impact on the fatigue loading during normal operating conditions. Thus, a robust design must consider the evolution of pile-soil stiffness over the lifetime of the wind farm. This paper present and discuss...... full-scale measurements obtained from one offshore wind turbine structure located within Horns Reef II offshore wind farm. Data are presented for a 2.5 years period and covers normal operating conditions and one larger storm event. A reduction of the pile-soil stiffness was observed during the storm...... events, followed by a complete regain to a pre-storm level when the storm subsided. In additional, no long term variations of the pile-soil stiffness was observed. The wind turbine is located in dense to very dense sand deposits....

  13. Stiff person syndrome and myasthenia gravis.

    Directory of Open Access Journals (Sweden)

    Saravanan P

    2002-01-01

    Full Text Available Association of stiff person syndrome, an immune related disorder of anterior horn cells and myasthenia gravis an endplate disorder with similar pathogenesis, is rare. This communication documents this association in the Indian literature for the first time.

  14. Vascular Stiffness in Insulin Resistance and Obesity

    Directory of Open Access Journals (Sweden)

    Guanghong eJia

    2015-08-01

    Full Text Available Obesity, insulin resistance, and type 2 diabetes are associated with a substantially increased prevalence of vascular fibrosis and stiffness, with attendant increased risk of cardiovascular and chronic kidney disease. Although the underlying mechanisms and mediators of vascular stiffness are not well understood, accumulating evidence supports the role of metabolic and immune dysregulation related to increased adiposity, activation of the renin angiotensin aldosterone system, reduced bioavailable nitric oxide, increased vascular extracellular matrix (ECM and ECM remodeling in the pathogenesis of vascular stiffness. This review will give a brief overview of the relationship between obesity, insulin resistance and increased vascular stiffness to provide a contemporary understanding of the proposed underlying mechanisms and potential therapeutic strategies.

  15. Strength and stiffness of engineering systems

    CERN Document Server

    Leckie, Frederick A

    2009-01-01

    This book on the stiffness and strength of engineering systems integrates a wide array of topics into a unified text, including plasticity, fracture, composite materials, energy approaches, and mechanics of microdevices (MEMs)..

  16. Interplay of matrix stiffness and protein tethering in stem cell differentiation

    Science.gov (United States)

    Wen, Jessica H.; Vincent, Ludovic G.; Fuhrmann, Alexander; Choi, Yu Suk; Hribar, Kolin C.; Taylor-Weiner, Hermes; Chen, Shaochen; Engler, Adam J.

    2014-10-01

    Stem cells regulate their fate by binding to, and contracting against, the extracellular matrix. Recently, it has been proposed that in addition to matrix stiffness and ligand type, the degree of coupling of fibrous protein to the surface of the underlying substrate, that is, tethering and matrix porosity, also regulates stem cell differentiation. By modulating substrate porosity without altering stiffness in polyacrylamide gels, we show that varying substrate porosity did not significantly change protein tethering, substrate deformations, or the osteogenic and adipogenic differentiation of human adipose-derived stromal cells and marrow-derived mesenchymal stromal cells. Varying protein-substrate linker density up to 50-fold changed tethering, but did not affect osteogenesis, adipogenesis, surface-protein unfolding or underlying substrate deformations. Differentiation was also unaffected by the absence of protein tethering. Our findings imply that the stiffness of planar matrices regulates stem cell differentiation independently of protein tethering and porosity.

  17. Stiffness of Railway Soil-Steel Structures

    Science.gov (United States)

    Machelski, Czesław

    2015-12-01

    The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell's span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure's characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  18. Numerical assessment of the stiffness index.

    Science.gov (United States)

    Epstein, Sally; Vergnaud, Anne-Claire; Elliott, Paul; Chowienczyk, Phil; Alastruey, Jordi

    2014-01-01

    Elevated systemic vascular stiffness is associated with increased risk of cardiovascular disease. It has been suggested that the time difference between the two characteristic peaks of the digital volume pulse (DVP) measured at the finger using photoplethysmography is related to the stiffness of the arterial tree, and inversely proportional to the stiffness index (SI). However, the precise physical meaning of the SI and its relation to aortic pulse wave velocity (aPWV) is yet to be ascertained. In this study we investigated numerically the effect of changes in arterial wall stiffness, peripheral resistances, peripheral compliances or peripheral wave reflections on the SI and aPWV. The SI was calculated from the digital area waveform simulated using a nonlinear one-dimensional model of pulse wave propagation in a 75-artery network, which includes the larger arteries of the hand. Our results show that aPWV is affected by changes in aortic stiffness, but the SI is primarily affected by changes in the stiffness of all conduit vessels. Thus, the SI is not a direct substitute for aPWV. Moreover, our results suggest that peripheral reflections in the upper body delay the time of arrival of the first peak in the DVP. The second peak is predominantly caused by the impedance mismatch within the 75 arterial segments, rather than by peripheral reflections.

  19. Modal analysis of sailplane and transport aircraft wings using the dynamic stiffness method

    Science.gov (United States)

    Banerjee, J. R.

    2016-05-01

    The purpose of this paper is to provide theory, results, discussion and conclusions arising from an in-depth investigation on the modal behaviour of high aspect ratio aircraft wings. The illustrative examples chosen are representative of sailplane and transport airliner wings. To achieve this objective, the dynamic stiffness method of modal analysis is used. The wing is represented by a series of dynamic stiffness elements of bending-torsion coupled beams which are assembled to form the overall dynamic stiffness matrix of the complete wing. With cantilever boundary condition applied at the root, the eigenvalue problem is formulated and finally solved with the help of the Wittrick-Williams algorithm to yield the eigenvalues and eigenmodes which are essentially the natural frequencies and mode shapes of the wing. Results for wings of two sailplanes and four transport aircraft are discussed and finally some conclusions are drawn

  20. Uncertain boundary condition Bayesian identification from experimental data: A case study on a cantilever beam

    Science.gov (United States)

    Ritto, T. G.; Sampaio, R.; Aguiar, R. R.

    2016-02-01

    In many mechanical applications (wind turbine tower, substructure joints, etc.), the stiffness of the boundary conditions is uncertain and might decrease with time, due to wear and/or looseness. In this paper, a torsional stiffness parameter is used to model the clamped side of a Timoshenko beam. The goal is to perform the identification with experimental data. To represent the decreasing stiffness of the clamped side, an experimental test rig is constructed, where several rubber layers are added to the clamped side, making it softer. Increasing the number of layers decreases the stiffness, thus representing a loss in the stiffness. The Bayesian approach is applied to update the probabilistic model related to the boundary condition (torsional stiffness parameter). The proposed Bayesian strategy worked well for the problem analyzed, where the experimental natural frequencies were within the 95% confidence limits of the computed natural frequencies probability density functions.

  1. The stable stiffness triangle - drained sand during deformation cycles

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2017-01-01

    Cyclic, drained sand stiffness was observed using the Danish triaxial appa- ratus. New, deformation dependant soil property (the stable stiffness triangle) was detected. Using the the stable stiffness triangle, secant stiffness of drained sand was plausible to predict (and control) even during ir...

  2. Physical inactivity and arterial stiffness in COPD

    Directory of Open Access Journals (Sweden)

    Sievi NA

    2015-09-01

    Full Text Available Noriane A Sievi,1 Daniel Franzen,1 Malcolm Kohler,1,2 Christian F Clarenbach1 1Division of Pulmonology, University Hospital of Zurich, 2Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland Background: Arterial stiffness is an important predictor of cardiovascular risk besides classic cardiovascular risk factors. Previous studies showed that arterial stiffness is increased in patients with COPD compared to healthy controls and exercise training may reduce arterial stiffness. Since physical inactivity is frequently observed in patients with COPD and exercise training may improve arterial stiffness, we hypothesized that low daily physical activity may be associated with increased arterial stiffness. Methods: In 123 patients with COPD (72% men; mean [standard deviation] age: 62 [7.5] years; median [quartile] forced expiratory volume in 1 second 35 [27/65] %predicted, arterial stiffness was assessed by augmentation index (AI. Daily physical activity level (PAL was measured by an activity monitor (SenseWear Pro™ >1 week. The association between AI and PAL was investigated by univariate and multivariate regression analysis, taking into account disease-specific characteristics and comorbidities. Results: Patients suffered from moderate (35%, severe (32%, and very severe (33% COPD, and 22% were active smokers. Median (quartile PAL was 1.4 (1.3/1.5 and mean (standard deviation AI 26% (9.2%. PAL showed a negative association with AI (B=-9.32, P=0.017 independent of age, sex, blood pressure, and airflow limitation. Conclusion: In COPD patients, a higher PAL seems to favorably influence arterial stiffness and therefore may reduce cardiovascular risk. Clinical Trial Registration: www.ClinicalTrials.gov, NCT01527773 Keywords: activity monitor, airflow limitation, COPD, physical activity level

  3. Coherence and stiffness of spin waves in diluted ferromagnets

    Science.gov (United States)

    Turek, I.; Kudrnovský, J.; Drchal, V.

    2016-11-01

    We present the results of a numerical analysis of magnon spectra in supercells simulating two-dimensional and bulk random diluted ferromagnets with long-range pair exchange interactions. We show that low-energy spectral regions for these strongly disordered systems contain a coherent component leading to interference phenomena manifested by a pronounced sensitivity of the lowest excitation energies to the adopted boundary conditions. The dependence of configuration averages of these excitation energies on the supercell size can be used for an efficient determination of the spin-wave stiffness D . The developed formalism is applied to the ferromagnetic Mn-doped GaAs semiconductor with optional incorporation of phosphorus; the obtained concentration trends of D are found to be in reasonable agreement with recent experiments. Moreover, a relation of the spin stiffness to the Curie temperature TC has been studied for Mn-doped GaAs and GaN semiconductors. It is found that the ratio TC/D exhibits qualitatively the same dependence on Mn concentration in both systems.

  4. Dynamic stiffness of suction caissons - torsion, sliding and rocking

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.; Andersen, Lars

    2006-12-15

    This report concerns the dynamic soil-structure interaction of steel suction caissons applied as foundations for offshore wind turbines. An emphasis is put on torsional vibrations and coupled sliding/rocking motion, and the influence of the foundation geometry and the properties of the surrounding soil is examined. The soil is simplified as a homogenous linear viscoelastic material and the dynamic stiffness of the suction caisson is expressed in terms of dimensionless frequency-dependent coefficients corresponding to the different degrees of freedom. The dynamic stiffness coefficients for the skirted foundation are evaluated by means of a three-dimensional coupled boundary element/finite element model. Comparisons with known analytical and numerical solutions indicate that the static and dynamic behaviour of the foundation are predicted accurately with the applied model. The analysis has been carried out for different combinations of the skirt length and the Poisson's ratio of the subsoil. Finally, the high-frequency impedance has been determined for future use in lumped-parameter models of wind turbine foundations in aero-elastic codes. (au)

  5. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    Science.gov (United States)

    Xu, Wen-Sheng; Freed, Karl F.

    2015-07-01

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.

  6. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wen-Sheng, E-mail: wsxu@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Freed, Karl F., E-mail: freed@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-07-14

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.

  7. Closed-Form Formula of the Transverse Dynamic Stiffness of a Shallowly Inclined Taut Cable

    Directory of Open Access Journals (Sweden)

    Dan-hui Dan

    2014-01-01

    Full Text Available The segmented vibration-governed equations and their general solutions for cables acted upon by intermediate transverse forces are derived by applying Hamilton’s principle. Including the effects of sagging, flexible stiffness, clamped boundary conditions, and inclination angle of the cable, the element-wise dynamic stiffness for each cable segment, split into segments having unique transverse forces, is derived. By using methods from the global stiffness assembly process of FEM, the global level of the cables’ dynamic equilibrium equation is obtained, and, as a result, the final closed-form formula of transverse dynamic stiffness is derived. Additionally, the corresponding analytic form, without considering sagging effects, is also obtained. Case studies are conducted on the aspects of accuracy, rationality of the distribution on the spatial field, and frequency domains of dynamic stiffness calculations. By comparison with the Guyan-based static FEM reduction method, it is shown that the result obtained from the proposed closed-form solution, which includes sagging effects, is exact and rational, thus creating a powerful tool in transverse vibration analysis.

  8. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging

    Science.gov (United States)

    Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young

    2016-04-01

    Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques.

  9. Single motor–variable stiffness actuator using bistable switching mechanisms for independent motion and stiffness control

    NARCIS (Netherlands)

    Groothuis, S.S.; Carloni, R.; Stramigioli, S.

    2016-01-01

    This paper presents a proof of concept of a variable stiffness actuator (VSA) that uses only one (high power) input motor. In general, VSAs use two (high power) motors to be able to control both the output position and the output stiffness, which possibly results in a heavy, and bulky system. In thi

  10. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement.

    Science.gov (United States)

    Wang, Caroline W; Perez, Matthew J; Helmke, Brian P; Viola, Francesco; Lawrence, Michael B

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties.

  11. [Stiff-person syndrome and related autoantibodies].

    Science.gov (United States)

    Tomioka, Ryo; Tanaka, Keiko

    2013-04-01

    Central nervous system hyperexcitability disorders, known as stiff-man/person syndrome (SPS), are thought to be related to the regulatory disturbance of inhibitory synaptic transmission of motor neurons in the brainstem and spinal cord. SPS is characterized by stiffness and spasms of the axis and limbs and is divided into two clinical subgroups: classic SPS, which affects the lumbar, trunk, and proximal limb muscles, and SPS-plus syndrome. The latter comprises (1) the stiff-limb subtype, in which symptom is limited to the lower limbs; (2) jerking stiff-man syndrome, characterized by chronically progressive stiffness and myoclonus; and (3) acute-onset and progressive encephalomyelitis with rigidity and myoclonus. Almost 80% of patients with classic SPS harbor autoantibodies against glutamic acid decarboxylase 65 (GAD65). In approximately 30-40% of patients, SPS accompanies type I diabetes, and anti-GAD65 antibodies are detected frequently in type I diabetes. However, the antibody-recognizing epitopes might be different between SPS and diabetes. Other autoantibodies against glycine receptor α1 (12% of patients with SPS) and GABA(A)-receptor associated protein (70% of patients with SPS) have been reported. In paraneoplastic SPS, anti-amphiphysin antibodies have been shown in patients with breast cancer or small cell lung cancer. One case of mediastinal tumor with anti-gephyrin antibodies has also been reported. However, the roles of these autoantibodies in the pathomechanisms of SPS have not yet been elucidated.

  12. Big Bang nucleosynthesis with a stiff fluid

    CERN Document Server

    Dutta, Sourish

    2010-01-01

    Models that lead to a cosmological stiff fluid component, with a density $\\rho_S$ that scales as $a^{-6}$, where $a$ is the scale factor, have been proposed recently in a variety of contexts. We calculate numerically the effect of such a stiff fluid on the primordial element abundances. Because the stiff fluid energy density decreases with the scale factor more rapidly than radiation, it produces a relatively larger change in the primordial helium-4 abundance than in the other element abundances, relative to the changes produced by an additional radiation component. We show that the helium-4 abundance varies linearly with the density of the stiff fluid at a fixed fiducial temperature. Taking $\\rho_{S10}$ and $\\rho_{R10}$ to be the stiff fluid energy density and the standard density in relativistic particles, respectively, at $T = 10$ MeV, we find that the change in the primordial helium abundance is well-fit by $\\Delta Y_p = 0.00024(\\rho_{S10}/\\rho_{R10})$. The changes in the helium-4 abundance produced by ad...

  13. Torso flexion modulates stiffness and reflex response.

    Science.gov (United States)

    Granata, K P; Rogers, E

    2007-08-01

    Neuromuscular factors that contribute to spinal stability include trunk stiffness from passive and active tissues as well as active feedback from reflex response in the paraspinal muscles. Trunk flexion postures are a recognized risk factor for occupational low-back pain and may influence these stabilizing control factors. Sixteen healthy adult subjects participated in an experiment to record trunk stiffness and paraspinal muscle reflex gain during voluntary isometric trunk extension exertions. The protocol was designed to achieve trunk flexion without concomitant influences of external gravitational moment, i.e., decouple the effects of trunk flexion posture from trunk moment. Systems identification analyses identified reflex gain by quantifying the relation between applied force disturbances and time-dependent EMG response in the lumbar paraspinal muscles. Trunk stiffness was characterized from a second order model describing the dynamic relation between the force disturbances versus the kinematic response of the torso. Trunk stiffness increased significantly with flexion angle and exertion level. This was attributed to passive tissue contributions to stiffness. Reflex gain declined significantly with trunk flexion angle but increased with exertion level. These trends were attributed to correlated changes in baseline EMG recruitment in the lumbar paraspinal muscles. Female subjects demonstrated greater reflex gain than males and the decline in reflex gain with flexion angle was greater in females than in males. Results reveal that torso flexion influences neuromuscular factors that control spinal stability and suggest that posture may contribute to the risk of instability injury.

  14. A Novel Variable Stiffness Mechanism Capable of an Infinite Stiffness Range and Unlimited Decoupled Output Motion

    Directory of Open Access Journals (Sweden)

    Stefan Groothuis

    2014-06-01

    Full Text Available In this paper, a novel variable stiffness mechanism is presented, which is capable of achieving an output stiffness with infinite range and an unlimited output motion, i.e., the mechanism output is completely decoupled from the rotor motion, in the zero stiffness configuration. The mechanism makes use of leaf springs, which are engaged at different positions by means of two movable supports, to realize the variable output stiffness. The Euler–Bernoulli leaf spring model is derived and validated through experimental data. By shaping the leaf springs, it is shown that the stiffness characteristic of the mechanism can be changed to fulfill different application requirements. Alternative designs can achieve the same behavior with only one leaf spring and one movable support pin.

  15. Red wine, arterial stiffness and central hemodynamics.

    Science.gov (United States)

    Karatzi, Kalliopi; Papaioannou, Theodore G; Papamichael, Christos; Lekakis, John; Stefanadis, Christodoulos; Zampelas, Antonis

    2009-01-01

    Red wine is considered to reduce cardiovascular risk and decrease peripheral systolic and diastolic blood pressure. Central aortic pressures are often more sensitive clinical and prognostic factors than peripheral pressures, while arterial stiffness is an independent prognostic factor for cardiovascular events. Great efforts are being made to find natural sources of improving health. In order to clarify the mechanisms under which a widely used drink, like red wine, is affecting heart and vessels, we aimed to review the available data regarding the effects of red wine on arterial stiffness, wave reflections and central blood pressures. The effect of red wine on central hemodynamics has been poorly explored with divergent results. Possible consequences of acute and long-term intake on arterial stiffness, wave reflections and central pressures are not clear. This might make someone skeptical when suggesting the consumption of a glass of red wine, although its cardioprotective actions (when moderately consumed) are already shown from epidemiological studies.

  16. Electrochemical stiffness in lithium-ion batteries

    Science.gov (United States)

    Tavassol, Hadi; Jones, Elizabeth M. C.; Sottos, Nancy R.; Gewirth, Andrew A.

    2016-11-01

    Although lithium-ion batteries are ubiquitous in portable electronics, increased charge rate and discharge power are required for more demanding applications such as electric vehicles. The high-rate exchange of lithium ions required for more power and faster charging generates significant stresses and strains in the electrodes that ultimately lead to performance degradation. To date, electrochemically induced stresses and strains in battery electrodes have been studied only individually. Here, a new technique is developed to probe the chemomechanical response of electrodes by calculating the electrochemical stiffness via coordinated in situ stress and strain measurements. We show that dramatic changes in electrochemical stiffness occur due to the formation of different graphite-lithium intercalation compounds during cycling. Our analysis reveals that stress scales proportionally with the lithiation/delithiation rate and strain scales proportionally with capacity (and inversely with rate). Electrochemical stiffness measurements provide new insights into the origin of rate-dependent chemomechanical degradation and the evaluation of advanced battery electrodes.

  17. Dynamic stiffness model of spherical parallel robots

    Science.gov (United States)

    Cammarata, Alessandro; Caliò, Ivo; D`Urso, Domenico; Greco, Annalisa; Lacagnina, Michele; Fichera, Gabriele

    2016-12-01

    A novel approach to study the elastodynamics of Spherical Parallel Robots is described through an exact dynamic model. Timoshenko arches are used to simulate flexible curved links while the base and mobile platforms are modelled as rigid bodies. Spatial joints are inherently included into the model without Lagrangian multipliers. At first, the equivalent dynamic stiffness matrix of each leg, made up of curved links joined by spatial joints, is derived; then these matrices are assembled to obtain the Global Dynamic Stiffness Matrix of the robot at a given pose. Actuator stiffness is also included into the model to verify its influence on vibrations and modes. The latter are found by applying the Wittrick-Williams algorithm. Finally, numerical simulations and direct comparison to commercial FE results are used to validate the proposed model.

  18. Emerging boundaries

    DEFF Research Database (Denmark)

    Løvschal, Mette

    2014-01-01

    This article proposes a processual ontology for the emergence of man-made, linear boundaries across northwestern Europe, particularly in the first millennium BC. Over a significant period of time, these boundaries became new ways of organizing the landscape and settlements—a phenomenon that has...... of this phenomenon emerged along equivalent trajectories. At the same time, variation in the regional incorporation of these linear phenomena points toward situation-specific applications and independent development....

  19. Variable stiffness and damping magnetorheological isolator

    Institute of Scientific and Technical Information of China (English)

    Yang ZHOU; Xingyu WANG; Xianzhou ZHANG; Weihua LI

    2009-01-01

    This paper presents the development and characterization of a magnetorheological (MR) fluid-based variable stiffness and damping isolator. The prototype of the MR fluid isolator is fabricated, and its dynamic behavior is measured under various applied magnetic fields. The parameters of the model under various magnetic fields are identified, and the dynamic perfor-mance of the isolator is evaluated in simulation. Experi-mental results indicate that both the stiffness and damping capability of the developed MR isolator can be controlled by an external magnetic field.

  20. On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix

    Directory of Open Access Journals (Sweden)

    Omar Gaber

    2014-01-01

    Full Text Available The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.

  1. The shear-stress intensity factor for a centrally cracked stiff-flanged shear web

    Science.gov (United States)

    Fichter, W. B.

    1976-01-01

    By use of the principle of superposition the stiff-flanged shear web is modeled mathematically by an infinite elastic strip with fixed longitudinal edges. The shear-stress intensity factor for a central longitudinal crack is calculated for various values of the ratio of strip width to crack length, h/a, in the range 0.1-10. The interaction of the crack with the boundaries is illustrated by boundary shear-stress distributions for three values of h/a. Some implications of the results for the design of damage-tolerant shear webs are discussed briefly.

  2. Cell-Cell Interactions Mediate the Response of Vascular Smooth Muscle Cells to Substrate Stiffness

    Science.gov (United States)

    Sazonova, Olga V.; Lee, Kristen L.; Isenberg, Brett C.; Rich, Celeste B.; Nugent, Matthew A.; Wong, Joyce Y.

    2011-01-01

    The vessel wall experiences progressive stiffening with age and the development of cardiovascular disease, which alters the micromechanical environment experienced by resident vascular smooth muscle cells (VSMCs). In vitro studies have shown that VSMCs are sensitive to substrate stiffness, but the exact molecular mechanisms of their response to stiffness remains unknown. Studies have also shown that cell-cell interactions can affect mechanotransduction at the cell-substrate interface. Using flexible substrates, we show that the expression of proteins associated with cell-matrix adhesion and cytoskeletal tension is regulated by substrate stiffness, and that an increase in cell density selectively attenuates some of these effects. We also show that cell-cell interactions exert a strong effect on cell morphology in a substrate-stiffness dependent manner. Collectively, the data suggest that as VSMCs form cell-cell contacts, substrate stiffness becomes a less potent regulator of focal adhesion signaling. This study provides insight into the mechanisms by which VSMCs respond to the mechanical environment of the blood vessel wall, and point to cell-cell interactions as critical mediators of VSMC response to vascular injury. PMID:21806930

  3. Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells.

    Science.gov (United States)

    Kourouklis, Andreas P; Kaylan, Kerim B; Underhill, Gregory H

    2016-08-01

    Recent approaches have utilized microfabricated platforms to examine combinations of microenvironmental signals that regulate stem and progenitor cell differentiation. However, the majority of these efforts have focused on the biochemical properties of extracellular matrix (ECM) or soluble factors without simultaneously exploring the biomechanical effects of cell-substrate interactions. To address this need, we combined a high-throughput approach for the analysis of combinatorial ECM cues with substrates of modular stiffness and traction force microscopy. This integrated approach enabled the characterization of cell-generated traction stress and phenotypic expression in response to ECM cues. We investigated the impact of substrate stiffness and ECM composition on the differentiation of bipotential mouse embryonic liver (BMEL) progenitor cells. We observed that hepatocyte differentiation was primarily regulated by ECM composition, and cholangiocyte differentiation was cooperatively influenced by ECM proteins and stiffness properties. In particular, stiffness-mediated cholangiocyte differentiation was observed for cells cultured on fibronectin, while collagen IV promoted differentiation independent of substrate stiffness. We demonstrated the influence of cell contractility and traction stress in early cholangiocyte specification and further uncovered the roles of ERK and ROCK in this differentiation process. Overall, these findings illustrate the involvement of biomechanical signals in liver progenitor differentiation. Further, this approach could enable investigations for a broad range of cell types and ECM proteins, providing an integrated platform for evaluating the combinatorial effects of biochemical and biophysical signals in cell differentiation.

  4. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing.

    Science.gov (United States)

    Bartnikowski, Nicole; Claes, Lutz E; Koval, Lidia; Glatt, Vaida; Bindl, Ronny; Steck, Roland; Ignatius, Anita; Schuetz, Michael A; Epari, Devakara R

    2016-11-14

    Background and purpose - Constant fixator stiffness for the duration of healing may not provide suitable mechanical conditions for all stages of bone repair. We therefore investigated the influence of stiffening fixation on callus stiffness and morphology in a rat diaphyseal osteotomy model to determine whether healing time was shortened and callus stiffness increased through modulation of fixation from flexible to stiff. Material and methods - An external unilateral fixator was applied to the osteotomized femur and stiffened by decreasing the offset of the inner fixator bar at 3, 7, 14, and 21 days after operation. After 5 weeks, the rats were killed and healing was evaluated with mechanical, histological, and microcomputed tomography methods. Constant fixation stiffness control groups with either stiff or flexible fixation were included for comparison. Results - The callus stiffness of the stiff group and all 4 experimental groups was greater than in the flexible group. The callus of the flexible group was larger but contained a higher proportion of unmineralized tissue and cartilage. The stiff and modulated groups (3, 7, 14, and 21 days) all showed bony bridging at 5 weeks, as well as signs of callus remodeling. Stiffening fixation at 7 and 14 days after osteotomy produced the highest degree of callus bridging. Bone mineral density in the fracture gap was highest in animals in which the fixation was stiffened after 14 days. Interpretation - The predicted benefit of a large robust callus formed through early flexible fixation could not be shown, but the benefits of stabilizing a flexible construct to achieve timely healing were demonstrated at all time points.

  5. Plant fibre composites - porosity and stiffness

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2009-01-01

    Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition of the co......Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition...... of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...

  6. [Anaesthetic management of Stiff Man syndrome].

    Science.gov (United States)

    Marín, T; Hernando, D; Kinast, N; Churruca, I; Sabate, S

    2015-04-01

    Stiff Man syndrome or stiff-person syndrome is a rare autoimmune disorder. It is characterized by increased axial muscular tone and limb musculature, and painful spasms triggered by stimulus. The case is presented of a 44-year-old man with stiff-person syndrome undergoing an injection of botulinum toxin in the urethral sphincter under sedation. Before induction, all the surgical team were ready in order to minimise the anaesthetic time. The patient was monitored by continuous ECG, SpO2 and non-invasive blood pressure. He was induced with fractional dose of propofol 150 mg, fentanyl 50 μg and midazolam 1mg. Despite careful titration, the patient had an O2 saturation level of 90%,which was resolved by manual ventilation. There was no muscle rigidity or spasm during the operation. Post-operative recovery was uneventful and the patient was discharged 2 days later. A review of other cases is presented. The anaesthetic concern in patients with stiff-person syndrome is the interaction between the anaesthetic agents, the preoperative medication, and the GABA system. For a safe anaesthetic management, total intravenous anaesthesia is recommended instead of inhalation anaesthetics, as well as the close monitoring of the respiratory function and the application of the electrical nerve stimulator when neuromuscular blockers are used.

  7. Stiff directed lines in random media.

    Science.gov (United States)

    Boltz, Horst-Holger; Kierfeld, Jan

    2013-07-01

    We investigate the localization of stiff directed lines with bending energy by a short-range random potential. We apply perturbative arguments, Flory scaling arguments, a variational replica calculation, and functional renormalization to show that a stiff directed line in 1+d dimensions undergoes a localization transition with increasing disorder for d>2/3. We demonstrate that this transition is accessible by numerical transfer matrix calculations in 1+1 dimensions and analyze the properties of the disorder-dominated phase in detail. On the basis of the two-replica problem, we propose a relation between the localization of stiff directed lines in 1+d dimensions and of directed lines under tension in 1+3d dimensions, which is strongly supported by identical free-energy distributions. This shows that pair interactions in the replicated Hamiltonian determine the nature of directed line localization transitions with consequences for the critical behavior of the Kardar-Parisi-Zhang equation. We support the proposed relation to directed lines via multifractal analysis, revealing an analogous Anderson transition-like scenario and a matching correlation length exponent. Furthermore, we quantify how the persistence length of the stiff directed line is reduced by disorder.

  8. Dynamic stiffness of horizontally vibrating suction caissons

    DEFF Research Database (Denmark)

    Latini, Chiara; Zania, Varvara; Cisternino, Michele

    2016-01-01

    to existing analytical solutions suggested for piles. Relatively good agreement has been achieved comparing the numerical results with the analytical solutions. Then, the effect of the soil layer shear wave velocity on the dynamic stiffness coefficients is analysed. The results have indicated that increasing...

  9. Influence of footings stiffness on punching resistance

    Directory of Open Access Journals (Sweden)

    Ĺudovít Fillo

    2016-03-01

    Full Text Available The presented paper brings new aspects of punching resistance due to influence of footing stiffness and consequential ground stresses distribution. Diagrams of design load versus effective depth were created coming from new design criteria which depend on the maximum punching resistance defined from shear-bending failure and on the maximum punching resistance defined from crushing of concrete struts.

  10. Improved Stiff ODE Solvers for Combustion CFD

    Science.gov (United States)

    Imren, A.; Haworth, D. C.

    2016-11-01

    Increasingly large chemical mechanisms are needed to predict autoignition, heat release and pollutant emissions in computational fluid dynamics (CFD) simulations of in-cylinder processes in compression-ignition engines and other applications. Calculation of chemical source terms usually dominates the computational effort, and several strategies have been proposed to reduce the high computational cost associated with realistic chemistry in CFD. Central to most strategies is a stiff ordinary differential equation (ODE) solver to compute the change in composition due to chemical reactions over a computational time step. Most work to date on stiff ODE solvers for computational combustion has focused on backward differential formula (BDF) methods, and has not explicitly considered the implications of how the stiff ODE solver couples with the CFD algorithm. In this work, a fresh look at stiff ODE solvers is taken that includes how the solver is integrated into a turbulent combustion CFD code, and the advantages of extrapolation-based solvers in this regard are demonstrated. Benefits in CPU time and accuracy are demonstrated for homogeneous systems and compression-ignition engines, for chemical mechanisms that range in size from fewer than 50 to more than 7,000 species.

  11. Measurement and Treatment of Passive Muscle Stiffness

    DEFF Research Database (Denmark)

    Kirk, Henrik

    This PhD thesis is based on research conducted at the University of Copenhagen and Helene Elsass Center from 2012 to 2015. Measurements and treatment of passive muscle stiffness in people with cerebral palsy (CP) comprise the focus of the thesis. The thesis summarizes the results from four studies...

  12. Non-singular inhomogeneous stiff fluid cosmology

    CERN Document Server

    Fernández-Jambrina, L

    2009-01-01

    In this talk we show a stiff fluid solution of the Einstein equations for a cylindrically symmetric spacetime. The main features of this metric are that it is non-separable in comoving coordinates for the congruence of the worldlineS of the fluid and that it yields regular curvature invariants.

  13. Matrix stiffness drives Epithelial-Mesenchymal Transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway

    OpenAIRE

    Wei, SC; Fattet, L; Tsai, JH; Guo, Y.; Pai, VH; Majeski, HE; Chen, AC; Sah, RL; Taylor, SS; ENGLER, AJ; Yang, J.

    2015-01-01

    © 2015 Macmillan Publishers Limited. Matrix stiffness potently regulates cellular behaviour in various biological contexts. In breast tumours, the presence of dense clusters of collagen fibrils indicates increased matrix stiffness and correlates with poor survival. It is unclear how mechanical inputs are transduced into transcriptional outputs to drive tumour progression. Here we report that TWIST1 is an essential mechanomediator that promotes epithelial-mesenchymal transition (EMT) in respon...

  14. The role of the interaction of the vinculin proline-rich linker region with vinexin α in sensing the stiffness of the extracellular matrix.

    Science.gov (United States)

    Yamashita, Hiroshi; Ichikawa, Takafumi; Matsuyama, Daisuke; Kimura, Yasuhisa; Ueda, Kazumitsu; Craig, Susan W; Harada, Ichiro; Kioka, Noriyuki

    2014-05-01

    Although extracellular matrix (ECM) stiffness is an important aspect of the extracellular microenvironment and is known to direct the lineage specification of stem cells and affect cancer progression, the molecular mechanisms that sense ECM stiffness have not yet been elucidated. In this study, we show that the proline-rich linker (PRL) region of vinculin and the PRL-region-binding protein vinexin are involved in sensing the stiffness of ECM substrates. A rigid substrate increases the level of cytoskeleton-associated vinculin, and the fraction of vinculin stably localizing at focal adhesions (FAs) is larger on rigid ECM than on soft ECM. Mutations in the PRL region or the depletion of vinexin expression impair these responses to ECM stiffness. Furthermore, vinexin depletion impairs the stiffness-dependent regulation of cell migration. These results suggest that the interaction of the PRL region of vinculin with vinexin α plays a crucial role in sensing ECM stiffness and in mechanotransduction.

  15. Stiffness of lipid monolayers with phase coexistence.

    Science.gov (United States)

    Caruso, Benjamín; Mangiarotti, Agustín; Wilke, Natalia

    2013-08-27

    The surface dilational modulus--or compressibility modulus--has been previously studied for monolayers composed of pure materials, where a jump in this modulus was related with the onset of percolation as a result of the establishment of a connected structure at the molecular level. In this work, we focused on monolayers composed of two components of low lateral miscibility. Our aim was to investigate the compressibility of mixed monolayers at pressures and compositions in the two-phase region of the phase diagram, in order to analyze the effect of the mechanical properties of each phase on the stiffness of the composite. In nine different systems with distinct molecular dipoles and charges, the stiffness of each phase and the texture at the plane of the monolayer were studied. In this way, we were able to analyze the general compressibility of two-phase lipid monolayers, regardless of the properties of their constituent parts. The results are discussed in the light of the following two hypotheses: first, the stiffness of the composite could be dominated by the stiffness of each phase as a weighted sum according to the percentage of each phase area, regardless of the distribution of the phases in the plane of the monolayer. Alternatively, the stiffness of the composite could be dominated by the mechanical properties of the continuous phase. Our results were better explained by this latter proposal, as in all the analyzed mixtures it was found that the mechanical properties of the percolating phase were the determining factors. The value of the compression modulus was closer to the value of the connected phase than to that of the dispersed phase, indicating that the bidimensional composites displayed mechanical properties that were related to the properties of each phases in a rather complex manner.

  16. ON THE STIFFNESS OF DEMINERALIZED DENTIN MATRICES

    Science.gov (United States)

    Ryou, Heonjune; Turco, Gianluca; Breschi, Lorenzo; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne

    2015-01-01

    Resin bonding to dentin requires the use of self-etching primers or acid etching to decalcify the surface and expose a layer of collagen fibrils of the dentin matrix. Acid-etching reduces the stiffness of demineralized dentin from approximately 19 GPa to 1 MPa, requiring that it floats in water to prevent it from collapsing during bonding procedures. Several publications show that crosslinking agents like gluteraladehyde, carbodiimide or grape seed extract can stiffen collagen and improve resin-dentin bond strength. Objective The objective was to assess a new approach for evaluating the changes in stiffness of decalcified dentin by polar solvents and a collagen cross-linker. Methods Fully demineralized dentin beams and sections of etched coronal dentin were subjected to indentation loading using a cylindrical flat indenter in water, and after treatment with ethanol or ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The stiffness was measured as a function of strain and as a function of loading rate from 1 to 50 µm/sec. Results At a strain of 0.25% the elastic modulus of the fully demineralized dentin was approximately 0.20 MPa. It increased to over 0.90 MPa at strains of 1%. Exposure to ethanol caused an increase in elastic modulus of up to four times. Increasing the loading rate from 1 to 50 µm/sec caused an increase in the apparent modulus of up to three times in both water and ethanol. EDC treatment caused increases in the stiffness in fully demineralized samples and in acid-etched demineralized dentin surfaces in situ. Significance Changes in the mechanical behavior of demineralized collagen matrices can be measured effectively under hydration via indentation with cylindrical flat indenters. This approach can be used for quantifying the effects of bonding treatments on the properties of decalcified dentin after acid etching, as well as to follow the loss of stiffness over time due to enzymatic degradation. PMID:26747822

  17. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    ; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects...... and distributive justice at national level....

  18. Matrix stiffness promotes cartilage endplate chondrocyte calcification in disc degeneration via miR-20a targeting ANKH expression.

    Science.gov (United States)

    Liu, Ming-Han; Sun, Chao; Yao, Yuan; Fan, Xin; Liu, Huan; Cui, You-Hong; Bian, Xiu-Wu; Huang, Bo; Zhou, Yue

    2016-05-04

    The mechanical environment is crucial for intervertebral disc degeneration (IDD). However, the mechanisms underlying the regulation of cartilage endplate (CEP) calcification by altered matrix stiffness remain unclear. In this study, we found that matrix stiffness of CEP was positively correlated with the degree of IDD, and stiff matrix, which mimicked the severe degeneration of CEP, promoted inorganic phosphate-induced calcification in CEP chondrocytes. Co-expression analysis of the miRNA and mRNA profiles showed that increasing stiffness resulted in up-regulation of miR-20a and down-regulation of decreased ankylosis protein homolog (ANKH) during inorganic phosphate-induced calcification in CEP chondrocytes. Through a dual luciferase reporter assay, we confirmed that miR-20a directly targets 3'-untranslated regions of ANKH. The inhibition of miR-20a attenuated the calcium deposition and calcification-related gene expression, whereas the overexpression of miR-20a enhanced calcification in CEP chondrocytes on stiff matrix. The rescue of ANKH expression restored the decreased pyrophosphate efflux and inhibited calcification. In clinical samples, the levels of ANKH expression were inversely associated with the degeneration degree of CEP. Thus, our findings demonstrate that the miR-20a/ANKH axis mediates the stiff matrix- promoted CEP calcification, suggesting that miR-20a and ANKH are potential targets in restraining the progression of IDD.

  19. Laterality and imbalance of muscle stiffness relate to personality.

    Science.gov (United States)

    Nakaya, Naoki; Kumano, Hiroaki; Minoda, Keiji; Kanazawa, Motoyori; Fukudo, Shin

    2004-01-01

    The authors' purpose in this study was to test the hypothesis that laterality and imbalance of muscle stiffness relate to personality. The authors selected 23 healthy volunteers and divided them into two groups based on the predominance of muscle stiffness on the left or right side. Imbalance of muscle stiffness was calculated as the absolute value of the difference of muscle stiffness between the right and left sides. The authors evaluated personality with the Japanese version of the Eysenck Personality Questionnaire. Subjects with left predominant muscle stiffness of the rectal abdominis had significantly higher neuroticism score than those with right predominant muscle stiffness. Subjects with more imbalance of muscle stiffness in the latissimus dorsi and in the trapezius had significantly higher neuroticism and psychoticism scores than those with less imbalance. The findings suggest that laterality and imbalance of muscle stiffness relate to personality.

  20. A review on in situ stiffness adjustment methods in MEMS

    Science.gov (United States)

    de Laat, M. L. C.; Pérez Garza, H. H.; Herder, J. L.; Ghatkesar, M. K.

    2016-06-01

    In situ stiffness adjustment in microelectromechanical systems is used in a variety of applications such as radio-frequency mechanical filters, energy harvesters, atomic force microscopy, vibration detection sensors. In this review we provide designers with an overview of existing stiffness adjustment methods, their working principle, and possible adjustment range. The concepts are categorized according to their physical working principle. It is concluded that the electrostatic adjustment principle is the most applied method, and narrow to wide ranges in stiffness can be achieved. But in order to obtain a wide range in stiffness change, large, complex devices were designed. Mechanical stiffness adjustment is found to be a space-effective way of obtaining wide changes in stiffness, but these methods are often discrete and require large tuning voltages. Stiffness adjustment through stressing effects or change in Young’s modulus was used only for narrow ranges. The change in second moment of inertia was used for stiffness adjustment in the intermediate range.

