WorldWideScience

Sample records for boundary smectic phases

  1. Insights on some chiral smectic phases

    Indian Academy of Sciences (India)

    journal of. August 2003 physics pp. 285–295. Insights on some chiral ... Liquid crystals; smectics; chirality; frustrated phases; twist grain boundary phases. ... molecules are more or less packed in layers and smectic phases can be seen ..... (imaging plate or CCD camera) which was located at about 300 mm from the sample.

  2. The alignment of smectic A liquid crystals with director tilt on the boundaries

    International Nuclear Information System (INIS)

    Stewart, I W

    2007-01-01

    Equilibrium solutions are presented for smectic A liquid crystals in which the usual director n and unit layer normal a do not necessarily coincide. Previous applications often equate n with a; the model in this paper allows n and a to differ and has been motivated by the recent investigations of Auernhammer et al (2000 Rheol. Acta 39 215-22, 2002 Phys. Rev. E 66 061707), Soddemann et al (2004 Eur. Phys. J. E 13 141-51) and Stewart (2007 Contin. Mech. Thermodyn. 18 343-60). The two experimental geometries studied consist of planar homeotropically aligned smectic layers and 'bookshelf' aligned layers. In both cases a director tilt at the boundaries will be imposed. Solutions to the fully nonlinear bookshelf problem where both the director and the layer normal can vary with an element of decoupling are presented and are particularly relevant to the experimental observations of Elston (1994 Liq. Cryst. 16 151-7); there are two boundary layer effects, as will be discussed, that are related to the biasing of the director towards the smectic A phase and the reorientation of the smectic layers themselves

  3. The alignment of smectic A liquid crystals with director tilt on the boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, I W [Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH (United Kingdom)

    2007-05-18

    Equilibrium solutions are presented for smectic A liquid crystals in which the usual director n and unit layer normal a do not necessarily coincide. Previous applications often equate n with a; the model in this paper allows n and a to differ and has been motivated by the recent investigations of Auernhammer et al (2000 Rheol. Acta 39 215-22, 2002 Phys. Rev. E 66 061707), Soddemann et al (2004 Eur. Phys. J. E 13 141-51) and Stewart (2007 Contin. Mech. Thermodyn. 18 343-60). The two experimental geometries studied consist of planar homeotropically aligned smectic layers and 'bookshelf' aligned layers. In both cases a director tilt at the boundaries will be imposed. Solutions to the fully nonlinear bookshelf problem where both the director and the layer normal can vary with an element of decoupling are presented and are particularly relevant to the experimental observations of Elston (1994 Liq. Cryst. 16 151-7); there are two boundary layer effects, as will be discussed, that are related to the biasing of the director towards the smectic A phase and the reorientation of the smectic layers themselves.

  4. Critical linear thermal expansion in the smectic-A phase near the nematic-smectic phase transition.

    Science.gov (United States)

    Anesta, E; Iannacchione, G S; Garland, C W

    2004-10-01

    Recent high-resolution x-ray investigations of the smectic- A (SmA) phase near the nematic-to-SmA transition provide information about the critical behavior of the linear thermal expansion coefficient alpha// parallel to the director. Combining such data with available volume thermal expansion alpha(V) data yields the in-plane linear expansion coefficient alpha(perpendicular) . The critical behaviors of alpha// and alpha(perpendicular) are the same as those for alpha(V) and the heat capacity Cp. However, for any given liquid crystal, alpha//(crit) and alpha(perpendicular)(crit) differ in sign. Furthermore, the quantity alpha// (crit) is positive for SmAd partial bilayer smectics, while it is negative for nonpolar SmAm monomeric smectics. This feature is discussed in terms of the molecular structural aspects of these smectic phases.

  5. Observation of a pretransitional effect near a virtual smectic-A - smectic-C* transition

    International Nuclear Information System (INIS)

    Shibahara, Seiji; Takanishi, Yoichi; Yamamoto, Jun; Ogasawara, Toyokazu; Ishikawa, Ken; Yokoyama, Hiroshi; Takezoe, Hideo

    2001-01-01

    Unusual softening of the layer compression modulus B has been observed near the phase boundary where the smectic-C * phase vanishes in a naphtalene-based liquid crystal mixture. From the systematic study of x-ray and layer compression measurements, this unusual effect is attributed to the pretransitional softening near a virtual smectic-A - smectic-C * phase transition in the smectic-A phase, which no longer appears on the thermoequilibrium phase diagram. This phenomenon is similar but not equivalent to supercritical behavior

  6. Observation of a pretransitional effect near a virtual smectic-A--smectic-C* transition.

    Science.gov (United States)

    Shibahara, S; Takanishi, Y; Yamamoto, J; Ogasawara, T; Ishikawa, K; Yokoyama, H; Takezoe, H

    2001-06-01

    Unusual softening of the layer compression modulus B has been observed near the phase boundary where the smectic-C* phase vanishes in a naphtalene-based liquid crystal mixture. From the systematic study of x-ray and layer compression measurements, this unusual effect is attributed to the pretransitional softening near a virtual smectic-A-smectic-C* phase transition in the smectic-A phase, which no longer appears on the thermoequilibrium phase diagram. This phenomenon is similar but not equivalent to supercritical behavior.

  7. ({alpha},{eta}) phase diagrams in tilted chiral smectics

    Energy Technology Data Exchange (ETDEWEB)

    Rjili, M., E-mail: medrjili@yahoo.fr [Laboratoire de Physique de la Matiere Molle et de la Modelisation Electromagnetique, Faculte des Sciences de Tunis, Universite Tunis El Manar, 2092 El Manar Tunis (Tunisia); Marcerou, J.P., E-mail: marcerou@crpp-bordeaux.cnrs.fr [Centre de Recherches Paul Pascal, 115, Av. Albert-Schweitzer, 33600 Pessac (France); Gharbi, A.; Othman, T. [Laboratoire de Physique de la Matiere Molle et de la Modelisation Electromagnetique, Faculte des Sciences de Tunis, Universite Tunis El Manar, 2092 El Manar Tunis (Tunisia)

    2013-02-01

    The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmC{sub A}{sup Low-Asterisk }; SmC{sub Fi1}{sup Low-Asterisk }; SmC{sub Fi2}{sup Low-Asterisk }; SmC{sup Low-Asterisk }; SmC{sub {alpha}}{sup Low-Asterisk }. The continuum theory established by Marcerou (2010) is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the ({alpha},{eta}) plane where {alpha} is local angular parameter and {eta} describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC{sub 5}{sup Low-Asterisk} and the SmC{sub 6}{sup Low-Asterisk} ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied.

  8. (α,η) phase diagrams in tilted chiral smectics

    International Nuclear Information System (INIS)

    Rjili, M.; Marcerou, J.P.; Gharbi, A.; Othman, T.

    2013-01-01

    The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmC A ⁎ ; SmC Fi1 ⁎ ; SmC Fi2 ⁎ ; SmC ⁎ ; SmC α ⁎ . The continuum theory established by Marcerou (2010) is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the (α,η) plane where α is local angular parameter and η describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC 5 ⁎ and the SmC 6 ⁎ ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied.

  9. Studies of nematic to smectic-A phase transitions using synchrotron radiation. Experimental techniques and experiments

    International Nuclear Information System (INIS)

    Christensen, F.

    1981-10-01

    High resolution X-ray diffraction on liquid crystals, with a triple-axis spectrometer, was initiated 4-5 years ago, using rotating-anode sources. The triple-axis spectrometer, built at Risoe, is permanently positioned at the DORIS storage ring. Triple-axis X-ray spectrometer work in general and especially at the synchrotron source is a new field and a description of the techniques used is given. The experiments described are studies of the nematic to smectic-A phase transition in liquid crystals. The first is a study of the monomolecular liquid crystal 8-barS5 (C 8 H 17 O-phi-COS-phi-C 5 H 11 , where phi denotes a benzene ring). The second experimental study is one of the reentrance phenomenon in the ternary mixture: 5CTsub(.09):7CBsub(.x):80CBsub(.91-x); where 5CT(C 5 H 11 -phi-phi-phi-CN) and 7CB(C 7 H 15 -phi-phi-CN) have only a nematic phase and not the smectic-A phase. The results are interpreted in terms of Landau theory. Finally, a frame is given for discussing the nature of the smectic-A phase and an experiment is proposed to explore the nature of the smectic-A phase together with detailed calculations of (001)- and (002)-lineshapes for the smectic-A phase. (Auth.)

  10. Smectic-like phase for modulated XY spins in two dimensions

    International Nuclear Information System (INIS)

    Benakli, M.; Gabay, M.; Saslow, W.M.

    1997-09-01

    The row model for frustrated XY spins on a triangular lattice in 2D is used to study incommensurate (IC) and commensurate (C) phases, in the regime where a (C)-(IC) transition may be observed. Thermodynamic quantities for the (IC) state are computed analytically by means of the NSCHA, a new variational method appropriate for frustrated systems. On the commensurate side of the (C)-(IC) boundary, NSCHA predicts an instability of the (C) phase suggesting that this state is in fact spatially inhomogeneous. Detailed Monte-Carlo (MC) simulations using fluctuating boundary conditions and specific histogram techniques show that in this regime the configuration consists of stripes of (C) and (IC) phases alternating in space. This state, which resembles the smectic-A phase of liquid crystals, exists because of the strong coupling between chiral and phase (spin angle) variables. As a result, the transition between the (IC) and the (C) states can only occur at zero temperature T so that the Lifshitz point is at T = 0 for modulated XY spins in 2D. (author)

  11. Formation of tilted smectic-C liquid crystal phase in polar Gay-Berne molecules

    International Nuclear Information System (INIS)

    Saha, J.; Bose, T.R.; Ghosh, D.; Saha, M.

    2005-01-01

    We perform molecular dynamics simulation for a system of Gay-Berne molecules having two terminal dipole moments to generate tilted smectic-C liquid crystal phase. We investigate the effect of dipolar orientation with respect to the long molecular axis on phase behaviour. The study indicates that larger dipolar angle can give rise to greater tilt in molecular organization within a layer

  12. High-Resolution X-Ray Study of a Smectic-A-Smectic-C Phase Transition

    DEFF Research Database (Denmark)

    Safinya, C. R.; Kaplan, M.; Als-Nielsen, Jens Aage

    1980-01-01

    We report measurements of the tilt angle Φ and the planar spacing dC near the second-order SmC-SmA transition in 4-n-pentyl-phenylthiol-4′-n-octyloxybenzoate (8S̅ 5). We find that the ratio Φ/invcos(dC/dA) is constant (1.2 ± 0.1) through the C phase, supporting a simple molecular-tilt model...... for the transition. For 5×10-3>1-T/Tc>3×10-5, Φ exhibits mean-field behavior. A simple Ginzburg-criterion argument indicates that the true critical region should be unobservably small for most A-C transitions....

  13. Persistence of Smectic-A Oily Streaks into the Nematic Phase by UV Irradiation of Reactive Mesogens

    Directory of Open Access Journals (Sweden)

    Ines Gharbi

    2017-12-01

    Full Text Available Thin smectic liquid crystal films with competing boundary conditions (planar and homeotropic at opposing surfaces form well-known striated structures known as “oily streaks”, which are a series of hemicylindrical caps that run perpendicular to the easy axis of the planar substrate. The streaks vanish on heating into the nematic phase, where the film becomes uniform and exhibits hybrid alignment. On adding sufficient reactive mesogen and polymerizing, the oily streak texture is maintained on heating through the entire nematic phase until reaching the bulk isotropic phase, above which the texture vanishes. Depending on the liquid crystal thickness, the oily streak structure may be retrieved after cooling, which demonstrates the strong impact of the polymer backbone on the liquid crystal texture. Polarizing optical, atomic force, and scanning electron microscopy data are presented.

  14. Molecular tilt near nanoparticles in the smectic A phase of de Vries liquid-crystalline compound

    Czech Academy of Sciences Publication Activity Database

    Lejček, Lubor; Novotná, Vladimíra; Glogarová, Milada

    2014-01-01

    Roč. 89, č. 1 (2014), "012505-1"-"012505-6" ISSN 1539-3755 R&D Projects: GA ČR(CZ) GAP204/11/0723 Institutional support: RVO:68378271 Keywords : liquid crystals * smectic phases * nanoparticles * deVries behaviour Subject RIV: JJ - Other Materials Impact factor: 2.288, year: 2014 http://pre. aps .org/abstract/PRE/v89/i1/e012505

  15. Effects of Shear on the Smectic A Phase of Thermotropic Liquid Crystals

    Science.gov (United States)

    Panizza, Pascal; Archambault, Pascal; Roux, Didier

    1995-02-01

    The rheological behaviour of the smectic A phase of the thermotropic liquid crystal 4-cyano-4'-octylbiphenyl (8CB) is examined. X-ray scattering studies under shear flow were performed to probe changes of structures. We found that in a certain range of temperatures two states of orientation of lamellae exist. These two steady states of orientation are separated by a first order dynamic transition that becomes continuous at T_c (a temperature different from that of the smectic/nematic transition). At low shear rates, the smectic A phase is non-Newtonian: its viscosity η varies as (T_c-T)^{1/2}.dot{γ}^{-1/2} (where dot{γ} is the shear rate and T the temperature). In this regime, the structure of the system is compatible with multilamellar cylinders oriented along the flow direction. At high shear rates, the system becomes Newtonian, its layers are then oriented perpendicular to the shearing plates (as already noticed by Safinya et al. [1]).

  16. Flexoelectricity and piezoelectricity: the reason for the rich variety of phases in antiferroelectric smectic liquid crystals.

    Science.gov (United States)

    Cepic, M; Zeks, B

    2001-08-20

    The free energy of antiferroelectric smectic liquid crystals which takes into account polar order explicitly is presented. Steric, van der Waals, piezoelectric, and flexoelectric interactions to the nearest layers, and dipolar electrostatic interactions to the nearest and to the next-nearest layers, induce indirect tilt interactions with chiral and achiral properties, which extend to the third- and to the fourth-nearest layers. Although the strength of microscopic interactions changes monotonically with decreasing temperature, the effective interlayer interactions change nonmonotonically and give rise to a nonmonotonic change of the modulation period through various phases. Increased chirality changes the phase sequence.

  17. Frustrated smectic liquid crystalline phases in lactic acid derivatives

    Czech Academy of Sciences Publication Activity Database

    Glogarová, Milada; Novotná, Vladimíra

    2016-01-01

    Roč. 89, č. 7-8 (2016), s. 829-839 ISSN 0141-1594 R&D Projects: GA ČR GA15-02843S Institutional support: RVO:68378271 Keywords : field * liquid crystals * TGB phases Subject RIV: JJ - Other Materials Impact factor: 1.060, year: 2016

  18. Submicrosecond electro-optic switching in the liquid-crystal smectic A phase: The soft-mode ferroelectric effect

    Science.gov (United States)

    Andersson, G.; Dahl, I.; Keller, P.; Kuczyński, W.; Lagerwall, S. T.; Skarp, K.; Stebler, B.

    1987-08-01

    A new liquid-crystal electro-optic modulating device similar to the surface-stabilized ferroelectric liquid-crystal device is described. It uses the same kind of ferroelectric chiral smectics and the same geometry as that device (thin sample in the ``bookshelf '' layer arrangement) but instead of using a tilted smectic phase like the C* phase, it utilizes the above-lying, nonferroelectric A phase, taking advantage of the electroclinic effect. The achievable optical intensity modulation that can be detected through the full range of the A phase is considerably lower than for the surface-stabilized device, but the response is much faster. Furthermore, the response is strictly linear with respect to the applied electric field. The device concept is thus appropriate for modulator rather than for display applications. We describe the underlying physics and present measurements of induced tilt angle, of light modulation depth, and of rise time.

  19. Neutron quasi-elastic scattering study of translational motions in the smectic H, C and A phases of TBBA

    International Nuclear Information System (INIS)

    Dianoux, A.J.; Volino, F.; Heidemann, A.; Hervet, H.

    1975-01-01

    Neutron quasi-elastic scattering experiments in the smectic H, C and A phases of TBBA are presented, using the high resolution backscattering technique. The data are analyzed in terms of translational motion and are characterized by an apparent self diffusion coefficient Dsub(ap). The physical meaning of Dsub(ap) is discussed in terms of the true bulk self diffusion tensor and other kinds of translational motions [fr

  20. Flexible Bistable Smectic-A Liquid Crystal Device Using Photolithography and Photoinduced Phase Separation

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2012-01-01

    Full Text Available A flexible bistable smectic-A liquid crystal (SmA LC device using pixel-isolated mode was demonstrated, in which SmA LC molecules were isolated in pixels by vertical polymer wall and horizontal polymer layer. The above microstructure was achieved by using ultraviolet (UV photolithography and photoinduced phase separation. The polymer wall was fabricated by photolithography, and then the SmA LC was encapsulated in pixels between polymer wall through UV-induced phase separation, in which the polymer wall acts as supporting structure from mechanical pressure and maintains the cell gap from bending, and the polymer layer acts as adhesive for tight attachment of two substrates. The results demonstrated that all the intrinsic bistable properties of the SmA LC are preserved, and good electrooptical characteristics such as high contrast ratio and excellent stability of the bistable states were characterized. This kind of SmA bistable flexible display has high potential to be used as electronic paper, smart switchable reflective windows, and so forth.

  1. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Koch, Michel H J; Fahr, Alfred

    2009-01-01

    Cholesteryl nonanoate (CN), myristate (CM), palmitate (CP) and oleate (CO) alone or in combination were evaluated as matrix lipids for the preparation of supercooled smectic nanoparticles with a high stability against recrystallization during storage. The phase behavior of the cholesterol esters......, laser diffraction combined with polarizing intensity differential scattering, DSC and SAXS. The morphology of selected formulations was studied by freeze-fracture electron microscopy. All smectic nanoparticles with a mixed cholesterol ester matrix were stable against recrystallization when stored...... at room temperature. Nanoparticles with a pure CN and mixed CM/CN matrix with a high fraction of CN (60% of the whole lipid matrix) could even be stored at 4 degrees C for at least 18 months without any recrystallization. As smectic nanoparticles are studied especially with regard to parenteral...

  2. Determination and theoretical analysis of supercritical fluid chromatographic retention of polycyclic aromatic hydrocarbons in a polymeric smectic phase

    International Nuclear Information System (INIS)

    Chao Yan; Martire, D.E.

    1992-01-01

    A mean-field lattice model is used to describe the partitioning of blocklike molecules between an isotropic mobile phase and an anisotropic stationary phase in chromatography by applying it to supercritical fluid retention of polycyclic aromatic hydrocarbons in a polymeric smectic phase. This concludes that the logarithm of the capacity factor (1) increases linearly with increasing reciprocal temperature, (2) decreases with increasing mobile phase density more rapidly for solute molecules with a relatively larger contact area with the mobile phase, and (3) is a linear function of the minimum area. The van't Hoff plot slope is also determined to be more negative for solute molecules with a relatively larger ratio of contact area with the stationary phase versus the mobile phase. 18 refs., 9 figs., 5 tabs

  3. Order parameters in smectic liquid crystals[Smectics

    Energy Technology Data Exchange (ETDEWEB)

    Beldon, Stephen M

    2001-07-01

    This thesis explores some of the important mechanisms for switching in smectic liquid crystals. It is mainly concerned with the interaction of the electric field and various order parameters in smectic phases. Distortion of these order parameters and also the layer structures associated with smectics are discussed in depth. Initial work is concentrated on the electroclinic effect of commercially available FLC mixtures, where experimental results suggest the presence of non-uniformity in the molecular director profile. Two possible models are suggested assuming a variation of the order parameter {theta} through the cell. The first model assumes that the smectic layers remain bookshelf-like, and the second that the layers tilt in a vertical chevron structure when a cone angle is induced electroclinically or otherwise. The latter model is the first 'order parameter' model of an electric field induced vertical chevron. The presence of non-uniformity in the director profile is sensed by a method similar to wavelength extinction spectroscopy. Investigations are undertaken on racemic smectic materials with high dielectric biaxiality. Modelling of such a material reveals a new electroclinic effect which shows a discrete second order phase transition on application of a field. It is suggested that a bistable electroclinic effect stabilised with a high frequency ac field may be realised if a residual polarisation is present in the high biaxiality material, and that this might be useful in the displays industry. Experimental investigations of such a material confirm the above effects close to the smectic A-C transition. Finally a higher order smectic phase, the smectic I* phase, is considered. The distortion of the hexagonal bond orientational order is investigated experimentally during application of an electric field. The first dynamic model of the switching process is presented, showing good agreement with the experimental results. It is suggested that the bond

  4. Computer simulation studies of anisotropic systems. XXXII. Field-induction of a smectic A phase in a Gay-Berne mesogen

    Science.gov (United States)

    Luckhurst, G. R.; Saielli, G.

    2000-03-01

    Molecular field theory predicts the induction of a smectic A phase by the application of a field, either magnetic or electric, to a nematic phase. This intriguing behavior results from an enhancement of the orientational order which is coupled to the translational order and so shifts the smectic A-nematic transition. To test this prediction we have investigated a system of Gay-Berne mesogenic molecules subject to an applied field of second rank using isothermal-isobaric Monte Carlo simulations. The results of our calculations are compared with the Kventsel-Luckhurst-Zewdie molecular field theory of smectogens, modified to include the effect of an external field. We have also used the simulations to explore the possibility of inducing more ordered smectic phases with stronger fields.

  5. Induced Smectic X Phase Through Intermolecular Hydrogen-Bonded Liquid Crystals Formed Between Citric Acid and p- n-(Octyloxy)Benzoic Acid

    Science.gov (United States)

    Sundaram, S.; Subhasri, P.; Rajasekaran, T. R.; Jayaprakasam, R.; Senthil, T. S.; Vijayakumar, V. N.

    2017-08-01

    Hydrogen-bonded liquid crystal (HBLC) is synthesized from citric acid (CA) and 4-(octyloxy)benzoic acid (8OBA) with different mole ratios. Fourier transform infrared spectroscopy (FT-IR) confirms the presence of hydrogen bond between CA and 8OBA. Nuclear magnetic resonance (NMR) spectroscopic studies validate the intermolecular complementary, cyclic type of hydrogen bond, and molecular environment in the designed HBLC complex. Powder X-ray diffraction analysis reveals the monoclinic nature of liquid crystal complex in solid phase. Liquid crystal parameters such as phase transition temperature and enthalpy values for the corresponding mesogenic phases are investigated using a polarizing optical microscope (POM) and differential scanning calorimetry (DSC). It is observed that the change in chain length and steric hindrance while increasing the mole ratio in HBLC complex induces a new smectic X (Sm X) along with higher-order smectic G (Sm G) phases by quenching of smectic C (Sm C). From the experimental observations, induced Sm X phase has been identified as a finger print texture. Also, Sm G is a multi-colored mosaic texture in 1:1, 1:2, and 1:3 mol ratios. The optical tilt angle, thermal stability factor, and enhanced thermal span width of CA + 8OBA complex are discussed.

  6. Order parameters in smectic liquid crystals

    International Nuclear Information System (INIS)

    Beldon, Stephen M.

    2001-01-01

    This thesis explores some of the important mechanisms for switching in smectic liquid crystals. It is mainly concerned with the interaction of the electric field and various order parameters in smectic phases. Distortion of these order parameters and also the layer structures associated with smectics are discussed in depth. Initial work is concentrated on the electroclinic effect of commercially available FLC mixtures, where experimental results suggest the presence of non-uniformity in the molecular director profile. Two possible models are suggested assuming a variation of the order parameter θ through the cell. The first model assumes that the smectic layers remain bookshelf-like, and the second that the layers tilt in a vertical chevron structure when a cone angle is induced electroclinically or otherwise. The latter model is the first 'order parameter' model of an electric field induced vertical chevron. The presence of non-uniformity in the director profile is sensed by a method similar to wavelength extinction spectroscopy. Investigations are undertaken on racemic smectic materials with high dielectric biaxiality. Modelling of such a material reveals a new electroclinic effect which shows a discrete second order phase transition on application of a field. It is suggested that a bistable electroclinic effect stabilised with a high frequency ac field may be realised if a residual polarisation is present in the high biaxiality material, and that this might be useful in the displays industry. Experimental investigations of such a material confirm the above effects close to the smectic A-C transition. Finally a higher order smectic phase, the smectic I* phase, is considered. The distortion of the hexagonal bond orientational order is investigated experimentally during application of an electric field. The first dynamic model of the switching process is presented, showing good agreement with the experimental results. It is suggested that the bond orientational

  7. Study of variation in thermal width of nematic and induced smectic ordering phase of citric acid (CA) and 4-heptyloxybenzoic acid (7OBA) hydrogen bonded liquid crystal complexes

    Science.gov (United States)

    Sundaram, S.; Jayaprakasam, R.; Praveena, R.; Rajasekaran, T. R.; Senthil, T. S.; Vijayakumar, V. N.

    2018-01-01

    Hydrogen-bonded liquid crystals (HBLCs) have been derived from nonmesogenic citric acid (CA) and mesogenic 4-heptyloxybenzoic acid (7OBA) yielding a highly ordered smectic C (Sm C) phase along with the new smectic X (Sm X) phase which has been identified as fingerprint-type texture. Optical (polarizing optical microscopy), thermal (differential scanning calorimetry) and structural (Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy) properties are studied. A noteworthy observation is that the intermolecular H-bond (between CA and 7OBA) influences on its melting point and clearing temperature of the HBLCs which exhibits lower value than those of the individual compounds. A typical extended mesophase region has been observed in the present complex while varying the mixture ratio (1:1 to 1:3) than those of individual compounds. The change in the ratio of the mesogenic compound in the mixture alters thermal properties such as enthalpy value and thermal span width in nematic (N) region of HBLC complex. Optical tilt angle measurement of CA+7OBA in Sm C phase has been discussed to identify the molecular position in the mesophase.

  8. A molecular theory of smectic C liquid crystals made of rod-like molecules.

    Science.gov (United States)

    Govind, A S; Madhusudana, N V

    2002-10-01

    Organic compounds exhibiting the smectic C phase are made of rod-like molecules that have dipolar groups with lateral components. We argue that the off-axis character of the lateral dipolar groups can account for tilt in layered smectics (SmC, SmC*, SmI etc.). We develop a mean-field theory of the smectic C phase based on a single-particle potential of the form UC is proportional to sin(2theta) cos phi, consistent with the biaxial nature of the phase, where theta and phi are the polar and azimuthal angles, respectively. The hard-rod interactions that favour the smectic A phase with zero tilt angle are also included. The theoretical phase diagrams compare favourably with experimental trends. Our theory also leads to the following results: i) a first-order smectic C to smectic A transition above some value of the McMillan parameter alpha, leading to a tricritical point on the smectic C to smectic A transition line and ii) a first-order smectic C to smectic C transition over a very small range of values of the model parameters. We have also extended the theory to include the next higher-order term in the tilting potential and to include the effect of different tilt angles for the molecular core and the chain in the SmC phase.

  9. Physics of smectic membranes

    Science.gov (United States)

    Pieranski, P.; Beliard, L.; Tournellec, J.-Ph.; Leoncini, X.; Furtlehner, C.; Dumoulin, H.; Riou, E.; Jouvin, B.; Fénerol, J.-P.; Palaric, Ph.; Heuving, J.; Cartier, B.; Kraus, I.

    1993-03-01

    Due to their layered structure, smectic liquid crystals can form membranes, similar to soap bubbles, that can be spanned on frames. Such smectic membranes have been used extensively as samples in many structural X-ray studies of smectic liquid crystals. In this context they have been considered as very convenient and highly perfect samples but little attention has been paid to the reasons for their existence and to the process of their formation. Our aim here is to address a first list of questions, which are the most urgent to answer. We will also describe experiments and models that have been conceived especially in order to understand the physics of these fascinating systems.

  10. From antiferroelectricity to ferroelectricity in smectic mesophases ...

    Indian Academy of Sciences (India)

    are not ferroelectric in the ground state, but upon alignment within an electric field .... Figure 3. Molecular organisation within polar smectic phases and possible ways to escape from a macroscopic polarisation in mesophases built up by polar layers. .... in which the molecules adapt a twisted orientation from the top to bottom.

  11. E-T phase diagram of an antiferroelectric liquid crystal with re-entrand smectic C* phase

    Czech Academy of Sciences Publication Activity Database

    Na, Y.-H.; Naruse, Y.; Fukuda, N.; Orihara, H.; Fajar, A.; Hamplová, Věra; Kašpar, Miroslav; Glogarová, Milada

    2008-01-01

    Roč. 364, č. 1 (2008), s. 13-19 ISSN 0015-0193 Institutional research plan: CEZ:AV0Z10100520 Keywords : phase diagram * liquid crystals * dielectric measurements * electric field Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.562, year: 2008

  12. Biaxial and antiferroelectric structure of the orthogonal smectic phase of a bent-shaped molecule and helical structure in a chiral mixture system

    Science.gov (United States)

    Kang, Sungmin; Nguyen, Ha; Nakajima, Shunpei; Tokita, Masatoshi; Watanabe, Junji

    2013-05-01

    We examined the biaxial and antiferroelectric properties in the Smectic-APA (Sm-APA) phase of bent-shaped DC-S-8. The biaxiality, which results from the existence of a secondary director, was well established from birefringence observations in the homeotropically aligned Sm-APA. By entering into Sm-APA phase, the birefringence (Δn, difference between two refractive indices of short axes) continuously increased from 0 to 0.02 with decreasing temperature. The antiferroelectric switching and second harmonic generation (SHG) activity on the field-on state were also observed in the Sm-APA phase, and the evaluated spontaneous polarization (PS) value strongly depended on temperature. The temperature dependence of Δn and PS resembles each other and follows Haller's approximation, showing that the biaxiality is due to polar packing in which the molecules are preferentially packed with their bent direction arranged in the same direction, and that the phase transition of Sm-APA to Sm-A is second order. The biaxiality was further examined in chiral Sm-APA*. Doping with chiral components induced the helical twisting of the secondary director in the Sm-APA* phase, which was confirmed by observing the reflection of the circular dichroism (CD) bands in the homeotropically aligned cell. The helical pitch of Sm-APA* is tunable in the range of 300-700 nm wavelength with a variation in the chiral content of 5 to 10 weight (wt)%.

  13. Smectic meniscus and dislocations

    International Nuclear Information System (INIS)

    Geminard, J.C.; Oswald, P.; Holyst, R.

    1998-01-01

    In ordinary liquids the size of a meniscus and its shape is set by a competition between surface tension and gravity. The thermodynamical process of its creation can be reversible. On the contrary, in smectic liquid crystals the formation of the meniscus is always an irreversible thermodynamic process since it involves the creation of dislocations (therefore it involves friction). Also the meniscus is usually small in experiments with smectics in comparison to the capillary length and therefore the gravity does not play any role in determining the meniscus shape. Here we discuss the relation between dislocations and meniscus in smectics. The theoretical predictions are supported by a recent experiment performed on freely suspended films of smectic liquid crystals. In this experiment the measurement of the meniscus radius of curvature gives the pressure difference, Δp, according to the Laplace law. From the measurements of the growth dynamics of a dislocation loop (governed by Δp) we find the line tension (∼8 x 10 -8 dyn) and the mobility of an elementary edge dislocation (∼4 x 10 - 7 cm 2 s/g). (author)

  14. Nanoparticles inclusions in self assembly thin smectic films

    International Nuclear Information System (INIS)

    Hamdoun, B.; Charara, J.; Zaiour, A.

    2004-01-01

    Full text. Processing of nanocomposites based on nanoparticles inclusion in thin smectic-A liquid crystal was reviewed. Thin smectic-A liquid crystal consists of a stack of regularly spaced membranes that are frequently formed in thin diblock copolymers. Particular attention was given to the scientific concepts that underpin the fabrication of special composite derived copolymer components. The complex interplay between suspension stability and its structural evolution during nanomaterials processing was highlighted. Inclusions, such as nanoparticles, coupled locally to the smectic may deform the membranes over a large length scale. We determined the distortion field due to one inclusion using the Landau-de Gennes description of smectic liquid crystals and by neglecting the interactions between nanoparticles. The equilibrium position of the particle was shown to depend on both the surface tension at the film boundary and the volume fraction of the nanoparticles

  15. Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition

    International Nuclear Information System (INIS)

    Sun, Jian; Wang, Huihui; Cao, Hui; Ding, Hangjun; Yang, Zhou; Yang, Huai; Wang, Ling; Xie, Hui; Luo, Xueyao; Xiao, Jiumei

    2014-01-01

    A smart polymer stabilized liquid crystal (PSLC) thin film with temperature-controllable light transmittance was prepared based on a smectic-A (SmA)–chiral nematic (N*) phase transition, and then the effect of the composition and the preparation condition of the PSLC film on its thermo-optical (T-O) characteristics has been investigated in detail. Within the temperature range of the SmA phase, the PSLC shows a strong opaque state due to the focal conic alignment of liquid crystal (LC) molecules, while the film exhibits a transparent state result from the parallel alignment of N* phase LC molecules at a higher temperature. Importantly, the PSLC films with different temperature of phase transition and contrast ratio can be prepared by changing the composition of photo-polymerizable monomer/LC/chiral dopant. According to the competition between the polymerization of the curable monomers and the diffusion of LC molecules, the ultraviolet (UV) curing surrounding temperature and the intensity of UV irradiation play a critical role in tuning the size of the polymer network meshes, which in turn influence the contrast ratio and the switching speed of the film. Our observations are expected to pave the way for preparing smart PSLC thin films for applications in areas of smart windows, thermo-detectors and other information recording devices. (paper)

  16. A computer simulation study of tilted smectic mesophases

    International Nuclear Information System (INIS)

    Withers, I.M.

    2000-05-01

    Results are presented from a series of simulations undertaken to determine the effect of a novel form of molecular biaxiality upon the phase behaviour of the well established Gay-Berne (GB) liquid crystal model. Firstly, the simulation of a bulk system interacting via the Internally-Rotated Gay Berne (IRGB) potential, which offers a single-site representation of a molecule rigidly constrained into a zig-zag conformation, is presented. The results of simulations performed for systems of IRGB particles with an aspect ratio of 3:1 confirm that the introduction of biaxiality into the model results in the destabilisation of the orientationally ordered phases. For particles with a sufficiently pronounced zig-zag conformation, this results in the complete destabilisation of the smectic A phase and the smectic B phase being replaced by the tilted smectic J phase. Following these observations, the effect upon the phase behaviour of increasing molecular elongation is also considered, with an increase in the aspect ratio from 3:1 to 4:1 resulting in the nematic and smectic J phases being replaced by smectic A and smectic G phases respectively. Secondly, a version of the IRGB potential modified to include a degree of molecular flexibility is considered. Results obtained from bulk systems interacting via the flexible IRGB for 3:1 and 4:1 molecules show that the introduction of flexibility results in the destabilisation of the smectic A phase and the stabilisation of the nematic and tilted hexatic phases. Finally, the effect upon the phase behaviour of the rigid IRGB model of the inclusion of a longitudinal linear quadrupole is examined. These results show that increasing quadrupole moment results in the destabilisation of the tilted hexatic phase, although the biaxial order parameter is increased with increasing quadrupole moment. There is no clear correlation between quadrupole magnitude and the other observed phase transitions, with the nematic and smectic A phases being

  17. Identifying Phase Space Boundaries with Voronoi Tessellations

    CERN Document Server

    Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2016-11-24

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis.

  18. Trapping of edge dislocations by a moving smectic-A smectic-B interface

    Science.gov (United States)

    Oswald, P.; Lejcek, L.

    1991-09-01

    We analyze how the motion of the edge dislocations of the smectic-A liquid crystal allows the system to relax plastically the stresses that are generated during the growth of the smectic-B plastic crystal. These stresses are both due, to the density difference between the two phases, and to the layer thickness variation at the phase transition. In particular, we calculate under which conditions a dislocation can be trapped by the smectic-B phase. Finally, we suggest that this dynamical trapping is responsible for the very large amount of stacking faults observed by X-ray diffraction. Nous analysons comment le mouvement des dislocations coin du cristal liquide smectique A permet de relaxer plastiquement les contraintes induites par la croissance du cristal plastique smectique B. Ces contraintes sont engendrées à la fois par la différence de densité qui existe entre les deux phases et par la variation d'épaisseur des couches à la transition. Nous calculons en particulier dans quelles conditions une dislocation coin peut être piégée par le smectique B. Enfin, nous suggérons que ce piégeage dynamique est à l'origine de la très forte densité de fautes d'empilement qui est couramment observée aux rayons X dans la phase B.

  19. Anisotropic ultrasound propagation in a smectic-C liquid crystal

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Umrigar, C.J.; Ketterson, J.B.

    1976-01-01

    The results of longitudinal ultrasound propagation in a magnetically aligned smectic-C liquid crystal (p-p' Heptyloxyazoxy benzene) are reported. In the smectic-C phase the plane normals can lie anywhere on a cone with the axis along the magnetic field direction in which the sample was cooled. The effects of the layer normal direction and the molecular orientation within the planes on the velocity anisotropy were separated by cooling the sample into the smectic-C phase at particular orientations of the magnetic field and subsequently rotating the magnetic field. The results were analyzed on the basis of a multidomain model where the azimuthal angle of the plane normal around the field direction was averaged over

  20. Observation of paramorphic phenomenon and non-tilted orthogonal smectic phases in hydrogen bonded ferroelectric liquid crystals for photonic applications

    Science.gov (United States)

    Subhasri, P.; Venugopal, D.; Jayaprakasam, R.; Chitravel, T.; Vijayakumar, V. N.

    2018-06-01

    A new class of hydrogen bonded ferroelectric liquid crystals (HBFLC) have been designed and synthesized by intermolecular hydrogen bonds between mesogenic 4-decyloxybenzoic acid (10OBA) and non-mesogenic (R)-(+)-Methylsuccinic acid (MSA) which have been confirmed through experimental and theoretical studies. Further, Mulliken population analysis clearly reveals that the existence of hydrogen bonds, strength and dynamic properties. Textural observation and its corresponding enthalpy values are analyzed by polarizing optical microscope (POM) and differential scanning calorimetry (DSC) respectively. Paramorphic changes in Sm C* phase due to the change of refractive index, which clearly reveal that the complex could be used for filtering action in photonic devices. The transition from lone pair to π* with large stabilization energy evidently exposes the chiral phases in the present HBFLC complex. Intermolecular interaction is analyzed by using natural bond orbital (NBO) studies. The highest energy in the HOMO-LUMO shows the stable phase in the HBFLC complex. Molecular structure of the HBFLC complex possesses the monoclinic which has been evinced through x-ray analysis. The randomly oriented bunch of homogeneous molecules in Sm A* phase of the HBFLC complex is reported.

  1. Smectic order and backbone anisotropy of a side-chain liquid crystalline polymer by Small-Angle Neutron Scattering

    Science.gov (United States)

    Noirez, L.; Pépy, G.; Keller, P.; Benguigui, L.

    1991-07-01

    We have simultaneously measured, for the first time, the extension of the polymer backbone of a side-chain liquid crystalline polymer and the intensity of the 001 Bragg reflection, which gives the smectic order parameter Psi as a function of temperature in the smectic phase. We have qualitatively demonstrated that the more the smectic phase is ordered, the more the polymer backbone is localized between the mesogenic layers. It is shown that the Landau theory allows us to relate the radius of gyration parallel to the magnetic field of the polymer backbone to the smectic order parameter. We also show that the Renz-Warner theory is suitable at low temperatures.

  2. Effect of metallic silver nanoparticles on the alignment and relaxation behaviour of liquid crystalline material in smectic C* phase

    Science.gov (United States)

    Vimal, Tripti; Kumar Gupta, Swadesh; Katiyar, Rohit; Srivastava, Atul; Czerwinski, Michal; Krup, Katarzyna; Kumar, Sandeep; Manohar, Rajiv

    2017-09-01

    The influence of silver nanoparticles dispersed in a Ferroelectric Liquid Crystal (FLC) on the properties of the resultant composite system has been investigated by thermal, electro-optical, and dielectric methods. We show that the concentration of thiol capped silver nanoparticles is a critical factor in governing the alignment of nanoparticles (NPs) in the host FLC. The orientation of NPs in composite samples affects the ordering of the LC (Liquid Crystal) phase and consequently changes the various phase transition temperatures of the host LC. Formation of self-assembled 2D (two dimensional) arrays of nanoparticles is observed for high concentration of dopant in the LC, oriented perpendicular to the direction of rubbing. We propose that the molecular interaction between the thiol capped NPs and LC molecules is the key factor behind such an arrangement of NPs. Orientation of NPs has affected the relaxation behaviour and various other material parameters, significantly. A noteworthy change in DC conductivity articulates our proposed idea of the formation of 2D array of NPs perpendicular to the direction of rubbing. This comprehensive study endorses the importance of dopant concentration in modifying the properties of the host LC material.

  3. Squeezing-out dynamics in free-standing smectic films

    Energy Technology Data Exchange (ETDEWEB)

    S̀liwa, Izabela, E-mail: izasliwa@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznaǹ (Poland); Vakulenko, A.A. [Saint Petersburg Institute for Machine Sciences, The Russian Academy of Sciences, Saint Petersburg 199178 (Russian Federation); Zakharov, A.V., E-mail: alexandre.zakharov@yahoo.ca [Saint Petersburg Institute for Machine Sciences, The Russian Academy of Sciences, Saint Petersburg 199178 (Russian Federation)

    2016-05-06

    Highlights: • We model the dynamics of layer transitions. • We model the thermally activated nucleation of a small hole. • We model the dynamics of squeezing-out one layer. - Abstract: We have carried out a theoretical study of the dynamics of the squeezing-out of one layer from the N-layer free-standing smectic film (FSSF) coupled with a meniscus, during the layer-thinning process. Squeezing-out is initiated by a thermally activated nucleation process in which a density fluctuation forms a small void in the center of the circular FSSF. The pressure gradient develops between the squeezed-out and nonsqueezed-out areas and is responsible for the driving out of one or several layer(s) from the N-layer smectic film. The dynamics of the boundary between these areas in the FSSF is studied by the use of the conservation laws for mass and linear momentum with accounting for the coupling between the meniscus and the smectic film. This coupling has a strong effect on the dynamics of the squeezing-out process and may significantly change the time which is needed to completely squeezed-out one or several layer(s) from the N-layer smectic film.

  4. Liquid Crystals - The 'Fourth' Phase of Matter

    Indian Academy of Sciences (India)

    possibilities of novel technological applications. Liquid crystalline materials ... advanced instrumentation, including laptops and futuristic flat panel displays. .... The twist grain-boundary phase is formed when the layers of a smectic A phase are .... the optic axis) is uniformly oriented parallel to the glass plate. (see Figure IIa).

  5. Dynamics of cylindrical domain walls in smectic C liquid crystals

    International Nuclear Information System (INIS)

    Stewart, I W; Wigham, E J

    2009-01-01

    An analysis of the dynamics of cylindrical domain walls in planar aligned samples of smectic C liquid crystals is presented. A circular magnetic field, induced by an electric current, drives a time-dependent reorientation of the corresponding radially dependent director field. Nonlinear approximations to the relevant nonlinear dynamic equation, derived from smectic continuum theory, are solved in a comoving coordinated frame: exact solutions are found for a π-wall and numerical solutions are calculated for π/2-walls. Each calculation begins with an assumed initial state for the director that is a prescribed cylindrical domain wall. Such an initial wall will proceed to expand or contract as its central core propagates radially inwards or outwards, depending on the boundary conditions for the director, the elastic constants, the magnitude of the field and the sign of the magnetic anisotropy of the liquid crystal

  6. Landau-de Gennes theory of surface-enhanced ordering in smectic films.

    Science.gov (United States)

    Shalaginov, A N; Sullivan, D E

    2001-03-01

    A Landau theory for surface-enhanced ordering in smectic-A free-standing films is described, based on a generalization of de Gennes' model for a "presmectic" fluid confined between two walls. According to the theory, smectic ordering in free-standing films heated above the bulk smectic melting temperature is due to an intrinsic surface contribution rather than an external field. The theory yields a persistent finite-size effect, in that the film melting temperatures do not tend to the bulk transition temperature in the limit of infinite film thickness. It also predicts that a continuous transition from (N+1)- to N-layer films is impossible without an external field. The theory closely fits existing experimental data on layer-thinning transitions in compounds which exhibit a bulk smectic-A to nematic phase transition. Possible origins of the intrinsic surface contribution are discussed.

  7. Calorimetric Study of Phase Transitions Involving Twist-Grain-Boundary TGB{A} and TGB{C} Phases

    Science.gov (United States)

    Navailles, L.; Garland, C. W.; Nguyen, H. T.

    1996-09-01

    High-resolution calorimetry has been used to determine the heat capacity and latent heat associated with phase transitions in the homologous series of chiral liquid crystals nF_2BTFO_1M_7 [ 3-fluoro-4(1-methylheptyloxy)4'-(4''-alkoxy-2'', 3''-difluorobenzoyloxy)tolane] . These compounds exhibit smectic-C^* (SmC^*), twist-grain-boundary (TGBA for n=10, TGBC for n=11, 12) and cholesteric (N^*) phases. All the phase transitions are first order with small to moderate latent heats. There is a large rounded excess heat capacity peak in the N^* phase that is consistent with the predicted appearance of short-range TGB order (chiral line liquid character). This is analogous to the development of an Abrikosov flux vortex liquid in type-II superconductors. Both the n=11 and 12 homologs exhibit two closely spaced transitions in the region where a single TGBC - N^* transition was expected. This suggests the existence of two thermodynamically distinct TGBC phases. Des exprériences de calorimétrie haute résolution ont été réalisées pour déterminer les chaleurs spécifiques et les chaleurs latentes associées aux transitions de phase des homologues de la série crystal liquide nF_2BTFO_1M_7: 3-fluoro-4[1-methyl-heptyloxy]4'-(4''-alcoxy-2'', 3''-difluorobenzoyloxy)tolanes. Ces produits présentent la phase smectique C^* (SmC^*), les phases à torsion par joint de grain (TGBA pour n=10 et TGBC pour n=11, 12) et la phase cholestérique (N^*). Toutes les transitions de phase sont du premier ordre. La chaleur latente associée à ces transitions est faibles ou modérée. Nous observons, dans la phase N^*, un grand pic arrondi qui est en accord avec les prédictions de l'apparition d'un ordre TGB à courte distance (liquide de ligne de dislocation). Ce phénomène est l'analogue du liquide de vortex dans les supraconducteurs de type II. Les composés n=11 et 12 présentent, dans la région où nous attendions une transition TGBC - N^* unique, deux transitions sur un très faible

  8. Biaxiality in Nematic and Smectic Liquid Crystals. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satyendra [Kent State Univ., Kent, OH (United States); Li, Quan [Kent State Univ., Kent, OH (United States); Srinivasarao, Mohan [Georgia Inst. of Technology, Atlanta, GA (United States); Agra-Kooijman, Dena M. [Kent State Univ., Kent, OH (United States); Rey, Alejandro [McGill Univ., Montreal, QC (Canada)

    2017-01-24

    During the award period, the project team explored several phenomena in a diverse group of soft condensed matter systems. These include understanding of the structure of the newly discovered twist-bend nematic phase, solving the mystery of de Vries smectic phases, probing of interesting associations and defect structures in chromonic liquid crystalline systems, dispersions of ferroelectric nanoparticles in smectic liquid crystals, investigations of newly synthesized light sensitive and energy harvesting materials with highly desirable transport properties. Our findings are summarized in the following report followed by a list of 36 publications and 37 conference presentations. We achieved this with the support of Basic Sciences Division of the US DOE for which we are thankful.

  9. Micellar phase boundaries under the influence of ethyl alcohol

    International Nuclear Information System (INIS)

    Bergeron, Denis E.

    2016-01-01

    The Compton spectrum quenching technique is used to monitor the effect of ethyl alcohol (EtOH) additions on phase boundaries in two systems. In toluenic solutions of the nonionic surfactant, Triton X-100, EtOH shifts the boundary separating the first clear phase from the first turbid phase to higher water:surfactant ratios. In a commonly used scintillant, Ultima Gold AB, the critical micelle concentration is not shifted. The molecular interactions behind the observations and implications for liquid scintillation counting are discussed. - Highlights: • Compton spectrum quenching technique applied to find micellar phase boundaries. • Toluenic Triton X-100 and Ultima Gold AB investigated. • Ethyl alcohol affects phase boundaries in Triton X-100, not in Ultima Gold AB. • Phase boundary observations discussed in terms of relevant molecular interactions.

  10. A grain boundary phase transition in Si–Au

    International Nuclear Information System (INIS)

    Ma, Shuailei; Meshinchi Asl, Kaveh; Tansarawiput, Chookiat; Cantwell, Patrick R.; Qi, Minghao; Harmer, Martin P.; Luo, Jian

    2012-01-01

    A grain boundary transition from a bilayer to an intrinsic (nominally clean) boundary is observed in Si–Au. An atomically abrupt transition between the two complexions (grain boundary stabilized phases) implies the occurrence of a first-order interfacial phase transition associated with a discontinuity in the interfacial excess. This observation supports a grain-boundary complexion theory with broad applications. This transition is atypical in that the monolayer complexion is absent. A model is proposed to explain the bilayer stabilization and the origin of this complexion transition.

  11. Boundary condition histograms for modulated phases

    International Nuclear Information System (INIS)

    Benakli, M.; Gabay, M.; Saslow, W.M.