  1. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    This article builds on the results obtained in the so-called Blurring Boundaries project which was undertaken at the Law Department, Copenhagen Business School, in the period from 2007 to 2009. It looks at the sustainability of the Danish welfare state in an EU law context and on the integration ...

  2. Negotiating boundaries

    DEFF Research Database (Denmark)

    Aarhus, Rikke; Ballegaard, Stinne Aaløkke

    2010-01-01

    To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work to ...

  3. Stiffness-activated GEF-H1 expression exacerbates LPS-induced lung inflammation.

    Directory of Open Access Journals (Sweden)

    Isa Mambetsariev

    Full Text Available Acute lung injury (ALI is accompanied by decreased lung compliance. However, a role of tissue mechanics in modulation of inflammation remains unclear. We hypothesized that bacterial lipopolysacharide (LPS stimulates extracellular matrix (ECM production and vascular stiffening leading to stiffness-dependent exacerbation of endothelial cell (EC inflammatory activation and lung barrier dysfunction. Expression of GEF-H1, ICAM-1, VCAM-1, ECM proteins fibronectin and collagen, lysyl oxidase (LOX activity, interleukin-8 and activation of Rho signaling were analyzed in lung samples and pulmonary EC grown on soft (1.5 or 2.8 kPa and stiff (40 kPa substrates. LPS induced EC inflammatory activation accompanied by expression of ECM proteins, increase in LOX activity, and activation of Rho signaling. These effects were augmented in EC grown on stiff substrate. Stiffness-dependent enhancement of inflammation was associated with increased expression of Rho activator, GEF-H1. Inhibition of ECM crosslinking and stiffening by LOX suppression reduced EC inflammatory activation and GEF-H1 expression in response to LPS. In vivo, LOX inhibition attenuated LPS-induced expression of GEF-H1 and lung dysfunction. These findings present a novel mechanism of stiffness-dependent exacerbation of vascular inflammation and escalation of ALI via stimulation of GEF-H1-Rho pathway. This pathway represents a fundamental mechanism of positive feedback regulation of inflammation.

  4. Matrix stiffness determines the fate of nucleus pulposus-derived stem cells.

    Science.gov (United States)

    Navaro, Yosi; Bleich-Kimelman, Nadav; Hazanov, Lena; Mironi-Harpaz, Iris; Shachaf, Yonatan; Garty, Shai; Smith, Yoav; Pelled, Gadi; Gazit, Dan; Seliktar, Dror; Gazit, Zulma

    2015-05-01

    Intervertebral disc (IVD) degeneration and consequent low-back pain present a major medical challenge. Nucleus pulposus-derived stem cells (NP-SCs) may lead to a novel therapy for this severe disease. It was recently shown that survival and function of mature NP cells are regulated in part by tissue stiffness. We hypothesized that modification of matrix stiffness will influence the ability of cultured NP-SCs to proliferate, survive, and differentiate into mature NP cells. NP-SCs were subcultured in three-dimensional matrices of varying degrees of stiffness as measured by the material's shear storage modulus. Cell survival, activity, and rate of differentiation toward the chondrogenic or osteogenic lineage were analyzed. NP-SCs were found to proliferate and differentiate in all matrices, irrespective of matrix stiffness. However, matrices with a low shear storage modulus (G' = 1 kPa) promoted significantly more proliferation and chondrogenic differentiation, whereas matrices with a high modulus (G' = 2 kPa) promoted osteogenic differentiation. Imaging performed via confocal and scanning electron microscopes validated cell survival and highlighted stiffness-dependent cell-matrix interactions. These results underscore the effect of the matrix modulus on the fate of NP-SCs. This research may facilitate elucidation of the complex cross-talk between NP-SCs and their surrounding matrix in healthy as well as pathological conditions.

  5. Three-dimensional matrix stiffness and adhesive ligands affect cancer cell response to toxins.

    Science.gov (United States)

    Zustiak, Silviya Petrova; Dadhwal, Smritee; Medina, Carlos; Steczina, Sonette; Chehreghanianzabi, Yasaman; Ashraf, Anisa; Asuri, Prashanth

    2016-02-01

    There is an immediate need to develop highly predictive in vitro cell-based assays that provide reliable information on cancer drug efficacy and toxicity. Development of biomaterial-based three-dimensional (3D) cell culture models as drug screening platforms has recently gained much scientific interest as 3D cultures of cancer cells have been shown to more adequately mimic the in vivo tumor conditions. Moreover, it has been recognized that the biophysical and biochemical properties of the 3D microenvironment can play key roles in regulating various cancer cell fates, including their response to chemicals. In this study, we employed alginate-based scaffolds of varying mechanical stiffness and adhesive ligand presentation to further explore the role of 3D microenvironmental cues on glioblastoma cell response to cytotoxic compounds. Our experiments suggested the ability of both matrix stiffness and cell-matrix adhesions to strongly influence cell responses to toxins. Cells were found to be more susceptible to the toxins when cultured in softer matrices that emulated the stiffness of brain tissue. Furthermore, the effect of matrix stiffness on differential cell responses to toxins was negated by the presence of the adhesive ligand RGD, but regained when integrin-based cell-matrix interactions were inhibited. This study therefore indicates that both 3D matrix stiffness and cell-matrix adhesions are important parameters in the design of more predictive in vitro platforms for drug development and toxicity screening.

  6. Matrix stiffness exerts biphasic control over monocyte-endothelial adhesion via Rho-mediated ICAM-1 clustering.

    Science.gov (United States)

    Scott, Harry A; Quach, Boi; Yang, Xiao; Ardekani, Soroush; Cabrera, Andrea P; Wilson, Randall; Messaoudi-Powers, Ilhem; Ghosh, Kaustabh

    2016-08-01

    Leukocyte-endothelial adhesion is a critical early step in chronic vascular inflammation associated with diabetes, emphysema, and aging. Importantly, these conditions are also marked by abnormal subendothelial matrix crosslinking (stiffness). Yet, whether and how abnormal matrix stiffness contributes to leukocyte-endothelial adhesion remains poorly understood. Using a co-culture of human monocytic cells and human microvascular endothelial cells (ECs) grown on matrices of tunable stiffness, we demonstrate that matrix stiffness exerts biphasic control over monocyte-EC adhesion, with both matrix softening and stiffening eliciting a two-fold increase in this adhesive interaction. This preferential endothelial adhesivity on softer and stiffer matrices was consistent with a significant increase in α-actinin-4-associated endothelial ICAM-1 clustering, a key determinant of monocyte-EC adhesion. Further, the enhanced ICAM-1 clustering on soft and stiff matrices correlated strongly with an increase in Rho activity and ROCK2 expression. Importantly, inhibition of Rho/ROCK activity blocked the effects of abnormal matrix stiffness on ICAM-1 clustering and monocyte-EC adhesion. Thus, these findings implicate matrix stiffness-dependent ICAM-1 clustering as an important regulator of vascular inflammation and provide the rationale for closely examining mechanotransduction pathways as new molecular targets for anti-inflammatory therapy.

  7. Potential effect of matrix stiffness on the enrichment of tumor initiating cells under three-dimensional culture conditions.

    Science.gov (United States)

    Liu, Chang; Liu, Yang; Xu, Xiao-xi; Wu, Hao; Xie, Hong-guo; Chen, Li; Lu, Ting; Yang, Li; Guo, Xin; Sun, Guang-wei; Wang, Wei; Ma, Xiao-jun; He, Xin

    2015-01-01

    Cancer stem cell (CSC) or tumor initiating cell (TIC) plays an important role in tumor progression and metastasis. Biophysical forces in tumor microenvironment have an important effect on tumor formation and development. In this study, the potential effect of matrix stiffness on the biological characteristics of human head and neck squamous cell carcinoma (HNSCC) TICs, especially the enrichment of HNSCC TICs, was investigated under three-dimensional (3D) culture conditions by means of alginate gel (ALG) beads with different matrix stiffnesses. ALG beads with soft (21 kPa), moderate (70 kPa) and hard (105 kPa) stiffness were generated by changing alginate concentration. It was found that significant HNSCC TIC enrichment was achieved in the ALG beads with moderate matrix stiffness (70 kPa). The gene expression of stemness markers Oct3/4 and Nanog, TIC markers CD44 and ABCG2 was enhanced in cells under this moderate (70 kPa) stiffness. HNSCC TIC proportion was also highly enriched under moderate matrix stiffness, accompanying with higher tumorigenicity, metastatic ability and drug resistance. And it was also found that the possible molecular mechanism underlying the regulated TIC properties by matrix stiffness under 3D culture conditions was significantly different from 2D culture condition. Therefore, the results achieved in this study indicated that 3D biophysical microenvironment had an important effect on TIC characteristics and alginate-based biomimetic scaffolds could be utilized as a proper platform to investigate the interaction between tumor cells and 3D microenvironment.

  8. A novel energy-efficient rotational variable stiffness actuator

    NARCIS (Netherlands)

    Rao, Shodhan; Carloni, Raffaella; Stramigioli, Stefano

    2011-01-01

    This paper presents the working principle, the design and realization of a novel rotational variable stiffness actuator, whose stiffness can be varied independently of its output angular position. This actuator is energy-efficient, meaning that the stiffness of the actuator can be varied by keeping

  9. How Crouch Gait Can Dynamically Induce Stiff-Knee Gait

    NARCIS (Netherlands)

    Van der Krogt, M.M.; Bregman, D.J.J.; Wisse, M.; Doorenbosch, C.A.M.; Harlaar, J.; Collins, S.H.

    Children with cerebral palsy frequently experience foot dragging and tripping during walking due to a lack of adequate knee flexion in swing (stiff-knee gait). Stiff-knee gait is often accompanied by an overly flexed knee during stance (crouch gait). Studies on stiff-knee gait have mostly focused on

  10. [Stiff person syndrome--case report].

    Science.gov (United States)

    Tomczykiewicz, Kazimierz; Pastuszak, Zanna; Staszewski, Jacek; Stepień, Adam

    2014-01-01

    Stiff person syndrome (SPS) is the rare disease and cause great inefficient. It is characterized by progressive stiffness muscles of trunk and the limbs on which the cramps of muscles overlap. In the electrophysiological investigation of the patients the involuntary discharge of motor unit potentials find and also simultaneous contraction agonistic and antagonistic muscles. SPS is presented with insulin-dependent diabetes mellitus often or is the symptom of the paraneoplastic syndrome. It is commonly associated with high anti-glutamic acid decarboxylaze (GAD) antibody titters in the serum of the blood of patients. Establishing the diagnosis can cause difficulties. We observed the patient in the last period about the atypical course the disease. The diagnosis was confirmed occurrences of the high titters of antibodies anti-GAD, the discharge of motor unit potential in paraspinal muscles in the rest and good response the treatment with diazepamem.

  11. Electron profile stiffness and critical gradient studies

    Science.gov (United States)

    DeBoo, J. C.; Petty, C. C.; White, A. E.; Burrell, K. H.; Doyle, E. J.; Hillesheim, J. C.; Holland, C.; McKee, G. R.; Rhodes, T. L.; Schmitz, L.; Smith, S. P.; Wang, G.; Zeng, L.

    2012-08-01

    Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in ∇Te. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/LC ˜ 3 m-1 was identified at ρ =0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -∇Te, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/LT above the threshold.

  12. Stiff modes in spinvalve simulations with OOMMF

    Energy Technology Data Exchange (ETDEWEB)

    Mitropoulos, Spyridon [Department of Computer and Informatics Engineering, TEI of Eastern Macedonia and Thrace, Kavala (Greece); Tsiantos, Vassilis, E-mail: tsianto@teikav.edu.gr [Department of Electrical Engineering, TEI of Eastern Macedonia and Thrace, Kavala, 65404 Greece (Greece); Ovaliadis, Kyriakos [Department of Electrical Engineering, TEI of Eastern Macedonia and Thrace, Kavala, 65404 Greece (Greece); Kechrakos, Dimitris [Department of Education, ASPETE, Heraklion, Athens (Greece); Donahue, Michael [Applied and Computational Mathematics Division, NIST, Gaithersburg, MD (United States)

    2016-04-01

    Micromagnetic simulations are an important tool for the investigation of magnetic materials. Micromagnetic software uses various techniques to solve differential equations, partial or ordinary, involved in the dynamic simulations. Euler, Runge-Kutta, Adams, and BDF (Backward Differentiation Formulae) are some of the methods used for this purpose. In this paper, spinvalve simulations are investigated. Evidence is presented showing that these systems have stiff modes, and that implicit methods such as BDF are more effective than explicit methods in such cases.

  13. The stiffness change and the increase in the ultimate capacity for a stiff pile resulting from a cyclic loading

    DEFF Research Database (Denmark)

    Lada, Aleksandra; Ibsen, Lars Bo; Nicolai, Giulio

    In the paper the experimental results of small-scale tests on a stiff monopile are presented to outline the change in stiffness during the cyclic loading and the change in the ultimate pile capacity. The results confirm the increase of stiffness and the increase in bearing capacity resulting from...... cyclic loading. Performed analysis provides a better understanding of the problem and reveals some correlations that can be useful in the future design of stiff monopiles....

  14. Efficient Method for Calculating the Composite Stiffness of Parabolic Leaf Springs with Variable Stiffness for Vehicle Rear Suspension

    OpenAIRE

    Wen-ku Shi; Cheng Liu; Zhi-yong Chen; Wei He; Qing-hua Zu

    2016-01-01

    The composite stiffness of parabolic leaf springs with variable stiffness is difficult to calculate using traditional integral equations. Numerical integration or FEA may be used but will require computer-aided software and long calculation times. An efficient method for calculating the composite stiffness of parabolic leaf springs with variable stiffness is developed and evaluated to reduce the complexity of calculation and shorten the calculation time. A simplified model for double-leaf spr...

  15. MIGRAINE, CAROTID STIFFNESS AND GENETIC POLYMORPHISM.

    Science.gov (United States)

    Kes, Vanja Basić; Jurasić, Miljenka-Jelena; Zavoreo, Iris; Corić, Lejla; Rotim, Kresimir

    2015-12-01

    Recently migraine has been associated with increased arterial stiffness, procoagulant state, increased incidence of cerebral white matter lesions (WML) and stroke. Our aim was to compare the characteristics of migraineurs to headache free controls regarding their functional carotid ultrasound parameters. Sixty patients (45 women) with migraine (mean age 40.42 ± 10.61 years) were compared with 45 controls (30 women) with no prior history of repeating headache (mean age 38.94 ± 5.46 years) using E-tracking software on Alpha 10 ultrasound platform. Student's t-test was used on statistical analysis with alpha < 0.05. All tested carotid vascular parameters were worse in patients with migraine including increased intima-media thickness, greater carotid diameter and carotid diameter change, as well as several arterial stiffness indices. Additionally, patients with migraine had greater incidence of homozygous mutations for procoagulant genes (MTHFR (C677T), PAI-1 and ACE I/D) than expected. Computed tomography and magnetic resonance imaging of the brain showed WML in 11 patients, four of them migraine with aura patients. Since we established increased carotid stiffness and higher frequency of procoagulant gene mutations in migraineurs, we propose prospective ultrasound monitoring in such patients, especially those with detected WML, in order to timely commence more active and specific preventive stroke management strategies.

  16. Changing Boundaries

    DEFF Research Database (Denmark)

    Brodkin, Evelyn; Larsen, Flemming

    2013-01-01

    In recent decades, workfare-style policies have become part of the institutional architecture of welfare and labor market arrangements around the world. In this article, we offer a comparative, historical view of workfare´s advance. Our analysis recognizes the complexity and diversity of what we...... call the “policies of workfare” and highlights the different paths through which these policies have developed in the U.S. and parts of Europe. We argue that it is necessary to look beyond familiar policy labels and language in order to consider workfare-style policies as part of a broader political...... project that is altering the boundary between the democratic welfare state and the market economy. We see workfare policies as boundary-changing with potentially profound implications both for individuals disadvantaged by market arrangements and for societies seeking to grapple with the increasing...

  17. Cell stiffness, contractile stress and the role of extracellular matrix

    Science.gov (United States)

    An, Steven S.; Kim, Jina; Ahn, Kwangmi; Trepat, Xavier; Drake, Kenneth J.; Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne; Fredberg, Jeffrey J.; Biswal, Shyam

    2010-01-01

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses. PMID:19327344

  18. Cell stiffness, contractile stress and the role of extracellular matrix

    Energy Technology Data Exchange (ETDEWEB)

    An, Steven S., E-mail: san@jhsph.edu [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Kim, Jina [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Ahn, Kwangmi [Division of Biostatistics, Penn State College of Medicine, Hershey, PA 17033 (United States); Trepat, Xavier [CIBER, Enfermedades Respiratorias, 07110 Bunyola (Spain); Drake, Kenneth J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Fredberg, Jeffrey J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Biswal, Shyam [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 (United States)

    2009-05-15

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.

  19. A General Formulation for the Stiffness Matrix of Parallel Mechanisms

    CERN Document Server

    Quennouelle, Cyril

    2012-01-01

    Starting from the definition of a stiffness matrix, the authors present a new formulation of the Cartesian stiffness matrix of parallel mechanisms. The proposed formulation is more general than any other stiffness matrix found in the literature since it can take into account the stiffness of the passive joints, it can consider additional compliances in the joints or in the links and it remains valid for large displacements. Then, the validity, the conservative property, the positive definiteness and the relation with other formulations of stiffness matrices are discussed theoretically. Finally, a numerical example is given in order to illustrate the correctness of this matrix.

  20. Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin β1.

    Science.gov (United States)

    Dong, Yinying; Xie, Xiaoying; Wang, Zhiming; Hu, Chao; Zheng, Qiongdan; Wang, Yaohui; Chen, Rongxin; Xue, Tongchun; Chen, Jie; Gao, Dongmei; Wu, Weizhong; Ren, Zhenggang; Cui, Jiefeng

    2014-02-14

    Matrix stiffness as a novel regulation factor involves in modulating the pathogenesis of hepatocellular carcinoma (HCC) invasion or metastasis. However, the mechanism by which matrix stiffness modulates HCC angiogenesis remains unknown. Here, using buffalo rat HCC models with different liver matrix stiffness backgrounds and an in vitro cell culture system of mechanically tunable Collagen1 (COL1)-coated polyacrylamide gel, we investigated the effects of different matrix stiffness levels on vascular endothelial growth factor (VEGF) expression in HCC cells and explored its regulatory mechanism for controlling HCC angiogenesis. Tissue microarray analysis showed that the expression levels of VEGF and CD31 were gradually upregulated in tumor tissues with increasing COL1 and lysyl oxidase (LOX) expression, indicating a positive correlation between tumor angiogenesis and matrix rigidity. The expression of VEGF and the phosphorylation levels of PI3K and Akt were all upregulated in HCC cells on high-stiffness gel than on low-stiffness gel. Meanwhile, alteration of intergrin β1 expression was found to be the most distinctive, implying that it might mediate the response of HCC cells to matrix stiffness simulation. After integrin β1 was blocked in HCC cells using specific monoclonal antibody, the expression of VEGF and the phosphorylation levels of PI3K and Akt at different culture times were accordingly suppressed and downregulated in the treatment group as compared with those in the control group. All data suggested that the extracellular matrix stiffness stimulation signal was transduced into HCC cells via integrin β1, and this signal activated the PI3K/Akt pathway and upregulated VEGF expression. This study unveils a new paradigm in which matrix stiffness as initiators to modulate HCC angiogenesis.

  1. Cosmology with a stiff matter era

    Science.gov (United States)

    Chavanis, Pierre-Henri

    2015-11-01

    We consider the possibility that the Universe is made of a dark fluid described by a quadratic equation of state P =K ρ2 , where ρ is the rest-mass density and K is a constant. The energy density ɛ =ρ c2+K ρ2 is the sum of two terms: a rest-mass term ρ c2 that mimics "dark matter" (P =0 ) and an internal energy term u =K ρ2=P that mimics a "stiff fluid" (P =ɛ ) in which the speed of sound is equal to the speed of light. In the early universe, the internal energy dominates and the dark fluid behaves as a stiff fluid (P ˜ɛ , ɛ ∝a-6). In the late universe, the rest-mass energy dominates and the dark fluid behaves as pressureless dark matter (P ≃0 , ɛ ∝a-3). We provide a simple analytical solution of the Friedmann equations for a universe undergoing a stiff matter era, a dark matter era, and a dark energy era due to the cosmological constant. This analytical solution generalizes the Einstein-de Sitter solution describing the dark matter era, and the Λ CDM model describing the dark matter era and the dark energy era. Historically, the possibility of a primordial stiff matter era first appeared in the cosmological model of Zel'dovich where the primordial universe is assumed to be made of a cold gas of baryons. A primordial stiff matter era also occurs in recent cosmological models where dark matter is made of relativistic self-gravitating Bose-Einstein condensates (BECs). When the internal energy of the dark fluid mimicking stiff matter is positive, the primordial universe is singular like in the standard big bang theory. It expands from an initial state with a vanishing scale factor and an infinite density. We consider the possibility that the internal energy of the dark fluid is negative (while, of course, its total energy density is positive), so that it mimics anti-stiff matter. This happens, for example, when the BECs have an attractive self-interaction with a negative scattering length. In that case, the primordial universe is nonsingular and

  2. A review of shear strength models for rock joints subjected to constant normal stiffness

    Directory of Open Access Journals (Sweden)

    Sivanathan Thirukumaran

    2016-06-01

    Full Text Available The typical shear behaviour of rough joints has been studied under constant normal load/stress (CNL boundary conditions, but recent studies have shown that this boundary condition may not replicate true practical situations. Constant normal stiffness (CNS is more appropriate to describe the stress–strain response of field joints since the CNS boundary condition is more realistic than CNL. The practical implications of CNS are movements of unstable blocks in the roof or walls of an underground excavation, reinforced rock wedges sliding in a rock slope or foundation, and the vertical movement of rock-socketed concrete piles. In this paper, the highlights and limitations of the existing models used to predict the shear strength/behaviour of joints under CNS conditions are discussed in depth.

  3. Regional brain stiffness changes across the Alzheimer's disease spectrum.

    Science.gov (United States)

    Murphy, Matthew C; Jones, David T; Jack, Clifford R; Glaser, Kevin J; Senjem, Matthew L; Manduca, Armando; Felmlee, Joel P; Carter, Rickey E; Ehman, Richard L; Huston, John

    2016-01-01

    Magnetic resonance elastography (MRE) is an MRI-based technique to noninvasively measure tissue stiffness. Currently well established for clinical use in the liver, MRE is increasingly being investigated to measure brain stiffness as a novel biomarker of a variety of neurological diseases. The purpose of this work was to apply a recently developed MRE pipeline to measure regional brain stiffness changes in human subjects across the Alzheimer's disease (AD) spectrum, and to gain insights into the biological processes underlying those stiffness changes by correlating stiffness with existing biomarkers of AD. The results indicate that stiffness changes occur mostly in the frontal, parietal and temporal lobes, in accordance with the known topography of AD pathology. Furthermore, stiffness in those areas correlates with existing imaging biomarkers of AD including hippocampal volumes and amyloid PET. Additional analysis revealed preliminary but significant evidence that the relationship between brain stiffness and AD severity is nonlinear and non-monotonic. Given that similar relationships have been observed in functional MRI experiments, we used task-free fMRI data to test the hypothesis that brain stiffness was sensitive to structural changes associated with altered functional connectivity. The analysis revealed that brain stiffness is significantly and positively correlated with default mode network connectivity. Therefore, brain stiffness as measured by MRE has potential to provide new and essential insights into the temporal dynamics of AD, as well as the relationship between functional and structural plasticity as it relates to AD pathophysiology.

  4. On prestress stiffness analysis of bolt-plate contact assemblies

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Pedersen, Pauli

    2008-01-01

    Bolt connections are among the most important connections used in structures. The stiffnesses of the bolt and of the connected members are the primary qualities that control the lifetime of the connection. The stiffness of the bolt can be estimated rather easily, in contrast to the member stiffness......, but with finite element (FE) and contact analysis, it is possible to find the stiffness of the member. In the case of many connections and for practical applications, it is not suitable to make a full FE analysis. The purpose of the present paper is to find simplified expressions for the stiffness of the member......, including the case when the width of the member is limited. The calculation of the stiffness is based on the FE, including the solution to the contact problem, and we express the stiffness as a function of the elastic energy in the structure, whereby the definition of the displacements related...

  5. Nanocharacterization of the negative stiffness of ferroelectric materials

    Science.gov (United States)

    Alipour Skandani, A.; Ctvrtlik, R.; Al-Haik, M.

    2014-08-01

    Phase changing materials such as ferroelectric materials could exhibit negative stiffness under certain thermomechanical environments. This negative stiffness is embodied by a deflection along the opposite direction of the applied load. So far negative stiffness materials were investigated with the specific morphology of embedded inclusions in stiff matrices then the resulting composite is studied to measure the behavior of each constituent indirectly. In this study, a modified nonisothermal nanoindentation method is developed to measure the negative stiffness of triglycine sulfate single crystal directly. This in-situ method is intended to first demonstrate the feasibility of detecting the negative stiffness via nanoindentation and nanocreep of a ferroelectric material at its Curie point and then to quantify the negative stiffness without the need for embedding the crystal within a stiffer matrix.

  6. An exact dynamic stiffness matrix for axially loaded double-beam systems

    Indian Academy of Sciences (India)

    Li Xiaobin; Xu Shuangxi; Wu Weiguo; Li Jun

    2014-06-01

    An exact dynamic stiffness method is presented in this paper to determine the natural frequencies and mode shapes of the axially loaded double-beam systems,which consist of two homogeneous and prismatic beams with a distributed spring in parallel between them.The effects of the axial force, shear deformation and rotary inertia are considered, as shown in the theoretical formulation. The dynamic stiffness influence coefficients are formulated from the governing differential equations of the axially loaded double-beam system in free vibration by using the Laplace transform method. An example is given to demonstrate the effectiveness of this method, in which ten boundary conditions are investigated and the effect of the axial force on the natural frequencies and mode shapes of the double-beam system are further discussed.

  7. Exact dynamic stiffness matrix for flexural vibration of three-layered sandwich beams

    Science.gov (United States)

    Howson, W. P.; Zare, A.

    2005-04-01

    An exact dynamic member stiffness matrix (exact finite element), which defines the flexural motion of a three-layered sandwich beam with unequal faceplates, is developed from the closed form solution of the governing differential equation. This enables the powerful modelling features associated with the finite element technique to be utilised, including the ability to account for nodal masses, spring support stiffnesses and non-classical boundary conditions. However, such a formulation necessitates the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm, which enables the required natural frequencies to be converged upon to any required accuracy with the certain knowledge that none have been missed. The accuracy of the method is confirmed by comparison with three sets of published results and a final example indicates its range of application.

  8. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    Science.gov (United States)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  9. Boundary issues

    Science.gov (United States)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  10. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  11. Laser application on haptics: Tactile stiffness measurement

    Science.gov (United States)

    Scalise, L.; Memeo, M.; Cannella, F.; Valente, M.; Caldwell, D. G.; Tomasini, E. P.

    2012-06-01

    There is a great interest in exploring the proprieties of the sense of the touch, its detailed knowledge in fact is a key issue in the area of robotics, haptics and human-machine interaction. In this paper, the authors focus their attention on a novel measurement method for the assessment of the tactile stiffness based on a original test rig; tactile stiffness is defined as the ratio between force, exerted by the finger, and the displacement of the finger tip operated during the test. To reach this scope, the paper describes a specific experimental test-rig used for the evaluation of subject tactile sensitivity, where finger force applied during tests as well as displacement and velocity of displacement, operated by the subject under investigation, are measured. Results show that tactile stiffness is linear respect to stimuli spatial difference (which is proportional to the difficulty to detect the variation of them). In particular, it has been possible to relate the force and displacement measured during the tests. The relationship between the response of the subject to the grating, velocity and force is determined. These results permit to carry out the further experimental tests on the same subject avoiding the use of a load cell and therefore simplifying the measurement test rig and data post-processing. Indeed, the first aspect (use of a load cell) can be relevant, because the grating positions are different, requiring a specific re-calibration and setting before each trial; while the second aspect allows simplify the test rig complexity and the processing algorithm.

  12. Cryotherapy induces an increase in muscle stiffness.

    Science.gov (United States)

    Point, Maxime; Guilhem, Gaël; Hug, François; Nordez, Antoine; Frey, Alain; Lacourpaille, Lilian

    2017-03-06

    Although cold application (i.e., cryotherapy) may be useful to treat sports injuries and to prevent muscle damage, it is unclear whether it has adverse effects on muscle mechanical properties. This study aimed to determine the effect of air-pulsed cryotherapy on muscle stiffness estimated using ultrasound shear wave elastography. Myoelectrical activity, ankle passive torque, shear modulus (an index of stiffness) and muscle temperature of the gastrocnemius medialis were measured before, during an air-pulsed cryotherapy (-30°) treatment of 4 sets of 4 minutes with 1 min recovery in between, and during a 40-min post-cryotherapy period. Muscle temperature significantly decreased after the second set of treatment (10 min: 32.3 ± 2.5°C; P < 0.001), peaked at 29 min (27.9 ± 2.2°C; P < 0.001) and remained below baseline values at 60 minutes (29.5 ± 2.0°C; P < 0.001). Shear modulus increased by +11.5 ± 11.8% after the second set (10 min; P = 0.011), peaked at 30 min (+34.7 ± 42.6%; P < 0.001) and remained elevated until the end of the post-treatment period (+25.4 ± 17.1%; P < 0.001). These findings provide evidence that cryotherapy induces an increase in muscle stiffness. This acute change in muscle mechanical properties may lower the amount of stretch that the muscle tissue is able to sustain without subsequent injury. This should be considered when using cryotherapy in athletic practice. This article is protected by copyright. All rights reserved.

  13. Thompson′s quadricepsplasty for stiff knee

    Directory of Open Access Journals (Sweden)

    Kundu Z

    2007-01-01

    Full Text Available Background : Stiffness of the knee after trauma and/or surgery for femoral fractures is one of the most common complications and is difficult to treat. Stiffness in extension is more common and can be reduced by vigorous physiotherapy. If it does not improve then quadricepsplasty is indicated. The present study was undertaken to evaluate the results of Thompsons quadricepsplasty. Materials and Methods : 22 male patients (age range 20-45 years with posttraumatic knee stiffness following distal femoral fractures underwent Thompson′s quadricepsplasty where knee flexion range was less than 45°. The index injury in these patients was treated with plaster cast (n=5, plates (n=3, intramedullary nailing (n=3 and external fixator for open fractures (n=9. Thompson′s quadricepsplasty was performed in all the patients using anterior approach, with incision extending from upper thigh to tibial tubercle. Release of rectus femoris from underlying vastus intermedius and release of intraarticular adhesions were performed. After surgery the patients needed parentral analgesia for three days and then oral analgesics for three weeks. Active assisted knee mobilization exercises were started on the first post-operative day. Continous passive motion machine was used from the same day. Supervised physiotherapy was continued in hospital for six weeks followed by intensive knee flexion and extension exercise including cycling at home for atleast another six months. Results : Out of 22 patients, 20 had excellent to good results and two patients had poor results using criteria devised by Judet. One poor result was due to peroperative fracture of patella which was then internally fixed and hence the flexion of knee could not be started immediately. There was peroperative avulsion of tibial tuberosity in another patient who finally gained less than 50° knee flexion and hence a poor result. Conclusion : Thompsons quadricepsplasty followed by a strict and rigourous

  14. Three-dimensional stiffness of the carpal arch.

    Science.gov (United States)

    Gabra, Joseph N; Li, Zong-Ming

    2016-01-01

    The carpal arch of the wrist is formed by irregularly shaped carpal bones interconnected by numerous ligaments, resulting in complex structural mechanics. The purpose of this study was to determine the three-dimensional stiffness characteristics of the carpal arch using displacement perturbations. It was hypothesized that the carpal arch would exhibit an anisotropic stiffness behavior with principal directions that are oblique to the conventional anatomical axes. Eight (n=8) cadavers were used in this study. For each specimen, the hamate was fixed to a custom stationary apparatus. An instrumented robot arm applied three-dimensional displacement perturbations to the ridge of trapezium and corresponding reaction forces were collected. The displacement-force data were used to determine a three-dimensional stiffness matrix using least squares fitting. Eigendecomposition of the stiffness matrix was used to identify the magnitudes and directions of the principal stiffness components. The carpal arch structure exhibited anisotropic stiffness behaviors with a maximum principal stiffness of 16.4±4.6N/mm that was significantly larger than the other principal components of 3.1±0.9 and 2.6±0.5N/mm (pcarpal tunnel which is accounted for by the stiff transverse ligaments that tightly bind distal carpal arch. The minimal principal stiffness is attributed to the less constraining articulation between the trapezium and scaphoid. This study provides advanced characterization of the wrist׳s three-dimensional structural stiffness for improved insight into wrist biomechanics, stability, and function.

  15. Síndrome stiff skin: relato de caso Stiff skin syndrome: case report

    Directory of Open Access Journals (Sweden)

    Adriana Gutstein da Fonseca Amorim

    2011-08-01

    Full Text Available Síndrome stiff skin é doença rara, esclerodermiforme, de etiologia desconhecida, caracterizada por endurecimento pétreo da pele, hipertricose leve e limitação da mobilidade articular. Não há tratamento efetivo até o momento. Exercícios e reabilitação são importantes para manter a qualidade de vida do paciente. Os autores apresentam caso de um menino de dois anos de idade com endurecimento cutâneo progressivo desde os oito meses de idade e restrição secundária da mobilidade articular, diagnosticado como Síndrome stiff skinStiff skin syndrome is a rare scleroderma-like disorder of unknown etiology characterized by stone-hard indurations of skin, mild hypertrichosis and limited joint mobility. No effective treatment has yet been found. Exercises and rehabilitative therapy are important in maintaining the patient's quality of life. The authors present a case of a two-year-old boy with progressive skin hardening since he was eightmonth old and secondary restricted joint mobility, diagnosed as Stiff skin syndrome

  16. The Role of the Regulated Sector in the UK Anti-Money Laundering Framework: Pushing the Boundaries of the Private Police

    Directory of Open Access Journals (Sweden)

    Mo Egan

    2010-06-01

    Full Text Available This article argues that the conceptualisation of private police in current academic literature requires expansion to accommodate the role of the regulated sector in the Anti- Money Laundering (AML framework. Firstly, it evaluates the literature on ‘private police’ and argues that its current parameters are too narrow to accommodate the ‘policing’ role of the regulated sector. Secondly, it lays out the legislative framework that has developed to deal with the problem of money laundering. Thirdly, it contextualises the role of the regulated sector, examining the domestic inter-agency policing relationships within the suspicious activity regime as operationalised in Scotland. Finally, it takes a closer look at how the courts have interpreted the ‘failure to report offence’ under s330 of the Proceeds of Crime Act (POCA 2002 and its consequential effect on the engagement of the regulated sector with the SARs regime.

  17. Multifunctional Stiff Carbon Foam Derived from Bread.

    Science.gov (United States)

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  18. Elastic metamaterial beam with remotely tunable stiffness

    Science.gov (United States)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  19. Elastic metamaterial beam with remotely tunable stiffness

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Wei [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Zhengyue [School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Xiaole [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Lai, Yun [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Yellen, Benjamin B., E-mail: yellen@duke.edu [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2016-02-07

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  20. The Effect of Matrix Stiffness on the Differentiation of Mesenchymal Stem Cells in Response to TGF-β

    Science.gov (United States)

    Park, Jennifer S.; Chu, Julia S.; Tsou, Anchi D.; Diop, Rokhaya; Tang, Zhenyu; Wang, Aijun; Li, Song

    2011-01-01

    Bone marrow mesenchymal stem cells (MSCs) are a valuable cell source for tissue engineering and regenerative medicine. Transforming growth factor β (TGF-β) can promote MSC differentiation into either smooth muscle cells (SMCs) or chondrogenic cells. Here we showed that matrix stiffness modulated these differential effects. MSCs on soft substrates had less spreading, fewer stress fibers and lower proliferation rate than MSCs on stiff substrates. MSCs on stiff substrates had higher expression of SMC markers α-actin and calponin-1; in contrast, MSCs on soft substrates had a higher expression of chondrogenic marker collagen-II and adipogenic marker lipoprotein lipase (LPL). TGF-β increased SMC marker expression on stiff substrates. However, TGF-β increased chondrogenic marker and suppressed adipogenic marker on the soft substrates, while adipogenic medium and soft substrates induced adipogenic differentiation effectively. Rho GTPase was involved in the expression of all aforementioned lineage markers, but did not account for the differential effects of matrix stiffness. In addition, soft substrates did not significantly affect Rho activity, but inhibited Rho-induced stress fiber formation and α-actin assembly. Further analysis showed that MSCs on soft matrices had weaker cell adhesion, and that the suppression of cell adhesion strength mimicked the effects of soft substrates on the lineage marker expression. These results provide insights of how matrix stiffness differentially regulates stem cell differentiation, and have significant implications for the design of biomaterials with appropriate mechanical property for tissue regeneration. PMID:21397942

  1. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway.

    Science.gov (United States)

    Wei, Spencer C; Fattet, Laurent; Tsai, Jeff H; Guo, Yurong; Pai, Vincent H; Majeski, Hannah E; Chen, Albert C; Sah, Robert L; Taylor, Susan S; Engler, Adam J; Yang, Jing

    2015-05-01

    Matrix stiffness potently regulates cellular behaviour in various biological contexts. In breast tumours, the presence of dense clusters of collagen fibrils indicates increased matrix stiffness and correlates with poor survival. It is unclear how mechanical inputs are transduced into transcriptional outputs to drive tumour progression. Here we report that TWIST1 is an essential mechanomediator that promotes epithelial-mesenchymal transition (EMT) in response to increasing matrix stiffness. High matrix stiffness promotes nuclear translocation of TWIST1 by releasing TWIST1 from its cytoplasmic binding partner G3BP2. Loss of G3BP2 leads to constitutive TWIST1 nuclear localization and synergizes with increasing matrix stiffness to induce EMT and promote tumour invasion and metastasis. In human breast tumours, collagen fibre alignment, a marker of increasing matrix stiffness, and reduced expression of G3BP2 together predict poor survival. Our findings reveal a TWIST1-G3BP2 mechanotransduction pathway that responds to biomechanical signals from the tumour microenvironment to drive EMT, invasion and metastasis.

  2. Performance of Variable Negative Stiffness MRE Vibration Isolation System

    Directory of Open Access Journals (Sweden)

    Run-pu Li

    2015-01-01

    Full Text Available Magnetorheological elastomer (MRE vibration isolation devices can improve a system’s vibration response via adjustable stiffness and damping under different magnetic fields. Combined with negative stiffness design, these MRE devices can reduce a system’s stiffness and improve the vibration control effect significantly. This paper develops a variable negative stiffness MRE isolation device by combining an improved separable iron core with laminated MREs. The relationship between the negative stiffness and the performance of the device is obtained by mathematical transformation. Its vibration response under simple harmonic excitation at small amplitude and the impact of the volume fraction of soft magnetic particles on the isolation system are also analyzed. The results show that the negative stiffness produced by the magnetic force is a major factor affecting the capacity of the isolation system. Compared to devices of the same size, the isolation system equipped with low-particle volume fraction MREs demonstrates better performance.

  3. Dynamic Vibration Absorber with Negative Stiffness for Rotor System

    Directory of Open Access Journals (Sweden)

    Hongliang Yao

    2016-01-01

    Full Text Available To suppress the vibration of a rotor system, a vibration absorber combining negative stiffness with positive stiffness together is proposed in this paper. Firstly, the negative stiffness producing mechanism using ring type permanent magnets is presented and the characteristics of the negative stiffness are analyzed. Then, the structure of the absorber is proposed; the principles and nonlinear dynamic characteristics of the absorber-rotor system are studied numerically. Finally, experiments are carried out to verify the numerical conclusions. The results show that the proposed vibration absorber is effective to suppress the vibration of the rotor system, the nonlinearity of the negatives stiffness affects the vibration suppression effect little, and the negative stiffness can broaden the effective vibration control frequency range of the absorber.

  4. ARTERIAL STIFFNESS AND CHRONIC KIDNEY DISEASE: CAUSES AND CONSEQUENCES

    Directory of Open Access Journals (Sweden)

    J. D. Kobalava

    2015-09-01

    Full Text Available Chronic kidney disease (CKD is associated with increased cardiovascular risk. CKD is characterized by accelerated aging of vessels in which the age-related arterial stiffness increase is exacerbated by a number of uremia-related processes. Increased arterial stiffness is associated with structural and functional disorders, as well as with the increase in cardiovascular mortality in patients with CKD. Increased arterial stiffness is diagnosed at an early stage of CKD. Modern understanding of the mechanisms of increased risk of cardiovascular complications in CKD, the factors contributing to the loss of elasticity of the arteries, arterial stiffness increase consequences are analyzed. Data illustrating the twoway interaction between CKD and arterial stiffness and mechanisms of accelerated progression of arterial stiffness in CKD are presented.