    1997-11-01

    Boundary conditions strongly affect the results of numerical computations for finite size inhomogeneous or incommensurate structures. We present a method which allows to deal with this problem, both for ground state and for critical properties: it combines fluctuating boundary conditions and specific histogram techniques. Our approach concerns classical as well as quantum systems. In particular, current-current correlation functions, which probe large scale coherence of the states, can be accurately evaluated. We illustrate our method on a frustrated two dimensional XY model. (author)

  12. Shear flow in smectic A liquid crystals

    International Nuclear Information System (INIS)

    Stewart, I W; Stewart, F

    2009-01-01

    This paper considers the onset of a shear-induced instability in a sample of smectic A liquid crystal. Unlike many previous models, the usual director n need not necessarily coincide with the local smectic layer normal a; the traditional Oseen constraint (∇xa=0) is not imposed when flow is present. A recent dynamic theory for smectic A (Stewart 2007 Contin. Mech. Thermodyn. 18 343-60) will be used to examine a stationary instability in a simple model when the director reorientation and smectic layer distortions are, firstly, assumed not to be coupled to the velocity and, secondly, are supposed coupled to the velocity. A critical shear rate at which the onset of the instability occurs will be identified, together with an accompanying critical director tilt angle and critical wavenumber for the associated smectic layer undulations. Despite some critical phenomena being largely unaffected by any coupling to the flow, it will be shown that the influence of some material parameters, especially the smectic layer compression constant B 0 and the coupling constant B 1 , upon the critical shear rate and critical tilt angle can be greatly affected by flow.

  13. Phase boundary effects in metal matrix embedded glasses

    International Nuclear Information System (INIS)

    Schiewer, E.

    1979-01-01

    An investigation was performed to study reactions at the phase boundaries of glass-lead composites at temperatures up to the softening point of the glass. Some metal was oxidized at the boundary and penetrated into the glass. Solid-state diffusion was rate controlling. In the case of a phosphate glass, fission products were depleted in the boundary area. Molybdenum migrated into the lead, and cesium migrated into the glass core. 2 figures, 3 tables

  14. Grain-boundary, glassy-phase identification and possible artifacts

    International Nuclear Information System (INIS)

    Simpson, Y.K.; Carter, C.B.; Sklad, P.; Bentley, J.

    1985-01-01

    Specimen artifacts such as grain boundary grooving, surface damage of the specimen, and Si contamination are shown experimentally to arise from the ion milling used in the preparation of transmission electron microscopy specimens. These artifacts in polycrystalline, ceramic specimens can cause clean grain boundaries to appear to contain a glassy phase when the dark-field diffuse scattering technique, the Fresnel fringe technique, and analytical electron microscopy (energy dispersive spectroscopy) are used to identify glassy phases at a grain boundary. The ambiguity in interpreting each of these techniques due to the ion milling artifacts will be discussed from a theoretical view point and compared to experimental results obtained for alumina

  15. Internal loading of an inhomogeneous compressible Earth with phase boundaries

    Science.gov (United States)

    Defraigne, P.; Dehant, V.; Wahr, J. M.

    1996-01-01

    The geoid and the boundary topography caused by mass loads inside the earth were estimated. It is shown that the estimates are affected by compressibility, by a radially varying density distribution, and by the presence of phase boundaries with density discontinuities. The geoid predicted in the chemical boundary case is 30 to 40 percent smaller than that predicted in the phase case. The effects of compressibility and radially varying density are likely to be small. The inner core-outer core topography for loading inside the mantle and for loading inside the inner core were computed.

  16. Calamitic Smectic A-Polar Smectic APA Transition Observed in Bent Molecules with Large Bent-Angle Central Core of 4,6-Dichlorobenzene and Alkylthio Terminal Tail

    Science.gov (United States)

    Nguyen, Ha; Kang, Sungmin; Tokita, Masatoshi; Watanabe, Junji

    2011-07-01

    New homologs of bent molecules with a large bent-angle central core of 4,6-dichloro benzene and an alkylthio terminal tail have been synthesized. Although the corresponding alkoxy-tail homologs show only the calamitic phases because of its large bent angles around 160°, the new homologs with an alkylthio tail exhibit the antiferroelectric smectic APA (SmAPA) banana phase that is transformed on cooling from the calamitic smectic A (SmA) phase. The biaxial polar packing of bent molecules in the SmAPA phase is considered to arise from the hindered rotation around the molecular long axis due to the expansion of the mesophase temperatures to a lower temperature region. This study indicates that the bent molecules, even with a large bent angle, have the potential to form a switchable banana phase with a remarkable decrease in its phase temperature range to around 60 °C.

  17. Examination of new chiral smectics with four aromatic rings

    Science.gov (United States)

    Żurowska, Magdalena; Czerwiński, Michał; Dziaduszek, Jerzy; Filipowicz, Marek

    2018-05-01

    This paper presents the results of the study of four chiral mesogens with the acronym (4X1X2). The investigated compounds might be of interest for use as components of multicomponent mixtures useful in technical devices. The compounds have high chemical stability. Their mesomorphic properties were tested by means of polarizing optical microscopy and differential scanning calorimetry. The helical pitch of the prepared compounds and mixtures was estimated using the selective reflection method. Their phase smectic layer structure and usefulness for formulation of multicomponent antiferroelectric mixtures were then reported.

  18. Group theoretical arguments on the Landau theory of second-order phase transitions applied to the phase transitions in some liquid crystals

    International Nuclear Information System (INIS)

    Rosciszewski, K.

    1979-01-01

    The phase transitions between liquids and several of the simplest liquid crystalline phases (nematic, cholesteric, and the simplest types of smectic A and smectic C) were studied from the point of view of the group-theoretical arguments of Landau theory. It was shown that the only possible candidates for second-order phase transitions are those between nematic and smectic A, between centrosymmetric nematic and smectic C and between centrosymmetric smectic A and smectic C. Simple types of density functions for liquid crystalline phases are proposed. (author)

  19. Influence of weak anchoring upon the alignment of smectic A liquid crystals with surface pretilt

    Energy Technology Data Exchange (ETDEWEB)

    De Vita, R [Department of Engineering Science and Mechanics, Virginia Tech, 230 Norris Hall, Blacksburg, VA 24061 (United States); Stewart, I W [Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH (United Kingdom)], E-mail: devita@vt.edu, E-mail: i.w.stewart@strath.ac.uk

    2008-08-20

    Equilibrium configurations for smectic A liquid crystals in a 'bookshelf' geometry are determined from a nonlinear continuum model under strong and weak anchoring conditions at the boundary for the usual director n. Natural boundary conditions are derived for n and the smectic layer normal a when a preferred director orientation n{sub p}, which generally induces a director pretilt, is prescribed on the boundaries. Two key aspects are examined via the nonlinear equilibrium equations: the separation of n from a and the influence of weak anchoring. The orientations of n and a relative to n{sub p} may differ significantly and depend very much upon the magnitude of the anchoring strength. These results from a nonlinear theory are natural and novel developments of previous classical linearized models for which n {identical_to} a. Comparisons are also drawn between solutions for strong and weak anchoring conditions.

  20. Influence of weak anchoring upon the alignment of smectic A liquid crystals with surface pretilt

    International Nuclear Information System (INIS)

    De Vita, R; Stewart, I W

    2008-01-01

    Equilibrium configurations for smectic A liquid crystals in a 'bookshelf' geometry are determined from a nonlinear continuum model under strong and weak anchoring conditions at the boundary for the usual director n. Natural boundary conditions are derived for n and the smectic layer normal a when a preferred director orientation n p , which generally induces a director pretilt, is prescribed on the boundaries. Two key aspects are examined via the nonlinear equilibrium equations: the separation of n from a and the influence of weak anchoring. The orientations of n and a relative to n p may differ significantly and depend very much upon the magnitude of the anchoring strength. These results from a nonlinear theory are natural and novel developments of previous classical linearized models for which n ≡ a. Comparisons are also drawn between solutions for strong and weak anchoring conditions

  1. Entrophy producing processes at phase boundaries

    International Nuclear Information System (INIS)

    Hampe, M.J.

    1981-01-01

    A thermodynamic theory for the treatment of transport phenomena in multiphase and multicomponent systems is presented. Starting point is a field theoretical description of interfacial systems. The interface in its three dimensional structure is described by new thermodynamic variables, namely the structure vectors a k of the components k. This offers the possibility to analyse processes related with a change of the three dimensional structure by means of the methods of irreversible thermodynamics. Compared to the well known theory of irreversible processes in single phase and membrane systems there are differences regarding the balance equations for component masses and momentum; additionally a balance equation for the structure vector has to be introduced to treat changes of the interfacial structure. The linear constitutive equations obtained from the production term of the entropy balance equation describe transport processes at every point of a multiphase system. - It is shown that in the interfacial region of multiphase systems there are other processes producing entropy than in the bulk of a single phase system. E.g. in the region of an interface Fickian diffusion is not allowed to occur due to a stability criterion. Instead of this a tensorial transport phenomenon due to the structural change of the interface sets in which is possible only at interfaces. By means of a thermodynamic coupling of this tensorial process with the tensorial momentum transport a thermodynamic explanation and description of the Marangoni-effect is obtained. - New expressions for entropy producing processes are also derived for generalized chemical reactions and transport of momentum. A discussion of potential ineractions between fluxes shows that the same cross-effects occurring in single phase systems cannot be supposed to occur in an interfacial region too. This results in new aspects for the thermodynamic explanation of active transport. (orig.)

  2. Intergranular and inter-phased boundaries in the materials

    International Nuclear Information System (INIS)

    Aslanides, A.; Backhaus-Ricoult, M.; Bayle-Guillemaud, P.

    2000-01-01

    This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)

  3. On the search for experimentally observed grain boundary phase transitions

    International Nuclear Information System (INIS)

    Balluffi, R.W.; Hsieh, T.E.

    1987-07-01

    The phase space for a heterogeneous system containing a grain boundary involves a relatively large number of variables (i.e., at least six plus the number of components), and it is therefore conceptually possible to induce a large variety of grain boundary phase transitions by selectively varying these parameters. Despite this, a review of the literature reveals that there have been virtually no clear-cut experimental observations of transitions reported in which the boundary structure has been observed as a function of time under well defined conditions. In current work, we are searching for roughening/faceting transitions and melting transitions for boundaries in Al by hot stage transmission electron microscopy. A clear example of a reversible roughening/faceting transition has been found. No evidence for melting has been found for temperatures as high as 0.96 T/sub m/ (by monitoring GBD core delocalization in several special boundaries with Σ ≤ 13) or 0.999 T/sub m/ (by observing the local diffraction contrast at general boundaries in polycrystalline specimens)

  4. Defect dynamics and coarsening dynamics in smectic-C films

    Science.gov (United States)

    Pargellis, A. N.; Finn, P.; Goodby, J. W.; Panizza, P.; Yurke, B.; Cladis, P. E.

    1992-12-01

    We study the dynamics of defects generated in free-standing films of liquid crystals following a thermal quench from the smectic-A phase to the smectic-C phase. The defects are type-1 disclinations, and the strain field between defect pairs is confined to 2π walls. We compare our observations with a phenomenological model that includes dipole coupling of the director field to an external ordering field. This model is able to account for both the observed coalescence dynamics and the observed ordering dynamics. In the absence of an ordering field, our model predicts the defect density ρ to scale with time t as ρ lnρ~t-1. When the dipole coupling of the director field to an external ordering field is included, both the model and experiments show the defect coarsening proceeds as ρ~e-αt with the strain field confined to 2π walls. The external ordering field most likely arises from the director's tendency to align with edge dislocations within the liquid-crystal film.

  5. A novel model for smectic liquid crystals: Elastic anisotropy and response to a steady-state flow.

    Science.gov (United States)

    Püschel-Schlotthauer, Sergej; Meiwes Turrión, Victor; Stieger, Tillmann; Grotjahn, Robin; Hall, Carol K; Mazza, Marco G; Schoen, Martin

    2016-10-28

    By means of a combination of equilibrium Monte Carlo and molecular dynamics simulations and nonequilibrium molecular dynamics we investigate the ordered, uniaxial phases (i.e., nematic and smectic A) of a model liquid crystal. We characterize equilibrium behavior through their diffusive behavior and elastic properties. As one approaches the equilibrium isotropic-nematic phase transition, diffusion becomes anisotropic in that self-diffusion D ⊥ in the direction orthogonal to a molecule's long axis is more hindered than self-diffusion D ∥ in the direction parallel to that axis. Close to nematic-smectic A phase transition the opposite is true, D ∥ flow depending on whether the convective velocity is parallel or orthogonal to the plane of smectic layers. We find that in Poiseuille-like flow the viscosity of the smectic A phase is higher than in plug flow. This can be rationalized via the velocity-field component in the direction of the flow. In a sufficiently strong flow these smectic layers are not destroyed but significantly bent.

  6. Identifying phase-space boundaries with Voronoi tessellations

    International Nuclear Information System (INIS)

    Debnath, Dipsikha; Matchev, Konstantin T.; Gainer, James S.; Kilic, Can; Yang, Yuan-Pao; Kim, Doojin

    2016-01-01

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)

  7. Identifying phase-space boundaries with Voronoi tessellations

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Dipsikha; Matchev, Konstantin T. [University of Florida, Physics Department, Gainesville, FL (United States); Gainer, James S. [University of Hawaii, Department of Physics and Astronomy, Honolulu, HI (United States); Kilic, Can; Yang, Yuan-Pao [The University of Texas at Austin, Theory Group, Department of Physics and Texas Cosmology Center, Austin, TX (United States); Kim, Doojin [University of Florida, Physics Department, Gainesville, FL (United States); CERN, Theory Division, Geneva 23 (Switzerland)

    2016-11-15

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)

  8. New theories for smectic and nematic liquid crystalline polymers

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of results from new statistical-physics theories for both backbone and side-chain liquid crystalline polymers (LCPs) and for mixtures with LCPs is presented. Thermodynamic and molecular ordering properties (including odd-even effects) have been calculated as a function of pressure, density, temperature, and molecule chemical structures (including degree of polymerization and the following properties of the chemical structures of the repeat units: lengths and shapes, intra-chain rotation energies, dipole moments, site-site polarizabilities and Lennard-Jones potentials, etc.) in nematic and multiple smectic-A LC phases and in the isotropic liquid phase. These theories can also be applied to combined LCPs. Since these theories have no ad hoc or arbitrarily adjustable parameters, these theories have been used to design new LCPs and new solvents and to predict and explain properties

  9. Smectic liquid crystals in anisotropic colloidal silica gels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Dennis [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Borthwick, Matthew A [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Leheny, Robert L [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2004-05-19

    We report x-ray scattering studies of the smectic liquid crystal octylcyano-biphenol (8CB) confined by strained colloidal silica gels. The gels, comprised of aerosil particles, possess an anisotropic structure that stabilizes long-range nematic order in the liquid crystal while introducing random field effects that disrupt the smectic transition. The short-range smectic correlations that form within this environment are inconsistent with the presence of a topologically ordered state predicted for 3D random field XY systems and are quantitatively like the correlations of smectics confined by isotropic gels. Detailed analysis reveals that the quenched disorder suppresses the anisotropic scaling of the smectic correlation lengths observed in the pure liquid crystal. These results and additional measurements of the smectic-A to smectic-C transition in 4-n-pentylphenylthiol-4'-n-octyloxybenzoate (8barS5) indicate that the observed smectic behaviour is dictated by random fields coupling directly to the smectic order while fields coupling to the nematic director play a subordinate role.

  10. On a Minimum Problem in Smectic Elastomers

    International Nuclear Information System (INIS)

    Buonsanti, Michele; Giovine, Pasquale

    2008-01-01

    Smectic elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. Balance equations for smectic elastomers are derived from the general theory of continua with constrained microstructure. In this work we investigate a very simple minimum problem based on multi-well potentials where the microstructure is taken into account. The set of polymeric strains minimizing the elastic energy contains a one-parameter family of simple strain associated with a micro-variation of the degree of freedom. We develop the energy functional through two terms, the first one nematic and the second one considering the tilting phenomenon; after, by developing in the rubber elasticity framework, we minimize over the tilt rotation angle and extract the engineering stress

  11. Rim instability of bursting thin smectic films

    Science.gov (United States)

    Trittel, Torsten; John, Thomas; Tsuji, Kinko; Stannarius, Ralf

    2013-05-01

    The rupture of thin smectic bubbles is studied by means of high speed video imaging. Bubbles of centimeter diameter and film thicknesses in the nanometer range are pierced, and the instabilities of the moving rim around the opening hole are described. Scaling laws describe the relation between film thickness and features of the filamentation process of the rim. A flapping motion of the retracting smectic film is assumed as the origin of the observed filamentation instability. A comparison with similar phenomena in soap bubbles is made. The present experiments extend studies on soap films [H. Lhuissier and E. Villermaux, Phys. Rev. Lett. 103, 054501 (2009), 10.1103/PhysRevLett.103.054501] to much thinner, uniform films of thermotropic liquid crystals.

  12. Smectic Layer Origami via Preprogrammed Photoalignment.

    Science.gov (United States)

    Ma, Ling-Ling; Tang, Ming-Jie; Hu, Wei; Cui, Ze-Qun; Ge, Shi-Jun; Chen, Peng; Chen, Lu-Jian; Qian, Hao; Chi, Li-Feng; Lu, Yan-Qing

    2017-04-01

    Hierarchical architecture is of vital importance in soft materials. Focal conic domains (FCDs) of smectic liquid crystals, characterized by an ordered lamellar structure, attract intensive attention. Simultaneously tailoring the geometry and clustering characteristics of FCDs remains a challenge. Here, the 3D smectic layer origami via a 2D preprogrammed photoalignment film is accomplished. Full control of hierarchical superstructures is demonstrated, including the domain size, shape, and orientation, and the lattice symmetry of fragmented toric FCDs. The unique symmetry breaking of resultant superstructures combined with the optical anisotropy of the liquid crystals induces an intriguing polarization-dependent diffraction. This work broadens the scientific understanding of self-assembled soft materials and may inspire new opportunities for advanced functional materials and devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Directory of Open Access Journals (Sweden)

    Francesco Cordero

    2015-12-01

    Full Text Available The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems.

  14. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Science.gov (United States)

    Cordero, Francesco

    2015-01-01

    The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707

  15. Size effect for phase stability on Au–Cd–Ag of phase boundary composition

    International Nuclear Information System (INIS)

    Matsuoka, Yuki; Suzuki, Keiko; Kudo, Natsuko

    2013-01-01

    Highlights: ► Size and heat treatment effects of phase boundary composition Au 52.5−x Cd 47.5 Ag x were studied. ► The transformation temperature T 0 increases by quench. It is investigated that disordering of atoms and lattice defects make β-phase unstable. ► Downsizing sample decreased T 0 in β-phase, showed a tendency of increase in coexistent phase. ► Downsizing is supposed to make difficult nucleation for martensitic transformation. ► Increasing of surface ratio by downsizing of powder sample is estimated to make easy to transform from unstable β-phase to martensite phase. -- Abstract: Size and heat treatment effects on martensitic transformation of phase boundary composition Au 52.5−x Cd 47.5 Ag x were studied. Au 52.5−x Cd 47.5 Ag x has coexistent phase of β-phase and α-phase of fcc structure at x > 42 at.%. The transformation temperature T 0 decreases as Au is substituted on Ag over phase boundary. T 0 increases by quench in both case of bulk and powder. This behavior is investigated that disordering of atoms and lattice defects make β-phase (L2 1 , B2 or bcc) unstable. Size effect was also inspected. Downsizing sample decreased the transformation temperature in β-phase. On the contrary, the transformation temperature of the coexistent phase showed a tendency of increase. Downsizing is supposed to make difficult nucleation for martensitic transformation because of reduction of β-phase ordered volume. Increasing of surface (disorder structure) ratio by downsizing of powder sample is estimated to make easy to transform from unstable β-phase to martensite phase

  16. Boundary induced phase transition with stochastic entrance and exit

    International Nuclear Information System (INIS)

    Mitra, Mithun Kumar; Chatterjee, Sakuntala

    2014-01-01

    We study an open-chain totally asymmetric exclusion process (TASEP) with stochastic gates present at the two boundaries. The gating dynamics has been modeled with the physical system of ion-channel gating in mind. These gates can randomly switch between an open state and a closed state. In the open state, the gates are highly permeable such that any particle arriving at the gate immediately passes through. In the closed state, a particle becomes trapped at the gate and cannot pass through until the gate switches open again. We calculate the phase-diagram of the system and find important and non-trivial differences with the phase-diagram of a regular open-chain TASEP. In particular, depending on the switching rates of the two gates, the system may or may not admit a maximal current phase. Our analytic calculations within mean-field theory capture the main qualitative features of our Monte Carlo simulation results. We also perform a refined mean-field calculation where the correlations at the boundaries are taken into account. This theory shows significantly better quantitative agreement with our simulation results. (paper)

  17. One- and two-dimensional fluids properties of smectic, lamellar and columnar liquid crystals

    CERN Document Server

    Jakli, Antal

    2006-01-01

    Smectic and lamellar liquid crystals are three-dimensional layered structures in which each layer behaves as a two-dimensional fluid. Because of their reduced dimensionality they have unique physical properties and challenging theoretical descriptions, and are the subject of much current research. One- and Two-Dimensional Fluids: Properties of Smectic, Lamellar and Columnar Liquid Crystals offers a comprehensive review of these phases and their applications. The book details the basic structures and properties of one- and two-dimensional fluids and the nature of phase transitions. The later chapters consider the optical, magnetic, and electrical properties of special structures, including uniformly and non-uniformly aligned anisotropic films, lyotropic lamellar systems, helical and chiral structures, and organic anisotropic materials. Topics also include typical and defective features, magnetic susceptibility, and electrical conductivity. The book concludes with a review of current and potential applications ...

  18. Tuning the mesomorphic properties of phenoxy-terminated smectic liquid crystals: the effect of fluoro substitution.

    Science.gov (United States)

    Thompson, Matthew; Carkner, Carolyn; Mosey, Nicholas J; Kapernaum, Nadia; Lemieux, Robert P

    2015-05-21

    The mesomorphic properties of phenoxy-terminated 5-alkoxy-2-(4-alkoxyphenyl)pyrimidine liquid crystals can be tuned in a predictable fashion with fluoro substituents on the phenoxy end-group. We show that an ortho-fluoro substituent promotes the formation of a tilted smectic C (SmC) phase whereas a para-fluoro substituent promotes the formation of an orthogonal smectic A (SmA) phase. The balance between SmA and SmC phases may be understood in terms of the energetic preference of the phenoxy end-groups to self-assemble via arene-arene interactions in a parallel or antiparallel geometry, and how these non-covalent interactions may cause either a suppression or enhancement of out-of-layer fluctuations at the interface of smectic layers. Calculations of changes in the potential energy of association ΔE for non-covalent dimers of fluoro-substituted n-butyloxybenzene molecules in parallel and antiparallel geometries support this hypothesis. We also show how mesomorphic properties can be further tuned by difluoro and perfluoro substitution, including difluoro substitution at the ortho positions, which uniquely promotes the formation of a SmC-nematic phase sequence.

  19. Ferroelectric properties of tungsten bronze morphotropic phase boundary systems

    International Nuclear Information System (INIS)

    Oliver, J.R.; Neurgaonkar, R.R.; Cross, L.E.; Pennsylvania State Univ., University Park, PA

    1989-01-01

    Tungsten bronze ferroelectrics which have a morphotropic phase boundary (MPB) can have a number or enhanced dielectric, piezoelectric, and electrooptic properties compared to more conventional ferroelectric materials. The structural and ferroelectric properties of several MPB bronze systems are presented, including data from sintered and hot-pressed ceramics, epitaxial thin films, and bulk single crystals. Included among these are three systems which had not been previously identified as morphotropic. The potential advantages and limitations of these MPB systems are discussed, along with considerations of the appropriate growth methods for their possible utilization in optical, piezoelectric, or pyroelectric device applications

  20. Dynamic Phase Boundary Estimation in Two-phase Flows Based on Electrical Impedance Tomography

    International Nuclear Information System (INIS)

    Lee, Jeong Seong; Muhammada, Nauman Malik; Kim, Kyung Youn; Kim, Sin

    2008-01-01

    For the dynamic visualization of the phase boundary in two-phase flows, the electrical impedance tomography (EIT) technique is introduced. In EIT, a set of predetermined electrical currents is injected through the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrodes. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm where the conductivity distribution corresponds to the phase distribution. In the application of EIT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers phase boundary estimation with EIT in annular two-phase flows. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. For the present problem, the formulation of UKF algorithm involved its incorporation in the adopted image reconstruction algorithm. Also, phantom experiments have been conducted to evaluate the improvement reported by UKF

  1. The Monoclinic Phase in PZT : New Light on Morphotropic Phase Boundaries

    NARCIS (Netherlands)

    Noheda, B.; Gonzalo, J.A.; Guo, R.; Park, S.-E.; Cross, L.E.; Cox, D.E.; Shirane, G.

    2000-01-01

    A summary of the work recently carried out on the morphotropic phase boundary (MPB) of PZT is presented. By means of x-ray powder diffraction on ceramic samples of excellent quality, the MPB has been successfully characterized by changing temperature in a series of closely spaced compositions. As a

  2. Impact of Compound Hydrate Dynamics on Phase Boundary Changes

    Science.gov (United States)

    Osegovic, J. P.; Max, M. D.

    2006-12-01

    Compound hydrate reactions are affected by the local concentration of hydrate forming materials (HFM). The relationship between HFM composition and the phase boundary is as significant as temperature and pressure. Selective uptake and sequestration of preferred hydrate formers (PF) has wide ranging implications for the state and potential use of natural hydrate formation, including impact on climate. Rising mineralizing fluids of hydrate formers (such as those that occur on Earth and are postulated to exist elsewhere in the solar system) will sequester PF before methane, resulting in a positive relationship between depth and BTU content as ethane and propane are removed before methane. In industrial settings the role of preferred formers can separate gases. When depressurizing gas hydrate to release the stored gas, the hydrate initial composition will set the decomposition phase boundary because the supporting solution takes on the composition of the hydrate phase. In other settings where hydrate is formed, transported, and then dissociated, similar effects can control the process. The behavior of compound hydrate systems can primarily fit into three categories: 1) In classically closed systems, all the material that can form hydrate is isolated, such as in a sealed laboratory vessel. In such systems, formation and decomposition are reversible processes with observed hysteresis related to mass or heat transfer limitations, or the order and magnitude in which individual hydrate forming gases are taken up from the mixture and subsequently released. 2) Kinetically closed systems are exposed to a solution mass flow across a hydrate mass. These systems can have multiple P-T phase boundaries based on the local conditions at each face of the hydrate mass. A portion of hydrate that is exposed to fresh mineralizing solution will contain more preferred hydrate formers than another portion that is exposed to a partially depleted solution. Examples of kinetically closed

  3. Exact phase boundaries and topological phase transitions of the X Y Z spin chain

    Science.gov (United States)

    Jafari, S. A.

    2017-07-01

    Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.

  4. Ferroelectric Nematic and Ferrielectric Smectic Mesophases in an Achiral Bent-Core Azo Compound.

    Science.gov (United States)

    Kumar, Jitendra; Prasad, Veena

    2018-03-22

    Here, we report the observation of ferroelectric nematic and ferrielectric smectic mesophases in an achiral bent-core azo compound consisting of nonsymmetrical molecules with a lateral fluoro substitution on one of the wings. These mesophases are enantiotropic in nature with fairly low transition temperatures and wide mesophase ranges. The liquid crystalline properties of this compound are investigated using polarizing optical microscope, differential scanning calorimeter, X-ray diffraction, and electro-optical studies. As revealed by X-ray diffraction measurements, the nematic mesophase is composed of skewed cybotactic clusters and, in the smectic mesophase, the molecules are tilted with respect to the layer normal. The polar order in these mesophases was confirmed by the electro-optical switching and dielectric spectroscopy measurements. The dielectric study in the nematic mesophase shows a single relaxation process at low frequency ( f interest is the fact that the smectic phase exhibits a field induced ferrielectric state, which can be exploited for designing of the potential optical devices due to multistate switching.

  5. Role of Reversible Phase Transformation for Strong Piezoelectric Performance at the Morphotropic Phase Boundary

    Science.gov (United States)

    Liu, Hui; Chen, Jun; Huang, Houbing; Fan, Longlong; Ren, Yang; Pan, Zhao; Deng, Jinxia; Chen, Long-Qing; Xing, Xianran

    2018-01-01

    A functional material with coexisting energetically equivalent phases often exhibits extraordinary properties such as piezoelectricity, ferromagnetism, and ferroelasticity, which is simultaneously accompanied by field-driven reversible phase transformation. The study on the interplay between such phase transformation and the performance is of great importance. Here, we have experimentally revealed the important role of field-driven reversible phase transformation in achieving enhanced electromechanical properties using in situ high-energy synchrotron x-ray diffraction combined with 2D geometry scattering technology, which can establish a comprehensive picture of piezoelectric-related microstructural evolution. High-throughput experiments on various Pb /Bi -based perovskite piezoelectric systems suggest that reversible phase transformation can be triggered by an electric field at the morphotropic phase boundary and the piezoelectric performance is highly related to the tendency of electric-field-driven phase transformation. A strong tendency of phase transformation driven by an electric field generates peak piezoelectric response. Further, phase-field modeling reveals that the polarization alignment and the piezoelectric response can be much enhanced by the electric-field-driven phase transformation. The proposed mechanism will be helpful to design and optimize the new piezoelectrics, ferromagnetics, or other related functional materials.

  6. Grain Boundary Engineering for Assessing Durability and Aging Issues with Nickel-Based Superalloys, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Grain Boundary Engineering (GBE) approach, successfully demonstrated in Phase I, that microstructural optimization provides a very significant improvement in...

  7. Effect of smectic A temperature width on the soft mode in ferroelectric liquid crystals

    Science.gov (United States)

    Choudhary, A.; Kaur, S.; Prakash, J.; Sreenivas, K.; Bawa, S. S.; Biradar, A. M.

    2008-08-01

    The behavior of soft mode range with respect to the temperature width of smectic A (Sm A) phase has been studied in four different ferroelectric liquid crystal (FLC) materials in the frequency range 10Hz-10MHz. The studies have been carried out in a planarly well aligned cells at different temperatures and different bias fields in Sm C* and Sm A phases. Dielectric studies of these FLCs near Sm C*-Sm A phase transition show that the temperature range of soft mode relaxation frequency phenomenon varies with the temperature width of Sm A phase. The dependence of tilt angle on temperature shows the nature of the order of transition at Sm C*-Sm A phase. The coupling between order parameters of Sm C* and Sm A phase influences the soft mode and phase transition in Sm C* and Sm A phases.

  8. Guided mode studies of smectic liquid crystals

    International Nuclear Information System (INIS)

    Hodder, B.

    2000-03-01

    Recently there has been considerable interest in the use of ferroelectric liquid crystals in low power, fast switching display devices. At present the voltage switching process in surface stabilised ferroelectric liquid crystal (SSFLC) devices is not fully understood and a convenient theory for such cells has yet to be found. It is the primary aim of this work to characterise the optic tensor configuration (director profile) in thin cells (∼ 3.5 μm) containing ferroelectric liquid crystal (FLC) material. These results form a benchmark by which continuum theories may be tested. Polarised microscopy is, perhaps, the most common optical probe of liquid crystal cells. It should be appreciated that this technique is fundamentally limited, as the results are deduced from an integrated optical response of any given cell, and cannot be used to spatially resolve details of the director profile through the cell. The guided mode techniques used in this study are the primary non-integral probe and enable detailed spatial resolution of the director profile within liquid crystal cells. Analysis of guided mode data from cells containing homeotropically aligned FLC reveals the temperature dependence of the optical biaxiality and cone angle for a 40% chiral mixture of the commercially available FLC SCE8*. From these optical biaxiality measurements the temperature dependence of the biaxial order parameter C is determined. Guided mode studies of cells containing homogeneously aligned SCE8* (the conventional alignment for SSFLC devices) reveal the 0V equilibrium director profile from which a cone and chevron model is constructed. Subsequent studies of voltage induced elastic deformations of the director profile are presented and compared with a single elastic constant continuum theory which is shown to be inadequate. Optical guided mode techniques are not directly sensitive to the smectic layer configuration but X-ray scattering is. Here, for the first time, results are presented

  9. Two-phase semilinear free boundary problem with a degenerate phase

    KAUST Repository

    Matevosyan, Norayr

    2010-10-16

    We study minimizers of the energy functional ∫D[{pipe}∇u{pipe}2 + λ(u+)p]dx for p ∈ (0, 1) without any sign restriction on the function u. The distinguished feature of the problem is the lack of nondegeneracy in the negative phase. The main result states that in dimension two the free boundaries Γ+ = ∂{u > 0} ∩ D andΓ- = ∂{u < 0} ∩ D are C1,α-regular, provided 1 - ∈0 < p < 1. The proof is obtained by a careful iteration of the Harnack inequality to obtain a nontrivial growth estimate in the negative phase, compensating for the apriori unknown nondegeneracy. © 2010 Springer-Verlag.

  10. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries

    Science.gov (United States)

    Dong, S.; Wang, X.

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909

  11. Polymer stabilization of the smectic C-alpha* liquid crystal phase—Over tenfold thermal stabilization by confining networks of photo-polymerized reactive mesogens

    International Nuclear Information System (INIS)

    Labeeb, A.; Gleeson, H. F.; Hegmann, T.

    2015-01-01

    The smectic C*-alpha (SmC α *) phase is one of the sub-phases of ferroelectric liquid crystals that has drawn much interest due to its electro-optical properties and ultrafast switching. Generally observed above the ferroelectric SmC* phase in temperature, the SmC α * commonly shows only very narrow phase temperature range of a few degree Celsius. To broaden the SmC α * phase, polymer stabilization was investigated for thermal phase stabilization. Two different reactive monomers were tested in three mixtures, and all three broadened the temperature range of the SmC α * phase from 3 °C to 39 °C. The current reversal method was used to determine the phase existence versus temperature. Moreover, the texture and network structure was studied by polarized optical microscopy and scanning electron microscopy, with the latter revealing the confinement of the smectic layer structure within the porous polymer network

  12. Composition-Driven Phase Boundary and Piezoelectricity in Potassium-Sodium Niobate-Based Ceramics.

    Science.gov (United States)

    Zheng, Ting; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Wang, Xiangjian; Lou, Xiaojie

    2015-09-16

    The piezoelectricity of (K,Na)NbO3 ceramics strongly depends on the phase boundary types as well as the doped compositions. Here, we systematically studied the relationships between the compositions and phase boundary types in (K,Na) (Nb,Sb)O3-Bi0.5Na0.5AO3 (KNNS-BNA, A=Hf, Zr, Ti, Sn) ceramics; then their piezoelectricity can be readily modified. Their phase boundary types are determined by the doped elements. A rhombohedral-tetragonal (R-T) phase boundary can be driven in the compositions range of 0.035≤BNH≤0.040 and 0.035≤BNZ≤0.045; an orthorhombic-tetragonal (O-T) phase boundary is formed in the composition range of 0.005≤BNT≤0.02; and a pure O phase can be only observed regardless of BNS content (≤0.01). In addition, the phase boundary types strongly affect their corresponding piezoelectricities. A larger d33 (∼440-450 pC/N) and a higher d33* (∼742-834 pm/V) can be attained in KNNS-BNA (A=Zr and Hf) ceramics due to the involvement of R-T phase boundary, and unfortunately KNNS-BNA (A=Sn and Ti) ceramics possess a relatively poor piezoelectricity (d33≤200 and d33*piezoelectricity and phase boundary types were also discussed. We believe that comprehensive research can design more excellent ceramic systems concerning potassium-sodium niobate.

  13. Movement of the boundary between the A and B helium-3 phases in superfluid

    International Nuclear Information System (INIS)

    Kopnin, N.B.

    1987-01-01

    The friction force arising on motion of the boundary between the A and B phases in superfluid helium-3 is calculated on the basis of the microscopic theory in a linear approximation with respect to the velocity

  14. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior

  15. Adaptive ferroelectric state at morphotropic phase boundary: Coexisting tetragonal and rhombohedral phases

    International Nuclear Information System (INIS)

    Zhang, Yang; Xue, Dezhen; Wu, Haijun; Ding, Xiangdong; Lookman, Turab; Ren, Xiaobing

    2014-01-01

    With a focus on local symmetry, the microstructural basis for high piezoelectric performance in PbMg 1/3 Nb 2/3 O 3 –xPbTiO 3 (PMN–PT) ceramics at the morphotropic phase boundary (MPB) composition was investigated by means of convergent-beam electron diffraction analysis and twin diffraction pattern analysis. The local structure was found to consist of coexisting (1 0 1)-type tetragonal nanotwins and (0 0 1)-type rhombohedral nanotwins. A phenomenological theory based on crystallography is proposed to show that such nanoscale coexistence can give rise to an average monoclinic structure through strain accommodation. The average monoclinic structures (Ma and Mc) vary with temperature and composition due to the dependence on temperature and composition of the lattice parameters. Based on in situ X-ray diffraction data, we demonstrate how the polarization rotates across the MPB region in PMN–PT ceramics with varying temperatures and compositions

  16. High-yield acetonitrile | water triple phase boundary electrolysis at platinised Teflon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, John D.; MacDonald, Stuart M.; Fordred, Paul S.; Bull, Steven D. [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Gu, Yunfeng; Yunus, Kamran; Fisher, Adrian C. [Department of Chemical Engineering, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Bulman-Page, Philip C. [School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ (United Kingdom); Marken, Frank [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)], E-mail: f.marken@bath.ac.uk

    2009-11-30

    A dynamic acetonitrile | aqueous electrolyte phase boundary in contact with platinised Teflon working electrodes is investigated. High concentrations of salt in the aqueous phase (2 M NaCl and 0.1 M NaClO{sub 4}) ensure immiscibility and the polar nature of acetonitrile aids the formation of a well-behaved triple phase boundary reaction zone. The one-electron oxidation of tert-butylferrocene in the organic phase without intentionally added electrolyte is studied. The limiting current for the flowing triple phase boundary process is shown to be essentially volume flow rate independent. The process is accompanied by the transfer of perchlorate from the aqueous into the organic phase and the flux of anions is shown to be approximately constant along the dynamic acetonitrile | aqueous electrolyte | platinum line interface. A high rate of conversion (close to 100%) is achieved at slow volume flow rates and at longer platinum electrodes.

  17. Single molecule translocation in smectics illustrates the challenge for time-mapping in simulations on multiple scales.

    Science.gov (United States)

    Mukherjee, Biswaroop; Peter, Christine; Kremer, Kurt

    2017-09-21

    Understanding the connections between the characteristic dynamical time scales associated with a coarse-grained (CG) and a detailed representation is central to the applicability of the coarse-graining methods to understand molecular processes. The process of coarse graining leads to an accelerated dynamics, owing to the smoothening of the underlying free-energy landscapes. Often a single time-mapping factor is used to relate the time scales associated with the two representations. We critically examine this idea using a model system ideally suited for this purpose. Single molecular transport properties are studied via molecular dynamics simulations of the CG and atomistic representations of a liquid crystalline, azobenzene containing mesogen, simulated in the smectic and the isotropic phases. The out-of-plane dynamics in the smectic phase occurs via molecular hops from one smectic layer to the next. Hopping can occur via two mechanisms, with and without significant reorientation. The out-of-plane transport can be understood as a superposition of two (one associated with each mode of transport) independent continuous time random walks for which a single time-mapping factor would be rather inadequate. A comparison of the free-energy surfaces, relevant to the out-of-plane transport, qualitatively supports the above observations. Thus, this work underlines the need for building CG models that exhibit both structural and dynamical consistency to the underlying atomistic model.

  18. Single molecule translocation in smectics illustrates the challenge for time-mapping in simulations on multiple scales

    Science.gov (United States)

    Mukherjee, Biswaroop; Peter, Christine; Kremer, Kurt

    2017-09-01

    Understanding the connections between the characteristic dynamical time scales associated with a coarse-grained (CG) and a detailed representation is central to the applicability of the coarse-graining methods to understand molecular processes. The process of coarse graining leads to an accelerated dynamics, owing to the smoothening of the underlying free-energy landscapes. Often a single time-mapping factor is used to relate the time scales associated with the two representations. We critically examine this idea using a model system ideally suited for this purpose. Single molecular transport properties are studied via molecular dynamics simulations of the CG and atomistic representations of a liquid crystalline, azobenzene containing mesogen, simulated in the smectic and the isotropic phases. The out-of-plane dynamics in the smectic phase occurs via molecular hops from one smectic layer to the next. Hopping can occur via two mechanisms, with and without significant reorientation. The out-of-plane transport can be understood as a superposition of two (one associated with each mode of transport) independent continuous time random walks for which a single time-mapping factor would be rather inadequate. A comparison of the free-energy surfaces, relevant to the out-of-plane transport, qualitatively supports the above observations. Thus, this work underlines the need for building CG models that exhibit both structural and dynamical consistency to the underlying atomistic model.

  19. The mathematics of instabilities in smectic C liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.A

    2001-07-01

    The theoretical effects of applying a magnetic or electric field to samples of smectic A and smectic C{sup *} liquid crystals are studied in this thesis. In Chapter 2 general background material on liquid crystals is introduced as well as the continuum theory which we shall use in subsequent chapters. We consider a planar sample of ferroelectric smectic C{sup *} liquid crystal in Chapter 3, where an electric field is applied perpendicular to the smectic layers. In particular, we obtain an exact solution to a dynamic equation which governs director reorientation (within a sample which is bounded in the z direction) which appears in the literature. We then consider the linear stability of this solution by applying a perturbation, in both space and time, and examine its growth. In Chapter 4 we again consider the stability of a planar sample of ferroelectric smectic C{sup *} when an electric field is applied perpendicular to the smectic planes. However, unlike in Chapter 3, we derive the relevant governing equation. After having introduced the relevant theory, the linear and nonlinear stability of a constant equilibrium state in both finite and infinite domains is examined. We then obtain information upon the relaxation times for each of these cases. The relaxation time gives an indication of how quickly the director relaxes back to equilibrium. The dynamic equation which is derived in Chapter 4 is extended in Chapter 5 to include the effects of lilting the applied electric field. The equilibrium equation which we then obtain is not tractable explicitly due to the form of the sinusoidal nonlinearity which appears in it. We therefore solve a simplified approximating dynamic equation as well as the full sinusoidal nonlinearity case numerically. In both cases the linear stability of the equilibrium solution is examined. Finally, in Chapter 6 we consider the layer deformations in a cylindrical sample of smectic A liquid crystal when a magnetic field is applied across the

  20. The mathematics of instabilities in smectic C liquid crystals

    International Nuclear Information System (INIS)

    Anderson, D.A.

    2001-01-01

    The theoretical effects of applying a magnetic or electric field to samples of smectic A and smectic C * liquid crystals are studied in this thesis. In Chapter 2 general background material on liquid crystals is introduced as well as the continuum theory which we shall use in subsequent chapters. We consider a planar sample of ferroelectric smectic C * liquid crystal in Chapter 3, where an electric field is applied perpendicular to the smectic layers. In particular, we obtain an exact solution to a dynamic equation which governs director reorientation (within a sample which is bounded in the z direction) which appears in the literature. We then consider the linear stability of this solution by applying a perturbation, in both space and time, and examine its growth. In Chapter 4 we again consider the stability of a planar sample of ferroelectric smectic C * when an electric field is applied perpendicular to the smectic planes. However, unlike in Chapter 3, we derive the relevant governing equation. After having introduced the relevant theory, the linear and nonlinear stability of a constant equilibrium state in both finite and infinite domains is examined. We then obtain information upon the relaxation times for each of these cases. The relaxation time gives an indication of how quickly the director relaxes back to equilibrium. The dynamic equation which is derived in Chapter 4 is extended in Chapter 5 to include the effects of lilting the applied electric field. The equilibrium equation which we then obtain is not tractable explicitly due to the form of the sinusoidal nonlinearity which appears in it. We therefore solve a simplified approximating dynamic equation as well as the full sinusoidal nonlinearity case numerically. In both cases the linear stability of the equilibrium solution is examined. Finally, in Chapter 6 we consider the layer deformations in a cylindrical sample of smectic A liquid crystal when a magnetic field is applied across the circular cross

  1. Inclusions with finite surface anchoring energies in smectic C and chiral smectic C* free-standing films

    Czech Academy of Sciences Publication Activity Database

    Lejček, Lubor

    2016-01-01

    Roč. 49, č. 1 (2016), 116-128 ISSN 0015-0193 R&D Projects: GA ČR GA13-14133S; GA ČR GA15-02843S Institutional support: RVO:68378271 Keywords : smectic C and C* * free standing films * inclusions, disclinations Subject RIV: BE - Theoretical Physics Impact factor: 0.551, year: 2016

  2. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Science.gov (United States)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  3. EXTRACTION CHARACTERISTICS OF THE CATION OF ALKYLDIMETHYLBENZYLAMMONIUM CHLORIDE AT THE PHASE BOUNDARY WATER-MEMBRANE SOLVENT

    Directory of Open Access Journals (Sweden)

    O. V. Luganska

    2015-06-01

    Full Text Available The extraction coefficients of the cation of alkyldimethylbenzylammonium chloride at the phase boundary water-tricresylphosphate, water-dioctylphthalate, water-dibutylphtalate have been determined by the potentiometric titration of the aqueous phase with a silver electrode. The correctness of the obtained results has been proved by the titrimetric method with visual fixation of the equivalence point using methylene blue indicator.

  4. Grain boundary corrosion and alteration phase formation during the oxidative dissolution of UO2 pellets

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.

    1996-01-01

    Alteration behavior of UO 2 pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO 2 granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO 2 ) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems

  5. Two-phase wall function for modeling of turbulent boundary layer in subcooled boiling flow

    International Nuclear Information System (INIS)

    Bostjan Koncar; Borut Mavko; Yassin A Hassan

    2005-01-01

    Full text of publication follows: The heat transfer and phase-change mechanisms in the subcooled flow boiling are governed mainly by local multidimensional mechanisms near the heated wall, where bubbles are generated. The structure of such 'wall boiling flow' is inherently non-homogeneous and is further influenced by the two-phase flow turbulence, phase-change effects in the bulk, interfacial forces and bubble interactions (collisions, coalescence, break-up). In this work the effect of two-phase flow turbulence on the development of subcooled boiling flow is considered. Recently, the modeling of two-phase flow turbulence has been extensively investigated. A notable progress has been made towards deriving reliable models for description of turbulent behaviour of continuous (liquid) and dispersed phase (bubbles) in the bulk flow. However, there is a lack of investigation considering the modeling of two-phase flow boundary layer. In most Eulerian two-fluid models standard single-phase wall functions are used for description of turbulent boundary layer of continuous phase. That might be a good approximation at adiabatic flows, but their use for boundary layers with high concentration of dispersed phase is questionable. In this work, the turbulent boundary layer near the heated wall will be modeled with the so-called 'two-phase' wall function, which is based on the assumption of additional turbulence due to bubble-induced stirring in the boundary layer. In the two-phase turbulent boundary layer the wall function coefficients strongly depend on the void fraction. Moreover, in the turbulent boundary layer with nucleating bubbles, the bubble size variation also has a significant impact on the liquid phase. As a basis, the wall function of Troshko and Hassan (2001), developed for adiabatic bubbly flows will be used. The simulations will be performed by a general-purpose CFD code CFX-4.4 using additional models provided by authors. The results will be compared to the boiling

  6. On the rutile alpha-PbO"2-type phase boundary of TiO"2

    DEFF Research Database (Denmark)

    Olsen, J.S.; Gerward, Leif; Jiang, Jianzhong

    1999-01-01

    The high-pressure, high-temperature phase quilibria of TiO"2 have been studied with special emphasis on the rutile and alpha-PbO"2-type phases. It is found that the phase boundary, when plotted in a pressure-temperature diagram, changes from having a negative to having a positive slope...... with increasing temperature at about 6GPa and 850^oC. For nanophase material, the phase boundary is shifted towards lower pressure. The room-temperature bulk moduli are 210(120)GPa, 258(8)GPa and 290(20)GPa for rutile, the alpha-PbO"2-type phase and the baddeleyite-type phase, respectively....

  7. A phase-field simulation study of irregular grain boundary migration during recrystallization

    DEFF Research Database (Denmark)

    Moelans, N.; Zhang, Yubin; Godfrey, A.

    2015-01-01

    We present simulation results based on a phase-field model that describes the migration of recrystallization boundaries into spatially varying deformation energy fields. Energy fields with 2-dimensional variations representing 2 sets of dislocation boundaries lying at equal, but opposite, angles......, highly asymmetrical protrusions and retrusions can develop on the migrating recrystallization front resulting in a migration velocity considerably larger than that expected from standard recrystallization models. It is also seen that, when the wavelength of the variations in a deformation microstructure...

  8. Intergranular and inter-phased boundaries in the materials; Joints intergranulaires et interphases dans les materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Aslanides, A. [Electricite de France, Dept. CIMA, 77 - Moret sur Loing (France); Backhaus-Ricoult, M. [Centre d' Etudes de Chimie metallurgique, 94 - Vitry-sur-Seine (France); Bayle-Guillemaud, P. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, 38 (France)] [and others

    2000-07-01

    This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)

  9. Thermally activated phase slippage in high-Tc grain-boundary Josephson junctions

    International Nuclear Information System (INIS)

    Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G.

    1990-01-01

    The effect of thermally activated phase slippage (TAPS) in YBa 2 Cu 3 O 7 grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-T c Josephson junctions are outlined

  10. Thermally activated phase slippage in high- T sub c grain-boundary Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G. (IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (USA))

    1990-01-08

    The effect of thermally activated phase slippage (TAPS) in YBa{sub 2}Cu{sub 3}O{sub 7} grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-{ital T}{sub {ital c}} Josephson junctions are outlined.

  11. Phase boundary in compatible and incompatible polymer blends studied by micro indentation test and microscopic observations

    International Nuclear Information System (INIS)

    Mina, M. F.; Akhtar, F.; Haque, M.E.