  5. Oxidized low-density lipoprotein alters the effect of matrix stiffness on the formation of endothelial networks and capillary lumens

    Science.gov (United States)

    2013-01-01

    Abstract Formation of new blood vessels is essential for vascular repair and remodeling, and it is known that biomechanical properties of extracellular matrix play a major role in this process. Our earlier studies have also shown that exposing endothelial cells to oxidized modification of low-density lipoproteins (oxLDL) increases endothelial stiffness and facilitates their ability to form cellular networks, suggesting that it facilitates endothelial angiogenic potential. The goal of this study, therefore, was to test the interrelationship between matrix stiffness and oxLDL in the regulation of angiogenesis. Our results show that, as expected, an increase in matrix stiffness inhibited endothelial network formation and that exposure to oxLDL significantly facilitated this process. We also show, however, that oxLDL-induced facilitation of endothelial networks was observed only in stiff (3 mg/mL) but not in soft (1 mg/mL) collagen gels, resulting in blunting the effect of matrix stiffness. Also unexpectedly, we show that an increase in matrix stiffness results in a significant increase in the number of capillary lumens that are formed by single cells or pairs of cells, suggesting that while endothelial connectivity is impaired, formation of single-cell lumens is facilitated. oxLDL facilitates lumen formation, but this effect is also matrix dependent and is observed only in soft gels and not in stiff gels. Finally, an increase in both matrix stiffness and oxLDL exposure results in changes in capillary morphology, with the formation of larger capillary lumens. Overall, our study suggests that oxLDL plays an important role in formation of new capillaries and their morphology and that this effect is critically dependent on the extracellular environment’s compliance, thereby underlining the importance of the interdependence of these parameters. PMID:24618546

  6. Stiffness matrix of manipulators with passive joints: computational aspects

    CERN Document Server

    Klimchik, Alexandr; Caro, Stéphane; Chablat, Damien; 10.1109/TRO.2012.2187395

    2012-01-01

    The paper focuses on stiffness matrix computation for manipulators with passive joints, compliant actuators and flexible links. It proposes both explicit analytical expressions and an efficient recursive procedure that are applicable in the general case and allow obtaining the desired matrix either in analytical or numerical form. Advantages of the developed technique and its ability to produce both singular and non-singular stiffness matrices are illustrated by application examples that deal with stiffness modeling of two Stewart-Gough platforms.

  7. Cartesian stiffness matrix of manipulators with passive joints: analytical approach

    CERN Document Server

    Pashkevich, Anatoly; Caro, Stéphane; Chablat, Damien

    2011-01-01

    The paper focuses on stiffness matrix computation for manipulators with passive joints. It proposes both explicit analytical expressions and an efficient recursive procedure that are applicable in general case and allow obtaining the desired matrix either in analytical or numerical form. Advantages of the developed technique and its ability to produce both singular and non-singular stiffness matrices are illustrated by application examples that deal with stiffness modeling of two Stewart-Gough platforms.

  8. Properties of the grasp stiffness matrix and conservative control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kao, I.; Ngo, C. [State Univ. of New York, Stony Brook, NY (United States)

    1999-02-01

    In this paper, the authors present fundamental properties of stiffness matrices as applied in analysis of grasping and dexterous manipulation in configuration spaces and linear Euclidean R{sup 3x3} space without rotational components. A conservative-stiffness matrix in such spaces needs to satisfy both symmetric and exact differential criteria. Two types of stiffness matrices are discussed: constant and configuration-dependent matrices are discussed: constant and configuration-dependent matrices. The symmetric part of a constant-stiffness matrix can be derived from a conservative quadratic potential function in the Hermitian form; while the skew-symmetric part is a function of the nonconservative curl vector field of the grasp. A configuration-dependent stiffness matrix needs to be symmetric and must simultaneously satisfy the exact differential condition to be conservative. The theory is most relevant to the Cartesian stiffness control, where the stiffness of the end effector is usually constant, such as that in RCC wrists. Conservative control strategies are proposed for a configuration-dependent stiffness matrix. One of the most important results of this paper is the nonconservative congruence mapping of stiffness between the joint and Cartesian spaces. In general, the congruence transformation (or its inverse transformation), K{sub {theta}} = J{sub {theta}}{sup T}K{sub p}J{sub {theta}}, is a nonconservative mapping over finite paths for a configuration-dependent Jacobian. Thus, to obtain a conservative system with respect to the Cartesian space, one has to either find the corresponding K{sub {theta}} at every configuration due to the constant and symmetric Cartesian stiffness matrix, or determine symmetric yet configuration-varying K{sub {theta}} at every configuration due to the constant and symmetric Cartesian stiffness matrix, or determine the symmetric yet configuration-varying K{sub {theta}} which makes the resulting configuration-dependent K{sub p

  9. Therapeutic modification of arterial stiffness: An update and comprehensive review

    OpenAIRE

    Wu, Ching-Fen; Liu, Pang-Yen; Wu, Tsung-Jui; Hung, Yuan; Yang, Shih-Ping; Lin, Gen-Min

    2015-01-01

    Arterial stiffness has been recognized as a marker of cardiovascular disease and associated with long-term worse clinical outcomes in several populations. Age, hypertension, smoking, and dyslipidemia, known as traditional vascular risk factors, as well as diabetes, obesity, and systemic inflammation lead to both atherosclerosis and arterial stiffness. Targeting multiple modifiable risk factors has become the main therapeutic strategy to improve arterial stiffness in patients at high cardiovas...

  10. Multiple anesthetics for a patient with stiff-person syndrome.

    Science.gov (United States)

    Cassavaugh, Jessica M; Oravitz, Todd M

    2016-06-01

    Stiff-person syndrome is a progressive disease of muscle rigidity and spasticity due to a deficiency in the production of γ-aminobutyric acid. Because of the rarity of the condition, little is known about effects of anesthesia on patients with stiff-person syndrome. This report describes the clinical course for a single patient with stiff-person syndrome who received general anesthesia on 3 separate occasions. Her anesthetics included use of both neuromuscular blockade and volatile agents. Unlike several previous reports regarding anesthesia and stiff-person syndrome, the postoperative period for this patient did not require prolonged intubation or result in any residual weakness.

  11. Low frequency noise reduction using stiff light composite panels

    Institute of Scientific and Technical Information of China (English)

    DENG Yongchang; LIN Weizheng

    2003-01-01

    The experiment presented in this paper is to investigate and analyze the noise reduction at low frequency using stiff light composite panels. Since these composite panels are made of lightweight and stiff materials, this actuation strategy will enable the creation of composite panels for duct noise control without using traditional heavy structural mass. The results suggest that the mass-spring resonance absorption in the case of a comparatively stiff thick panel with a thin flexible plate is more efficient with minimum weight, when subjected to low-frequency (<500 Hz). The efficiency of the panel absorber depends on the mass of the thin flexible plate and the stiffness of the panel.

  12. Tensile Stiffness Analysis on Ocean Dynamic Power Umbilical

    Institute of Scientific and Technical Information of China (English)

    汤明刚; 阎军; 王野; 岳前进

    2014-01-01

    Tensile stiffness of ocean dynamic power umbilical is an important design parameter for functional implementation and structural safety. A column with radial stiffness which is wound by helical steel wires is constructed to predict the tensile stiffness value of umbilicals in the paper. The relationship between the tension and axial deformation is expressed analytically so the radial contraction of the column is achieved in the relationship by use of a simple finite element method. With an agreement between the theoretical prediction and the tension test results, the method is proved to be simple and efficient for the estimation of tensile stiffness of the ocean dynamic power umbilical.

  13. Stiffness Analysis Of Multi-Chain Parallel Robotic Systems

    CERN Document Server

    Pashkevich, Anatoly; Chablat, Damien; Wenger, Philippe

    2009-01-01

    The paper presents a new stiffness modelling method for multi-chain parallel robotic manipulators with flexible links and compliant actuating joints. In contrast to other works, the method involves a FEA-based link stiffness evaluation and employs a new solution strategy of the kinetostatic equations, which allows computing the stiffness matrix for singular postures and to take into account influence of the external forces. The advantages of the developed technique are confirmed by application examples, which deal with stiffness analysis of a parallel manipulator of the Orthoglide family

  14. Stiffness Analysis Of Multi-Chain Parallel Robotic Systems

    CERN Document Server

    Pashkevich, Anatoly; Wenger, Philippe

    2008-01-01

    The paper presents a new stiffness modelling method for multi-chain parallel robotic manipulators with flexible links and compliant actuating joints. In contrast to other works, the method involves a FEA-based link stiffness evaluation and employs a new solution strategy of the kinetostatic equations, which allows computing the stiffness matrix for singular postures and to take into account influence of the internal forces. The advantages of the developed technique are confirmed by application examples, which deal with stiffness analysis of the Orthoglide manipulator.

  15. Relationship of rolling bearing stiffness with diameter of roller

    Institute of Scientific and Technical Information of China (English)

    郭茂林; 王刚; 张瑞

    2002-01-01

    The theoretical formula of roller bearing stiffness is induced and compared with its empirical formula.In the experience formula the stiffness of roller bearing has nothing to do with the roller diameter. The relation-ship of roller bearing stiffness with roller diameter was studied using Hz contacting theory. It is concluded thatconclusion in experience formula is only approximate result of data processing under special conditions, and therelation between stiffness of roller bearing and roller diameter must be taken into consideration while designingor selecting roller bearings.

  16. Chondrogenic differentiation of adipose-derived stromal cells in combinatorial hydrogels containing cartilage matrix proteins with decoupled mechanical stiffness.

    Science.gov (United States)

    Wang, Tianyi; Lai, Janice H; Han, Li-Hsin; Tong, Xinming; Yang, Fan

    2014-08-01

    Adipose-derived stromal cells (ADSCs) are attractive autologous cell sources for cartilage repair given their relative abundance and ease of isolation. Previous studies have demonstrated the potential of extracellular matrix (ECM) molecules as three-dimensional (3D) scaffolds for promoting chondrogenesis. However, few studies have compared the effects of varying types or doses of ECM molecules on chondrogenesis of ADSCs in 3D. Furthermore, increasing ECM molecule concentrations often result in simultaneous changes in the matrix stiffness, which makes it difficult to elucidate the relative contribution of biochemical cues or matrix stiffness on stem cell fate. Here we report the development of an ECM-containing hydrogel platform with largely decoupled biochemical and mechanical cues by modulating the degree of methacrylation of ECM molecules. Specifically, we incorporated three types of ECM molecules that are commonly found in the cartilage matrix, including chondroitin sulfate (CS), hyaluronic acid (HA), and heparan sulfate (HS). To elucidate the effects of interactive biochemical and mechanical signaling on chondrogenesis, ADSCs were encapsulated in 39 combinatorial hydrogel compositions with independently tunable ECM types (CS, HA, and HS), concentrations (0.5%, 1.25%, 2.5%, and 5% [w/v]), and matrix stiffness (3, 30, and 90 kPa). Our results show that the effect of ECM composition on chondrogenesis is dependent on the matrix stiffness of hydrogels, suggesting that matrix stiffness and biochemical cues interact in a nonlinear manner to regulate chondrogenesis of ADSCs in 3D. In soft hydrogels (~3 kPa), increasing HA concentrations resulted in substantial upregulation of aggrecan and collagen type II expression in a dose-dependent manner. This trend was reversed in HA-containing hydrogels with higher stiffness (~90 kPa). The platform reported herein could provide a useful tool for elucidating how ECM biochemical cues and matrix stiffness interact together to

  17. Arterial stiffness: pathophysiology and clinical impact.

    Science.gov (United States)

    London, Gérard M; Marchais, Sylvain J; Guerin, Alain P; Pannier, Bruno

    2004-01-01

    The ill effects of hypertension are usually attributed to a reduction in the caliber or the number of arterioles, resulting in an increase in total peripheral resistance (TPR). This definition does not take into account the fact that BP is a cyclic phenomenon with systolic and diastolic BP being the limits of these oscillations. The appropriate term to define the arterial factor(s) opposing LV ejection is aortic input impedance which depends on TPR, arterial distensibility (D), and wave reflections (WR). D defines the capacitive properties of arterial stiffness, whose role is to dampen pressure and flow oscillations and to transform pulsatile flow and pressure in arteries into a steady flow and pressure in peripheral tissues. Stiffness is the reciprocal value of D. These parameters are BP dependent, and arteries become stiffer at high pressure. In to D which provides information about the elasticity> of artery as a hollow structure, the elastic incremental modulus (Einc) characterizes the properties of the arterial wall biomaterials, independently of vessel geometry. As an alternative, arterial D can be evaluated by measuring the pulse wave velocity (PWV) which increases with the stiffening of arteries. Arterial stiffening increases left ventricular (LV) afterload and alters the coronary perfusion. With increased PWV, the WR impacts on the aorta during systole, increasing systolic pressures and myocardial oxygen consumption, and decreasing diastolic BP and coronary flow. The arterial stiffness is altered primarily in association with increased collagen content and alterations of extracellular matrix (arteriosclerosis) as classically observed during aging or in arterial hypertension. The arterial stiffening estimated by changes in aortic PWV and intensity of WR are independent predictors of survival in end stage renal disease (ESRD) and general population. Improvement of arterial stiffening could be obtained by antihypertensive treatmen as observed with the calcium

  18. An infinitely-stiff elastic system via a tuned negative-stiffness component stabilized by rotation-produced gyroscopic forces

    Science.gov (United States)

    Kochmann, D. M.; Drugan, W. J.

    2016-06-01

    An elastic system containing a negative-stiffness element tuned to produce positive-infinite system stiffness, although statically unstable as is any such elastic system if unconstrained, is proved to be stabilized by rotation-produced gyroscopic forces at sufficiently high rotation rates. This is accomplished in possibly the simplest model of a composite structure (or solid) containing a negative-stiffness component that exhibits all these features, facilitating a conceptually and mathematically transparent, completely closed-form analysis.

  19. Physically Inspired Models for the Synthesis of Stiff Strings with Dispersive Waveguides

    Directory of Open Access Journals (Sweden)

    Testa I

    2004-01-01

    Full Text Available We review the derivation and design of digital waveguides from physical models of stiff systems, useful for the synthesis of sounds from strings, rods, and similar objects. A transform method approach is proposed to solve the classic fourth-order equations of stiff systems in order to reduce it to two second-order equations. By introducing scattering boundary matrices, the eigenfrequencies are determined and their dependency is discussed for the clamped, hinged, and intermediate cases. On the basis of the frequency-domain physical model, the numerical discretization is carried out, showing how the insertion of an all-pass delay line generalizes the Karplus-Strong algorithm for the synthesis of ideally flexible vibrating strings. Knowing the physical parameters, the synthesis can proceed using the generalized structure. Another point of view is offered by Laguerre expansions and frequency warping, which are introduced in order to show that a stiff system can be treated as a nonstiff one, provided that the solutions are warped. A method to compute the all-pass chain coefficients and the optimum warping curves from sound samples is discussed. Once the optimum warping characteristic is found, the length of the dispersive delay line to be employed in the simulation is simply determined from the requirement of matching the desired fundamental frequency. The regularization of the dispersion curves by means of optimum unwarping is experimentally evaluated.

  20. Dynamic stiffness matrix of thin-walled composite I-beam with symmetric and arbitrary laminations

    Science.gov (United States)

    Kim, Nam-Il; Shin, Dong Ku; Park, Young-Suk

    2008-11-01

    For the spatially coupled free vibration analysis of thin-walled composite I-beam with symmetric and arbitrary laminations, the exact dynamic stiffness matrix based on the solution of the simultaneous ordinary differential equations is presented. For this, a general theory for the vibration analysis of composite beam with arbitrary lamination including the restrained warping torsion is developed by introducing Vlasov's assumption. Next, the equations of motion and force-displacement relationships are derived from the energy principle and the first order of transformed simultaneous differential equations are constructed by using the displacement state vector consisting of 14 displacement parameters. Then explicit expressions for displacement parameters are derived and the exact dynamic stiffness matrix is determined using force-displacement relationships. In addition, the finite-element (FE) procedure based on Hermitian interpolation polynomials is developed. To verify the validity and the accuracy of this study, the numerical solutions are presented and compared with analytical solutions, the results from available references and the FE analysis using the thin-walled Hermitian beam elements. Particular emphasis is given in showing the phenomenon of vibrational mode change, the effects of increase of the modulus and the bending-twisting coupling stiffness for beams with various boundary conditions.

  1. Boundary layer regulation in the southeast Atlantic cloud microphysics during the biomass burning season as seen by the A-train satellite constellation

    Science.gov (United States)

    Painemal, David; Kato, Seiji; Minnis, Patrick

    2014-10-01

    Solar radiation absorption by biomass burning aerosols has a strong warming effect over the southeast Atlantic. Interactions between the overlying smoke aerosols and low-level cloud microphysics and the subsequent albedo perturbation are, however, generally ignored in biomass burning radiative assessments. In this study, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are combined with Aqua satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer-EOS (AMSR-E), and Clouds and the Earth's Radiant Energy System (CERES) to assess the effect of variations in the boundary layer height and the separation distance between the cloud and aerosol layers on the cloud microphysics. The merged data analyzed at a daily temporal resolution suggest that overlying smoke aerosols modify cloud properties by decreasing cloud droplet size despite an increase in the cloud liquid water as boundary layer deepens, north of 5°S. These changes are controlled by the proximity of the aerosol layer to the cloud top rather than increases in the column aerosol load. The correlations are unlikely driven by meteorological factors, as three predictors of cloud variability, lower tropospheric stability, surface winds, and mixing ratio suggest that cloud effective radius, cloud top height, and liquid water path should correlate positively. Because cloud effective radius anticorrelates with cloud liquid water over the region with large microphysical changes—north of 5°S—the overall radiative consequence at the top of the atmosphere is a strong albedo susceptibility, equivalent to a 3% albedo increase due to a 10% decrease in cloud effective radius. This albedo enhancement partially offsets the aerosol solar absorption. Our analysis emphasizes the importance of accounting for the indirect effect of smoke aerosols in the cloud microphysics when estimating the radiative impact of the biomass burning at the

  2. Determining cantilever stiffness from thermal noise

    Directory of Open Access Journals (Sweden)

    Jannis Lübbe

    2013-03-01

    Full Text Available We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency fn, quality factor Qn and specifically the stiffness kn of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine kn from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequency range of 10 Hz to 1 kHz regardless of the eigenfrequency of the cantilever. We demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM where the required simple instrumentation for spectral analysis is available in most experimental systems.

  3. Cellular mechanoadaptation to substrate mechanical properties: contributions of substrate stiffness and thickness to cell stiffness measurements using AFM.

    Science.gov (United States)

    Vichare, Shirish; Sen, Shamik; Inamdar, Mandar M

    2014-02-28

    Mechanosensing by adherent cells is usually studied by quantifying cell responses on hydrogels that are covalently linked to a rigid substrate. Atomic force microscopy (AFM) represents a convenient way of characterizing the mechanoadaptation response of adherent cells on hydrogels of varying stiffness and thickness. Since AFM measurements reflect the effective cell stiffness, therefore, in addition to measuring real cytoskeletal alterations across different conditions, these measurements might also be influenced by the geometry and physical properties of the substrate itself. To better understand how the physical attributes of the gel influence AFM stiffness measurements of cells, we have used finite element analysis to simulate the indentation of cells of various spreads resting on hydrogels of varying stiffness and thickness. Consistent with experimental results, our simulation results indicate that for well spread cells, stiffness values are significantly over-estimated when experiments are performed on cells cultured on soft and thin gels. Using parametric studies, we have developed scaling relationships between the effective stiffness probed by AFM and the bulk cell stiffness, taking cell and tip geometry, hydrogel properties, nuclear stiffness and cell contractility into account. Finally, using simulated mechanoadaptation responses, we have demonstrated that a cell stiffening response may arise purely due to the substrate properties. Collectively, our results demonstrate the need to take hydrogel properties into account while estimating cell stiffness using AFM indentation.

  4. Clinical Study of Tuina for Stiff Neck

    Institute of Scientific and Technical Information of China (English)

    吴耀持; 张峻峰; 汪崇淼; 王健雄; 张沈煜

    2009-01-01

    Objective: To observe the clinical effect of Tuina for stiffneck. Methods: All of 216 cases with stiff neck were randomly allocated into a tuina group (110 cases) and a control group (106 cases). The patients in the tuina group were treated with "Three Parts, Four Points,Five Manipulation" tuina therapy, while those in the control group were treated with pucturing Wailaogong (Ex-UE 8), Houxi (SI 3), Jianjing (GB 21) and Ashi points in the affected side,Once a day, and 3 times constitute one treatment course. The effect was observed after 2-course treatments. Result: The effective rate in the tuina group and the control group was 93.64% and 83.02%, respectively, and there was statistical difference between the two groups (P < 0.05).Conclusion: The tuina therapy of "Three Parts, Four Points, Five Manipulations" is better than simple acupuncture therapy in treating stiff neck.%目的:观察推拿治疗落枕的临床疗效.方法:将216例落枕患者随机分为推拿组110例和对照组106例,推拿组用"三部四穴五法"推拿法治疗,对照组针刺患侧外劳宫、后溪、肩井和阿是穴.每日1次,3次为1个疗程;治疗2个疗程后观察疗效. 结果:推拿组有效率为93.64%,对照组为83.02%,两者比较有统计学意义(P<0.05)结论:"三部四穴五法"推拿法治疗落枕明显优于单纯针刺疗法.

  5. Cardiac fibroblast-dependent extracellular matrix accumulation is associated with diastolic stiffness in type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Kirk R Hutchinson

    Full Text Available Cardiovascular complications are a leading cause of death in patients with type 2 diabetes mellitus (T2DM. Diastolic dysfunction is one of the earliest manifestations of diabetes-induced changes in left ventricular (LV function, and results from a reduced rate of relaxation and increased stiffness. The mechanisms responsible for increased stiffness are not completely understood. Chronic hyperglycemia, advanced glycation endproducts (AGEs, and increased levels of proinflammatory and profibrotic cytokines are molecular pathways known to be involved in regulating extracellular matrix (ECM synthesis and accumulation resulting in increased LV diastolic stiffness. Experiments were conducted using a genetically-induced mouse model of T2DM generated by a point mutation in the leptin receptor resulting in nonfunctional leptin receptors (db/db murine model. This study correlated changes in LV ECM and stiffness with alterations in basal activation of signaling cascades and expression of profibrotic markers within primary cultures of cardiac fibroblasts from diabetic (db/db mice with nondiabetic (db/wt littermates as controls. Primary cultures of cardiac fibrobroblasts were maintained in 25 mM glucose (hyperglycemic-HG; diabetic db/db media or 5 mM glucose (normoglycemic-NG, nondiabetic db/wt media. The cells then underwent a 24-hour exposure to their opposite (NG; diabetic db/db media or 5 mM glucose (HG, nondiabetic db/wt media. Protein analysis demonstrated significantly increased expression of type I collagen, TIMP-2, TGF-β, PAI-1 and RAGE in diabetic db/db cells as compared to nondiabetic db/wt, independent of glucose media concentration. This pattern of protein expression was associated with increased LV collagen accumulation, myocardial stiffness and LV diastolic dysfunction. Isolated diabetic db/db fibroblasts were phenotypically distinct from nondiabetic db/wt fibroblasts and exhibited a profibrotic phenotype in normoglycemic conditions.

  6. Cardiac Fibroblast-Dependent Extracellular Matrix Accumulation Is Associated with Diastolic Stiffness in Type 2 Diabetes

    Science.gov (United States)

    Hutchinson, Kirk R.; Lord, C. Kevin; West, T. Aaron; Stewart, James A.

    2013-01-01

    Cardiovascular complications are a leading cause of death in patients with type 2 diabetes mellitus (T2DM). Diastolic dysfunction is one of the earliest manifestations of diabetes-induced changes in left ventricular (LV) function, and results from a reduced rate of relaxation and increased stiffness. The mechanisms responsible for increased stiffness are not completely understood. Chronic hyperglycemia, advanced glycation endproducts (AGEs), and increased levels of proinflammatory and profibrotic cytokines are molecular pathways known to be involved in regulating extracellular matrix (ECM) synthesis and accumulation resulting in increased LV diastolic stiffness. Experiments were conducted using a genetically-induced mouse model of T2DM generated by a point mutation in the leptin receptor resulting in nonfunctional leptin receptors (db/db murine model). This study correlated changes in LV ECM and stiffness with alterations in basal activation of signaling cascades and expression of profibrotic markers within primary cultures of cardiac fibroblasts from diabetic (db/db) mice with nondiabetic (db/wt) littermates as controls. Primary cultures of cardiac fibrobroblasts were maintained in 25 mM glucose (hyperglycemic-HG; diabetic db/db) media or 5 mM glucose (normoglycemic-NG, nondiabetic db/wt) media. The cells then underwent a 24-hour exposure to their opposite (NG; diabetic db/db) media or 5 mM glucose (HG, nondiabetic db/wt) media. Protein analysis demonstrated significantly increased expression of type I collagen, TIMP-2, TGF-β, PAI-1 and RAGE in diabetic db/db cells as compared to nondiabetic db/wt, independent of glucose media concentration. This pattern of protein expression was associated with increased LV collagen accumulation, myocardial stiffness and LV diastolic dysfunction. Isolated diabetic db/db fibroblasts were phenotypically distinct from nondiabetic db/wt fibroblasts and exhibited a profibrotic phenotype in normoglycemic conditions. PMID:23991045

  7. Technology for Boundaries

    DEFF Research Database (Denmark)

    Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina

    2003-01-01

    This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries.......After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies...... seem a core issue when dealing with technology for boundaries....

  8. General Torsional Stiffness Matching of Off-road Vehicle

    Institute of Scientific and Technical Information of China (English)

    HUANG Song

    2009-01-01

    Increasing frame torsional stiffness of off-road vehicle will lead to the decrease of body torsional deformation, but the increase of torsional loads of flame and suspension system and the decrease of wheel adhesive weight. In severe case, a certain wheel will be out of contact with road surface. Appropriate matching of body, flame and suspension torsional stiffnesses is a difficult problem for off-road vehicle design. In this paper, these theoretically analytic models of the entire vehicle, body, frame and suspension torsional stiffness are constructed based on the geometry and mechanism of a light off-road vehicle's body, frame and suspension. The body and frame torsional stiffnesses can be calculated by applying body CAE method, meanwhile the suspension's rolling angle stiffness can be obtained by the bench test of the suspension's elastic elements. Through fixing the entire vehicle, using sole timber to raise wheels to simulate the road impact on a certain wheel, the entire vehicle torsional stiffness can be calculated on the geometric relation and loads of testing. Finally some appropriate matching principles of the body, frame and suspension torsional stiffness are summarized according to the test and analysis results. The conclusion can reveal the significance of the suspension torsional stiffness on off-road vehicle's torsion-absorbing capability. The results could serve as a reference for the design of other off-road vehicles.

  9. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Science.gov (United States)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  10. Reference values for local arterial stiffness. Part B : femoral artery

    NARCIS (Netherlands)

    Bossuyt, Jelle; Engelen, Lian; Ferreira, Isabel; Stehouwer, Coen D; Boutouyrie, Pierre; Laurent, Stéphane; Segers, Patrick; Reesink, Koen; Van Bortel, Luc M

    2015-01-01

    OBJECTIVE: Carotid-femoral pulse wave velocity (PWV) is considered the gold standard measure of arterial stiffness, representing mainly aortic stiffness. As compared with the elastic carotid and aorta, the more muscular femoral artery may be differently associated with cardiovascular risk factors (C

  11. Association of Parental Hypertension With Arterial Stiffness in Nonhypertensive Offspring

    DEFF Research Database (Denmark)

    Andersson, Charlotte; Quiroz, Rene; Enserro, Danielle

    2016-01-01

    High arterial stiffness seems to be causally involved in the pathogenesis of hypertension. We tested the hypothesis that offspring of parents with hypertension may display higher arterial stiffness before clinically manifest hypertension, given that hypertension is a heritable condition. We compa...

  12. Current front stiffness of European vehicles with regard to compatibility

    NARCIS (Netherlands)

    Huibers, J.; Beer, E. de

    2001-01-01

    EuroNCAP tests are carried out since 1997. The test procedure in general is comparable to the EC Directive 96/79 with a test speed of 64 km/h. This increased test speed implies a higher frontal stiffness for new vehicle designs in order to achieve a high ranking. This frontal stiffness is one of the

  13. A METHOD FOR STIFFNESS MATRIX OF TRIANGULAR TORUS ELEMENT

    Directory of Open Access Journals (Sweden)

    Durmuş GÜNAY

    1996-01-01

    Full Text Available The matrices of constants for the stiffness matrices of triangular torus elements family are generated on computer by using the expression given in literature. After the matrices are generated once, it is easy to obtain the stiffness matrices for all member of family of triangular torus elements without need for numerical integration.

  14. Alcohol intake and aortic stiffness in young men and women

    NARCIS (Netherlands)

    Elzen, A.P. van den; Sierksma, A.; Oren, A.; Vos, L.E.; Witteman, J.C.; Grobbee, D.E.; Hendriks, H.F.; Uiterwaal, C.S.; Bots, M.L.

    2005-01-01

    Background: Moderate alcohol consumption has been shown to protect against cardiovascular disease. Aortic stiffness can be regarded as a marker of cardiovascular disease risk. Previously we have shown an inverse to J-shaped association between alcohol intake and aortic stiffness in middle-aged and e

  15. Mechanical stiffness: a global parameter associated to elite sprinters performance

    Directory of Open Access Journals (Sweden)

    Fernando López Mangini

    Full Text Available Abstract This study analyzes vertical stiffness as a global parameter that could be directly associated to sprinter's performance. We evaluated vertical stiffness, performance, heart rate and lactate concentration on fifteen male sprinters that ran on a treadmill at gait transition speed and 13 km h−1. Vertical Stiffness was determined by the ratio of the vertical acceleration peak and maximum displacement of the center of mass. Physiological parameters were measured throughout the experimental procedure and performance was estimated by athlete's time records on 100 m track race. As expected, vertical stiffness and heart rate increased with running speed. We found a high correlation between heart rate and vertical stiffness at gait transition speed. However, at 13 km h−1, lactate peak showed a higher correlation with vertical stiffness, suggesting a greater participation of the anaerobic system. An inverse relationship between performance and vertical stiffness was found, where faster athletes were the stiffer ones. Performance and lactate peak presented the same inverse relationship; faster athletes had higher lactate peaks. As a result, faster athletes were stiffer and consume more energy. All in all, these findings suggest that mechanical stiffness could be a potential global parameter to evaluate performance in sprinters.

  16. Stiffness Analysis and Improvement of Bolt-Plate Contact Assemblies

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Pedersen, Pauli

    2008-01-01

    In a previous study it was shown that, a simplified expression for the stiffness of the plate member in a bolt-plate assembly can be found. The stiffnesses of the bolt and the connected plates are the primary quantities that control the lifetime of a dynamically loaded connection. The present study...... of stiffnesses is extended to include different material parameters by including the influence of Poisson's ratio. Two simple practical formulas are suggested and their accuracies are documented for different bolts and different material (Poisson's ratio). Secondly, the contact analysis between the bolt head...... and the plate is extended by the possibility of designing a gap, that is, a nonuniform distance between the bolt and plate before prestressing. Designing the gap function generates the possibility for a better stress field by which the stiffness of the bolt is lowered, and at the same time the stiffness...

  17. Boundary Layer Effect on Behavior of Discrete Models

    Directory of Open Access Journals (Sweden)

    Jan Eliáš

    2017-02-01

    Full Text Available The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson’s ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.

  18. Efficient Method for Calculating the Composite Stiffness of Parabolic Leaf Springs with Variable Stiffness for Vehicle Rear Suspension

    Directory of Open Access Journals (Sweden)

    Wen-ku Shi

    2016-01-01

    Full Text Available The composite stiffness of parabolic leaf springs with variable stiffness is difficult to calculate using traditional integral equations. Numerical integration or FEA may be used but will require computer-aided software and long calculation times. An efficient method for calculating the composite stiffness of parabolic leaf springs with variable stiffness is developed and evaluated to reduce the complexity of calculation and shorten the calculation time. A simplified model for double-leaf springs with variable stiffness is built, and a composite stiffness calculation method for the model is derived using displacement superposition and material deformation continuity. The proposed method can be applied on triple-leaf and multileaf springs. The accuracy of the calculation method is verified by the rig test and FEA analysis. Finally, several parameters that should be considered during the design process of springs are discussed. The rig test and FEA analytical results indicate that the calculated results are acceptable. The proposed method can provide guidance for the design and production of parabolic leaf springs with variable stiffness. The composite stiffness of the leaf spring can be calculated quickly and accurately when the basic parameters of the leaf spring are known.

  19. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating

    Science.gov (United States)

    Dasbiswas, K.; Majkut, S.; Discher, D. E.; Safran, Samuel A.

    2015-01-01

    Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.

  20. How cells sense extracellular matrix stiffness: a material’s perspective

    Science.gov (United States)

    Trappmann, Britta; Chen, Christopher S.

    2014-01-01

    The mechanical properties of the extracellular matrix (ECM) in which cells reside have emerged as an important regulator of cell fate. While materials based on natural ECM have been used to implicate the role of substrate stiffness for cell fate decisions, it is difficult in these matrices to isolate mechanics from other structural parameters. In contrast, fully synthetic hydrogels offer independent control over physical and adhesive properties. New synthetic materials that also recreate the fibrous structural hierarchy of natural matrices are now being designed to study substrate mechanics in more complex ECMs. This perspective examines the ways in which new materials are being used to advance our understanding of how extracellular matrix stiffness impacts cell function. PMID:23611564

  1. Keratins significantly contribute to cell stiffness and impact invasive behavior.

    Science.gov (United States)

    Seltmann, Kristin; Fritsch, Anatol W; Käs, Josef A; Magin, Thomas M

    2013-11-12

    Cell motility and cell shape adaptations are crucial during wound healing, inflammation, and malignant progression. These processes require the remodeling of the keratin cytoskeleton to facilitate cell-cell and cell-matrix adhesion. However, the role of keratins for biomechanical properties and invasion of epithelial cells is only partially understood. In this study, we address this issue in murine keratinocytes lacking all keratins on genome engineering. In contrast to predictions, keratin-free cells show about 60% higher cell deformability even for small deformations. This response is compared with the less pronounced softening effects for actin depolymerization induced via latrunculin A. To relate these findings with functional consequences, we use invasion and 3D growth assays. These experiments reveal higher invasiveness of keratin-free cells. Reexpression of a small amount of the keratin pair K5/K14 in keratin-free cells reverses the above phenotype for the invasion but does not with respect to cell deformability. Our data show a unique role of keratins as major players of cell stiffness, influencing invasion with implications for epidermal homeostasis and pathogenesis. This study supports the view that down-regulation of keratins observed during epithelial-mesenchymal transition directly contributes to the migratory and invasive behavior of tumor cells.

  2. Variable Volumetric Stiffness Fluid Mount Design

    Directory of Open Access Journals (Sweden)

    Nader Vahdati

    2004-01-01

    Full Text Available Passive fluid mounts are commonly used in the automotive and aerospace applications to isolate the cabin from the engine noise and vibration. Due to manufacturing and material variabilities, no two identical fluid mount designs act the same. So, fluid mounts are tuned one by one before it is shipped out to customers. In some cases, for a batch of fluid mounts manufactured at the same time, one is tuned and the rest is set to the same settings. In some cases they are shipped as is with its notch frequency not being in its most optimum location. Since none of the passive fluid mount parameters are controllable, the only way to tune the mount is to redesign the mount by changing fluid, changing inertia track length or diameter, or changing rubber stiffness. This trial and error manufacturing process is very costly. To reduce the fluid mount notch frequency tuning cycle time, a new fluid mount design is proposed. In this new fluid mount design, the notch frequency can be easily modified without the need for any redesigns. In this paper, the new design concept, and its mathematical model and simulation results will be presented.

  3. Controlled Unusual Stiffness of Mechanical Metamaterials.

    Science.gov (United States)

    Lee, Wooju; Kang, Da-Young; Song, Jihwan; Moon, Jun Hyuk; Kim, Dongchoul

    2016-02-03

    Mechanical metamaterials that are engineered with sub-unit structures present unusual mechanical properties depending on the loading direction. Although they show promise, their practical utility has so far been somewhat limited because, to the best of our knowledge, no study about the potential of mechanical metamaterials made from sophisticatedly tailored sub-unit structures has been made. Here, we present a mechanical metamaterial whose mechanical properties can be systematically designed without changing its chemical composition or weight. We study the mechanical properties of triply periodic bicontinuous structures whose detailed sub-unit structure can be precisely fabricated using various sub-micron fabrication methods. Simulation results show that the effective wave velocity of the structures along with different directions can be designed to introduce the anisotropy of stiffness by changing a volume fraction and aspect ratio. The ratio of Young's modulus to shear modulus can be increased by up to at least 100, which is a 3500% increase over that of isotropic material (2.8, acrylonitrile butadiene styrene). Furthermore, Poisson's ratio of the constituent material changes the ratio while Young's modulus does not influence it. This study presents the promising potential of mechanical metamaterials for versatile industrial and biomedical applications.

  4. Noninvasive pulse wave analysis for the determination of central artery stiffness

    DEFF Research Database (Denmark)

    Wittrock, Marc; Scholze, Alexandra; Compton, Friederike;

    2009-01-01

    Central artery stiffness predicts cardiovascular structural damage and clinical outcome. It is controversial whether central artery stiffness can be determined by noninvasive measurements. We compared noninvasive determination of central artery stiffness obtained from applanation tonometry of the...

  5. Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics

    Directory of Open Access Journals (Sweden)

    Wu Harry X

    2011-10-01

    Full Text Available Abstract Background The mechanical properties of wood are largely determined by the orientation of cellulose microfibrils in secondary cell walls. Several genes and their allelic variants have previously been found to affect microfibril angle (MFA and wood stiffness; however, the molecular mechanisms controlling microfibril orientation and mechanical strength are largely uncharacterised. In the present study, cDNA microarrays were used to compare gene expression in developing xylem with contrasting stiffness and MFA in juvenile Pinus radiata trees in order to gain further insights into the molecular mechanisms underlying microfibril orientation and cell wall mechanics. Results Juvenile radiata pine trees with higher stiffness (HS had lower MFA in the earlywood and latewood of each ring compared to low stiffness (LS trees. Approximately 3.4 to 14.5% out of 3, 320 xylem unigenes on cDNA microarrays were differentially regulated in juvenile wood with contrasting stiffness and MFA. Greater variation in MFA and stiffness was observed in earlywood compared to latewood, suggesting earlywood contributes most to differences in stiffness; however, 3-4 times more genes were differentially regulated in latewood than in earlywood. A total of 108 xylem unigenes were differentially regulated in juvenile wood with HS and LS in at least two seasons, including 43 unigenes with unknown functions. Many genes involved in cytoskeleton development and secondary wall formation (cellulose and lignin biosynthesis were preferentially transcribed in wood with HS and low MFA. In contrast, several genes involved in cell division and primary wall synthesis were more abundantly transcribed in LS wood with high MFA. Conclusions Microarray expression profiles in Pinus radiata juvenile wood with contrasting stiffness has shed more light on the transcriptional control of microfibril orientation and the mechanical properties of wood. The identified candidate genes provide an

  6. Stiffness identification of four-point-elastic-support rigid plate

    Institute of Scientific and Technical Information of China (English)

    彭利平; 刘初升; 武继达; 王帅

    2015-01-01

    As the stiffness of the elastic support varies with the physical-chemical erosion and mechanical friction, model catastrophe of a single degree-of-freedom (DOF) isolation system may occur. A 3-DOF four-point-elastic-support rigid plate (FERP) structure is presented to describe the catastrophic isolation system. Based on the newly-established structure, theoretical derivation for stiffness matrix calculation by free response (SMCbyFR) and the method of stiffness identification by stiffness matrix disassembly (SIbySMD) are proposed. By integrating the SMCbyFR and the SIbySMD and defining the stiffness assurance criterion (SAC), the procedures for stiffness identification of a FERP structure (SIFERP) are summarized. Then, a numerical example is adopted for the SIFERP validation, in which the simulated tested free response data are generated by the numerical methods, and operation for filtering noise is conducted to imitate the practical application. Results in the numerical example demonstrate the feasibility and accuracy of the developed SIFERP for stiffness identification.