    2003-10-01

    The phase boundary of incompatible polymer blends such as poly (methyl methacrylate) (PMMA)/natural rubber (NR) and polyestyrene (PS)/NR as well as compatible blends such as PMMA/NR/epoxidizer NR (compatibilizer) and PS/NR/styrene-butadiene-styrene (SBS) block copolymer (compatibilizer) was studied by means of microhardness (H) technique and microscopy. Solution grown films of neat PMMA, PS and blended films of PMMA/NR, PS/NR, PMMA/NR/ENR and PS/NR/SBS were cast using a common solvent (toluene). While the neat PMMA and PS provide constant hardness values of 178 and 173 MPa, respectively, the binary (incompatible) and the ternary (compatible) blends show a conspicuous H-decrease (PMMA/NR=140 MPa, PS/NR=167 MPa, PMMA/NR/ENR=109 MPa and PS/NR/SBS=127 MPa). Scanning electron microscopy and optical microscopy reveal clear difference of the phase boundary of compatible (smooth boundary) and incompatible (sharp boundary) blends. Besides, the compatibilizer blends are characterised by the thinnest phase boundary (30 μm), which is found about 60 μm in the incompatible blends, showing a final hardness value that demonstrates the compatibilizer to be smoothly distributed in the interface between the two blend components. Results highlight that microindentation technique, in combination with microscopic observations, is a sensitive tool for studying the breadth and quality of the interphase boundary in non- or compatibilized polymer blends and other inhomogeneous materials. (author)

  12. The quantum-field renormalization group in the problem of a growing phase boundary

    International Nuclear Information System (INIS)

    Antonov, N.V.; Vasil'ev, A.N.

    1995-01-01

    Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik's assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants (open-quotes chargeclose quotes). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundary and time, δ h and δ t , which satisfy the exact relationship 2 δ h = δ t + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab

  13. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined

  14. A phase change processor method for solving a one-dimensional phase change problem with convection boundary

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)

    2010-08-15

    A simple yet accurate iterative method for solving a one-dimensional phase change problem with convection boundary is described. The one-dimensional model takes into account the variation in the wall temperature along the direction of the flow as well as the sensible heat during preheating/pre-cooling of the phase change material (PCM). The mathematical derivation of convective boundary conditions has been integrated into a phase change processor (PCP) algorithm that solves the liquid fraction and temperature of the nodes. The algorithm is based on the heat balance at each node as it undergoes heating or cooling which inevitably involves phase change. The paper presents the model and its experimental validation. (author)

  15. A phase field study of strain energy effects on solute–grain boundary interactions

    International Nuclear Information System (INIS)

    Heo, Tae Wook; Bhattacharyya, Saswata; Chen Longqing

    2011-01-01

    We have studied strain-induced solute segregation at a grain boundary and the solute drag effect on boundary migration using a phase field model integrating grain boundary segregation and grain structure evolution. The elastic strain energy of a solid solution due to the atomic size mismatch and the coherency elastic strain energy caused by the inhomogeneity of the composition distribution are obtained using Khachaturyan’s microelasticity theory. Strain-induced grain boundary segregation at a static planar boundary is studied numerically and the equilibrium segregation composition profiles are validated using analytical solutions. We then systematically studied the effect of misfit strain on grain boundary migration with solute drag. Our theoretical analysis based on Cahn’s analytical theory shows that enhancement of the drag force with increasing atomic size mismatch stems from both an increase in grain boundary segregation due to the strain energy reduction and misfit strain relaxation near the grain boundary. The results were analyzed based on a theoretical analysis in terms of elastic and chemical drag forces. The optimum condition for solute diffusivity to maximize the drag force under a given driving force was identified.

  16. Superconducting-normal phase boundary of quasicrystalline arrays in a magnetic field

    International Nuclear Information System (INIS)

    Nori, F.; Niu, Q.; Fradkin, E.; Chang, S.

    1987-01-01

    We study the effect of frustration, induced by a mangnetic field, on the superconducting diamagnetic properties of two-dimensional quasicrystalline arrays. In particular, we calculate the superconducting-normal phase boundary, T/sub c/(H), for several geometries with quasicrystalline order. The agreement between our theoretically obtained phase boundaries and the experimentally obtained ones is very good. We also propose a new way of analytically analyzing the overall and the fine structure of T/sub c/(H) in terms of short- and long-range correlations among tiles

  17. Smectic liquid crystal cell with heat pulse and laser

    International Nuclear Information System (INIS)

    Mash, D.H.

    1984-01-01

    A method of operating a homeotropically aligned smectic liquid crystal cell in which the cell is turned from a clear to a scattering state by illumination with an intense flash of light after which a focused laser beam is scanned across the layer to leave clear tracks where homeotropic alignment has been restored thereby producing a display providing, in projection, bright lines on a dark background

  18. Bubble boundary estimation in an annulus two-phase flow using electrical impedance tomography

    International Nuclear Information System (INIS)

    Lee, Jeong Seong

    2008-02-01

    For the visualization of the phase boundary in an annulus two-phase flows, the electrical impedance tomography (EIT) technique is introduced. In EIT, a set of predetermined electrical currents is injected trough the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrode. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm. In this, the conductivity distribution corresponds to the phase distribution. In the application of EIT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers a bubble boundary estimation with EIT in an annulus two-phase flows. And in many industrial cases there are a priori known internal structures inside the vessels which could be used as internal electrodes in tomographical imaging. In this paper internal electrodes were considered in electrical impedance tomography. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. The UKF algorithm was formulated to be incorporate into the image reconstruction algorithm for the present problem. Also, phantom experiments have been conducted to evaluate the improvement by UKF

  19. Electrical Resistance Imaging of Bubble Boundary in Annular Two-Phase Flows Using Unscented Kalman Filter

    International Nuclear Information System (INIS)

    Lee, Jeong Seong; Chung, Soon Il; Ljaz, Umer Zeeshan; Khambampati, Anil Kumar; Kim, Kyung Youn; Kim, Sin Kim

    2007-01-01

    For the visualization of the phase boundary in annular two-phase flows, the electrical resistance tomography (ERT) technique is introduced. In ERT, a set of predetermined electrical currents is injected trough the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrode. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm. In this, the conductivity distribution corresponds to the phase distribution. In the application of ERT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers a bubble boundary estimation with ERT in annular two-phase flows. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. We formulated the UKF algorithm to be incorporate into the image reconstruction algorithm for the present problem. Also, phantom experiments have been conducted to evaluate the improvement by UKF

  20. Evolution from successive phase transitions to "morphotropic phase boundary" in BaTiO3-based ferroelectrics

    Science.gov (United States)

    Zhou, Chao; Ke, Xiaoqin; Yao, Yonggang; Yang, Sen; Ji, Yuanchao; Liu, Wenfeng; Yang, Yaodong; Zhang, Lixue; Hao, Yanshuang; Ren, Shuai; Zhang, Le; Ren, Xiaobing

    2018-04-01

    Obtaining superior physical properties for ferroic materials by manipulating the phase transitions is a key concern in solid state physics. Here, we investigated the dielectric permittivity, piezoelectric coefficient d33, storage modulus, and crystal symmetry of (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba1-yCay)TiO3 (BZT-xBCyT) systems to demonstrate the gradual evolution process from successive phase transitions in BaTiO3 to the morphotropic phase boundary (MPB) regime in BZT-xBC0.3T. Furthermore, we analysed with a Landau-type theoretical model to show that the high field-sensitive response (dielectric permittivity) originates from a small polarization anisotropy and low energy barrier at the quadruple point. Together, the intermediate orthorhombic phase regime and the tetragonal-orthorhombic and orthorhombic-rhombohedral phase boundaries constitute the MPB. Our work not only reconciles the arguments regarding whether the structural state around the MPB corresponds to a single-phase regime or a multiple-phase-coexistence regime but also suggests an effective method to design high-performance functional ferroic materials by tailoring the successive phase transitions.

  1. Multidimensional phase change problems by the dual-reciprocity boundary-element method

    International Nuclear Information System (INIS)

    Jo, J.C.; Shin, W.K.; Choi, C.Y.

    1999-01-01

    Transient heat transfer problems with phase changes (Stefan problems) occur in many engineering situations, including potential core melting and solidification during pressurized-water-reactor severe accidents, ablation of thermal shields, melting and solidification of alloys, and many others. This article addresses the numerical analysis of nonlinear transient heat transfer with melting or solidification. An effective and simple procedure is presented for the simulation of the motion of the boundary and the transient temperature field during the phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual-reciprocity boundary-element method. The dual-reciprocity boundary-element approach provided in this article is much simpler than the usual boundary-element method in applying a reciprocity principle and an available technique for dealing with the domain integral of the boundary element formulation simultaneously. In this article, attention is focused on two-dimensional melting (ablation)/solidification problems for simplicity. The accuracy and effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of some examples of one-phase ablation/solidification problems with their known semianalytical or numerical solutions where available

  2. Quantification by aberration corrected (S)TEM of boundaries formed by symmetry breaking phase transformations

    Energy Technology Data Exchange (ETDEWEB)

    Schryvers, D., E-mail: nick.schryvers@uantwerpen.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Salje, E.K.H. [Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom); Nishida, M. [Department of Engineering Sciences for Electronics and Materials, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); De Backer, A. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Idrissi, H. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain, Place Sainte Barbe, 2, B-1348, Louvain-la-Neuve (Belgium); Van Aert, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2017-05-15

    The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials. - Highlights: • Quantification of picometer displacements at ferroelastic twin boundary in CaTiO{sub 3.} • Quantification of kinks in meandering ferroelectric domain wall in LiNbO{sub 3}. • Quantification of column occupation in anti-phase boundary in Co-Pt. • Quantification of atom displacements at twin boundary in Ni-Ti B19′ martensite.

  3. Switching moving boundary models for two-phase flow evaporators and condensers

    Science.gov (United States)

    Bonilla, Javier; Dormido, Sebastián; Cellier, François E.

    2015-03-01

    The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.

  4. Comparison of phase boundaries between kagomé and honeycomb superconducting wire networks

    Science.gov (United States)

    Xiao, Yi; Huse, David A.; Chaikin, Paul M.; Higgins, Mark J.; Bhattacharya, Shobo; Spencer, David

    2002-06-01

    We measure resistively the mean-field superconducting-normal phase boundaries of both kagomé and honeycomb wire networks immersed in a transverse magnetic field. In addition to their agreement with theory about the overall shapes of phase diagrams, they show striking one-to-one correspondence between the cusps in the honeycomb phase boundary and those in the kagomé curve. This correspondence is due to their geometric arrangements and agrees with Lin and Nori's recent calculation. We also find that for the frustrated honeycomb network at f=1/2, the current patterns in the superconducting phase differ between the low-temperature London regime and the higher-temperature Ginzburg-Landau regime near Tc.

  5. Stress engineering for the design of morphotropic phase boundary in piezoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Tomoya, E-mail: ohno@mail.kitami-it.ac.jp [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Yanagida, Hiroshi; Maekawa, Kentaroh [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Arai, Takashi; Sakamoto, Naonori; Wakiya, Naoki; Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561 (Japan); Satoh, Shigeo [Graduate School of Science and Engineering, Ibaragi University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaragi 316-0033 (Japan); Matsuda, Takeshi [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan)

    2015-06-30

    Alkoxide-derived lead zirconate titanate thin films having Zr/Ti = 50/50 to 60/40 compositions with different residual stress conditions were deposited on a Si wafer to clarify the effects of the residual stress on the morphotropic phase boundary shift. The residual stress condition was controlled to − 0.1 to − 0.9 GPa by the design of the buffer layer structure on the Si wafer. Results show that the maximum effective piezoelectric constant d{sub 33} was obtained at 58/42 composition under − 0.9 GPa compressive residual stress condition. Moreover, the MPB composition shifted linearly to Zr-rich phase with increasing compressive residual stress. - Highlights: • The residual stress in lead zirconate titanate film on silicon was controlled. • The maximum residual stress in lead zirconate titanate film was − 0.9 GPa. • The morphotropic phase boundary shifted to zirconium rich phase by the strain.

  6. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis.

    Science.gov (United States)

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  7. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, Vinod M. [Institutefor Chemical Technology and Polymer Chemistry, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany); Heuveline, Vincent; Deutschmann, Olaf [Institute for Applied and Numerical Mathematics, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany)

    2008-03-15

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution. (author)

  8. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J.; Simo, T. [Energovyzkum Ltd., Brno (Switzerland)

    1995-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  9. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Klinga, J; Simo, T [Energovyzkum Ltd., Brno (Switzerland)

    1996-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  10. Variable and space steps solution of a two phase moving boundary ...

    African Journals Online (AJOL)

    Equations of a two phase moving boundary problem in cylindrical coordinates are obtained from the formulation of a transient shrinking core model of whole tree combustion in a one dimensional steady state fixed-bed reactor. An hybrid Variable Grid Method is developed to solve the non linear equations and the results are ...

  11. Phase-Sensitive Coherence and the Classical-Quantum Boundary in Ghost Imaging

    Science.gov (United States)

    Erkmen, Baris I.; Hardy, Nicholas D.; Venkatraman, Dheera; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2011-01-01

    The theory of partial coherence has a long and storied history in classical statistical optics. the vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-sate light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost imaging most closely mimicking those obtained in biphotons, and we derived the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.

  12. Structural Evolution of the R-T Phase Boundary in KNN-Based Ceramics

    KAUST Repository

    Lv, Xiang

    2017-10-04

    Although a rhombohedral-tetragonal (R-T) phase boundary is known to substantially enhance the piezoelectric properties of potassium-sodium niobate ceramics, the structural evolution of the R-T phase boundary itself is still unclear. In this work, the structural evolution of R-T phase boundary from -150 °C to 200 °C is investigated in (0.99-x)K0.5Na0.5Nb1-ySbyO3-0.01CaSnO3-xBi0.5K0.5HfO3 (where x=0~0.05 with y=0.035, and y=0~0.07 with x=0.03) ceramics. Through temperature-dependent powder X-ray diffraction (XRD) patterns and Raman spectra, the structural evolution was determined to be Rhombohedral (R, <-125 °C) → Rhombohedral+Orthorhombic (R+O, -125 °C to 0 °C) → Rhombohedral+Tetragonal (R+T, 0 °C to 150 °C) → dominating Tetragonal (T, 200 °C to Curie temperature (TC)) → Cubic (C, >TC). In addition, the enhanced electrical properties (e.g., a direct piezoelectric coefficient (d33) of ~450±5 pC/N, a conversion piezoelectric coefficient (d33*) of ~580±5 pm/V, an electromechanical coupling factor (kp) of ~0.50±0.02, and TC~250 °C), fatigue-free behavior, and good thermal stability were exhibited by the ceramics possessing the R-T phase boundary. This work improves understanding of the physical mechanism behind the R-T phase boundary in KNN-based ceramics and is an important step towards their adoption in practical applications. This article is protected by copyright. All rights reserved.

  13. Spontaneous formation of stringlike clusters and smectic sheets for colloidal rods confined in thin wedgelike gaps.

    Science.gov (United States)

    Maeda, Hideatsu; Maeda, Yoshiko

    2013-08-20

    Monodispersed colloidal rods of β-FeOOH with sizes ranging from 270 to 580 nm in length and 50 to 80 nm in width were synthesized. Narrow wedgelike gaps (0 to 700 nm in height) were formed around the inner bottom edge of the suspension glass cells. Optical microscopic observations revealed the formation of stringlike clusters of the rods and smectic sheets (by spontaneous side-by-side clustering of the strings) in the isotropic phase of the rod suspensions confined in narrow gaps; the electrolyte (HCl) concentrations of the suspensions are 5-40 mM, at which inter-rod interactions are attractive. The strings exhibit different colors that were used to investigate the structures of the strings with the help of interference color theory for thin films. The results are as follows. (1) The rods, lying flat on the gap bottom, are connected side-by-side and stacked upward to form stringlike clusters with different thicknesses depending on the gap height. (2) The stacking numbers (N(sr)) of the rods are estimated to be 1-5. With N(sr) increasing from 2 to 5, the volume fractions (ϕ) of the rods in the strings increased typically from 0.25-0.3 to 0.35-0.42 to reach limiting values (close to the ϕ values of the rods in the bulk smectic phase). (3) Unexpected low-ϕ strings are found in regions with an intermediate height in the gaps. These behaviors of ϕ may be caused by thermal fluctuations of the strings.

  14. Single particle nonlocality, geometric phases and time-dependent boundary conditions

    Science.gov (United States)

    Matzkin, A.

    2018-03-01

    We investigate the issue of single particle nonlocality in a quantum system subjected to time-dependent boundary conditions. We discuss earlier claims according to which the quantum state of a particle remaining localized at the center of an infinite well with moving walls would be specifically modified by the change in boundary conditions due to the wall’s motion. We first prove that the evolution of an initially localized Gaussian state is not affected nonlocally by a linearly moving wall: as long as the quantum state has negligible amplitude near the wall, the boundary motion has no effect. This result is further extended to related confined time-dependent oscillators in which the boundary’s motion is known to give rise to geometric phases: for a Gaussian state remaining localized far from the boundaries, the effect of the geometric phases is washed out and the particle dynamics shows no traces of a nonlocal influence that would be induced by the moving boundaries.

  15. Boundary fidelity and entanglement in the symmetry protected topological phase of the SSH model

    International Nuclear Information System (INIS)

    Sirker, J; Maiti, M; Konstantinidis, N P; Sedlmayr, N

    2014-01-01

    We present a detailed study of the fidelity, the entanglement entropy and the entanglement spectrum, for a dimerized chain of spinless fermions—a simplified Su–Schrieffer–Heeger (SSH) model—with open boundary conditions which is a well-known example for a model supporting a symmetry protected topological (SPT) phase. In the non-interacting case the Hamiltonian matrix is tridiagonal and the eigenvalues and vectors can be given explicitly as a function of a single parameter which is known analytically for odd chain lengths and can be determined numerically in the even length case. From a scaling analysis of these data for essentially semi-infinite chains we obtain the fidelity susceptibility and show that it contains a boundary contribution which is different in the topologically ordered than in the topologically trivial phase. For the entanglement spectrum and entropy we confirm predictions from massive field theory for a block in the middle of an infinite chain but also consider blocks containing the edge of the chain. For the latter case we show that in the SPT phase additional entanglement—as compared to the trivial phase—is present which is localized at the boundary. Finally, we extend our study to the dimerized chain with a nearest-neighbour interaction using exact diagonalization, Arnoldi and density-matrix renormalization group methods and show that a phase transition into a topologically trivial charge-density wave phase occurs. (paper)

  16. Quantum metrology of phase for accelerated two-level atom coupled with electromagnetic field with and without boundary

    Science.gov (United States)

    Yang, Ying; Liu, Xiaobao; Wang, Jieci; Jing, Jiliang

    2018-03-01

    We study how to improve the precision of the quantum estimation of phase for an uniformly accelerated atom in fluctuating electromagnetic field by reflecting boundaries. We find that the precision decreases with increases of the acceleration without the boundary. With the presence of a reflecting boundary, the precision depends on the atomic polarization, position and acceleration, which can be effectively enhanced compared to the case without boundary if we choose the appropriate conditions. In particular, with the presence of two parallel reflecting boundaries, we obtain the optimal precision for atomic parallel polarization and the special distance between two boundaries, as if the atom were shielded from the fluctuation.

  17. Two-phase semilinear free boundary problem with a degenerate phase

    KAUST Repository

    Matevosyan, Norayr; Petrosyan, Arshak

    2010-01-01

    states that in dimension two the free boundaries Γ+ = ∂{u > 0} ∩ D andΓ- = ∂{u < 0} ∩ D are C1,α-regular, provided 1 - ∈0 < p < 1. The proof is obtained by a careful iteration of the Harnack inequality to obtain a nontrivial growth estimate

  18. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading

    Science.gov (United States)

    Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun

    2017-09-01

    Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.

  19. Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection

    Science.gov (United States)

    Karma, Alain; Trivedi, Rohit

    1999-01-01

    Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth

  20. Anti-phase boundaries and magnetic domain structures in Ni{sub 2}MnGa-type Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswaran, S.P. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Nuhfer, N.T. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); De Graef, M. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)]. E-mail: degraef@cmu.edu

    2007-05-15

    The microstructure and magnetic domain structure of austenitic Heusler Ni{sub 2}MnGa are investigated as a function of heat treatment to study the interplay of anti-phase boundaries and magnetic domain walls. Conventional electron microscopy observations on arc-melted polycrystalline samples show that anti-phase boundaries in this system are invisible for standard two-beam imaging conditions, due to the large extinction distance of the Heusler superlattice reflections. Lorentz Fresnel and Foucault observations on quenched samples reveal a wavy magnetic domain morphology, reminiscent of curved anti-phase boundaries. A close inspection of the domain images indicates that the anti-phase boundaries have a magnetization state different from that of the matrix. Fresnel image simulations for a simple magnetization model are in good agreement with the observations. Magnetic coercivity measurements show a decrease in coercivity with annealing, which correlates with the microscopy observations of reduced anti-phase boundary density for annealed samples.

  1. Physical properties of smectic C liquid crystal cells

    International Nuclear Information System (INIS)

    Dunn, P.E.

    1998-01-01

    The aim of this work was to investigate some of the fundamental physical properties of surface stabilised ferroelectric liquid crystal devices (SSFLCDs) using optical, electrical and x-ray diffraction techniques. The measured physical parameters are then related to the performance of display devices. Refractometry measurements on homeotropically aligned FLC samples are used to accurately determine the smectic cone angle and information is also gained on FLC biaxial order. Propagation of optically excited guided modes along liquid crystalline layers is then used to obtain detailed director configuration information. Wavelength dependent extinction angle spectroscopy is also used to extract smectic C director profiles, albeit with a slightly lower accuracy than the guided mode method. A triangular director profile model is found to describe the wavelength dependent extinction angle properties of achiral samples, and examination of the cell spacing dependence of the director profile enables a ratio of bulk elasticity to surface anchoring energy to be determined. Information is obtained on the behaviour of smectic C materials under high frequency electric fields using a continuum director profile model, providing a novel measurement of bend and splay elastic constants. Additionally an extension of the wavelength dependent extinction angle technique allows half splayed states to be characterised. A variety of simple electro-optic techniques are used to characterise several key material parameters. Polarisation reversal current is used to measure both the spontaneous polarisation and an effective FLC switching viscosity. Monochromatic extinction angle measurements under applied d.c. fields are used to determine the cone and layer tilt angles, whilst a comparison of d.c. and a.c. extinction angle characteristics provides an estimate of the dielectric biaxiality. An automated measurement technique is used to determine FLC response time characteristics, which are described

  2. Physical properties of smectic C liquid crystal cells

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, P E

    1998-07-01

    The aim of this work was to investigate some of the fundamental physical properties of surface stabilised ferroelectric liquid crystal devices (SSFLCDs) using optical, electrical and x-ray diffraction techniques. The measured physical parameters are then related to the performance of display devices. Refractometry measurements on homeotropically aligned FLC samples are used to accurately determine the smectic cone angle and information is also gained on FLC biaxial order. Propagation of optically excited guided modes along liquid crystalline layers is then used to obtain detailed director configuration information. Wavelength dependent extinction angle spectroscopy is also used to extract smectic C director profiles, albeit with a slightly lower accuracy than the guided mode method. A triangular director profile model is found to describe the wavelength dependent extinction angle properties of achiral samples, and examination of the cell spacing dependence of the director profile enables a ratio of bulk elasticity to surface anchoring energy to be determined. Information is obtained on the behaviour of smectic C materials under high frequency electric fields using a continuum director profile model, providing a novel measurement of bend and splay elastic constants. Additionally an extension of the wavelength dependent extinction angle technique allows half splayed states to be characterised. A variety of simple electro-optic techniques are used to characterise several key material parameters. Polarisation reversal current is used to measure both the spontaneous polarisation and an effective FLC switching viscosity. Monochromatic extinction angle measurements under applied d.c. fields are used to determine the cone and layer tilt angles, whilst a comparison of d.c. and a.c. extinction angle characteristics provides an estimate of the dielectric biaxiality. An automated measurement technique is used to determine FLC response time characteristics, which are described

  3. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Directory of Open Access Journals (Sweden)

    Yuliang Wang

    Full Text Available Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  4. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Science.gov (United States)

    Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng

    2015-01-01

    Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  5. A Cosserat crystal plasticity and phase field theory for grain boundary migration

    Science.gov (United States)

    Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut

    2018-06-01

    The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.

  6. Aperiodic superconducting phase boundary of periodic micronetworks in a magnetic field

    International Nuclear Information System (INIS)

    Nori, F.; Niu, Q.

    1988-01-01

    We study flux quantization in periodic arrays with two elementary cells having an irrational ratio of areas. In particular, we calculate the superconducting-normal phase boundary T/sub c/(H) and we analyze the origin of its overall and fine structure as a function of the network size. We discuss our theoretical results, exploiting the electronic tight-binding analogy to the Ginzburg-Landau equations, and compare them with the experimental ones

  7. Study of two-phase boundary layer phenomena in boiling water by means of photographic techniques

    International Nuclear Information System (INIS)

    Molen, S.B. van der

    1976-01-01

    The behaviour of bubbles in the boundary layer of a two-phase flow is important for the heat exchange between the heat production unit and the cooling medium. Theoretical knowledge of the forces on a bubble and the interaction between molecules of different kind are essential for understanding the phenomena. The photographic techniques are needed for the investigation of the bubble pattern which exists where we find Departure from Nucleate Boiling. (orig.) [de

  8. Pressure tuning of the morphotropic phase boundary in piezoelectric lead zirconate titanate

    International Nuclear Information System (INIS)

    Rouquette, J.; Haines, J.; Bornand, V.; Pintard, M.; Papet, Ph.; Bousquet, C.; Konczewicz, L.; Gorelli, F. A.; Hull, S.

    2004-01-01

    Titanium-rich PZT solid solutions were studied under high pressure by neutron and x-ray diffraction, Raman spectroscopy and dielectric measurements. The results show that high pressure stabilizes the ferroelectric monoclinic phases, which are proposed to be responsible for the high piezoelectric properties characteristic of the morphotropic composition PbZr 0.52 Ti 0.48 O 3 . Pressure may thus be used to tune the morphotropic phase boundary in the composition-pressure plane to include a wide range of titanium-rich PZT compositions

  9. Effect of grain boundary phase on the magnetization reversal process of nanocrystalline magnet using large-scale micromagnetic simulation

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2018-05-01

    Full Text Available We investigated the effects of grain boundary phases on magnetization reversal in permanent magnets by performing large-scale micromagnetic simulations based on Landau–Lifshitz–Gilbert equation under a periodic boundary. We considered planar grain boundary phases parallel and perpendicular to an easy axis of the permanent magnet and assumed the saturation magnetization and exchange stiffness constant of the grain boundary phase to be 10% and 1%, respectively, for Nd2Fe14B grains. The grain boundary phase parallel to the easy axis effectively inhibits propagation of magnetization reversal. In contrast, the domain wall moves across the grain boundary perpendicular to the easy axis. These properties of the domain wall motion are explained by dipole interaction, which stabilizes the antiparallel magnetic configuration in the direction perpendicular to the magnetization orientation. On the other hand, the magnetization is aligned in the same direction by the dipole interaction parallel to the magnetization orientation. This anisotropy of the effect of the grain boundary phase shows that improvement of the grain boundary phase perpendicular to the easy axis effectively enhances the coercivity of permanent magnets.

  10. A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity

    Science.gov (United States)

    Fernández-Posada, Carmen M.; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey

    2016-09-01

    There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO3-BiCoO3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO3-BiMnO3-PbTiO3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.

  11. Phase-relationships between scales in the perturbed turbulent boundary layer

    Science.gov (United States)

    Jacobi, I.; McKeon, B. J.

    2017-12-01

    The phase-relationship between large-scale motions and small-scale fluctuations in a non-equilibrium turbulent boundary layer was investigated. A zero-pressure-gradient flat plate turbulent boundary layer was perturbed by a short array of two-dimensional roughness elements, both statically, and under dynamic actuation. Within the compound, dynamic perturbation, the forcing generated a synthetic very-large-scale motion (VLSM) within the flow. The flow was decomposed by phase-locking the flow measurements to the roughness forcing, and the phase-relationship between the synthetic VLSM and remaining fluctuating scales was explored by correlation techniques. The general relationship between large- and small-scale motions in the perturbed flow, without phase-locking, was also examined. The synthetic large scale cohered with smaller scales in the flow via a phase-relationship that is similar to that of natural large scales in an unperturbed flow, but with a much stronger organizing effect. Cospectral techniques were employed to describe the physical implications of the perturbation on the relative orientation of large- and small-scale structures in the flow. The correlation and cospectral techniques provide tools for designing more efficient control strategies that can indirectly control small-scale motions via the large scales.

  12. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

    DEFF Research Database (Denmark)

    Walker, Julian; Simons, Hugh; Alikin, Denis O

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroe......Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb......)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its...... realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced...

  13. A theoretical model of grain boundary self-diffusion in metals with phase transitions (case study into titanium and zirconium)

    Science.gov (United States)

    Semenycheva, Alexandra V.; Chuvil'deev, Vladimir N.; Nokhrin, Aleksey V.

    2018-05-01

    The paper offers a model describing the process of grain boundary self-diffusion in metals with phase transitions in the solid state. The model is based on ideas and approaches found in the theory of non-equilibrium grain boundaries. The range of application of basic relations contained in this theory is shown to expand, as they can be used to calculate the parameters of grain boundary self-diffusion in high-temperature and low-temperature phases of metals with a phase transition. The model constructed is used to calculate grain boundary self-diffusion activation energy in titanium and zirconium and an explanation is provided as to their abnormally low values in the low-temperature phase. The values of grain boundary self-diffusion activation energy are in good agreement with the experiment.

  14. The α-γ-ɛ triple point and phase boundaries of iron under shock compression

    Science.gov (United States)

    Li, Jun; Wu, Qiang; Xue, Tao; Geng, Huayun; Yu, Jidong; Jin, Ke; Li, Jiabo; Tan, Ye; Xi, Feng

    2017-07-01

    The phase transition of iron under shock compression has attracted much attention in recent decades because of its importance in fields such as condensed matter physics, geophysics, and metallurgy. At room temperature, the transition of iron from the α-phase (bcc) to the ɛ-phase (hpc) occurs at a stress of 13 GPa. At high temperature, a triple point followed by transformation to the γ-phase (fcc) is expected. However, the details of the high-temperature phase transitions of iron are still under debate. Here, we investigate the phase-transition behavior of polycrystalline iron under compression from room temperature to 820 K. The results show that the shock-induced phase transition is determined unequivocally from the measured three-wave-structure profiles, which clearly consist of an elastic wave, a plastic wave, and a phase-transition wave. The phase transition is temperature-dependent, with an average rate Δσtr/ΔT of -6.91 MPa/K below 700 K and -34.7 MPa/K at higher temperatures. The shock α-ɛ and α-γ phase boundaries intersect at 10.6 ± 0.53 GPa and 763 K, which agrees with the α-ɛ-γ triple point from early shock wave experiments and recent laser-heated diamond-anvil cell resistivity and in situ X-ray diffraction data but disagrees with the shock pressure-temperature phase diagram reported in 2009 by Zaretsky [J. Appl. Phys. 106, 023510 (2009)].

  15. Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events

    Science.gov (United States)

    Debnath, Dipsikha; Gainer, James S.; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-01

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain \\tilde{q}\\to {\\tilde{χ}}_2^0\\to \\tilde{ℓ}\\to {\\tilde{χ}}_1^0 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, \\overline{Σ} , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the \\overline{Σ} maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.

  16. Phase-field simulation study of the migration of recrystallization boundaries

    DEFF Research Database (Denmark)

    Moelans, Nele; Godfrey, Andy; Zhang, Yubin

    2013-01-01

    We present simulation results based on a phase-field model that describes the local migration of recrystallization boundaries into varying deformation energy fields. An important finding from the simulations is that the overall migration rate of the recrystallization front can be considerably...... amplitudes, however, the velocity scales with the maximum of the deformation energy density along the variation, resulting in a considerably larger velocity than that obtained from standard recrystallization models. The shape of the migrating grain boundary greatly depends on the local characteristics...... of the varying stored deformation energy field. For different deformation energy fields, the simulation results are in good qualitative agreement with experiments and add information which cannot be directly derived from experiments....

  17. Double smectic self-assembly in block copolypeptide complexes

    KAUST Repository

    Haataja, Johannes S.; Houbenov, Nikolay; Iatrou, Hermis; Hadjichristidis, Nikolaos; Karatzas, A.; Faul, Charl F. J.; Rannou, Patrice; Ikkala, Olli T.

    2012-01-01

    We show double smectic-like self-assemblies in the solid state involving alternating layers of different polypeptide α-helices. We employed rod-coil poly(γ-benzyl l-glutamate)-block-poly(l-lysine) (PBLG-b-PLL) as the polymeric scaffold, where the PLL amino residues were ionically complexed to di-n-butyl phosphate (diC4P), di(2-ethylhexyl) phosphate (diC2/6P), di(2-octyldodecyl) phosphate (diC8/12P), or di-n-dodecyl phosphate (diC12P), forming PBLG-b-PLL(diC4P), PBLG-b-PLL(diC2/6P), PBLG-b-PLL(diC8/12P), and PBLG-b-PLL(diC12P) complexes, respectively. The complexes contain PBLG α-helices of fixed diameter and PLL-surfactant complexes adopting either α-helices of tunable diameters or β-sheets. For PBLG-b-PLL(diC4P), that is, using a surfactant with short n-butyl tails, both blocks were α-helical, of roughly equal diameter and thus with minor packing frustrations, leading to alternating PBLG and PLL(diC4P) smectic layers of approximately perpendicular alignment of both types of α-helices. Surfactants with longer and branched alkyl tails lead to an increased diameter of the PLL-surfactant α-helices. Smectic alternating PBLG and PLL(diC2/6P) layers involve larger packing frustration, which leads to poor overall order and suggests an arrangement of tilted PBLG α-helices. In PBLG-b-PLL(diC8/12P), the PLL(diC8/12P) α-helices are even larger and the overall structure is poor. Using a surfactant with two linear n-dodecyl tails leads to well-ordered β-sheet domains of PLL(diC12P), consisting of alternating PLL and alkyl chain layers. This dominates the whole assembly, and at the block copolypeptide length scale, the PBLG α-helices do not show internal order and have poor organization. Packing frustration becomes an important aspect to design block copolypeptide assemblies, even if frustration could be relieved by conformational imperfections. The results suggest pathways to control hierarchical liquid-crystalline assemblies by competing interactions and by

  18. Double smectic self-assembly in block copolypeptide complexes

    KAUST Repository

    Haataja, Johannes S.

    2012-11-12

    We show double smectic-like self-assemblies in the solid state involving alternating layers of different polypeptide α-helices. We employed rod-coil poly(γ-benzyl l-glutamate)-block-poly(l-lysine) (PBLG-b-PLL) as the polymeric scaffold, where the PLL amino residues were ionically complexed to di-n-butyl phosphate (diC4P), di(2-ethylhexyl) phosphate (diC2/6P), di(2-octyldodecyl) phosphate (diC8/12P), or di-n-dodecyl phosphate (diC12P), forming PBLG-b-PLL(diC4P), PBLG-b-PLL(diC2/6P), PBLG-b-PLL(diC8/12P), and PBLG-b-PLL(diC12P) complexes, respectively. The complexes contain PBLG α-helices of fixed diameter and PLL-surfactant complexes adopting either α-helices of tunable diameters or β-sheets. For PBLG-b-PLL(diC4P), that is, using a surfactant with short n-butyl tails, both blocks were α-helical, of roughly equal diameter and thus with minor packing frustrations, leading to alternating PBLG and PLL(diC4P) smectic layers of approximately perpendicular alignment of both types of α-helices. Surfactants with longer and branched alkyl tails lead to an increased diameter of the PLL-surfactant α-helices. Smectic alternating PBLG and PLL(diC2/6P) layers involve larger packing frustration, which leads to poor overall order and suggests an arrangement of tilted PBLG α-helices. In PBLG-b-PLL(diC8/12P), the PLL(diC8/12P) α-helices are even larger and the overall structure is poor. Using a surfactant with two linear n-dodecyl tails leads to well-ordered β-sheet domains of PLL(diC12P), consisting of alternating PLL and alkyl chain layers. This dominates the whole assembly, and at the block copolypeptide length scale, the PBLG α-helices do not show internal order and have poor organization. Packing frustration becomes an important aspect to design block copolypeptide assemblies, even if frustration could be relieved by conformational imperfections. The results suggest pathways to control hierarchical liquid-crystalline assemblies by competing interactions and by

  19. Kinetic boundaries and phase transformations of ice i at high pressure

    Science.gov (United States)

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.

    2018-01-01

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  20. Phase boundary estimation in electrical impedance tomography using the Hooke and Jeeves pattern search method

    International Nuclear Information System (INIS)

    Khambampati, Anil Kumar; Kim, Kyung Youn; Ijaz, Umer Zeeshan; Lee, Jeong Seong; Kim, Sin

    2010-01-01

    In industrial processes, monitoring of heterogeneous phases is crucial to the safety and operation of the engineering structures. Particularly, the visualization of voids and air bubbles is advantageous. As a result many studies have appeared in the literature that offer varying degrees of functionality. Electrical impedance tomography (EIT) has already been proved to be a hallmark for process monitoring and offers not only the visualization of the resistivity profile for a given flow mixture but is also used for detection of phase boundaries. Iterative image reconstruction algorithms, such as the modified Newton–Raphson (mNR) method, are commonly used as inverse solvers. However, their utility is problematic in a sense that they require the initial solution in close proximity of the ground truth. Furthermore, they also rely on the gradient information of the objective function to be minimized. Therefore, in this paper, we address all these issues by employing a direct search algorithm, namely the Hooke and Jeeves pattern search method, to estimate the phase boundaries that directly minimizes the cost function and does not require the gradient information. It is assumed that the resistivity profile is known a priori and therefore the unknown information will be the size and location of the object. The boundary coefficients are parameterized using truncated Fourier series and are estimated using the relationship between the measured voltages and injected currents. Through extensive simulation and experimental result and by comparison with mNR, we show that the Hooke and Jeeves pattern search method offers a promising prospect for process monitoring

  1. Structural Evolution of the R-T Phase Boundary in KNN-Based Ceramics

    KAUST Repository

    Lv, Xiang; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Zhang, Xixiang

    2017-01-01

    , the structural evolution of R-T phase boundary from -150 °C to 200 °C is investigated in (0.99-x)K0.5Na0.5Nb1-ySbyO3-0.01CaSnO3-xBi0.5K0.5HfO3 (where x=0~0.05 with y=0.035, and y=0~0.07 with x=0.03) ceramics. Through temperature-dependent powder X-ray diffraction

  2. An Evaluation of a Phase-Lag Boundary Condition for Francis Hydroturbine Simulations Using a Pressure-Based Solver

    Science.gov (United States)

    Wouden, Alex; Cimbala, John; Lewis, Bryan

    2014-11-01

    While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.

  3. Lead-free piezoelectric KNN-BZ-BNT films with a vertical morphotropic phase boundary

    Directory of Open Access Journals (Sweden)

    Wen Chen

    2015-07-01

    Full Text Available The lead-free piezoelectric 0.915K0.5Na0.5NbO3-0.075BaZrO3-0.01Bi0.5Na0.5TiO3 (0.915KNN-0.075BZ-0.01BNT films were prepared by a chemical solution deposition method. The films possess a pure rhomobohedral perovskite phase and a dense surface without crack. The temperature-dependent dielectric properties of the specimens manifest that only phase transition from ferroelectric to paraelectric phase occurred and the Curie temperature is 217 oC. The temperature stability of ferroelectric phase was also supported by the stable piezoelectric properties of the films. These results suggest that the slope of the morphotropic phase boundary (MPB for the solid solution formed with the KNN and BZ in the films should be vertical. The voltage-induced polarization switching, and a distinct piezo-response suggested that the 0.915 KNN-0.075BZ-0.01BNT films show good piezoelectric properties.

  4. Studies of the phase gradient at the boundary of the phase diffusion equation, motivated by peculiar wave patterns of rhythmic contraction in the amoeboid movement of Physarum polycephalum

    Science.gov (United States)

    Iima, Makoto; Kori, Hiroshi; Nakagaki, Toshiyuki

    2017-04-01

    The boundary of a cell is the interface with its surroundings and plays a key role in controlling the cell movement adaptations to different environments. We propose a study of the boundary effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum polycephalum, a tractable model organism of the amoeboid type. Boundary effects are defined as the effects of both the boundary conditions and the boundary shape. The rhythmicity of contraction can be modulated by local stimulation of temperature, light and chemicals, and by local deformation of cell shape via mechanosensitive ion channels as well. First, we examined the effects of boundary cell shapes in the case of a special shape resembling a tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly higher and uniform. The simulation model reproduced the approximate propagated wave, from the tail to the head, while the inward waves were observed only near the periphery of the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic contractions depended on the local shape of cell boundary. This implies that the boundary conditions of the phase were not always homogeneous. To understand the dependency, we reduced the two-dimensional model into a one-dimensional continuum model with Neumann boundary conditions. Here, the boundary conditions reflect the frequency distribution at the boundary. We described the analytic solutions and calculated the relationship between the boundary conditions and the wave propagation for a one-dimensional model of the continuous oscillatory field and a discrete coupled oscillator system. The results obtained may not be limited to cell movement of Physarum, but may be applicable to the other physical systems since the analysis used a generic phase diffusion equation.

  5. Studies of the phase gradient at the boundary of the phase diffusion equation, motivated by peculiar wave patterns of rhythmic contraction in the amoeboid movement of Physarum polycephalum

    International Nuclear Information System (INIS)

    Iima, Makoto; Kori, Hiroshi; Nakagaki, Toshiyuki

    2017-01-01

    The boundary of a cell is the interface with its surroundings and plays a key role in controlling the cell movement adaptations to different environments. We propose a study of the boundary effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum polycephalum , a tractable model organism of the amoeboid type. Boundary effects are defined as the effects of both the boundary conditions and the boundary shape. The rhythmicity of contraction can be modulated by local stimulation of temperature, light and chemicals, and by local deformation of cell shape via mechanosensitive ion channels as well. First, we examined the effects of boundary cell shapes in the case of a special shape resembling a tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly higher and uniform. The simulation model reproduced the approximate propagated wave, from the tail to the head, while the inward waves were observed only near the periphery of the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic contractions depended on the local shape of cell boundary. This implies that the boundary conditions of the phase were not always homogeneous. To understand the dependency, we reduced the two-dimensional model into a one-dimensional continuum model with Neumann boundary conditions. Here, the boundary conditions reflect the frequency distribution at the boundary. We described the analytic solutions and calculated the relationship between the boundary conditions and the wave propagation for a one-dimensional model of the continuous oscillatory field and a discrete coupled oscillator system. The results obtained may not be limited to cell movement of Physarum , but may be applicable to the other physical systems since the analysis used a generic phase diffusion equation. (paper)

  6. Polymer stabilization of the smectic C-alpha* liquid crystal phase—Over tenfold thermal stabilization by confining networks of photo-polymerized reactive mesogens

    Energy Technology Data Exchange (ETDEWEB)

    Labeeb, A. [Liquid Crystal Institute, Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242 (United States); Microwave Physics and Dielectrics, National Research Center, Dokki 12622 (Egypt); Gleeson, H. F. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Hegmann, T., E-mail: thegmann@kent.edu [Liquid Crystal Institute, Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242 (United States)

    2015-12-07

    The smectic C*-alpha (SmC{sub α}*) phase is one of the sub-phases of ferroelectric liquid crystals that has drawn much interest due to its electro-optical properties and ultrafast switching. Generally observed above the ferroelectric SmC* phase in temperature, the SmC{sub α}* commonly shows only very narrow phase temperature range of a few degree Celsius. To broaden the SmC{sub α}* phase, polymer stabilization was investigated for thermal phase stabilization. Two different reactive monomers were tested in three mixtures, and all three broadened the temperature range of the SmC{sub α}* phase from 3 °C to 39 °C. The current reversal method was used to determine the phase existence versus temperature. Moreover, the texture and network structure was studied by polarized optical microscopy and scanning electron microscopy, with the latter revealing the confinement of the smectic layer structure within the porous polymer network.

  7. Dicyanamide Salts that Adopt Smectic, Columnar, or Bicontinuous Cubic Liquid-Crystalline Mesophases.

    Science.gov (United States)

    Park, Geonhui; Goossens, Karel; Shin, Tae Joo; Bielawski, Christopher W

    2018-04-25

    Although dicyanamide (i.e., [N(CN) 2 ] - ) has been commonly used to obtain low-viscosity, halogen-free, room-temperature ionic liquids, liquid-crystalline salts containing such anions have remained virtually unexplored. Here we report a series of amphiphilic dicyanamide salts that, depending on their structures and compositions, adopt smectic, columnar, or bicontinuous cubic thermotropic liquid-crystalline mesophases, even at room temperature in some cases. Their thermal properties were explored by polarized light optical microscopy, differential scanning calorimetry, thermogravimetric analysis (including evolved gas analysis), and variable-temperature synchrotron X-ray diffraction. Comparison of the thermal phase characteristics of these new liquid-crystalline salts featuring "V-shaped" [N(CN) 2 ] - anions with those of structural analogues containing [SCN] - , [BF 4 ] - , [PF 6 ] - , or [CF 3 SO 3 ] - anions indicated that not only the size of the counterion but also its shape should be considered in the development of mesomorphic salts. Collectively, these discoveries may be expected to facilitate the design of thermotropic ionic liquid crystals that form inverted-type bicontinuous cubic and other sophisticated liquid-crystalline phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Grain boundary corrosion and alteration phase formation during the oxidative dissolution of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.

    1996-12-31

    Alteration behavior of UO{sub 2} pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO{sub 2} granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO{sub 2}) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems.

  9. Determination of γ′+γ / γ Phase Boundary in Ni-Al-Cr System Using DTA Thermal Analysis

    Directory of Open Access Journals (Sweden)

    Maciąg T.

    2016-03-01

    Full Text Available Mechanical properties at elevated temperature, in modern alloys based on intermetallic phase Ni3Al are connected with phase composition, especially with proportion of ordered phase γ′ (L12 and disordered phase γ (A1. In this paper, analysis of one key systems for mentioned alloys - Ni-Al-Cr, is presented. A series of alloys with chemical composition originated from Ni-rich part of Ni-Al-Cr system was prepared. DTA thermal analysis was performed on all samples. Based on shape of obtained curves, characteristic for continuous order-disorder transition, places of course of phase boundaries γ′+γ / γ were determined. Moreover, temperature of melting and freezing of alloys were obtained. Results of DTA analysis concerning phase boundary γ′+γ / γ indicated agreement with results obtained by authors using calorimetric solution method.

  10. On the polarization dynamics in the presence of flexoelectricity and morphotropic phase boundary in ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, S. A., E-mail: pikin@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    It is shown that anomalous piezoelectric properties of epitaxial nanostructures arise on the morphotropic phase boundary (MPB) due to the strong flexoelectric effect on dislocation walls. The MPB (typical of many materials) exhibits a coexistence of various phases and partition of these phases to minimum sizes. This minimum size l{sub c} (nanoscale) is found using the dislocation theory; it coincides with the distance between individual dislocations in dislocation walls, which is much larger than the Burgers vector b, regardless of the type of crystalline material. The flexoelectric coefficients f are estimated taking into account dimensional relations and experimental data on the rotations of ferroelectric nanodomains in multiferroics. These estimates coincide with classical values. The critical value l{sub c} ~ 10b specifies the measured dependence on the dielectric susceptibility χ{sub e}, f ~ χ{sub e}{sup 1/2}. The quantity χ{sub e} depends on the frequency of the ac electric field applied to a sample and on the dislocation density. The Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic composite shows typical frequency dispersion of χ{sub e} in a wide frequency range. The frequency dependence of flexoelecric coefficients is shown to reproduce the frequency dependence of permittivity at high frequencies.

  11. Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter

    Science.gov (United States)

    Cong, Iris; Cheng, Meng; Wang, Zhenghan

    2017-10-01

    We present an exactly solvable lattice Hamiltonian to realize gapped boundaries of Kitaev's quantum double models for Dijkgraaf-Witten theories. We classify the elementary excitations on the boundary, and systematically describe the bulk-to-boundary condensation procedure. We also present the parallel algebraic/categorical structure of gapped boundaries.

  12. Detecting kinematic boundary surfaces in phase space and particle mass measurements in SUSY-like events

    CERN Document Server

    Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-19

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is ...

  13. Theory of superplastic flow in two-phase materials: roles of interphase-boundary dislocations, ledges, and diffusion

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1977-01-01

    A new theory is developed to explain superplastic flow in two-phase materials. It is postulated that boundary-dislocations, piled up in dislocation-Interphase-Boundaries (IPBs) climb away into disordered regions of the IPB. Sliding then occurs at an IPB as dislocations glide toward the head of the pile up to replace those which have climbed into disordered regions of the boundary. An energy barrier which would otherwise render sliding virtually impossible on dislocation-IPBs can, it is shown, be largely eliminated if the dislocations glide in pairs. The disorder (actually an antiphase domain boundary) which is created by the passage of the leading dislocation is then repaired by passage of its successor. The threshold stress for superplastic flow is provisionally identified with the stress which pins IPB dislocations to boundary ledges. The activation energy is theoretically that for IPB diffusion. Good agreement is obtained between the theoretical equation for superplastic flow and the results of published experiments

  14. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics

    Science.gov (United States)

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil Mcn.

    2016-06-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.

  15. Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Ebbehøj, Søren Lyng; Hauch, Anne

    2015-01-01

    of the pathways through which they can be reached. New methods for performing TPB specific pathway analysis on 3D image data are introduced, analyzing the pathway properties of each TPB site in the electrode structure. The methods seek to provide additional information beyond whether the TPB sites are percolating......The density and percolation of Triple phase boundary sites are important quantities in analyzing microstructures of solid oxide fuel cell electrodes from tomography data. However, these measures do not provide descriptions of the quality of the TPB sites in terms of the length and radius...... or not by also analyzing the pathway length to the TPB sites and the bottleneck radius of the pathway. We show how these methods can be utilized in quantifying and relating the TPB specific results to cell test data of an electrode reduction protocol study for Ni/Scandia-and-Yttria-doped-Zirconia (Ni...

  16. Effect of Bi doping on morphotropic phase boundary and dielectric properties of PZT

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Shraddha; Acharya, Smita, E-mail: saha275@yahoo.com [Advanced Materials Research Laboratory, Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur-440033, M.S. India (India)

    2016-05-23

    In our present attempt, Pb{sub (1-x)}Bi{sub x}Zr{sub 0.52}Ti{sub 0.48}O{sub 3} [PBZT] {where x = 0, 0.05, 0.1} is synthesized by sol-gel route. Effect of Bi addition on structure, sinterability and dielectric properties are observed. The presence of morphotropic phase boundary (coexistence of tetragonal and rhombohedral symmetry) is confirmed by X-ray diffraction. Enhancement of sinterability after Bi doping is observed through a systematic sintering program. Frequency and temperature dependent dielectric constant are studied. Bi doping in PZT is found to enhance room temperature dielectric constant. However, at high temperature the dielectric constant of pure PZT is more than that of doped PZT.

  17. Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries?

    Science.gov (United States)

    Aranda, M. M.; Rementeria, R.; Capdevila, C.; Hackenberg, R. E.

    2016-02-01

    It is usually assumed that ferrous pearlite can form only when the average austenite carbon concentration C 0 lies between the extrapolated Ae3 ( γ/ α) and Acm ( γ/ θ) phase boundaries (the "Hultgren extrapolation"). This "mutual supersaturation" criterion for cooperative lamellar nucleation and growth is critically examined from a historical perspective and in light of recent experiments on coarse-grained hypoeutectoid steels which show pearlite formation outside the Hultgren extrapolation. This criterion, at least as interpreted in terms of the average austenite composition, is shown to be unnecessarily restrictive. The carbon fluxes evaluated from Brandt's solution are sufficient to allow pearlite growth both inside and outside the Hultgren Extrapolation. As for the feasibility of the nucleation events leading to pearlite, the only criterion is that there are some local regions of austenite inside the Hultgren Extrapolation, even if the average austenite composition is outside.

  18. Superfluid kinetic equation approach to the dynamics of the 3He A-B phase boundary

    International Nuclear Information System (INIS)

    Palmeri, J.

    1990-01-01

    The dynamics of the A-B phase boundary is studied using a nonequilibrium theory inspired by the microscopic approach to flux flow in type-II superconductors, namely a generalized two-fluid model consisting of coupled dynamical equations for the superfluid order parameter and the quasiparticle fluid. The interface mobility is obtained to lowest order in the front velocity in three different dynamical regimes: the gapless, hydrodynamic, and ballistic. Experiments have so far only been performed in the ballistic regime, and in this regime we find that, if only Andreev scattering processes are accounted for in the interface mobility, then the theoretical predictions for the terminal velocity of the planar interface are too big by a factor ∼2. From this we conclude that there may be other important contributions to the interface mobility in the ballistic regime, and we discuss a few possibilities

  19. Nonlinear traveling waves in rotating Rayleigh-Bacute enard convection: Stability boundaries and phase diffusion

    International Nuclear Information System (INIS)

    Liu, Y.; Ecke, R.E.

    1999-01-01

    We present experimental measurements of a sidewall traveling wave in rotating Rayleigh-Bacute enard convection. The fluid, water with Prandtl number about 6.3, was confined in a 1-cm-high cylindrical cell with radius-to-height ratio Γ=5. We used simultaneous optical-shadowgraph, heat-transport, and local temperature measurements to determine the stability and characteristics of the traveling-wave state for dimensionless rotation rates 60<Ω<420. The state is well described by the one-dimensional complex Ginzburg-Landau (CGL) equation for which the linear and nonlinear coefficients were determined for Ω=274. The Eckhaus-Benjamin-Feir-stability boundary was established and the phase-diffusion coefficient and nonlinear group velocity were determined in the stable regime. Higher-order corrections to the CGL equation were also investigated. copyright 1999 The American Physical Society

  20. COMPUTER MODELING OF STRAINS ON PHASE BOUNDARIES IN DUCTILE CAST IRON AT HOT EXTRUSION

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovsky

    2017-01-01

    Full Text Available The computer modeling of the strain distribution in the structure of ductile iron with ferrite-pearlite matrix and inclusions of spherical graphite dependence on increasing degree of deformation during direct hot extrusion was researched. Using a software system of finite-element analysis ANSYS the numerical values of the strains at the phase boundaries: ferrite-perlite, graphiteferrite and also inside the graphite inclusions were defined. The analysis of the strain distribution in the investigated structures was performed and local zones of increased strains were discovered. The results of modeling are compared with metallographic analysis and fracture patterns. The obtained results could be used in the prediction of fracture zones in the cast iron products. 

  1. Molecular dynamics study of kinetic boundary condition at an interface between a polyatomic vapor and its condensed phase

    OpenAIRE

    Ishiyama, Tatsuya; Yano, Takeru; Fujikawa, Shigeo

    2004-01-01

    The kinetic boundary condition for the Boltzmann equation at an interface between a polyatomic vapor and its liquid phase is investigated by the numerical method of molecular dynamics, with particular emphasis on the functional form of the evaporation part of the boundary condition, including the evaporation coefficient. The present study is an extension of a previous one for argon [Ishiyama, Yano, and Fujikawa, Phys. Fluids 16, 2899 (2004)] to water and methanol, typical examples of polyatom...

  2. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  3. Effects of Iron and Aluminum on Phase Boundaries at 600-800 km Depths

    Science.gov (United States)

    Shim, Sang-Heon; Ye, Yu; Prakapenka, Vitali; Meng, Yue

    2014-05-01

    High-resolution seismic studies have reported complex discontinuity structures at 600-800 km depths. However, the origin of the structures have not been well understood. In order to understand compositional effects, we have measured the post-spinel, post-garnet, and post-ilmenite phase boundaries in MgO-Al2O3-SiO2 (iron free) and CaO-MgO-Al2O3-SiO2-FeO (iron bearing) systems with pyrolitic oxide ratios. In-situ X-ray diffraction measurements were performed at 20-30 GPa and 1500-2300 K in the laser-heated diamond-anvil cell at the GSECARS and HPCAT sectors of the Advanced Photon Source. We use the Pt and Au pressure scales for the iron-free and iron-bearing compositions, respectively. The Pt and Au scales were calibrated with respect to each other in separate experiments. In most experiments, Ar was cryogenically loaded in the sample chamber as a thermal insulation and pressure transmitting medium, except for a few experiments where a KCl medium was used. At temperatures above 1900 K, the post-garnet transition occurs at higher pressures than the post-spinel transition in both the iron-free and iron-bearing systems. At lower temperatures, while the post-ilmenite transition occurs at nearly same pressures as the post-spinel transition in the iron-bearing system, the post-ilmenite transition occurs at slightly higher pressure (1 GPa) than the post-spinel transitions in the iron-free system. In the iron-free system, akimotoite is stable to much higher temperature (2300 K) than previously thought. In the iron-bearing system, the stability of akimotoite is limited to 2050 K. Our data indicate that Al partitions more into akimotoite than garnet in the iron-free system, which is the opposite to what has been found in iron-bearing systems. The high Al content in akimotoite seems to be responsible for the high-temperature stability of akimotoite in the iron-free system. The Clapeyron slope of the post-garnet boundary is greater by a factor of 2.5 in the iron-bearing system

  4. Simulation study on exchange interaction and unique magnetization near ferromagnetic morphotropic phase boundary.

    Science.gov (United States)

    Wei, Songrui; Liao, Xiaoqi; Gao, Yipeng; Yang, Sen; Wang, Dong; Song, Xiaoping

    2017-11-08

    Extensive efforts have been made in searching enhanced functionalities near the so-called morphotropic phase boundaries (MPBs) in both ferroelectric and ferromagnetic materials. Due to the exchange anti-symmetry of the wave function of fermions, it is widely recognized that the exchange interaction plays a critical role in ferromagnetism. As a quantum effect, the exchange interaction is magnitudes larger than electric interaction, leading to a fundamental difference between ferroelectricity and ferromagnetism. In this paper, we establish an energetic model capturing the interplay among the anisotropy energy, magnetostatic energy and the exchange energy to investigate systematically the effects of the exchange energy on the behavior of the ferromagnetic MPB. For the first time, it is found that the exchange energy can narrow the width of MPB region in the composition temperature phase diagram for ferromagnetic MPB systems. As temperature increases, MPB region becomes wider because of the weakening of the exchange interaction. Our simulation results suggest that the exchange energy play a critical role on the unique behavior of ferromagnetic MPB, which is in contrast different from that of ferroelectric MPB.

  5. Dynamics of nonlinear dielectric susceptibility of ferroelectrics near the morphotropic phase boundary

    International Nuclear Information System (INIS)

    Ibrahim, Abdel-Baset M A; Osman, Junaidah

    2013-01-01

    The dynamics of the nonlinear (NL) dielectric susceptibility of ferroelectrics (FE) near the morphotropic phase boundary (MPB) is theoretically investigated based on the Landau–Devonshire free energy approach and the concept of FE soft modes. To do so, the NL dielectric susceptibility elements of FE material in the tetragonal phase are expressed as functions of optical phonon modes. These are the E modes with normal characteristic frequency ω E 2 and the A modes with ω A 2 . On the one hand, the tetragonal E modes appear to exhibit a double soft-mode character, i.e. the mode softens either when the thermodynamic temperature T approaches the transition temperature T c or when the free energy parameter β 1 approaches β 2 . On the other hand, the A modes exhibit single soft-mode character when T approaches T c . Within this formulation, the dynamics of first-, second- and third-order NL susceptibility elements are investigated. The origin of the anomalous behavior of certain NL elements at the MPB appears to be a manifestation of FE mode-softening. This approach provides a simple yet powerful technique to understand the dynamics of the NL dielectric susceptibility elements of FE material near the MPB. (paper)

  6. Nanocompositional Electron Microscopic Analysis and Role of Grain Boundary Phase of Isotropically Oriented Nd-Fe-B Magnets

    Directory of Open Access Journals (Sweden)

    Gregor A. Zickler

    2017-01-01

    Full Text Available Nanoanalytical TEM characterization in combination with finite element micromagnetic modelling clarifies the impact of the grain misalignment and grain boundary nanocomposition on the coercive field and gives guidelines how to improve coercivity in Nd-Fe-B based magnets. The nanoprobe electron energy loss spectroscopy measurements obtained an asymmetric composition profile of the Fe-content across the grain boundary phase in isotropically oriented melt-spun magnets and showed an enrichment of iron up to 60 at% in the Nd-containing grain boundaries close to Nd2Fe14B grain surfaces parallel to the c-axis and a reduced iron content up to 35% close to grain surfaces perpendicular to the c-axis. The numerical micromagnetic simulations on isotropically oriented magnets using realistic model structures from the TEM results reveal a complex magnetization reversal starting at the grain boundary phase and show that the coercive field increases compared to directly coupled grains with no grain boundary phase independently of the grain boundary thickness. This behaviour is contrary to the one in aligned anisotropic magnets, where the coercive field decreases compared to directly coupled grains with an increasing grain boundary thickness, if Js value is > 0.2 T, and the magnetization reversal and expansion of reversed magnetic domains primarily start as Bloch domain wall at grain boundaries at the prismatic planes parallel to the c-axis and secondly as Néel domain wall at the basal planes perpendicular to the c-axis. In summary our study shows an increase of coercive field in isotropically oriented Nd-Fe-B magnets for GB layer thickness > 5 nm and an average Js value of the GB layer < 0.8 T compared to the magnet with perfectly aligned grains.

  7. Effect of grain boundaries on shock-induced phase transformation in iron bicrystals

    Science.gov (United States)

    Zhang, Xueyang; Wang, Kun; Zhu, Wenjun; Chen, Jun; Cai, Mengqiu; Xiao, Shifang; Deng, Huiqiu; Hu, Wangyu

    2018-01-01

    Non-equilibrium molecular-dynamic simulations with a modified analytic embedded-atom model potential have been performed to investigate the effect of three kinds of grain boundaries (GBs) on the martensitic transformation in iron bicrystals with three different GBs under shock loadings. Our results show that the phase transition was influenced by the GBs. All three GBs provide a nucleation site for the α → ɛ transformation in samples shock-loaded with up = 0.5 km/s, and in particular, the elastic wave can induce the phase transformation at Σ3 ⟨110⟩ twist GB, which indicates that the phase transformation can occur at Σ3 ⟨110⟩ twist GB with a much lower pressure. The effect of GBs on the stress assisted transformation (SAT) mechanisms is discussed. All variants nucleating at the vicinity of these GBs meet the maximum strain work (MSW) criterion. Moreover, all of the variants with the MSW nucleate at Σ5 ⟨001⟩ twist GB and Σ3 ⟨110⟩ tilt GB, but only part of them nucleate at Σ3 ⟨110⟩ twist GB. This is because the coincident planes between both sides of the GB would affect the slip process, which is the second stage of the martensitic transformation and influences the selection of variant. We also find that the martensitic transformation at the front end of the bicrystals would give rise to stress attenuation in samples shock-loaded with up = 0.6 km/s, which makes the GBs seem to be unfavorable to the martensitic transformation. Our findings have the potential to affect the interface engineering and material design under high pressure conditions.

  8. Atom Probe Tomography of Phase and Grain Boundaries in Experimentally-Deformed and Hot-Pressed Wehrlite

    Science.gov (United States)

    Cukjati, J.; Parman, S. W.; Cooper, R. F.; Zhao, N.

    2017-12-01

    Atom probe tomography (APT) was used to characterize the chemistry of three grain boundaries: an olivine-olivine (ol-ol) and olivine-clinopyroxene (ol-cpx) boundary in fine-grained experimentally-deformed wehrlite and an ol-cpx boundary in a fine-grained, hot-pressed wehrlite. Grain boundaries were extracted and formed into APT tips using a focused ion beam (FIB). The tips were analyzed in a reflectron-equipped LEAP4000HR (Harvard University) at 1% or 0.5% detection rate, 5pJ laser energy and 100kHz pulse rate. Total ion counts are between 40 and 100 million per tip. Examination of grain and phase boundaries in wehrlite are of interest since slow-diffusing and olivine-incompatible cations present in cpx (e.g. Ca and Al) may control diffusion-accommodated grain boundary sliding and affect mantle rheology (Sundberg & Cooper, 2008). At steady state, ol-cpx aggregates are weaker than either ol or cpx end member, the results of which are not currently well-explained. We investigate grain boundary widths to understand the transport of olivine-incompatible elements. Widths of grain/phase boundary chemical segregation are between 3nm and 6nm for deformed ol-ol and ol-cpx samples; minimally-deformed (hot-pressed) samples having slightly wider chemical segregation widths. Chemical segregation widths were determined from profiles of Na, Al, P, Cl, K, Ca, or Ni, although not all listed elements can be used for all samples (e.g. Na, K segregation profiles can only be observed for ol-ol sample). These estimates are consistent with prior estimates of grain boundary segregation by atom probe tomography on ol-ol and opx-opx samples (Bachhav et al., 2015) and are less than ol-ol interface widths analyzed by STEM/EDX (Hiraga, Anderson, & Kohlstedt, 2007). STEM/EDX will be performed on deformed wehrlite to investigate chemical profile as a function of applied stress orientation and at length scales between those observable by APT and EPMA. Determination of phase boundary chemistry and

  9. UO2 Grain Growth: Developing Phase Field Models for Pore Dragging, Solute Dragging and Anisotropic Grain Boundary Energies

    International Nuclear Information System (INIS)

    Ahmed, K.; Tonks, M.; Zhang, Y.; Biner, B.

    2016-01-01

    A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared to the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.

  10. Boundary-artifact-free phase retrieval with the transport of intensity equation II: applications to microlens characterization.

    Science.gov (United States)

    Zuo, Chao; Chen, Qian; Li, Hongru; Qu, Weijuan; Asundi, Anand

    2014-07-28

    Boundary conditions play a crucial role in the solution of the transport of intensity equation (TIE). If not appropriately handled, they can create significant boundary artifacts across the reconstruction result. In a previous paper [Opt. Express 22, 9220 (2014)], we presented a new boundary-artifact-free TIE phase retrieval method with use of discrete cosine transform (DCT). Here we report its experimental investigations with applications to the micro-optics characterization. The experimental setup is based on a tunable lens based 4f system attached to a non-modified inverted bright-field microscope. We establish inhomogeneous Neumann boundary values by placing a rectangular aperture in the intermediate image plane of the microscope. Then the boundary values are applied to solve the TIE with our DCT-based TIE solver. Experimental results on microlenses highlight the importance of boundary conditions that often overlooked in simplified models, and confirm that our approach effectively avoid the boundary error even when objects are located at the image borders. It is further demonstrated that our technique is non-interferometric, accurate, fast, full-field, and flexible, rendering it a promising metrological tool for the micro-optics inspection.

  11. New theory for competing interactions and microstructures in partially-ordered (liquid-crystalline) phases

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of results from a unique statistical-physics theory to predict and explain competing interactions and resulting microstructures in some partially-ordered [in this case, liquid-crystalline (LC)] phases is presented. The static aspects of both partial orientational and partial positional ordering of the molecules into various microstructures in these phases (including the incommensurate smectic-Ad phase) can be understood in terms of various competing interactions (both entropic and energetic) involved in the packing together of the different molecular sub-units at given pressures and temperatures. These microstructures are predicted and explained (using no ad hoc or arbitrarily adjustable parameter) as a function of molecule chemical structure [including lengths and shapes (from bond lengths and angles), intramolecular rotations, site-site polarizabilities and pair potentials, dipole moments, etc]. Theoretical results are presented for the nematic, re-entrant nematic, smectic-Ad, and smectic-Al LC phases and the isotropic phase

  12. Observation of Algebraic Decay of Positional Order in a Smectic Liquid Crystal

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Litster, J. D.; Birgeneau, R. J.

    1980-01-01

    A smectic-A liquid crystal in three dimensions has been predicted to exhibit algebraic decay of the layer correlations rather than true long-range order. As a consequence, the smectic Bragg peaks are expected to be power-law singularities of the form q∥-2+η and q⊥-4+2η, where ∥(⊥) is along (perpe......, the explicit values of η required to describe the measured profiles are in accordance with calculations of η using the harmonic approximation with empirically determined splay and layer compressibility elastic constants. ©1980 The American Physical Society...

  13. Stability of equilibrium states in finite samples of smectic C* liquid crystals

    International Nuclear Information System (INIS)

    Stewart, I W

    2005-01-01

    Equilibrium solutions for a sample of ferroelectric smectic C (SmC*) liquid crystal in the 'bookshelf' geometry under the influence of a tilted electric field will be presented. A linear stability criterion is identified and used to confirm stability for typical materials possessing either positive or negative dielectric anisotropy. The theoretical response times for perturbations to the equilibrium solutions are calculated numerically and found to be consistent with estimates for response times in ferroelectric smectic C liquid crystals reported elsewhere in the literature for non-tilted fields

  14. Stability of equilibrium states in finite samples of smectic C* liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, I W [Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH (United Kingdom)

    2005-03-04

    Equilibrium solutions for a sample of ferroelectric smectic C (SmC*) liquid crystal in the 'bookshelf' geometry under the influence of a tilted electric field will be presented. A linear stability criterion is identified and used to confirm stability for typical materials possessing either positive or negative dielectric anisotropy. The theoretical response times for perturbations to the equilibrium solutions are calculated numerically and found to be consistent with estimates for response times in ferroelectric smectic C liquid crystals reported elsewhere in the literature for non-tilted fields.

  15. Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions. Disordered Phase

    CERN Document Server

    Bleher, P M

    2005-01-01

    The six-vertex model, or the square ice model, with domain wall boundary conditions (DWBC) has been introduced and solved for finite $N$ by Korepin and Izergin. The solution is based on the Yang-Baxter equations and it represents the free energy in terms of an $N\\times N$ Hankel determinant. Paul Zinn-Justin observed that the Izergin-Korepin formula can be re-expressed in terms of the partition function of a random matrix model with a nonpolynomial interaction. We use this observation to obtain the large $N$ asymptotics of the six-vertex model with DWBC in the disordered phase. The solution is based on the Riemann-Hilbert approach and the Deift-Zhou nonlinear steepest descent method. As was noticed by Kuperberg, the problem of enumeration of alternating sign matrices (the ASM problem) is a special case of the the six-vertex model. We compare the obtained exact solution of the six-vertex model with known exact results for the 1, 2, and 3 enumerations of ASMs, and also with the exact solution on the so-called f...

  16. The interstellar boundary explorer (IBEX): Update at the end of phase B

    International Nuclear Information System (INIS)

    McComas, D. J.; Allegrini, F.; Pope, S.; Scherrer, J.; Bartolone, L.; Knappenberger, P.; Bochsler, P.; Wurz, P.; Bzowski, M.; Collier, M.; Moore, T.; Fahr, H.; Fichtner, H.; Frisch, P.; Funsten, H.; Fuselier, Steve; Gloeckler, G.; Gruntman, M.; Izmodenov, V.; Lee, M.

    2006-01-01

    The Interstellar Boundary Explorer (IBEX) mission will make the first global observations of the heliosphere's interaction with the interstellar medium. IBEX achieves these breakthrough observations by traveling outside of the Earth's magnetosphere in a highly elliptical orbit and taking global Energetic Neutral Atoms (ENA) images over energies from ∼10 eV to 6 keV. IBEX's high-apogee (∼50 RE) orbit enables heliospheric ENA measurements by providing viewing from far above the Earth's relatively bright magnetospheric ENA emissions. This high energy orbit is achieved from a Pegasus XL launch vehicle by adding the propulsion from an IBEX-supplied solid rocket motor and the spacecraft's hydrazine propulsion system. IBEX carries two very large-aperture, single-pixel ENA cameras that view perpendicular to the spacecraft's Sun-pointed spin axis. Each six months, the continuous spinning of the spacecraft and periodic re-pointing to maintain the sun-pointing spin axis naturally lead to global, all-sky images. Over the course of our NASA Phase B program, the IBEX team optimized the designs of all subsystems. In this paper we summarize several significant advances in both IBEX sensors, our expected signal to noise (and background), and our groundbreaking approach to achieve a very high-altitude orbit from a Pegasus launch vehicle for the first time. IBEX is in full scale development and on track for launch in June of 2008

  17. The interstellar boundary explorer (IBEX): Update at the end of phase B

    Science.gov (United States)

    McComas, D. J.; Allegrini, F.; Bartolone, L.; Bochsler, P.; Bzowski, M.; Collier, M.; Fahr, H.; Fichtner, H.; Frisch, P.; Funsten, H.; Fuselier, Steve; Gloeckler, G.; Gruntman, M.; Izmodenov, V.; Knappenberger, P.; Lee, M.; Livi, S.; Mitchell, D.; Möbius, E.; Moore, T.; Pope, S.; Reisenfeld, D.; Roelof, E.; Runge, H.; Scherrer, J.; Schwadron, N.; Tyler, R.; Wieser, M.; Witte, M.; Wurz, P.; Zank, G.

    2006-09-01

    The Interstellar Boundary Explorer (IBEX) mission will make the first global observations of the heliosphere's interaction with the interstellar medium. IBEX achieves these breakthrough observations by traveling outside of the Earth's magnetosphere in a highly elliptical orbit and taking global Energetic Neutral Atoms (ENA) images over energies from ~10 eV to 6 keV. IBEX's high-apogee (~50 RE) orbit enables heliospheric ENA measurements by providing viewing from far above the Earth's relatively bright magnetospheric ENA emissions. This high energy orbit is achieved from a Pegasus XL launch vehicle by adding the propulsion from an IBEX-supplied solid rocket motor and the spacecraft's hydrazine propulsion system. IBEX carries two very large-aperture, single-pixel ENA cameras that view perpendicular to the spacecraft's Sun-pointed spin axis. Each six months, the continuous spinning of the spacecraft and periodic re-pointing to maintain the sun-pointing spin axis naturally lead to global, all-sky images. Over the course of our NASA Phase B program, the IBEX team optimized the designs of all subsystems. In this paper we summarize several significant advances in both IBEX sensors, our expected signal to noise (and background), and our groundbreaking approach to achieve a very high-altitude orbit from a Pegasus launch vehicle for the first time. IBEX is in full scale development and on track for launch in June of 2008.

  18. Generalized Selectivity Description for Polymeric Ion-Selective Electrodes Based on the Phase Boundary Potential Model.

    Science.gov (United States)

    Bakker, Eric

    2010-02-15

    A generalized description of the response behavior of potentiometric polymer membrane ion-selective electrodes is presented on the basis of ion-exchange equilibrium considerations at the sample-membrane interface. This paper includes and extends on previously reported theoretical advances in a more compact yet more comprehensive form. Specifically, the phase boundary potential model is used to derive the origin of the Nernstian response behavior in a single expression, which is valid for a membrane containing any charge type and complex stoichiometry of ionophore and ion-exchanger. This forms the basis for a generalized expression of the selectivity coefficient, which may be used for the selectivity optimization of ion-selective membranes containing electrically charged and neutral ionophores of any desired stoichiometry. It is shown to reduce to expressions published previously for specialized cases, and may be effectively applied to problems relevant in modern potentiometry. The treatment is extended to mixed ion solutions, offering a comprehensive yet formally compact derivation of the response behavior of ion-selective electrodes to a mixture of ions of any desired charge. It is compared to predictions by the less accurate Nicolsky-Eisenman equation. The influence of ion fluxes or any form of electrochemical excitation is not considered here, but may be readily incorporated if an ion-exchange equilibrium at the interface may be assumed in these cases.

  19. Extrinsic response enhancement at the polymorphic phase boundary in piezoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, Diego A.; García, José E., E-mail: jose.eduardo.garcia@upc.edu [Department of Physics, Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona 08034 (Spain); Esteves, Giovanni; Jones, Jacob L. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27696 (United States); Rubio-Marcos, Fernando; Fernández, José F. [Department of Electroceramics, Instituto de Cerámica y Vidrio - CSIC, Madrid 28049 (Spain)

    2016-04-04

    Polymorphic phase boundaries (PPBs) in piezoelectric materials have attracted significant interest in recent years, in particular, because of the unique properties that can be found in their vicinity. However, to fully harness their potential as micro-nanoscale functional entities, it is essential to achieve reliable and precise control of their piezoelectric response, which is due to two contributions known as intrinsic and extrinsic. In this work, we have used a (K,Na)NbO{sub 3}-based lead-free piezoceramic as a model system to investigate the evolution of the extrinsic contribution around a PPB. X-ray diffraction measurements are performed over a wide range of temperatures in order to determine the structures and transitions. The relevance of the extrinsic contribution at the PPB region is evaluated by means of nonlinear dielectric response measurements. Though it is widely appreciated that certain intrinsic properties of ferroelectric materials increase as PPBs are approached, our results demonstrate that the extrinsic contribution also maximizes. An enhancement of the extrinsic contribution is therefore also responsible for improving the functional properties at the PPB region. Rayleigh's law is used to quantitatively analyze the nonlinear response. As a result, an evolution of the domain wall motion dynamics through the PPB region is detected. This work demonstrates that the extrinsic contribution at a PPB may have a dynamic role in lead-free piezoelectric materials, thereby exerting a far greater influence on their functional properties than that considered to date.

  20. Calculation of the Dielectric Constant as a Function of Temperature Close to the Smectic A-Smectic B Transition in B5 Using the Mean Field Model

    Directory of Open Access Journals (Sweden)

    Hamit Yurtseven

    2012-01-01

    Full Text Available The temperature dependence of the static dielectric constant ( is calculated close to the smectic A-smectic B ( transition ( = 71.3°C for the liquid crystal compound B5. By expanding the free energy in terms of the order parameter in the mean field theory, the expression for the dielectric susceptibility (dielectric constant is derived and is fitted to the experimental data for which was obtained at the field strengths of 0 and 67 kV/cm from literature. Coefficients in the free energy expansion are determined from our fit for the transition of B5. Our results show that the observed behaviour of the dielectric constant close to the transition in B5 can be described satisfactorily by our mean field model.

  1. Molecular dynamics study on the effect of boundary heating rate on the phase change characteristics of thin film liquid

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Morshed, A. K. M. Monjur, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com; Haque, Mominul, E-mail: mominulmarup@gmail.com [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 (Bangladesh)

    2016-07-12

    In this study, theoretical investigation of thin film liquid phase change phenomena under different boundary heating rates has been conducted with the help of molecular dynamics simulation. To do this, the case of argon boiling over a platinum surface has been considered. The study has been conducted to get a better understanding of the nano-scale physics of evaporation/boiling for a three phase system with particular emphasis on the effect of boundary heating rate. The simulation domain consisted of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system was brought to an equilibrium state at 90 K with the help of equilibrium molecular dynamics and then the temperature of the bottom wall was increased to a higher temperature (250 K/130 K) over a finite heating period. Depending on the heating period, the boundary heating rate has been varied in the range of 1600×10{sup 9} K/s to 8×10{sup 9} K/s. The variations of argon region temperature, pressure, net evaporation number with respect to time under different boundary heating rates have been determined and discussed. The heat fluxes normal to platinum wall for different cases were also calculated and compared with theoretical upper limit of maximum possible heat transfer to elucidate the effect of boundary heating rate.

  2. In situ synchrotron diffraction of lead-zirconate-titanate at its morphotropic phase boundary

    International Nuclear Information System (INIS)

    Schoenau, K.A.

    2008-01-01

    Ferroelectric lead zirconate titanate ceramics (PZT,Pb(Zr x Ti 1-x )O 3 ) find in industry intensifiedly applications as piezoactors. Their largest macroscopic strain under electric field they show in the region of the morphotropic phase boundary (MPB), the transition region between the Ti rich tetragonal and the Zr rich structure. The structure of PZT at the MPB was controversially discussed since the detection of a monoclinic intermediate phase by Noheda et al. [Appl. Phys. Lett.,74(14), 2059(1999)], whereby into the considerations the domain structure of the material not entered, which however is essentially responsible for the reaction under electric field. In order to understand the domain structure of PZT under electric field and to study possible causes for the fatigue behaviour of the material under bipolar cycling a bridge must be built between macroscopic and local structure. For this at the measuring place B2 of the Hasylab, Hamburg, synchrotron X-ray powder diffractometry was in situ performed under different sample environments in transmission geometry, which was correlated with transmission-electron-microscopical studies and electron spin resonance. Samples with compositions over the whole MPB were beside temperature-dependent measurements measured at room temperature in high resolution and under applied electric field. Furthermore for studies under electric field at elevated temperatures a special E-field furnace was constructed. It could be shown the large piezoelectric reaction of PZT at its MPB is strongly correlated with a diminishment of the domain structure, which simulates in X-ray diffraction a lower symmetric phase. The stability range of the nanodomains with temperature and electric field reflects in the switching behaviour of the matter and by the detection of a relaxor behavior of the nanodomain structure for the first time a direct comparison with relaxoceramics is possible. The varying stress conditions within the sample influence

  3. Alloy hardening of a smectic A liquid crystal doped with gold nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Oswald, P.; Milette, J.; Relaix, S.; Reven, L.; Dequidt, A.; Lejček, Lubor

    2013-01-01

    Roč. 103, AUG (2013), "46004-p1"-"46004-p6" ISSN 0295-5075 Institutional support: RVO:68378271 Keywords : smectic A liquid crystals * gold nanoparticles * edge dislocation * precipitation hardening Subject RIV: BK - Fluid Dynamics Impact factor: 2.269, year: 2013

  4. Detecting phase boundaries of quantum spin-1/2 XXZ ladder via bipartite and multipartite entanglement transitions

    Science.gov (United States)

    Singha Roy, Sudipto; Dhar, Himadri Shekhar; Rakshit, Debraj; Sen(De), Aditi; Sen, Ujjwal

    2017-12-01

    Phase transition in quantum many-body systems inevitably causes changes in certain physical properties which then serve as potential indicators of critical phenomena. Besides the traditional order parameters, characterization of quantum entanglement has proven to be a computationally efficient and successful method for detection of phase boundaries, especially in one-dimensional models. Here we determine the rich phase diagram of the ground states of a quantum spin-1/2 XXZ ladder by analyzing the variation of bipartite and multipartite entanglements. Our study characterizes the different ground state phases and notes the correspondence with known results, while highlighting the finer details that emerge from the behavior of ground state entanglement. Analysis of entanglement in the ground state provides a clearer picture of the complex ground state phase diagram of the system using only a moderate-size model.

  5. Interaction between the intrinsic edge state and the helical boundary state of topological insulator phase in bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Xiaoling [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Jiang, Liwei [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China); Zheng, Yisong, E-mail: zhengys@jlu.edu.cn [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China)

    2016-04-22

    Graphene has intrinsic edge states localized at zigzag edge or lattice defect. Helical boundary states can also be established in such a two-dimensional carbon material at the boundary of topological insulator (TI) phase realized by the extrinsic Rashba spin–orbital coupling (SOC) in gated bilayer graphene. We theoretically investigate the interaction between these two kinds of edge (boundary) states when they coexist in a bilayer graphene. We find that this interaction gives rise to some very interesting results. In a zigzag edged nanoribbon of bilayer graphene, it is possible that the TI helical state does not localize at the TI phase boundary. Instead it moves to the nanoribbon edge even though the SOC is absent therein. In a bulk lattice of bilayer graphene embedded with two line defects, the numbers of helical state subbands at the two line defects are not equal to each other. In such a case, the backscattering lacking is still forbidden since the Kramers pairs are valley polarized. - Highlights: • The TI helical state moves to nanoribbon edge in a gated ZENR-BG. • The gapless modes of LD-BG at the two line defects are not equal to each other. • The Kramers pairs are still valley polarized in a gated LD-BG.

  6. Formation of multiple stoichiometric phases in binary systems by combined bulk and grain boundary diffusion: Experiments and model

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Schillinger, W.

    2013-01-01

    The thermodynamic extremal principle has been used by the authors to treat the evolution of binary and multicomponent systems under the assumption that all phases are nearly stoichiometric. Up to now only bulk diffusion has been taken into account. The concept is now extended to combined bulk and grain boundary diffusion possible in each newly formed phase. The grains are approximated by cylinders allowing interface diffusion along the top and bottom of the grains and grain boundary diffusion along the mantle with different interface/grain boundary diffusion coefficients. A consistent analysis yields an effective diffusion coefficient taking into account the combined interface/grain boundary and bulk diffusion of each individual component. The current concept is applied to the Cu–Sn couple which has been studied by a number of researchers. The results of simulations are compared with experiments at 200 °C on solid systems reported in the literature as well as with our experiments at 250 °C with liquid Sn.

  7. A phase transition in the first passage of a Brownian process through a fluctuating boundary with implications for neural coding.

    Science.gov (United States)

    Taillefumier, Thibaud; Magnasco, Marcelo O

    2013-04-16

    Finding the first time a fluctuating quantity reaches a given boundary is a deceptively simple-looking problem of vast practical importance in physics, biology, chemistry, neuroscience, economics, and industrial engineering. Problems in which the bound to be traversed is itself a fluctuating function of time include widely studied problems in neural coding, such as neuronal integrators with irregular inputs and internal noise. We show that the probability p(t) that a Gauss-Markov process will first exceed the boundary at time t suffers a phase transition as a function of the roughness of the boundary, as measured by its Hölder exponent H. The critical value occurs when the roughness of the boundary equals the roughness of the process, so for diffusive processes the critical value is Hc = 1/2. For smoother boundaries, H > 1/2, the probability density is a continuous function of time. For rougher boundaries, H probability is concentrated on a Cantor-like set of zero measure: the probability density becomes divergent, almost everywhere either zero or infinity. The critical point Hc = 1/2 corresponds to a widely studied case in the theory of neural coding, in which the external input integrated by a model neuron is a white-noise process, as in the case of uncorrelated but precisely balanced excitatory and inhibitory inputs. We argue that this transition corresponds to a sharp boundary between rate codes, in which the neural firing probability varies smoothly, and temporal codes, in which the neuron fires at sharply defined times regardless of the intensity of internal noise.

  8. A multilevel simulation approach to derive the slip boundary condition of the solid phase in two-fluid models

    Science.gov (United States)

    Feng, Zhi-Gang; Michaelides, Efstathios; Mao, Shaolin

    2011-11-01

    The simulation of particulate flows for industrial applications often requires the use of a two-fluid model (TFM), where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of aTFM in multiphase computations comes from the boundary condition of the solid phase. The no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. In the present work we propose a multilevel simulation approach to compute the slip length that is applicable to a TFM. We investigate the motion of a number of particles near a vertical solid wall, while the particles are in fluidization using a direct numerical simulation (DNS); the positions and velocities of the particles are being tracked and analyzed at each time step. It is found that the time- and vertical-space averaged values of the particle velocities converge, yielding velocity profiles that can be used to deduce the particle slip length close to a solid wall. This work was supported by a grant from the DOE-NETL (DE-NT0008064) and by a grant from NSF (HRD-0932339).

  9. Interaction on boundary of current-conducting and glass-forming phases in cermet films under annealing

    International Nuclear Information System (INIS)

    Shulishova, O.I.; Zyrin, A.V.; Ismalgaliev, R.K.; Izmajlov, Sh.Z.; Kovylyaev, V.V.; Shevchuk, N.V.; Shcherbak, I.A.

    1990-01-01

    The electron-probe microanalysis permits investigating the interaction on the boundary of current-conducting and glass-binding phases in cermet films without noble metals on the base of ruthenium oxide. The performed studies along with experiments on model microsections subject to annealing in different media have shown the differences in the process of formation of structure and properties of cermet resistive elements as well as a significance of the oxidation process of current-conducting phase in formation of high working characteristics of cermet resistors on the base of hexaborides of the rare-earth elements

  10. Extrinsic coefficient charcterisation of PZT ceramics near the morphotropic phase boundary

    Directory of Open Access Journals (Sweden)

    Albareda, A.

    2006-06-01

    Full Text Available PZT ceramics with high piezoelectric coefficients have high extrinsic contributions. This extrinsic behaviour, which is related to the domain wall movement, produces high non-linear effects that are sometimes inconvenient, for example when it increases the losses in power devices. The relation between extrinsic behaviour and non-linearities could be used to provide a good extrinsic characterization of materials in order to optimise the piezoelectric devices. In all cases the physical explanation of the behaviour is sought. The aim of this work is to study the dependence of the linear and non-linear dielectric, piezoelectric and mechanical coefficients on the Ti fraction in PZT ceramic compositions near the morphotropic phase boundary (MPB. The dependence of these coefficients on the defect concentration is also analysed. Hard ceramics belonging to Ferroperm Piezoceramics, with two different acceptor dopant levels, high and low, have been measured.

    Las cerámicas PZT con coeficientes piezoeléctricos elevados poseen contribuciones extrínsecas grandes. Este comportamiento extrínseco, relacionado con el movimiento de las paredes de los dominios, comporta efectos no lineales grandes que no siempre son deseables, por ejemplo, al incrementar las pérdidas de los dispositivos piezoeléctricos. Esta correspondencia entre efectos extrínsecos y no linealidades puede ser utilizada para caracterizar las cerámicas con el fin de optimizar sus propiedades piezoeléctricas. En todos los casos se busca una interpretación física de los resultados obtenidos. El objetivo de este trabajo es el estudio de la dependencia de los coeficientes lineales y no lineales dieléctricos, piezoeléctricos y elásticos con la fracción de Ti en cerámicas PZT con composiciones de Zr-Ti cerca de la transición de fase morfotrópica (MPB. También se analiza la dependencia de estos coeficientes con la concentración de impurezas, utilizando para ello cerámicas de

  11. Wavelet phase analysis of two velocity components to infer the structure of interscale transfers in a turbulent boundary-layer

    Energy Technology Data Exchange (ETDEWEB)

    Keylock, Christopher J [Sheffield Fluid Mechanics Group and Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Nishimura, Kouichi, E-mail: c.keylock@sheffield.ac.uk [Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2016-04-15

    Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)

  12. Wavelet phase analysis of two velocity components to infer the structure of interscale transfers in a turbulent boundary-layer

    International Nuclear Information System (INIS)

    Keylock, Christopher J; Nishimura, Kouichi

    2016-01-01

    Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)

  13. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  14. Role of polyamines at the G1/S boundary and G2/M phase of the cell cycle.

    Science.gov (United States)

    Yamashita, Tomoko; Nishimura, Kazuhiro; Saiki, Ryotaro; Okudaira, Hiroyuki; Tome, Mayuko; Higashi, Kyohei; Nakamura, Mizuho; Terui, Yusuke; Fujiwara, Kunio; Kashiwagi, Keiko; Igarashi, Kazuei

    2013-06-01

    The role of polyamines at the G1/S boundary and in the G2/M phase of the cell cycle was studied using synchronized HeLa cells treated with thymidine or with thymidine and aphidicolin. Synchronized cells were cultured in the absence or presence of α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, plus ethylglyoxal bis(guanylhydrazone) (EGBG), an inhibitor of S-adenosylmethionine decarboxylase. When polyamine content was reduced by treatment with DFMO and EGBG, the transition from G1 to S phase was delayed. In parallel, the level of p27(Kip1) was greatly increased, so its mechanism was studied in detail. Synthesis of p27(Kip1) was stimulated at the level of translation by a decrease in polyamine levels, because of the existence of long 5'-untranslated region (5'-UTR) in p27(Kip1) mRNA. Similarly, the transition from the G2/M to the G1 phase was delayed by a reduction in polyamine levels. In parallel, the number of multinucleate cells increased by 3-fold. This was parallel with the inhibition of cytokinesis due to an unusual distribution of actin and α-tubulin at the M phase. Since an association of polyamines with chromosomes was not observed by immunofluorescence microscopy at the M phase, polyamines may have only a minor role in structural changes of chromosomes at the M phase. In general, the involvement of polyamines at the G2/M phase was smaller than that at the G1/S boundary. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique

    International Nuclear Information System (INIS)

    Kim, Ji Hoon; Lee, M.G.; Kim, D.; Matlock, D.K.; Wagoner, R.H.

    2010-01-01

    Research highlights: → Robust microstructure-based FE mesh generation technique was developed. → Local deformation behavior near phase boundaries could be quantitatively understood. → Macroscopic failure could be connected to microscopic deformation behavior of multi-phase steel. - Abstract: A qualitative analysis was carried out on the formability of dual-phase (DP) steels by introducing a realistic microstructure-based finite element approach. The present microstructure-based model was constructed using a mesh generation process with a boundary-smoothing algorithm after proper image processing. The developed model was applied to hole-expansion formability tests for DP steel sheets having different volume fractions and morphological features. On the basis of the microstructural inhomogeneity observed in the scanning electron micrographs of the DP steel sheets, it was inferred that the localized plastic deformation in the ferritic phase might be closely related to the macroscopic formability of DP steel. The experimentally observed difference between the hole-expansion formability of two different microstructures was reasonably explained by using the present finite element model.

  16. New theories for smectic and nematic liquid-crystal polymers: Backbone LCPs [liquid crystalline polymers] and their mixtures and side-chain LCPs

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of predictions and explanations from statistical-physics theories for both backbone and side-chain liquid crystalline polymers (LCPs) and for mixtures with backbone LCPs are presented. Trends in the thermodynamic and molecular ordering properties have been calculated as a function of pressure, density, temperature, and molecule chemical structures (including degree of polymerization and the following properties of the chemical structures of the repeat units: lengths and shapes, intra-chain rotation energies, dipole moments, site-site polarizabilities and Lennard-Jones potentials, etc.) in nematic and multiple smectic-A LC phases and in the isotropic liquid phase. The theoretical results are found to be in good agreement with existing experimental data. These theories can also be applied to combined LCPs. Since these theories have no ad hoc or arbitrarily adjustable parameters, these theories can be used to design new LCPs and new solvents as well as to predict and explain properties. 27 refs., 4 tabs

  17. Divergence of dielectric permittivity near phase transition within ferroelectric domain boundaries

    Czech Academy of Sciences Publication Activity Database

    Márton, Pavel; Stepkova, Vilgelmina; Hlinka, Jiří

    2013-01-01

    Roč. 86, č. 1 (2013), s. 103-108 ISSN 0141-1594 R&D Projects: GA ČR GAP204/10/0616 Institutional support: RVO:68378271 Keywords : Bloch wall * domain boundary * BaTiO 3 * Ginzburg-Landau-Devonshire theory * permittivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.044, year: 2013

  18. Crystallographic and morphological relationships between β phase and the Widmanstaetten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Viswanathan, G.B.; Fraser, Hamish L.

    2007-01-01

    In the present study, the relationship between the crystallographic orientations and growth directions of grain boundary-allotriomorphic-α (GB α) and secondary Widmanstaetten α laths growing from the GB α at grain boundaries separating β grains with specific misorientations has been examined. These relationships have been determined using a variety of characterization techniques, including scanning electron microscopy, orientation imaging microscopy, transmission electron microscopy (TEM) and a dual-beam focused ion beam instrument to provide site-selected TEM foils. Two very interesting cases, one in which the two adjacent β grains are rotated mutually by approximately 10.5 o about a common direction and the other in which the two β grains are in a twin relationship, i.e. a 60 o rotation about a common direction, have been studied. It was discovered that the α laths growing into two adjacent β grains from the common grain boundary may have the same orientation in both grains, while they may have either large (∼88.8 o ) or small (28.8 o ) angular differences in growth directions in the two adjacent β grains, depending on the relative misorientation of the β grains. The growth directions of the α laths growing from such boundaries are explained on the basis of the Burgers orientation relationship between the Widmanstaetten α and the β phases and the interfacial structure proposed previously by various workers

  19. Microprobe measurements to determine phase boundaries and diffusion paths in ternary phase diagrams taking a Cu-Ni-Al system as an example

    International Nuclear Information System (INIS)

    Rudolph, G.

    1983-01-01

    With the aid of quantitative microprobe tests, diffusion phenomena and phase formation in the ternary CuNiAl system at 600 - 900 0 C were investigated taking as an example the diffusion couple CuNi5Al5-nickel. The diffusion paths in the ternary system are dependent on temperature and assume an S-form in the copper corner of the phase diagram. In the copper corner, the curves swing away from the more rapid component aluminium towards the copper. Due to this non-linear course of the curves, the intermetallic theta-phase of the type (Ni,Cu) 3 Al can be observed as a layer at all temperatures in the boundary zone. At 800 0 C and to a lesser extend at 900 0 C the solubility of α-CuNi40 for aluminium, at around 5 mass-%, is higher than the value given by W.O. Alexander (1938). As far as it is possible with the diffusion couple under analysis, the microprobe measurements taken otherwise conform at 700 and 600 0 C the position of the phase boundary α-(Cu,Ni)/(α+theta)-miscibility gap indicated in W.O. Alexander (1938). (Author)

  20. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence.

    Science.gov (United States)

    Duvvuri, Subrahmanyam; McKeon, Beverley

    2017-03-13

    Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  1. Possible Moessbauer or neutron experiments on fluid interfaces and on smectics

    International Nuclear Information System (INIS)

    Gennes, P.G. de

    1975-01-01

    The spectrum of γ rays emitted from an atom bound to the free surface of a fluid is expected to show a low frequency anomaly associated with the two dimensional character of the capillary waves. This is discussed here a) for liquid metals, where initial effects should be dominant, b) for viscous fluids, c) for thin films (100A) of a liquid above a solid surface. If the anomaly turns out to be visible, it could give some informations on dissipative effects in monomolecular layers at frequencies of the order 10 8 -10 9 cycles. The theoretical emission spectrum from a smectic A liquid crystal is also considered. Finally, some remarks are presented concerning the incoherent, quasi elastic scattering of neutrons by smectics with a scattering vector normal to the layers: the same anomalies are expected and could possibly be seen with present high resolution spectrometers [fr

  2. Electric-field-induced phase transitions in co-doped Pb(Zr1−xTixO3 at the morphotropic phase boundary

    Directory of Open Access Journals (Sweden)

    Daniel J Franzbach

    2014-02-01

    Full Text Available The strain- and polarization-electric field behavior was characterized at room temperature for Pb0.98Ba0.01(Zr1−xTix0.98Nb0.02O3, 0.40 ≤ x ≤ 0.60. The investigated compositions were located in the vicinity of the morphotropic phase boundary, giving insight into the influence of crystal structure on the hysteretic ferroelectric behavior. The remanent strain of particular compositions is shown to be larger than theoretically allowed by ferroelectric switching alone, indicating the presence of additional remanent strain mechanisms. A phenomenological free energy analysis was used to simulate the effect of an applied electric field on the initial equilibrium phase. It is shown that electric-field-induced phase transitions in polycrystalline ferroelectrics can account for the experimental observations. The experimental and simulation results are contrasted to neutron diffraction measurements performed on representative compositions in the virgin and remanent states.

  3. A volume-preserving sharpening approach for the propagation of sharp phase boundaries in multiphase lattice Boltzmann simulations

    KAUST Repository

    Reis, T.; Dellar, P.J.

    2011-01-01

    Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.

  4. A volume-preserving sharpening approach for the propagation of sharp phase boundaries in multiphase lattice Boltzmann simulations

    KAUST Repository

    Reis, T.

    2011-07-01

    Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.

  5. Passive membrane penetration by ZnO nanoparticles is driven by the interplay of electrostatic and phase boundary conditions.

    Science.gov (United States)

    Tiwari, Anuj; Prince, Ashutosh; Arakha, Manoranjan; Jha, Suman; Saleem, Mohammed

    2018-02-15

    The internalization of nanoparticles through the biological membrane is of immense importance for biomedical applications. A fundamental understanding of the lipid specificity and the role of the membrane biochemical and physical forces at play in modulating penetration are lacking. The current understanding of nanoparticle-membrane interaction is drawn mostly from computational studies and lacks sufficient experimental evidence. Herein, using confocal fluorescence imaging and potentiometric dye-based fluorimetry, we first investigated the interaction of ZnONP in both multi-component and individual lipid membranes using cell-like giant unilamellar vesicles to dissect the lipid specificity; also, we investigated the changes in membrane order, anisotropy and hydrophobicity. ZnONP was found to interact with phosphatidylinositol and phosphatidylcholine head-group-containing lipids specifically. We further investigated the interaction of ZnONP with three physiologically relevant membrane conditions varying in composition and dipole potential. We found that ZnONP interaction leads to a photoinduced enhancement of the partial-to-complete phase separation depending upon the membrane composition and cholesterol content. Interestingly, while the lipid order of a partially-phase-separated membrane remained unchanged upon ZnONP crowding, a fully-phase-separated membrane showed an increase in the lipid order. Strikingly, ZnONP crowding induced a contrasting effect on the fluorescence anisotropy of the membrane upon binding to the two membrane conditions, in line with the measured diffusion coefficient. ZnONP seems to preferentially penetrate through the liquid disordered areas of the membrane and the boundaries of the phase-separated regions driven by the interplay between the electrostatics and phase boundary conditions, which are collectively dictated by the composition and ZnONP-induced lipid reorganization. The results may lead to a greater understanding of the interplay of

  6. A Cassie-Like Law Using Triple Phase Boundary Line Fractions for Faceted Droplets on Chemically Heterogeneous Surfaces

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Taboryski, Rafael Jozef

    2009-01-01

    We present experimental contact angle data for surfaces, which were surface-engineered with a hydrophobic micropattern of hexagonal geometry. The chemically heterogeneous surface of the same hexagonal pattern of defects resulted in faceted droplets of hexagonal shape. When measuring the advancing...... contact angles with a viewing position aligned parallel to rows of defects, we found that an area averaged Cassie-law failed in describing the data. By replacing the area fractions by line fractions of the triple phase boundary Line segments in the Cassie equation, we found excellent agreement with data....