  7. Simvastatin Ameliorates Matrix Stiffness-Mediated Endothelial Monolayer Disruption.

    Directory of Open Access Journals (Sweden)

    Marsha C Lampi

    Full Text Available Arterial stiffening accompanies both aging and atherosclerosis, and age-related stiffening of the arterial intima increases RhoA activity and cell contractility contributing to increased endothelium permeability. Notably, statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase inhibitors whose pleiotropic effects include disrupting small GTPase activity; therefore, we hypothesized the statin simvastatin could be used to attenuate RhoA activity and inhibit the deleterious effects of increased age-related matrix stiffness on endothelial barrier function. Using polyacrylamide gels with stiffnesses of 2.5, 5, and 10 kPa to mimic the physiological stiffness of young and aged arteries, endothelial cells were grown to confluence and treated with simvastatin. Our data indicate that RhoA and phosphorylated myosin light chain activity increase with matrix stiffness but are attenuated when treated with the statin. Increases in cell contractility, cell-cell junction size, and indirect measurements of intercellular tension that increase with matrix stiffness, and are correlated with matrix stiffness-dependent increases in monolayer permeability, also decrease with statin treatment. Furthermore, we report that simvastatin increases activated Rac1 levels that contribute to endothelial barrier enhancing cytoskeletal reorganization. Simvastatin, which is prescribed clinically due to its ability to lower cholesterol, alters the endothelial cell response to increased matrix stiffness to restore endothelial monolayer barrier function, and therefore, presents a possible therapeutic intervention to prevent atherogenesis initiated by age-related arterial stiffening.

  8. Simvastatin Ameliorates Matrix Stiffness-Mediated Endothelial Monolayer Disruption.

    Science.gov (United States)

    Lampi, Marsha C; Faber, Courtney J; Huynh, John; Bordeleau, Francois; Zanotelli, Matthew R; Reinhart-King, Cynthia A

    2016-01-01

    Arterial stiffening accompanies both aging and atherosclerosis, and age-related stiffening of the arterial intima increases RhoA activity and cell contractility contributing to increased endothelium permeability. Notably, statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors whose pleiotropic effects include disrupting small GTPase activity; therefore, we hypothesized the statin simvastatin could be used to attenuate RhoA activity and inhibit the deleterious effects of increased age-related matrix stiffness on endothelial barrier function. Using polyacrylamide gels with stiffnesses of 2.5, 5, and 10 kPa to mimic the physiological stiffness of young and aged arteries, endothelial cells were grown to confluence and treated with simvastatin. Our data indicate that RhoA and phosphorylated myosin light chain activity increase with matrix stiffness but are attenuated when treated with the statin. Increases in cell contractility, cell-cell junction size, and indirect measurements of intercellular tension that increase with matrix stiffness, and are correlated with matrix stiffness-dependent increases in monolayer permeability, also decrease with statin treatment. Furthermore, we report that simvastatin increases activated Rac1 levels that contribute to endothelial barrier enhancing cytoskeletal reorganization. Simvastatin, which is prescribed clinically due to its ability to lower cholesterol, alters the endothelial cell response to increased matrix stiffness to restore endothelial monolayer barrier function, and therefore, presents a possible therapeutic intervention to prevent atherogenesis initiated by age-related arterial stiffening.

  9. Stiffness and Angular Deflection analysis of Revolute Manipulator

    Directory of Open Access Journals (Sweden)

    Pundru Srinivasa Rao

    2014-03-01

    Full Text Available This paper proposed to determine the Cartesian stiffness matrix and angular deflection analysis of revolute manipulator. The selected manipulator has rigid fixed link, two movable links and two rotary joints with joint stiffness coefficients are taken into account. The kinematic model of revolute joint manipulator has considered as a planar kinematic chain, which is composed by rigid fixed link and two revolute joints with clearance and deformable elements. The calculation of stiffness matrix depends on Jacobian matrix and change of configuration. The rotational joints are modeled as torsion springs with the same stiffness constant. The relative angular deflections are proportional to the actuated torques taken into account. The subject of this paper has to describe a method for stiffness analysis of serial manipulator. In the present work is to derive the stiffness matrix and angular deflection equations in the Robotic manipulator under the consideration of two-link optimum geometry model for rotary joint manipulator. The stiffness values are measured by displacements of its revolute links loaded by force.

  10. Hormones and arterial stiffness in patients with chronic kidney disease.

    Science.gov (United States)

    Gungor, Ozkan; Kircelli, Fatih; Voroneanu, Luminita; Covic, Adrian; Ok, Ercan

    2013-01-01

    Cardiovascular disease constitutes the major cause of mortality in patients with chronic kidney disease. Arterial stiffness is an important contributor to the occurrence and progression of cardiovascular disease. Various risk factors, including altered hormone levels, have been suggested to be associated with arterial stiffness. Based on the background that chronic kidney disease predisposes individuals to a wide range of hormonal changes, we herein review the available data on the association between arterial stiffness and hormones in patients with chronic kidney disease and summarize the data for the general population.

  11. Weight reduction and aortic stiffness in obese children and adolescents

    DEFF Research Database (Denmark)

    Hvidt, K. N.; Olsen, M. H.; Ibsen, H.

    2015-01-01

    Little is known about the effect of weight reduction on aortic stiffness and especially so in the young. The present study investigates whether weight reduction influences aortic stiffness in obese children and adolescents. Carotid-femoral pulse wave velocity (cfPWV) and augmentation index at heart...... (%): beta = 0.7, 95% CI 0.1-1.3, P = 0.02) when adjusted for gender and relevant baseline confounders. In conclusion, no clear effect of weight reduction was found on aortic stiffness, although changes in AIx@HR75 were associated with changes in both abdominal fat and total body fat percent. The higher cf...

  12. PARALLEL COMPOUND METHODS FOR SOLVING PARTITIONED STIFF SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Li-rong Chen; De-gui Liu

    2001-01-01

    This paper deals with the solution of partitioned systems of nonlinear stiff differential equations. Given a differential system, the user may specify some equations to be stiff and others to be nonstiff. For the numerical solution of such a system Parallel Compound Methods(PCMs) are studied. Nonstiff equations are integrated by a parallel explicit RK method while a parallel Rosenbrock method is used for the stiff part of the system. Their order conditions, their convergence and their numerical stability are discussed,and the numerical tests are conducted on a personal computer and a parallel computer.

  13. The Dynamic Stiffness of Surface Footings for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Andersen, Lars; Clausen, Johan;

    2011-01-01

    This study concerns the dynamic stiffness of foundations for large offshore wind turbines. Especially, the purpose of the analysis is to quantify the uncertainties related to the first natural frequency of a turbine supported by a surface footing on layered soil. The dynamic properties...... due to sediment transportation. Further, the stiffness and density of the materials within a single layer is subject to uncertainties. This leads to uncertainties of the dynamic stiffness of the foundation and therefore the natural frequencies. The aim of the study is to quantify the level...... of uncertainties and discuss the utilization of reliability-based design of surface footings for wind turbines....

  14. A modified beam stiffness matrix for superconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Gori, R.; Schrefler, B.A. (Padua Univ. (Italy). Ist. di Scienza e Tecnica delle Costruzioni)

    1989-10-01

    The components of the stiffness matrix of superconductor elements are derived taking into account the effects of the wrapping of superconductor strands around the internal insulating strip and of possible stabilizing profiles around conductor core. It is already known that the inclination of the strands referred to the longitudinal axis of the superconductor produces a reduction of the axial stiffness and a considerable increase in torsional stiffness. Here also the effects of bending are taken into account, completing hence the previous investigation. Examples relating to superconductors proposed for the Toroidal Field Coil of the Next European Torus are shown. In that instance the strand transposition is carried out by roebling. (orig.).

  15. Aspects of implementing constant traction boundary conditions in computational homogenization via semi-Dirichlet boundary conditions

    Science.gov (United States)

    Javili, A.; Saeb, S.; Steinmann, P.

    2016-10-01

    In the past decades computational homogenization has proven to be a powerful strategy to compute the overall response of continua. Central to computational homogenization is the Hill-Mandel condition. The Hill-Mandel condition is fulfilled via imposing displacement boundary conditions (DBC), periodic boundary conditions (PBC) or traction boundary conditions (TBC) collectively referred to as canonical boundary conditions. While DBC and PBC are widely implemented, TBC remains poorly understood, with a few exceptions. The main issue with TBC is the singularity of the stiffness matrix due to rigid body motions. The objective of this manuscript is to propose a generic strategy to implement TBC in the context of computational homogenization at finite strains. To eliminate rigid body motions, we introduce the concept of semi-Dirichlet boundary conditions. Semi-Dirichlet boundary conditions are non-homogeneous Dirichlet-type constraints that simultaneously satisfy the Neumann-type conditions. A key feature of the proposed methodology is its applicability for both strain-driven as well as stress-driven homogenization. The performance of the proposed scheme is demonstrated via a series of numerical examples.

  16. "INTRAOPERATIVE SPINAL STIFFNESS MEASUREMENT IN MANAGEMENT OF SPINAL CANAL STENOSIS "

    Directory of Open Access Journals (Sweden)

    M. Karami

    2005-08-01

    Full Text Available In this study to determine whether spine stiffness is predictive of clinical results after lumbar spinal fusion for spinal stenosis, a total of 78 patients were measured intraoperatively with Kocher clamp manual distraction technique to determine motion segment stiffness then spinal fusion was performed for any loose segment. ‎Statistical analysis revealed that stiffness measurement correlate with clinical results of surgery. During a minimum of 2 years follow up after surgery, patients who had loose motion segment before or after decompression and were fused had the same level of satisfaction with surgical results as patients without loose segments and fusion. ‎We concluded that intraoperative spinal stiffness measurement provide a good indicator to spine fusion after lumbar canal stenosis ‎surgery.

  17. Polyester mooring stiffness modeling for deepwater floating system

    Institute of Scientific and Technical Information of China (English)

    Chen Yongjun; Qu Yan; Zhang Tianyu

    2013-01-01

    Polyester mooring has become increasing popular to serve as permanent station-keeping system for deepwater floating system during recent years.Comparing to the traditional steel wire mooring,polyester mooring provides significant benefits in deepwater,such as reduced installed capital expenditure (CAPEX) and smaller vertical loads on host platform.Polyester rope is a visco-elastic material,and its stiffness is nonlinear and affected by mean load,load range,loading period and loading history.There is a perception that the polyester stiffness model has significant impact on the floating system' s performance.This paper presents a detailed description and comparison of two stiffness models and three analytic approaches,and provides a systematic study of the impact of polyester mooring stiffness modeling on the deepwater floating system performance.

  18. Introduction to the Points Singly Used for Stiff Neck

    Institute of Scientific and Technical Information of China (English)

    李鸿超; 余光辉

    2004-01-01

    @@ In acupuncture treatment of stiff neck, based on the patients' individual conditions, flexible application of different single points can quickly bring about good therapeutic results. The following is a collection of the points singly used for stiffneck.

  19. A new variable stiffness suspension system: passive case

    Directory of Open Access Journals (Sweden)

    O. M. Anubi

    2013-02-01

    Full Text Available This paper presents the design, analysis, and experimental validation of the passive case of a variable stiffness suspension system. The central concept is based on a recently designed variable stiffness mechanism. It consists of a horizontal control strut and a vertical strut. The main idea is to vary the load transfer ratio by moving the location of the point of attachment of the vertical strut to the car body. This movement is controlled passively using the horizontal strut. The system is analyzed using an L2-gain analysis based on the concept of energy dissipation. The analyses, simulation, and experimental results show that the variable stiffness suspension achieves better performance than the constant stiffness counterpart. The performance criteria used are; ride comfort, characterized by the car body acceleration, suspension deflection, and road holding, characterized by tire deflection.

  20. Axial Dynamic Stiffness of Tubular Piles in Viscoelastic Soil

    DEFF Research Database (Denmark)

    Bayat, Mehdi; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2016-01-01

    -resonance are presented .in series of Bessel's function. Important responses, such as dynamic stiffness and phase angle, are compared for different values of the loss factor as the material damping, Y0W1g's modulus and Poisson's ratio in a viscoelastic soil. Results are verified. with known results reported......, whilst the phase angle is independent of the properties of the soil. It is shown that the non-dimensional dynamic stiffness changes linearly with high-frequency load. The conclusion from the results of this study is that the material properties of soil are significant parameters in the dynamic stiffness...... when the dynamic vertical excitation is applied. The smooth surface along the entire interface is considered. The Betti reciprocal theorem along with Somigliana's identity and Green's function are employed to drive the dynamic stiffness of jacket structures. Modes of the resonance and anti...

  1. Accuracy Improvement for Stiffness Modeling of Parallel Manipulators

    CERN Document Server

    Pashkevich, Anatoly; Chablat, Damien; Wenger, Philippe

    2009-01-01

    The paper focuses on the accuracy improvement of stiffness models for parallel manipulators, which are employed in high-speed precision machining. It is based on the integrated methodology that combines analytical and numerical techniques and deals with multidimensional lumped-parameter models of the links. The latter replace the link flexibility by localized 6-dof virtual springs describing both translational/rotational compliance and the coupling between them. There is presented detailed accuracy analysis of the stiffness identification procedures employed in the commercial CAD systems (including statistical analysis of round-off errors, evaluating the confidence intervals for stiffness matrices). The efficiency of the developed technique is confirmed by application examples, which deal with stiffness analysis of translational parallel manipulators.

  2. Wing/store flutter with nonlinear pylon stiffness

    Science.gov (United States)

    Desmarais, R. N.; Reed, W. H., III

    1980-01-01

    Recent wind tunnel tests and analytical studies show that a store mounted on a pylon with soft pitch stiffness provides substantial increase in flutter speed of fighter aircraft and reduces dependency of flutter on mass and inertia of the store. This concept, termed the decoupler pylon, utilizes a low frequency control system to maintain pitch alignment of the store during maneuvers and changing flight conditions. Under rapidly changing transient loads, however, the alignment control system may allow the store to momentarily bottom against a relatively stiff backup structure in which case the pylon stiffness acts as a hardening nonlinear spring. Such structural nonlinearities are known to affect not only the flutter speed but also the basic behavior of the instability. The influence of pylon stiffness nonlinearities or the flutter characteristics of wing mounted external stores is examined.

  3. The measurement of plain weft-knitted fabric stiffness

    Science.gov (United States)

    Haji Mohamad, Ayhan; Cassidy, Thomas; Brydon, Alan; Halley, Dave

    2012-05-01

    A new instrument and a test method are presented in this paper that can evaluate the stiffness of plain weft-knitted fabrics. The WIRA Instrumentation Tester can measure torsion data for various flexible fibre assemblies whilst they are being twisted. The torsional properties of two types of fabrics, namely nonwoven and knitted fabrics, were analyzed. Then, comparisons between bending rigidity and torsional rigidity have been conducted using FAST-2, Shirley, Heart Loop and the new WIRA method for the assessment of fabric stiffness. The results show high correlation between bending rigidity and torsional rigidity in assessment of nonwoven fabric stiffness; they also reveal that the WIRA tester and torsional rigidity are more suitable for characterizing the stiffness of plain weft-knitted fabrics than the other test methods.

  4. Identification of dynamic stiffness matrix of bearing joint region

    Institute of Scientific and Technical Information of China (English)

    Feng HU; Bo WU; Youmin HU; Tielin SHI

    2009-01-01

    The paper proposes an identification method of the dynamic stiffness matrix of a bearing joint region on the basis of theoretical analysis and experiments. The author deduces an identification model of the dynamic stiffness matrix from the synthetic substructure method. The dynamic stiffness matrix of the bearing joint region can be identified by measuring the matrix of frequency response function (FRFs) of the substructure (axle) and whole structure (assembly of the axle, bearing, and bearing housing) in different positions. Considering difficulty in measuring angular displacement, applying moment, and directly measuring relevant FRFs of rotational degree of freedom, the author employs an accurately calibrated finite element model of the unconstrained structure for indirect estimation. With experiments and simulation analysis, FRFs related with translational degree of freedom, which is estimated through the finite element model, agrees with experimental results, and there is very high reliability in the identified dynamic stiffness matrix of the bearing joint region.

  5. Generalized Supersymetric Boundary State

    OpenAIRE

    1999-01-01

    Following our previous paper (hep-th/9909027), we generalize a supersymmetric boundary state so that arbitrary configuration of the gauge field coupled to the boundary of the worldsheet is incorpolated. This generalized boundary state is BRST invariant and satisfy the non-linear boundary conditions with non-constant gauge field strength. This boundary state contains divergence which is identical with the loop divergence in a superstring sigma model. Hence vanishing of the beta function in the...

  6. Study of Boundary Structures.

    Science.gov (United States)

    1982-09-01

    THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE .......... 11 - 4 TRANSITIONS AND PHASE EQUILIBRIA AMONG GRAIN BOUNDARY STRUCTURES...19 B THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE .......... 37 C TRANSITIONS AND PHASE EQUILIBRIA AMONG GRAIN BOUNDARY...layer structure. 10 SECTION 3 THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE The (111) planes of the fcc structure is stacked as ABCABC... as

  7. Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior.

    Science.gov (United States)

    Kohn, Julie C; Zhou, Dennis W; Bordeleau, François; Zhou, Allen L; Mason, Brooke N; Mitchell, Michael J; King, Michael R; Reinhart-King, Cynthia A

    2015-02-03

    Arterial hemodynamic shear stress and blood vessel stiffening both significantly influence the arterial endothelial cell (EC) phenotype and atherosclerosis progression, and both have been shown to signal through cell-matrix adhesions. However, the cooperative effects of fluid shear stress and matrix stiffness on ECs remain unknown. To investigate these cooperative effects, we cultured bovine aortic ECs on hydrogels matching the elasticity of the intima of compliant, young, or stiff, aging arteries. The cells were then exposed to laminar fluid shear stress of 12 dyn/cm(2). Cells grown on more compliant matrices displayed increased elongation and tighter EC-cell junctions. Notably, cells cultured on more compliant substrates also showed decreased RhoA activation under laminar shear stress. Additionally, endothelial nitric oxide synthase and extracellular signal-regulated kinase phosphorylation in response to fluid shear stress occurred more rapidly in ECs cultured on more compliant substrates, and nitric oxide production was enhanced. Together, our results demonstrate that a signaling cross talk between stiffness and fluid shear stress exists within the vascular microenvironment, and, importantly, matrices mimicking young and healthy blood vessels can promote and augment the atheroprotective signals induced by fluid shear stress. These data suggest that targeting intimal stiffening and/or the EC response to intima stiffening clinically may improve vascular health.

  8. A numerical model of stress driven grain boundary diffusion

    Science.gov (United States)

    Sethian, J. A.; Wilkening, Jon

    2004-01-01

    The stress driven grain boundary diffusion problem is a continuum model of mass transport phenomena in microelectronic circuits due to high current densities (electromigration) and gradients in normal stress along grain boundaries. The model involves coupling many different equations and phenomena, and difficulties such as non-locality, stiffness, complex geometry, and singularities in the stress tensor near corners and junctions make the problem difficult to analyze rigorously and simulate numerically. We present a new numerical approach to this problem using techniques from semigroup theory to represent the solution. The generator of this semigroup is the composition of a type of Dirichlet to Neumann map on the grain boundary network with the Laplace operator on the network. To compute the former, we solve the equations of linear elasticity several times, once for each basis function on the grain boundary. We resolve singularities in the stress field near corners and junctions by adjoining special singular basis functions to both finite element spaces (2d for elasticity, 1d for grain boundary functions). We develop data structures to handle jump discontinuities in displacement across grain boundaries, singularities in the stress field, complicated boundary conditions at junctions and interfaces, and the lack of a natural ordering for the nodes on a branching grain boundary network. The method is used to study grain boundary diffusion for several geometries.

  9. Therapeutic modification of arterial stiffness: An update and comprehensive review.

    Science.gov (United States)

    Wu, Ching-Fen; Liu, Pang-Yen; Wu, Tsung-Jui; Hung, Yuan; Yang, Shih-Ping; Lin, Gen-Min

    2015-11-26

    Arterial stiffness has been recognized as a marker of cardiovascular disease and associated with long-term worse clinical outcomes in several populations. Age, hypertension, smoking, and dyslipidemia, known as traditional vascular risk factors, as well as diabetes, obesity, and systemic inflammation lead to both atherosclerosis and arterial stiffness. Targeting multiple modifiable risk factors has become the main therapeutic strategy to improve arterial stiffness in patients at high cardiovascular risk. Additionally to life style modifications, long-term ω-3 fatty acids (fish oil) supplementation in diet may improve arterial stiffness in the population with hypertension or metabolic syndrome. Pharmacological treatment such as renin-angiotensin-aldosterone system antagonists, metformin, and 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors were useful in individuals with hypertension and diabetes. In obese population with obstructive sleep apnea, weight reduction, aerobic exercise, and continuous positive airway pressure treatment may also improve arterial stiffness. In the populations with chronic inflammatory disease such as rheumatoid arthritis, a use of antibodies against tumor necrosis factor-alpha could work effectively. Other therapeutic options such as renal sympathetic nerve denervation for patients with resistant hypertension are investigated in many ongoing clinical trials. Therefore our comprehensive review provides knowledge in detail regarding many aspects of pathogenesis, measurement, and management of arterial stiffness in several populations, which would be helpful for physicians to make clinical decision.

  10. A multiwell platform for studying stiffness-dependent cell biology.

    Directory of Open Access Journals (Sweden)

    Justin D Mih

    Full Text Available Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes.

  11. Sex Differences in Limb and Joint Stiffness in Recreational Runners

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2015-09-01

    Full Text Available Purpose. Female runners are known to be at greater risk from chronic running injuries than age-matched males, although the exact mechanisms are often poorly understood. The aim of the current investigation was to determine if female recreational runners exhibit distinct limb and joint stiffness characteristics in relation to their male counterparts. Methods. Fourteen male and fourteen female runners ran over a force platform at 4.0 m · s-1. Lower limb kinematics were collected using an eight-camera optoelectric motion capture system operating at 250 Hz. Measures of limb and joint stiffness were calculated as a function of limb length and joint moments divided by the extent of limb and joint excursion. All stiffness and joint moment parameters were normalized to body mass. Sex differences in normalized limb and knee and ankle joint stiffness were examined statistically using independent samples t tests. Results. The results indicate that normalized limb (male = 0.18 ± 0.07, female = 0.37 ± 0.10 kN · kg · m-1 and knee stiffness (male = 5.59 ± 2.02, female = 7.34 ± 1.78 Nm · kg · rad-1 were significantly greater in female runners. Conclusions. On the basis that normalized knee and limb stiffness were shown to be significantly greater in female runners, the findings from the current investigation may provide further insight into the aetiology of the distinct injury patterns observed between sexes.

  12. Leg stiffness of sprinters using running-specific prostheses

    Science.gov (United States)

    McGowan, Craig P.; Grabowski, Alena M.; McDermott, William J.; Herr, Hugh M.; Kram, Rodger

    2012-01-01

    Running-specific prostheses (RSF) are designed to replicate the spring-like nature of biological legs (bioL) during running. However, it is not clear how these devices affect whole leg stiffness characteristics or running dynamics over a range of speeds. We used a simple spring–mass model to examine running mechanics across a range of speeds, in unilateral and bilateral transtibial amputees and performance-matched controls. We found significant differences between the affected leg (AL) of unilateral amputees and both ALs of bilateral amputees compared with the bioL of non-amputees for nearly every variable measured. Leg stiffness remained constant or increased with speed in bioL, but decreased with speed in legs with RSPs. The decrease in leg stiffness in legs with RSPs was mainly owing to a combination of lower peak ground reaction forces and increased leg compression with increasing speeds. Leg stiffness is an important parameter affecting contact time and the force exerted on the ground. It is likely that the fixed stiffness of the prosthesis coupled with differences in the limb posture required to run with the prosthesis limits the ability to modulate whole leg stiffness and the ability to apply high vertical ground reaction forces during sprinting. PMID:22337629

  13. Non-crossbridge stiffness in active muscle fibres.

    Science.gov (United States)

    Colombini, Barbara; Nocella, Marta; Bagni, Maria Angela

    2016-01-01

    Stretching of an activated skeletal muscle induces a transient tension increase followed by a period during which the tension remains elevated well above the isometric level at an almost constant value. This excess of tension in response to stretching has been called 'static tension' and attributed to an increase in fibre stiffness above the resting value, named 'static stiffness'. This observation was originally made, by our group, in frog intact muscle fibres and has been confirmed more recently, by us, in mammalian intact fibres. Following stimulation, fibre stiffness starts to increase during the latent period well before crossbridge force generation and it is present throughout the whole contraction in both single twitches and tetani. Static stiffness is dependent on sarcomere length in a different way from crossbridge force and is independent of stretching amplitude and velocity. Static stiffness follows a time course which is distinct from that of active force and very similar to the myoplasmic calcium concentration time course. We therefore hypothesize that static stiffness is due to a calcium-dependent stiffening of a non-crossbridge sarcomere structure, such as the titin filament. According to this hypothesis, titin, in addition to its well-recognized role in determining the muscle passive tension, could have a role during muscle activity.

  14. Molecular Mechanism Responsible for Fibronectin-controlled Alterations in Matrix Stiffness in Advanced Chronic Liver Fibrogenesis.

    Science.gov (United States)

    Iwasaki, Ayumi; Sakai, Keiko; Moriya, Kei; Sasaki, Takako; Keene, Douglas R; Akhtar, Riaz; Miyazono, Takayoshi; Yasumura, Satoshi; Watanabe, Masatoshi; Morishita, Shin; Sakai, Takao

    2016-01-01

    Fibrosis is characterized by extracellular matrix (ECM) remodeling and stiffening. However, the functional contribution of tissue stiffening to noncancer pathogenesis remains largely unknown. Fibronectin (Fn) is an ECM glycoprotein substantially expressed during tissue repair. Here we show in advanced chronic liver fibrogenesis using a mouse model lacking Fn that, unexpectedly, Fn-null livers lead to more extensive liver cirrhosis, which is accompanied by increased liver matrix stiffness and deteriorated hepatic functions. Furthermore, Fn-null livers exhibit more myofibroblast phenotypes and accumulate highly disorganized/diffuse collagenous ECM networks composed of thinner and significantly increased number of collagen fibrils during advanced chronic liver damage. Mechanistically, mutant livers show elevated local TGF-β activity and lysyl oxidase expressions. A significant amount of active lysyl oxidase is released in Fn-null hepatic stellate cells in response to TGF-β1 through canonical and noncanonical Smad such as PI3 kinase-mediated pathways. TGF-β1-induced collagen fibril stiffness in Fn-null hepatic stellate cells is significantly higher compared with wild-type cells. Inhibition of lysyl oxidase significantly reduces collagen fibril stiffness, and treatment of Fn recovers collagen fibril stiffness to wild-type levels. Thus, our findings indicate an indispensable role for Fn in chronic liver fibrosis/cirrhosis in negatively regulating TGF-β bioavailability, which in turn modulates ECM remodeling and stiffening and consequently preserves adult organ functions. Furthermore, this regulatory mechanism by Fn could be translated for a potential therapeutic target in a broader variety of chronic fibrotic diseases.

  15. Structural Nonlinear Flutter Characteristics Analysis for an Actuator-fin System with Dynamic Stiffness

    Institute of Scientific and Technical Information of China (English)

    YANG Ning; WU Zhigang; YANG Chao

    2011-01-01

    The flutter characteristics of an actuator-fin system are investigated with structural nonlinearity and dynamic stiffness of the electric motor.The component mode substitution method is used to establish the nonlinear governing equations in time domain and frequency domain based on the fundamental dynamic equations of the electric motor and decelerator.The existing describing function method and a proposed iterative method are used to obtain the flutter characteristics containing preload freeplay nonlinearity when the control command is zero.A comparison between the results of frequency domain and those of time domain is studied.Simulations are carried out when the control command is not zero and further analysis is conducted when the freeplay angle is changed.The results show that structural nonlinearity and dynamic stiffness have a significant influence on the flutter characteristics.Limit cycle oscillations(LCOs)are observed within linear flutter boundary.The response of the actuator-fin system is related to the initial disturbance.In the nonlinear condition,the amplitude of the control command has an influence on the flutter characteristics.

  16. Simulation of dislocations in ordered Ni{sub 3}Al by atomic stiffness matrix method

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Y.E.; Chaki, T.K. [State Univ. of New York, Buffalo, NY (United States). Dept. of Mechanical and Aerospace Engineering

    1996-12-31

    A simulation of structure and motion of edge dislocations in ordered Ni{sub 3}Al was performed by atomic stiffness matrix method. In this method the equilibrium positions of the atoms were obtained by solving a set of linear equations formed by a stiffness matrix, whose terms consisted of derivatives of the interaction potential of EAM (embedded atom method) type. The superpartial dislocations, separated by an antiphase boundary (APB) on (111), dissociated into Shockley partials with complex stacking faults (CSF) on (111) plane. The core structure, represented by the Burgers vector density distribution and iso-strain contours, changed under applied stresses as well as upon addition of boron. The separation between the superpartials changed with the addition of B and antisite Ni. As one Shockley partial moved out to the surface, a Shockley partial in the interior moved a large distance to join the lone one near the surface, leaving behind a long CSF strip. The decrease in the width of the APB upon addition of B and antisite Ni has been explained by a reduction of the strength of directional bonding between Ni and Al as well as by the dragging of B atmosphere by the superpartials.

  17. Simulation of dislocations in ordered Ni{sub 3}Al by atomic stiffness matrix method

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Y.E.; Chaki, T.K. [State Univ. of New York, Buffalo, NY (United States). Dept. of Mechanical and Aerospace Engineering

    1996-12-01

    A simulation of structure and motion of edge dislocations in ordered Ni{sub 3}Al was performed by atomic stiffness matrix method. In this method the equilibrium positions of the atoms were obtained by solving a set of linear equations formed by a stiffness matrix, whose terms consisted of derivatives of the interaction potential of EAM (embedded atom method) type. The superpartial dislocations, separated by an antiphase boundary (APB) on (111), dissociated into Shockley partials with complex stacking faults (CSF) on (111) plane. The core structure, represented by the Burgers vector density distribution and iso-strain contours, changed under applied stresses as well as upon addition of boron. The separation between the superpartials changed with the addition of B and antisite Ni. As one Shockley partial moved out to the surface, a Shockley partial in the interior moved a large distance to join the lone one near the surface, leaving behind a long CSF strip. The decrease in the width of the APB upon addition of B and antisite Ni has been explained by a reduction of the strength of direction bonding between Ni and Al as well as by the dragging of B atmosphere by the superpartials.

  18. County Political Boundaries (National)

    Data.gov (United States)

    Department of Transportation — County boundaries with political limit - boundaries extending into the ocean (NTAD 2015). The TIGER/Line shapefiles and related database files (.dbf) are an extract...

  19. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  20. State Agency Administrative Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...

  1. HUD GIS Boundary Files

    Data.gov (United States)

    Department of Housing and Urban Development — The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in...

  2. Aerobic exercise training-induced changes in serum adropin level are associated with reduced arterial stiffness in middle-aged and older adults.

    Science.gov (United States)

    Fujie, Shumpei; Hasegawa, Natsuki; Sato, Koji; Fujita, Satoshi; Sanada, Kiyoshi; Hamaoka, Takafumi; Iemitsu, Motoyuki

    2015-11-15

    Aging-induced arterial stiffening is reduced by aerobic exercise training, and elevated production of nitric oxide (NO) participates in this effect. Adropin is a regulator of endothelial NO synthase and NO release, and circulating adropin level decreases with age. However, the effect of habitual aerobic exercise on circulating adropin levels in healthy middle-aged and older adults remains unclear. We sought to determine whether serum adropin level is associated with exercise training-induced changes in arterial stiffness. First, in a cross-sectional study, we investigated the association between serum adropin level and both arterial stiffness and cardiorespiratory fitness in 80 healthy middle-aged and older subjects (65.6 ± 0.9 yr). Second, in an intervention study, we examined the effects of 8-wk aerobic exercise training on serum adropin level and arterial stiffness in 40 healthy middle-aged and older subjects (67.3 ± 1.0 yr) divided into two groups: aerobic exercise training and sedentary controls. In the cross-sectional study, serum adropin level was negatively correlated with carotid β-stiffness (r = -0.437, P aerobic exercise training intervention, and training-induced changes in serum adropin level were correlated with training-induced changes in carotid β-stiffness (r = -0.399, P exercise-induced reduction of arterial stiffness.

  3. Stiffness Analysis of Corrugated Flexure Beam Used in Compliant Mechanisms

    Institute of Scientific and Technical Information of China (English)

    WANG Nianfeng; LIANG Xiaohe; ZHANG Xianmin

    2015-01-01

    Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtained from longer overall length on the same span. The successful design of compliant mechanisms using CF beam requires manipulation of the stiffnesses as the design variables. Empirical equations of the CF beam stiffness components, except of the torsional stiffness, are obtained by curve-fitting method. The application ranges of all the parameters in each empirical equation are also discussed. The ratio of off-axis to axial stiffness is considered as a key characteristic of an effective compliant joint. And parameter study shows that the radius of semi-circular segment and the length of straight segment contribute most to the ratio. At last, CF beam is used to design translational and rotational flexible joints, which also verifies the validity of the empirical equations. CF beam with large flexibility is presented, and empirical equations of its stiffness are proposed to facilitate the design of flexible joint with large range of motion.

  4. Dynamic stiffness for thin-walled structures by power series

    Institute of Scientific and Technical Information of China (English)

    ZHU Bin; LEUNG A.Y.T.

    2006-01-01

    The dynamic stiffness method is introduced to analyze thin-walled structures including thin-walled straight beams and spatial twisted helix beam. A dynamic stiffness matrix is formed by using frequency dependent shape functions which are exact solutions of the governing differential equations. With the obtained thin-walled beam dynamic stiffness matrices, the thin-walled frame dynamic stiffness matrix can also be formulated by satisfying the required displacements compatibility and forces equilibrium, a method which is similar to the finite element method (FEM). Then the thin-walled structure natural frequencies can be found by equating the determinant of the system dynamic stiffness matrix to zero. By this way, just one element and several elements can exactly predict many modes of a thin-walled beam and a spatial thin-walled frame, respectively. Several cases are studied and the results are compared with the existing solutions of other methods. The natural frequencies and buckling loads of these thin-walled structures are computed.

  5. NAFLD and Increased Aortic Stiffness: Parallel or Common Physiopathological Mechanisms?

    Science.gov (United States)

    Villela-Nogueira, Cristiane A.; Leite, Nathalie C.; Cardoso, Claudia R. L.; Salles, Gil F.

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver diseases worldwide. Liver inflammation and fibrosis related to NAFLD contribute to disease progression and increasing liver-related mortality and morbidity. Increasing data suggest that NAFLD may be linked to atherosclerotic vascular disease independent of other established cardiovascular risk factors. Central arterial stiffness has been recognized as a measure of cumulative cardiovascular risk marker load, and the measure of carotid-femoral pulse wave velocity (cf-PWV) is regarded as the gold standard assessment of aortic stiffness. It has been shown that increased aortic stiffness predicts cardiovascular morbidity and mortality in several clinical settings, including type 2 diabetes mellitus, a well-known condition associated with advanced stages of NAFLD. Furthermore, recently-published studies reported a strong association between NAFLD and increased arterial stiffness, suggesting a possible link in the pathogenesis of atherosclerosis and NAFLD. We sought to review the published data on the associations between NAFLD and aortic stiffness, in order to better understand the interplay between these two conditions and identify possible common physiopathological mechanisms. PMID:27104526

  6. Crosstalk between oxidative and nitrosative stress and arterial stiffness.

    Science.gov (United States)

    Mozos, Ioana; Luca, Constantin Tudor

    2017-02-01

    Arterial stiffness, the expression of reduced arterial elasticity, is an effective predictor of cardiovascular disorders. Oxidative stress is an imbalance between exposure to toxic reactive oxygen species (ROS) and antioxidant systems. The increase in reactive nitrogen species (RNS) is termed nitrosative stress. We review the main mechanisms and products linking arterial stiffness with oxidative and nitrosative stress in several disorders, focusing on recent experimental and clinical data, and the mechanisms explaining benefits of antioxidant therapy. Oxidative and nitrosative stress play important roles in arterial stiffness elevation in several disorders, including diabetes mellitus, hypertension, metabolic syndrome, obesity, peripheral arterial disease, chronic obstructive pulmonary disease, systemic lupus erythematosus, thalassemia, Kawasaki disease and malignant disorders. Oxidative and nitrosative stress are responsible for endothelial dysfunction due to uncoupling of the nitric oxide synthase, oxidative damage to lipids, proteins and DNA in vascular endothelial cells, associated with inflammation, arteriosclerosis and atherosclerosis. Regular physical exercise, caloric restriction, red wine, statins, sartans, metformin, oestradiol, curcumin and combinations of antioxidant vitamins are therapeutic strategies that may decrease arterial stiffness and oxidative stress thus reducing the risk of cardiovascular events. ROS and RNS represent potential therapeutic targets for preventing progression of arterial stiffness.

  7. Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness.

    Science.gov (United States)

    Auer, George K; Lee, Timothy K; Rajendram, Manohary; Cesar, Spencer; Miguel, Amanda; Huang, Kerwyn Casey; Weibel, Douglas B

    2016-06-22

    Bacteria must maintain mechanical integrity to withstand the large osmotic pressure differential across the cell membrane and wall. Although maintaining mechanical integrity is critical for proper cellular function, a fact exploited by prominent cell-wall-targeting antibiotics, the proteins that contribute to cellular mechanics remain unidentified. Here, we describe a high-throughput optical method for quantifying cell stiffness and apply this technique to a genome-wide collection of ∼4,000 Escherichia coli mutants. We identify genes with roles in diverse functional processes spanning cell-wall synthesis, energy production, and DNA replication and repair that significantly change cell stiffness when deleted. We observe that proteins with biochemically redundant roles in cell-wall synthesis exhibit different stiffness defects when deleted. Correlating our data with chemical screens reveals that reducing membrane potential generally increases cell stiffness. In total, our work demonstrates that bacterial cell stiffness is a property of both the cell wall and broader cell physiology and lays the groundwork for future systematic studies of mechanoregulation.

  8. Variable stiffness sandwich panels using electrostatic interlocking core

    Science.gov (United States)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-04-01

    Structural topology has a large impact on the flexural stiffness of a beam structure. Reversible attachment between discrete substructures allows for control of shear stress transfer between structural elements, thus stiffness modulation. Electrostatic adhesion has shown promise for providing a reversible latching mechanism for controllable internal connectivity. Building on previous research, a thin film copper polyimide laminate has been used to incorporate high voltage electrodes to Fibre Reinforced Polymer (FRP) sandwich structures. The level of electrostatic holding force across the electrode interface is key to the achievable level of stiffness modulation. The use of non-flat interlocking core structures can allow for a significant increase in electrode contact area for a given core geometry, thus a greater electrostatic holding force. Interlocking core geometries based on cosine waves can be Computer Numerical Control (CNC) machined from Rohacell IGF 110 Foam core. These Interlocking Core structures could allow for enhanced variable stiffness functionality compared to basic planar electrodes. This novel concept could open up potential new applications for electrostatically induced variable stiffness structures.

  9. Dynamically tuned magnetostrictive spring with electrically controlled stiffness

    Science.gov (United States)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-03-01

    This paper presents the design and testing of an electrically controllable magnetostrictive spring that has a dynamically tunable stiffness (i.e., a magnetostrictive Varispring). The device enables in situ stiffness tuning or stiffness switching for vibration control applications. Using a nonlinear electromechanical transducer model and an analytical solution of linear, mechanically induced magnetic diffusion, Terfenol-D is shown to have a faster rise time to stepped voltage inputs and a significantly higher magnetic diffusion cut-off frequency relative to Galfenol. A Varispring is manufactured using a laminated Terfenol-D rod. Further rise time reductions are achieved by minimizing the rod’s diameter and winding the electromagnet with larger wire. Dynamic tuning of the Varispring’s stiffness is investigated by measuring the Terfenol-D rod’s strain response to dynamic, compressive, axial forces in the presence of sinusoidal or square wave control currents. The Varispring’s rise time is \\lt 1 ms for 1 A current switches. Continuous modulus changes up to 21.9 GPa and 500 Hz and square wave modulus changes (dynamic {{Δ }}E effect) up to 12.3 GPa and 100 Hz are observed. Stiffness tunability and tuning bandwidth can be considerably increased by operating about a more optimal bias stress and improving the control of the electrical input.

  10. 油膜刚度变化对转子刚度的影响%Oil Loyer Stiffness Change Affect On Rotale Stiffness

    Institute of Scientific and Technical Information of China (English)

    叶荣学; 孙伟

    2013-01-01

    In this paper,analyzed oil layer thick change affect oil layer stiffness,oil layer stiffness change affect rotate stiffness,relate stiffness change affect vibpation amplitude.%分析了油膜厚度变化对油膜刚度的影响、油膜刚度变化对转子刚度的影响、转子刚度变化对振幅的影响.

  11. Higher Matrix Stiffness Upregulates Osteopontin Expression in Hepatocellular Carcinoma Cells Mediated by Integrin β1/GSK3β/β-Catenin Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Yang You

    Full Text Available Increased stromal stiffness is associated with hepatocellular carcinoma (HCC development and progression. However, the molecular mechanism by which matrix stiffness stimuli modulate HCC progress is largely unknown. In this study, we explored whether matrix stiffness-mediated effects on osteopontin (OPN expression occur in HCC cells. We used a previously reported in vitro culture system with tunable matrix stiffness and found that OPN expression was remarkably upregulated in HCC cells with increasing matrix stiffness. Furthermore, the phosphorylation level of GSK3β and the expression of nuclear β-catenin were also elevated, indicating that GSK3β/β-catenin pathway might be involved in OPN regulation. Knock-down analysis of integrin β1 showed that OPN expression and p-GSK3β level were downregulated in HCC cells grown on high stiffness substrate compared with controls. Simultaneously, inhibition of GSK-3β led to accumulation of β-catenin in the cytoplasm and its enhanced nuclear translocation, further triggered the rescue of OPN expression, suggesting that the integrin β1/GSK-3β/β-catenin pathway is specifically activated for matrix stiffness-mediated OPN upregulation in HCC cells. Tissue microarray analysis confirmed that OPN expression was positively correlated with the expression of LOX and COL1. Taken together, high matrix stiffness upregulated OPN expression in HCC cells via the integrin β1/GSK-3β/β-catenin signaling pathway. It highlights a new insight into a pathway involving physical mechanical signal and biochemical signal molecules which contributes to OPN expression in HCC cells.