  7. Electrochemically Scavenging the Silica Impurities at the Ni-YSZ Triple Phase Boundary of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Tao, Youkun; Shao, Jing; Cheng, Shiyang

    2016-01-01

    Silica impurity originated from the sealing or raw materials of the solid oxide cells (SOCs) accumulating at the. Ni-YSZ triple phase boundaries (TPBs) is known as one major reason for electrode passivation. Here we report nanosilica precipitates inside Ni grains instead of blocking the TPBs when...... operating the SOCs at vertical bar i vertical bar >= 1.5 A cm-2 for electrolysis of H2O/CO2. An electrochemical scavenging mechanism was proposed to explain this unique behavior: the removal of silica proceeded through the reduction of the silica to Si under strong cathodic polarization, followed by bulk...

  8. A Comparison between Boundary and Continuous Conduction Modes in Single Phase PFC Using 600V Range Devices

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2015-01-01

    This paper presents an analysis and comparison of boundary conduction mode (BCM) and continuous conduction mode (CCM) in single phase power factor correction (PFC) applications. The comparison is based on double pulse tester (DPT) characterization results of state-of-the-art superjunction devices...... in the 600V range. The measured switching energy is used to evaluate the devices performance in a conventional PFC. This data is used together with a mathematical model for prediction of the conducted electromagnetic interference (EMI). This allows comparing the different devices in BCM and CCM operation...

  9. Domain wall and interphase boundary motion in (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} near the morphotropic phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Tutuncu, Goknur [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Chen, Jun; Fan, Longlong [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Fancher, Chris M.; Zhao, Jianwei [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Forrester, Jennifer S.; Jones, Jacob L., E-mail: JacobJones@ncsu.edu [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-07-28

    Electric field-induced changes in the domain wall motion of (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x = 0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phases for BMT-37PT is larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.

  10. Effect of dilute magnetic ions on the optical, dielectric and ferroelectric properties of PZT at morphotopic phase boundary

    Science.gov (United States)

    Rao, T. Lakshmana; Pradhan, M. K.; Ramakrishna, P. V.; Dash, S.

    2018-05-01

    Modified-PZT ceramics with a formula Pb0.9Ni0.1[(Zr0.52Ti0.48)]1-xSnxO3 located near the morphotropic phase boundary (MPB) were prepared by conventional solid state process to investigate effects of dilute doping of Ni and Sn in different sites of PZT. The single phase structure of the series of samples has been identified by x-ray diffraction technique. The optical band gap has been obtained from the UV-Vis spectra and found to be shrinkage with doping. The detail dielectric and impedance studies are being carried out to investigate the conduction mechanism of the samples. A significant enhancement in the electric polarization is observed for the maximum Sn doping in a modified PZT.

  11. Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2008-12-01

    Full Text Available Arctic boundary-layer clouds were investigated with remote sensing and in situ instruments during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR campaign in March and April 2007. The clouds formed in a cold air outbreak over the open Greenland Sea. Beside the predominant mixed-phase clouds pure liquid water and ice clouds were observed. Utilizing measurements of solar radiation reflected by the clouds three methods to retrieve the thermodynamic phase of the cloud are introduced and compared. Two ice indices IS and IP were obtained by analyzing the spectral pattern of the cloud top reflectance in the near infrared (1500–1800 nm wavelength spectral range which is characterized by ice and water absorption. While IS analyzes the spectral slope of the reflectance in this wavelength range, IS utilizes a principle component analysis (PCA of the spectral reflectance. A third ice index IA is based on the different side scattering of spherical liquid water particles and nonspherical ice crystals which was recorded in simultaneous measurements of spectral cloud albedo and reflectance.

    Radiative transfer simulations show that IS, IP and IA range between 5 to 80, 0 to 8 and 1 to 1.25 respectively with lowest values indicating pure liquid water clouds and highest values pure ice clouds. The spectral slope ice index IS and the PCA ice index IP are found to be strongly sensitive to the effective diameter of the ice crystals present in the cloud. Therefore, the identification of mixed-phase clouds requires a priori knowledge of the ice crystal dimension. The reflectance-albedo ice index IA is mainly dominated by the uppermost cloud layer (τ<1.5. Therefore, typical boundary-layer mixed-phase clouds with a liquid cloud top layer will

  12. Continuum Models for Irregular Phase Boundary Motion in Shape-Memory Tensile Bars

    National Research Council Canada - National Science Library

    Rosakis, Phoebus

    1997-01-01

    ... observed experimentally. We show that when the model involves a kinetic relation that is 'unstable' in a definite sense, 'stick-slip' motion of the interface between phases and serration of the accompanying stress-elongation...

  13. Quantum theoretical calculations of activation energies for the mass transfer at phase boundaries of ionic crystals. 4

    International Nuclear Information System (INIS)

    Winzer, A.

    1978-01-01

    It is shown that a direct proportionality exists between the activation energy for the mass transfer at the respective crystal faces of ionic crystals and the frequency of the phonones (longitudinal-optical), Planck's constant being found once more as a proportionality constant. Thus it could be demonstrated that the different activation energies measured at different time intervals for the mass transfer processes at phase boundaries of ionic crystals can be attributed to the specific growth of the crystal faces. Thus, NaCl crystal fractions which were mechanically stressed (pulverized and sifted) and consequently contained a great amount of [111]- and [110]-faces, respectively, experimentally yielded an activation energy which agrees with the values determined by quantum theory when the frequency of propagation of the phonons is inserted into a derived equation. This relation was also confirmed by NaCl crystal fractions predominantly containing cubic faces. This also indicates that in mass transfer processes on phase boundaries of ionic crystals quantum mechanical laws are of importance. (author)

  14. Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face

    Science.gov (United States)

    Bollati, Julieta; Tarzia, Domingo A.

    2018-04-01

    Recently, in Tarzia (Thermal Sci 21A:1-11, 2017) for the classical two-phase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).

  15. Determination of phase boundaries and diffusion parameters in tantalum hydrides in pulsed NMR

    International Nuclear Information System (INIS)

    Hornung, P.A.

    1978-04-01

    Proton spin-lattice relaxation times T 1 were measured over a wide range of temperature (77 K to 470 K) and compositions (H/Ta = 0.155 to 0.677) in the tantalum-hydrogen system at a frequency of 40,000 MHz. In the high temperature solid solution α phase, the activation energy for hydrogen diffusion was found to be 0.140 +- 0.002 eV/atom, and the value of the jump rate (or its corresponding correlation time) was found to be essentially constant throughout the range of compositions studied. The conduction electron contribution to T 1 measured in the α phase agreed qualitatively with the trend shown by previously published susceptibility data. The single phase epsilon region and the α + epsilon two-phase region were particularly noted. It could also be concluded from the measurements that the hydrogen jump rate decreased by a factor of approximately 7.2 from the α phase to the ordered phases at low temperatures and slightly decreased further in the epsilon phase. Anomalous relaxation times were found in the low temperature range (77 K less than or equal to T less than or equal to K). In this region, T 1 remains essentially constant, and does not follow the usual temperature dependence for either motional or electronic relaxation. Two possible explanations for this behavior were considered. The first involves proton cross-relaxation to the 181 Ta nuclei which would sample the spectral density of magnetic fluctuations in the sample at several frequencies because of the probable very strong 181 Ta quadrupole interaction strength. The second explanation postulates that the hydrogen diffusional jump path involves an intermediate metastable state

  16. Modelling and characterization of chi-phase grain boundary precipitation during aging of Fe-Cr-Ni-Mo stainless steel

    International Nuclear Information System (INIS)

    Xu, W.; San Martin, D.; Rivera Diaz del Castillo, P.E.J.; Zwaag, S. van der

    2007-01-01

    High molybdenum stainless steels may contain the chi-phase precipitate (χ, Fe 36 Cr 12 Mo 10 ) which may lead to undesirable effects on strength, toughness and corrosion resistance. In the present work, specimens of a 12Cr-9Ni-4Mo wt% steel are heat treated at different temperatures and times, and the average particle size and particle size distribution of chi-phase precipitate are studied quantitatively. A computer model based on the KWN framework has been developed to describe the evolution of chi-phase precipitation. The kinetic model takes advantage of the KWN model to describe the precipitate particle size distribution, and is coupled with the thermodynamic software ThermoCalc for calculating the instantaneous local thermodynamic equilibrium condition at the interface and the driving force for nucleation. A modified version of Zener's theory accounting for capillarity effects at early growth stages is implemented in this model. The prediction of the model for chi-phase precipitation at a grain boundary is compared to experimental results and both the average particle size and the particle size distribution are found to be in good agreement with experimental observations at late precipitation stages

  17. On the accuracy of triple phase boundary lengths calculated from tomographic image data

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Yakal-Kremski, Kyle; Wilson, James

    2014-01-01

    to systematic errors in TPB estimates. Here, two approaches for calculating the TPB density are compared to investigate how different TPB aspects such as curvature, orientation, and phase contact angles affect the results. The first approach applies a correction factor to the TPB length calculated by simply...

  18. Boundary Induced Phase Transition in Cellular Automata Models of Pedestrian Flow

    Czech Academy of Sciences Publication Activity Database

    Bukáček, M.; Hrabák, Pavel

    2016-01-01

    Roč. 11, č. 4 (2016), s. 327-338 ISSN 1557-5969 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Adaptive time-span * Cellular automata model * Floor-field * Pedestrian flow * Phase transition * Principle of bonds Subject RIV: BD - Theory of Information Impact factor: 0.696, year: 2016

  19. Local rhombohedral symmetry in Tb0.3Dy0.7Fe2 near the morphotropic phase boundary

    International Nuclear Information System (INIS)

    Ma, Tianyu; Liu, Xiaolian; Pan, Xingwen; Li, Xiang; Jiang, Yinzhu; Yan, Mi; Li, Huiying; Fang, Minxia; Ren, Xiaobing

    2014-01-01

    The recently reported morphotropic phase boundary (MPB) in a number of giant magnetostrictive materials (GMMs) has drawn considerable interest to the local symmetry/structure near MPB region of these materials. In this letter, by in-situ X-ray diffraction and AC magnetic susceptibility measurements, we show that Tb 0.3 Dy 0.7 Fe 2 , the typical composition of Terfenol-D GMMs, has coexistence of rhombohedral and tetragonal phases over a wide temperature range in the vicinity of MPB. High resolution transmission electron microscopy provides direct evidence for local rhombohedral symmetry of the ferromagnetic phase and reveals regular-shaped nanoscale domains below 10 nm. The nano-sized structural/magnetic domains are hierarchically inside a single micron-sized stripe-like domain with the same average magnetization direction. Such domain structures are consistent with the low magnetocrystalline anisotropy and easy magnetic/structural domain switching under magnetic field, thus generating large magnetostriction at low field

  20. Optical properties of mixed phase boundary layer clouds observed from a tethered balloon platform in the Arctic

    International Nuclear Information System (INIS)

    Sikand, M.; Koskulics, J.; Stamnes, K.; Hamre, B.; Stamnes, J.J.; Lawson, R.P.

    2010-01-01

    A tethered balloon system was used to collect data on radiometric and cloud microphysical properties for mixed phase boundary layer clouds, consisting of ice crystals and liquid water droplets during a May-June 2008 experimental campaign in Ny-Alesund, Norway, located high in the Arctic at 78.9 o N, 11.9 o E. The balloon instrumentation was controlled and powered from the ground making it possible to fly for long durations and to profile clouds vertically in a systematic manner. We use a radiative transfer model to analyze the radiometric measurements and estimate the optical properties of mixed-phase clouds. The results demonstrate the ability of instruments deployed on a tethered balloon to provide information about optical properties of mixed-phase clouds in the Arctic. Our radiative transfer simulations show that cloud layering has little impact on the total downward irradiance measured at the ground as long as the total optical depth remains unchanged. In contrast, the mean intensity measured by an instrument deployed on a balloon depends on the vertical cloud structure and is thus sensitive to the altitude of the balloon. We use the total downward irradiance measured by a ground-based radiometer to estimate the total optical depth and the mean intensity measured at the balloon to estimate the vertical structure of the cloud optical depth.

  1. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods.

    Science.gov (United States)

    Frank, Florian; Liu, Chen; Scanziani, Alessio; Alpak, Faruk O; Riviere, Beatrice

    2018-08-01

    We consider an energy-based boundary condition to impose an equilibrium wetting angle for the Cahn-Hilliard-Navier-Stokes phase-field model on voxel-set-type computational domains. These domains typically stem from μCT (micro computed tomography) imaging of porous rock and approximate a (on μm scale) smooth domain with a certain resolution. Planar surfaces that are perpendicular to the main axes are naturally approximated by a layer of voxels. However, planar surfaces in any other directions and curved surfaces yield a jagged/topologically rough surface approximation by voxels. For the standard Cahn-Hilliard formulation, where the contact angle between the diffuse interface and the domain boundary (fluid-solid interface/wall) is 90°, jagged surfaces have no impact on the contact angle. However, a prescribed contact angle smaller or larger than 90° on jagged voxel surfaces is amplified. As a remedy, we propose the introduction of surface energy correction factors for each fluid-solid voxel face that counterbalance the difference of the voxel-set surface area with the underlying smooth one. The discretization of the model equations is performed with the discontinuous Galerkin method. However, the presented semi-analytical approach of correcting the surface energy is equally applicable to other direct numerical methods such as finite elements, finite volumes, or finite differences, since the correction factors appear in the strong formulation of the model. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man; Lee, Yi-Kuen; Zohar, Yitshak

    2012-01-01

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  3. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man

    2012-02-22

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  4. Boundary-enhancement in propagation-based x-ray phase-contrast tomosynthesis improves depth position characterization.

    Science.gov (United States)

    Guan, Huifeng; Xu, Qiaofeng; Garson, Alfred B; Anastasio, Mark A

    2015-04-21

    Propagation-based x-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of tomosynthesis and XPC imaging to realize the advantages of both for biological imaging applications. Tomosynthesis permits reductions in acquisition times compared with full-view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing structures. In this note, an investigation of the depth resolving properties of PB XPC tomosynthesis is conducted. The results demonstrate that in-plane structures display strong boundary-enhancement while out-of-plane structures do not. This effect can facilitate the identification of in-plane structures in PB XPC tomosynthesis that could normally not be distinguished from out-of-plane structures in absorption-based tomosynthesis.

  5. Boundary-enhancement in propagation-based x-ray phase-contrast tomosynthesis improves depth position characterization

    International Nuclear Information System (INIS)

    Guan, Huifeng; Xu, Qiaofeng; Garson, Alfred B III; Anastasio, Mark A

    2015-01-01

    Propagation-based x-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of tomosynthesis and XPC imaging to realize the advantages of both for biological imaging applications. Tomosynthesis permits reductions in acquisition times compared with full-view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing structures. In this note, an investigation of the depth resolving properties of PB XPC tomosynthesis is conducted. The results demonstrate that in-plane structures display strong boundary-enhancement while out-of-plane structures do not. This effect can facilitate the identification of in-plane structures in PB XPC tomosynthesis that could normally not be distinguished from out-of-plane structures in absorption-based tomosynthesis. (note)

  6. Relations between temperature coefficients of permittivity and elastic compliances in PZT ceramics near the morphotropic phase boundary.

    Science.gov (United States)

    Boudys, M

    1991-01-01

    Variations of temperature coefficients of permittivity epsilon(33)(T), elastic compliances at constant electric fields s(11)(E), and constant polarization s(11)(P) with a Zr/Ti ratio of Pb(Zr(x)Ti(1-x))O(3) and Pb[(Sb(1/3)Mn(2/3))(0.05)Zr(x)Ti (0.95-x)]O(3) solid solutions, were investigated. Relations between temperature coefficients of epsilon(33)(T ), S(11)(E), and S(11) (P) were theoretically derived; a discrepancy was found between theoretical relations and experimental results. On the basis of the observed discrepancy, it is proposed that some extrinsic effects arising from the motion of interphase boundaries between the tetragonal and the rhombohedral phases which exist in grains contribute to values of both elastic compliances.

  7. Experimental determination of the phase boundary between kornelite and pentahydrated ferric sulfate at 0.1MPa

    Science.gov (United States)

    Kong, W.G.; Wang, A.; Chou, I.-Ming

    2011-01-01

    Recent findings of various ferric sulfates on Mars emphasize the importance of understanding the fundamental properties of ferric sulfates at temperatures relevant to that of Martian surface. In this study, the phase boundary between kornelite (Fe2(SO4)3.7H2O) and pentahydrated ferric sulfate (Fe2(SO4)3.5H2O) was experimentally determined using the humidity-buffer technique together with gravimetric measurements and Raman spectroscopy at 0.1MPa in the 36-56??C temperature range. Through the thermodynamic analysis of our experimental data, the enthalpy change (-290.8??0.3kJ/mol) and the Gibbs free energy change (-238.82??0.02kJ/mol) for each water molecule of crystallization in the rehydration of pentahydrated ferric sulfate to kornelite were obtained. ?? 2011 Elsevier B.V.

  8. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, Mark Jay [University of Michigan

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  9. Can a droplet break up under flow without elongating? Fragmentation of smectic monodisperse droplets

    Science.gov (United States)

    Courbin, L.; Engl, W.; Panizza, P.

    2004-06-01

    We study the fragmentation under shear flow of smectic monodisperse droplets at high volume fraction. Using small angle light scattering and optical microscopy, we reveal the existence of a break-up mechanism for which the droplets burst into daughter droplets of the same size. Surprisingly, this fragmentation process, which is strain controlled and occurs homogeneously in the cell, does not require any transient elongation of the droplets. Systematic experiments as a function of the initial droplet size and the applied shear rate show that the rupture is triggered by an instability of the inner droplet structure.

  10. Arctic boundary layer properties and its influence on cloud occurrence frequency, phase and structure in autumn season

    Science.gov (United States)

    Qiu, S.; Dong, X.; Xi, B.

    2017-12-01

    In this study, autumnal boundary layer characteristics and cloud properties have been investigated using data collected at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site from January 2002 to December 2008. We found that both cloud and planetary boundary layer (PBL) properties can be well distinguished by surface wind directions. When the ARM NSA site is dominated by a northerly wind during the period September- November, the PBL is at near saturation for all three months; while the maximum RH layer varies from low and thin in September, to higher and thicker in October, and then it becomes close to surface again in November. Both the ceilometer and the MPL derived cloud base heights coincide well with the RH maximum layer in the PBL for all three autumnal months. The frequencies of occurrence of mixed phase clouds in September and October are around 60-80% under a northerly wind, which are about 1.5 times higher than those during a southerly wind. Under northerly wind, the PDFs of PBL temperature and specific humidity are narrow and unimodal, with a peak probability around 0.4-0.5. Under a southerly wind, on the other hand, the PBL is both warmer and wetter than northerly wind profiles, which result in lower RH values (10-15% lower) in September and October; and the PDFs of PBL temperature and specific humidity are more evenly distributed with larger distribution range and lower PDF peak values (<0.3). In September, colder and dryer PBL is more favorable for mixed phase cloud formation, cloud occurrence frequency decreases from 90% to 60% as PBL temperature and specific humidity increase. In October, the frequency of occurrence of mixed phase clouds also decreases from 90% to 50-60% as PBL temperature increases. While in November, it increases first and then decreases with increasing PBL temperature and specific humidity. The frequency of occurrence of mixed phase clouds is linearly correlated to PBL RH values: for all three months, it

  11. Numerical investigation of influence on heat transfer characteristics to pneumatically conveyed dense phase flow by selecting models and boundary conditions

    Science.gov (United States)

    Zheng, Y.; Liu, Q.; Li, Y.

    2012-03-01

    Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with

  12. Size effects on structural and dielectric properties of PZT thin films at compositions around the morpho tropic phase boundary

    International Nuclear Information System (INIS)

    Lima, Elton Carvalho; Araujo, Eudes Borges; Souza Filho, Antonio Gomes de; Bdikin, Igor

    2011-01-01

    Full text: The demand for portability in consumer electronics has motivated the understanding of size effects on ferroelectric thin films. The actual comprehension of these effects in ferroelectrics is unsatisfactory, since the polarization interacts more strongly than other order parameters such as strain and charge. As a result, extrinsic effects are produced if these variables are uncontrolled and problems such as ferroelectric paraelectric phase transition at nanometers scale remains an unsolved issue. In the present work, the effects of thickness and compositional fractions on the structural and dielectric properties of PbZr 1-x Ti x O 3 (PZT) thin films were studied at a composition around the morphotropic phase boundary (x = 0.50). For this purpose, thin films with different thicknesses and different PbO excess were deposited on Si(100) and Pt=T iO 2 =SiO 2 =Si substrates by a chemical method and crystallized in electric furnace at 700 deg C for 1 hour. The effects of substrate, pyrolysis temperature and excess lead addition in the films are reported. For films with 10 mol% PbO in excess, the pyrolysis in the regime of 300 deg C for 30 minutes was observed to yield PZT pyrochlore free thin films deposited on Pt=T iO 2 =SiO 2 =Si substrate. Out this condition, the transformation from amorphous to the pyrochlore metastable phase is kinetically more favorable that a transformation to the perovskite phase, which is thermodynamically stable. Rietveld refinements based on X-ray diffraction results showed that films present a purely tetragonal phase and that this phase does not change when the film thickness decreases. The dielectric permittivity measurements showed a monoclinic → tetragonal phase transition at 198K. Results showed that the dielectric permittivity (ε) increases continuously from 257 to 463, while the thickness of the PZT films increases from 200 to 710 nm. These results suggests that interface pinning centers can be the responsible mechanism by

  13. Phase of N=2 theories in 1+1 dimensions with boundary

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, M. [CERN, Geneva (Switzerland). Theory Division, Dept. of Physics; Hori, K.; Page, D. [Toronto Univ., ON (Canada). Dept. of Physics

    2008-03-15

    We study B-type D-branes in linear sigma models with Abelian gauge groups. The most important finding is the grade restriction rule. It classifies representations of the gauge group on the Chan-Paton factor, which can be used to define a family of D-branes over a region of the Kahler moduli space that connects special points of different character. As an application, we find a precise, transparent relation between D-branes in various geometric phases as well as free orbifold and Landau-Ginzburg points. The result reproduces and unifies many of the earlier mathematical results on equivalences of D-brane categories, including the McKay correspondence and Orlov's construction. (orig.)

  14. Shock-Driven Hydrodynamic Instability Growth Near Phase Boundaries and Material Property Transitions: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, Pedro [Arizona State Univ., Tempe, AZ (United States); Fortin, Elizabeth [Arizona State Univ., Tempe, AZ (United States); Opie, Saul [Arizona State Univ., Tempe, AZ (United States); Gautam, Sudrishti [Arizona State Univ., Tempe, AZ (United States); Gopalakrishnan, Ashish [Arizona State Univ., Tempe, AZ (United States); Lynch, Jenna [Arizona State Univ., Tempe, AZ (United States); Chen, Yan [Arizona State Univ., Tempe, AZ (United States); Loomis, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-01

    Activities for this grant included: 1) Development of dynamic impact experiments to probe strength and phase transition influence on dynamic deformation, 2) development of modern strength and phase aware simulation capabilities, 3) and post-processing of experimental data with simulation and closed form analytical techniques. Two different dynamic experiments were developed to probe material strengths in solid metals (largely copper and iron in this effort). In the first experiment a flyer plate impacts a flat target with an opposite rippled surface that is partially supported by a weaker window material. Post mortem analysis of the target sample showed a strong and repeatable residual plastic deformation dependence on grain orientation. Yield strengths for strain rates near 105 s-1 and plastic strains near ~50% were estimated to be around 180 to 240 MPa, varying in this range with grain orientation. Unfortunately dynamic real-time measurements were difficult with this setup due to diagnostic laser scattering; hence, an additional experimental setup was developed to complement these results. In the second set of experiments a rippled surface was ablated by a controlled laser pulsed, which launched a rippled shock front to an opposite initially flat diagnostic surface that was monitored in real-time with spatially resolved velocimetry techniques, e.g., line VISAR in addition to Transient Imaging Displacement Interferometry (TIDI) displacement measurements. This setup limited the displacements at the diagnostic surface to a reasonable level for TIDI measurements (~ less than one micrometer). These experiments coupled with analytical and numerical solutions provided evidence that viscous and elastic deviatoric strength affect shock front perturbation evolution in clearly different ways. Particularly, normalized shock front perturbation amplitudes evolve with viscosity (η) and perturbation wavelength (λ) as η/λ, such that increasing viscosity

  15. Inverse boundary design of a radiative smelting furnace with ablative phase change phenomena

    International Nuclear Information System (INIS)

    Farzan, H.; Hosseini Sarvari, S.M.; Mansouri, S.H.

    2016-01-01

    Highlights: • The ablation phenomenon in a reverberatory smelting furnace is simulated numerically. • The results are verified by comparing with exact analytic solution. • Inverse design problem is solved to construct the desired melting rate. • The conjugate gradient method is used to solve the inverse phase change problem. - Abstract: An inverse analysis is employed to control the time rate of heaters in a 2-D smelting furnace to provide the specified radiative heat flux across the design surface to establish a desired melting rate. The design surface in the smelting furnace is the melting surface of the metal concentrate bank, and the melting process is considered to occur as an ablation phenomenon. The net radiation method is used to determine the radiation exchange between the elements of the furnace surfaces and the melting surface. The conjugate gradient method is employed to minimize the objective function, which is the sum of square residuals between the estimated and the desired heat fluxes over the design surface. It is shown that the proposed inverse technique is reliable and accurate for predicting the heater power distribution.

  16. Spin-1/2 Triangular-Lattice Heisenberg Antiferromagnet with √{3} × √{3} -Type Distortion — Behavior around the Boundaries of the Intermediate Phase

    Science.gov (United States)

    Shimada, Alisa; Nakano, Hiroki; Sakai, Tôru; Yoshimura, Kazuyoshi

    2018-03-01

    The S = 1/2 triangular-lattice Heisenberg antiferromagnet with distortion is investigated by the numerical-diagonalization method. The examined distortion type is √{3} × √{3} . We study the case when the distortion connects the undistorted triangular lattice and the dice lattice. For the intermediate phase reported previously in this system, we obtain results of the boundaries of the intermediate phase for a larger system than those in the previous report and examine the system size dependence of the boundaries in detail. We also report the specific heat of this system, which shows a marked peak structure related to the appearance of the intermediate state.

  17. Electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Iamsasri, Thanakorn; Jones, Jacob L., E-mail: jacobjones@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Tutuncu, Goknur [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Uthaisar, Chunmanus; Pojprapai, Soodkhet [School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, Nakorn Ratchasima 30000 (Thailand); Wongsaenmai, Supattra [Program in Materials Science, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand)

    2015-01-14

    The electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary (PPB) were observed using in situ X-ray diffraction. The ratio of monoclinic to tetragonal phase fraction was used as an indicator of the extent and reversibility of the phase transitions. The reversibility of the phase transition was greater in compositions further from the PPB. These results demonstrate that the field-induced phase transition is one of the origins of high piezoelectric properties in lead-free ferroelectric materials.

  18. Liquid-liquid electro-organo-synthetic processes in a carbon nanofibre membrane microreactor: Triple phase boundary effects in the absence of intentionally added electrolyte

    International Nuclear Information System (INIS)

    Watkins, John D.; Ahn, Sunyhik D.; Taylor, James E.; Bull, Steven D.; Bulman-Page, Philip C.; Marken, Frank

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → Amphiphilic carbon nanofiber membrane employed in electro-synthesis. → Triple phase boundary process within a carbon membrane. → Electrochemical deuteration in a liquid|liquid micro-reactor system. → Triple phase boundary reaction zone effects in electro-synthesis. - Abstract: An amphiphilic carbon nanofibre membrane electrode (ca. 50 nm fibre diameter, 50-100 μm membrane thickness) is employed as an active working electrode and separator between an aqueous electrolyte phase (with reference and counter electrode) and an immiscible organic acetonitrile phase (containing only the redox active material). Potential control is achieved with a reference and counter electrode located in the aqueous electrolyte phase, but the electrolysis is conducted in the organic acetonitrile phase in the absence of intentionally added supporting electrolyte. For the one-electron oxidation of n-butylferrocene coupled to perchlorate anion transfer from aqueous to organic phase effective electrolysis is demonstrated with an apparent mass transfer coefficient of m = 4 x 10 -5 m s -1 and electrolysis of typically 1 mg n-butylferrocene in a 100 μL volume. For the two-electron reduction of tetraethyl-ethylenetetracarboxylate the apparent mass transfer coefficient m = 4 x 10 -6 m s -1 is lower due to a less extended triple phase boundary reaction zone in the carbon nanofibre membrane. Nevertheless, effective electrolysis of up to 6 mg tetraethyl-ethylenetetracarboxylate in a 100 μL volume is demonstrated. Deuterated products are formed in the presence of D 2 O electrolyte media. The triple phase boundary dominated mechanism and future microreactor design improvements are discussed.

  19. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation

    Science.gov (United States)

    Diama, A.; Matthies, B.; Herwig, K. W.; Hansen, F. Y.; Criswell, L.; Mo, H.; Bai, M.; Taub, H.

    2009-08-01

    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C24H50 denoted as C24) and dotriacontane (n-C32H66 denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 Å=√3 ag, where ag=2.46 Å is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a "smectic" phase in which the inter-row spacing within a lamella expands by ˜10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.

  20. Accessible triple-phase boundary length: A performance metric to account for transport pathways in heterogeneous electrochemical materials

    Science.gov (United States)

    Nakajo, A.; Cocco, A. P.; DeGostin, M. B.; Peracchio, A. A.; Cassenti, B. N.; Cantoni, M.; Van herle, J.; Chiu, W. K. S.

    2016-09-01

    The performance of materials for electrochemical energy conversion and storage depends upon the number of electrocatalytic sites available for reaction and their accessibility by the transport of reactants and products. For solid oxide fuel/electrolysis cell materials, standard 3-D measurements such as connected triple-phase boundary (TPB) length and effective transport properties partially inform on how local geometry and network topology causes variability in TPB accessibility. A new measurement, the accessible TPB, is proposed to quantify these effects in detail and characterize material performance. The approach probes the reticulated pathways to each TPB using an analytical electrochemical fin model applied to a 3-D discrete representation of the heterogeneous structure provided by skeleton-based partitioning. The method is tested on artificial and real structures imaged by 3-D x-ray and electron microscopy. The accessible TPB is not uniform and the pattern varies depending upon the structure. Connected TPBs can be even passivated. The sensitivity to manipulations of the local 3-D geometry and topology that standard measurements cannot capture is demonstrated. The clear presence of preferential pathways showcases a non-uniform utilization of the 3-D structure that potentially affects the performance and the resilience to alterations due to degradation phenomena. The concepts presented also apply to electrochemical energy storage and conversion devices such as other types of fuel cells, electrolyzers, batteries and capacitors.

  1. Electric-field-dependent phase volume fractions and enhanced piezoelectricity near the polymorphic phase boundary of (K0.5Na0.5)1-xLixNbO3 textured ceramics

    Science.gov (United States)

    Ge, Wenwei; Li, Jiefang; Viehland, D.; Chang, Yunfei; Messing, Gary L.

    2011-06-01

    The structure, ferroelectric and piezoelectric properties of textured (K0.5Na0.5)0.98Li0.02NbO3 ceramics were investigated as a function of temperature and dc bias E. X-ray diffraction revealed an orthorhombic (O) → tetragonal (T) polymorphic phase boundary (PPB). Phase coexistence was found near the PPB over a 30 °C temperature range, where the relative phase volume fractions changed with temperature. Furthermore, increasing E applied along the texture direction resulted in a notable increase in the volume fraction of the T phase at the expense of the O phase, effectively shifting the O → T boundary to lower temperature. An enhancement in the piezoelectric properties was found to accompany this increase in the T volume fraction.

  2. Electro-Optical Characterization of Bistable Smectic A Liquid Crystal Displays

    Science.gov (United States)

    Buyuktanir, Ebru Aylin

    My dissertation focuses the characterization and optimization of the electro-optical properties of smectic A (SmA) based liquid crystal (LC) displays. I present the development of robust and flexible bistable SmA LC displays utilizing polymer dispersed liquid crystal (PDLC) technology. The SmA PDLC displays produced on plastic substrates present electrically reversible memory, high contrast ratio, paper-like sunlight readability, and wide viewing angle characteristics. In order to optimize the SmA PDLC display, I investigated polymerization conditions, such as polymer concentration effect, polymerization temperature, and UV-light intensity variations. I characterized the electro-optical responses-such as static-response, time-response, threshold characteristics, and contrast ratio values' of the optimized SmA PDLC display and compared them to those of the pure SmA LC. The best electro-optical performance of SmA PDLC formulation was obtained using the combination of low mW/cm 2 and high mW/cm2 UV-light curing intensity. The contrast ratio of the optimum SmA PDLC at a 5o collection angle was 83% of that of the pure SmA material on plastic substrates. I fabricated 2.5 x 2.5 in., 4 x 4 in., and 6 x 6 in. sized monochrome flexible SmA PDLC displays, as well as red, yellow, and fluorescent dyes colored SmA PDLC displays on plastic substrates. The electro-optic performance of the bistable SmA LC display consisting of a patterned field-induced polymer wall infrastructure was also studied and compared to those of pure SmA material. I found that the contrast ratio of the SmA LC encapsulated between polymer walls was much greater than that of the SmA PDLC system, approaching the contrast ratio value of the pure SmA material. I also improved the electro-optical characteristics of bistable SmA LC displays by adding ferroparticles into the system. Finally, I illustrated the unique capabilities of polarized confocal Raman microscopy (CRM) to resolve the orientational order of Sm

  3. Structure in a confined smectic liquid crystal with competing surface and sample elasticities

    International Nuclear Information System (INIS)

    Idziak, S.H.; Koltover, I.; Israelachvili, J.N.; Safinya, C.R.

    1996-01-01

    We report on studies using the x-ray surface forces apparatus (XSFA) to compare the structure of a liquid crystal confined between hard surfaces and, for the first time, between soft surfaces that can deform due to the stresses imposed by the confined fluid. We find that the alignment of smectic domains in confined films depends critically on both the shape and compliance of the confining walls or surfaces: open-quote open-quote Soft surfaces close-quote close-quote exhibit a critical gap thickness of 3.4 μm for the liquid crystal studied at which maximum alignment occurs, while open-quote open-quote hard surfaces close-quote close-quote do not exhibit gap-dependent alignment. copyright 1996 The American Physical Society

  4. Local layer structure of smectic liquid crystals by X-ray micro-diffraction

    CERN Document Server

    Takanishi, Y

    2003-01-01

    The local layer structure of smectic liquid crystal has been measured using time-resolved synchrotron X-ray micro-diffraction. Typical layer disorders observed in surface stabilized (anti-) ferroelectric liquid crystals, i.e. a stripe texture, a needed-like defect and a zigzag defect, are directly analyzed. The detailed analysis slows that the surface anchoring force due to the interaction between the liquid crystal molecule and the alignment thin film plays an important role to realize both the static and dynamic local layer structures. The layer structure of the circular domain observed in the liquid crystal of bent-shaped molecules found to depend on the applied electric field though the optical micrograph shows little difference. The frustrated, double and single layer structures of the bent-shaped molecule liquid crystal are determined depending on the terminal alkyl chain length. (author)

  5. Novel hockey-stick mesogens with the nematic, synclinic and anticlinic smectic C phase sequence

    Czech Academy of Sciences Publication Activity Database

    Novotná, Vladimíra; Žurek, J.; Kozmik, V.; Svoboda, J.; Glogarová, Milada; Kroupa, Jan; Pociecha, D.

    2008-01-01

    Roč. 35, č. 8 (2008), 1023-1036 ISSN 0267-8292 R&D Projects: GA AV ČR IAA100100710 Institutional research plan: CEZ:AV0Z10100520 Keywords : liquid crystals * synclinic and anticlinic ordering * hockey-stick mezogens Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.132, year: 2008

  6. Surface induced smectic order in ionic liquids - an X-ray reflectivity study of [C22C1im]+[NTf2].

    Science.gov (United States)

    Mars, Julian; Hou, Binyang; Weiss, Henning; Li, Hailong; Konovalov, Oleg; Festersen, Sven; Murphy, Bridget M; Rütt, Uta; Bier, Markus; Mezger, Markus

    2017-10-11

    Surface induced smectic order was found for the ionic liquid 1-methyl-3-docosylimidazolium bis(trifluoromethlysulfonyl)imide by X-ray reflectivity and grazing incidence scattering experiments. Near the free liquid surface, an ordered structure of alternating layers composed of polar and non-polar moieties is observed. This leads to an oscillatory interfacial profile perpendicular to the liquid surface with a periodicity of 3.7 nm. Small angle X-ray scattering and polarized light microscopy measurements suggest that the observed surface structure is related to fluctuations into a metastable liquid crystalline SmA 2 phase that was found by supercooling the bulk liquid. The observed surface ordering persists up to 157 °C, i.e. more than 88 K above the bulk melting temperature of 68.1 °C. Close to the bulk melting point, we find a thickness of the ordered layer of L = 30 nm. The dependency of L(τ) = Λ ln(τ/τ 1 ) vs. reduced temperature τ follows a logarithmic growth law. In agreement with theory, the pre-factor Λ is governed by the correlation length of the isotropic bulk phase.

  7. Supra-molecular structure of TGBC* phases studied by means of Deuterium NMR line-shape analysis

    Czech Academy of Sciences Publication Activity Database

    Domenici, V.; Veracini, C.A.; Hamplová, Věra; Kašpar, Miroslav

    2008-01-01

    Roč. 495, č. 11 (2008), s. 133-144 ISSN 1542-1406 Institutional research plan: CEZ:AV0Z10100520 Keywords : banana -shaped * deuterium NMR * magnetic field * rod-like * smectic * twist grain boundary Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.537, year: 2008

  8. Experiment-based modelling of grain boundary β-phase (Mg2Al3) evolution during sensitisation of aluminium alloy AA5083.

    Science.gov (United States)

    Zhang, R; Steiner, M A; Agnew, S R; Kairy, S K; Davies, C H J; Birbilis, N

    2017-06-07

    An empirical model for the evolution of β-phase (Mg 2 Al 3 ) along grain boundaries in aluminium alloy AA5083 (Al-Mg-Mn) during isothermal exposures is proposed herein. Developing a quantitative understanding of grain boundary precipitation is important to interpreting intergranular corrosion and stress corrosion cracking in this alloy system. To date, complete ab initio models for grain boundary precipitation based upon fundamental principles of thermodynamics and kinetics are not available, despite the critical role that such precipitates play in dictating intergranular corrosion phenomena. Empirical models can therefore serve an important role in advancing the understanding of grain boundary precipitation kinetics, which is an approach applicable beyond the present context. High resolution scanning electron microscopy was to quantify the size and distribution of β-phase precipitates on Ga-embrittled intergranular fracture surfaces of AA5083. The results are compared with the degree of sensitisation (DoS) as judged by nitric acid mass loss testing (ASTM-G67-04), and discussed with models for sensitisation in 5xxx series Al-alloys. The work herein allows sensitisation to be quantified from an unambiguous microstructural perspective.

  9. Influence of incoherent twin boundaries on the electrical properties of β-Ga2O3 layers homoepitaxially grown by metal-organic vapor phase epitaxy

    Science.gov (United States)

    Fiedler, A.; Schewski, R.; Baldini, M.; Galazka, Z.; Wagner, G.; Albrecht, M.; Irmscher, K.

    2017-10-01

    We present a quantitative model that addresses the influence of incoherent twin boundaries on the electrical properties in β-Ga2O3. This model can explain the mobility collapse below a threshold electron concentration of 1 × 1018 cm-3 as well as partly the low doping efficiency in β-Ga2O3 layers grown homoepitaxially by metal-organic vapor phase epitaxy on (100) substrates of only slight off-orientation. A structural analysis by transmission electron microscopy (TEM) reveals a high density of twin lamellae in these layers. In contrast to the coherent twin boundaries parallel to the (100) plane, the lateral incoherent twin boundaries exhibit one dangling bond per unit cell that acts as an acceptor-like electron trap. Since the twin lamellae are thin, we consider the incoherent twin boundaries to be line defects with a density of 1011-1012 cm-2 as determined by TEM. We estimate the influence of the incoherent twin boundaries on the electrical transport properties by adapting Read's model of charged dislocations. Our calculations quantitatively confirm that the mobility reduction and collapse as well as partly the compensation are due to the presence of twin lamellae.

  10. High Frequency Measurements in Shock-Wave/Turbulent Boundary-Layer Interaction at Duplicated Flight Conditions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...

  11. High Frequency Measurements in Shock-Wave/Turbulent Boundary-Layer Interaction at Duplicated Flight Conditions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...

  12. Twist deformation in anticlinic antiferroelectric structure in smectic B.sub.2./sub. imposed by the surface anchoring

    Czech Academy of Sciences Publication Activity Database

    Lejček, Lubor; Novotná, Vladimíra; Glogarová, Milada

    2008-01-01

    Roč. 35, č. 1 (2008), s. 11-19 ISSN 0267-8292 R&D Projects: GA ČR GA202/05/0431 Institutional research plan: CEZ:AV0Z10100520 Keywords : smectic liquid crystals * bent-shaped molecules * anticlinic antiferroelectric structure * ferroelectric structure * twist deformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.132, year: 2008

  13. Stick–slip boundary friction mode as a second-order phase transition with an inhomogeneous distribution of elastic stress in the contact area

    Directory of Open Access Journals (Sweden)

    Iakov A. Lyashenko

    2017-09-01

    Full Text Available This article presents an investigation of the dynamical contact between two atomically flat surfaces separated by an ultrathin lubricant film. Using a thermodynamic approach we describe the second-order phase transition between two structural states of the lubricant which leads to the stick–slip mode of boundary friction. An analytical description and numerical simulation with radial distributions of the order parameter, stress and strain were performed to investigate the spatial inhomogeneity. It is shown that in the case when the driving device is connected to the upper part of the friction block through an elastic spring, the frequency of the melting/solidification phase transitions increases with time.

  14. Anomalous magnetoelastic behaviour near morphotropic phase boundary in ferromagnetic Tb{sub 1-x}Nd{sub x}Co{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, Adil; Yang, Sen, E-mail: yang.sen@mail.xjtu.edu.cn; Zhou, Chao; Chang, Tieyan; Chen, Kaiyun; Tian, Fanghua; Song, Xiaoping [School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Suchomel, Matthrew R.; Ren, Y. [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-08-01

    In this work, we report a morphotropic phase boundary (MPB) involved ferromagnetic system Tb{sub 1-x}Nd{sub x}Co{sub 2} and reveal the corresponding structural and magnetoelastic properties of this system. With high resolution synchrotron X-ray diffractometry, the crystal structure of the TbCo{sub 2}-rich side is detected to be rhombohedral and that of NdCo{sub 2}-rich side is tetragonal below their respective Curie temperatures T{sub C}. The MPB composition Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} corresponds to the coexistence of the rhombohedral phase (R-phase) and tetragonal phase (T-phase). Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} shows minimum magnetization which can be understood as compensation of sublattice moments between the R-phase and the T-phase. Furthermore, magnetostriction of Tb{sub 1-x}Nd{sub x}Co{sub 2} decreases with increasing Nd concentration until x = 0.8 and then increases in the negative direction with further increasing Nd concentration; the optimum point for magnetoelastic properties lies towards the rhombohedral phase. Our work not only shows an anomalous type of ferromagnetic MPB but also provides an effective way to design functional materials.

  15. Morphology of the boron-rich phase along columnar grain boundary and its effect on the compression crack of Fe-6.5Si-0.05B alloy

    International Nuclear Information System (INIS)

    Fu Huadong; Zhang Zhihao; Yang Qiang; Xie Jianxin

    2011-01-01

    Research highlights: → Three morphologies of alloy phases were observed under different conditions. → Three different morphologies were thick-strip, fish-bone like and thin-strip. → These phases were all with enrichment of boron and dilution of silicon. → Three morphologies of alloy phases had different influences on mechanical property. - Abstract: The morphology of precipitated phases along Fe-6.5Si-0.05B columnar grain boundary and its effect on the initiation and propagation of compression cracks were investigated. Under the present experimental condition, alloy phases along the grain boundary exhibited three different morphologies, i.e., thick-strip, fish-bone like and thin-strip. These phases were all with enrichment of boron and dilution of silicon. The grain boundary with dendrite growth mode was apt to generate the thick-strip and fish-bone like phases, while the boundary with cellular growth mode was easy to form the thin-strip phase. The thick-strip phase was favorable to form 'weak plane' containing numerous micropores, which ultimately led to intergranular cracks. The fish-bone like phase was one of the main crack sources under the compression processing and easily caused transgranular cracks. The thin-strip phase enhanced the bond strength of the grain boundary and detained the crack propagation.

  16. Thermodynamic investigation of the phase equilibrium boundary between TiO2 rutile and its α-PbO2-type high-pressure polymorph

    Science.gov (United States)

    Kojitani, Hiroshi; Yamazaki, Monami; Kojima, Meiko; Inaguma, Yoshiyuki; Mori, Daisuke; Akaogi, Masaki

    2018-06-01

    Heat capacity (C P) of rutile and α-PbO2 type TiO2 (TiO2-II) were measured by the differential scanning calorimetry and thermal relaxation method. Using the results, standard entropies at 1 atm and 298.15 K of rutile and TiO2-II were determined to be 50.04(4) and 46.54(2) J/mol K, respectively. Furthermore, thermal expansivity (α) determined by high-temperature X-ray diffraction measurement and mode Grüneisen parameters obtained by high-pressure Raman spectroscopy suggested the thermal Grüneisen parameter (γ th) for TiO2-II of 1.7(1). By applying the obtained low-temperature C P and γ th, the measured C P and α data of TiO2-II were extrapolated to higher temperature region using a lattice vibrational model calculation, as well as rutile. Internally consistent thermodynamic data sets of both rutile and TiO2-II assessed in this study were used to thermodynamically calculate the rutile‒TiO2-II phase equilibrium boundary. The most plausible boundary was obtained to be P (GPa) = 0.0074T (K) - 1.7. Our boundary suggests that the crystal growth of TiO2-II observed below 5.5 GPa and 900 K in previous studies advanced in its stability field. The phase boundary calculation also suggested small, exothermic phase transition enthalpy from rutile to TiO2-II at 1 atm and 298.15 K of - 0.5 to - 1.1 kJ/mol. This implies that the thermodynamic stability of rutile at 1 atm above room temperature is due to larger contribution of entropy term.

  17. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [ β/( α + β)] Phase-Boundary Slopes

    Science.gov (United States)

    Wang, Qing; Dong, Chuang; Liaw, Peter K.

    2015-08-01

    Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.

  18. Tetragonal-cubic phase boundary in nanocrystalline ZrO2-Y2O3 solid solutions synthesized by gel-combustion

    International Nuclear Information System (INIS)

    Fabregas, Ismael O.; Craievich, Aldo F.; Fantini, Marcia C.A.; Millen, Ricardo P.; Temperini, Marcia L.A.; Lamas, Diego G.

    2011-01-01

    Research highlights: → Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO 2 -Y 2 O 3 nanopowders, that exhibit the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms (t' and t'') and the cubic phase. → Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. → The crystallographic features of ZrO 2 -Y 2 O 3 nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. → Compositional t'/t'' and t''/cubic phase boundaries are located at (9 ± 1) and (10.5 ± 0.5) mol% Y 2 O 3 , respectively. → For the whole series of nanocrystalline ZrO 2 -Y 2 O 3 solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO 2 -Y 2 O 3 solid solutions, the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO 2 -Y 2 O 3 solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro

  19. Tetragonal-cubic phase boundary in nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions synthesized by gel-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fabregas, Ismael O. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, Aldo F.; Fantini, Marcia C.A. [Instituto de Fisica, Universidade de Sao Paulo, Travessa R da Rua do Matao, No. 187, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Millen, Ricardo P.; Temperini, Marcia L.A. [Instituto de Quimica, Universidade de Sao Paulo, Avenida Prof. Lineu Prestes 748, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Lamas, Diego G., E-mail: dlamas@uncoma.edu.ar [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Laboratorio de Caracterizacion de Materiales, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen Capital, Prov. de Neuquen (Argentina)

    2011-04-21

    Research highlights: > Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders, that exhibit the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms (t' and t'') and the cubic phase. > Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. > The crystallographic features of ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. > Compositional t'/t'' and t''/cubic phase boundaries are located at (9 {+-} 1) and (10.5 {+-} 0.5) mol% Y{sub 2}O{sub 3}, respectively. > For the whole series of nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions, the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid

  20. Electro–optic response in thin smectic C* film with chevron structures

    International Nuclear Information System (INIS)

    Kudreyko, Aleksey A; Migranov, Nail G; Migranova, Dana N

    2016-01-01

    The effects in electrostatic models of chevron surface-stabilized ferroelectric liquid crystals are investigated through numerical modeling. To study smectic C* director distribution within the cell, we consider two nonlinear approaches: the chevron interface does not interplay with the electric field; the electric field interplays with the chevron interface. The obtained results of the director field distribution are compared with the earlier linearized studies. We find that whether or not the electric field interplays with the chevron interface, the electro–optic response requires a generalized approach for its description. The threshold electric field, which is necessary for switching between two stable director states in the chevron cell is evaluated. This study suggests that, in many cases of practical interest, electro–optic response to the electric field and the threshold electric field can be precisely estimated. We argue that, beside being numerically efficient, our approach provides a convenient and a novel standpoint for looking at the electro–optic response problem. (paper)

  1. Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics

    Science.gov (United States)

    Jo, Wook; Daniels, John E.; Jones, Jacob L.; Tan, Xiaoli; Thomas, Pamela A.; Damjanovic, Dragan; Rödel, Jürgen

    2011-01-01

    The correlation between structure and electrical properties of lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.

  2. Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics

    International Nuclear Information System (INIS)

    Jo, Wook; Roedel, Juergen; Daniels, John E.; Jones, Jacob L.; Tan Xiaoli; Thomas, Pamela A.; Damjanovic, Dragan

    2011-01-01

    The correlation between structure and electrical properties of lead-free (1-x)(Bi 1/2 Na 1/2 )TiO 3 -xBaTiO 3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.

  3. A phase transition in the first passage of a Brownian process through a fluctuating boundary with implications for neural coding

    OpenAIRE

    Taillefumier, Thibaud; Magnasco, Marcelo O.

    2013-01-01

    Finding the first time a fluctuating quantity reaches a given boundary is a deceptively simple-looking problem of vast practical importance in physics, biology, chemistry, neuroscience, economics, and industrial engineering. Problems in which the bound to be traversed is itself a fluctuating function of time include widely studied problems in neural coding, such as neuronal integrators with irregular inputs and internal noise. We show that the probability p(t) that a Gauss–Markov process will...

  4. In Situ Measurements of the Post-Spinel and Post-Garnet Phase Boundaries in Pyrolite at 17-32 GPa and 1500-2400 K

    Science.gov (United States)

    Ye, Y.; Gu, C.; Shim, S. H.; Prakapenka, V.; Meng, Y.

    2014-12-01

    Recent seismic studies have revealed complex structures near 660-km depth. In order to understand the effects of composition and temperature, we measured the depth and Clapeyron slope of the post-spinel and post-garnet boundaries at the pressure-temperature conditions of 600-700 km depths in pyrolitic compositions: (1) MgO-Al2O3-SiO2 (MAS) and (2) CaO-MgO-Al2O3-SiO2-FeO (CMASF). Glass starting materials were mixed with either gold or platinum powder (10 wt%) for laser coupling and internal pressure scale. Cold compressed foils of the mixtures were loaded in the diamond-anvil cell together with Ar or KCl for thermal insulation and pressure transmission. X-ray diffraction patterns were measured for the samples in the diamond-anvil cell at in situ high pressure and high temperature combined with double side laser heating at beamlines 13-IDD (GSECARS) and 16-IDB (HPCAT) in the Advanced Photon Source. Within 5 to 8 minutes of heating, stable crystalline phase assemblages were formed and persisted with further heating for 20 to 30 minutes. A total of 160 heating cycles were conducted at different pressures and temperatures, providing tight constrains on the phase boundaries. Our data show that the post-spinel transition occurs at 23.6-24.5 GPa and 1850 K with a Clapeyron slope of -2.5(4) MPa/K if the Pt pressure scales are used, consistent with the seismic observation of the 660 discontinuity. The post-garnet boundary occurs at 24.2-27.5 GPa and 1900 - 2450 K. We found that the Clapeyron slope of the post-garnet transition increases with Fe: from 2.4 MPa/K for MAS to 6.2 MPa/K for CMASF. Below 1900 K, garnet disappears near the post-spinel boundary within the resolution of our measurements. Our new data supports the notion that the 660 discontinuity is dominated by the post-spinel phase transition below 1900 K while dominated by the post-garnet phase transition above 1900 K. However, our data indicate much larger Clapeyron slope of the post-garnet transition, suggesting

  5. Sensitivity of quantum walks to a boundary of two-dimensional lattices: approaches based on the CGMV method and topological phases

    International Nuclear Information System (INIS)

    Endo, Takako; Konno, Norio; Obuse, Hideaki; Segawa, Etsuo

    2017-01-01

    In this paper, we treat quantum walks in a two-dimensional lattice with cutting edges along a straight boundary introduced by Asboth and Edge (2015 Phys. Rev . A 91 022324) in order to study one-dimensional edge states originating from topological phases of matter and to obtain collateral evidence of how a quantum walker reacts to the boundary. Firstly, we connect this model to the CMV matrix, which provides a 5-term recursion relation of the Laurent polynomial associated with spectral measure on the unit circle. Secondly, we explicitly derive the spectra of bulk and edge states of the quantum walk with the boundary using spectral analysis of the CMV matrix. Thirdly, while topological numbers of the model studied so far are well-defined only when gaps in the bulk spectrum exist, we find a new topological number defined only when there are no gaps in the bulk spectrum. We confirm that the existence of the spectrum for edge states derived from the CMV matrix is consistent with the prediction from a bulk-edge correspondence using topological numbers calculated in the cases where gaps in the bulk spectrum do or do not exist. Finally, we show how the edge states contribute to the asymptotic behavior of the quantum walk through limit theorems of the finding probability. Conversely, we also propose a differential equation using this limit distribution whose solution is the underlying edge state. (paper)

  6. The cone phase of liquid crystals: Triangular lattice of double-tilt ...

    Indian Academy of Sciences (India)

    (figure 3) and analyse the mechanism which stabilizes it. Liquid crystals are soft ... There is no change in the smectic layer spacing along .... with the case of blue phases of cubic symmetry where the pitch of the helix provides a natural length ...

  7. Field driven ferromagnetic phase nucleation and propagation from the domain boundaries in antiferromagnetically coupled perpendicular anisotropy films

    Energy Technology Data Exchange (ETDEWEB)

    Hauet, Thomas; Gunther, Christian M.; Hovorka, Ondrej; Berger, Andreas; Im, Mi-Young; Fischer, Peter; Hellwig, Olav

    2008-12-09

    We investigate the reversal process in antiferromagnetically coupled [Co/Pt]{sub X-1}/{l_brace}Co/Ru/[Co/Pt]{sub X-1}{r_brace}{sub 16} multilayer films by combining magnetometry and Magnetic soft X-ray Transmission Microscopy (MXTM). After out-of-plane demagnetization, a stable one dimensional ferromagnetic (FM) stripe domain phase (tiger-tail phase) for a thick stack sample (X=7 is obtained), while metastable sharp antiferromagnetic (AF) domain walls are observed in the remanent state for a thinner stack sample (X=6). When applying an external magnetic field the sharp domain walls of the thinner stack sample transform at a certain threshold field into the FM stripe domain wall phase. We present magnetic energy calculations that reveal the underlying energetics driving the overall reversal mechanisms.

  8. Morphotropic phase boundary and magnetoelastic behaviour in ferromagnetic Tb{sub 1−x}Gd{sub x}Fe{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Adil, Murtaza; Yang, Sen, E-mail: yang.sen@mail.xjtu.edu.cn; Mi, Meng; Zhou, Chao, E-mail: zhouch1982@gmail.com; Wang, Jieqiong; Zhang, Rui; Liao, Xiaoqi; Wang, Yu; Ren, Xiaobing; Song, Xiaoping, E-mail: xpsong@mail.xjtu.edu.cn [School of Sciences, Frontier Institute of Science and Technology, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Yang [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-03-30

    Morphotropic phase boundary (MPB), separating two ferroic phases of different crystal symmetries, has been studied extensively for its extraordinary enhancement of piezoelectricity in ferroelectrics. Based on the same mechanism, we have designed a magnetic MPB in the pseudobinary ferromagnetic system of Tb{sub 1−x}Gd{sub x}Fe{sub 2} and the corresponding crystal structure, magnetic properties, and magnetostriction are explored. With the synchrotron x-ray diffractometry, the structure symmetry of TbFe{sub 2}-rich compositions is detected to be rhombohedral (R) and that of GdFe{sub 2}-rich compositions is tetragonal (T) below T{sub c}. With the change of concentration, the value of magnetostriction of the samples changes monotonously, while the MPB composition Tb{sub 0.1}Gd{sub 0.9}Fe{sub 2}, which corresponds to the coexistence of R and T phases, exhibits the maximum magnetization among all available compositions and superposition of magnetostriction behaviour of R and T phases. Our result of MPB phenomena in ferromagnets may provide an effective route to design functional magnetic materials with exotic properties.

  9. High temperature aqueous potassium and sodium phosphate solutions: two-liquid-phase boundaries and critical phenomena, 275-4000C; potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1981-12-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases nor liquid-liquid immiscibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators. 16 refs

  10. Le Chatelier Principle for Out-of-Equilibrium and Boundary-Driven Systems: Application to Dynamical Phase Transitions

    Science.gov (United States)

    Shpielberg, O.; Akkermans, E.

    2016-06-01

    A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.

  11. Le Chatelier Principle for Out-of-Equilibrium and Boundary-Driven Systems: Application to Dynamical Phase Transitions.

    Science.gov (United States)

    Shpielberg, O; Akkermans, E

    2016-06-17

    A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.

  12. Grain size dependent phase stabilities and presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} piezoceramics

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ashutosh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-04-14

    Results of the room temperature structural studies on (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.

  13. Phase boundary between cubic B1 and rhombohedral structures in (Mg,Fe)O magnesiowüstite determined by in situ X-ray diffraction measurements

    Science.gov (United States)

    Dymshits, Anna M.; Litasov, Konstantin D.; Shatskiy, Anton; Chanyshev, Artem D.; Podborodnikov, Ivan V.; Higo, Yuji

    2018-01-01

    The phase relations and equation of state of (Mg0.08Fe0.92)O magnesiowüstite (Mw92) have been studied using the Kawai-type high-pressure apparatus coupled with synchrotron radiation. To determine the phase boundary between the NaCl-type cubic (B1) and rhombohedral ( rB1) structures in Mw92, in situ X-ray observations were carried out at pressures of 0-35 GPa and temperatures of 300-1473 K. Au and MgO were used as the internal pressure markers and metallic Fe as oxygen fugacity buffer. The phase boundary between B1 and rB1 structures was described by a linear equation P (GPa) = 1.6 + 0.033 × T (K). The Clapeyron slope (d P/d T) determined in this study is close to that obtained at pressures above 70 GPa but steeper than that obtained for FeO. An addition of MgO to FeO structure expands the stability field of the rB1 phase to lower pressures and higher temperatures. Thus, the rB1 phase may be stabilized with respect to the B1 phase at a lower pressures. The pressure-volume-temperature equation of state of B1-Mw92 was determined up to 30 GPa and 1473 K. Fitting the hydrostatic compression data up to 30 GPa with the Birch-Murnaghan equation of state (EoS) yielded: unit cell volume ( V 0, T0), 79.23 ± 4 Å3; bulk modulus ( K 0, T0), 183 ± 4 GPa; its pressure derivative ( K' T ), 4.1 ± 0.4; (∂ K 0, T /∂ T) = -0.029 ± 0.005 GPa K‒1; a = 3.70 ± 0.27 × 10-5 K-1 and b = 0.47 ± 0.49 × 10-8 K-2, where α0, T = a + bT is the volumetric thermal expansion coefficient. The obtained bulk modulus of Mw92 is very close to the value expected for stoichiometric iron-rich (Mg,Fe)O. This result confirms the idea that the bulk modulus of (Mg,Fe)O is greatly affected by the actual defect structure, caused by either Mg2+ or vacancies.

  14. Protection Of TEG Module at High Temperature Transient Boundary Condition Using Phase Change Materials, an Experimental Investigation

    DEFF Research Database (Denmark)

    Ahmadi Atouei,, Saeed; Rezaniakolaei, Alireza; Akbar Ranjbar, Ali

    2017-01-01

    phase change materials (PCM) in an aluminium box are placed between heat source and the thermoelectric module. The results show when the input heat flux is high, a fraction of the thermal energy is saved in the PCM during the melting process, and when the heat source is off, the saved energy in the PCM...

  15. The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare-earth modified bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Alikin, Denis O.; Turygin, Anton P.; Walker, Julian; Bencan, Andreja; Malic, Barbara; Rojac, Tadej; Shur, Vladimir Ya.; Kholkin, Andrei L.

    2017-01-01

    Piezoelectric properties and ferroelectric/ferroelastic domain switching behavior of polycrystalline ceramics are strongly influenced by local scale (i.e. <100 nm) phenomena, such as, the phase assemblages, domain structure, and defects. The method of ceramic synthesis strongly effects the local properties and thus plays a critical role in determining the macroscopic ferroelectric and piezoelectric performance. The link between synthesis and local scale properties of ferroelectrics is, however, rarely reported, especially for the emerging lead-free materials systems. In this work, we focus on samarium modified bismuth ferrite ceramics (Bi_0_._8_8Sm_0_._1_2FeO_3, BSFO) prepared by two methods: standard solid state reaction (SSR) and mechanochemi≿ally assisted synthesis (MAS). Each ceramic possesses different properties at the local scale and we used the piezoresponse force microscopy (PFM) complemented by transmission electron microscopy (TEM) to evaluate phase distribution, domain structure and polarization switching to show that an increase in the anti-polar phase assemblages within the polar matrix leads to notable changes in the local polarization switching. SSR ceramics exhibit larger internal bias fields relative to the MAS ceramics, and the grain boundaries produce a stronger effect on the local switching response. MAS ceramics were able to nucleate domains at lower electric-fields and grow them at faster rates, reaching larger final domain sizes than the SSR ceramics. Local evidence of the electric-field induced phase transition from the anti-ferroelectric Pbam to ferroelectric R3c phase was observed together with likely evidence of the existence of head-to-head/tail-to-tail charged domain walls and domain vortex core structures. By comparing the domain structure and local switching behavior of ceramics prepared by two different methods this work brings new insights the synthesis-structure-property relationship in lead-free piezoceramics.

  16. Absence of morphotropic phase boundary effects in BiFeO3-PbTiO3 thin films grown via a chemical multilayer deposition method

    Science.gov (United States)

    Gupta, Shashaank; Bhattacharjee, Shuvrajyoti; Pandey, Dhananjai; Bansal, Vipul; Bhargava, Suresh K.; Peng, Ju Lin; Garg, Ashish

    2011-07-01

    We report an unusual behavior observed in (BiFeO3)1- x -(PbTiO3) x (BF- xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF- xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP- xPT system dramatically.

  17. Local rhombohedral symmetry in Tb{sub 0.3}Dy{sub 0.7}Fe{sub 2} near the morphotropic phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tianyu, E-mail: maty@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Ferroic Physics Group, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki (Japan); Liu, Xiaolian; Pan, Xingwen; Li, Xiang; Jiang, Yinzhu; Yan, Mi, E-mail: mse-yanmi@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Li, Huiying; Fang, Minxia [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing, E-mail: ren.xiaobing@nims.go.jp [Ferroic Physics Group, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki (Japan); Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China)

    2014-11-10

    The recently reported morphotropic phase boundary (MPB) in a number of giant magnetostrictive materials (GMMs) has drawn considerable interest to the local symmetry/structure near MPB region of these materials. In this letter, by in-situ X-ray diffraction and AC magnetic susceptibility measurements, we show that Tb{sub 0.3}Dy{sub 0.7}Fe{sub 2}, the typical composition of Terfenol-D GMMs, has coexistence of rhombohedral and tetragonal phases over a wide temperature range in the vicinity of MPB. High resolution transmission electron microscopy provides direct evidence for local rhombohedral symmetry of the ferromagnetic phase and reveals regular-shaped nanoscale domains below 10 nm. The nano-sized structural/magnetic domains are hierarchically inside a single micron-sized stripe-like domain with the same average magnetization direction. Such domain structures are consistent with the low magnetocrystalline anisotropy and easy magnetic/structural domain switching under magnetic field, thus generating large magnetostriction at low field.

  18. Unconditionally stable methods for simulating multi-component two-phase interface models with Peng-Robinson equation of state and various boundary conditions

    KAUST Repository

    Kou, Jisheng

    2015-03-01

    In this paper, we consider multi-component dynamic two-phase interface models, which are formulated by the Cahn-Hilliard system with Peng-Robinson equation of state and various boundary conditions. These models can be derived from the minimum problems of Helmholtz free energy or grand potential in the realistic thermodynamic systems. The resulted Cahn-Hilliard systems with various boundary conditions are fully coupled and strongly nonlinear. A linear transformation is introduced to decouple the relations between different components, and as a result, the models are simplified. From this, we further propose a semi-implicit unconditionally stable time discretization scheme, which allows us to solve the Cahn-Hilliard system by a decoupled way, and thus, our method can significantly reduce the computational cost and memory requirements. The mixed finite element methods are employed for the spatial discretization, and the approximate errors are also analyzed for both space and time. Numerical examples are tested to demonstrate the efficiency of our proposed methods. © 2015 Elsevier B.V.

  19. Constraints on the Nature and Distribution of Iridium Host Phases at the Cretaceous-Tertiary Boundary: Implications for Projectile Identity and dispersal on impact

    Science.gov (United States)

    Schuraytz, B. C.; Lindstrom, D. J.; Sharpton, V. L.

    1997-01-01

    Among Cretaceous-Tertiary boundary sites worldwide, variations in the concentrations and ratios of elements commonly enriched in meteorites complicate traditional geochemical attempts at impactor identification. Yet they may provide constraints on the physical and chemical processes associated with large-body disruption and dispersal, as well as with diagenesis of projectile components. To this end, we continue our efforts to identify the mineral host-phases of projectile-derived elements, particularly for Ir, and to document their partitioning between crater deposits and ejecta resulting from the Chicxulub basin-forming impact. Building on earlier work, we used INAA to measure Ir concentrations in successively smaller splits of finely powdered impact melt breccia from the Chicxulub Crater in Mexico (sample Y6Nl9-R(b)), and K/T boundary fish clay from Stevns Klint, Denmark (sample FC-1, split from 40 kg of homogenized material intended as an analytical standard). Results for the Chicxulub sample show a heterogeneous Ir distribution and document that at least five discrete Ir-bearing host phases were isolated in subsequent splits, having Ir masses equivalent to pure Ir spheres from about 0.8 to about 3.5 mm in diameter. Three of these are within a sufficiently reduced mass of powder to warrant searching for them using backscattered electron microscopy. In contrast, successively smaller splits of the Stevns Klint fish clay show no statistically significant deviation from the reported value of 32 +/- 2 ng/g Ir, suggesting a uniform Ir host-phase distribution. For the smallest split obtained thus far (100 +/- 40 ng/g Ir), a pure Ir sphere of equivalent Ir mass would be <0.05 min in diameter. (n.b. Although homogenizing and sieving of FC-1 to <75 min obviously obscured variations in stratigraphic distribution, it is unlikely to have affected the size-frequency distribution of Ir host phases.) We previously identified micrometer-scale Ir host phases by electron

  20. Condensed phase QM/MM simulations utilizing the exchange core functions to describe exchange repulsions at the QM boundary region

    International Nuclear Information System (INIS)

    Umino, Satoru; Takahashi, Hideaki; Morita, Akihiro

    2016-01-01

    In a recent work, we developed a method [H. Takahashi et al., J. Chem. Phys. 143, 084104 (2015)] referred to as exchange-core function (ECF) approach, to compute exchange repulsion E ex between solute and solvent in the framework of the quantum mechanical (QM)/molecular mechanical (MM) method. The ECF, represented with a Slater function, plays an essential role in determining E ex on the basis of the overlap model. In the work of Takahashi et al. [J. Chem. Phys. 143, 084104 (2015)], it was demonstrated that our approach is successful in computing the hydrogen bond energies of minimal QM/MM systems including a cationic QM solute. We provide in this paper the extension of the ECF approach to the free energy calculation in condensed phase QM/MM systems by combining the ECF and the QM/MM-ER approach [H. Takahashi et al., J. Chem. Phys. 121, 3989 (2004)]. By virtue of the theory of solutions in energy representation, the free energy contribution δμ ex from the exchange repulsion was naturally formulated. We found that the ECF approach in combination with QM/MM-ER gives a substantial improvement on the calculation of the hydration free energy of a hydronium ion. This can be attributed to the fact that the ECF reasonably realizes the contraction of the electron density of the cation due to the deficit of an electron.

  1. Condensed phase QM/MM simulations utilizing the exchange core functions to describe exchange repulsions at the QM boundary region

    Energy Technology Data Exchange (ETDEWEB)

    Umino, Satoru; Takahashi, Hideaki, E-mail: hideaki@m.tohoku.ac.jp; Morita, Akihiro [Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan)

    2016-08-28

    In a recent work, we developed a method [H. Takahashi et al., J. Chem. Phys. 143, 084104 (2015)] referred to as exchange-core function (ECF) approach, to compute exchange repulsion E{sub ex} between solute and solvent in the framework of the quantum mechanical (QM)/molecular mechanical (MM) method. The ECF, represented with a Slater function, plays an essential role in determining E{sub ex} on the basis of the overlap model. In the work of Takahashi et al. [J. Chem. Phys. 143, 084104 (2015)], it was demonstrated that our approach is successful in computing the hydrogen bond energies of minimal QM/MM systems including a cationic QM solute. We provide in this paper the extension of the ECF approach to the free energy calculation in condensed phase QM/MM systems by combining the ECF and the QM/MM-ER approach [H. Takahashi et al., J. Chem. Phys. 121, 3989 (2004)]. By virtue of the theory of solutions in energy representation, the free energy contribution δμ{sub ex} from the exchange repulsion was naturally formulated. We found that the ECF approach in combination with QM/MM-ER gives a substantial improvement on the calculation of the hydration free energy of a hydronium ion. This can be attributed to the fact that the ECF reasonably realizes the contraction of the electron density of the cation due to the deficit of an electron.

  2. A re-entrant resonator for the measurement of phase boundaries: dew points for {0.4026CH4 + 0.5974C3H8}

    International Nuclear Information System (INIS)

    Kandil, Mohamed E.; Marsh, Kenneth N.; Goodwin, Anthony R.H.

    2005-01-01

    For a natural gas and, especially, retrograde condensates, it is important for exploration and production that the (liquid + gas) phase boundary be known along with the ratio of liquid-to-gas volumes within the (liquid + gas) two-phase region. These fluid properties can be measured by a plethora of methods and here we report a method based on the measurement of the resonance frequency of the lowest order inductive-capacitance mode of a re-entrant cavity capable of operating at temperatures up to 473 K and pressures below 20 MPa. This instrument has been used to measure, at T 4 + 0.5974C 3 H 8 }. The measured dew pressures differ by less than 0.5 % from values obtained by interpolation of those reported in the literature, which were determined from measurements with experimental techniques that suffer from quite different potential sources of systematic error than the radio-frequency resonator used here. Dew pressures estimated from both NIST 14 and the Peng-Robinson equation of state lie within <±1 % of our results at temperature between (315 and 337) K while predictions obtained from the Soave Redlich Kwong cubic equation of state deviate from our results by 0.4 % at T = 315 K and these absolute differences increase smoothly with increasing temperature to be -2.4 % at T = 337 K

  3. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  4. Spin reorientation and magnetoelastic properties of ferromagnetic T b1 -xN dxC o2 systems with a morphotropic phase boundary

    Science.gov (United States)

    Murtaza, Adil; Yang, Sen; Chang, Tieyan; Ghani, Awais; Khan, Muhammad Tahir; Zhang, Rui; Zhou, Chao; Song, Xiaoping; Suchomel, Matthew; Ren, Yang

    2018-03-01

    The spin reorientation (SR) and magnetoelastic properties of pseudobinary ferromagnetic T b1 -xN dxC o2 (0 ≤x ≤1.0 ) systems involving a morphotropic phase boundary (MPB) were studied by high-resolution synchrotron x-ray diffraction (XRD), magnetization, and magnetostriction measurements. The easy magnetization direction of the Laves phase lies along the 〈111 〉 axis with x 0.65 below Curie temperature (TC). The temperature-dependent magnetization curves showed SR; this can be explained by a two-sublattice model. Based on the synchrotron (XRD) and magnetization measurements, the SR phase diagram for a MPB composition of T b0.35N d0.65C o2 was obtained. Contrary to previously reported ferromagnetic systems involving MPB, the MPB composition of T b0.35N d0.65C o2 exhibits a low saturation magnetization (MS), indicating a compensation of the Tb and Nd magnetic moments at MPB. The anisotropic magnetostriction (λS) first decreased until x =0.8 and then continuously increased in the negative direction with further increase of Nd concentration. The decrease in magnetostriction can be attributed to the decrease of spontaneous magnetostriction λ111 and increase of λ100 with opposite sign to λ111. This paper indicates an anomalous type of MPB in the ferromagnetic T b1 -xN dxC o2 system and provides an active way to design novel functional materials with exotic properties.

  5. Atomic-scale features of phase boundaries in hot deformed Nd–Fe–Co–B–Ga magnets infiltrated with a Nd–Cu eutectic liquid

    International Nuclear Information System (INIS)

    Woodcock, T.G.; Ramasse, Q.M.; Hrkac, G.; Shoji, T.; Yano, M.; Kato, A.; Gutfleisch, O.

    2014-01-01

    Hot deformed Nd–Fe–Co–B–Ga magnets were infiltrated with a Nd–Cu eutectic liquid, resulting in a 71% increase in coercivity to μ 0 H c = 2.4 T without the use of Dy, and a 22% decrease in remanence, attributed to the dilution effect. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy have been used to reveal the structure and chemical composition of phase boundaries in the magnets on the atomic scale. The results showed that the Nd–Cu liquid penetrated the ≈1 nm thick intergranular regions. The coercivity increase following infiltration was therefore attributed to improved volume fraction and distribution of the intergranular phases. Co enrichment in the outermost 1–2 unit cells at several {0 0 1} and {1 1 0} surfaces of the Nd 2 (Fe, Co) 14 B crystals was shown for the infiltrated sample. The as-deformed sample did not appear to show this Co enrichment. Molecular dynamics simulations indicated that the distorted layer at an {0 0 1} surface of a Nd 2 (Fe, Co) 14 B grain was significantly thicker with higher Co surface enrichment. The magnetocrystalline anisotropy may be reduced in such distorted regions, which could have a detrimental effect on coercivity. Such features may therefore play a role in limiting coercivity to a fraction of the anisotropy field. Interfacial segregation of Cu between Nd 2 (Fe, Co) 14 B and the Nd-rich intergranular phase occurred in the infiltrated sample. Step defects in Nd 2 (Fe, Co) 14 B {0 0 1} surfaces, a half or a whole unit cell in height, were also observed

  6. A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes

    Science.gov (United States)

    Fridlin, Ann; vanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Avramov, Alexander; Mrowiec, Agnieszka; Morrison, Hugh; Zuidema, Paquita; Shupe, Matthew D.

    2012-01-01

    Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)Arctic Cloud Experiment (ACE)Surface Heat Budget of the Arctic Ocean (SHEBA) campaign provide a unique opportunity to test understanding of cloud ice formation. Under the microphysically simple conditions observed (apparently negligible ice aggregation, sublimation, and multiplication), the only expected source of new ice crystals is activation of heterogeneous ice nuclei (IN) and the only sink is sedimentation. Large-eddy simulations with size-resolved microphysics are initialized with IN number concentration N(sub IN) measured above cloud top, but details of IN activation behavior are unknown. If activated rapidly (in deposition, condensation, or immersion modes), as commonly assumed, IN are depleted from the well-mixed boundary layer within minutes. Quasi-equilibrium ice number concentration N(sub i) is then limited to a small fraction of overlying N(sub IN) that is determined by the cloud-top entrainment rate w(sub e) divided by the number-weighted ice fall speed at the surface v(sub f). Because w(sub c) 10 cm/s, N(sub i)/N(sub IN)<< 1. Such conditions may be common for this cloud type, which has implications for modeling IN diagnostically, interpreting measurements, and quantifying sensitivity to increasing N(sub IN) (when w(sub e)/v(sub f)< 1, entrainment rate limitations serve to buffer cloud system response). To reproduce observed ice crystal size distributions and cloud radar reflectivities with rapidly consumed IN in this case, the measured above-cloud N(sub IN) must be multiplied by approximately 30. However, results are sensitive to assumed ice crystal properties not constrained by measurements. In addition, simulations do not reproduce the pronounced mesoscale heterogeneity in radar reflectivity that is observed.

  7. Improved polycrystalline Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} high-temperature shape memory alloy by γ phase distributing along grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuiyuan; Zhang, Fan; Zhang, Kaixin; Huang, Yangyang; Wang, Cuiping; Liu, Xingjun [Xiamen Univ. (China). Fujian Key Laboratory of Materials Genome

    2016-09-15

    In this study, the shape recovery and mechanical properties of Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} high-temperature shape memory alloy are improved simultaneously. This results from the low, about 4.4%, volume fraction of γ phase being almost completely distributed along grain boundaries. The recovery strain gradually increases with the increase in residual strain with a shape recovery rate of above 68%, up to a maximum value of 5.3%. The compressive fracture strain of Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} alloy is about 35%. The results further reveal that when applying a high compression deformation two types of cracks form and propagate either within martensite grains (type I) or along the boundaries between martensite phase and γ phase (type II) in the present two-phase alloy.

  8. Phase Diagram of Binary Mixture E7:TM74A Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Serafin Delica

    1999-12-01

    Full Text Available Although there are many liquid crystalline materials, difficulty is often experienced in obtaining LCs that are stable and has a wide mesophase range. In this study, mixtures of two different LCs were used to formulate a technologically viable LC operating at room temperature. Nematic E7(BDH and cholesteric TM74A were mixed at different weight ratios at 10% increments. Transition temperatures were determined via Differential Scanning Calorimetry and phase identification was done using Optical Polarizing Microscopy. The phase diagram showed the existence of three different phases for the temperature range of 10-80°C. Mixtures with 0-20% E7 exhibit only the cholesteric-nematic mesophase, which could be due to the mixture's being largely TM74A and its behavior in the temperature range considered is similar to the behavior of pure TM74A. With an increase in the concentration of E7, the smectic phase of the pure cholesteric was enhanced, as seen from the increased transition to the cholesteric-nematic phase and a broader smectic range. The cholesteric-nematic to isotropic transition increased as the nematic concentration increases, following the behavior expected from LC mixtures. For mixtures that are largely nematic (more than 50% E7, the smectic phase has vanished and the cholesteric-nematic phase dominated from 30-60°C.

  9. Emerging boundaries

    DEFF Research Database (Denmark)

    Løvschal, Mette

    2014-01-01

    of temporal and material variables have been applied as a means of exploring the processes leading to their socioconceptual anchorage. The outcome of this analysis is a series of interrelated, generative boundary principles, including boundaries as markers, articulations, process-related devices, and fixation...

  10. Changing Boundaries

    DEFF Research Database (Denmark)

    Brodkin, Evelyn; Larsen, Flemming

    2013-01-01

    project that is altering the boundary between the democratic welfare state and the market economy. We see workfare policies as boundary-changing with potentially profound implications both for individuals disadvantaged by market arrangements and for societies seeking to grapple with the increasing...

  11. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    Science.gov (United States)

    Chen, Jyun-Hong; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong

    2018-06-01

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as a field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in the FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not been previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.

  12. Fabrication of Well-Ordered Three-Phase Boundary with Nanostructure Pore Array for Mixed Potential-Type Zirconia-Based NO2 Sensor.

    Science.gov (United States)

    Wang, Bin; Liu, Fangmeng; Yang, Xue; Guan, Yehui; Ma, Ce; Hao, Xidong; Liang, Xishuang; Liu, Fengmin; Sun, Peng; Zhang, Tong; Lu, Geyu

    2016-07-06

    A well-ordered porous three-phase boundary (TPB) was prepared with a polystyrene sphere as template and examined to improve the sensitivity of yttria-stabilized zirconia (YSZ)-based mixed-potential-type NO2 sensor due to the increase of the electrochemical reaction active sites. The shape of pore array on the YSZ substrate surface can be controlled through changing the concentration of the precursor solution (Zr(4+)/Y(3+) = 23 mol/L/4 mol/L) and treatment conditions. An ordered hemispherical array was obtained when CZr(4+) = 0.2 mol/L. The processed YSZ substrates were used to fabricate the sensors, and different sensitivities caused by different morphologies were tested. The sensor with well-ordered porous TPB exhibited the highest sensitivity to NO2 with a response value of 105 mV to 100 ppm of NO2, which is approximately twice as much as the smooth one. In addition, the sensor also showed good stability and speedy response kinetics. All these enhanced sensing properties might be due to the structure and morphology of the enlarged TPB.

  13. The I{sub c}(H)-T{sub c}(H) phase boundary of superconducting Nb thin films with periodic and quasiperiodic antidot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bothner, D.; Kemmler, M.; Cozma, R.; Kleiner, R.; Koelle, D. [Physikalisches Institut and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Misko, V.; Peeters, F. [Departement Fysica, Universiteit Antwerpen (Belgium); Nori, F. [Advanced Science Institute, RIKEN (Japan)

    2011-07-01

    The magnetic field dependent critical current I{sub c}(H) of superconducting thin films with artificial defects strongly depends on the symmetry of the defect arrangement. Likewise the critical temperature T{sub c}(H) of superconducting wire networks is heavily influenced by the symmetry of the system. Here we present experimental data on the I{sub c}(H)-T{sub c}(H) phase boundary of Nb thin films with artificial defect lattices of different symmetries. For this purpose we fabricated 60 nm thick Nb films with antidots in periodic (triangular) and five different quasiperiodic arrangements. The parameters of the antidot arrays were varied to investigate the influence of antidot diameter and array density. Experiments were performed with high temperature stability ({delta}T<1 mK) at 0.5{<=}T/T{sub c}{<=}1. From the I-V-characteristics at variable H and T we extract I{sub c}(H) and T{sub c}(H) for different voltage and resistance criteria. The experimental data for the critical current density are compared with results from numerical molecular dynamics simulations.

  14. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    KAUST Repository

    Chen, Jyun-Hong

    2018-03-12

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.

  15. Negotiating boundaries

    DEFF Research Database (Denmark)

    Aarhus, Rikke; Ballegaard, Stinne Aaløkke

    2010-01-01

    to maintain the order of the home when managing disease and adopting new healthcare technology. In our analysis we relate this boundary work to two continuums of visibility-invisibility and integration-segmentation in disease management. We explore five factors that affect the boundary work: objects......, activities, places, character of disease, and collaboration. Furthermore, the processes are explored of how boundary objects move between social worlds pushing and shaping boundaries. From this we discuss design implications for future healthcare technologies for the home.......To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work...

  16. Power of the Poincaré group: elucidating the hidden symmetries in focal conic domains.

    Science.gov (United States)

    Alexander, Gareth P; Chen, Bryan Gin-Ge; Matsumoto, Elisabetta A; Kamien, Randall D

    2010-06-25

    Focal conic domains are typically the "smoking gun" by which smectic liquid crystalline phases are identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time, difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which exploits a hidden Poincaré symmetry revealed only by viewing the smectic layers as projections from one-higher dimension. We use this perspective to shed light upon several classic focal conic textures, including the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.

  17. Power of the Poincare Group: Elucidating the Hidden Symmetries in Focal Conic Domains

    International Nuclear Information System (INIS)

    Alexander, Gareth P.; Chen, Bryan Gin-ge; Matsumoto, Elisabetta A.; Kamien, Randall D.

    2010-01-01

    Focal conic domains are typically the 'smoking gun' by which smectic liquid crystalline phases are identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time, difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which exploits a hidden Poincare symmetry revealed only by viewing the smectic layers as projections from one-higher dimension. We use this perspective to shed light upon several classic focal conic textures, including the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.

  18. Fixation of chiral smectic liquid crystal (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate using UV curing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Afrizal,, E-mail: rizalunj04@yahoo.com; Nurdelima,; Umeir [Faculty of Mathemathics and Natural Science, University of State Jakarta, Jakarta (Indonesia); Hikam, Muhammad; Soegiyono, Bambang [Department of Materials Science, University of Indonesia, Depok (Indonesia); Riswoko, Asep [Center for Material Technology, BPPT, Jl. MH.Thamrin 8 Jakarta (Indonesia)

    2014-03-24

    Chiral Smectic Liquid Crystal (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate has been synthesized using method of steglich esterification at room temperature. The mesomorphic behavior of chiral smectic at 55°C that showed schlieren texture in POM analysis. Fixation of structure chiral smectic liquid crystal by means of photopolymerization of monomer (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate under UV irradiation which called UV curing techniques. The curing process using UV 3 lamps 100 volt at 60°C for an hour. The product of photopolymerization could be seen by analysis of FTIR spectra both monomer and polymer. FTIR spectra of monomer, two peaks for ester carbonyl and C-C double bond groups appeared at 1729.09 cm-1and 3123.46 cm{sup −1}. After UV curing process, peak for the carbonyl group at 1729.09 cm{sup −1} decreased and a new peak at 1160.21 cm{sup −1} appeared due to the carbonyl group attached to a C-C bond group and then peak at 3123.46 cm{sup −1} for C-C double bond group was disappeared.

  19. Fictitious domain methods for elliptic problems with general boundary conditions with an application to the numerical simulation of two phase flows

    International Nuclear Information System (INIS)

    Ramiere, I.

    2006-09-01

    This work is dedicated to the introduction of two original fictitious domain methods for the resolution of elliptic problems (mainly convection-diffusion problems) with general and eventually mixed boundary conditions: Dirichlet, Robin or Neumann. The originality lies in the approximation of the immersed boundary by an approximate interface derived from the fictitious domain Cartesian mesh, which is generally not boundary-fitted to the physical domain. The same generic numerical scheme is used to impose the embedded boundary conditions. Hence, these methods require neither a surface mesh of the immersed boundary nor the local modification of the numerical scheme. We study two modelling of the immersed boundary. In the first one, called spread interface, the approximate immersed boundary is the union of the cells crossed by the physical immersed boundary. In the second one, called thin interface, the approximate immersed boundary lies on sides of mesh cells. Additional algebraic transmission conditions linking both flux and solution jumps through the thin approximate interface are introduced. The fictitious problem to solve as well as the treatment of the embedded boundary conditions are detailed for the two methods. A Q1 finite element scheme is implemented for the numerical validation of the spread interface approach while a new cell-centered finite volume scheme is derived for the thin interface approach with immersed jumps. Each method is then combined to multilevel local mesh refinement algorithms (with solution or flux residual) to increase the precision of the solution in the vicinity of the immersed interface. A convergence analysis of a Q1 finite element method with non-boundary fitted meshes is also presented. This study proves the convergence rates of the present methods. Among the various industrial applications, the simulation on a model of heat exchanger in french nuclear power plants enables us to appreciate the performances of the fictitious domain

  20. Boundary Spanning

    DEFF Research Database (Denmark)

    Zølner, Mette

    The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....

  1. Disintegration of the net-shaped grain-boundary phase by multi-directional forging and its influence on the microstructure and properties of Cu-Ni-Si alloy

    Science.gov (United States)

    Zhang, Jinlong; Lu, Zhenlin; Zhao, Yuntao; Jia, Lei; Xie, Hui; Tao, Shiping

    2017-09-01

    Cu-Ni-Si alloys with 90% Cu content and Ni to Si ratios of 5:1 were fabricated by fusion casting, and severe plastic deformation of the Cu-Ni-Si alloy was carried out by multi-direction forging (MDF). The results showed that the as-cast and homogenized Cu-Ni-Si alloys consisted of three phases, namely the matrix phase α-Cu (Ni, Si), the reticular grain boundary phase Ni31Si12 and the precipitated phase Ni2Si. MDF significantly destroyed the net-shaped grain boundary phase, the Ni31Si12 phase and refined the grain size of the Cu matrix, and also resulted in the dissolving of Ni2Si precipitates into the Cu matrix. The effect of MDF on the conductivity of the solid solution Cu-Ni-Si alloy was very significant, with an average increase of 165.16%, and the hardness of the Cu-Ni-Si alloy also increased obviously.

  2. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... and distributive justice at national level....

  3. Optical modulation in nematic phase of halogen substituted hydrogen bonded liquid crystals

    Science.gov (United States)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2012-01-01

    A series of halogen-substituted hydrogen-bonded liquid crystalline complexes have been designed and synthesised. A successful attempt has been made to form complementary hydrogen bonding between the dodecyloxy benzoic acid (12BAO) and halogen-substituted benzoic acids and the physical properties exhibited by the individual complexes are studied. The complexes obtained are analysed by polarising optical microscope (POM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and dielectric studies. The formation of complementary hydrogen bond is confirmed through FTIR spectra. An interesting feature of this series is the observation of a field-induced transition (FiT) in nematic phase. Another interesting phenomenon is the observation of a new smectic X phase (worm-like texture) in all the synthesised complexes. Dielectric relaxation studies in the smectic C phase of these hydrogen bonded complexes along with the Arrhenius and the Cole-Cole plots are discussed. Optical tilt angle in smectic C phase and the corresponding fitted data analysis concur with the Mean field theory prediction.

  4. Charge Transport and Phase Behavior of Imidazolium-Based Ionic Liquid Crystals from Fully Atomistic Simulations.

    Science.gov (United States)

    Quevillon, Michael J; Whitmer, Jonathan K

    2018-01-02

    Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.

  5. Scanning conoscopy measurement of the optical properties of chiral smectic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bitri, N. [Laboratoire de Physique de la Matiere Molle Faculte des Sciences de Tunis, 2092 El Manar TUNIS (Tunisia); Centre de Recherches Paul Pascal, 115, Av. Albert-Schweitzer, 33600 Pessac (France)], E-mail: bitri@crpp-bordeaux.cnrs.fr; Gharbi, A. [Laboratoire de Physique de la Matiere Molle Faculte des Sciences de Tunis, 2092 El Manar TUNIS (Tunisia); Marcerou, J.P. [Centre de Recherches Paul Pascal, 115, Av. Albert-Schweitzer, 33600 Pessac (France)

    2008-11-30

    We report on a new scanning conoscopic method which, by rotating the sample and analyzing the ellipticity of transmitted light, provides an accurate tool to measure the temperature dependence of the two indices n{sub e}, n{sub o} and of the optical activity for uniaxial liquid crystals. Their determination is useful to give informations about the tilt angle {theta} and the macroscopic helicity in the different phases and then on the structures of the liquid crystal phases. We tested the method with the reference compound (99% S, 1% R)MHPOBC.

  6. Polymorphic phase transition and morphotropic phase boundary in Ba{sub 1-x}Ca{sub x}Ti{sub 1-y}Zr{sub y}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Abdessalem, M. Ben; Aydi, S.; Aydi, A.; Abdelmoula, N.; Khemakhem, H. [Universite de Sfax, Faculte des Sciences de Sfax (FSS), Laboratoire des Materiaux Multifonctionnels et Applications (LaMMA) LR16ES18, B.P.1171, Sfax (Tunisia); Sassi, Z. [Laboratoire de Genie Electrique et Ferroelectricite (LGEF) de L' INSA de Lyon, Lyon (France)

    2017-09-15

    This paper deals with Ca and Zr co-doped BaTiO{sub 3} (BCTZ{sub (x,} {sub y)}) (x = 0.1, 0.13, 0.2 and y = 0.05, 0.1, 0.15). These ceramics were prepared using the conventional solid state method. The symmetry, dielectric properties, Raman spectroscopy, ferroelectric behavior and piezoelectric effect were examined. X-ray diffraction (XRD) results display that morphotropic boundary occurs from tetragonal to orthorhombic region of BCZT{sub (x=0.1,} {sub 0.2,} {sub y=0.05,} {sub 0.1)} and polymorphic phase transitions from tetragonal to orthorhombic, orthorhombic to rhombohedral regions of BCZT{sub (x=0.13,} {sub y=0.1)}. The evolution of the Raman spectra was investigated as a function of compositions at room temperature, in correlation with XRD analysis and dielectric measurements. We note that the substitution of Ca in Ba site and Zr ions in Ti site slightly decreased the cubic-tetragonal temperature transition (T{sub C}) and increased the orthorhombic-tetragonal (T{sub 1}) and rhombohedral-orthorhombic (T{sub 2}) temperatures transitions. The ferroelectric properties were examined by a P-E hysteresis loop. The two parameters ΔT{sub 1} and ΔT{sub 2} are defined as ΔT{sub 1} = T{sub C} - T{sub 1} and ΔT{sub 2} = T{sub C} - T{sub 2}, they come close to T{sub C} for x = 0.13, y = 0.1, which reveals that this composition is around the polymorphic phase. The excellent piezoelectric coefficient of d{sub 33} = 288 pC N{sup -1}, the electromechanical coupling factor k{sub p} = 40%, high constant dielectric 9105, coercive field E{sub c} = 0.32 (KV mm{sup -1}) and remanent polarization P{sub r} = 0.1 (μc mm{sup -2}) were obtained for composition x = 0.13, y = 0.1. (orig.)

  7. Enhanced piezoelectricity in (1 -x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region.

    Science.gov (United States)

    Zheng, Ting; Jiang, Zhenggen; Wu, Jiagang

    2016-07-28

    Site engineering has been employed to modulate the piezoelectric activity of high temperature (1 -x)Bi1.05Fe1-yScyO3-xBaTiO3 lead-free ceramics fabricated by a conventional solid-state method together with a quenching technique. The effects of x and y content on the phase structure, microstructure, and electrical properties have been investigated in detail. A wide rhombohedral (R) to pseudo-cubic (C) phase boundary was formed in the ceramics with x = 0.30 and 0 ≤y≤ 0.07, thus leading to enhanced piezoelectricity (d33 = 120-180 pC N(-1)), ferroelectricity (Pr = 19-22 μC cm(-2)) and a high Curie temperature (TC = 478-520 °C). In addition, the influence of different element substitutions for Fe(3+) on phase structure and electrical behavior was also investigated. Improved piezoelectricity (d33 = 160-180 pC N(-1)) and saturated P-E loops can be simultaneously achieved in the ceramics with A = Sc, Ga, and Al due to the R-C phase boundary. As a result, site engineering may be an efficient way to modulate the piezoelectricity of BiFeO3-BaTiO3 lead-free ceramics.

  8. Improvement of Estimation method for two-phase flow in a large-diameter pipe. Pt. 4. Effect of the inlet boundary condition of the upward flow section on flow characteristics

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Okawa, Tomio; Zhou, Shirong

    1999-01-01

    In nuclear power plants, many large-diameter pipes are subject to gas-liquid two-phase flow. For rational design and performance estimation, the flow in the pipes should be predicted accurately. With the correlation used at present, however, the flow analysis can not reach desirable precision. This is partly due to the lack of understanding of the two-phase flow characteristics in large-diameter pipes. Therefore, steam-water two-phase flow in a vertical pipe (155 mm i.d.) was investigated empirically. Lateral distribution data of phase volume fraction, gas velocity and bubble diameter were obtained. The effects of the inlet boundary condition were also observed. The drift velocity in the developing region was considerably affected by the inlet boundary condition. By deriving the correlation of mean bubble diameter as a function of void fraction and pressure, the empirical data was predicted with high accuracy compared with the existing correlation used in best-estimate codes of nuclear reactor safety analysis. (author)

  9. Mechanical model for filament buckling and growth by phase ordering.

    Science.gov (United States)

    Rey, Alejandro D; Abukhdeir, Nasser M

    2008-02-05

    A mechanical model of open filament shape and growth driven by phase ordering is formulated. For a given phase-ordering driving force, the model output is the filament shape evolution and the filament end-point kinematics. The linearized model for the slope of the filament is the Cahn-Hilliard model of spinodal decomposition, where the buckling corresponds to concentration fluctuations. Two modes are predicted: (i) sequential growth and buckling and (ii) simultaneous buckling and growth. The relation among the maximum buckling rate, filament tension, and matrix viscosity is given. These results contribute to ongoing work in smectic A filament buckling.

  10. Presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution: A Rietveld study

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Rishikesh, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2014-07-28

    We present here the results of structural studies on multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution using Rietveld analysis on powder x-ray diffraction data in the composition range 0.35 ≤ x ≤ 0.55. The stability region of various crystallographic phases at room temperature for (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} is determined precisely. Structural transformation from pseudo-cubic (x ≤ 0.40) to tetragonal (x ≥ 0.50) phase is observed via phase coexistence region demarcating the morphotropic phase boundary. The morphotropic phase boundary region consists of coexisting tetragonal and monoclinic structures with space group P4mm and Pm, respectively, stable in composition range 0.41 ≤ x ≤ 0.49 as confirmed by Rietveld analysis. The results of Rietveld analysis completely rule out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier workers. A comparison between the bond lengths for “B-site cations-oxygen anions” obtained after Rietveld refinement, with the bond length calculated using Shannon-Prewitt ionic radii, reveals the ionic nature of B-O (Ni/Ti-O) bonds for the cubic phase and partial covalent character for the other crystallographic phases.

  11. X-ray diffraction and dielectric studies across morphotropic phase boundary in (1 - x) [Pb(Mg0.5W0.5)O3]-xPbTiO3 ceramics

    International Nuclear Information System (INIS)

    Singh, A.K.; Singh, Akhilesh Kumar

    2011-01-01

    Research highlights: → Structural studies reveal pseudocubic structure of PMW-xPT for the x ≤ 0.42, tetragonal for the x ≥ 0.72 and the coexistences of the two phases for intermediate compositions (0.46 ≤ x 0.68). → Temperature dependent dielectric constant for compositions in the two phase region shows two dielectric anomalies above room temperature and not just one as reported by earlier workers. → Rietveld structural analysis of PMW-xPT ceramics is presented for the first time to determine the fraction of the coexisting phases in MPB region. - Abstract: We present here the results of comprehensive X-ray diffraction and dielectric studies on several compositions of (1 - x)[Pb(Mg 0.5 W 0.5 )O 3 ]-xPbTiO 3 (PMW-xPT) solid solution across the morphotropic phase boundary. Rietveld analysis of the powder X-ray diffraction data reveals cubic (space group Fm3m) structure of PMW-xPT ceramics for the compositions with x ≤ 0.42, tetragonal (space group P4mm) structure for the compositions with x ≥ 0.72 and coexistence of the tetragonal and cubic phases for the intermediate compositions (0.46 ≤ x ≤ 0.68). Temperature dependence of the dielectric permittivity above room temperature exhibits diffuse nature of phase transitions for the compositions in the cubic and two phase region while the compositions with tetragonal structure at room temperature exhibit sharp ferroelectric to paraelectric phase transition. The PMW-xPT compositions with coexistence of tetragonal and cubic phases at room temperature exhibit two anomalies in the temperature dependence of the dielectric permittivity above room temperature. Using results of structural and dielectric studies a partial phase diagram of PMW-xPT ceramics is also presented.