  12. Higher Matrix Stiffness Upregulates Osteopontin Expression in Hepatocellular Carcinoma Cells Mediated by Integrin β1/GSK3β/β-Catenin Signaling Pathway.

    Science.gov (United States)

    You, Yang; Zheng, Qiongdan; Dong, Yinying; Wang, Yaohui; Zhang, Lan; Xue, Tongchun; Xie, Xiaoying; Hu, Chao; Wang, Zhiming; Chen, Rongxin; Wang, Yanhong; Cui, Jiefeng; Ren, Zhenggang

    2015-01-01

    Increased stromal stiffness is associated with hepatocellular carcinoma (HCC) development and progression. However, the molecular mechanism by which matrix stiffness stimuli modulate HCC progress is largely unknown. In this study, we explored whether matrix stiffness-mediated effects on osteopontin (OPN) expression occur in HCC cells. We used a previously reported in vitro culture system with tunable matrix stiffness and found that OPN expression was remarkably upregulated in HCC cells with increasing matrix stiffness. Furthermore, the phosphorylation level of GSK3β and the expression of nuclear β-catenin were also elevated, indicating that GSK3β/β-catenin pathway might be involved in OPN regulation. Knock-down analysis of integrin β1 showed that OPN expression and p-GSK3β level were downregulated in HCC cells grown on high stiffness substrate compared with controls. Simultaneously, inhibition of GSK-3β led to accumulation of β-catenin in the cytoplasm and its enhanced nuclear translocation, further triggered the rescue of OPN expression, suggesting that the integrin β1/GSK-3β/β-catenin pathway is specifically activated for matrix stiffness-mediated OPN upregulation in HCC cells. Tissue microarray analysis confirmed that OPN expression was positively correlated with the expression of LOX and COL1. Taken together, high matrix stiffness upregulated OPN expression in HCC cells via the integrin β1/GSK-3β/β-catenin signaling pathway. It highlights a new insight into a pathway involving physical mechanical signal and biochemical signal molecules which contributes to OPN expression in HCC cells.

  13. Watershed Boundaries - Watershed Boundary Database for Montana

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set is a complete digital hydrologic unit boundary layer of the Subbasins (8-digit), Watersheds (10-digit), and Subwatersheds (12-digit) for Montana. This...

  14. Spurious Behavior of Shock-Capturing Methods: Problems Containing Stiff Source Terms and Discontinuities

    Science.gov (United States)

    Yee, Helen M. C.; Kotov, D. V.; Wang, Wei; Shu, Chi-Wang

    2013-01-01

    The goal of this paper is to relate numerical dissipations that are inherited in high order shock-capturing schemes with the onset of wrong propagation speed of discontinuities. For pointwise evaluation of the source term, previous studies indicated that the phenomenon of wrong propagation speed of discontinuities is connected with the smearing of the discontinuity caused by the discretization of the advection term. The smearing introduces a nonequilibrium state into the calculation. Thus as soon as a nonequilibrium value is introduced in this manner, the source term turns on and immediately restores equilibrium, while at the same time shifting the discontinuity to a cell boundary. The present study is to show that the degree of wrong propagation speed of discontinuities is highly dependent on the accuracy of the numerical method. The manner in which the smearing of discontinuities is contained by the numerical method and the overall amount of numerical dissipation being employed play major roles. Moreover, employing finite time steps and grid spacings that are below the standard Courant-Friedrich-Levy (CFL) limit on shockcapturing methods for compressible Euler and Navier-Stokes equations containing stiff reacting source terms and discontinuities reveals surprising counter-intuitive results. Unlike non-reacting flows, for stiff reactions with discontinuities, employing a time step and grid spacing that are below the CFL limit (based on the homogeneous part or non-reacting part of the governing equations) does not guarantee a correct solution of the chosen governing equations. Instead, depending on the numerical method, time step and grid spacing, the numerical simulation may lead to (a) the correct solution (within the truncation error of the scheme), (b) a divergent solution, (c) a wrong propagation speed of discontinuities solution or (d) other spurious solutions that are solutions of the discretized counterparts but are not solutions of the governing equations

  15. Knockdown of the pericellular matrix molecule perlecan lowers in situ cell and matrix stiffness in developing cartilage.

    Science.gov (United States)

    Xu, Xin; Li, Zhiyu; Leng, Yue; Neu, Corey P; Calve, Sarah

    2016-10-15

    The pericellular matrix (PCM) is a component of the extracellular matrix that is found immediately surrounding individual chondrocytes in developing and adult cartilage, and is rich in the proteoglycan perlecan. Mutations in perlecan are the basis of several developmental disorders, which are thought to arise from disruptions in the mechanical stability of the PCM. We tested the hypothesis that defects in PCM organization will reduce the stiffness of chondrocytes in developing cartilage by combining a murine model of Schwartz-Jampel syndrome, in which perlecan is knocked down, with our novel atomic force microscopy technique that can measure the stiffness of living cells and surrounding matrix in embryonic and postnatal tissues in situ. Perlecan knockdown altered matrix organization and significantly decreased the stiffness of both chondrocytes and interstitial matrix as a function of age and genotype. Our results demonstrate that the knockdown of a spatially restricted matrix molecule can have a profound influence on cell and tissue stiffness, implicating a role for outside-in mechanical signals from the PCM in regulating the intracellular mechanisms required for the overall development of cartilage.

  16. Associations between bicycling and carotid arterial stiffness in adolescents

    DEFF Research Database (Denmark)

    Ried-Larsen, M; Grøntved, A; Østergaard, Lars;

    2015-01-01

    The aim of the study was to investigate the associations between bicycling and carotid arterial stiffness, independent of objectively measured moderate-and-vigorous physical activity. This cross-sectional study included 375 adolescents (age 15.7 ± 0.4 years) from the Danish site of the European...... Youth Heart Study. Total frequency of bicycle usage was assessed by self-report, and carotid arterial stiffness was assessed using B-mode ultrasound. After adjusting for pubertal status, body height, and objectively measured physical activity and other personal lifestyle and demographic factors, boys...... modulus [standard beta -0.48 (95% CI -0.91 to -0.06)]. Similar trends were observed when investigating the association between commuter bicycling and carotid arterial stiffness. These associations were not observed in girls. Our observations suggest that increasing bicycling in adolescence may...

  17. Semiactive variable stiffness control for parametric vibration of cables

    Institute of Scientific and Technical Information of China (English)

    Li Hui; Chen Wenli; Ou Jinping

    2006-01-01

    In this paper, a semiactive variable stiffness (SVS) device is used to decrease cable oscillations caused by parametric excitation, and the equation of motion of the parametric vibration of the cable with this SVS device is presented.The ON/OFF control algorithm is used to operate the SVS control device. The vibration response of the cable with the SVS device is numerically studied for a variety of additional stiffness combinations in both the frequency and time domains and for both parametric and classical resonance vibration conditions. The numerical studies further consider the cable sag effect.From the numerical results, it is shown that the SVS device effectively suppresses the cable resonance vibration response, and as the stiffness of the device increases, the device achieves greater suppression of vibration. Moreover, it was shown that the SVS device increases the critical axial displacement of the excitation under cable parametric vibration conditions.

  18. Stiffness control of magnetorheological gels for adaptive tunable vibration absorber

    Science.gov (United States)

    Kim, Hyun Kee; Kim, Hye Shin; Kim, Young-Keun

    2017-01-01

    In this study, a stiffness feedback control system for magnetorheological (MR) gel—a smart material of variable stiffness—is proposed, toward the design of a tunable vibration absorber that can adaptively tune to a time varying disturbance in real time. A PID controller was designed to track the required stiffness of the MR gel by controlling the magnitude of the target external magnetic field pervading the MR gel. This paper proposes a novel magnetic field generator that could produce a variable magnetic field with low energy consumption. The performance of the MR gel stiffness control was validated through experiments that showed the MR gel absorber system could be automatically tuned from 56 Hz to 67 Hz under a field of 100 mT to minimize the vibration of the primary system.

  19. Effective Stiffness: Generalizing Effective Resistance Sampling to Finite Element Matrices

    CERN Document Server

    Avron, Haim

    2011-01-01

    We define the notion of effective stiffness and show that it can used to build sparsifiers, algorithms that sparsify linear systems arising from finite-element discretizations of PDEs. In particular, we show that sampling $O(n\\log n)$ elements according to probabilities derived from effective stiffnesses yields an high quality preconditioner that can be used to solve the linear system in a small number of iterations. Effective stiffness generalizes the notion of effective resistance, a key ingredient of recent progress in developing nearly linear symmetric diagonally dominant (SDD) linear solvers. Solving finite elements problems is of considerably more interest than the solution of SDD linear systems, since the finite element method is frequently used to numerically solve PDEs arising in scientific and engineering applications. Unlike SDD systems, which are relatively easy to precondition, there has been limited success in designing fast solvers for finite element systems, and previous algorithms usually tar...

  20. Output-Based Control of Robots with Variable Stiffness Actuation

    Directory of Open Access Journals (Sweden)

    Gianluca Palli

    2011-01-01

    Full Text Available The output-based control of a redundant robotic manipulator with relevant and adjustable joint stiffness is addressed. The proposed controller is configured as a cascade system that allows the decoupling of the actuators dynamics from the arm dynamics and the consequent reduction of the order of the manipulator dynamic model. Moreover, the proposed controller does not require the knowledge of the whole robot state: only the positions of the actuators and of the joints are necessary. This approach represents a significant simplification with respect to previously proposed state feedback techniques. The problem of controlling simultaneously the position trajectory and the desired stiffness in both the joint and work space is investigated, and the relations between the manipulator redundancy and the selection of both the joint and work space stiffness of the manipulator are discussed. The effectiveness of the proposed approach is verified by simulations of a 3 degrees of freedom planar manipulator.

  1. Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations

    KAUST Repository

    Alzahrani, Hasnaa H.

    2016-07-26

    A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge-Kutta- Chebyshev (RKC) scheme is adjusted to integrate diffusion. Spatial operator is de- scretised by second-order finite differences on a uniform grid. The overall solution is advanced over S fractional stiff integrations, where S corresponds to the number of RKC stages. The behavior of the scheme is analyzed by applying it to three simple problems. The results show that it achieves second-order accuracy, thus, preserving the formal accuracy of the original RKC. The presented development sets the stage for future extensions, particularly, to multidimensional reacting flows with detailed chemistry.

  2. Design of Stiffness for Air Spring Based on ABAQUS

    Directory of Open Access Journals (Sweden)

    Hongguang Li

    2013-01-01

    Full Text Available In this paper, an axisymmetric finite element (FE model of an air spring was carried out with the software ABAQUS to design its target vertical stiffness. The bellows was simulated by the reinforced surface element. The compressed gas in the cavity of the air spring was represented by the hydrostatic fluid element. The target stiffness is obtained by modifying the valid area of the cross section. At last, the results of experiment coincided well with the simulation data. The study shows that the static stiffness of air spring is sensitive to the effective area of the cross section. The conclusion has certain practical significance for the design and the optimization of the same kind of air spring.

  3. Micromechanical analysis of the behavior of stiff clay

    Institute of Scientific and Technical Information of China (English)

    Zhen-Yu Yin; Ching S. Chang; Pierre-Yves Hicher; Jian-Hua Wang

    2011-01-01

    Cementations formed in geological timescale are observed in various stiff clays.A micromechanical stress strain model is developed for modeling the effect of cementation on the deformation behavior of stiff clay.The proposed approach considers explicitly cementations at intercluster contacts,which is different from conventional model.The concept of inter-cluster bonding is introduced to account for an additional cohesion in shear sliding and a higher yield stress in normal compression.A damage law for inter-cluster bonding is proposed at cluster contacts for the debonding process during mechanical loading.The model is used to simulate numerous stress-path tests on Vallericca stiff clay.The applicability of the present model is evaluated through comparisons between the predicted and the measured results.In order to explain the stress-induced anisotropy arising from extemally applied load,the evolution of local stresses and local strains at inter-cluster planes are discussed.

  4. Enhanced stiffness modeling of manipulators with passive joints

    CERN Document Server

    Pashkevich, Anatoly; Chablat, Damien

    2011-01-01

    The paper presents a methodology to enhance the stiffness analysis of serial and parallel manipulators with passive joints. It directly takes into account the loading influence on the manipulator configuration and, consequently, on its Jacobians and Hessians. The main contributions of this paper are the introduction of a non-linear stiffness model for the manipulators with passive joints, a relevant numerical technique for its linearization and computing of the Cartesian stiffness matrix which allows rank-deficiency. Within the developed technique, the manipulator elements are presented as pseudo-rigid bodies separated by multidimensional virtual springs and perfect passive joints. Simulation examples are presented that deal with parallel manipulators of the Ortholide family and demonstrate the ability of the developed methodology to describe non-linear behavior of the manipulator structure such as a sudden change of the elastic instability properties (buckling).

  5. Modifiable risk factors for increased arterial stiffness in outpatient nephrology.

    Science.gov (United States)

    Elewa, Usama; Fernandez-Fernandez, Beatriz; Alegre, Raquel; Sanchez-Niño, Maria D; Mahillo-Fernández, Ignacio; Perez-Gomez, Maria Vanessa; El-Fishawy, Hussein; Belal, Dawlat; Ortiz, Alberto

    2015-01-01

    Arterial stiffness, as measured by pulse wave velocity (PWV), is an independent predictor of cardiovascular events and mortality. Arterial stiffness increases with age. However, modifiable risk factors such as smoking, BP and salt intake also impact on PWV. The finding of modifiable risk factors may lead to the identification of treatable factors, and, thus, is of interest to practicing nephrologist. We have now studied the prevalence and correlates of arterial stiffness, assessed by PWV, in 191 patients from nephrology outpatient clinics in order to identify modifiable risk factors for arterial stiffness that may in the future guide therapeutic decision-making. PWV was above normal levels for age in 85/191 (44.5%) patients. Multivariate analysis showed that advanced age, systolic BP, diabetes mellitus, serum uric acid and calcium polystyrene sulfonate therapy or calcium-containing medication were independent predictors of PWV. A new parameter, Delta above upper limit of normal PWV (Delta PWV) was defined to decrease the weight of age on PWV values. Delta PWV was calculated as (measured PWV) - (upper limit of the age-adjusted PWV values for the general population). Mean±SD Delta PWV was 0.76±1.60 m/sec. In multivariate analysis, systolic blood pressure, active smoking and calcium polystyrene sulfonate therapy remained independent predictors of higher delta PWV, while age, urinary potassium and beta blocker therapy were independent predictors of lower delta PWV. In conclusion, arterial stiffness was frequent in nephrology outpatients. Systolic blood pressure, smoking, serum uric acid, calcium-containing medications, potassium metabolism and non-use of beta blockers are modifiable factors associated with increased arterial stiffness in Nephrology outpatients.

  6. Modifiable risk factors for increased arterial stiffness in outpatient nephrology.

    Directory of Open Access Journals (Sweden)

    Usama Elewa

    Full Text Available Arterial stiffness, as measured by pulse wave velocity (PWV, is an independent predictor of cardiovascular events and mortality. Arterial stiffness increases with age. However, modifiable risk factors such as smoking, BP and salt intake also impact on PWV. The finding of modifiable risk factors may lead to the identification of treatable factors, and, thus, is of interest to practicing nephrologist. We have now studied the prevalence and correlates of arterial stiffness, assessed by PWV, in 191 patients from nephrology outpatient clinics in order to identify modifiable risk factors for arterial stiffness that may in the future guide therapeutic decision-making. PWV was above normal levels for age in 85/191 (44.5% patients. Multivariate analysis showed that advanced age, systolic BP, diabetes mellitus, serum uric acid and calcium polystyrene sulfonate therapy or calcium-containing medication were independent predictors of PWV. A new parameter, Delta above upper limit of normal PWV (Delta PWV was defined to decrease the weight of age on PWV values. Delta PWV was calculated as (measured PWV - (upper limit of the age-adjusted PWV values for the general population. Mean±SD Delta PWV was 0.76±1.60 m/sec. In multivariate analysis, systolic blood pressure, active smoking and calcium polystyrene sulfonate therapy remained independent predictors of higher delta PWV, while age, urinary potassium and beta blocker therapy were independent predictors of lower delta PWV. In conclusion, arterial stiffness was frequent in nephrology outpatients. Systolic blood pressure, smoking, serum uric acid, calcium-containing medications, potassium metabolism and non-use of beta blockers are modifiable factors associated with increased arterial stiffness in Nephrology outpatients.

  7. [Stiff baby syndrome is a rare cause of neonatal hypertonicity].

    Science.gov (United States)

    Rønne, Maria Sode; Nielsen, Preben Berg; Mogensen, Christian Backer

    2014-02-24

    Stiff baby syndrome (hyperekplexia) is a rare genetic disorder. The condition can easily be misdiagnosed as epilepsy or severe sepsis because of hypertonicity and seizure-like episodes and has an increased risk of severe apnoea and sudden infant death. Tapping of the nasal bridge inducing a startle response is the clinical hallmark. We report cases of two sisters born with stiff baby syndrome with hypertonicity, exaggerated startle reaction and cyanosis. The syndrome has a good prognosis if treated with clonazepam and both cases were developmental normal after one year.

  8. Diagnosis and clinical assessment of a stiff shoulder.

    Science.gov (United States)

    Armstrong, Alison

    2015-04-01

    The assessment of a stiff shoulder is explored, the necessary investigations to reach a diagnosis are discussed, and the likely causes that can contribute to a frozen shoulder are described. Two flow diagrams are included to help in reaching a conclusion when seeing a patient with a stiff shoulder. The key elements to reaching that conclusion are: carefully listening to the patients story, noting whether there has been a history of trauma, as well as a careful and thorough examination and a plain X-ray with two views.

  9. Fast Stiffness Matrix Calculation for Nonlinear Finite Element Method

    Directory of Open Access Journals (Sweden)

    Emir Gülümser

    2014-01-01

    Full Text Available We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM. Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.

  10. Experimental measurement of the stiffness of the cupula.

    Science.gov (United States)

    Grant, J W; Van Buskirk, W C

    1976-06-01

    An experimental procedure is described which consists of cutting the canal duct, inserting a micropipette and administering known volumetric displacements to the cupula. The cupula is made visible by dying the endolymph. Known displacements are administered to the cupula, and the time constant of the return to its equilibrium position is measured. With this information, the stiffness of the cupula is calculated. The experiment was successfully carried out on five White King pigeons. The mean stiffness found in somewhat less than other results reported in the literature, and reasons for this discrepancy are noted.

  11. An asymptotic approach to the adhesion of thin stiff films

    CERN Document Server

    Dumont, Serge; Rizzoni, Raffaella

    2013-01-01

    In this paper, the asymptotic first order analysis, both mathematical and numerical, of two structures bonded together is presented. Two cases are considered, the gluing of an elastic structure with a rigid body and the gluing of two elastic structures. The glue is supposed to be elastic and to have its stiffness of the same order than those of the elastic structures. An original numerical method is developed to solve the mechanical problem of stiff interface at order 1, based on the Nitsche's method. Several numerical examples are provided to show the efficiency of both the analytical approximation and the numerical method.

  12. Effects of Stiffness on Short, Semiflexible Homopolymer Chains

    Science.gov (United States)

    Seaton, Daniel T.; Schnabel, Stefan; Bachmann, Michael; Landau, David P.

    2012-08-01

    Conformational and transition behavior of finite, semiflexible homopolymers is studied using an extension of the Wang-Landau algorithm. Generation of a flat distribution in the sampling parameters energy and stiffness allows for efficient investigation of transitions between various conformational phases. Of particular importance is the ability to predict behavior for a given stiffness value, where three classes of minimum energy conformations are expected: Solid-globular, rod-like and toroidal. We present first results highlighting the behavior of a single N = 20 length chain.

  13. Beam section stiffness properties usig 3D finite elements

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen; Høgsberg, Jan Becker

    2013-01-01

    The cross-section properties of a beam is characterized by a six by six stiffness matrix, relating the six generalized strains to the conjugate section forces. The problem is formulated as a single-layer finite element model of a slice of the beam, on which the six deformation modes are imposed via...... Lagrange multipliers. The Lagrange multipliers represent the constraining forces, and thus combine to form the cross-section stiffness matrix. The theory is illustrated by a simple isotropic cross-section....

  14. Simplified formula for isoparametric quadrilateral element stiffness matrix

    Energy Technology Data Exchange (ETDEWEB)

    Changlian, X.

    1987-02-01

    Homogeneous parallelogram and quasi-parallelogram elements are usually used in finite element seismic modeling. Theoretically, the coordinates of element nodes may be arbitrary values on condition that elements are successive and not superposed. Isoparametric quadrilateral elements, whose nodes are presumed to be in laterally uniform distribution, are used so that not only unit stiffness matrix formula is essentially simplified to cut computing time but also finite element method remains flexible enough to be used in complex modeling. Simplified formulae for computing the stiffness matrices in four cases are derived, which, compared with corresponding Gauss integration algorithm, can cut 94-98% computing time.

  15. A method of solving the stiffness problem in Biot's poroelastic equations using a staggered high-order finite-difference

    Institute of Scientific and Technical Information of China (English)

    Zhao Hai-Bo; Wang Xiu-Ming; Chen Hao

    2006-01-01

    In modelling elastic wave propagation in a porous medium, when the ratio between the fluid viscosity and the medium permeability is comparatively large, the stiffness problem of Biot's poroelastic equations will be encountered. In the paper, a partition method is developed to solve the stiffness problem with a staggered high-order finite-difference. The method splits the Biot equations into two systems. One is stiff, and solved analytically, the other is nonstiff,and solved numerically by using a high-order staggered-grid finite-difference scheme. The time step is determined by the staggered finite-difference algorithm in solving the nonstiff equations, thus a coarse time step 05 be employed.Therefore, the computation efficiency and computational stability are improved greatly. Also a perfect by matched layer technology is used in the split method as absorbing boundary conditions. The numerical results are compared with the analytical results and those obtained from the conventional staggered-grid finite-difference method in a homogeneous model, respectively. They are in good agreement with each other. Finally, a slightly more complex model is investigated and compared with related equivalent model to illustrate the good performance of the staggered-grid finite-difference scheme in the partition method.

  16. Comparison Study on the Exact Dynamic Stiffness Method for Free Vibration of Thin and Moderately Thick Circular Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    Xudong Chen

    2016-01-01

    Full Text Available Comparison study on free vibration of circular cylindrical shells between thin and moderately thick shell theories when using the exact dynamic stiffness method (DSM formulation is presented. Firstly, both the thin and moderately thick dynamic stiffness formulations are examined. Based on the strain and kinetic energy, the vibration governing equations are expressed in the Hamilton form for both thin and moderately thick circular cylindrical shells. The dynamic stiffness is assembled in a similar way as that in classic skeletal theory. With the employment of the Wittrick-Williams algorithm, natural frequencies of circular cylindrical shells can be obtained. A FORTRAN code is written and used to compute the modal characteristics. Numerical examples are presented, verifying the proposed computational framework. Since the DSM is an exact approach, the advantages of high accuracy, no-missing frequencies, and good adaptability to various geometries and boundary conditions are demonstrated. Comprehensive parametric studies on the thickness to radius ratio (h/r and the length to radius ratio (L/r are performed. Applicable ranges of h/r are found for both thin and moderately thick DSM formulations, and influences of L/r on frequencies are also investigated. The following conclusions are reached: frequencies of moderately thick shells can be considered as alternatives to those of thin shells with high accuracy where  h/r is small and L/r is large, without any observation of shear locking.

  17. Paracrine Effects of Adipose-Derived Stem Cells on Matrix Stiffness-Induced Cardiac Myofibroblast Differentiation via Angiotensin II Type 1 Receptor and Smad7

    Science.gov (United States)

    Yong, Kar Wey; Li, Yuhui; Liu, Fusheng; Bin Gao; Lu, Tian Jian; Wan Abas, Wan Abu Bakar; Wan Safwani, Wan Kamarul Zaman; Pingguan-Murphy, Belinda; Ma, Yufei; Xu, Feng; Huang, Guoyou

    2016-01-01

    Human mesenchymal stem cells (hMSCs) hold great promise in cardiac fibrosis therapy, due to their potential ability of inhibiting cardiac myofibroblast differentiation (a hallmark of cardiac fibrosis). However, the mechanism involved in their effects remains elusive. To explore this, it is necessary to develop an in vitro cardiac fibrosis model that incorporates pore size and native tissue-mimicking matrix stiffness, which may regulate cardiac myofibroblast differentiation. In the present study, collagen coated polyacrylamide hydrogel substrates were fabricated, in which the pore size was adjusted without altering the matrix stiffness. Stiffness is shown to regulate cardiac myofibroblast differentiation independently of pore size. Substrate at a stiffness of 30 kPa, which mimics the stiffness of native fibrotic cardiac tissue, was found to induce cardiac myofibroblast differentiation to create in vitro cardiac fibrosis model. Conditioned medium of hMSCs was applied to the model to determine its role and inhibitory mechanism on cardiac myofibroblast differentiation. It was found that hMSCs secrete hepatocyte growth factor (HGF) to inhibit cardiac myofibroblast differentiation via downregulation of angiotensin II type 1 receptor (AT1R) and upregulation of Smad7. These findings would aid in establishment of the therapeutic use of hMSCs in cardiac fibrosis therapy in future. PMID:27703175

  18. Stiffness, Workspace Analysis and Optimization for 3UPU Parallel Robot Mechanism

    Directory of Open Access Journals (Sweden)

    Cui Guohua

    2013-09-01

    Full Text Available In this paper, an approach based on the particle swarm optimization is used to optimize the workspace and global stiffness of the 3UPU mechanism simultaneously due to the fact that the workspace is affected while optimizing the stiffness of the mechanism and vice versa. When optimizing one particular performance, one needs to have an objective function. Here the workspace volume of the mechanism is used as an objective function to evaluate the workspace performance of the mechanism. The leading diagonal elements of the stiffness matrix represent pure stiffness in each direction, but this stiffness changes when the moving platform position changes. We call this stiffness as local stiffness. When using the local stiffness as an objective function for stiffness optimization, it can only represent the stiffness in one particular position. Here the global stiffness of the mechanism is used as an objective function to optimize the stiffness of the mechanism. The global stiffness represents mean stiffness over the workspace.  

  19. Analytical stiffness matrices with Green-Lagrange strain measure

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2005-01-01

    Separating the dependence on material and stress/strain state from the dependence on initial geometry, we obtain analytical secant and tangent stiffness matrices. For the case of a linear displacement triangle with uniform thickness and uniform constitutive behaviour closed-form results are listed...

  20. Stiffness and design for strength of trapezoidal Belleville springs

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Pedersen, Pauli

    2011-01-01

    in this paper. Finite element results are compared with analytical predictions and critically analysed in terms of the effect of Poisson ratio, overall stiffness, and stress distribution in the spring. This is done in order to verify the range of validity of design standards. Finite element analysis emerges...

  1. Reproducibility of the ambulatory arterial stiffness index in hypertensive patients

    DEFF Research Database (Denmark)

    Dechering, D.G.; Steen, M.S. van der; Adiyaman, A.;

    2008-01-01

    BACKGROUND: We studied the repeatability of the ambulatory arterial stiffness index (AASI), which can be computed from 24-h blood pressure (BP) recordings as unity minus the regression slope of diastolic on systolic BP. METHODS: One hundred and fifty-two hypertensive outpatients recruited...

  2. Pre-diabetes and arterial stiffness in uraemic patients

    DEFF Research Database (Denmark)

    Hornum, Mads; Clausen, Peter; Kjaergaard, Jesper;

    2010-01-01

    In order to address factors of relevance for new onset diabetes mellitus and cardiovascular disease after kidney transplantation, we investigated the presence of pre-diabetes, arterial stiffness and endothelial dysfunction in patients with end-stage renal disease (ESRD) accepted for kidney...

  3. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  4. IMPACT OF OVERHEAT ON DISABLED SWIMMERS’ SKELETAL MUSCLE STIFFNESS

    Directory of Open Access Journals (Sweden)

    Prystupa Tetyana

    2014-04-01

    Full Text Available Contemporary athletic recovery involves the range of treatments combined with training and restitution processes and are designed to optimize rest as well as minimize the effects of sports overstrain. Sportsmen benefit enormously from recovery treatments during both preparation and competition phases as they help remove frequent pathogenic pre-start conditions which could reduce work capacity and affect adversely results achieved. Purpose: The paper is aimed to specify the impact of overheat on easing the stiffness of disabled sportspeople’s biceps muscle of arm and the central part of the deltoid muscle. It has been assumed that overheating in a Finnish sauna will facilitate muscle condition and recovery of a swimmer’s body. Material: The research involved 20 disabled swimmers - 10 competitors based in the Start sports club in Kalisz and 10 contestants based in Start sports club in Wroclaw. The Tonus-1 myotonometer was used to measure the stiffness of biceps muscle of arm (biceps brachii and the central part of the deltoid muscle (deltoideus - pars acromialic. The research was carried out in two stages: training mesocycle with no recovery and training mesocycle with recovery. The mesocycles comprised three one-week-long microcycles each. Results: The research proved the overheating to ease rest muscle stiffness . Conclusions: The upshot of the discussion was that the Finnish sauna has a tonic effect on a disable swimmer’s body. Reduction of post work-out muscle stiffness will facilitate effective recovery and bring forward next training activities.

  5. Variable stiffness and damping suspension system for train

    Science.gov (United States)

    Sun, Shuaishuai; Deng, Huaxia; Li, Weihua

    2014-03-01

    As the vibration of high speed train becomes fierce when the train runs at high speed, it is crucial to develop a novel suspension system to negotiate train's vibration. This paper presents a novel suspension based on Magnetorheological fluid (MRF) damper and MRF based smart air spring. The MRF damper is used to generate variable damping while the smart air spring is used to generate field-dependent stiffness. In this paper, the two kind smart devices, MRF dampers and smart air spring, are developed firstly. Then the dynamic performances of these two devices are tested by MTS. Based on the testing results, the two devices are equipped to a high speed train which is built in ADAMS. The skyhook control algorithm is employed to control the novel suspension. In order to compare the vibration suppression capability of the novel suspension with other kind suspensions, three other different suspension systems are also considered and simulated in this paper. The other three kind suspensions are variable damping with fixed stiffness suspension, variable stiffness with fixed damping suspension and passive suspension. The simulation results indicate that the variable damping and stiffness suspension suppresses the vibration of high speed train better than the other three suspension systems.

  6. Design optimization of a twist compliant mechanism with nonlinear stiffness

    Science.gov (United States)

    Tummala, Y.; Frecker, M. I.; Wissa, A. A.; Hubbard, J. E., Jr.

    2014-10-01

    A contact-aided compliant mechanism called a twist compliant mechanism (TCM) is presented in this paper. This mechanism has nonlinear stiffness when it is twisted in both directions along its axis. The inner core of the mechanism is primarily responsible for its flexibility in one twisting direction. The contact surfaces of the cross-members and compliant sectors are primarily responsible for its high stiffness in the opposite direction. A desired twist angle in a given direction can be achieved by tailoring the stiffness of a TCM. The stiffness of a compliant twist mechanism can be tailored by varying thickness of its cross-members, thickness of the core and thickness of its sectors. A multi-objective optimization problem with three objective functions is proposed in this paper, and used to design an optimal TCM with desired twist angle. The objective functions are to minimize the mass and maximum von-Mises stress observed, while minimizing or maximizing the twist angles under specific loading conditions. The multi-objective optimization problem proposed in this paper is solved for an ornithopter flight research platform as a case study, with the goal of using the TCM to achieve passive twisting of the wing during upstroke, while keeping the wing fully extended and rigid during the downstroke. Prototype TCMs have been fabricated using 3D printing and tested. Testing results are also presented in this paper.

  7. A Multiscale Mechanical Model for Plant Tissue Stiffness

    Directory of Open Access Journals (Sweden)

    Damiano Pasini

    2013-06-01

    Full Text Available Plant petioles and stems are hierarchical cellular structures, displaying structuralfeatures defined at multiple length scales. The current work focuses on the multi-scalemodelling of plant tissue, considering two orders of structural hierarchy, cell wall and tissue.The stiffness of plant tissue is largely governed by the geometry of the tissue cells, thecomposition of the cell wall and the structural properties of its constituents. The cell wallis analogous to a fiber reinforced composite, where the cellulose microfibril (CMF is theload bearing component. For multilayered cell wall, the microfibril angle (MFA in themiddle layer of the secondary cell wall (S2 layer largely affects the longitudinal stiffnessfor values up to 40o. The MFA in turn influences the overall wall stiffness. In this work,the effective stiffness of a model system based on collenchyma cell wall of a dicotyledonousplant, the Rheum rhabarbarum, is computed considering generic MFA and volume fractions.At the cellular level, a 2-D Finite Edge Centroidal Voronoi tessellation (FECVT has beendeveloped and implemented to generate the non-periodic microstructure of the plant tissue.The effective elastic properties of the cellular tissue are obtained through finite elementanalysis (FEA of the Voronoi model coupled with the cell wall properties. The stiffness ofthe hierarchically modeled tissue is critically important in determining the overall structuralproperties of plant petioles and stems.

  8. Wide Stiffness Range Cavity Optomechanical Sensors for Atomic Force Microscopy

    CERN Document Server

    Liu, Yuxiang; Aksyuk, Vladimir; Srinivasan, Kartik

    2012-01-01

    We report on progress in developing compact sensors for atomic force microscopy (AFM), in which the mechanical transducer is integrated with near-field optical readout on a single chip. The motion of a nanoscale, doubly-clamped cantilever was transduced by an adjacent high quality factor silicon microdisk cavity. In particular, we show that displacement sensitivity on the order of 1 fm/(Hz)^(1/2) can be achieved while the cantilever stiffness is varied over four orders of magnitude (\\approx 0.01 N/m to \\approx 290 N/m). The ability to transduce both very soft and very stiff cantilevers extends the domain of applicability of this technique, potentially ranging from interrogation of microbiological samples (soft cantilevers) to imaging with high resolution (stiff cantilevers). Along with mechanical frequencies (> 250 kHz) that are much higher than those used in conventional AFM probes of similar stiffness, these results suggest that our cavity optomechanical sensors may have application in a wide variety of hig...

  9. Riparian Sediment Delivery Ratio: Stiff Diagrams and Artifical Neural Networks

    Science.gov (United States)

    Various methods are used to estimate sediment transport through riparian buffers and grass jilters with the sediment delivery ratio having been the most widely applied. The U.S. Forest Service developed a sediment delivery ratio using the stiff diagram and a logistic curve to int...

  10. Tool Neck Geometry Design to Improve Stiffness of Micro Endmills

    NARCIS (Netherlands)

    Li, P.; Rozing, M.; Oosterling, J.A.J.; Hoogstrate, A.M.; Langen, H.H.

    2008-01-01

    Due to the scaling effect, micro endmills have low stiffness in nature, which will result in lose of form accuracy in workpiece and vibration of micro tools during micromilling process. Through analytical modeling, it is found that the neck geometry of the micro endmill has a big influence on the to

  11. Torsion stiffness of a protein pair determined by magnetic particles

    NARCIS (Netherlands)

    Janssen, X.J.A.; Van Noorloos, J.M.; Jacob, A.; Van IJzendoorn, L.J.; De Jong, A.M.; Prins, M.W.J.

    2012-01-01

    We demonstrate the ability to measure torsion stiffness of a proteincomplex by applying a controlled torque on a magnetic particle. Asa model system we use protein G bound to an IgG antibody. The protein pair is held between a magnetic particle and a polystyrene substrate. The angular orientation of

  12. The effects of cycling shoe stiffness on forefoot pressure.

    Science.gov (United States)

    Jarboe, Nathan Edward; Quesada, Peter M

    2003-10-01

    Plantar pressure data were recorded in two different shoe types to determine the effect of cycling shoe stiffness on peak plantar forefoot pressure in cyclists. Two pairs of shoes of the same size and manufacturer, identical except for outsole material and stiffness, were tested. Shoe stiffness measurements were collected under controlled conditions and in two different configurations using a dynamic hydraulic tensile testing machine. Measurements of plantar pressure were done using Pedar capacitive-based sensor insoles while subjects pedaled in a seated position at a controlled power output. Power output was set at a constant value of 400 W across all subjects by a magnetic resistance trainer unit. The pressure distribution in carbon-fiber-composite shoes during cycling was compared to cycling shoes made with plastic soles. Carbon fiber shoes presented stiffness values 42% and 550% higher than plastic shoes in longitudinal bending and three-point bending, respectively. The shoes made with carbon fiber produced peak plantar pressures 18% higher than those of plastic design (121 kPa vs. 103 kPa, p = .005). Competitive or professional cyclists suffering from metatarsalgia or ischemia should be especially careful when using carbon fiber cycling shoes because the shoes increase peak plantar pressure, which may aggravate these foot conditions.

  13. Substrate stiffness affects skeletal myoblast differentiation in vitro

    Science.gov (United States)

    Romanazzo, Sara; Forte, Giancarlo; Ebara, Mitsuhiro; Uto, Koichiro; Pagliari, Stefania; Aoyagi, Takao; Traversa, Enrico; Taniguchi, Akiyoshi

    2012-12-01

    To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ɛ-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  14. Torsional stiffness degradation and aerostatic divergence of suspension bridge decks

    Science.gov (United States)

    Zhang, Z. T.; Ge, Y. J.; Yang, Y. X.

    2013-07-01

    The mechanism of aerostatic torsional divergence (ATD) of long-span suspension bridges is investigated. A theoretical analysis on the basis of a generalized model is presented, showing that the vertical motion of a bridge deck is crucial to the torsional stiffness of the whole suspended system, and that the vertical motion of either cable with a magnitude beyond a certain threshold could result in a sudden degradation of the torsional stiffness of the system. This vertical motion-induced degradation of stiffness is recognized as the main reason for the ATD. Long-span suspension bridges are susceptible to such a type of divergence, especially when they are immersed in turbulent wind fields. The divergences that occur in turbulent wind fields differ significantly from those in smooth wind fields, and the difference is well explained by the generalized model that the loosening of any one cable could result in the vanishing of the part of stiffness provided by the whole cable system. The mechanism revealed in this paper leads to a definition of the critical wind speed of the ATD in a turbulent flow; that is, the one resulting in a vertical motion so large as to loosen either cable to a stressless state. Numerical results from the nonlinear finite-element (FE) analysis of the Xihoumen suspension bridge, in conjunction with observations from wind tunnel tests on an aero-elastic full bridge model, are in support of the viewpoint presented in this study.

  15. Stiffness of cancer cells measured with an AFM indentation method.

    Science.gov (United States)

    Hayashi, Kozaburo; Iwata, Mayumi

    2015-09-01

    The stiffness of cancer cells and its changes during metastasis are very important for understanding the pathophysiology of cancer cells and the mechanisms of metastasis of cancer. As the first step of the studies on the mechanics of cancer cells during metastasis, we determined the elasticity and stiffness of cancer cells with an indentation method using an atomic force microscope (AFM), and compared with those of normal cells. In most of the past AFM studies, Young׳s elastic moduli of cells have been calculated from force-indentation data using Hertzian model. As this model is based on several important assumptions including infinitesimal strain and Hooke׳s linear stress-strain law, in the exact sense it cannot be applied to cells that deform very largely and nonlinearly. To overcome this problem, we previously proposed an equation F=a[exp(bδ)-1] to describe relations between force (F) and indentation (δ), where a and b are parameters relating with cellular stiffness. In the present study, we applied this method to cancer cells instead of Young׳s elastic modulus. The conclusions obtained are: 1) AFM indentation test data of cancer cells can be very well described by the above equation, 2) cancer cells are softer than normal cells, and 3) there are no significant locational differences in the stiffness of cancer cells between the central and the peripheral regions. These methods and results are useful for studying the mechanics of cancer cells and the mechanisms of metastasis.

  16. Step-parallel algorithms for stiff initial value problems

    NARCIS (Netherlands)

    Veen, W.A. van der

    1995-01-01

    For the parallel integration of stiff initial value problems, three types of parallelism can be employed: 'parallelism across the problem', 'parallelism across the method' and 'parallelism across the steps'. Recently, methods based on Runge-Kutta schemes that use parallelism across the method have b

  17. Arterial stiffness as a risk factor for coronary artery disease.

    Science.gov (United States)

    Liao, Josh; Farmer, John

    2014-02-01

    Hypertension is a major modifiable risk factor, and clinical trials have demonstrated that successful reduction of elevated blood pressure to target levels translates into decreased risk for the development of coronary artery disease, stroke, heart failure, and renal failure. The arterial system had previously been regarded as a passive conduit for the transportation of arterial blood to peripheral tissues. The physiologic role the arterial system was greatly expanded by the recognition of the central role of the endothelial function in a variety of physiologic processes. The role of arterial function and structure in cardiovascular physiology was expanded with the development of a variety of parameters that evaluate arterial stiffness. Markers of arterial stiffness have been correlated with cardiovascular outcomes, and have been classified as an emerging risk factor that provides prognostic information beyond standard stratification strategies involving hypertension, diabetes, obesity, dyslipidemia and smoking. Multiple epidemiologic studies have correlated markers of arterial stiffness such as pulse-wave velocity, augmentation index and pulse pressure with risk for the development of fatal and nonfatal cardiovascular events. Additionally, measurements of arterial stiffness had clarified the results of clinical trials that demonstrated differing impacts on clinical outcomes, despite similar reductions in blood pressure, as measured by brachial and sphygmomanometry.

  18. Variable stiffness actuators: review on design and components

    NARCIS (Netherlands)

    Wolf, Sebastian; Grioli, Giorgio; Eiberger, Oliver; Friedl, Werner; Grebenstein, Markus; Höppner, Hannes; Burdet, Etienne; Caldwell, Darwin G.; Carloni, Raffaella; Catalano, Manuel G.; Lefeber, Dirk; Stramigioli, Stefano; Tsagarakis, Nikos; Damme, van Michaël; Ham, van Ronald; Vanderborght, Bram; Visser, Ludo C.; Bicchi, Antonio; Albu-Schäffer, Alin

    2016-01-01

    Variable stiffness actuators (VSAs) are complex mechatronic devices that are developed to build pas- sively compliant, robust, and dexterous robots. Numerous different hardware designs have been developed in the past two decades to address various demands on their functionality. This review paper gi

  19. Sport stretching : Effect on passive muscle stiffness of short hamstrings

    NARCIS (Netherlands)

    Halbertsma, JPK; vanBolhuis, AI; Goeken, LNH

    1996-01-01

    Objective: To evaluate the effects of one 10-minute stretch on muscle stiffness in subjects with short hamstrings. Design: Randomized control trial. Setting: Laboratory for human movement sciences in the department of rehabilitation of a university hospital. Subjects: Sixteen students from the Depar

  20. How crouch gait can dynamically induce stiff-knee gait.

    Science.gov (United States)

    van der Krogt, Marjolein M; Bregman, Daan J J; Wisse, Martijn; Doorenbosch, Caroline A M; Harlaar, Jaap; Collins, Steven H

    2010-04-01

    Children with cerebral palsy frequently experience foot dragging and tripping during walking due to a lack of adequate knee flexion in swing (stiff-knee gait). Stiff-knee gait is often accompanied by an overly flexed knee during stance (crouch gait). Studies on stiff-knee gait have mostly focused on excessive knee muscle activity during (pre)swing, but the passive dynamics of the limbs may also have an important effect. To examine the effects of a crouched posture on swing knee flexion, we developed a forward-dynamic model of human walking with a passive swing knee, capable of stable cyclic walking for a range of stance knee crouch angles. As crouch angle during stance was increased, the knee naturally flexed much less during swing, resulting in a 'stiff-knee' gait pattern and reduced foot clearance. Reduced swing knee flexion was primarily due to altered gravitational moments around the joints during initial swing. We also considered the effects of increased push-off strength and swing hip flexion torque, which both increased swing knee flexion, but the effect of crouch angle was dominant. These findings demonstrate that decreased knee flexion during swing can occur purely as the dynamical result of crouch, rather than from altered muscle function or pathoneurological control alone.

  1. Stiffness and hysteresis properties of some prosthetic feet

    NARCIS (Netherlands)

    Jaarsveld, van H.W.L.; Grootenboer, H.J.; Vries, de J.; Koopman, H.F.J.M.

    1990-01-01

    A prosthetic foot is an important element of a prosthesis, although it is not always fully recognized that the properties of the foot, along with the prosthetic knee joint and the socket, are in part responsible for the stability and metabolic energy cost during walking. The stiffness and the hyst

  2. Stiffness characterization of a 3-PPR planar parallel manipulator with actuation compliance

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Kepler, Jørgen Asbøl

    2015-01-01

    This paper investigates the stiffness of a compliant planar parallel manipulator. Instead of establishing stiffness matrix directly for planar mechanisms, we adopt the modeling approach for spatial mechanisms, which allows us to derive two decoupled homogeneous matrices, corresponding...... to the translational and rotational stiffness. This is achieved by resorting to the generalized eigenvalue problem, through which the eigenscrew decomposition is implemented to yield six screw springs. The principal stiffnesses and their directions are then identified from the eigenvalue problem of the two separated...... submatrices. In addition, the influence of the nonlinear actuation compliance to the manipulator stiffness is investigated, and the established stiffness model is experimentally verified....

  3. Characterizations of boundary pluripolar hulls

    NARCIS (Netherlands)

    Djire, I.K.; Wiegerinck, J.

    2016-01-01

    We present some basic properties of the so-called boundary relative extremal function and discuss boundary pluripolar sets and boundary pluripolar hulls. We show that for B-regular domains the boundary pluripolar hull is always trivial on the boundary of the domain and present a “boundary version” o

  4. BoundaryOther_BNDHASH

    Data.gov (United States)

    Vermont Center for Geographic Information — The BNDHASH dataset depicts Vermont villages, towns, counties, Regional Planning Commissions (RPC), and LEPC (Local Emergency Planning Committee) boundaries. It is a...

  5. Role of Substratum Stiffness in Modulating Genes Associated with Extracellular Matrix and Mechanotransducers YAP and TAZ

    Science.gov (United States)

    Raghunathan, Vijay Krishna; Morgan, Joshua T.; Dreier, Britta; Reilly, Christopher M.; Thomasy, Sara M.; Wood, Joshua A.; Ly, Irene; Tuyen, Binh C.; Hughbanks, Marissa; Murphy, Christopher J.; Russell, Paul

    2013-01-01

    Purpose. Primary open-angle glaucoma is characterized by increased resistance to aqueous humor outflow and a stiffer human trabecular meshwork (HTM). Two Yorkie homologues, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif, encoded by WWTR1 (TAZ), are mechanotransducers of the extracellular-microenvironment and coactivators of transcription. Here, we explore how substratum stiffness modulates the YAP/TAZ pathway and extracellular matrix genes in HTM cells and how this may be play a role in the onset and progression of glaucoma. Methods. HTM cells from normal donors were cultured on hydrogels mimicking the stiffness of normal (5 kPa) and glaucomatous (75 kPa) HTM. Changes in expression of YAP/TAZ related genes and steroid responsiveness were determined. Additionally, transglutaminase-2 expression was determined after YAP silencing. Results. YAP and TAZ are both expressed in human trabecular meshwork cells. In vitro, YAP and TAZ were inversely regulated by substratum stiffness. YAP and 14-3-3σ were downregulated to different extents on stiffer substrates; TAZ, tissue transglutaminase (TGM2), and soluble frizzled-related protein-1 (sFRP-1) were significantly upregulated. CTGF expression appeared to be altered differentially by both YAP and TAZ. Myocilin and angiopoietin-like 7 expression in response to dexamethasone was more pronounced on stiffer substrates. We demonstrated a direct effect by YAP on TGM2 when YAP was silenced by small interfering RNA. Conclusions. The expression of YAP/TAZ and ECM-related-genes is impacted on physiologically relevant substrates. YAP was upregulated in cells on softer substrates. Stiffer substrates resulted in upregulation of canonical Wnt modulators, TAZ and sFRP-1, and thus may influence the progression of glaucoma. These results demonstrate the importance of YAP/TAZ in the HTM and suggest their role in glaucoma. PMID:23258147

  6. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness

    Directory of Open Access Journals (Sweden)

    Anna Eliane Müller

    2014-11-01

    Full Text Available Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT and PEVK (increases PT. Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively, and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively. Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length ranging from 1.9-2.4µm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity.

  7. Arterial Stiffness in Nonhypertensive Type 2 Diabetes Patients in Ghana

    Science.gov (United States)

    Antwi, Daniel A.; Gyan, Ben

    2016-01-01

    Background. Increased arterial stiffness is an independent cardiovascular risk factor in diabetes patients and general population. However, the contribution of diabetes to arterial stiffness is often masked by coexistent obesity and hypertension. In this study, we assessed arterial stiffness in nonhypertensive, nonobese type 2 diabetes (T2DM) patients in Ghana. Methods. In case-control design, 166 nonhypertensive, nonobese participants, comprising 96 T2DM patients and 70 nondiabetes controls, were recruited. Peripheral and central blood pressure (BP) indices were measured, and arterial stiffness was assessed as aortic pulse wave velocity (PWVao), augmentation index (AIx), cardioankle vascular index (CAVI), and heart-ankle pulse wave velocity (haPWV). Results. With similar peripheral and central BP indices, T2DM patients had higher PWVao (8.3 ± 1 versus 7.8 ± 1.3, p = 0.044) and CAVI (7.9 ± 1.2 versus 6.9 ± 0.7, p = 0.021) than nondiabetic control. AIx and haPWV were similar between T2DM and nondiabetic controls. Multiple regression models showed that, in the entire study participants, the major determinants of PWVao were diabetes status, age, gender, systolic BP, and previous smoking status (β = 0.22, 0.36, 0.48, 0.21, and 0.25, resp.; all p < 0.05); the determinants of CAVI were diabetes status, age, BMI, heart rate, HbA1c, total cholesterol, HDL cholesterol, and previous smoking status (β = 0.21, 0.38, 0.2, 0.18, 0.24. 0.2, −0.19, and 0.2, resp.; all p < 0.05). Conclusion. Our findings suggest that nonhypertensive, nonobese T2DM patients have increased arterial stiffness without appreciable increase in peripheral and central pressure indices.

  8. Impact testing of the residual limb: System response to changes in prosthetic stiffness

    Directory of Open Access Journals (Sweden)

    Erin Boutwell, PhD

    2016-04-01

    Full Text Available Currently, it is unknown whether changing prosthetic limb stiffness affects total limb stiffness and/or influences the shock absorption of an individual with transtibial amputation. The hypotheses tested within this study are that a decrease in longitudinal prosthetic stiffness will produce (1 reduced total limb stiffness and (2 reduced magnitude of peak impact forces and increased time delay to peak force. Fourteen subjects with a transtibial amputation participated in this study. Prosthetic stiffness was modified by means of a shock-absorbing pylon that provides reduced longitudinal stiffness through compression of a helical spring within the pylon. A sudden loading evaluation device was built to examine changes in limb loading mechanics during a sudden impact event. No significant change was found in the peak force magnitude or timing of the peak force between prosthetic limb stiffness conditions. Total limb stiffness estimates ranged from 14.9 to 17.9 kN/m but were not significantly different between conditions. Thus, the prosthetic-side total limb stiffness was unaffected by changes in prosthetic limb stiffness. The insensitivity of the total limb stiffness to prosthetic stiffness may be explained by the mechanical characteristics (i.e., stiffness and damping of the anatomical tissue within the residual limb.

  9. Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring

    Science.gov (United States)

    Dong, Guangxu; Zhang, Xinong; Xie, Shilin; Yan, Bo; Luo, Yajun

    2017-03-01

    For the purpose of isolating the low frequency vibration, a magnetic vibration isolator with the feature of high-static-low-dynamic stiffness (HSLDS) is developed in this paper, which is constructed by combining a magnetic negative stiffness spring (MNSS) with a spiral flexure spring (SFS) in parallel. The MNSS comprises three magnetic rings configured in attraction and is utilized to reduce the resonant frequency of the isolator. Then an analytical expression of magnetic negative stiffness (MNS) of the MNSS is deduced in terms of the current model, and an approximation to the MNS is further sought. To support the object, the axial positive stiffness of SFSs, which can behave with a smaller static deformation if a specified weight is applied, is analyzed with finite element method (FEM). After that, the governing equation of the isolator is established and solved via harmonic balance method (HBM). Finally, an experimental prototype is developed and tested. The experimental results demonstrate that the MNSS can reduce the resonant frequency of the isolator to expand the isolation frequency band to low frequency range; and the theoretical calculations and experimental results shows a good agreement.

  10. Immersed Boundary Models for Quantifying Flow-Induced Mechanical Stimuli on Stem Cells Seeded on 3D Scaffolds in Perfusion Bioreactors

    Science.gov (United States)

    Smeets, Bart; Odenthal, Tim; Luyten, Frank P.; Ramon, Herman; Papantoniou, Ioannis; Geris, Liesbet

    2016-01-01

    Perfusion bioreactors regulate flow conditions in order to provide cells with oxygen, nutrients and flow-associated mechanical stimuli. Locally, these flow conditions can vary depending on the scaffold geometry, cellular confluency and amount of extra cellular matrix deposition. In this study, a novel application of the immersed boundary method was introduced in order to represent a detailed deformable cell attached to a 3D scaffold inside a perfusion bioreactor and exposed to microscopic flow. The immersed boundary model permits the prediction of mechanical effects of the local flow conditions on the cell. Incorporating stiffness values measured with atomic force microscopy and micro-flow boundary conditions obtained from computational fluid dynamics simulations on the entire scaffold, we compared cell deformation, cortical tension, normal and shear pressure between different cell shapes and locations. We observed a large effect of the precise cell location on the local shear stress and we predicted flow-induced cortical tensions in the order of 5 pN/μm, at the lower end of the range reported in literature. The proposed method provides an interesting tool to study perfusion bioreactors processes down to the level of the individual cell’s micro-environment, which can further aid in the achievement of robust bioprocess control for regenerative medicine applications. PMID:27658116

  11. Generalized Supersymetric Boundary State

    CERN Document Server

    Hashimoto, K

    2000-01-01

    Following our previous paper (hep-th/9909027), we generalize a supersymmetric boundary state so that arbitrary configuration of the gauge field coupled to the boundary of the worldsheet is incorpolated. This generalized boundary state is BRST invariant and satisfy the non-linear boundary conditions with non-constant gauge field strength. This boundary state contains divergence which is identical with the loop divergence in a superstring sigma model. Hence vanishing of the beta function in the superstring sigma model corresponds to a well-defined boundary state with no divergence. The coupling of a single closed superstring massless mode with multiple open string massless modes is encoded in the boundary state, and we confirm that derivative correction to the D-brane action in this sector vanishes up to the first non-trivial order O(alpha'(derivative)^2). Combining T-dualities, we incorpolate also general configurations of the scalar fields on the D-brane, and construct boundary states representing branes stuc...

  12. Dependence of elbow joint stiffness measurements on speed, angle, and muscle contraction level.

    Science.gov (United States)

    Kuxhaus, Laurel; Zeng, Sisi; Robinson, Charles J

    2014-03-21

    Elbow joint stiffness is critical to positioning the hand. Abnormal elbow joint stiffness may affect a person's ability to participate in activities of daily living. In this work, elbow joint stiffness was measured in ten healthy young adults with a device adapted from one previously used to measure stiffness in other joints. Measurements of elbow stiffness involved applying a constant-velocity rotational movement to the elbow and measuring the resultant displacement, torque, and acceleration. Elbow stiffness was then computed using a previously-established model for joint stiffness. Measurements were made at two unique elbow joint angles, two speeds, and two forearm muscle contraction levels. The results indicate that the elbow joint stiffness is significantly affected by both rotational speed and forearm muscle contraction level.

  13. Specific phobia is a frequent non-motor feature in stiff man syndrome

    OpenAIRE

    Henningsen, P.; Meinck, H

    2003-01-01

    Objective: To investigate systematically the rate and type of phobia in stiff man syndrome and its variants, and to compare patients with stiff man syndrome with and without phobia for sociodemographic and neurological characteristics.

  14. Postbuckling analysis of variable stiffness composite plates using a finite element-based perturbation method

    NARCIS (Netherlands)

    Rahman, T.; IJsselmuiden, S.T.; Abdalla, M.M.; Jansen, E.L.

    2011-01-01

    Modern fiber placement machines allow laminates with spatially varying stiffness properties to be manufactured. In earlier research, the authors optimized variable stiffness plates for maximum buckling load, demonstrating significant improvements in load-carrying capacity. In aerospace applications,

  15. Stiffness Analysis and Comparison of 3-PPR Planar Parallel Manipulators with Actuation Compliance

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Kepler, Jørgen Asbøl

    2012-01-01

    In this paper, the stiffness of 3-PPR planar parallel manipulator (PPM) is analyzed with the consideration of nonlinear actuation compliance. The characteristics of the stiffness matrix pertaining to the planar parallel manipulators are analyzed and discussed. Graphic representation...... of the stiffness characteristics by means of translational and rotational stiffness mapping is developed. The developed method is illustrated with an unsymmetrical 3-PPR PPM, being compared with its structure-symmetrical counterpart....

  16. Parameters which Affect the Stiffness of Bitumen and Bituminous Hot Mixes

    OpenAIRE

    2001-01-01

    This paper deals with bitumen and bituminous mixes, using suitable mathematical models that take into account the parameters affecting their elastic and plastic stiffnesses. These parameters are stress level and acting time, penetration index, softening time and temperature. Viscosity and the total acting time of the load affect the elastic stiffness of bitumen. The elastic stiffness of bitumen and the voluminous concentration of the aggregate influence the elastic stiffness of th...

  17. Role of body stiffness in undulatory swimming: Insights from robotic and computational models

    Science.gov (United States)

    Tytell, Eric D.; Leftwich, Megan C.; Hsu, Chia-Yu; Griffith, Boyce E.; Cohen, Avis H.; Smits, Alexander J.; Hamlet, Christina; Fauci, Lisa J.

    2016-11-01

    In an effort to understand the locomotion dynamics of a simple vertebrate, the lamprey, both physical and computational models have been developed. A key feature of these models is the ability to vary the passive stiffness of portions of the swimmer, focusing on highly flexible models similar in material properties to lampreys and other anguilliform fishes. The physical model is a robotic lampreylike swimmer that is actuated along most of its length but has passively flexible tails of different stiffnesses. The computational model is a two-dimensional model that captures fluid-structure interactions using an immersed boundary framework. This simulated lamprey is passively flexible throughout its length and is also actuated along most of its length by the activation of muscle forces. Although the three-dimensional robot and the two-dimensional computational swimmer are such different constructs, we demonstrate that the wake structures generated by these models share many features and we examine how flexibility affects these features. Both models produce wakes with two or more same-sign vortices shed each time the tail changes direction (a "2P" or higher-order wake). In general, wakes become less coherent as tail flexibility increases. We examine the pressure distribution near the tail tip and the timing of vortex formation in both cases and find good agreement. Because we include flexibility, we are able to estimate resonant frequencies for several of the robotic and computational swimmers. We find that actuation at the resonant frequency dramatically increases the distance traveled per tail-beat cycle with only a small increase in the lost kinetic energy in the wake, suggesting that the resonant swimmers are more efficient.

  18. Comparative numerical solutions of stiff Ordinary differential equations using magnus series expansion method

    OpenAIRE

    SURE KÖME; Atay, Mehmet Tarık; Aytekin ERYILMAZ; Cahit KÖME; Piipponen, Samuli

    2014-01-01

    In this paper, we investigated the effect of Magnus Series Expansion Method on homogeneous stiff ordinary differential equations with different stiffness ratios. A Magnus type integrator is used to obtain numerical solutions of two different examples of stiff problems and exact and approximate results are tabulated. Furthermore, absolute error graphics are demonstrated in detail.

  19. Comparative numerical solutions of stiff Ordinary differential equations using magnus series expansion method

    Directory of Open Access Journals (Sweden)

    SURE KÖME

    2014-12-01

    Full Text Available In this paper, we investigated the effect of Magnus Series Expansion Method on homogeneous stiff ordinary differential equations with different stiffness ratios. A Magnus type integrator is used to obtain numerical solutions of two different examples of stiff problems and exact and approximate results are tabulated. Furthermore, absolute error graphics are demonstrated in detail.

  20. A relation between blood pressure and stiffness of joints and skin

    NARCIS (Netherlands)

    Uiterwaal, CSPM; Grobbee, DE; Sakkers, RJB; Helders, PJM; Bank, RA; Engelbert, RHH

    2003-01-01

    Background. Blood pressure, particularly pulse pressure, is associated with arterial wall stiffness, but little is known about its relation to stiffness of other parts of the body. We examined the extent to which blood pressure levels in young healthy children are related to stiffness of various tis

  1. Rhabdomyolysis and Autoimmune Variant Stiff-Person Syndrome.

    Science.gov (United States)

    Gangadhara, Shreyas; Gangadhara, Suhas; Gandhy, Chetan; Robertson, Derrick

    2016-10-24

    Stiff-person syndrome (SPS) is a rare neurologic disorder characterized by waxing and waning muscular rigidity, stiffness and spasms. Three subtypes have been described: paraneoplastic, autoimmune and idiopathic. Rhabdomyolysis has been described in the paraneoplastic variant, but to our knowledge no case has been reported involving the autoimmune variant. We report a case report of a 50-year-old man with history of SPS who presented with recurrent episodes of severe limb and back spasms. He was hospitalized on two separate occasions for uncontrollable spasms associated with renal failure and creatinine phosphokinase elevations of 55,000 and 22,000 U/L respectively. Laboratory tests were otherwise unremarkable. The acute renal failure resolved during both admissions with supportive management. Rhabdomyolysis has the potential to be fatal and early diagnosis is essential. It should be considered in patients who have SPS and are experiencing an exacerbation of their neurologic condition.

  2. AFFECTION OF ER FLUID ON STIFFNESS OF VIBRATION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    On the application of an electric field, the mechanical properties of ER(Electro-rheological) fluid are very complex. The damping force of ER fluid is linear without electric field and is nonlinear when an electric field is applied. By increasing the strength of the electric field, the behavior of ER fluid changes from linear viscous to nonlinear viscoelastic-plastic. External electric fluid changes natural behavior of system with ER fluid besides the mechanical properties of ER fluid. The affect of ER fluid on the stiffness of nonlinear vibration system with ER dampers is analyzed by iterative perturbation method. The results show that the stiffness of structure would be increased with growing of the strength of the electric field.

  3. Stiff Person Syndrome Masquerading as Acute Coronary Syndrome.

    Science.gov (United States)

    Sharma, Ashish; Soe, Myat Han; Singh, Jagdeep; Newsome, Scott D

    2016-01-01

    Stiff person syndrome (SPS) is a rare neuroimmunological disorder characterized by severe progressive muscle stiffness in axial and lower extremity musculature with superimposed painful muscle spasms. Although chest pain is a common reason for SPS patients presenting to the emergency room, this disorder is overlooked and not part of the differential diagnosis of chest pain. Herein, we report on a middle age male presenting with classic symptoms of SPS; however, due to the rarity of this disease, he was initially thought to have acute coronary syndrome. Clinicians should consider the diagnosis of SPS in patients with fluctuating muscle spasms in the torso and/or extremities in the setting of repeated hospitalizations without subsequent symptom relief.

  4. The Contribution of Osteoprogenitor Cells to Arterial Stiffness and Hypertension.

    Science.gov (United States)

    Pikilidou, Maria; Yavropoulou, Maria; Antoniou, Maria; Yovos, John

    2015-01-01

    Hypertension, the major cause of cardiovascular disease, is bidirectionally linked to arterial stiffness. Evidence shows that vascular calcification, either medial or intimal, induces arterial stiffening further worsening hypertension parallel to substantially increasing cardiovascular risk. The disturbance in the bone-vascular axis that leads to the increase of calcium deposition in the arterial wall may be the result of a shift in the functionality of bone marrow-derived circulating stem cells with a calcifying potential, namely osteoprogenitor cells. These cells deposit bone matrix proteins in the vascular wall that can subsequently become mineralized. The current notion is that these cells derive from diverse cell lines. The present review summarizes the current knowledge on the role of progenitor cells with a calcifying potential on arterial calcification, stiffness and hypertension.

  5. Analysis of Brace Stiffness Influence on Stability of the Truss

    Directory of Open Access Journals (Sweden)

    Krajewski M.

    2015-02-01

    Full Text Available The paper is devoted to the numerical and experimental research of stability of a truss with side elastic supports at the top chord. The structure is a model of a real roof truss scaled by factor ¼. The linear buckling analysis and non-linear static analysis were carried out. The buckling length factor for the compressed top chord was calculated and the limit load for the imperfect truss shell model with respect to brace stiffness was obtained. The relation between brace normal force and loading of the truss is presented. The threshold stiffness of braces necessary to obtain the maximum buckling load was found. The truss load bearing capacity obtained from numerical analysis was compared with Eurocode 3 requirements.

  6. A nonlinear truss finite element with varying stiffness

    Directory of Open Access Journals (Sweden)

    Ďuriš R.

    2007-11-01

    Full Text Available This contribution deals with a new truss element with varying stiffness intended to geometric and physically nonlinear analysis of composite structures. We present a two-node straight composite truss finite element derived by new nonincremental full geometric nonlinear approach. Stiffness matrix of this composite truss contains transfer constants, which accurately describe the polynomial longitudinal variation of cross-section area and material properties. These variations could be caused by nonhomogenous temperature field or by varying components volume fractions of the composite or/and functionally graded materials (FGM´s. Numerical examples were solved to verify the established relations. The accuracy of the new proposed finite truss element are compared and discused.

  7. Carrier mediated reduction of stiffness in nanoindented crystalline Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Kataria, S., E-mail: s-kataria2k2@yahoo.co.in; Dhara, Sandip, E-mail: dhara@igcar.gov.in; Dash, S.; Tyagi, A. K. [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2015-07-21

    We report the observation of carrier mediated decrease in the stiffness of crystalline (c)-Si(100) under nanoindentation. The apparent elastic moduli of heavily doped (∼1 × 10{sup 21} cm{sup −3}) p- and n-type c-Si are observed to be lower by 5.3%–7.5% than the estimated value for intrinsic (∼1 × 10{sup 14} cm{sup −3}) c-Si. The deviation observed with respect to elastic modulus remarkably matches with the estimated value while considering the electronic elastic strain effect on carrier concentration as an influence of negative pressure coefficient of band gap for Si (Γ-X). The value is predominantly higher than the reported value of a decrease of 1%–3% in stiffness as an effect of impurity in c-Si.

  8. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    Science.gov (United States)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  9. Quantification of plaque stiffness by Brillouin microscopy (Conference Presentation)

    Science.gov (United States)

    Antonacci, Giuseppe; Pedrigi, Ryan; Krams, Rob; Török, Peter

    2016-03-01

    Spontaneous Brillouin scattering is an inelastic scattering process arising from inherent thermal density fluctuations, or acoustic phonons, propagating in a medium. Over the last few years, Brillouin spectroscopy has shown great potential to become a reliable non-invasive diagnostic tool due to its unique capability of retrieving viscoelastic properties of materials such as strain and stiffness. The detection of the weak scattered light, in addition to the resolution of the Brillouin peaks (typically shifted by few GHz from the central peak) represent one of the greatest challenges in Brillouin. The recent development of high sensitivity CCD cameras has brought Brillouin spectroscopy from a point sampling technique to a new imaging modality. Furthermore, the application of Virtually Imaged Phased Array (VIPA) etalons has dramatically reduced insertion loss simultaneously allowing fast (myocardial infarction yet it is not currently possible to credibly assess its stiffness due to lack of suitable methods.

  10. Stiffness analysis of the sarafix external fixator of composite materials

    Directory of Open Access Journals (Sweden)

    Nedim Pervan

    2016-01-01

    Full Text Available This paper describes a structural analysis of the CAD model three versions fixators Sarafix which to explore the possibility of introducing composite materials in the construction of the connecting rod fixators comparing values of displacement and stiffness at characteristic points structure. Namely, we investigated constructional performance of fixators Sarafix with a connecting rod formed from three different composite materials, the same matrix (epoxy resin with three different types of fibers (E glass, kevlar 49 and carbon M55J. Results of structural analysis fixators Sarafix with a connecting rod made of composite materials are compared with the results of tubular connecting rod fixators made of stainless steel. After comparing the results, from the aspect of stiffness, we gave the final considerations about composite material which provides an adequate substitution for the existing material.

  11. Pseudo analytical solution to time periodic stiffness systems

    Institute of Scientific and Technical Information of China (English)

    Wang Yan-Zhong; Zhou Yuan-Zi

    2011-01-01

    An analytical form of state transition matrix for a system of equations with time periodic stiffness is derived in order to solve the free response and also allow for the determination of system stability and bifurcation. A pseudoclosed form complete solution for parametrically excited systems subjected to inhomogeneous generalized forcing is developed, based on the Fourier expansion of periodic matrices and the substitution of matrix exponential terms via Lagrange-Sylvester theorem. A Mathieu type of equation with large amplitude is presented to demonstrate the method of formulating state transition matrix and Floquet multipliers. A two-degree-of-freedom system with irregular time periodic stiffness characterized by spiral bevel gear mesh vibration is presented to find forced response in stability and instability. The obtained results are presented and discussed.

  12. Derivation of stiffness matrix in constitutive modeling of magnetorheological elastomer

    Science.gov (United States)

    Leng, D.; Sun, L.; Sun, J.; Lin, Y.

    2013-02-01

    Magnetorheological elastomers (MREs) are a class of smart materials whose mechanical properties change instantly by the application of a magnetic field. Based on the specially orthotropic, transversely isotropic stress-strain relationships and effective permeability model, the stiffness matrix of constitutive equations for deformable chain-like MRE is considered. To valid the components of shear modulus in this stiffness matrix, the magnetic-structural simulations with finite element method (FEM) are presented. An acceptable agreement is illustrated between analytical equations and numerical simulations. For the specified magnetic field, sphere particle radius, distance between adjacent particles in chains and volume fractions of ferrous particles, this constitutive equation is effective to engineering application to estimate the elastic behaviour of chain-like MRE in an external magnetic field.

  13. Rhabdomyolysis and Autoimmune Variant Stiff-Person Syndrome

    Science.gov (United States)

    Gangadhara, Shreyas; Gangadhara, Suhas; Gandhy, Chetan; Robertson, Derrick

    2016-01-01

    Stiff-person syndrome (SPS) is a rare neurologic disorder characterized by waxing and waning muscular rigidity, stiffness and spasms. Three subtypes have been described: paraneoplastic, autoimmune and idiopathic. Rhabdomyolysis has been described in the paraneoplastic variant, but to our knowledge no case has been reported involving the autoimmune variant. We report a case report of a 50-year-old man with history of SPS who presented with recurrent episodes of severe limb and back spasms. He was hospitalized on two separate occasions for uncontrollable spasms associated with renal failure and creatinine phosphokinase elevations of 55,000 and 22,000 U/L respectively. Laboratory tests were otherwise unremarkable. The acute renal failure resolved during both admissions with supportive management. Rhabdomyolysis has the potential to be fatal and early diagnosis is essential. It should be considered in patients who have SPS and are experiencing an exacerbation of their neurologic condition. PMID:28028432

  14. An integrated design of quasi-zero stiffness mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hyeong Joon; Lim, Sung Hun; Park, Chang Kun [Soongsil University, Seoul (Korea, Republic of)

    2016-03-15

    Nonlinear Quasi-zero stiffness (QZS) mechanisms were studied to overcome the weakness of linear isolators. This paper presents an integrated design of the QZS mechanism. First, various types of QZS vibration mechanisms are analyzed and a generalized model for QZS mechanisms is derived. The generalized model consists of two main parts: link and horizontal spring. The motion equation of the QZS mechanism is a Duffing equation with nonlinear stiffness. Based on the generalized model, the design problem of the QZS mechanism is converted into the kinematic design of a link element. For simplicity, the link is generalized with a cam-roller mechanism. The integrated design approach shows that the QZS mechanism can have desired QZS characteristics with properly designed cam geometry.

  15. INFLUENCE OF PIEZOELECTRIC TRANSDUCER TO GLASS FIBER REINFORCED COMPOSITE STIFFNESS

    Directory of Open Access Journals (Sweden)

    Witold Rządkowski

    2015-08-01

    Full Text Available The main goal was to determine if transducers based on piezoelectric materials are suitable for strain calculations in thin GFRP specimens. Numerous experimental studies, both physical and numerical, performed by the authors, have shown that there is a huge influence of bonded piezoelectric transducer on the overall stiffness of the measured object. The paper presents tensile test performed on strength machine with Digital Image Correlation strain and deflection observations. Test were compared with FEM models for detailed investigation. The main conclusion is piezoelectric transducers has huge influence on local stiffness of measured object. That is critical especially when they are used as strain sensors, when presence of sensor is influencing to measured results.

  16. Obliquity along plate boundaries

    Science.gov (United States)

    Philippon, Mélody; Corti, Giacomo

    2016-12-01

    Most of the plate boundaries are activated obliquely with respect to the direction of far field stresses, as roughly only 8% of the plate boundaries total length shows a very low obliquity (ranging from 0 to 10°, sub-orthogonal to the plate displacement). The obliquity along plate boundaries is controlled by (i) lateral rheological variations within the lithosphere and (ii) consistency with the global plate circuit. Indeed, plate tectonics and magmatism drive rheological changes within the lithosphere and consequently influence strain localization. Geodynamical evolution controls large-scale mantle convection and plate formation, consumption, and re-organization, thus triggering plate kinematics variations, and the adjustment and re-orientation of far field stresses. These geological processes may thus result in plate boundaries that are not perpendicular but oblique to the direction of far field stresses. This paper reviews the global patterns of obliquity along plate boundaries. Using GPlate, we provide a statistical analysis of present-day obliquity along plate boundaries. Within this framework, by comparing natural examples and geological models, we discuss deformation patterns and kinematics recorded along oblique plate boundaries.

  17. Compact, Stiff, Remotely-Actuable Quick-Release Clamp

    Science.gov (United States)

    Tsai, Ted W. (Inventor)

    2000-01-01

    The present invention provides a clamp that is compact and lightweight, yet provides high holding strength and stiffness or rigidity. The clamp uses a unique double slant interface design which provides mechanical advantages to resist forces applied to the clamp member as the load increases. The clamp allows for rapid and remote-activated release of the clamp jaws by applying only a small operating force to an over-center lock/release mechanism, such as by pulling a manual tether.

  18. ERROR COMPENSATION OF COORDINATE MEASURING MACHINES WITH LOW STIFFNESS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A technique for compensating the errors of coordinate measuring machines (CMMs) with low stiffness is proposed. Some additional it ems related with the force deformation are introduced to the error compensation equations. The research was carried on a moving column horizontal arm CMM. Experimental results show that both the effects of systematic components of error motions and force deformations are greatly reduced, which shows the effectiveness o proposed technique.

  19. Unexpected Swelling of Stiff DNA in a Polydisperse Crowded Environment.

    Science.gov (United States)

    Kang, Hongsuk; Toan, Ngo Minh; Hyeon, Changbong; Thirumalai, D

    2015-09-02

    We investigate the conformations of DNA-like stiff chains, characterized by contour length (L) and persistence length (lp), in a variety of crowded environments containing monodisperse soft spherical (SS) and spherocylindrical (SC) particles, a mixture of SS and SC, and a milieu mimicking the composition of proteins in the Escherichia coli cytoplasm. The stiff chain, whose size modestly increases in SS crowders up to ϕ ≈ 0.1, is considerably more compact at low volume fractions (ϕ ≤ 0.2) in monodisperse SC particles than in a medium containing SS particles. A 1:1 mixture of SS and SC crowders induces greater chain compaction than the pure SS or SC crowders at the same ϕ, with the effect being highly nonadditive. We also discover a counterintuitive result that the polydisperse crowding environment, mimicking the composition of a cell lysate, swells the DNA-like polymer, which is in stark contrast to the size reduction of flexible polymers in the same milieu. Trapping of the stiff chain in a fluctuating tube-like environment created by large-sized crowders explains the dramatic increase in size and persistence length of the stiff chain. In the polydisperse medium, mimicking the cellular environment, the size of the DNA (or related RNA) is determined by L/lp. At low L/lp, the size of the polymer is unaffected, whereas there is a dramatic swelling at an intermediate value of L/lp. We use these results to provide insights into recent experiments on crowding effects on RNA and also make testable predictions.

  20. Experimental exposure to diesel exhaust increases arterial stiffness in man

    Directory of Open Access Journals (Sweden)

    Newby David E

    2009-03-01

    Full Text Available Abstract Introduction Exposure to air pollution is associated with increased cardiovascular morbidity, although the underlying mechanisms are unclear. Vascular dysfunction reduces arterial compliance and increases central arterial pressure and left ventricular after-load. We determined the effect of diesel exhaust exposure on arterial compliance using a validated non-invasive measure of arterial stiffness. Methods In a double-blind randomized fashion, 12 healthy volunteers were exposed to diesel exhaust (approximately 350 μg/m3 or filtered air for one hour during moderate exercise. Arterial stiffness was measured using applanation tonometry at the radial artery for pulse wave analysis (PWA, as well as at the femoral and carotid arteries for pulse wave velocity (PWV. PWA was performed 10, 20 and 30 min, and carotid-femoral PWV 40 min, post-exposure. Augmentation pressure (AP, augmentation index (AIx and time to wave reflection (Tr were calculated. Results Blood pressure, AP and AIx were generally low reflecting compliant arteries. In comparison to filtered air, diesel exhaust exposure induced an increase in AP of 2.5 mmHg (p = 0.02 and in AIx of 7.8% (p = 0.01, along with a 16 ms reduction in Tr (p = 0.03, 10 minutes post-exposure. Conclusion Acute exposure to diesel exhaust is associated with an immediate and transient increase in arterial stiffness. This may, in part, explain the increased risk for cardiovascular disease associated with air pollution exposure. If our findings are confirmed in larger cohorts of susceptible populations, this simple non-invasive method of assessing arterial stiffness may become a useful technique in measuring the impact of real world exposures to combustion derived-air pollution.

  1. Leg stiffness of sprinters using running-specific prostheses

    OpenAIRE

    McGowan, Craig P.; Grabowski, Alena M.; McDermott, William J.; Herr, Hugh M.; Kram, Rodger

    2012-01-01

    Running-specific prostheses (RSF) are designed to replicate the spring-like nature of biological legs (bioL) during running. However, it is not clear how these devices affect whole leg stiffness characteristics or running dynamics over a range of speeds. We used a simple spring–mass model to examine running mechanics across a range of speeds, in unilateral and bilateral transtibial amputees and performance-matched controls. We found significant differences between the affected leg (AL) of uni...

  2. Lung function is associated with arterial stiffness in children.

    Directory of Open Access Journals (Sweden)

    Julian G Ayer

    Full Text Available BACKGROUND: In older adults, an independent association exists between impaired lung function and cardiovascular disease. This interaction might be related to the effects of aging and/or smoking. In order to explore possible childhood antecedents to this association, we hypothesized that decreased lung function and vascular stiffness might be related, in early life. OBJECTIVE: To determine the relationship between lung function and carotid augmentation index (AIx, a measure of vascular stiffness, in 8-year old children. METHODS: Data on brachial blood pressure, lung function (FEV(1, FVC, FEV(1/FVC, obtained by spirometry and carotid AIx75 (AIx standardised to an arbitrary heart rate of 75 beats per minute, obtained by applanation tonometry was available in 249 community-based 8-year old children. These healthy children had been subjects in a randomised controlled trial of two interventions (omega-3 fatty acid supplementation and house-dust mite avoidance to prevent asthma. Smoking in pregnancy and childhood environmental tobacco smoke (ETS exposure was prospectively collected by questionnaire. The association between lung function and carotid AIx75 was assessed in multivariate models that included sex, height, smoking status during pregnancy, ETS exposure and randomisation groups (house dust mite avoidance and dietary intervention as covariates. RESULTS: In the fully adjusted models, Carotid AIx75 was independently associated with FEV1 (standardised β = -0.17,b = -6.72, partial R(2 = .02, p = 0.03, FVC (standardised β = -0.29, b = -9.31, partial R(2 = 0.04, p<0.001 and FEV1/FVC (standardised β = .13, b = 18.4, partial R(2 = 0.02, p = 0.04. CONCLUSION: Lower lung volumes are associated with increased vascular stiffness at an early age. The interaction between lung function and vascular stiffness may thus represent more than just age-related alterations in both the pulmonary and vascular systems.

  3. Global Stiffness Optimization of Parallel Robots Using Kinetostatic Performance Indices

    OpenAIRE

    Zhang, Dan

    2010-01-01

    This chapter focused on the stiffness optimization of a spatial 5-DOF parallel manipulator. It is shown that the mean value and the standard deviation of the trace of the generalized compliance matrix can not only be used to characterize the kinetostatic behaviour of PKMs globally, but can be used for design optimization. This methodology paves the way for providing not only the effective guidance, but also a new approach of dimensional synthesis for the optimal design of general parallel mec...

  4. Optimum lay-up design of variable stiffness composite structures

    OpenAIRE

    2011-01-01

    Advancements in automated fibre-placement (AFP) technology make it possible to take laminate tailoring further than just stacking sequence optimisation; they enable the designer to vary the fibre orientation angle spatially within each ply. Spatial variation of fibre orientation angles results in a variable stiffness (VS) laminate. The work presented in this thesis constitutes a possible second step of a two-step design process for VS composite structures. The first step is to optimise a VS c...