  12. Boundary issues

    Science.gov (United States)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  13. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  14. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Govindaiah, T. N., E-mail: tngovi.phy@gmail.com; Sreepad, H. R. [Post-Graduate Department of Physics, Government College (Autonomous), Mandya-571401 (India); Sridhar, K. N.; Sridhara, G. R.; Nagaraja, N. [Government College for Boys, Kolar-563101 (India)

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  15. Influence of the strength of the smectic order on the backbone anisotropy of side-chain liquid crystal polymers as revealed by SANS

    Science.gov (United States)

    Noirez, L.; Keller, P.; Cotton, J. P.

    1992-06-01

    It is proposed that the strength of the smectic order determines the backbone anisotropy of side-chain liquid crystal polymers. Here this strength increases with the length of the alkyl terminal group of the mesogens. Two liquid crystal polymethacrylates differing only by the mesogenic tails —OCH3 and —OC4H9 are considered. The backbone anisotropy of these polymers is measured by small angle neutron scattering (SANS) whereas the smectic order is evaluated from the intensity of the 001 Bragg peak. Il est proposé que la qualité de l'ordre smectique détermine l'anisotropie du squelette de polymères mésomorphes en peigne confinés dans les lamelles. Ici l'ordre smectique est augmenté en allongeant le groupe alkyl terminal des mésogènes. Nous étudions deux polyméthacrylates cristal liquide qui ne différent que par leurs groupes terminaux : —OCH3 et —OC4H9. L'anisotropie du squellete est mesurée par diffusion de neutrons aux petits angles tandis que l'ordre smectique est évalué à l'aide de l'intensité du pic de Bragg 001.

  16. Mechanism of smectic arrangement of montmorillonite and bentonite clay platelets incorporated in gels of poly(acrylamide) induced by the interaction with cationic surfactants.

    Science.gov (United States)

    Starodoubtsev, S G; Lavrentyeva, E K; Khokhlov, A R; Allegra, G; Famulari, A; Meille, S V

    2006-01-03

    Structure transitions, induced by the interaction with the cationic surfactant cetylpyridinium chloride in nanocomposite gels of poly(acrylamide) with incorporated suspensions of the two closely related layered clays bentonite and montmorillonite, were studied. Unexpectedly, different behaviors were revealed. X-ray diffraction measurements confirm that, due to the interaction with the surfactant, initially disordered bentonite platelets arrange into highly ordered structures incorporating alternating clay platelets and surfactant bilayers. The formation of these smectic structures also in the cross-linked polymer gels, upon addition of the surfactant, is explained by the existence of preformed, poorly ordered aggregates of the clay platelets in the suspensions before the gel formation. In the case of montmorillonite, smectic ordering of the disordered platelets in the presence of the surfactant is observed only after drying the suspensions and the clay-gel composites. Rheology studies of aqueous suspensions of the two clays, in the absence of both surfactant and gel, evidence a much higher viscosity for bentonite than for montmorillonite, suggesting smaller clay-aggregate size in the latter case. Qualitatively consistent results are obtained from optical micrographs.

  17. Properties of morphotropic phase boundary Pb(Mg1/3Nb2/3)O3PbTiO3 films with submicrometre range thickness on Si-based substrates

    OpenAIRE

    Algueró , M; Stewart , M; Cain , M G; Ramos , P; Ricote , J; Calzada , M L

    2010-01-01

    Abstract The electrical properties of (1-x)Pb(Mg 1/3 Nb 2/3)O 3 -xPbTiO 3 films with composition in the morphotropic phase boundary region around x=0.35, submicron thickness and columnar microstructure, prepared on Si based substrates by chemical solution deposition are presented and discussed in relation to the properties of coarse and fine grained ceramics. The films show relaxor characteristics that are proposed to result from a grain size effect on the kinetics of the relaxor to ferroe...

  18. Micro Galvanic Cell To Generate PtO and Extend the Triple-Phase Boundary during Self-Assembly of Pt/C and Nafion for Catalyst Layers of PEMFC.

    Science.gov (United States)

    Long, Zhi; Gao, Liqin; Li, Yankai; Kang, Baotao; Lee, Jin Yong; Ge, Junjie; Liu, Changpeng; Ma, Shuhua; Jin, Zhao; Ai, Hongqi

    2017-11-08

    The self-assembly powder (SAP) with varying Nafion content was synthesized and characterized by XRD, XPS, HRTEM, and mapping. It is observed that the oxygen from oxygen functional groups transfers to the surface of Pt and generate PtO during the process of self-assembly with the mechanism of micro galvanic cell, where Pt, carbon black, and Nafion act as the anode, cathode and electrolyte, respectively. The appearance of PtO on the surface of Pt leads to a turnover of Nafion structure, and therefore more hydrophilic sulfonic groups directly contact with Pt, and thus the triple-phase boundary (TPB) has been expanded.

  19. Unconventional phase transitions in liquid crystals

    Science.gov (United States)

    Kats, E. I.

    2017-12-01

    According to classical textbooks on thermodynamics or statistical physics, there are only two types of phase transitions: continuous, or second-order, in which the latent heat L is zero, and first-order, in which L ≠ 0. Present-day textbooks and monographs also mention another, stand-alone type—the Berezinskii-Kosterlitz-Thouless transition, which exists only in two dimensions and shares some features with first- and second-order phase transitions. We discuss examples of non-conventional thermodynamic behavior (i.e., which is inconsistent with the theoretical phase transition paradigm now universally accepted). For phase transitions in smectic liquid crystals, mechanisms for nonconventional behavior are proposed and the predictions they imply are examined.

  20. Mechanisms Responsible for the Large Piezoelectricity at the Tetragonal-Orthorhombic Phase Boundary of (1-x)BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 System.

    Science.gov (United States)

    Yang, Tao; Ke, Xiaoqin; Wang, Yunzhi

    2016-09-16

    Recently it was found that in the lead-free (1-x)BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 (BZT-xBCT) system, the highest piezoelectric d33 coefficient appears at the tetragonal (T) - orthorhombic (O) phase boundary rather than the O - rhombohedral (R) phase boundary, but the physical origin of it is still unclear. In this work we construct the phase diagram of the BZT-xBCT system using a generic sixth-order Landau free energy polynomial and calculate the energy barrier (EB) for direct domain switching between two variants of the stable low-symmetry ferroelectric phase. We find that the EB at the T-O phase boundary is lower than that at the O-R phase boundary and EB may serve as a rigorous quantitative measure of the degree of polarization anisotropy through Landau potential. The calculations may shed some light on the physical origin of the highest piezoelectric coefficients as well as the softest elastic compliance at the T-O phase boundary observed in experiments.

  1. Grain boundaries in Ni3Al. 2

    International Nuclear Information System (INIS)

    Kung, H.; Sass, S.L.

    1992-01-01

    This paper discusses the dislocation structure of small angle tilt and twist boundaries in ordered Ni 3 Al, with and without boron, investigated using transmission electron microscopy. Dislocation with Burgers vectors that correspond to anti-phase boundary (APB)-coupled superpartials were found in small angle twist boundaries in both boron-free and boron-doped Ni 3 Al, and a small angle tilt boundary in boron-doped Ni 3 Al. The boundary structures are in agreement with theoretical models proposed by Marcinkowski and co-workers. The APB energy determined from the dissociation of the grain boundary dislocations was lower than values reported for isolated APBs in Ni 3 Al. For small angle twist boundaries the presence of boron reduced the APB energy at the interface until it approached zero. This is consistent with the structure of these boundaries containing small regions of increased compositional disorder in the first atomic plane next to the interface

  2. Two-liquid-phase boundaries and critical phenomena at 275 to 4000C for high-temperature aqueous potassium phosphate and sodium phosphate solutions. Potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1982-01-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases or liquid-liquid immisibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators

  3. Regional boundaries study

    International Nuclear Information System (INIS)

    Zavatsky, S.; Phaneuf, P.; Topaz, D.; Ward, D.

    1978-02-01

    The NRC Office of Inspection and Enforcement (IE) has elected to evaluate the effectiveness and efficiency of its existing regional boundary alignment because of the anticipated future growth of nuclear power generating facilities and corresponding inspection requirements. This report documents a management study designed to identify, analyze, and evaluate alternative regional boundary configurations for the NRC/IE regions. Eight boundary configurations were chosen for evaluation. These configurations offered alternatives ranging from two to ten regions, and some included the concepts of subregional or satellite offices. Each alternative configuration was evaluated according to three major criteria: project workload, cost, and office location. Each major criterion included elements such as management control, program uniformity, disruption, costs, and coordination with other agencies. The conclusion reached was that regional configurations with regions of equal and relatively large workloads, combined with the concepts of subregional or satellite offices, may offer a significant benefit to the Office of Inspection and Enforcement and the Commission and are worthy of further study. A phased implementation plan, which is suitable to some configurations, may help mitigate the disruption created by realignment

  4. The role of inversion domain boundaries in fabricating crack-free GaN films on sapphire substrates by hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yong Nam, E-mail: ynahn81@gmail.com; Lee, Sung Hoon, E-mail: sunghoon.lee@corning.com; Lim, Sung Keun, E-mail: sk96.lim@samsung.com; Woo, Kwang Je, E-mail: kwangje.woo@corning.com; Kim, Hyunbin, E-mail: hyunbin.kim@corning.com

    2015-03-15

    Highlights: • Atomistic simulations of inversion domain boundary (IDB) in GaN were performed. • The existence of IDBs in GaN films leads to the reduction of the film stiffness. • A sudden reduction of IDB density induces a strong tensile stress within the films. • The density of IDB in GaN film can be controlled by adjusting GaCl/NH{sub 3} flow ratio. • A microstructure of GaN buffer layer for minimization of stress was proposed. - Abstract: Inversion domain boundaries (IDBs) are frequently found in GaN films grown on sapphire substrates. However, the lack of atomic-level understandings about the effects of the IDBs on the properties of GaN films has hindered to utilize the IDBs for the stress release that minimizes the crack-formation in GaN films. This study performed atomistic computational analyses to fundamentally understand the roles of the IDBs in the development of the stresses in the GaN films. A sudden reduction of the IDB density induces a strong intrinsic stress in the GaN films, possibly leading to the mud-cracking of the films. A gradual decrease in the IDB density was achieved by slowly reducing the GaCl flux during the growth process of GaN buffer layer on sapphire substrates, and allowed us to experimentally demonstrate the successful fabrication of 4-in. crack-free GaN films. This approach may contribute to the fabrication of larger crack-free GaN films.

  5. The role of inversion domain boundaries in fabricating crack-free GaN films on sapphire substrates by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Ahn, Yong Nam; Lee, Sung Hoon; Lim, Sung Keun; Woo, Kwang Je; Kim, Hyunbin

    2015-01-01

    Highlights: • Atomistic simulations of inversion domain boundary (IDB) in GaN were performed. • The existence of IDBs in GaN films leads to the reduction of the film stiffness. • A sudden reduction of IDB density induces a strong tensile stress within the films. • The density of IDB in GaN film can be controlled by adjusting GaCl/NH 3 flow ratio. • A microstructure of GaN buffer layer for minimization of stress was proposed. - Abstract: Inversion domain boundaries (IDBs) are frequently found in GaN films grown on sapphire substrates. However, the lack of atomic-level understandings about the effects of the IDBs on the properties of GaN films has hindered to utilize the IDBs for the stress release that minimizes the crack-formation in GaN films. This study performed atomistic computational analyses to fundamentally understand the roles of the IDBs in the development of the stresses in the GaN films. A sudden reduction of the IDB density induces a strong intrinsic stress in the GaN films, possibly leading to the mud-cracking of the films. A gradual decrease in the IDB density was achieved by slowly reducing the GaCl flux during the growth process of GaN buffer layer on sapphire substrates, and allowed us to experimentally demonstrate the successful fabrication of 4-in. crack-free GaN films. This approach may contribute to the fabrication of larger crack-free GaN films

  6. GRAIN-BOUNDARY PRECIPITATION UNDER IRRADIATION IN DILUTE BINARY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    S.H. Song; Z.X. Yuan; J. Liu; R.G.Faulkner

    2003-01-01

    Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundaries. Until now the kinetic models for irradiation-induced grain boundary precipitation have been sparse. For this reason, we have theoretically treated grain boundary precipitation under irradiation in dilute binary alloys. Predictions ofγ'-Ni3Si precipitation at grain boundaries ave made for a dilute Ni-Si alloy subjected to irradiation. It is demonstrated that grain boundary silicon segregation under irradiation may lead to grain boundaryγ'-Ni3 Si precipitation over a certain temperature range.

  7. Technology for Boundaries

    DEFF Research Database (Denmark)

    Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina

    2003-01-01

    .After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies......This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries...... seem a core issue when dealing with technology for boundaries....

  8. Microbial Mineral Transformations at the Fe(II)/Fe(III) Redox Boundary for Solid Phase Capture of Strontium and Other Metal/Radionuclide Contaminants

    International Nuclear Information System (INIS)

    Ferris, F.G.; Roden, E.E.

    2000-01-01

    The migration of 90 Sr in groundwater is a significant environmental concern at former nuclear weapons production sites in the US and abroad. Although retardation of 90 Sr transport relative to mean groundwater velocity is known to occur in contaminated aquifers, Sr 2+ does not sorb as strongly to iron oxides and other mineral phases as do other metal-radionuclides contaminants. Thus, some potential exists for extensive 90 Sr migration from sources of contamination. Chemical or biological processes capable of retarding or immobilizing Sr 2+ in groundwater environments are of interest from the standpoint of understanding controls on subsurface Sr 2+ migration. In addition, it may be possible to exploit such processes for remediation of subsurface Sr contamination. In this study the authors examined the potential for the solid phase sorption and incorporation of Sr 2+ into carbonate minerals formed during microbial Fe(III) oxide reduction as a first step toward evaluating whether this process could be used to promote retardation of 90 Sr migrations in anaerobic subsurface environments. The demonstration of Sr 2+ capture in carbonate mineral phases formed during bacterial HFO reduction and urea hydrolysis suggests that microbial carbonate mineral formation could contribute to Sr 2+ retardation in groundwater environments. This process may also provide a mechanism for subsurface remediation of Sr 2+ and other divalent metal contaminants that form insoluble carbonate precipitates

  9. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Westesen, K; Drechsler, M

    2004-01-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester....

  10. Electroclinic effect in the chiral lamellar α phase of a lyotropic liquid crystal

    Science.gov (United States)

    Harjung, Marc D.; Giesselmann, Frank

    2018-03-01

    In thermotropic chiral Sm -A* phases, an electric field along the smectic layers breaks the D∞ symmetry of the Sm -A* phase and induces a tilt of the liquid crystal director. This so-called electroclinic effect (ECE) was first reported by Garoff and Meyer in 1977 and attracted substantial scientific and technological interest due to its linear and submicrosecond electro-optic response [S. Garoff and R. B. Meyer, Phys. Rev. A 19, 338 (1979), 10.1103/PhysRevA.19.338]. We now report the observation of an ECE in the pretransitional regime from a lyotropic chiral lamellar Lα* phase into a lyo-Sm -C* phase, the lyotropic analog to the thermotropic Sm -C* phase which was recently discovered by Bruckner et al. [Angew. Chem. Int. Ed. 52, 8934 (2013), 10.1002/anie.201303344]. We further show that the observed ECE has all signatures of its thermotropic counterpart, namely (i) the effect is chiral in nature and vanishes in the racemic Lα phase, (ii) the effect is essentially linear in the sign and magnitude of the electric field, and (iii) the magnitude of the effect diverges hyperbolically as the temperature approaches the critical temperature of the second order tilting transition. Specific deviations between the ECEs in chiral lamellar and chiral smectic phases are related to the internal field screening effect of electric double layers formed by inevitable ionic impurities in lyotropic phases.

  11. The effect of thermal cycling on the movement of the αZr/ αZr hydride phase boundary in cold-worked Zr-2.5 wt% Nb alloy

    International Nuclear Information System (INIS)

    Cox, B.; Ling, V.C.

    1980-05-01

    A piece of CW Zr-2.5 wt% Nb alloy pressure tube was hydrided at one end in 40 g/L LiOH solution at 573 K (after nickel-plating that end). The result was a solid hydride layer 0.6 mm thick plus approximately 130 ppm hydrogen in the core under the nickel plate. Thermal cycling under conditions similar to those likely to be experienced during a reactor trip did not cause any significant movement of the α+hydride/α phase boundary along the tube for up to 2688 cycles from 573 to 523 K. Supercharging of the core was observed in the nickel-plated area. Some conclusions have been drawn concerning the origin of the hydrogen in the nickel-plated area, and the factors controlling the supercharging process. (auth)

  12. Gas phase acid, ammonia and aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) 2007 intensive sampling period

    Science.gov (United States)

    Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.

    2013-12-01

    We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.

  13. Gas phase acid, ammonia and aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe 2007 intensive sampling period

    Directory of Open Access Journals (Sweden)

    R. Sander

    2013-12-01

    Full Text Available We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe field campaign at the Cape Verde Atmospheric Observatory (CVAO on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*. Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br and ion chromatography (SO42−, Cl−, Br−, NH4+, Na+, K+, Mg2+, and Ca2+. Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.

  14. Raman spectroscopy of Pb(Zr.sub.1-x./sub.Ti.sub.x./sub.)O.sub.3./sub. graded ceramics around the morphotropic phase boundary

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Berta, Milan; Kozielski, L.; Gregora, Ivan

    2011-01-01

    Roč. 84, 5-6 (2011), s. 528-541 ISSN 0141-1594 R&D Projects: GA AV ČR KAN301370701; GA ČR GAP204/10/0616 Institutional research plan: CEZ:AV0Z10100520 Keywords : Raman spectroscopy * PZT ceramics * phonons * ferroelectric phase transitions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.006, year: 2011 http://www.informaworld.com/smpp/content~db=all~content=a935088116~frm=titlelink?words=buixaderas

  15. Tuning the phase diagrams: the miscibility studies of multilactate liquid crystalline compounds

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Tykarska, M.; Hamplová, Věra; Kurp, K.

    2016-01-01

    Roč. 89, č. 9 (2016), s. 885-893 ISSN 0141-1594 R&D Projects: GA ČR GA13-14133S; GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : miscibility study * binary mixture * polar smectic phase * lactic acid derivative * miscibility study * phase diagram * self-assembling behaviour Subject RIV: JJ - Other Materials Impact factor: 1.060, year: 2016

  16. Properties of morphotropic phase boundary Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} films with submicrometre range thickness on Si-based substrates

    Energy Technology Data Exchange (ETDEWEB)

    Alguero, M; Ricote, J; Calzada, M L [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Stewart, M; Cain, M G [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Ramos, P [Departamento de Electronica, Universidad de Alcala. 28871 Alcala de Henares (Spain)

    2010-05-26

    The electrical properties of (1 - x)Pb(Mg{sub 1/3} Nb{sub 2/3})O{sub 3} - xPbTiO{sub 3} films with composition in the morphotropic phase boundary region around x = 0.35, submicrometre thickness and columnar microstructure, prepared on Si-based substrates by chemical solution deposition are presented and discussed in relation to the properties of coarse and fine grained ceramics. The films show relaxor characteristics that are proposed to result from a grain size effect on the kinetics of the relaxor to ferroelectric transition. The transition is slowed down for grain sizes in the submicrometre range, and as a consequence intermediate polar domain configurations with typical length scales in the submicrometre- and nanoscales are stabilized. A high saturation polarization can be attained under field, but fast polarization relaxation occurs after its removal, and negligible remanent values are obtained. At the same time, they also show spontaneous piezoelectricity and pyroelectricity. Self-polarization is thus present, which indicates the existence of an internal electric field that is most probably a substrate effect. Films would then be in a phase instability, at an intermediate state between the relaxor and ferroelectric ones, and under a bias electric field, which would explain the very high spontaneous pyroelectric response found.

  17. Rigid supersymmetry with boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics

    2008-01-15

    We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)

  18. Modelling classroom conditions with different boundary conditions

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    A model that combines image source modelling and acoustical radiosity with complex boundary condition, thus including phase shifts on reflection has been developed. The model is called PARISM (Phased Acoustical Radiosity and Image Source Model). It has been developed in order to be able to model...

  19. Political State Boundary (National)

    Data.gov (United States)

    Department of Transportation — State boundaries with political limit - boundaries extending into the ocean (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an...

  20. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  1. HUD GIS Boundary Files

    Data.gov (United States)

    Department of Housing and Urban Development — The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in...

  2. State Agency Administrative Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...

  3. Adaptive strain prompting a pseudo-morphotropic phase boundary in ferroelectric (1-x ) Na0.5Bi0.5TiO3-x BaTiO3

    Science.gov (United States)

    Datta, K.; Neder, R. B.; Richter, A.; Göbbels, M.; Neuefeind, J. C.; Mihailova, B.

    2018-05-01

    The understanding of the atomistic origin of the morphotropic phase boundary (MPB) occurring in composition-temperature phase diagrams of ferroelectric solid solutions is a key topic in material science because materials often exhibit anomalous properties at the MPB. Here we reveal mesoscopic-scale structural correlations for a leading Pb-free ferroelectric system, (1 -x ) Na0.5Bi0.5TiO3-x BaTiO3 (NBT-x BT ), by examining atomic pair distribution functions and Raman scattering data at ambient conditions. We demonstrate that the amplification of the piezoelectric properties of NBT-x BT at the MPB are predominantly driven by an easy switchability resulting from a progressive decoupling between strain and polarization as the Ba content increases from zero to the critical MPB composition. It was observed that as Ba content increases towards MPB, competing local correlations, such as A-site chemical order, antiferrodistortive correlations of correlated BO6 tilts, and antipolar Bi shifts, are reduced, which in turn renders favorable conditions for easy switching of local dipoles under external fields. In addition, the evolving characteristics of the atomic dynamics as a function of composition suggest that the local potential functions of the cations are not completely flat at the MPB. Altogether, our results reveal atomistic mechanisms responsible for the observed elevated MPB properties in the case of NBT-x BT which imply that the so-called MPB of NBT-x BT should not be categorized as originally introduced for Pb-containing solid solutions.

  4. Neutron and x-ray scattering study of phonon dispersion and diffuse scattering in (Na ,Bi ) Ti O3-x BaTi O3 single crystals near the morphotropic phase boundary

    Science.gov (United States)

    Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; Viehland, Dwight; Winn, Barry; Ren, Yang; Li, Xiaobing; Luo, Haosu; Delaire, Olivier

    2017-11-01

    Neutron and x-ray scattering measurements were performed on (N a1 /2B i1 /2 ) Ti O3-x at %BaTi O3 (NBT-x BT ) single crystals (x =4 , 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the Γ points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. In samples with compositions closest to the MPB, our inelastic neutron scattering investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and Γ points, respectively. These critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.

  5. Direct Determination Of γ′ / γ′+γ / γ Phase Boundaries In Ni-Al-Cr System Based On Enthalpy Of Formation Results Obtained By Calorimetric Solution Method

    Directory of Open Access Journals (Sweden)

    Maciąg T.

    2015-09-01

    Full Text Available The work is a continuation of the research carried out on a high-temperature calorimeter solution type on alloys from Ni-Al-Cr system. Thanks to the construction innovation introduced by authors the device allows the determination of the formation enthalpy of alloys at ambient and elevated temperatures. Experiments described in this article were carried out at three temperatures: 873K, 996K and 1150K on the alloys of the chemical compositions from the Ni75Al25 ÷ Ni87Cr13 section of the Ni-Al-Cr system. On the basis of changes in the enthalpy of formation with increasing chromium content of the alloys, points corresponding to places of phase boundaries γ′ / γ′+γ / γ in Ni-Al-Cr system were determined. A similar relationship was observed in previous studies of alloys from Ni75Al25÷Ni75Cr25 section. For precise determination of these characteristic points a statistical model was applied

  6. On boundary superalgebras

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2010-01-01

    We examine the symmetry breaking of superalgebras due to the presence of appropriate integrable boundary conditions. We investigate the boundary breaking symmetry associated with both reflection algebras and twisted super-Yangians. We extract the generators of the resulting boundary symmetry as well as we provide explicit expressions of the associated Casimir operators.

  7. Thermotropic phase transition in an adsorbed melissic acid film at the n-hexane-water interface

    Science.gov (United States)

    Tikhonov, A. M.

    2017-06-01

    A reversible thermotropic phase transition in an adsorption melissic acid film at the interface between n-hexane and an aqueous solution of potassium hydroxide (pH ≈ 10) is investigated by X-ray reflectometry and diffuse scattering using synchrotron radiation. The experimental data indicate that the interface "freezing" transition is accompanied not only by the crystallization of the Gibbs monolayer but also by the formation of a planar smectic structure in the 300-Å-thick adsorption film; this structure is formed by 50-Å-thick layers.

  8. From phase to microphase separation in flocking models: the essential role of nonequilibrium fluctuations.

    Science.gov (United States)

    Solon, Alexandre P; Chaté, Hugues; Tailleur, Julien

    2015-02-13

    We show that the flocking transition in the Vicsek model is best understood as a liquid-gas transition, rather than an order-disorder one. The full phase separation observed in flocking models with Z(2) rotational symmetry is, however, replaced by a microphase separation leading to a smectic arrangement of traveling ordered bands. Remarkably, continuous deterministic descriptions do not account for this difference, which is only recovered at the fluctuating hydrodynamics level. Scalar and vectorial order parameters indeed produce different types of number fluctuations, which we show to be essential in selecting the inhomogeneous patterns. This highlights an unexpected role of fluctuations in the selection of flock shapes.

  9. Nematic-smectic A and nematic-solid transitions of parallel hard spherocylinders from density functional theory

    NARCIS (Netherlands)

    University Utrecht

    1992-01-01

    A simple density functional theory for the various liquid-crystalline phases of parallel hard spherocylinders is formulated on the basis of Pynn's ansatz for the direct correlation function of the spherocylinders. Fair agreement with the computer simulations is found.

  10. Contrasting Boundary Scavenging in two Eastern Boundary Current Regimes

    Science.gov (United States)

    Anderson, R. F.; Fleisher, M. Q.; Pavia, F. J.; Vivancos, S. M.; Lu, Y.; Zhang, P.; Cheng, H.; Edwards, R. L.

    2016-02-01

    We use data from two US GEOTRACES expeditions to compare boundary scavenging intensity in two eastern boundary current systems: the Canary Current off Mauritania and the Humboldt Current off Peru. Boundary scavenging refers to the enhanced removal of trace elements from the ocean by sorption to sinking particles in regions of greater than average particle abundance. Both regimes experience high rates of biological productivity and generation of biogenic particles, with rates of productivity potentially a little greater off Peru, whereas dust fluxes are an order of magnitude greater off NW Africa (see presentation by Vivancos et al., this meeting). Despite greater productivity off Peru, we find greater intensity of scavenging off NW Africa as measured by the residence time of dissolved 230Th integrated from the surface to a depth of 2500 m (10-11 years off NW Africa vs. 15-17 years off Peru). Dissolved 231Pa/230Th ratios off NW Africa (Hayes et al., Deep Sea Res.-II 116 (2015) 29-41) are nearly twice the values observed off Peru. We attribute this difference to the well-known tendency for lithogenic phases (dust) to strongly fractionate in favor of Th uptake during scavenging and removal, leaving the dissolved phase enriched in Pa. This behavior needs to be considered when interpreting sedimentary 231Pa/230Th ratios as a paleo proxy.

  11. DSC and X-ray diffraction investigations of phase transitions in HxBABA and NBABA

    International Nuclear Information System (INIS)

    Usha Deniz, K.; Paranjpe, A.S.; Mirza, E.B.; Parvathanathan, P.S.; Patel, K.S.

    1979-01-01

    The phase transitions and the heats of transformation, of the hexyl (HxBABA) and nonyl (NBABA) members of the series of compounds, p-n-Alkoxybenzylidene-p-Aminobenzoic Acids, have been studied by DSC in the temperature range, - 100 0 C to 300 0 C. A scheme of transitions has been proposed for each of the compounds. X-ray diffraction measurements have been done in the smectic C(Ssub(c)) and nematic (N) phases of these materials. The results reveal that (1) the Ssub(c) phase in both compounds is of the C 1 -type, (2) Ssub(c)-type order is seen throughout the nematic phase in HxBABA, whereas in NBABA, it is seen only in the neighbourhood of the Ssub(c)-N transition, (3) the temperature dependence of the smectic layer thickness, d, and of the directly measured tilt angle, theta sub(t,d), reflect faithfully the strength of the first order transition, Ssub(c)-N, and (4) there is a marked difference between the values and the temperature variations of theta sub(t,d) and theta sub(t,c) (tilt angle calculated from d) which is not completely understood, at present

  12. Lattice Boltzmann methods for moving boundary flows

    International Nuclear Information System (INIS)

    Inamuro, Takaji

    2012-01-01

    The lattice Boltzmann methods (LBMs) for moving boundary flows are presented. The LBM for two-phase fluid flows with the same density and the LBM combined with the immersed boundary method are described. In addition, the LBM on a moving multi-block grid is explained. Three numerical examples (a droplet moving in a constricted tube, the lift generation of a flapping wing and the sedimentation of an elliptical cylinder) are shown in order to demonstrate the applicability of the LBMs to moving boundary problems. (invited review)

  13. Lattice Boltzmann methods for moving boundary flows

    Energy Technology Data Exchange (ETDEWEB)

    Inamuro, Takaji, E-mail: inamuro@kuaero.kyoto-u.ac.jp [Department of Aeronautics and Astronautics, and Advanced Research Institute of Fluid Science and Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2012-04-01

    The lattice Boltzmann methods (LBMs) for moving boundary flows are presented. The LBM for two-phase fluid flows with the same density and the LBM combined with the immersed boundary method are described. In addition, the LBM on a moving multi-block grid is explained. Three numerical examples (a droplet moving in a constricted tube, the lift generation of a flapping wing and the sedimentation of an elliptical cylinder) are shown in order to demonstrate the applicability of the LBMs to moving boundary problems. (invited review)

  14. Grain boundary migration

    International Nuclear Information System (INIS)

    Dimitrov, O.

    1975-01-01

    Well-established aspects of grain-boundary migration are first briefly reviewed (influences of driving force, temperature, orientation and foreign atoms). Recent developments of the experimental methods and results are then examined, by considering the various driving of resistive forces acting on grain boundaries. Finally, the evolution in the theoretical models of grain-boundary motion is described, on the one hand for ideally pure metals and, on the other hand, in the presence of solute impurity atoms [fr

  15. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  16. Understanding crumpling lipid vesicles at the gel phase transition

    Science.gov (United States)

    Hirst, Linda; Ossowski, Adam; Fraser, Matthew

    2011-03-01

    Wrinkling and crumpling transitions in different membrane types have been studied extensively in recent years both theoretically and computationally. There has also been very interesting recent work on defects in liquid crystalline shells. Lipid bilayer vesicles, widely used in biophysical research can be considered as a single layer smectic shell in the liquid crystalline phase. On cooling the lipid vesicle a transition to the gel phase may take place in which the lipid chains tilt and assume a more ordered packing arrangement. We observe large scale morphological changes in vesicles close to this transition point using fluorescence microscopy and investigate the possible mechanisms for this transition. Confocal microscopy is used to map 3D vesicle shape and crumpling length-scales. We also employ the molecular tilt sensitive dye, Laurdan to investigate the role of tilt domain formation on macroscopic structure. Funded by NSF CAREER award (DMR - BMAT #0852791).

  17. Boundary-bulk relation in topological orders

    Directory of Open Access Journals (Sweden)

    Liang Kong

    2017-09-01

    Full Text Available In this paper, we study the relation between an anomaly-free n+1D topological order, which are often called n+1D topological order in physics literature, and its nD gapped boundary phases. We argue that the n+1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This uniqueness defines the notion of the “bulk” for a given gapped boundary phase. In this paper, we show that the n+1D “bulk” phase is given by the “center” of the nD boundary phase. In other words, the geometric notion of the “bulk” corresponds precisely to the algebraic notion of the “center”. We achieve this by first introducing the notion of a morphism between two (potentially anomalous topological orders of the same dimension, then proving that the notion of the “bulk” satisfies the same universal property as that of the “center” of an algebra in mathematics, i.e. “bulk = center”. The entire argument does not require us to know the precise mathematical description of a (potentially anomalous topological order. This result leads to concrete physical predictions.

  18. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  19. Development of boundary layers

    International Nuclear Information System (INIS)

    Herbst, R.

    1980-01-01

    Boundary layers develop along the blade surfaces on both the pressure and the suction side in a non-stationary flow field. This is due to the fact that there is a strongly fluctuating flow on the downstream blade row, especially as a result of the wakes of the upstream blade row. The author investigates the formation of boundary layers under non-stationary flow conditions and tries to establish a model describing the non-stationary boundary layer. For this purpose, plate boundary layers are measured, at constant flow rates but different interferent frequency and variable pressure gradients. By introducing the sample technique, measurements of the non-stationary boundary layer become possible, and the flow rate fluctuation can be divided in its components, i.e. stochastic turbulence and periodical fluctuation. (GL) [de

  20. Optic and electro-optic investigations on SmQ, SmCA* and L phases in highly chiral compounds

    International Nuclear Information System (INIS)

    Manai, M.; Gharbi, A.; Marcerou, J.P.; Nguyen, H.T.; Rouillon, J.C.

    2005-01-01

    Chiral molecules give rise to a large variety of mesophases. Well-known examples are cholesteric or ferroelectric smectic phases where the chirality tends to favor a macroscopic twist. Furthermore, the molecular core length (l) plays an important role on the range of the mesophases and on the temperature (T NI ) for the onset of orientational order. The tendency for T NI is to increase (going over 200 - bar C for some compounds) with increasing l. We report in this paper on a selection of compounds which have been designed in order to favor an anticlinic smectic ordering together with high chirality. As a common feature, they have a long rigid core with four benzene rings and a chiral chain (usually the same) at each end. They display a locally anisotropic liquid phase referred to as ''L phase'' in a large temperature range between T NI and the low temperature SmQ or SmC A * phase. Optical rotatory power (ORP), birefringence and electro-optic studies have been performed with these compounds

  1. Grain boundary engineering of highly deformable ceramics

    International Nuclear Information System (INIS)

    Mecartney, M.L.

    2000-01-01

    Highly deformable ceramics can be created with the addition of intergranular silicate phases. These amorphous intergranular phases can assist in superplastic deformation by relieving stress concentrations and minimizing grain growth if the appropriate intergranular compositions are selected. Examples from 3Y-TZP and 8Y-CSZ ceramics are discussed. The grain boundary chemistry is analyzed by high resolution analytical TEM is found to have a strong influence on the cohesion of the grains both at high temperature and at room temperature. Intergranular phases with a high ionic character and containing large ions with a relatively weak bond strength appear to cause premature failure. In contrast, intergranular phases with a high degree of covalent character and similar or smaller ions than the ceramic and a high ionic bond strength are the best for grain boundary adhesion and prevention of both cavitation at high temperatures and intergranular fracture at room temperature

  2. A structural study of lamellar phases formed by nucleoside-functionalized lipids

    Energy Technology Data Exchange (ETDEWEB)

    Berti, D.; Fratini, E.; Baglioni, P. [Department of Chemistry and CSGI, University of Florence, Via G. Capponi 9, 50121 Florence (Italy); Dante, S.; Hauss, T. [Berlin Neutron Scattering Center, Hahn Meitner Institut, Glienicker Strasse 100, Wannsee, 14109 Berlin (Germany)

    2002-07-01

    We report a neutron-scattering investigation of lamellar phases formed by novel phospholipids bearing nucleosides at the polar-head-group region. These nucleolipids can interact through stacking and H-bond interactions, following a pattern that resembles base-base coupling in natural nucleic acids (DNA, RNA), i.e. they have similar recognition properties. Bilayer stacks formed of DPP-adenosine, DPP-uridine and their 1:1 mixture were investigated after equilibration in a 98% relative humidity atmosphere. The DPP-adenosine spectrum can be accounted for (in analogy to DPPC) by a lamellar phase with a smectic period of about 60 A. DPP-uridine displays a not so straightforward behavior that we have tentatively ascribed to the coexistence of lamellae with different smectic periods. In the 1:1 mixture the lamellar mesophase of DPP-uridine is retained, suggesting a specific interaction of the uridine polar-head group with the adenosine moiety of DPP-adenosine. It should be stressed that this behavior can be considered as an indication of the recognition process occurring at the polar-head-group region of the mixed phospholiponucleoside membrane. (orig.)

  3. A structural study of lamellar phases formed by nucleoside-functionalized lipids

    CERN Document Server

    Berti, D; Baglioni, P; Dante, S; Hauss, T

    2002-01-01

    We report a neutron-scattering investigation of lamellar phases formed by novel phospholipids bearing nucleosides at the polar-head-group region. These nucleolipids can interact through stacking and H-bond interactions, following a pattern that resembles base-base coupling in natural nucleic acids (DNA, RNA), i.e. they have similar recognition properties. Bilayer stacks formed of DPP-adenosine, DPP-uridine and their 1:1 mixture were investigated after equilibration in a 98% relative humidity atmosphere. The DPP-adenosine spectrum can be accounted for (in analogy to DPPC) by a lamellar phase with a smectic period of about 60 A. DPP-uridine displays a not so straightforward behavior that we have tentatively ascribed to the coexistence of lamellae with different smectic periods. In the 1:1 mixture the lamellar mesophase of DPP-uridine is retained, suggesting a specific interaction of the uridine polar-head group with the adenosine moiety of DPP-adenosine. It should be stressed that this behavior can be considere...

  4. Transient phases during fast crystallization of organic thin films from solution

    Science.gov (United States)

    Wan, Jing; Li, Yang; Ulbrandt, Jeffrey G.; Smilgies, Detlef-M.; Hollin, Jonathan; Whalley, Adam C.; Headrick, Randall L.

    2016-01-01

    We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C8-BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature >60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s), mobility up to 3.0 cm2/V-s has been observed.

  5. Transient phases during fast crystallization of organic thin films from solution

    Directory of Open Access Journals (Sweden)

    Jing Wan

    2016-01-01

    Full Text Available We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C8-BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature >60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s, mobility up to 3.0 cm2/V-s has been observed.

  6. Administrative Area Boundaries 2 (State Boundaries), Region 9, 2010, NAVTEQ

    Data.gov (United States)

    U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 2 (State Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...

  7. Administrative Area Boundaries 4 (City Boundaries), Region 9, 2010, NAVTEQ

    Data.gov (United States)

    U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 4 (City Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...

  8. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase

    Energy Technology Data Exchange (ETDEWEB)

    Milewska, K.; Drzewiński, W. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Czerwiński, M., E-mail: mczerwinski@wat.edu.pl [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Dąbrowski, R. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Piecek, W. [Institute of Applied Physics, Military University of Technology, 00-908 Warsaw (Poland)

    2016-03-01

    Pure compounds and multicomponent mixtures with a broad temperature range of high tilted liquid crystalline antiferroelectric phase and a direct phase transition from antiferroelectric to isotropic phase, were obtained. X-ray diffraction analysis confirms these kinds of materials form a high tilted anticlinic phase, with a fixed layer spacing and very weak dependency upon temperature, after the transition from the isotropic phase. Due to this, not only pure orthoconic antiferroelectric liquid crystals but also those with a moderate tilt should generate a good dark state. Furthermore, due to the increased potential for forming anticlinic forces, such materials could minimize a commonly observed asymmetry of a rise and fall switching times at a surface stabilized geometry. - Highlights: • The new class of liquid crystalline materials with the direct SmC{sub A}*. • Iso phase transition were obtained. • Materials possess the layer spacing fixed and very weak dependent upon temperature. • Smectic layers without shrinkage are observed. • A good dark state can be generate in SSAFLC.

  9. Tax Unit Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — The Statewide GIS Tax Unit boundary file was created through a collaborative partnership between the State of Kansas Department of Revenue Property Valuation...

  10. 500 Cities: City Boundaries

    Data.gov (United States)

    U.S. Department of Health & Human Services — This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities...

  11. National Forest Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme shows the USFS national forest boundaries in the state. This data was acquired from the GIS coordinators at both the Chippewa National Forest and the...

  12. Allegheny County Parcel Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...

  13. Boundary representation modelling techniques

    CERN Document Server

    2006-01-01

    Provides the most complete presentation of boundary representation solid modelling yet publishedOffers basic reference information for software developers, application developers and users Includes a historical perspective as well as giving a background for modern research.

  14. NM School District Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The dataset represents the boundaries of all public school districts in the state of New Mexico. The source for the data layer is the New Mexico Public Education...

  15. Site Area Boundaries

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of site boundaries from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and...

  16. HUC 8 Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital hydrologic unit boundary that is at the 4-digit, 6-digit, 8-digit, and 11-digit level. The data set was developed by delineating the...

  17. State Park Statutory Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Legislative statutory boundaries for sixty six state parks, six state recreation areas, and eight state waysides. These data are derived principally from DNR's...

  18. Dielectric spectroscopy of the SmQ* phase

    Science.gov (United States)

    Perkowski, P.; Bubnov, A.; Piecek, W.; Ogrodnik, K.; Hamplová, V.; Kašpar, M.

    2011-11-01

    Liquid crystal possessing two biphenyl moieties in the molecular core and lateral chlorine substitution far from the chiral chain has been studied by dielectric spectroscopy. On cooling from the isotropic phase, the material possesses the frustrated smectic Q* (SmQ*) and SmCA* phases. It has been confirmed by dielectric spectroscopy that the SmQ* phase can be related to the SmCA* anti-ferroelectric phase. However, only one relaxation process has been observed in the SmQ* phase, while in the SmCA*, two relaxations are clearly detectable. It seems that the mode found in the SmQ* can be connected with high-frequency anti-phase mode observed in the SmCA* phase. Its relaxation frequency is similar to PH relaxation frequency, but is weaker. The same relaxation has been observed even a few degrees above the SmQ*-Iso phase transition. Another explanation for the mode detected in SmQ* and isotropic phases can be molecular motions around short molecular axis.

  19. The Boundary-Hopf-Fold Bifurcation in Filippov Systems

    NARCIS (Netherlands)

    Efstathiou, Konstantinos; Liu, Xia; Broer, Henk W.

    2015-01-01

    This paper studies the codimension-3 boundary-Hopf-fold (BHF) bifurcation of planar Filippov systems. Filippov systems consist of at least one discontinuity boundary locally separating the phase space to disjoint components with different dynamics. Such systems find applications in several fields,

  20. The energetic ion substorm injection boundary

    International Nuclear Information System (INIS)

    Lopez, R.E.; Sibeck, D.G.; McEntire, R.W.; Krimigis, S.M.

    1990-01-01

    The substorm injection boundary model has enjoyed considerable success in explaining plasma signatures in the near-geosynchronous region. However, the injection boundary has remained primarily a phenomenological model. In this paper the authors examine 167 dispersionless energetic ion injections which were observed by AMPTE CCE. The radial and local time distribution of the events as a function of Kp is qualitatively similar to that envisioned in the injection boundary model of Mauk and McIlwain (1974). They argue that particles observed during dispersionless injections are locally energized during the disruption of the cross-tail current sheet. Therefore they identify the injection boundary, as derived from the spatial distribution of dispersionless injections, with the earthward edge of the region of the magnetotail which undergoes current sheet disruption during the substorm expansion phase. The authors show that this qualitative model for the generation of the injection boundary can provide an explanation for the dispersionless nature, the double spiral shape, and the Kp dependence of the boundary

  1. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-01-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of our knowledge of these fundamentals is given. Included are the following: (1) structure of ideal perfect boundaries; (2) defect structure of grain boundaries; (3) diffusion at grain boundaries; (4) grain boundaries as sources/sinks for point defects; (5) grain boundary migration; (6) dislocation phenomena at grain boundaries; (7) atomic bonding and cohesion at grain boundaries; (8) non-equilibrium properties of grain boundaries; and (9) techniques for studying grain boundaries

  2. Do professional boundaries limit trust?

    Science.gov (United States)

    Smythe, Elizabeth; Hennessy, Julia; Abbott, Max; Hughes, Frances

    2018-02-01

    The present study uses stories of mental health support workers talking about their relationship with clients to wonder about how trust might be limited by the professional boundaries of nursing. The writing arose out of an appreciative inquiry study looking at the role of mental health support workers. Participants talked about how they worked with their clients. As researchers, we were struck by the depth of trust that was built between worker and client. We have brought a phenomenological lens to wonder about the nature of trust, as shown in the data. The original research sought to identify what was working well for mental health support workers. The present study brings a phenomenological interpretive approach to four stories from the discovery phase of the study, with our thinking informed by Heidegger and van Manen. Interviews were conducted with 26 mental health support workers and six stakeholders in 2012-2103. For this paper, we drew from those transcripts stories of three mental health support workers and one stakeholder. Through a process of talking together, writing, and rewriting, we wondered about the meaning within these stories, with a strong focus on how trust was enacted. We saw that mental health support workers in this study, by not carrying the boundaries of being 'professional', seemed free to grow a stronger relationship of trust which was therapeutic. We ask: Is it time to rethink how professional boundaries limit the level of trust achieved with clients to the detriment of impactful care? © 2017 Australian College of Mental Health Nurses Inc.

  3. The Bottom Boundary Layer.

    Science.gov (United States)

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  4. The Bottom Boundary Layer

    Science.gov (United States)

    Trowbridge, John H.; Lentz, Steven J.

    2018-01-01

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  5. Grain boundary precipitation in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Jones, A.R.; Howell, P.R.; Ralph, B.

    The precipitation of second phase particles of niobium carbide in an austenitic stainless steel is shown to be considerably influenced by the degree of deformation introduced prior to the ageing treatment. Sites for the nucleation of second phase particles are identified and the importance of one type of nucleation site, extrinsic dislocations, to the evolution of the final boundary precipitate distributions is emphasized. Further, it is shown that the presence of a grain boundary can effect precipitation processes for some considerable distance into the matrix on either side of the boundary. (author)

  6. Minnesota County Boundaries - lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....

  7. Boundary-Object Trimming

    DEFF Research Database (Denmark)

    Bossen, Claus; Jensen, Lotte Groth; Udsen, Flemming Witt

    2014-01-01

    implementation, which also coupled the work of medical secretaries more tightly to that of other staff, and led to task drift among professions. Medical secretaries have been relatively invisible to health informatics and CSCW, and we propose the term ‘boundary-object trimming’ to foreground and conceptualize...

  8. Minnesota County Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....

  9. Boundaries of the universe

    CERN Document Server

    Glasby, John S

    2013-01-01

    The boundaries of space exploration are being pushed back constantly, but the realm of the partially understood and the totally unknown is as great as ever. Among other things this book deals with astronomical instruments and their application, recent discoveries in the solar system, stellar evolution, the exploding starts, the galaxies, quasars, pulsars, the possibilities of extraterrestrial life and relativity.

  10. Conformal boundary loop models

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Saleur, Hubert

    2008-01-01

    We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling

  11. Grain Boundary Segregation in Metals

    CERN Document Server

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  12. Reactor pressure boundary materials

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Lee, B. S.

    2002-04-01

    With a long-term operation of nuclear power plants, the component materials are degraded under severe reactor conditions such as neutron irradiation, high temperature, high pressure and corrosive environment. It is necessary to establish the reliable and practical technologies for improving and developing the component materials and for evaluating the mechanical properties. Especially, it is very important to investigate the technologies for reactor pressure boundary materials such as reactor vessel and pipings in accordance with their critical roles. Therefore, this study was focused on developing and advancing the microstructural/micro-mechanical evaluation technologies, and on evaluating the neutron irradiation characteristics and radiation effects analysis technology of the reactor pressure boundary materials, and also on establishing a basis of nuclear material property database

  13. Electric-field-induced strain contributions in morphotropic phase boundary composition of (Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}-BaTiO{sub 3} during poling

    Energy Technology Data Exchange (ETDEWEB)

    Khansur, Neamul H.; Daniels, John E. [School of Materials Science and Engineering, UNSW Australia, New South Wales 2052 (Australia); Hinterstein, Manuel [School of Materials Science and Engineering, UNSW Australia, New South Wales 2052 (Australia); Institute for Applied Materials, Karlsruhe Institute for Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Wang, Zhiyang [School of Materials Science and Engineering, UNSW Australia, New South Wales 2052 (Australia); The Australian Synchrotron, Clayton, Victoria 3168 (Australia); Groh, Claudia [Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Jo, Wook [School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919 (Korea, Republic of)

    2015-12-14

    The microscopic contributions to the electric-field-induced macroscopic strain in a morphotropic 0.93(Bi{sub 1/2}Na{sub 1/2}TiO{sub 3})−0.07(BaTiO{sub 3}) with a mixed rhombohedral and tetragonal structure have been quantified using full pattern Rietveld refinement of in situ high-energy x-ray diffraction data. The analysis methodology allows a quantification of all strain mechanisms for each phase in a morphotropic composition and is applicable to use in a wide variety of piezoelectric compositions. It is shown that during the poling of this material 24%, 44%, and 32% of the total macroscopic strain is generated from lattice strain, domain switching, and phase transformation strains, respectively. The results also suggest that the tetragonal phase contributes the most to extrinsic domain switching strain, whereas the lattice strain primarily stems from the rhombohedral phase. The analysis also suggests that almost 32% of the total strain is lost or is a one-time effect due to the irreversible nature of the electric-field-induced phase transformation in the current composition. This information is relevant to on-going compositional development strategies to harness the electric-field-induced phase transformation strain of (Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}-based lead-free piezoelectric materials for actuator applications.