  5. Association between arterial stiffness and peritoneal small solute transport rate.

    Science.gov (United States)

    Zhe, Xing-wei; Tian, Xin-kui; Chen, Wei; Guo, Li-juan; Gu, Yue; Chen, Hui-min; Tang, Li-jun; Wang, Tao

    2008-05-01

    While cardiovascular disease accounts for 40-50% of the mortality in dialysis patients, and while a high peritoneal transport in continuous ambulatory peritoneal dialysis (CAPD) is an independent predictor of outcome, it is unclear if there are any links. Aortic stiffness has become established as a cardiovascular risk factor. We thus studied pulse wave velocity (PWV) in CAPD patients to explore the possible link between peritoneal small solute transport and aortic stiffness. CAPD patients (n = 76, 27 M/49 F) in our center were included in the present study. Aortic stiffness was assessed by brachial pulse pressure (PP) and carotid-femoral PWV. Patients' peritoneal small solute transport rate was assessed by D/P(cr) at 4 h. Extracellular water over total body water (E/T ratio) was assessed by means of bioimpedance analysis. C-reactive protein was also measured. Carotid-femoral PWV was positively associated with patients' age (r = 0.555; P < 0.01), time on peritoneal dialysis (r = 0.332; P < 0.01), diabetic status (r = 0.319; P < 0.01), D/P(cr) (r = 0.241; P < 0.05), PP (r = 0.475; P < 0.01), and E/T (r = 0.606; P < 0.01). In a multivariate regression analysis, carotid-femoral PWV was independently determined by E/T (P < 0.01), PP (P < 0.01), age (P < 0.01), and D/P(cr) (P < 0.05). D/P(cr), in addition to E/T, age, and PP, was an independent predictor of elevated carotid-femoral PWV in CAPD patients, suggesting that there might be a link between high aortic stiffness and increased peritoneal small solute transport rate.

  6. Arterial Stiffness in Patients Taking Second-generation Antipsychotics

    Science.gov (United States)

    Fındıklı, Ebru; Gökçe, Mustafa; Nacitarhan, Vedat; Camkurt, Mehmet Akif; Fındıklı, Hüseyin Avni; Kardaş, Selçuk; Şahin, Merve Coşgun; Karaaslan, Mehmet Fatih

    2016-01-01

    Objective That treatment with second-generation antipsychotics (SGAs) causes metabolic side effects and atherosclerosis in patients with schizophrenia and bipolar disorder (BD) is well-known. Increased arterial stiffness is an important marker of arteriosclerosis and has been identified as an independent risk factor for cardiovascular diseases. We measured pulse wave velocity (PWV) as a marker of arteriosclerosis in patients with schizophrenia and BD who use SGAs. Methods Patients and controls were collected from our psychiatry outpatient clinics or family medicine. Mental illness was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, 4th edition. Mean age, gender, systolic and diastolic blood pressure, body mass index, Framingham risk score (FRS), etc. were determined. Simultaneous electrocardiography and pulse wave were recorded with an electromyography device. The photo-plethysmographic method was used to record the pulse wave. Inclusion criteria included use of SGAs for at least the last six months. Patients with diseases that are known to cause stiffness and the use of typical antipsychotics were excluded. Results Ninety-six subject (56 patients, 40 controls) were included in our study. There were 49 females, 47 males. Patients had schizophrenia (n=17) and BD (n=39). Their treatments were quetiapine (n=15), risperidone (n=13), olanzapine (n=15), and aripiprazole (n=13). Although differences in mean age, gender, and FRS in the patient and control groups were not statistically significant (p=1), PWV was greater in patients in the antipsychotic group (p=0.048). Conclusion This study supported the liability to stiffness in patients with schizophrenia and BD. Using SGAs may contribute to arterial stiffness in these patients. PMID:27776389

  7. A new strategy for stiffness evaluation of sheet metal parts

    Science.gov (United States)

    Cai, Q.; Volk, W.; Düster, A.; Rank, E.

    2011-08-01

    In the automotive industry, surfaces of styling models are shaped very often in physical models. For example, in the styling process of a car body important design work is realized by clay models and the resulting geometry information typically comes from optical scans. The scanned data is given in the form of point clouds which is then utilized in the virtual planning process for engineering work, e.g. to evaluate the load-carrying capacity. This is an important measure for the stiffness of the car body panels. In this contribution, the following two issues are discussed: what is the suitable geometric representation of the stiffness of the car body and how it is computed if only discrete point clouds exist. In the first part, the suitable geometric representation is identified by constructing continuous CAD models with different geometric parameters, e.g. Gaussian curvature and mean curvature. The stiffness of models is then computed in LS-DYNA and the influence of different geometric parameters is presented based on the simulation result. In the second part, the point clouds from scanned data, rather than continuous CAD models, are directly utilized to estimate the Gaussian curvature, which is normally derived from continuous surfaces. The discrete Gauss-Bonnet algorithm is applied to estimate the Gaussian curvature of the point clouds and the sensitivity of the algorithm with respect to the mesh quality is analyzed. In this way, the stiffness evaluation process in an early stage can be accelerated since the transformation from discrete data to continuous CAD data is labor-intensive. The discrete Gauss-Bonnet algorithm is finally applied to a sheet metal model of the BMW 3 series.

  8. Cervical stiffness evaluated in vivo by endoflip in pregnant women.

    Directory of Open Access Journals (Sweden)

    Lene Hee

    Full Text Available OBJECTIVE: To determine the stiffness of the pregnant uterine cervix in vivo. METHOD: Five women in early pregnancy and six women in late pregnancy were included. The EndoFlip is a 1-m-long probe with a 12-cm-long bag mounted on the tip. The tip of the probe was inserted into the cervical canal. Sensors spaced at 0.5-cm intervals along the probe were used to determine 16 serial cross-sectional areas of the bag. The diameter of the cervical canal could thereby be determined during inflation with up to 50 ml saline solution. Tissue stiffness was calculated from the geometric profiles and the pressure-strain elastic modulus (EP at each sensor site. Three parts of the cervix were defined: the uterus-near part, the middle and the vaginal part. The EPmax was defined as the highest EP detected along the cervical canal. RESULTS: The EPmax was always found in the middle part of the cervix. The median EPmax was 243 kPa (IQR, 67-422 kPa for the early pregnant women and 5 kPa (IQR, 4-15 kPa for those at term. In the early pregnant women the stiffness differed along the cervical length (p<0.05 whereas difference along the cervix was not found for late pregnant women. A positive correlation coefficient (Spearman's rho was established between the EPs of the uterus-near and the middle part (0.84, between the vaginal and the middle part (0.81, and between the uterus-near and the vaginal part (0.85. CONCLUSION: This new method can estimate the stiffness along the cervical canal in vivo. This method may be useful in the clinical examination of the biomechanical properties of the uterine cervix.

  9. Joint stiffness of the ankle and the knee in running.

    Science.gov (United States)

    Günther, Michael; Blickhan, Reinhard

    2002-11-01

    The spring-mass model is a valid fundament to understand global dynamics of fast legged locomotion under gravity. The underlying concept of elasticity, implying leg stiffness as a crucial parameter, is also found on lower motor control levels, i.e. in muscle-reflex and muscle-tendon systems. Therefore, it seems reasonable that global leg stiffness emerges from local elasticity established by appropriate joint torques. A recently published model of an elastically operating, segmented leg predicts that proper adjustment of joint elasticities to the leg geometry and initial conditions of ground contact provides internal leg stability. Another recent study suggests that in turn the leg segmentation and the initial conditions may be a consequence of metabolic and bone stress constraints. In this study, the theoretical predictions were verified experimentally with respect to initial conditions and elastic joint characteristics in human running. Kinematics and kinetics were measured and the joint torques were estimated by inverse dynamics. Stiffnesses and elastic nonlinearities describing the resulting joint characteristics were extracted from parameter fits. Our results clearly support the theoretical predictions: the knee joint is always stiffer and more extended than the ankle joint. Moreover, the knee torque characteristic on the average shows the higher nonlinearity. According to literature, the leg geometry is a consequence of metabolic and material stress limitations. Adapted to this given geometry, the initial joint angle conditions in fast locomotion are a compromise between metabolic and control effort minimisation. Based on this adaptation, an appropriate joint stiffness ratio between ankle and knee passively safeguards the internal leg stability. The identified joint nonlinearities contribute to the linearisation of the leg spring.

  10. A two-surface plasticity model for stiff clay

    OpenAIRE

    2015-01-01

    This paper presents a constitutive model for describing some important features of the behavior of natural stiff clay evidenced experimentally such as the limited elastic zone, the presence of strain hardening and softening, and the smooth transition from elastic behavior to a plastic one. The model, namely ACC-2, is an adapted Modified Cam Clay model with two yield surfaces: similarly to bounding surface plasticity theory, an additional yield surface?namely Inner yield surface?was adopted to...

  11. Cystatin C Associates with Arterial Stiffness in Older Adults

    Science.gov (United States)

    Madero, Magdalena; Wassel, Christina L.; Peralta, Carmen A.; Najjar, Samer S.; Sutton-Tyrrell, Kim; Fried, Linda; Canada, Robert; Newman, Anne; Shlipak, Michael G.; Sarnak, Mark J.

    2009-01-01

    Large arteries commonly become stiff in kidney failure, but few studies have investigated arterial stiffness in earlier stages of kidney disease. We evaluated the association between kidney function and aortic pulse wave velocity (aPWV) and its potential modification by race, diabetes, or coronary heart disease in older adults. We measured aPWV in 2468 participants in the Health Aging and Body Composition (Health ABC) study; mean age was 73.7 yr, 40% were black, and 24% had diabetes. After categorizing kidney function into three groups on the basis of cystatin C level, multivariable analysis revealed that the medium and high cystatin C groups associated with a 5.3% (95% confidence interval 0.8 to 10.0%) and 8.0% (95% confidence interval 2.2 to 14.1%) higher aPWV than the low cystatin C group; however, chronic kidney disease, as defined by estimated GFR <60 ml/min per 1.73 m2, did not significantly associate with aPWV. We did not identify interactions between cystatin C and race, diabetes, or coronary heart disease. In conclusion, stiffness of large arteries, a major risk factor for cardiovascular disease, may partially mediate the association between cystatin C and cardiovascular risk in older adults. PMID:19357259

  12. Analytically optimal parameters of dynamic vibration absorber with negative stiffness

    Science.gov (United States)

    Shen, Yongjun; Peng, Haibo; Li, Xianghong; Yang, Shaopu

    2017-02-01

    In this paper the optimal parameters of a dynamic vibration absorber (DVA) with negative stiffness is analytically studied. The analytical solution is obtained by Laplace transform method when the primary system is subjected to harmonic excitation. The research shows there are still two fixed points independent of the absorber damping in the amplitude-frequency curve of the primary system when the system contains negative stiffness. Then the optimum frequency ratio and optimum damping ratio are respectively obtained based on the fixed-point theory. A new strategy is proposed to obtain the optimum negative stiffness ratio and make the system remain stable at the same time. At last the control performance of the presented DVA is compared with those of three existing typical DVAs, which were presented by Den Hartog, Ren and Sims respectively. The comparison results in harmonic and random excitation show that the presented DVA in this paper could not only reduce the peak value of the amplitude-frequency curve of the primary system significantly, but also broaden the efficient frequency range of vibration mitigation.

  13. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    REN ChaoFeng; HOU ZhenDe; ZHAO Wei

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies, bone tissues will grow into their porous structure, which will reinforce their strength and stiffness. The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around, as if they were part of the bone. The mechanical compatibility of bone substitutes includes both static and dynamic behavior, due to the mechanical properties of bone depending on the strain rate. In this study, split Hopkinson pressure bar technique (SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite, bones with and bones without organic com-ponents, and their dynamic stress-strain curves of the three materials were obtained. The mechanical effects of collagens in bone were assessed, by comparing the difference between the Young's moduli of the three materials. As the implanted bone substitute becomes a part of bone, it can be regarded as an inclusion composite. The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness. The evaluated result shows that the suitable porosity of HA is0.8, which is in favor of both static and dynamic stiffness compatibility.

  14. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies,bone tissues will grow into their porous structure,which will reinforce their strength and stiffness.The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around,as if they were part of the bone.The mechanical compatibility of bone substitutes includes both static and dynamic behavior,due to the mechanical properties of bone depending on the strain rate.In this study,split Hopkinson pressure bar technique(SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite,bones with and bones without organic com-ponents,and their dynamic stress-strain curves of the three materials were obtained.The mechanical effects of collagens in bone were assessed,by comparing the difference between the Young’s moduli of the three materials.As the implanted bone substitute becomes a part of bone,it can be regarded as an inclusion composite.The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness.The evaluated result shows that the suitable porosity of HA is 0.8,which is in favor of both static and dynamic stiffness compatibility.

  15. Leg stiffness modulation during exhaustive stretch-shortening cycle exercise.

    Science.gov (United States)

    Kuitunen, S; Kyröläinen, H; Avela, J; Komi, P V

    2007-02-01

    The present study examined the effects of muscle activity modulation on leg stiffness during an exhaustive stretch-shortening cycle (SSC) exercise in eight male subjects. Reaction force, electromyography (EMG) of the soleus (Sol), gastrocnemius (Ga) and vastus lateralis (VL) muscles and sledge seat position were recorded during the SSC exercise, consisting of 100 maximal intermittent drop jumps followed by a continuous submaximal jumping until exhaustion, on a sledge apparatus. Metabolic loading was determined by measuring blood lactate (La). No change was found in leg stiffness during the maximal jumps, whereas the subsequent submaximal jumping induced a significant reduction by 27+/-12% (PEMG ratio between the braking and push-off phases in Sol (r=0.81, PEMG ratio at the end of the submaximal jumping in Sol (r=-0.88, Pmodulation between the braking and push-off phases in the triceps surae muscle, particularly in Ga, plays an important role in leg stiffness adjustments during fatiguing SSC exercise. It is suggested that efficient activity modulation (i.e. high EMG ratio) of the triceps surae muscle during an intensive fatiguing SSC exercise may postpone the exhaustion and development of metabolic fatigue.

  16. Strength and stiffness reduction factors for infilled frames with openings

    Science.gov (United States)

    Decanini, Luis D.; Liberatore, Laura; Mollaioli, Fabrizio

    2014-09-01

    Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence of infill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.

  17. Matrix stiffness affects endocytic uptake of MK2-inhibitor peptides.

    Directory of Open Access Journals (Sweden)

    Jamie L Brugnano

    Full Text Available In this study, the role of substrate stiffness on the endocytic uptake of a cell-penetrating peptide was investigated. The cell-penetrating peptide, an inhibitor of mitogen-activated protein kinase activated protein kinase II (MK2, enters a primary mesothelial cell line predominantly through caveolae. Using tissue culture polystyrene and polyacrylamide gels of varying stiffness for cell culture, and flow cytometry quantification and enzyme-linked immunoassays (ELISA for uptake assays, we showed that the amount of uptake of the peptide is increased on soft substrates. Further, peptide uptake per cell increased at lower cell density. The improved uptake seen on soft substrates in vitro better correlates with in vivo functional studies where 10-100 µM concentrations of the MK2 inhibitor cell penetrating peptide demonstrated functional activity in several disease models. Additional characterization showed actin polymerization did not affect uptake, while microtubule polymerization had a profound effect on uptake. This work demonstrates that cell culture substrate stiffness can play a role in endocytic uptake, and may be an important consideration to improve correlations between in vitro and in vivo drug efficacy.

  18. Matrix stiffness affects endocytic uptake of MK2-inhibitor peptides.

    Science.gov (United States)

    Brugnano, Jamie L; Panitch, Alyssa

    2014-01-01

    In this study, the role of substrate stiffness on the endocytic uptake of a cell-penetrating peptide was investigated. The cell-penetrating peptide, an inhibitor of mitogen-activated protein kinase activated protein kinase II (MK2), enters a primary mesothelial cell line predominantly through caveolae. Using tissue culture polystyrene and polyacrylamide gels of varying stiffness for cell culture, and flow cytometry quantification and enzyme-linked immunoassays (ELISA) for uptake assays, we showed that the amount of uptake of the peptide is increased on soft substrates. Further, peptide uptake per cell increased at lower cell density. The improved uptake seen on soft substrates in vitro better correlates with in vivo functional studies where 10-100 µM concentrations of the MK2 inhibitor cell penetrating peptide demonstrated functional activity in several disease models. Additional characterization showed actin polymerization did not affect uptake, while microtubule polymerization had a profound effect on uptake. This work demonstrates that cell culture substrate stiffness can play a role in endocytic uptake, and may be an important consideration to improve correlations between in vitro and in vivo drug efficacy.

  19. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials.

    Science.gov (United States)

    Filipov, Evgueni T; Tachi, Tomohiro; Paulino, Glaucio H

    2015-10-06

    Thin sheets have long been known to experience an increase in stiffness when they are bent, buckled, or assembled into smaller interlocking structures. We introduce a unique orientation for coupling rigidly foldable origami tubes in a "zipper" fashion that substantially increases the system stiffness and permits only one flexible deformation mode through which the structure can deploy. The flexible deployment of the tubular structures is permitted by localized bending of the origami along prescribed fold lines. All other deformation modes, such as global bending and twisting of the structural system, are substantially stiffer because the tubular assemblages are overconstrained and the thin sheets become engaged in tension and compression. The zipper-coupled tubes yield an unusually large eigenvalue bandgap that represents the unique difference in stiffness between deformation modes. Furthermore, we couple compatible origami tubes into a variety of cellular assemblages that can enhance mechanical characteristics and geometric versatility, leading to a potential design paradigm for structures and metamaterials that can be deployed, stiffened, and tuned. The enhanced mechanical properties, versatility, and adaptivity of these thin sheet systems can provide practical solutions of varying geometric scales in science and engineering.

  20. Boundary Conformal Field Theory

    CERN Document Server

    Cardy, J L

    2004-01-01

    Boundary conformal field theory (BCFT) is simply the study of conformal field theory (CFT) in domains with a boundary. It gains its significance because, in some ways, it is mathematically simpler: the algebraic and geometric structures of CFT appear in a more straightforward manner; and because it has important applications: in string theory in the physics of open strings and D-branes, and in condensed matter physics in boundary critical behavior and quantum impurity models. In this article, however, I describe the basic ideas from the point of view of quantum field theory, without regard to particular applications nor to any deeper mathematical formulations.

  1. Mending fences: repairing boundaries through ego state therapy.

    Science.gov (United States)

    Phillips, Maggie

    2013-07-01

    Ego state therapy has often been cited as an effective treatment to help repair fragmentation related to posttraumatic stress and dissociative disorders. This article explores how specialized work with ego states can help to clarify and strengthen internal and external boundaries, create greater boundary flexibility, and contribute to containment and self-regulation. Applications of direct and indirect hypnosis to repair boundary issues through ego state therapy are emphasized, and clinical case examples are used to illustrate results.

  2. Polyacrylamide scaffolds for studying cellular response to substrate stiffness in three dimensions

    Science.gov (United States)

    Lin, Keng-Hui

    2013-03-01

    Recent developments in two-dimensional (2D) culture substrates with tunable stiffness and patterned adhesion ligands have demonstrated that biochemical and mechanical cues regulate the biological functions of living cells. We have extended these cell culture platforms into three dimensions (3D), as in complex biological systems, by producing highly ordered scaffolds of polyacrylamide coated with extracellular matrix proteins. We characterized parameters for the scaffold fabrication. We then grew individual fibroblasts in the identical pores of our scaffolds, examing cellular morphological, cytoskeletal, and adhesion properties. We have observed rich variety of morphologies and anchoring strategies assumed by cells growing on our tunable 3D polyacrylamide scaffolds to demonstrate the richness of cell-mciroenvironment interactions when cell adhesions are not confined to 2D surfaces.

  3. Microcirculatory disorders in scleroderma systematica: an association with vascular wall stiffness

    Directory of Open Access Journals (Sweden)

    Ulyana Yuryevna Ruzhentsova

    2013-01-01

    Full Text Available Objective: to study the specific features of regulation of peripheral vascular tone and their association with the endothelial structure and function of large vessels in patients with scleroderma systematica (SDS. Subjects and methods. The investigation enrolled 25 patients with SDS (mean age, 47±2.6 years; mean disease duration, 8.3+1.7 years and 15 apparently healthy individuals matched for age and gender. Comprehensive examination involved laboratory and instrumental studies, laser Doppler study to evaluate endothelium-dependent and endothelium-independent vasodilation, as well as applanation tonometry calculating the pulse wave velocity and augmentation index. Results. All the patients were found to have impaired peripheral vascular responsiveness as compared to the controls. The examination established a relationship between the magnitude of endothelium-dependent vasodilation and the stiffness index of large vessels. There was no association between endothelium-independent vasodilation and vascular elasticity parameters.

  4. A comparison of muscle stiffness and musculoarticular stiffness of the knee joint in young athletic males and females.

    Science.gov (United States)

    Wang, Dan; De Vito, Giuseppe; Ditroilo, Massimiliano; Fong, Daniel T P; Delahunt, Eamonn

    2015-06-01

    The objective of this study was to investigate the gender-specific differences in peak torque (PT), muscle stiffness (MS) and musculoarticular stiffness (MAS) of the knee joints in a young active population. Twenty-two male and twenty-two female recreational athletes participated. PT of the knee joint extensor musculature was assessed on an isokinetic dynamometer, MS of the vastus lateralis (VL) muscle was measured in both relaxed and contracted conditions, and knee joint MAS was quantified using the free oscillation technique. Significant gender differences were observed for all dependent variables. Females demonstrated less normalized PT (mean difference (MD)=0.4Nm/kg, p=0.005, η(2)=0.17), relaxed MS (MD=94.2N/m, pknee joint injury incidence and prevalence in females when compared to males.

  5. Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension

    Directory of Open Access Journals (Sweden)

    Palatini P

    2011-12-01

    Full Text Available Paolo Palatini1, Edoardo Casiglia1, Jerzy Gąsowski2, Jerzy Głuszek3, Piotr Jankowski4, Krzysztof Narkiewicz5, Francesca Saladini1, Katarzyna Stolarz-Skrzypek4, Valérie Tikhonoff1, Luc Van Bortel6, Wiktoria Wojciechowska4, Kalina Kawecka-Jaszcz41Department of Clinical and Experimental Medicine, University of Padova, Padua, Italy; 2Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Kraków, Poland; 3Department of Arterial Hypertension, University Hospital, Poznan, Poland; 4First Department of Cardiology and Hypertension, Jagiellonian University Medical College, Kraków, Poland; 5Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland; 6Heymans Institute of Pharmacology, Ghent University, Ghent, BelgiumAbstract: This review summarizes several scientific contributions at the recent Satellite Symposium of the European Society of Hypertension, held in Milan, Italy. Arterial stiffening and its hemodynamic consequences can be easily and reliably measured using a range of noninvasive techniques. However, like blood pressure (BP measurements, arterial stiffness should be measured carefully under standardized patient conditions. Carotid-femoral pulse wave velocity has been proposed as the gold standard for arterial stiffness measurement and is a well recognized predictor of adverse cardiovascular outcome. Systolic BP and pulse pressure in the ascending aorta may be lower than pressures measured in the upper limb, especially in young individuals. A number of studies suggest closer correlation of end-organ damage with central BP than with peripheral BP, and central BP may provide additional prognostic information regarding cardiovascular risk. Moreover, BP-lowering drugs can have differential effects on central aortic pressures and hemodynamics compared with brachial BP. This may explain the greater beneficial effect provided by newer antihypertensive drugs beyond peripheral BP

  6. National Forest Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme shows the USFS national forest boundaries in the state. This data was acquired from the GIS coordinators at both the Chippewa National Forest and the...

  7. Allegheny County Parcel Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...

  8. Allegheny County Boundary

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the Allegheny County boundary. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  9. FWS Approved Acquisition Boundaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This data layer depicts the external boundaries of lands and waters that are approved for acquisition by the U.S. Fish and Wildlife Service (USFWS) in North America,...

  10. 500 Cities: City Boundaries

    Data.gov (United States)

    U.S. Department of Health & Human Services — This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities...

  11. State Park Statutory Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Legislative statutory boundaries for sixty six state parks, six state recreation areas, and eight state waysides. These data are derived principally from DNR's...

  12. NM School District Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The dataset represents the boundaries of all public school districts in the state of New Mexico. The source for the data layer is the New Mexico Public Education...

  13. Site Area Boundaries

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of site boundaries from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and...

  14. FWS Approved Acquisition Boundaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This data layer depicts the external boundaries of lands and waters that are approved for acquisition by the U.S. Fish and Wildlife Service (USFWS) in North...

  15. The boundary l

    Directory of Open Access Journals (Sweden)

    Muhammad Naseer

    2014-09-01

    Full Text Available The present problem is the steady boundary layer flow and heat transfer of a hyperbolic tangent fluid flowing over a vertical exponentially stretching cylinder in its axial direction. After applying usual boundary layer with a suitable similarity transformation to the given partial differential equations and the boundary conditions, a system of coupled nonlinear ordinary differential equations is obtained. This system of ordinary differential equations subject to the boundary conditions is solved with the help of Runge–Kutta–Fehlberg method. The effects of the involved parameters such as Reynolds numbers, Prandtl numbers, Weissenberg numbers and the natural convection parameter are presented through the graphs. The associated physical properties on the flow and heat transfer characteristics that is the skin friction coefficient and Nusselt numbers are presented for different parameters.

  16. HUC 8 Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital hydrologic unit boundary that is at the 4-digit, 6-digit, 8-digit, and 11-digit level. The data set was developed by delineating the...

  17. Watershed Boundary Areas

    Data.gov (United States)

    Department of Homeland Security — This map layer contains hydrologic unit boundaries and codes for the United States, Puerto Rico, and the U.S. Virgin Islands. It was revised for inclusion in the...

  18. Shared care and boundaries:

    DEFF Research Database (Denmark)

    Winthereik, Brit Ross

    2008-01-01

    and technology studies. Findings – The paper shows how a version of “the responsible patient” emerges from the project which is different from the version envisioned by the project organisation. The emerging one is concerned with the boundary between primary and secondary sector care, and not with the boundary...... of healthcare in relation to IT design. Originality/value – The paper shows that “unshared” care does not exist; care is always shared among human and nonhuman actors. It also points to the value of studying how boundaries are enacted in projects that seek to create continuity across boundaries. Udgivelsesdato......Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science...

  19. Tax Unit Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — The Statewide GIS Tax Unit boundary file was created through a collaborative partnership between the State of Kansas Department of Revenue Property Valuation...

  20. Minnesota County Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography...

  1. Planetary boundaries: guiding human development on a changing planet

    NARCIS (Netherlands)

    Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.; Biggs, R.; Vries, de W.

    2015-01-01

    The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth System. Here, we revise and update the planetary boundaries framework, with a focus on the underpinning biophysical science, based on t

  2. Shifting Institutional Boundaries through Cross-Border Higher Education

    Science.gov (United States)

    Amaral, Alberto; Tavares, Orlanda; Cardoso, Sónia; Sin, Cristina

    2016-01-01

    Cross-border higher education (CBHE) has been changing the organizational boundaries of higher education institutions (HEIs). This study aims to analyze the shifting boundaries of Portuguese HEIs through the lens of the identity concept in organization theories, considering three contexts with different levels of regulation: African…

  3. Theoretical Design and Characteristics Analysis of a Quasi-Zero Stiffness Isolator Using a Disk Spring as Negative Stiffness Element

    Directory of Open Access Journals (Sweden)

    Lingshuai Meng

    2015-01-01

    Full Text Available This paper presents a novel quasi-zero stiffness (QZS isolator designed by combining a disk spring with a vertical linear spring. The static characteristics of the disk spring and the QZS isolator are investigated. The optimal combination of the configurative parameters is derived to achieve a wide displacement range around the equilibrium position in which the stiffness has a low value and changes slightly. By considering the overloaded or underloaded conditions, the dynamic equations are established for both force and displacement excitations. The frequency response curves (FRCs are obtained by using the harmonic balance method (HBM and confirmed by the numerical simulation. The stability of the steady-state solution is analyzed by applying Floquet theory. The force, absolute displacement, and acceleration transmissibility are defined to evaluate the isolation performance. Effects of the offset displacement, excitation amplitude, and damping ratio on the QZS isolator and the equivalent system (ELS are studied. The results demonstrate that the QZS isolator for overloaded or underloaded can exhibit different stiffness characteristics with changing excitation amplitude. If loaded with an appropriate mass, excited by not too large amplitude, and owned a larger damper, the QZS isolator can possess better isolation performance than its ELS in low frequency range.

  4. Static Stiffness Analysis of a New Type 6-DOF Micro-manipulation Robot

    Institute of Scientific and Technical Information of China (English)

    YE Xin; ZHANG Zhi-jing; YAO Can; YANG Bo; LI Yuan

    2007-01-01

    A 6-DOF micro-manipulation robot based on a 3-PPTTRS mechanism is proposed in this paper. Its static stiffness is an important index to evaluate load capacity and positioning accuracy. However, it is insufficient to consider the static stiffness only when the robot is in its initial pose. The stiffness in different positions and poses in its work space must be analyzed also. Thus a method to analyze the relationship between static stiffness and poses in the whole work space is presented. A static stiffness model is proposed first, and the relationship between structural parameters and static stiffness in different poses is discussed. The static stiffness analysis provides foundation for structural parameter design.

  5. GRAI N-BOUNDARY DIFFUSION

    OpenAIRE

    Peterson, N.

    1982-01-01

    The more useful experimental techniques for determining grain-boundary diffusion are briefly described followed by a presentation of results that shed light on the models and mechanisms of grain-boundary and dislocation diffusion. Studies of the following grain-boundary diffusion phenomena will be considered ; anisotropy in grain-boundary diffusion, effect of orientation relationship on grain-boundary diffusion, effect of boundary type and dislocation dissociation, lattice structure, correlat...

  6. A METHOD OF DETERMINING THE COORDINATES OF THE STIFFNESS CENTER AND THE STIFFNESS PRINCIPAL AXIS OF THE VIBRATING SYSTEM WITH DAMPING

    OpenAIRE

    2014-01-01

    The report presents a methodology to determine the directions of the stiffness principal axis (in this case subject to the linear displacement and forced rotation angle) of a solid object interact with the surrounding environment by resilient bearing supports. The results also show that determining the coordinates of the stiffness center in the vibrating system with damping factors is necessary in our research.

  7. Effects of safflower seed extract on arterial stiffness

    Directory of Open Access Journals (Sweden)

    Katsuya Suzuki

    2010-11-01

    Full Text Available Katsuya Suzuki1, Shigekazu Tsubaki2, Masami Fujita3, Naoto Koyama1, Michio Takahashi1, Kenji Takazawa41Research Institute for Health Fundamentals, Ajinomoto Co., Inc., Kawasaki; 2Samoncho Clinic, Tokyo; 3Shinanozaka Clinic, Tokyo; 4Tokyo Medical University Hachioji Medical Center, Tokyo, JapanAbstract: Safflower seed extract (SSE contains characteristic polyphenols and serotonin derivatives (N-(p-coumaroyl serotonin and N-feruloylserotonin, which are reported to inhibit oxidation of low-density lipoprotein (LDL, formation of atherosclerotic plaques, and improve arterial stiffness as assessed by pulse wave analysis in animal models. The effects of long-term supplementation with SSE on arterial stiffness in human subjects were evaluated. This double-blind, placebo-controlled study was conducted in 77 males (35–65 years and 15 postmenopausal females (55–65 years with high-normal blood pressure or mild hypertension who were not undergoing treatment. Subjects received SSE (70 mg/day as serotonin derivatives or placebo for 12 weeks, and pulse wave measurements, ie, second derivative of photoplethysmogram (SDPTG, augmentation index, and brachial-ankle pulse wave velocity (baPWV were conducted at baseline, and at weeks 4, 8, and 12. Vascular age estimated by SDPTG aging index improved in the SSE-supplemented group when compared with the placebo group at four (P = 0.0368 and 12 weeks (P = 0.0927. The trend of augmentation index reduction (P = 0.072 versus baseline was observed in the SSE-supplemented group, but reduction of baPWV by SSE supplementation was not observed. The SSE-supplemented group also showed a trend towards a lower malondialdehyde-modified-LDL autoantibody titer at 12 weeks from baseline. These results suggest long-term ingestion of SSE in humans could help to improve arterial stiffness.Keywords: safflower, serotonin derivatives, antioxidants, augmentation index, pulse wave velocity

  8. Structural dynamics and resonance in plants with nonlinear stiffness.

    Science.gov (United States)

    Miller, Laura A

    2005-06-21

    Although most biomaterials are characterized by strong stiffness nonlinearities, the majority of studies of plant biomechanics and structural dynamics focus on the linear elastic range of their behavior. In this paper, the effects of hardening (elastic modulus increases with strain) and softening (elastic modulus decreases with strain) nonlinearities on the structural dynamics of plant stems are investigated. A number of recent studies suggest that trees, crops, and other plants often uproot or snap when they are forced by gusting winds or waves at their natural frequency. This can be attributed to the fact that the deflections of the plant, and hence mechanical stresses along the stem and root system, are greatest during resonance. To better understand the effect of nonlinear stiffness on the resonant behavior of plants, plant stems have been modeled here as forced Duffing oscillators with softening or hardening nonlinearities. The results of this study suggest that the resonant behavior of plants with nonlinear stiffness is substantially different from that predicted by linear models of plant structural dynamics. Parameter values were considered over a range relevant to most plants. The maximum amplitudes of deflection of the plant stem were calculated numerically for forcing frequencies ranging from zero to twice the natural frequency. For hardening nonlinearities, the resonant behavior was 'pushed' to higher frequencies, and the maximum deflection amplitudes were lower than for the linear case. For softening nonlinearities, the resonant behavior was pushed to lower frequencies, and the maximum deflection amplitudes were higher than for the linear case. These nonlinearities could be beneficial or detrimental to the stability of the plant, depending on the environment. Damping had the effect of drastically decreasing deflection amplitudes and reducing the effect of the nonlinearities.

  9. Bioactive polyacrylamide hydrogels with gradients in mechanical stiffness.

    Science.gov (United States)

    Diederich, Vincent E G; Studer, Peter; Kern, Anita; Lattuada, Marco; Storti, Giuseppe; Sharma, Ram I; Snedeker, Jess G; Morbidelli, Massimo

    2013-05-01

    We propose a novel, single step method for the production of polyacrylamide hydrogels with a gradient in mechanical properties. In contrast to already existing techniques such as UV photo-polymerization with photomasks (limited penetration depth) or microfluidic gradient mixers (complex microfluidic chip), this technique is not suffering such limitations. Young's modulus of the hydrogels was varied by changing the total monomer concentration of the hydrogel precursor solution. Using programmable syringe pumps, the total monomer concentration in the solution fed to the hydrogel mold was varied from 16 wt% down to 5 wt% over the feeding time to obtain a gradient in compliance ranging from 150 kPa down to 20 kPa over a length of 10 mm down to 2.5 mm. Polymerization was achieved with the dual initiation system composed of ammonium persulfate and N,N,N',N'-tetramethylethylenediamine, which were both fed through separate capillaries to avoid premature polymerization. Functionalized with the model ligand collagen I, the substrates were bioactive and supported the attachment of human foreskin fibroblasts (around 30% of the cells seeded attached after 1 h). A kinetic morphology study on homogeneous hydrogels of different stiffness's indicated that fibroblasts tend to spread to their final size within 2 h on stiff substrates, while the spreading time was much longer (ca. 4-5 h) on soft substrates. These trends were confirmed on hydrogels with compliance gradients, showing well spread fibroblasts on the stiff end of the hydrogel after 2 h, while the cells on the soft end still had small area and rounded morphology.

  10. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    Science.gov (United States)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin–Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin–Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple

  11. Analysis of structural - acoustic coupling of elastic rectangular enclosure with arbitrary boundary conditions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The structural acoustic coupling characteristics of a rectangular enclosure consisting of two elastic supported flexible plates and four rigid plates are analyzed. A general formulation considering the full coupling between the plates and cavity is developed by using Hamiltonian function and Rayleigh-Ritz method. By means of continuous distributions of artificial springs along boundary of flexible plates, a wide variety of boundary conditions and structure joint conditions are considered. To demonstrate the validity of the analytical model,the responses of sound pressure in the cavity and plate velocity are worked out. The analytical results coincides well with Kim's experimental results. The result is satisfactory. Finally, analytical results on the structure vibration and the sound field inside the cavity are presented.These results indicate that the coupling of the combined structure is relatively weak, so the internal cavity sound is controlled by plate directly excited,and the translational stiffness affects the sound more than the rotational stiffness does.

  12. Numerical Solution for Stiff Dynamic Equations of Flexible Multibody System

    Institute of Scientific and Technical Information of China (English)

    L(U) Yan-ping; WU Guo-rong

    2008-01-01

    A nonlinear numerical integration method, based on forward and backward Euler integration methods, is proposed for solving the stiff dynamic equations of a flexible multibody system, which are transformed from the second order to the first order by adop- ring state variables. This method is of A0 stability and infinity stability. The numerical solutions violating the constraint equations are corrected by Blajer's modification approach. Simulation results of a slider-crank mechanism by the proposed method are in good a- greement with ones from other literature.

  13. Superfluid stiffness of a driven dissipative condensate with disorder.

    Science.gov (United States)

    Janot, Alexander; Hyart, Timo; Eastham, Paul R; Rosenow, Bernd

    2013-12-01

    Observations of macroscopic quantum coherence in driven systems, e.g. polariton condensates, have strongly stimulated experimental as well as theoretical efforts during the last decade. We address the question of whether a driven quantum condensate is a superfluid, allowing for the effects of disorder and its nonequilibrium nature. We predict that for spatial dimensions d<4 the superfluid stiffness vanishes once the condensate exceeds a critical size, and treat in detail the case d=2. Thus a nonequilibrium condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid behavior would persist in small systems.

  14. Stiffness, resilience, compressibility. Atomic scale force spectroscopy of biomolecules

    Science.gov (United States)

    Leu, Bogdan M.; Sage, J. Timothy

    2016-12-01

    The flexibility of a protein is an important component of its functionality. We use nuclear resonance vibrational spectroscopy (NRVS) to quantify the flexibility of the heme iron environment in the electron-carrying protein cytochrome c by measuring the stiffness and the resilience. These quantities are sensitive to structural differences between the active sites of different proteins, as illustrated by a comparative analysis with myoglobin. The elasticity of the entire protein, on the other hand, can be probed quantitatively from NRVS and high energy-resolution inelastic X-ray scattering (IXS) measurements, an approach that we used to extract the bulk modulus of cytochrome c.

  15. Stiffness of serial and quasi-serial manipulators: comparison analysis

    Directory of Open Access Journals (Sweden)

    Klimchik Alexandr

    2016-01-01

    Full Text Available The paper deals with comparison analysis of serial and quasi-serial manipulators. It shows a difference between stiffness behaviours of corresponding industrial robots under external loading, which is caused by machining process. The analysis is based on the estimation of compliance errors induced by cutting forces that are applied to the manipulator end-effector. We demonstrate that the quasi-seral manipulators are preferable for large-dimensional tasks while the quasi-serial ones better suit small size tasks.

  16. Cervical Stiffness Evaluated In Vivo by Endoflip in Pregnant Women

    OpenAIRE

    Lene Hee; Donghua Liao; Puk Sandager; Hans Gregersen; Niels Uldbjerg

    2014-01-01

    OBJECTIVE: To determine the stiffness of the pregnant uterine cervix in vivo. METHOD: Five women in early pregnancy and six women in late pregnancy were included. The EndoFlip is a 1-m-long probe with a 12-cm-long bag mounted on the tip. The tip of the probe was inserted into the cervical canal. Sensors spaced at 0.5-cm intervals along the probe were used to determine 16 serial cross-sectional areas of the bag. The diameter of the cervical canal could thereby be determined during inflation wi...

  17. Material selection for acoustic radiators that are light and stiff.

    Science.gov (United States)

    Porter, S P; Markley, D C; Van Tol, D J; Meyer, R J

    2011-01-01

    The headmass is a key element in tonpilz transducer design. As an acoustic radiator, a successful headmass must be built from a material that is both light and stiff. To assess the suitability of ceramics for this application, the authors used the mechanical properties of candidate materials to perform a theoretical comparison based on the flexural behavior of square plates. Although not a comprehensive metric for identifying the best headmass materials, the headmass flexure may be usefully employed as a first-level selection criteria. A software routine based on thin plate and thick plate theory was created to evaluate the flexural behavior in candidate materials.

  18. Dynamic Stiffness Matrix for a Beam Element with Shear Deformation

    Directory of Open Access Journals (Sweden)

    Walter D. Pilkey

    1995-01-01

    Full Text Available A method for calculating the dynamic transfer and stiffness matrices for a straight Timoshenko shear beam is presented. The method is applicable to beams with arbitrarily shaped cross sections and places no restrictions on the orientation of the element coordinate system axes in the plane of the cross section. These new matrices are needed because, for a Timoshenko beam with an arbitrarily shaped cross section, deflections due to shear in the two perpendicular planes are coupled even when the coordinate axes are chosen to be parallel to the principal axes of inertia.

  19. Stochastic Plane Stress Analysis with Elementary Stiffness Matrix Decomposition Method

    Science.gov (United States)

    Er, G. K.; Wang, M. C.; Iu, V. P.; Kou, K. P.

    2010-05-01

    In this study, the efficient analytical method named elementary stiffness matrix decomposition (ESMD) method is further investigated and utilized for the moment evaluation of stochastic plane stress problems in comparison with the conventional perturbation method in stochastic finite element analysis. In order to evaluate the performance of this method, computer programs are written and some numerical results about stochastic plane stress problems are obtained. The numerical analysis shows that the computational efficiency is much increased and the computer EMS memory requirement can be much reduced by using ESMD method.

  20. Atypical low back pain: stiff-person syndrome.

    Science.gov (United States)

    Gallien, Philippe; Durufle, Aurélie; Petrilli, Sabine; Verin, Marc; Brissot, Régine; Robineau, Sandrine

    2002-03-01

    Stiff-person syndrome was diagnosed in a patient with chronic low back pain. The diagnosis of this rare neurological condition rests mainly on the clinical findings of axial and proximal limb rigidity, increased lumbar lordosis often accompanied with pain, and normal neurological findings apart from brisk deep tendon reflexes. Electromyography of the lumbar paraspinal muscles shows motor unit firing at rest with normal appearance of the motor unit potentials. Titers of antibody to glutamic acid decarboxylase are elevated. Diazepam is the treatment of reference. Physical therapy can substantially improve quality of life.

  1. Photoinduced variable stiffness of spiropyran-based composites

    Energy Technology Data Exchange (ETDEWEB)

    Samoylova, E.; Ceseracciu, L.; Allione, M.; Diaspro, A.; Barone, A. C. [Istituto Italiano di Tecnologia, via Morego 30, Genova I-16163 (Italy); Athanassiou, A. [Istituto Italiano di Tecnologia, via Morego 30, Genova I-16163 (Italy); Center for Biomolecular Nanotechnologies-Unile, Istituto Italiano di Tecnologia, via Barsanti, Arnesano (Lecce) I-73010 (Italy)

    2011-11-14

    A quantitative demonstration of reversible stiffness upon appropriate light stimulus in a spiropyran-polymeric composite is presented. The polymeric films containing 3% wt. of the photochromic spiropyran were irradiated with alternating ultraviolet and visible light and the storage modulus was measured. A reversible change in modulus of about 7% was observed. The modulus change was attributed to an interaction of the polar merocyanine with the polymeric chains and/or to a variation of effective free volume induced by merocyanine aggregates formed in the polymer upon ultraviolet irradiation. The effect is fully reversed when the merocyanine isomers turn back to the spiropyran state after visible irradiation.

  2. Copolyamide/sepiolite nanocomposites with enhanced stiffness and toughness

    Science.gov (United States)

    Garofalo, Emilia; D'Arienzo, Lucia; Scarfato, Paola; Di Maio, Luciano; Incarnato, Loredana

    2016-05-01

    Copolyamide nanocomposites, based on sepiolite needle-like clay, were prepared through melt extrusion at different silicate loadings. The hybrid materials were characterized in terms of both thermal and rheological properties. A fine dispersion of the nanoparticles was evidenced by the dynamic rheological behavior of the composites. Moreover, the presence of sepiolite does not cause changes in the overall crystallinity degree and crystal structure compared to the neat polymer. The effect of an increasing percentage of nanofiller on the mechanical performances of the nanocomposites was also evaluated. A remarkable combination of high stiffness and toughness, not already found in literature for this kind of nanocomposites, was achieved at the lower silicate amount.

  3. A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems

    Science.gov (United States)

    Liu, X.; Banerjee, J. R.

    2017-03-01

    A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.

  4. Exact dynamic stiffness matrix of non-symmetric thin-walled curved beams subjected to initial axial force

    Science.gov (United States)

    Nam-Il, Kim; Moon-Young, Kim

    2005-06-01

    An improved numerical method to exactly evaluate the dynamic element stiffness matrix is proposed for the spatially coupled free vibration analysis of non-symmetric thin-walled curved beams subjected to uniform axial force. For this purpose, firstly equations of motion, boundary conditions and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next systems of linear algebraic equations with non-symmetric matrices are constructed by introducing 14 displacement parameters and transforming the fourth-order simultaneous differential equations into the first-order simultaneous equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact 14×14 element stiffness matrix is determined using force-deformation relations. In order to demonstrate the validity and the accuracy of this study, the spatially coupled natural frequencies of non-symmetric thin-walled curved beams subjected to uniform compressive and tensile forces are evaluated and compared with analytical and finite element solutions using Hermitian curved beam elements or ABAQUS's shell element. In addition, some results by the parametric study are reported.

  5. Stability of boundary measures

    CERN Document Server

    Chazal, Frédéric; Mérigot, Quentin

    2007-01-01

    We introduce the boundary measure at scale r of a compact subset of the n-dimensional Euclidean space. We show how it can be computed for point clouds and suggest these measures can be used for feature detection. The main contribution of this work is the proof a quantitative stability theorem for boundary measures using tools of convex analysis and geometric measure theory. As a corollary we obtain a stability result for Federer's curvature measures of a compact, allowing to compute them from point-cloud approximations of the compact.

  6. Grain Boundary Complexions

    Science.gov (United States)

    2014-05-01

    theories of grain boundary adsorption were based on the McLean model, which assumes that segregation is constrained to a monolayer of atomic sites at the...New York: McGraw- Hill ; 1956. [58] de Boer JH. The dynamical character of adsorption . London: Oxford University Press; 1953. [59] McLean D. Grain...Overview No. 152 Grain boundary complexions Patrick R. Cantwell a, Ming Tang b,1, Shen J. Dillon c, Jian Luo d, Gregory S . Rohrer e, Martin P. Harmer

  7. Asymptotic degeneracy of the transfer matrix spectrum for systems with interfaces: Relation to surface stiffness and step free energy

    Energy Technology Data Exchange (ETDEWEB)

    Privman, V.; Svrakic, N.M.

    1989-02-01

    Two- and three-dimensional Ising-type systems are considered in the finite-cross-section cylindrical geometry. An interface is forced along the cylinder (strip in 2d) by the antiperiodic or /plus minus/ boundary conditions. Detailed predictions are presented for the largest asymptotically degenerate set of the transfer matrix eigenvalues. For rough interfaces, i.e., for O < T < T/sub c/ in 2d, T/sub R/ < T < T/sub c/ in 3d, the eigenvalues are split algebraically, and the spectral gaps are governed by the surface stiffness coefficient. For rigid interfaces, i.e., O < T < T /sub R/ in 3d, the eigenvalues are split exponentially, with the gaps determined by the step free energy.

  8. Efficient simulation of semiflexible polymers with stiff bonds

    Science.gov (United States)

    Barkema, Gerard T.; van Leeuwen, J. M. J.

    2017-01-01

    We investigate the simulation of stiff (extensible) and rigid (inextensible) semiflexible polymers in solution. In particular, we focus on polymers represented as chains of beads, interconnected by bonds with a low to zero extensibility, and significant persistence in the bond orientations along the chain, whose dynamical behavior is described by the Langevin equation. We review the derivation of the pseudopotential needed for rigid bonds. The efficiency of a number of routines for such simulations is determined. We propose a routine for handling rigid bonds which is, for longer chains, substantially more efficient than the existing ones. We also show that for extensible polymers, the Rouse modes can be exploited to achieve highly efficient simulations. At realistic values for the extensibility, e.g., that of double-stranded DNA, the simulations are orders of magnitude faster than those for rigid bonds. With increasing stiffness, however, the allowable time step and hence the efficiency decreases, until a crossover point is reached below which the routines with rigid bonds are more efficient; we present a numerical estimate of this crossover point.

  9. General frost growth mechanism on solid substrates with different stiffness.

    Science.gov (United States)

    Petit, Julien; Bonaccurso, Elmar

    2014-02-01

    Preventing or delaying frost formation on surfaces is of significant importance in many aspects of our daily life. Despite many efforts and improvements recently achieved in the design of new icephobic materials and substrates, not all proposed solutions are universally applicable and frost formation still remains a problem in need of further flexible solutions. In this respect, we propose to take benefit from the tunable viscoelastic properties of soft polymer gel substrates, since they are known to strongly influence the dropwise condensation process of water, and to investigate condensation frosting on them. Using polymer gels with different stiffness and a hard substrate as a reference, we demonstrate their ability to delay frost formation compared to recent results reported in the literature on other solid substrates and in particular on superhydrophobic surfaces. By investigating the frost front propagation we singled out a general behavior of its dynamic evolution consisting of two processes presenting two different time scales. This general growth appears to be independent of experimental conditions as well as substrate stiffness.

  10. Effect of train carbody's parameters on vertical bending stiffness performance

    Science.gov (United States)

    Yang, Guangwu; Wang, Changke; Xiang, Futeng; Xiao, Shoune

    2016-10-01

    Finite element analysis(FEA) and modal test are main methods to give the first-order vertical bending vibration frequency of train carbody at present, but they are inefficiency and waste plenty of time. Based on Timoshenko beam theory, the bending deformation, moment of inertia and shear deformation are considered. Carbody is divided into some parts with the same length, and it's stiffness is calculated with series principle, it's cross section area, moment of inertia and shear shape coefficient is equivalent by segment length, and the fimal corrected first-order vertical bending vibration frequency analytical formula is deduced. There are 6 simple carbodies and 1 real carbody as examples to test the formula, all analysis frequencies are very close to their FEA frequencies, and especially for the real carbody, the error between analysis and experiment frequency is 0.75%. Based on the analytic formula, sensitivity analysis of the real carbody's design parameters is done, and some main parameters are found. The series principle of carbody stiffness is introduced into Timoshenko beam theory to deduce a formula, which can estimate the first-order vertical bending vibration frequency of carbody quickly without traditional FEA method and provide a reference to design engineers.

  11. Ethnic Differences in Bending Stiffness of the Ulna and Tibia

    Science.gov (United States)

    Arnaud, S. B.; Liang, M. T. C.; Bassin, S.; Braun, W.; Dutto, D.; Plesums, K.; Huvnh, H. T.; Cooper, D.; Wong, N.

    2004-01-01

    There is considerable information about the variations in bone mass associated with different opportunity to compare a mechanical property of bone in young college women of Caucasian, Hispanic and Asian descent who gave informed consent to participate in an exercise study. The subjects were sedentary, in good health, eumenorrheic, non-smokers and had body mass indices (BMI) less than 30. Measurements acquired were body weight, kg, and height, cm, calcaneal and wrist bone density, g/square cm (PIXI, Lunar GE) and bending stiffness (EI, Nm(exp 2)) in the ulna and tibia. E1 was determined non-invasively with an instrument called the Mechanical Response Tissue Analyzer (MRTA) that delivers a vibratory stimulus to the center of the ulna or tibia and analyzes the response curve based on the equation E1 = k(sub b) L(exp 3)/48 where k, is lateral bending stiffness, L is the length of the bone, E is Young's modulus of elasticity and I, the bending moment of inertia. The error of the test (CV) based on measurements of an aluminum rod with a known E1 was 4.8%, of calcaneal BMD, 0.54%, and of wrist bone density, 3.45%.

  12. Stiff person syndrome: advances in pathogenesis and therapeutic interventions.

    Science.gov (United States)

    Dalakas, Marinos C

    2009-03-01

    Stiff person syndrome (SPS) varies from mild to severe, but if untreated it can be progressive and disabling. Although progress has been made in understanding and treating SPS, the disease remains underdiagnosed, delaying treatment. Antibodies against glutamic acid decarboxylase provide an excellent diagnostic marker, but their role in disease pathogenesis is uncertain. Research focused on identifying new autoantigens has provided evidence that gamma-aminobutyric acid (GABA)(A) receptor-associated protein (GABARAP), a 14-kD protein localized at the postsynaptic regions of GABAergic synapses, is an antigenic target. Circulating anti-GABARAP antibodies that inhibit GABA(A) receptor expression on GABAergic neurons have been found in up to 65% of SPS patients. The impairment of GABAergic pathways and reduction of brain GABA results in clinical manifestations of stiffness, spasms, and phobias. Increased awareness of SPS among practicing physicians is necessary to recognize the disease early and prevent permanent disability. Most patients with SPS respond to GABA-enhancing drugs, but the high doses required cause unacceptable adverse effects. The disease clearly responds to intravenous immunoglobulin, but repeated infusions are needed to maintain response. New immunomodulating agents are being explored to treat difficult cases and to induce long-lasting remissions.

  13. A new hybrid gyroscope with electrostatic negative stiffness tuning.

    Science.gov (United States)

    Yang, Bo; Guan, Yumei; Wang, Shourong; Zou, Qi; Chu, Xian; Xue, Haiyan

    2013-01-01

    A variety of gyroscopes have been extensively studied due to their capability of precision detection of rotation rates and extensive applications in navigation, guidance and motion control. In this work, a new Hybrid Gyroscope (HG) which combines the traditional Dynamically Tuned Gyroscope (DTG) with silicon micromachined technology is investigated. The HG not only has the potentiality of achieving the same high precision as the traditional DTG, but also features a small size and low cost. The theoretical mechanism of the HG with a capacitance transducer and an electrostatic torquer is derived and the influence of the installation errors from the capacitance plate and the disc rotor module is investigated. A new tuning mechanism based on negative stiffness rather than the traditional dynamic tuning is proposed. The experimental results prove that the negative stiffness tuning is practicable and a tuning voltage of as high as 63 V is demonstrated. Due to the decreased installation error, the non-linearity of the scale factor is reduced significantly from 11.78% to 0.64%, as well as the asymmetry from 93.3% to 1.56% in the open loop condition. The rebalancing close-loop control is simulated and achieved experimentally, which proves that the fundamental principle of the HG is feasible.

  14. Ambulatory arterial stiffness indices and target organ damage in hypertension

    Directory of Open Access Journals (Sweden)

    Gómez-Marcos Manuel

    2012-01-01

    Full Text Available Abstract Background The present study was designed to evaluate which arterial stiffness parameter - AASI or the home arterial stiffness index (HASI - correlates best with vascular, cardiac and renal damage in hypertensive individuals. Methods A cross-sectional study was carried out involving 258 hypertensive patients. AASI and HASI were defined as the 1-regression slope of diastolic over systolic blood pressure readings obtained from 24-hour recordings and home blood pressure over 6 days. Renal damage was evaluated by glomerular filtration rate (GFR and microalbuminuria; vascular damage by carotid intima-media thickness (IMT, pulse wave velocity (PWV and ankle/brachial index (ABI; and left ventricular hypertrophy by the Cornell voltage-duration product (VDP and the Novacode index. Results AASI and HASI were not correlated with microalbuminuria, however AASI and HASI- blood pressure variability ratio (BPVR showed negative correlation with GRF. The Cornell PDV was positively correlated with AASI- BPVR-Sleep (r = 0.15, p Conclusions After adjusting for age, gender and 24-hour heart, the variables that best associated with the variability of IMT, PWV and ABI were AASI and Awake-AASI, and with GFR was HASI-BPVR.

  15. Training Stiffness perception: Knowledge of results and modality effects

    Directory of Open Access Journals (Sweden)

    Korman Maria

    2011-12-01

    Full Text Available Perception of compliant objects demands integration of haptic and visual position information with force information. Multisensory interactions are ubiquitous in perception, even at early processing stages, and thus can potentially play a role in learning. In this study we explored humans' improvement on uni-sensory stiffness discrimination as a function of different sensory conditions and immediate knowledge of results (KR during training. Two by two design was used: subjects were trained over two days on stiffness discrimination task with either matched visual-tactile, or tactile only stimuli and either with or without immediate feedback on their performance during training trials. Training resulted in both immediate but also latent, overnight learning in the proportion of correctly discriminated pairs of targets (PC, in all groups. Discrimination decision time (DT gains were obtained only during practice, while between sessions partial deterioration was evident. Affordance of visual information during training blocks resulted in higher PC during training blocks, but lower PC in the haptic-only retests. This finding challenges the notion that long-term unisensory learning mechanisms operate optimally under multisensory training conditions, at least for the combination of the visual and haptic modalities. We didn’t find evidence that information feedback during training enhances discrimination ability in terms of PC. However, we found transient within-session effects of KR and visual-haptic trainings on DT: while visualhaptic training resulted in slower responses, KR training induced faster responses.

  16. Blood pressure and arterial stiffness in obese children and adolescents.

    Science.gov (United States)

    Hvidt, Kristian Nebelin

    2015-03-01

    Obesity, elevated blood pressure (BP) and arterial stiffness are risk factors for cardiovascular disease. A strong relationship exists between obesity and elevated BP in both children and adults. Obesity and elevated BP in childhood track into adult life increasing the risk of cardiovascular disease in adulthood. Ambulatory BP is the most precise measure to evaluate the BP burden, whereas carotid-femoral pulse wave velocity (cfPWV) is regarded as the gold standard for evaluating arterial (i.e. aortic) stiffness. These measures might contribute to a better understanding of obesity's adverse impact on the cardiovascular system, and ultimately a better prevention and treatment of childhood obesity. The overall aim of the present PhD thesis is to investigate arterial stiffness and 24-hour BP in obese children and adolescents, and evaluate whether these measures are influenced by weight reduction. The present PhD thesis is based on four scientific papers.  In a cross-sectional design, 104 severe obese children and adolescents with an age of 10-18 years were recruited when newly referred to the Children's Obesity Clinic, Holbæk University Hospital, and compared to 50 normal weighted age and gender matched control individuals. Ambulatory BP was measured, and cfPWV was investigated in two ways in respect to the distance measure of aorta; the previously recommended length - the so called subtracted distance, and the currently recommended length - the direct distance. In a longitudinal design, the obese patients were re-investigated after one-year of lifestyle intervention at the Children's Obesity Clinic in purpose of reducing the degree of obesity. In the cross-sectional design, the obese group had higher measures of obesity, while matched for age, gender and height, when compared to the control group. In the longitudinal design, 74% of the 72 followed up obese patients experienced a significant weight reduction. CfPWV was dependent on the method used to measure the

  17. A New Hybrid Gyroscope with Electrostatic Negative Stiffness Tuning

    Directory of Open Access Journals (Sweden)

    Xian Chu

    2013-05-01

    Full Text Available A variety of gyroscopes have been extensively studied due to their capability of precision detection of rotation rates and extensive applications in navigation, guidance and motion control. In this work, a new Hybrid Gyroscope (HG which combines the traditional Dynamically Tuned Gyroscope (DTG with silicon micromachined technology is investigated. The HG not only has the potentiality of achieving the same high precision as the traditional DTG, but also features a small size and low cost. The theoretical mechanism of the HG with a capacitance transducer and an electrostatic torquer is derived and the influence of the installation errors from the capacitance plate and the disc rotor module is investigated. A new tuning mechanism based on negative stiffness rather than the traditional dynamic tuning is proposed. The experimental results prove that the negative stiffness tuning is practicable and a tuning voltage of as high as 63 V is demonstrated. Due to the decreased installation error, the non-linearity of the scale factor is reduced significantly from 11.78% to 0.64%, as well as the asymmetry from 93.3% to 1.56% in the open loop condition. The rebalancing close-loop control is simulated and achieved experimentally, which proves that the fundamental principle of the HG is feasible.

  18. FUNCTIONAL AORTIC STIFFNESS:ROLE OF CD4+ T LYMPHOCYTES

    Directory of Open Access Journals (Sweden)

    Beenish A. Majeed

    2015-08-01

    Full Text Available The immune system is suggested to be essential in vascular remodeling and stiffening. To study the dependence upon lymphocytes in vascular stiffening, we compared an angiotensin II-model of vascular stiffening in normal C57BL/6J mice with lymphocyte-deficient RAG 1-/- mice and additionally characterized the component of vascular stiffness due to vasoconstriction versus vascular remodeling. Chronic angiotensin II increased aortic pulse wave velocity, effective wall stiffness, and effective Young’s modulus in C57BL/6J mice by 3-fold but caused no change in the RAG 1-/- mice. These functional measurements were supported by aortic morphometric analysis. Adoptive transfer of CD4+ T helper lymphocytes restored the angiotensin II-mediated aortic stiffening in the RAG 1-/- mice. In order to account for the hydraulic versus material effects of angiotensin II on pulse wave velocity, subcutaneous osmotic pumps were removed after 21 days of angiotensin II-infusion in the WT mice to achieve normotensive values. The pulse wave velocity decreased from 3- to 2-fold above baseline values up to 7 days following pump removal. This study supports the pivotal role of the CD4+ T-lymphocytes in angiotensin II-mediated vascular stiffening and that angiotensin II-mediated aortic stiffening is due to the additive effect of active vascular smooth muscle vasoconstriction and vascular remodeling.

  19. A Comparison of Total and Intrinsic Muscle Stiffness Among Flexors and Extensors of the Ankle, Knee and Elbow

    Science.gov (United States)

    Lemoine, Sandra M.

    1997-01-01

    This study examined 3 methods that assessed muscle stiffness. Muscle stiffness has been quantified by tissue reactive force (transverse stiffness), vibration, and force (or torque) over displacement. Muscle stiffness also has two components: reflex (due to muscle sensor activity) and intrinsic (tonic firing of motor units, elastic nature of actin and myosin cross bridges, and connective tissue). This study compared three methods of measuring muscle stiffness of agonist-antagonist muscle pairs of the ankle, knee and elbow.

  20. Research regarding stiffness optimization of wires used for joints actuation from an elephant's trunk robotic arm

    Science.gov (United States)

    Ciofu, C.; Stan, G.

    2016-11-01

    Elephant's trunk robotic arms driven by wires and pulley mechanisms have issues with wires stiffness because of the entailed elastic deformations that is causing errors of positioning. Static and dynamic loads from each joint of the robotic arm affect the stiffness of driving wires and precision positioning. The influence of wires elastic deformation on precision positioning decreases with the increasing of wires stiffness by using different pre-tensioning devices. In this paper, we analyze the variation of driving wires stiffness particularly to each wire driven joint. We obtain optimum wires stiffness variation by using an analytical method that highlights the efficiency of pre-tensioning mechanism. The analysis of driving wires stiffness is necessary for taking appropriate optimization measures of robotic arm dynamic behavior and, thus, for decreasing positioning errors of the elephant's trunk robotic arm with inner actuation through wires/cables.

  1. Measurement of stiffness of standing trees and felled logs using acoustics: A review.

    Science.gov (United States)

    Legg, Mathew; Bradley, Stuart

    2016-02-01

    This paper provides a review on the use of acoustics to measure stiffness of standing trees, stems, and logs. An outline is given of the properties of wood and how these are related to stiffness and acoustic velocity throughout the tree. Factors are described that influence the speed of sound in wood, including the different types of acoustic waves which propagate in tree stems and lumber. Acoustic tools and techniques that have been used to measure the stiffness of wood are reviewed. The reasons for a systematic difference between direct and acoustic measurements of stiffness for standing trees, and methods for correction, are discussed. Other techniques, which have been used in addition to acoustics to try to improve stiffness measurements, are also briefly described. Also reviewed are studies which have used acoustic tools to investigate factors that influence the stiffness of trees. These factors include different silvicultural practices, geographic and environmental conditions, and genetics.

  2. Determination of the symmetries of an experimentally determined stiffness tensor; application to acoustic measurements

    CERN Document Server

    François, Marc Louis Maurice; Berthaud, Yves

    2009-01-01

    For most materials, the symmetry group is known a priori and deduced from the realization process. This allows many simplifications for the measurements of the stiffness tensor. We deal here with the case where the symmetry is a priori unknown, as for biological or geological materials, or when the process makes the material symmetry axis uncertain (some composites, monocrystals). The measurements are then more complicated and the raw stiffness tensor obtained does not exhibit any symmetry in the Voigt's matricial form, as it is expressed in the arbitrarily chosen specimen's base. A complete ultrasonic measurement of the stiffness tensor from redundant measurements is proposed. In a second time, we show how to make a plane symmetry pole figure able to give visual information about the quasi-symmetries of a raw stiffness tensor determined by any measurement method. Finally we introduce the concept of distance from a raw stiffness tensor to one of the eight symmetry classes available for a stiffness tensor. The...

  3. Stiffness Model of a 3-DOF Parallel Manipulator with Two Additional Legs

    Directory of Open Access Journals (Sweden)

    Guang Yu

    2014-10-01

    Full Text Available This paper investigates the stiffness modelling of a 3-DOF parallel manipulator with two additional legs. The stiffness model in six directions of the 3-DOF parallel manipulator with two additional legs is derived by performing condensation of DOFs for the joint connection and treatment of the fixed-end connections. Moreover, this modelling method is used to derive the stiffness model of the manipulator with zero/one additional legs. Two performance indices are given to compare the stiffness of the parallel manipulators with two additional legs with those of the manipulators with zero/one additional legs. The method not only can be used to derive the stiffness model of a redundant parallel manipulator, but also to model the stiffness of non-redundant parallel manipulators.

  4. Challenging the Boundaries

    DEFF Research Database (Denmark)

    Nørgaard, Nina

    2004-01-01

    To many people, challenging the boundaries between the traditional disciplines in foreign language studies means doing cultural studies. The aim of this article is to pull in a different direction by suggesting how the interface between linguistics and literature may be another fertile field...

  5. 双曲扁壳类汽车覆盖件刚度的试验研究%Experiment study on the stiffness of hyperboloid shallow shell of autobody

    Institute of Scientific and Technical Information of China (English)

    赵立红; 邢忠文; 雷呈喜; 张晓辉

    2015-01-01

    为进一步掌握汽车覆盖件刚度控制机制,建立了以双曲扁壳件为研究模型的成形试验及刚度测试分析系统。分别完成了成形工艺条件中不同压边力、拉深深度条件下,双曲扁壳件的成形试验,5种约束方式下的双曲扁壳件刚度测试试验。分析了压边力、拉深深度和约束方式对刚度的影响规律。研究表明:刚度测试时的约束方式对刚度有重要影响,约束越大,刚度越大;约束的改变对刚度的影响远大于其他工艺条件(压边力和拉深深度)对刚度的影响,提出刚度测试时为准确获得成形工艺条件等对刚度影响的最佳约束方式;工艺条件中压边力及拉深深度的变化对刚度亦有不同程度的影响,刚度随着压边力的增加而增大;成形时的拉深深度越大,刚度值也越大。上述工艺条件的改变对刚度的影响远大于厚度减薄对刚度的影响,在实际生产中,可以通过调整成形时的工艺参数提高汽车覆盖件的刚度。%The experiment models and the test system of siffness analysis for hyperboloid shallow shell automotive body panel parts were established based on. The hyperboloid shallow shells were formed through different process parameters by varying the blank holding force ( BHF) and drawing depth. The stiffness test was performed with five boundary conditions. The relationship of the influences of blank holding force, draw depth and boundary conditions on the stiffness of the parts was also obtained. The results showed that the boundary condition plays an important role in determining the stiffness, i. e. the greater the constraint, the greater the stiffness. The importance of boundary condition on stiffness is greater than that of process parameters. Finally, the optimised boundary condition of the stiffness test was determined. In general, greater blank holding force and draw depth lead to higher stiffness. Moreover, the influence

  6. The Static Stiffness Linear Regression of Parallel Mechanism Based on the Orthogonal Experiment

    OpenAIRE

    Wang-Nan; Zhao-Cheng Kang; Gao-Peng; Pang-Bo; Zhou-Shasha

    2013-01-01

    Using the orthogonal experimental method, we can get the linear regression model of about parallel mechanism stiffness. Selecting four factors three levels of orthogonal experiment method, in ANSYS-workbench to space in third rotation 3-SPS/S parallel mechanism for static stiffness analysis, we have won nine of the data of the experiments, the application of the MATLAB software to experimental data is linear regression, which can get the static stiffness linear regression of parallel mechanis...

  7. Stiffness and Strength of Fiber Reinforced Polymer Composite Bridge Deck Systems

    OpenAIRE

    2002-01-01

    This research investigates two principal characteristics that are of primary importance in Fiber Reinforced Polymer (FRP) bridge deck applications: STIFFNESS and STRENGTH. The research was undertaken by investigating the stiffness and strength characteristics of the multi-cellular FRP bridge deck systems consisting of pultruded FRP shapes. A systematic analysis procedure was developed for the stiffness analysis of multi-cellular FRP deck systems. This procedure uses the Method of Elasti...

  8. Evaluation of the stiffnesses of the Achilles tendon and soleus from the apparent stiffness of the triceps surae.

    Science.gov (United States)

    París-García, Federico; Barroso, Alberto; Doblaré, Manuel; Cañas, José; París, Federico

    2015-01-01

    The triceps surae plays an important role in the performance of many sports. Although the apparent average mechanical properties of the triceps surae may be a satisfactory parameter for estimating the training level of an athlete, a knowledge of the mechanical properties of the individual constituents of the triceps surae (in particular the Achilles tendon and soleus) permits a more detailed and in-depth control of the effects of training from more physically based parameters. The objective of this work is therefore the estimation of the individual viscoelastic properties (stiffness and viscosity) of soleus and Achilles tendon from the apparent properties of the triceps surae obtained by free vibration techniques. Different procedures have been developed and discussed, showing a high degree of robustness in the predictions. The results obtained for a non-oriented set of subjects present a high level of variability, depending on the training conditions and anthropometric features, although the corresponding average values compare well with data previously reported in the literature, particularly those associated with the tendon stiffness.

  9. Anesthetic management of a parturient with Stiff person syndrome for urgent cesarean delivery.

    Science.gov (United States)

    Boettcher, B T; Muravyea, M; Kuo, C; Drexler, C; Pagel, P S

    2016-08-01

    Stiff person syndrome is a rare neurologic disorder with an estimated incidence of 1:1000000. The underlying pathophysiology is truncal and proximal limb muscle stiffness resulting from continuous co-contracture of agonist and antagonist muscle groups concomitant with superimposed episodic muscle spasms. Loss of gamma-aminobutyric acid-mediated inhibition creates chronic excitation manifested by tonic agonist-antagonist muscle contraction. To date, only three case reports referred indirectly to the anesthetic management of parturients with Stiff person syndrome. The authors describe their management of a parturient with Stiff person syndrome who underwent urgent cesarean delivery under epidural anesthesia.

  10. Stiffness Analysis of 3-d.o.f. Overconstrained Translational Parallel Manipulators

    CERN Document Server

    Pashkevich, Anatoly; Wenger, Philippe

    2008-01-01

    The paper presents a new stiffness modelling method for overconstrained parallel manipulators, which is applied to 3-d.o.f. translational mechanisms. It is based on a multidimensional lumped-parameter model that replaces the link flexibility by localized 6-d.o.f. virtual springs. In contrast to other works, the method includes a FEA-based link stiffness evaluation and employs a new solution strategy of the kinetostatic equations, which allows computing the stiffness matrix for the overconstrained architectures and for the singular manipulator postures. The advantages of the developed technique are confirmed by application examples, which deal with comparative stiffness analysis of two translational parallel manipulators.

  11. An update on the role of adipokines in arterial stiffness and hypertension.

    Science.gov (United States)

    Sabbatini, Andréa R; Fontana, Vanessa; Laurent, Stephane; Moreno, Heitor

    2015-03-01

    Adipokines are hormones produced by adipocytes and have been involved in multiple pathologic pathways, including inflammatory and cardiovascular complications in essential hypertension. Arterial stiffness is a frequent vascular complication that represents increased cardiovascular risk in hypertensive patients. Adipokines, such as adiponectin, leptin and resistin, might be implicated in hypertension, as well as in vascular alterations associated with this condition. Arterial stiffness has proven to be a predictor of cardiovascular events. Obesity and target-organ damage such as arterial stiffness are features associated with hypertension. This review aims to update the association between adipokines and arterial stiffness in essential and resistant hypertension (RHTN).

  12. Aerobic exercise training increases plasma Klotho levels and reduces arterial stiffness in postmenopausal women.

    Science.gov (United States)

    Matsubara, Tomoko; Miyaki, Asako; Akazawa, Nobuhiko; Choi, Youngju; Ra, Song-Gyu; Tanahashi, Koichiro; Kumagai, Hiroshi; Oikawa, Satoshi; Maeda, Seiji

    2014-02-01

    The Klotho gene is a suppressor of the aging phenomena, and the secretion as well as the circulation of Klotho proteins decrease with aging. Although habitual exercise has antiaging effects (e.g., a decrease in arterial stiffness), the relationship between Klotho and habitual exercise remains unclear. In the present study, we investigated the effect of habitual exercise on Klotho, with a particular focus on arterial stiffness. First, we examined the correlation between plasma Klotho concentration and arterial stiffness (carotid artery compliance and β-stiffness index) or aerobic exercise capacity [oxygen uptake at ventilatory threshold (VT)] in 69 healthy, postmenopausal women (50-76 years old) by conducting a cross-sectional study. Second, we tested the effects of aerobic exercise training on plasma Klotho concentrations and arterial stiffness. A total of 19 healthy, postmenopausal women (50-76 years old) were divided into two groups: control group and exercise group. The exercise group completed 12 wk of moderate aerobic exercise training. In the cross-sectional study, plasma Klotho concentrations positively correlated with carotid artery compliance and VT and negatively correlated with the β-stiffness index. In the interventional study, aerobic exercise training increased plasma Klotho concentrations and carotid artery compliance and decreased the β-stiffness index. Moreover, the changes in plasma Klotho concentration and arterial stiffness were found to be correlated. These results suggest a possible role for secreted Klotho in the exercise-induced modulation of arterial stiffness.

  13. Critical appraisal of the differential effects of antihypertensive agents on arterial stiffness

    Directory of Open Access Journals (Sweden)

    Francesca Kum

    2010-06-01

    Full Text Available Francesca Kum, Janaka KarallieddeUnit for Metabolic Medicine, Cardiovascular Division, Kings College-Waterloo Campus, King’s College London, United KingdomAbstract: Increased central arterial stiffness, involving accelerated vascular ageing of the aorta, is a powerful and independent risk factor for early mortality and provides prognostic information above and beyond traditional risk factors for cardiovascular disease (CVD. Central arterial stiffness is an important determinant of pulse pressure; therefore, any pathological increase may result in left ventricular hypertrophy and impaired coronary perfusion. Central artery stiffness can be assessed noninvasively by measurement of aortic pulse wave velocity, which is the gold standard for measurement of arterial stiffness. Earlier, it was believed that changes in arterial stiffness, which are primarily influenced by long-term pressure-dependent structural changes, may be slowed but not reversed by pharmacotherapy. Recent studies with drugs that inhibit the renin–angiotensin–aldosterone system, advanced glycation end products crosslink breakers, and endothelin antagonists suggest that blood pressure (BP-independent reduction and reversal of arterial stiffness are feasible. We review the recent literature on the differential effect of antihypertensive agents either as monotherapy or combination therapy on arterial stiffness. Arterial stiffness is an emerging therapeutic target for CVD risk reduction; however, further clinical trials are required to confirm whether BP-independent changes in arterial stiffness directly translate to a reduction in CVD events.Keywords: aortic pulse wave velocity, augmentation index, blood pressure, renin–angiotensin–aldosterone system

  14. Small-Sized Variable Stiffness Actuator Module Based on Adjustable Moment Arm

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongseon; Song, Jaebok [Korea Univ., Seoul (Korea, Republic of)

    2013-10-15

    In recent years, variable stiffness actuation has attracted much attention because interaction between a robot and the environment is increasingly required for various robot tasks. Several variable stiffness actuators (VSO) have been developed; however, they find limited applications owing to their size and weight. For realizing their widespread use, we developed a compact and lightweight mini-VSO. The mini-VSO consists of a control module based on an adjustable moment arm mechanism and a drive module with two motors. By controlling the relative motion of cams in the control module, the position and stiffness can be simultaneously controlled. Experimental results are presented to show its ability to change stiffness.

  15. Stiffness requirement of flexible skin for variable trailing-edge camber wing

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The method for analyzing the deformation of flexible skin under the air loads was developed based on the panel method and finite element method.The deformation of flexible skin under air pressures and effects of the local deformation on the aerodynamic characteristics were discussed.Numerical results show that the flexible skin on the upper surface of trailing-edge will bubble under the air loads and the bubble has a powerful effect on the aerodynamic pressure near the surface of local deforma-tion.Then the stiffness requirements for flexible skin of variable trailing-edge were given by using the Jacobs rule,i.e.,the maximum displacement of skin is not greater than 0.1% of wing chord.Results show that the in-plane stiffness can be reduced by increasing the ratio of bending stiffness to in-plane stiffness.Although the deformation of flexible skin increases with the in-plane stiffness decreasing,it depends on the bending stiffness.When the bending stiffness exceeds critical value,the deformation of flexible skin only depends on the bending stiffness and has nothing to do with the in-plane stiffness.The conclusions can be used for the structural design of flexible skin.

  16. Stiffness matrix method with improved efficiency for elastic wave propagation in layered anisotropic media

    Science.gov (United States)

    Tan, Eng Leong

    2005-12-01

    This paper presents the recursive algorithm of stiffness matrix method with improved efficiency for computing the total and surface stiffness matrices for a general multilayered anisotropic media. Based on the eigensolutions commonly available for analysis of such media, the recursive algorithm deals with eigen-submatrices directly and bypasses all intermediate layer stiffness submatrices. The improved algorithm obviates the need to compute certain inverse of the original scheme and makes the stiffness matrix recursion more robust. In situation where transfer matrix is numerically stable and easily accessible, an improved recursive algorithm is also given directly in terms of transfer submatrices without involving their explicit inverse.

  17. The role of negative stiffness in semi-active control of magneto-rheological dampers

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2011-01-01

    The performance of external dampers depends on the particular combination of energy dissipation and stiffness, where in general damping increases with decreasing damper stiffness. It is therefore of great interest to minimize or even introduce negative damper stiffness. The present paper proposes...... adaptive control strategies for the applied voltage of a semi-active magneto-rheological damper. From linear equivalent models obtained by harmonic averaging it is found that these control strategies introduce equivalent negative stiffness, and by numerical simulations it is illustrated that they lead...

  18. Liver stiffness and 30-day mortality in a cohort of patients admitted to hospital

    DEFF Research Database (Denmark)

    Lindvig, Kristoffer; Mössner, Belinda K; Pedersen, Court;

    2012-01-01

    Eur J Clin Invest 2011 ABSTRACT: Background  Transient elastography (TE) is a new noninvasive method to assess the degree of liver fibrosis by measuring liver stiffness. The objective of this study was to determine whether increased liver stiffness in patients admitted to medical wards was associ......Eur J Clin Invest 2011 ABSTRACT: Background  Transient elastography (TE) is a new noninvasive method to assess the degree of liver fibrosis by measuring liver stiffness. The objective of this study was to determine whether increased liver stiffness in patients admitted to medical wards...

  19. Biomechanical Effects of Stiffness in Parallel With the Knee Joint During Walking.

    Science.gov (United States)

    Shamaei, Kamran; Cenciarini, Massimo; Adams, Albert A; Gregorczyk, Karen N; Schiffman, Jeffrey M; Dollar, Aaron M

    2015-10-01

    The human knee behaves similarly to a linear torsional spring during the stance phase of walking with a stiffness referred to as the knee quasi-stiffness. The spring-like behavior of the knee joint led us to hypothesize that we might partially replace the knee joint contribution during stance by utilizing an external spring acting in parallel with the knee joint. We investigated the validity of this hypothesis using a pair of experimental robotic knee exoskeletons that provided an external stiffness in parallel with the knee joints in the stance phase. We conducted a series of experiments involving walking with the exoskeletons with four levels of stiffness, including 0%, 33%, 66%, and 100% of the estimated human knee quasi-stiffness, and a pair of joint-less replicas. The results indicated that the ankle and hip joints tend to retain relatively invariant moment and angle patterns under the effects of the exoskeleton mass, articulation, and stiffness. The results also showed that the knee joint responds in a way such that the moment and quasi-stiffness of the knee complex (knee joint and exoskeleton) remains mostly invariant. A careful analysis of the knee moment profile indicated that the knee moment could fully adapt to the assistive moment; whereas, the knee quasi-stiffness fully adapts to values of the assistive stiffness only up to ∼80%. Above this value, we found biarticular consequences emerge at the hip joint.

  20. Wavelet-Galerkin Method for the Singular Perturbation Problem with Boundary Layers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A Wavelet-Galerkin method is proposed to solve the singular perturbation problem with boundary layers numerically. Because there are boundary layers in the solution of the singular perturbation problem, the approximation spaces with different scale wavelets and boundary bases are chosen. In addition, the computation of the inner integrals is transformed to an eigenvalue problem. Therefore, a high accuracy method with reasonable computation is obtained. On the other hand, there is an explicit diagonal preconditioning which makes the condition number of the stiff matrix become bounded by a constant. The error estimate of the Wavelet-Galerkin method and the analysis of the computation complexity are given. The numerical examples show that the method is feasible and effective for solving the singular perturbation problem with boundary layers numerically.