  14. Grain Boundary Complexions

    Science.gov (United States)

    2014-05-01

    Cantwell et al. / Acta Materialia 62 (2014) 1–48 challenging from a scientific perspective, but it can also be very technologically rewarding , given the...energy) is a competing explanation that remains to be explored. Strategies to drive the grain boundary energy toward zero have produced some success...Thompson AM, Soni KK, Chan HM, Harmer MP, Williams DB, Chabala JM, et al. J Am Ceram Soc 1997;80:373. [172] Behera SK. PhD dissertation, Materials Science

  15. Boundary-layer theory

    CERN Document Server

    Schlichting (Deceased), Hermann

    2017-01-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  16. The Atmospheric Boundary Layer

    Science.gov (United States)

    Garratt, J. R.

    1994-05-01

    A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.

  17. Shared care and boundaries:

    DEFF Research Database (Denmark)

    Winthereik, Brit Ross

    2008-01-01

    Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science and techno......Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science...... and technology studies. Findings – The paper shows how a version of “the responsible patient” emerges from the project which is different from the version envisioned by the project organisation. The emerging one is concerned with the boundary between primary and secondary sector care, and not with the boundary......, IT designers and project managers should attend to the specific ways in which boundaries are inevitably enacted and to the ways in which care is already shared. This will provide them with opportunities to use the potentials of new identities and concerns that emerge from changing the organisation...

  18. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  19. Stability, interaction and influence of domain boundaries in Ge/Si(111)-5 × 5

    International Nuclear Information System (INIS)

    Ondráček, Martin; Mutombo, Pingo; Chvoj, Zdeněk; Chromcová, Zdeňka; Jelínek, Pavel; Mark, Andrew G; McLean, Alastair B

    2012-01-01

    We present a theoretical investigation of the influence of domain boundaries on the Ge/Si(111)-5 × 5 phase using both large-scale DFT simulations and an analytical model. It is shown that different boundary types modify the atomic and electronic structure of the adjoining 5 × 5 domains in very different ways. A simple theoretical model, that describes the energy interaction J between the boundaries and the 5 × 5 phase, is presented and the interaction energy decay J(x) ≈ x -n for different domain boundaries is estimated. Additionally, the influence of the boundaries on the atomic and electronic structure of adatoms in the parental 5 × 5 phase is analyzed and it is argued that the presence of domain boundaries may strongly affect not only the physical but also the chemical properties of the Ge/Si(111)-5 × 5 phase.

  20. Dual boundary spanning

    DEFF Research Database (Denmark)

    Li-Ying, Jason

    2016-01-01

    The extant literature runs short in understanding openness of innovation regarding and the different pathways along which internal and external knowledge resources can be combined. This study proposes a unique typology for outside-in innovations based on two distinct ways of boundary spanning......: whether an innovation idea is created internally or externally and whether an innovation process relies on external knowledge resources. This yields four possible types of innovation, which represent the nuanced variation of outside-in innovations. Using historical data from Canada for 1945...

  1. Information dynamics of boundary perception

    DEFF Research Database (Denmark)

    Kragness, Haley; Hansen, Niels Christian; Vuust, Peter

    It has long been noted that expert musicians lengthen notes at phrase boundaries in expressive performance. Recently, we have extended research on this phenomenon by showing that undergraduates with no formal musical training and children as young as 3 years lengthen phrase boundaries during self...... uncertain than low-entropy contexts. Because phrase boundaries tend to afford high-entropy continuations, thus generating uncertain expectations in the listener, one possibility is that boundary perception is directly related to entropy. In other words, it may be hypothesized that entropy underlies...... on predictive uncertainty to the timing domain, as well as potentially answer key questions relating to boundary perception in musical listening....

  2. Boundary-induced pattern formation from uniform temporal oscillation

    Science.gov (United States)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2018-04-01

    Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.

  3. Quantum Ising chains with boundary fields

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore; Pelissetto, Andrea

    2015-01-01

    We present a detailed study of the finite one-dimensional quantum Ising chain in a transverse field in the presence of boundary magnetic fields coupled with the order-parameter spin operator. We consider two magnetic fields located at the boundaries of the chain that have the same strength and that are aligned in the same or in the opposite direction. We derive analytic expressions for the gap in all phases for large values of the chain length L, as a function of the boundary field strength. We also investigate the behaviour of the chain in the quantum ferromagnetic phase for oppositely aligned fields, focusing on the magnet-to-kink transition that occurs at a finite value of the magnetic field strength. At this transition we compute analytically the finite-size crossover functions for the gap, the magnetisation profile, the two-point correlation function, and the density of fermionic modes. As the magnet-to-kink transition is equivalent to the wetting transition in two-dimensional classical Ising models, our results provide new analytic predictions for the finite-size behaviour of Ising systems in a strip geometry at this transition. (paper)

  4. Numerical Methods for Free Boundary Problems

    CERN Document Server

    1991-01-01

    About 80 participants from 16 countries attended the Conference on Numerical Methods for Free Boundary Problems, held at the University of Jyviiskylii, Finland, July 23-27, 1990. The main purpose of this conference was to provide up-to-date information on important directions of research in the field of free boundary problems and their numerical solutions. The contributions contained in this volume cover the lectures given in the conference. The invited lectures were given by H.W. Alt, V. Barbu, K-H. Hoffmann, H. Mittelmann and V. Rivkind. In his lecture H.W. Alt considered a mathematical model and existence theory for non-isothermal phase separations in binary systems. The lecture of V. Barbu was on the approximate solvability of the inverse one phase Stefan problem. K-H. Hoff­ mann gave an up-to-date survey of several directions in free boundary problems and listed several applications, but the material of his lecture is not included in this proceedings. H.D. Mittelmann handled the stability of thermo capi...

  5. The magnetic nature of umbra-penumbra boundary in sunspots

    Science.gov (United States)

    Jurčák, J.; Rezaei, R.; González, N. Bello; Schlichenmaier, R.; Vomlel, J.

    2018-03-01

    Context. Sunspots are the longest-known manifestation of solar activity, and their magnetic nature has been known for more than a century. Despite this, the boundary between umbrae and penumbrae, the two fundamental sunspot regions, has hitherto been solely defined by an intensity threshold. Aim. Here, we aim at studying the magnetic nature of umbra-penumbra boundaries in sunspots of different sizes, morphologies, evolutionary stages, and phases of the solar cycle. Methods: We used a sample of 88 scans of the Hinode/SOT spectropolarimeter to infer the magnetic field properties in at the umbral boundaries. We defined these umbra-penumbra boundaries by an intensity threshold and performed a statistical analysis of the magnetic field properties on these boundaries. Results: We statistically prove that the umbra-penumbra boundary in stable sunspots is characterised by an invariant value of the vertical magnetic field component: the vertical component of the magnetic field strength does not depend on the umbra size, its morphology, and phase of the solar cycle. With the statistical Bayesian inference, we find that the strength of the vertical magnetic field component is, with a likelihood of 99%, in the range of 1849-1885 G with the most probable value of 1867 G. In contrast, the magnetic field strength and inclination averaged along individual boundaries are found to be dependent on the umbral size: the larger the umbra, the stronger and more horizontal the magnetic field at its boundary. Conclusions: The umbra and penumbra of sunspots are separated by a boundary that has hitherto been defined by an intensity threshold. We now unveil the empirical law of the magnetic nature of the umbra-penumbra boundary in stable sunspots: it is an invariant vertical component of the magnetic field.

  6. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean bed shear stress...

  7. Challenging the Boundaries

    DEFF Research Database (Denmark)

    Nørgaard, Nina

    2004-01-01

    To many people, challenging the boundaries between the traditional disciplines in foreign language studies means doing cultural studies. The aim of this article is to pull in a different direction by suggesting how the interface between linguistics and literature may be another fertile field...... to explore in the study and teaching of foreign languages. Not only may linguistics and literature be employed to shed light on each other, the insights gained may furthermore prove useful in a broader context in our foreign language studies. The article begins with a brief introduction to literary...... linguistics in general and to Hallidayan linguistics in particular. The theoretical framework thus laid out, it is exemplified how Halliday's theory of language may be employed in the analysis of literature. The article concludes by considering the possible status of literary linguistics in a broader...

  8. Negotiating Cluster Boundaries

    DEFF Research Database (Denmark)

    Giacomin, Valeria

    2017-01-01

    Palm oil was introduced to Malay(si)a as an alternative to natural rubber, inheriting its cluster organizational structure. In the late 1960s, Malaysia became the world’s largest palm oil exporter. Based on archival material from British colonial institutions and agency houses, this paper focuses...... on the governance dynamics that drove institutional change within this cluster during decolonization. The analysis presents three main findings: (i) cluster boundaries are defined by continuous tug-of-war style negotiations between public and private actors; (ii) this interaction produces institutional change...... within the cluster, in the form of cumulative ‘institutional rounds’ – the correction or disruption of existing institutions or the creation of new ones; and (iii) this process leads to a broader inclusion of local actors in the original cluster configuration. The paper challenges the prevalent argument...

  9. Transcending Organizational Boundaries

    DEFF Research Database (Denmark)

    Kringelum, Louise Tina Brøns

    by applying the engaged scholarship approach, thereby providing a methodological contribution to both port and business model research. Emphasizing the interplay of intra- and inter-organizational business model innovation, the thesis adds insight into the roles of port authorities, business model trends......This thesis explores how processes of business model innovation can unfold in a port authority by transcending organizational boundaries through inter-organizational collaboration. The findings contribute to two fields of academic inquiry: the study of business model innovation and the study of how...... the roles of port authorities evolve. This contribution is made by combining the two fields, where the study of business model innovation is used as an analytical concept for understanding the evolution of port authorities, and where the study of port authorities is used as a contextual setting...

  10. Superfluid Boundary Layer.

    Science.gov (United States)

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  11. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere.

    Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  12. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  13. Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: a comparative study.

    Science.gov (United States)

    Patti, Alessandro; Cuetos, Alejandro

    2012-07-01

    We report on the diffusion of purely repulsive and freely rotating colloidal rods in the isotropic, nematic, and smectic liquid crystal phases to probe the agreement between Brownian and Monte Carlo dynamics under the most general conditions. By properly rescaling the Monte Carlo time step, being related to any elementary move via the corresponding self-diffusion coefficient, with the acceptance rate of simultaneous trial displacements and rotations, we demonstrate the existence of a unique Monte Carlo time scale that allows for a direct comparison between Monte Carlo and Brownian dynamics simulations. To estimate the validity of our theoretical approach, we compare the mean square displacement of rods, their orientational autocorrelation function, and the self-intermediate scattering function, as obtained from Brownian dynamics and Monte Carlo simulations. The agreement between the results of these two approaches, even under the condition of heterogeneous dynamics generally observed in liquid crystalline phases, is excellent.

  14. Computation of airfoil buffet boundaries

    Science.gov (United States)

    Levy, L. L., Jr.; Bailey, H. E.

    1981-01-01

    The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.

  15. Boundary fluxes for nonlocal diffusion

    Science.gov (United States)

    Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi

    We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.

  16. Diversified boundaries of the firm

    OpenAIRE

    Kimura, Koichiro

    2012-01-01

    We analyze diversification of boundaries of local firms in developing countries under the economic globalization. The globalization has an aspect of homogenization of the world economy, but also has another aspect of diversification through international economic activities. Focusing on boundary-level of the firm, this article shows that the diversification from a comparison with boundaries of foreign firms in developed countries is brought by a disadvantage of technology deficit and a home a...

  17. Conformal boundaries of warped products

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2006-01-01

    In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....

  18. Two-magnetization Nordheim model of randomly distributed Co local sites for the anomalous residual resistivity at the magnetic phase boundary of Y1-xRxCo2 system (R: rare earth)

    International Nuclear Information System (INIS)

    Yagasaki, K; Nakama, T; Takaesu, Y; Hedo, M; Uchima, K; Uwatoko, Y; Burkov, A

    2009-01-01

    The electrical resistivity ν of the Laves phase Y 1-x R x Co 2 compound system has been measured in magnetic fields up to 10 T and under pressures up to 8 GPa at temperatures from 1.5 to 300 K. The anomalous behavior of residual resistivity has been observed in a region x a , where x a is a critical concentration between inhomogeneously and homogeneously ordered phases, and which has a maximum at x c where T c ∼ 0 with a mean field acting on Co sub-lattice is equal to the itinerant Co metamagnetic critical field B c . In x c a , the magneto-resistivity and pressure resistivity are anomalously large with positive sign. However, in the paramagnetic region for x c , they are anomalously large but with negative sign. The anomalous behavior is attributed to the s-d scattering of conduction electrons due to statistically disordered Co magnetization. Those phenomena can be explained by a new scattering model of [Two magnetization Nordheim model for randomly distributed Co sites] introduced by us.

  19. Synthesis of 0.64Pb(Mg1/3Nb2/3O3–0.36PbTiO3 ceramic near morphotropic phase boundary for high performance piezoelectric, ferroelectric and pyroelectric applications

    Directory of Open Access Journals (Sweden)

    Abid Hussain

    2016-09-01

    Full Text Available A near MPB composition of 0.64PMN–0.36PT ceramic has been synthesized by solid-state reaction technique using columbite precursor. Sintering at 1030 °C resulted in a single perovskite phase with tetragonal structure having uniform and dense microstructure as revealed by powder XRD, Raman spectroscopy and FESEM analyses. An excellent dielectric response was obtained with room temperature dielectric permittivity value of 142 and high-phase transition temperature (Tm of 210 °C at 1 kHz. A huge value of piezoelectric charge coefficient (490 pC/N was obtained, which shows potential of PMN–PT for piezoelectric device applications. Well-shaped and fatigue-free P–E hysteresis loops over a wide temperature range of 30–230 °C were traced. A very large value of pyroelectric coefficient (p ∼ 2739.2 μC m−2 °C−1 was obtained.

  20. Instability of a Lamellar Phase under Shear Flow: Formation of Multilamellar Vesicles

    Science.gov (United States)

    Courbin, L.; Delville, J. P.; Rouch, J.; Panizza, P.

    2002-09-01

    The formation of closed-compact multilamellar vesicles (referred to in the literature as the ``onion texture'') obtained upon shearing lamellar phases is studied using small-angle light scattering and cross-polarized microscopy. By varying the shear rate γ ˙, the gap cell D, and the smectic distance d, we show that: (i)the formation of this structure occurs homogeneously in the cell at a well-defined wave vector qi, via a strain-controlled process, and (ii)the value of qi varies as (dγ ˙/D)1/3. These results strongly suggest that formation of multilamellar vesicles may be monitored by an undulation (buckling) instability of the membranes, as expected from theory.

  1. The Boundary Function Method. Fundamentals

    Science.gov (United States)

    Kot, V. A.

    2017-03-01

    The boundary function method is proposed for solving applied problems of mathematical physics in the region defined by a partial differential equation of the general form involving constant or variable coefficients with a Dirichlet, Neumann, or Robin boundary condition. In this method, the desired function is defined by a power polynomial, and a boundary function represented in the form of the desired function or its derivative at one of the boundary points is introduced. Different sequences of boundary equations have been set up with the use of differential operators. Systems of linear algebraic equations constructed on the basis of these sequences allow one to determine the coefficients of a power polynomial. Constitutive equations have been derived for initial boundary-value problems of all the main types. With these equations, an initial boundary-value problem is transformed into the Cauchy problem for the boundary function. The determination of the boundary function by its derivative with respect to the time coordinate completes the solution of the problem.

  2. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  3. Collaboration in Healthcare Through Boundary Work and Boundary Objects

    DEFF Research Database (Denmark)

    Meier, Ninna

    2015-01-01

    This article contributes to our understanding of how boundary work is practiced in healthcare settings. Previous studies have shown how boundaries are constantly changing, multiple, and co-existing, and can also be relatively stable cognitive and social distinctions between individuals and groups...

  4. African boundary politics: a case of Ethiopian-Eritrean boundary ...

    African Journals Online (AJOL)

    This paper examined the boundary discord between Ethiopia and Eritrea over the region around Badme which started as a result of artificial boundaries created by the Italian imperialists. The study depicts the evolution of Italian colonialism in Ethiopia between 1936 and 1941. It exposes the differentials existing between the ...

  5. The growth mechanism of grain boundary carbide in Alloy 690

    International Nuclear Information System (INIS)

    Li, Hui; Xia, Shuang; Zhou, Bangxin; Peng, Jianchao

    2013-01-01

    The growth mechanism of grain boundary M 23 C 6 carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M 23 C 6 and matrix was curved, and did not lie on any specific crystal plane. The M 23 C 6 carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M 23 C 6 carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M 23 C 6 : (111) matrix //(0001) transition //(111) carbide , ¯ > matrix // ¯ 10> transition // ¯ > carbide . The crystal lattice constants of transition phase are c transition =√(3)×a matrix and a transition =√(6)/2×a matrix . Based on the experimental results, the growth mechanism of M 23 C 6 and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M 23 C 6 and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M 23 C 6 . • The M 23 C 6 transforms from the matrix directly at the incoherent phase interface

  6. Boundary-Layer & health

    Science.gov (United States)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  7. Correlation between the nucleation of a Griffiths-like Phase and Colossal Magnetoresistance across the compositional metal-insulator boundary in La1-xCaxMnO3

    International Nuclear Information System (INIS)

    Jiang Wanjun; Zhou Xuezhi; Williams, Gwyn; Privezentsev, R; Mukovskii, Y

    2010-01-01

    Detailed measurements of the magnetic and transport properties of single crystals La 1-x Ca x MnO 3 (0.18 ≤ x ≤ 0.27) are summarized; comparisons between which (i) not only confirm that Griffiths Phase-like(GP) features are not a prerequisite for CMR, but also demonstrate that the presence of GP-like characteristics do not guarantee the appearance of CMR; (ii) indicate that whereas continuous magnetic transitions occur for 0.18 ≤ x ≤ 0.25, the universality class of these transitions belongs to that of nearest-neighbour 3D Heisenberg model only for x ≤ 0.20, beyond which complications due to GP-like behaviour occur.

  8. The evolution of Griffiths-phase-like features and colossal magnetoresistance in La1-xCaxMnO3 (0.18 ≤ x ≤ 0.27) across the compositional metal-insulator boundary

    International Nuclear Information System (INIS)

    Jiang Wanjun; Zhou Xuezhi; Williams, Gwyn; Mukovskii, Y; Privezentsev, R

    2009-01-01

    Detailed measurements of the magnetic and transport properties of single crystals of La 1-x Ca x MnO 3 (0.18 ≤ x ≤ 0.27) are summarized, and lead to the following conclusions. While temperature-dependent (magneto-) resistance measurements narrow the compositionally modulated metal-insulator (M-I) transition to lie between 0.19 ≤ x c ≤ 0.20 in the series studied, comparisons between the latter magnetic data provide the first unequivocal demonstration that (i) the presence of Griffiths-phase-like (GP) features do not guarantee colossal magnetoresistance (CMR), while confirming (ii) that neither are the appearance of such features a prerequisite for CMR. These data also reveal that (iii) whereas continuous magnetic transitions occur for 0.18 ≤ x ≤ 0.25, the universality class of these transitions belongs to that of a nearest-neighbour 3D Heisenberg model only for x≤0.20, beyond which complications due to GP-like behaviour occur. The implications of the variation (or lack thereof) in critical exponents and particularly critical amplitudes and temperatures across the compositionally mediated M-I transition support the assertion that the dominant mechanism underlying ferromagnetism across the M-I transition changes from ferromagnetic super-exchange (SE) stabilized by orbital ordering in the insulating phase to double-exchange (DE) in the orbitally disordered metallic regime. The variations in the acoustic spin-wave stiffness, D, and the coercive field, H C , support this conclusion. These SE and DE interaction mechanisms are demonstrated to not only belong to the same universality class but are also characterized by comparable coupling strengths. Nevertheless, their percolation thresholds are manifestly different in this system.

  9. Canonical group quantization and boundary conditions

    International Nuclear Information System (INIS)

    Jung, Florian

    2012-01-01

    In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.

  10. Canonical group quantization and boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Florian

    2012-07-16

    In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.

  11. Entanglement spectrum and boundary theories with projected entangled-pair states

    Energy Technology Data Exchange (ETDEWEB)

    Cirac, Ignacio [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Poilblanc, Didier [Laboratoire de Physique Theorique, C.N.R.S. and Universite de Toulouse, Toulouse (France); Schuch, Norbert [California Institute of Technology, Pasadena, CA (United States); Verstraete, Frank [Vienna Univ. (Austria)

    2012-07-01

    In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated to their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using Projected Entangled Pair States (PEPS). This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various models and find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield non-local Hamiltonians. As our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.

  12. Shifting boundaries in telecare

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian Mossfeldt; Elkjær, Bente

    2017-01-01

    Purpose Telecare is a growing practice defined as diagnosis, treatment and monitoring among doctors, nurses and patients, which is mediated through ICT and without face-to-face interaction. The purpose of this article is to provide empirically based knowledge about the organization of the use of ...... to clinical decision makers. The notion of ‘paradoxical accountability’ is developed to account for this dilemma. Keywords (max 8) Telecare, infrastructure, practice oriented analysis, healthcare professionals, accountability, boundaries Paper type Case study......Purpose Telecare is a growing practice defined as diagnosis, treatment and monitoring among doctors, nurses and patients, which is mediated through ICT and without face-to-face interaction. The purpose of this article is to provide empirically based knowledge about the organization of the use...... of ICT and dilemmas of this increasingly common practice in healthcare. Findings Telecare embraces new standards and possibilities for professional responsibility and accountability for nurses, but also alters the relationship between doctors and nurses. This leads to a dilemma we characterize...

  13. Moving walls and geometric phases

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, Paolo, E-mail: paolo.facchi@ba.infn.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Garnero, Giancarlo, E-mail: giancarlo.garnero@uniba.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Marmo, Giuseppe [Dipartimento di Scienze Fisiche and MECENAS, Università di Napoli “Federico II”, I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); Samuel, Joseph [Raman Research Institute, 560080 Bangalore (India)

    2016-09-15

    We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity. For these boundary conditions we compute explicitly the geometric phase two-form on the parameter space. The unboundedness of the Hamiltonian describing the system leads to a natural prescription of renormalization for divergent contributions arising from the boundary.

  14. How Firms Make Boundary Decisions

    DEFF Research Database (Denmark)

    Dobrajska, Magdalena; Billinger, Stephan; Becker, Markus

    2014-01-01

    We report findings from an analysis of 234 firm boundary decisions that a manufacturing firm has made during a 10 year period. Extensive interviews with all major decision makers located both at the headquarters and subsidiaries allow us to examine (a) who was involved in each boundary decision...

  15. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  16. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...

  17. Boundary Drawing in Clinical Work

    DEFF Research Database (Denmark)

    Meier, Ninna

    The aim of this paper is to show how health care professionals temporarily dissolve and redraw boundaries in their everyday work, in order to coordinate clinical work and facilitate collaboration in patient pathways. Boundaries are social constructions that help us make sense of our complex, social...... world. In health care, formal boundaries are important distinctions that separate health care practitioners into medical specialties, professions and organizational departments. But clinical work also relies on the ability of health care practitioners to collaborate around patients in formal...... arrangements or emergent, temporary teams. Focusing on the cognitive and social boundaries we draw to establish identity and connection (to a profession, team or person) the paper shows how health care professionals can use inter-personal relationships to temporarily dismiss formal boundaries. By redrawing...

  18. Prediction of dislocation boundary characteristics

    DEFF Research Database (Denmark)

    Winther, Grethe

    Plastic deformation of both fcc and bcc metals of medium to high stacking fault energy is known to result in dislocation patterning in the form of cells and extended planar dislocation boundaries. The latter align with specific crystallographic planes, which depend on the crystallographic......) and it is found that to a large extent the dislocations screen each other’s elastic stress fields [3]. The present contribution aims at advancing the previous theoretical analysis of a boundary on a known crystallographic plane to actual prediction of this plane as well as other boundary characteristics....... Crystal plasticity calculations combined with the hypothesis that these boundaries separate domains with local differences in the slip system activity are introduced to address precise prediction of the experimentally observed boundaries. The presentation will focus on two cases from fcc metals...

  19. Brain response to prosodic boundary cues depends on boundary position

    Directory of Open Access Journals (Sweden)

    Julia eHolzgrefe

    2013-07-01

    Full Text Available Prosodic information is crucial for spoken language comprehension and especially for syntactic parsing, because prosodic cues guide the hearer’s syntactic analysis. The time course and mechanisms of this interplay of prosody and syntax are not yet well understood. In particular, there is an ongoing debate whether local prosodic cues are taken into account automatically or whether they are processed in relation to the global prosodic context in which they appear. The present study explores whether the perception of a prosodic boundary is affected by its position within an utterance. In an event-related potential (ERP study we tested if the brain response evoked by the prosodic boundary differs when the boundary occurs early in a list of three names connected by conjunctions (i.e., after the first name as compared to later in the utterance (i.e., after the second name. A closure positive shift (CPS — marking the processing of a prosodic phrase boundary — was elicited only for stimuli with a late boundary, but not for stimuli with an early boundary. This result is further evidence for an immediate integration of prosodic information into the parsing of an utterance. In addition, it shows that the processing of prosodic boundary cues depends on the previously processed information from the preceding prosodic context.

  20. Phase diagrams of the elements

    International Nuclear Information System (INIS)

    Young, D.A.

    1975-01-01

    A summary of the pressure-temperature phase diagrams of the elements is presented, with graphs of the experimentally determined solid-solid phase boundaries and melting curves. Comments, including theoretical discussion, are provided for each diagram. The crystal structure of each solid phase is identified and discussed. This work is aimed at encouraging further experimental and theoretical research on phase transitions in the elements

  1. Topography and instability of monolayers near domain boundaries

    International Nuclear Information System (INIS)

    Diamant, H.; Witten, T. A.; Ege, C.; Gopal, A.; Lee, K. Y. C.

    2001-01-01

    We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain boundaries. The differing elastic properties of the two phases generally lead to a nonflat topography of 'mesas,' where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually become unstable at a surface tension of about K(δc 0 ) 2 (δc 0 being the difference in spontaneous curvature and K a bending modulus). In addition, the boundary is found to undergo a topography-induced rippling instability upon compression, if its line tension is smaller than about Kδc 0 . The effect of diffuse boundaries on these features and the topographic behavior near a critical point are also examined. We discuss the relevance of our findings to several experimental observations related to surfactant monolayers: (i) small topographic features recently found near domain boundaries; (ii) folding behavior observed in mixed phospholipid monolayers and model lung surfactants; (iii) roughening of domain boundaries seen under lateral compression; (iv) the absence of biphasic structures in tensionless surfactant films

  2. Science at the interface : grain boundaries in nanocrystalline metals.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Mark Andrew; Follstaedt, David Martin; Knapp, James Arthur; Brewer, Luke N.; Holm, Elizabeth Ann; Foiles, Stephen Martin; Hattar, Khalid M.; Clark, Blythe B.; Olmsted, David L.; Medlin, Douglas L.

    2009-09-01

    Interfaces are a critical determinant of the full range of materials properties, especially at the nanoscale. Computational and experimental methods developed a comprehensive understanding of nanograin evolution based on a fundamental understanding of internal interfaces in nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size distribution possess a unique combination of high-strength, ductility and wear-resistance. We performed a combined experimental and theoretical investigation of the structure and motion of internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain boundaries are computed for an unprecedented range of boundaries. The presence of roughening transitions in grain boundaries is explored and related to dramatic changes in boundary mobility. Experimental observations show that abnormal grain growth in nanograined materials is unlike conventional scale material in both the level of defects and the formation of unfavored phases. Molecular dynamics simulations address the origins of some of these phenomena.

  3. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE)

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.

  4. Boundaries of dreams, boundaries of dreamers: thin and thick boundaries as a new personality measure.

    Science.gov (United States)

    Hartmann, E

    1989-11-01

    Previous work by the author and his collaborators on frequent nightmare sufferers demonstrated that these people had striking personality characteristics which could be called "thin boundaries" in a number of different senses. In order to measure thin and thick boundaries, a 145-item questionnaire, the Boundary Questionnaire, has been developed which has now been taken by over 1,000 persons. Preliminary results are presented indicating that, as predicted a priori, several new groups of nightmare sufferers and groups of art students scored usually "thin," whereas a group of naval officers had usually "thick" boundaries. Overall, thinness on the Boundary Questionnaire correlated highly positively (r = .40) with frequency of dream recall and also significantly (r = .16) with length of sleep.

  5. New Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 Quaternary Ceramics: Morphotropic Phase Boundary Design and Electrical Properties.

    Science.gov (United States)

    Luo, Nengneng; Zhang, Shujun; Li, Qiang; Xu, Chao; Yang, Zhanlue; Yan, Qingfeng; Zhang, Yiling; Shrout, Thomas R

    2016-06-22

    Four series of Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 (PMN-PIN-PZ-PT) quaternary ceramics with compositions located at the morphotropic phase boundary (MPB) regions were prepared. The MPBs of the multicomponent system were predicted using a linear combination rule and experimentally confirmed by X-ray powder diffraction and electrical measurement. The positions of MPBs in multicomponent systems were found in linear correlation with the tolerance factor and ionic radii of non-PT end-members. The phase structure, piezoelectric coefficient, electromechanical coupling coefficient, unipolar strains, and dielectric properties of as-prepared ceramics were systematically investigated. The largest d33s were obtained at S36.8, L37.4, M39.6, and N35.8, with the corresponding values of 580, 450, 420, and 530 pC/N, respectively, while the largest kps were found at S34.8, L37.4, M39.6, and N35.8, with the respective values of 0.54, 0.50, 0.47, and 0.53. The largest unipolar strain Smax and high-field piezoelectric strain coefficients d33* were also observed around the respective MPB regions. The rhombohedral-to-tetragonal phase transition temperature Trt increased with increasing PIN and PZ contents. Of particular importance is that high Trt of 140-197 °C was achieved in the M series with PZ and PIN contents being around 0.208 and 0.158, which will broaden the temperature usage range.

  6. Optimal boundary control and boundary stabilization of hyperbolic systems

    CERN Document Server

    Gugat, Martin

    2015-01-01

    This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.  The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization.  Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples.  To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled.  Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.

  7. Three Types of Earth's Inner Core Boundary

    Science.gov (United States)

    Tian, D.; Wen, L.

    2017-12-01

    The Earth's inner core boundary (ICB) is the site where the liquid outer core solidifies and the solid inner core grows. Thus, the fine-scale structure of the ICB is important for our understanding of the thermo-compositional state of the Earth's core. In this study, we collect a large set of seismic records with high-quality pre-critical PKiKP and PcP phase pairs, recorded by two dense seismic arrays, Hi-net in Japan and USArray in US. This dataset samples the ICB regions beneath East Asia, Mexico and the Bering Sea. We use differential travel times, amplitude ratios and waveform differences between PKiKP and PcP phases to constrain fine-scale structure of the ICB. The sampled ICB can be grouped into three types based on their seismic characteristics: (1) a simple ICB with a flat and sharp boundary, (2) a bumpy ICB with topographic height changes of 10 km, and (3) a localized mushy ICB with laterally varying thicknesses of 4-8 km. The laterally varying fine-scale structure of the ICB indicates existence of complex small-scale forces at the surface and a laterally varying solidification process of the inner core due to lateral variation of thermo-compositional condition near the ICB.

  8. Distributed Tuning of Boundary Resources

    DEFF Research Database (Denmark)

    Eaton, Ben; Elaluf-Calderwood, Silvia; Sørensen, Carsten

    2015-01-01

    in the context of a paradoxical tension between the logic of generative and democratic innovations and the logic of infrastructural control. Boundary resources play a critical role in managing the tension as a firm that owns the infrastructure can secure its control over the service system while independent...... firms can participate in the service system. In this study, we explore the evolution of boundary resources. Drawing on Pickering’s (1993) and Barrett et al.’s (2012) conceptualizations of tuning, the paper seeks to forward our understanding of how heterogeneous actors engage in the tuning of boundary...

  9. Easy boundary definition for EGUN

    International Nuclear Information System (INIS)

    Becker, R.

    1989-01-01

    The relativistic electron optics program EGUN has reached a broad distribution, and many users have asked for an easier way of boundary input. A preprocessor to EGUN has been developed that accepts polygonal input of boundary points, and offers features such as rounding off of corners, shifting and squeezing of electrodes and simple input of slanted Neumann boundaries. This preprocessor can either be used on a PC that is linked to a mainframe using the FORTRAN version of EGUN, or in connection with the version EGNc, which also runs on a PC. In any case, direct graphic response on the PC greatly facilitates the creation of correct input files for EGUN. (orig.)

  10. Easy boundary definition for EGUN

    Science.gov (United States)

    Becker, R.

    1989-06-01

    The relativistic electron optics program EGUN [1] has reached a broad distribution, and many users have asked for an easier way of boundary input. A preprocessor to EGUN has been developed that accepts polygonal input of boundary points, and offers features such as rounding off of corners, shifting and squeezing of electrodes and simple input of slanted Neumann boundaries. This preprocessor can either be used on a PC that is linked to a mainframe using the FORTRAN version of EGUN, or in connection with the version EGNc, which also runs on a PC. In any case, direct graphic response on the PC greatly facilitates the creation of correct input files for EGUN.

  11. Easy boundary definition for EGUN

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R. (Frankfurt Univ. (Germany, F.R.). Inst. fuer Angewandte Physik)

    1989-06-01

    The relativistic electron optics program EGUN has reached a broad distribution, and many users have asked for an easier way of boundary input. A preprocessor to EGUN has been developed that accepts polygonal input of boundary points, and offers features such as rounding off of corners, shifting and squeezing of electrodes and simple input of slanted Neumann boundaries. This preprocessor can either be used on a PC that is linked to a mainframe using the FORTRAN version of EGUN, or in connection with the version EGNc, which also runs on a PC. In any case, direct graphic response on the PC greatly facilitates the creation of correct input files for EGUN. (orig.).

  12. Conserved variable analysis of the marine boundary layer and air

    Indian Academy of Sciences (India)

    The present study is based on the observed features of the MBL (Marine Boundary Layer) during the Bay of Bengal and Monsoon Experiment (BOBMEX) - Pilot phase. Conserved Variable Analysis (CVA) of the conserved variables such as potential temperature, virtual potential temperature, equivalent potential temperature ...

  13. Chemical boundary layers in CVD II. Reversible reactions

    NARCIS (Netherlands)

    Croon, de M.H.J.M.; Giling, L.J.

    1990-01-01

    In addition to irreversible reactions, which were treated in part I, reversible reactions in the gas phase have beenstudied using the concept of the chemical boundary layer. The analysis is given for the situations in which either the forwardor the back reaction is dominant. Two conceptual models

  14. Allegheny County Zip Code Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the zip code boundaries that lie within Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  15. Allegheny County School District Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the school district boundaries within Allegheny County If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  16. Sublayer of Prandtl Boundary Layers

    Science.gov (United States)

    Grenier, Emmanuel; Nguyen, Toan T.

    2018-03-01

    The aim of this paper is to investigate the stability of Prandtl boundary layers in the vanishing viscosity limit {ν \\to 0} . In Grenier (Commun Pure Appl Math 53(9):1067-1091, 2000), one of the authors proved that there exists no asymptotic expansion involving one of Prandtl's boundary layer, with thickness of order {√{ν}} , which describes the inviscid limit of Navier-Stokes equations. The instability gives rise to a viscous boundary sublayer whose thickness is of order {ν^{3/4}} . In this paper, we point out how the stability of the classical Prandtl's layer is linked to the stability of this sublayer. In particular, we prove that the two layers cannot both be nonlinearly stable in L^∞. That is, either the Prandtl's layer or the boundary sublayer is nonlinearly unstable in the sup norm.

  17. Boundary Layer Control on Airfoils.

    Science.gov (United States)

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  18. Recognition of boundary feedback systems

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1989-01-01

    A system that has been the object of intense research is outlined. In view of that and recent progress of the theory of pseudodifferential boundary operator calculus, the author describes some features that could prove to be interesting in connection with the problems of boundary feedback stabili...... stabilizability. It is shown that it is possible to use the calculus to consider more general feedback systems in a variational setup.......A system that has been the object of intense research is outlined. In view of that and recent progress of the theory of pseudodifferential boundary operator calculus, the author describes some features that could prove to be interesting in connection with the problems of boundary feedback...

  19. HUC 8-11 Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital hydrologic unit boundary that is at the 4-digit, 6-digit, 8-digit, and 11-digit level. The data set was developed by delineating the...

  20. Analytic invariants of boundary links

    OpenAIRE

    Garoufalidis, Stavros; Levine, Jerome

    2001-01-01

    Using basic topology and linear algebra, we define a plethora of invariants of boundary links whose values are power series with noncommuting variables. These turn out to be useful and elementary reformulations of an invariant originally defined by M. Farber.

  1. County Boundaries with Shorelines (National)

    Data.gov (United States)

    Department of Transportation — County boundaries with shorelines cut in (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and...

  2. The laminar boundary layer equations

    CERN Document Server

    Curle, N

    2017-01-01

    Thorough introduction to boundary layer problems offers an ordered, logical presentation accessible to undergraduates. The text's careful expositions of the limitations and accuracy of various methods will also benefit professionals. 1962 edition.

  3. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-05-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of knowledge of these fundamentals is given

  4. Slovenian-Croatian boundary: backgrounds of boundary-making and boundary-breaking in Istria regarding the contemporary boundary dispute

    Directory of Open Access Journals (Sweden)

    Damir Josipovič

    2012-06-01

    Full Text Available Boundary-making in Istria is an old undertaking. It has actually never ceasesed, not even today. Istrian peninsula has thus undergone substantial boundary shifts during the last couple of centuries (especially after the Venetian demise in 1797. But Istria carries its worldwide fame also due to one of probably the harshest disputes on the post-war European grounds – the Trieste territory dispute. In author's perspective, this dispute is one of the four main corner-stones of the current Slovenian-Croatian boundary dispute. The remaining three include the Kozler's boundary around Dragonja (Rokava River, the ungraspable notions of Austrian censuses in Istria, and the narratives of partisan settlements on military jurisdiction. However, there are other very important aspects which significantly shaped the development of the dispute, but we will focus at assessing the importance of the aforementioned ones. In this sense, the analysis of the effects of the outcome of the Trieste dispute and its implications to the contemporary interstate dispute is set forth. By unveiling its material and consequently its psychological effects upon the contemporary bilateral relations, its analyses simultaneously reveals backgrounds of never answered question, why Kozler's proposed linguistic boundary around Dragonja (Rokava River turned out to become a boundary of national character. Though nowadays disputed, there is absolutely no chance for both involved parties to substantially draw away from once decisively drawn line of a layman. Despite the fierce battle of words in Slovenian public media on whether should the interstate boundary be placed on Mirna (Quieto or Dragonja Rivers, it will be argued here that the actual choice of the Valley of Dragonja as a boundary is by all means Slovenian. The arguments are based on extensive analyses of cartographic materials, relevant literature, documents, and statistical data.

  5. Slovenian-Croatian boundary: backgrounds of boundary-making and boundary-breaking in Istria regarding the contemporary boundary dispute

    Directory of Open Access Journals (Sweden)

    Damir Josipovič

    2012-01-01

    Full Text Available Boundary-making in Istria is an old undertaking. It has actually never ceasesed, not even today. Istrian peninsula has thus undergone substantial boundary shifts during the last couple of centuries (especially after the Venetian demise in 1797. But Istria carries its worldwide fame also due to one of probably the harshest disputes on the post-war European grounds – the Trieste territory dispute. In author's perspective, this dispute is one of the four main corner-stones of the current Slovenian-Croatian boundary dispute. The remaining three include the Kozler's boundary around Dragonja (Rokava River, the ungraspable notions of Austrian censuses in Istria, and the narratives of partisan settlements on military jurisdiction. However, there are other very important aspects which significantly shaped the development of the dispute, but we will focus at assessing the importance of the aforementioned ones. In this sense, the analysis of the effects of the outcome of the Trieste dispute and its implications to the contemporary interstate dispute is set forth. By unveiling its material and consequently its psychological effects upon the contemporary bilateral relations, its analyses simultaneously reveals backgrounds of never answered question, why Kozler's proposed linguistic boundary around Dragonja (Rokava River turned out to become a boundary of national character. Though nowadays disputed, there is absolutely no chance for both involved parties to substantially draw away from once decisively drawn line of a layman. Despite the fierce battle of words in Slovenian public media on whether should the interstate boundary be placed on Mirna (Quieto or Dragonja Rivers, it will be argued here that the actual choice of the Valley of Dragonja as a boundary is by all means Slovenian. The arguments are based on extensive analyses of cartographic materials, relevant literature, documents, and statistical data.

  6. Removing Boundary Layer by Suction

    Science.gov (United States)

    Ackeret, J

    1927-01-01

    Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.

  7. Tokamak plasma boundary layer model

    International Nuclear Information System (INIS)

    Volkov, T.F.; Kirillov, V.D.

    1983-01-01

    A model has been developed for the limiter layer and for the boundary region of the plasma column in a tokamak to facilitate analytic calculations of the thickness of the limiter layers, the profiles and boundary values of the temperature and the density under various conditions, and the difference between the electron and ion temperatures. This model can also be used to analyze the recycling of neutrals, the energy and particle losses to the wall and the limiter, and other characteristics

  8. The Community Boundary De-paradoxifyed

    DEFF Research Database (Denmark)

    Dragsdahl Lauritzen, Ghita; Salomo, Søren

    2012-01-01

    . In order to improve connections and collaborations across interfaces, it is therefore necessary to improve our understanding of the community boundary construct. Existing studies of community boundaries within the user innovation literature predominantly describe boundaries as incentives for user...

  9. Misorientation related microstructure at the grain boundary in a nickel-based single crystal superalloy

    International Nuclear Information System (INIS)

    Huang, Ming; Zhuo, Longchao; Liu, Zhanli; Lu, Xiaogang; Shi, Zhenxue; Li, Jiarong; Zhu, Jing

    2015-01-01

    The mechanical properties of nickel-based single crystal superalloys deteriorate with increasing misorientation, thus the finished product rate of the casting of single crystal turbine airfoils may be reduced due to the formation of grain boundaries especially when the misorientation angle exceeds to some extent. To this day, evolution of the microstructures at the grain boundaries with misorientation and the relationship between the microstructures and the mechanical properties are still unclear. In this work a detailed characterization of the misorientation related microstructure at the grain boundary in DD6 single crystal superalloy has been carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques; the elemental distribution at the grain boundaries has been analyzed by energy dispersive (EDS) X-ray mapping; and the effect of precipitation of μ phases at the grain boundary on the mechanical property has been evaluated by finite element calculation. It is shown that the proportion of γ phase at the grain boundaries decreases, while the proportion of γ′ phase at the grain boundaries increases with increasing misorientation; the μ phase is precipitated at the grain boundaries when the misorientation angle exceeds about 10° and thus it could lead to a dramatic deterioration of the mechanical properties, as well as that the enrichment of Re and W gradually disappears as the misorientation angle increases. All these factors may result in the degradation of the mechanical properties at the grain boundaries as the misorientation increases. Furthermore, the finite element calculation confirms that precipitation of μ phases at the grain boundary is responsible for the significant deterioration of the mechanical properties when the misorientation exceeds about 10°. This work provides a physical imaging of the microstructure for understanding the relationship between the mechanical properties and the misorientation

  10. Grain boundary precipitation strengthening mechanism in W containing advanced creep resistant ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    Grain boundary precipitation strengthening is expected to be a decisive factor in developing ferritic creep resistant steels. This study examined the grain boundary precipitation strengthening mechanism extracting the effect of the tempered martensitic microstructure and precipitates on the high angle grain boundary in M{sub 23}C4{sub 6} type carbide and the Fe{sub 2}W type Laves phase effect of the creep deformation fixing the grain boundary according to transmission electron microscope (TEM) observation. A creep test was carried out at high temperature in order to evaluate the high angle boundary strengthening effect simulating the long-term creep deformation microstructure by the lath structure disappearance. The correlation of the creep rupture time and the grain boundary shielding ratio were found to be independent of precipitate type. The creep deformation model represents block boundary shielding by precipitates as the decisive factor for W containing ferritic creep resistant steels. (orig.)

  11. On the elastic stiffness of grain boundaries

    International Nuclear Information System (INIS)

    Zhang Tongyi; Hack, J.E.

    1992-01-01

    The elastic softening of grain boundaries is evaluated from the starting point of grain boundary energy. Several examples are given to illustrate the relationship between boundary energy and the extent of softening. In general, a high grain boundary energy is associated with a large excess atomic volume in the boundary region. The consequent reduction in grain boundary stiffness can represent a significant fraction of that observed in bulk crystals. (orig.)

  12. Investigation of interface boundary occurring during cold gas-dynamic spraying of metallic particles

    CERN Document Server

    Bolesta, A V; Sharafutdinov, M R; Tolochko, B P

    2001-01-01

    An interface boundary occurring during cold gas dynamic spraying of aluminum particles on a nickel substrate has been studied by the method of X-ray grazing diffraction. Presence of boundary phase of the intermetallic compound Ni sub 3 Al was found.

  13. Morphologically well-defined Gd0.1Ce0.9O1.95 embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofiber with an enhanced triple phase boundary as cathode for low-temperature solid oxide fuel cells

    Science.gov (United States)

    Kim, Chanho; Park, Hyunjung; Jang, Inyoung; Kim, Sungmin; Kim, Kijung; Yoon, Heesung; Paik, Ungyu

    2018-02-01

    Controlling triple phase boundary (TPB), an intersection of the ionic conductor, electronic conductor and gas phase as a major reaction site, is a key to improve cell performances for low-temperature solid oxide fuel cells. We report a synthesis of morphologically well-defined Gd0.1Ce0.9O1.95 (GDC) embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) nanofibers and their electrochemical performances as a cathode. Electrospun fibers prepared with a polymeric solution that contains crystalline Ba0.5Sr0.5Co0.8Fe0.2O3-δ particles in ∼200 nm size and Gd(NO3)3/Ce(NO3)3 precursors in an optimized weight ratio of 3 to 2 result in one dimensional structure without severe agglomeration and morphological collapse even after a high calcination at 1000 °C. As-prepared nanofibers have fast electron pathways along the axial direction of fibers, a higher surface area of 7.5 m2 g-1, and more oxygen reaction sites at TPBs than those of GDC/BSCF composite particles and core-shell nanofibers. As a result, the Gd0.1Ce0.9O1.95 embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofiber cell shows excellent performances of the maximum power density of 0.65 W cm-2 at 550 °C and 1.02 W cm-2 at 600 °C, respectively.

  14. Boundary conditions for the diffusion equation in radiative transfer

    International Nuclear Information System (INIS)

    Haskell, R.C.; Svaasand, L.O.; Tsay, T.; Feng, T.; McAdams, M.S.; Tromberg, B.J.

    1994-01-01

    Using the method of images, we examine the three boundary conditions commonly applied to the surface of a semi-infinite turbid medium. We find that the image-charge configurations of the partial-current and extrapolated-boundary conditions have the same dipole and quadrupole moments and that the two corresponding solutions to the diffusion equation are approximately equal. In the application of diffusion theory to frequency-domain photon-migration (FDPM) data, these two approaches yield values for the scattering and absorption coefficients that are equal to within 3%. Moreover, the two boundary conditions can be combined to yield a remarkably simple, accurate, and computationally fast method for extracting values for optical parameters from FDPM data. FDPM data were taken both at the surface and deep inside tissue phantoms, and the difference in data between the two geometries is striking. If one analyzes the surface data without accounting for the boundary, values deduced for the optical coefficients are in error by 50% or more. As expected, when aluminum foil was placed on the surface of a tissue phantom, phase and modulation data were closer to the results for an infinite-medium geometry. Raising the reflectivity of a tissue surface can, in principle, eliminate the effect of the boundary. However, we find that phase and modulation data are highly sensitive to the reflectivity in the range of 80--100%, and a minimum value of 98% is needed to mimic an infinite-medium geometry reliably. We conclude that noninvasive measurements of optically thick tissue require a rigorous treatment of the tissue boundary, and we suggest a unified partial-current--extrapolated boundary approach

  15. Solution of moving boundary problems with implicit boundary condition

    International Nuclear Information System (INIS)

    Moyano, E.A.

    1990-01-01

    An algorithm that solves numerically a model for studying one dimensional moving boundary problems, with implicit boundary condition, is described. Landau's transformation is used, in order to work with a fixed number of nodes at each instant. Then, it is necessary to deal with a parabolic partial differential equation, whose diffusive and convective terms have variable coefficients. The partial differential equation is implicitly discretized, using Laasonen's scheme, always stable, instead of employing Crank-Nicholson sheme, as it has been done by Ferris and Hill. Fixed time and space steps (Δt, Δξ) are used, and the iteration is made with variable positions of the interface, i.e. varying δs until a boundary condition is satisfied. The model has the same features of the oxygen diffusion in absorbing tissue. It would be capable of estimating time variant radiation treatments of cancerous tumors. (Author) [es

  16. Piezoelectric Ceramics of the (1 − x)Bi0.50Na0.50TiO3–xBa0.90Ca0.10TiO3 Lead-Free Solid Solution: Chemical Shift of the Morphotropic Phase Boundary, a Case Study for x = 0.06

    Science.gov (United States)

    Vivar-Ocampo, Rodrigo; Pardo, Lorena; Ávila, David; Morán, Emilio; González, Amador M.; Bucio, Lauro; Villafuerte-Castrejón, María-Elena

    2017-01-01

    Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate–titanate for actuators is that of Bi0.50Na0.50TiO3 (BNT) based solid solutions. The pseudo-binary (1 − x)Bi0.50Na0.50TiO3–xBa1 − yCayTiO3 system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route. PMID:28773096

  17. Structural evolution, electrical properties and electric-field-induced changes of (0.8-x)PbTiO{sub 3}-xBiFeO{sub 3}-0.2BaZrO{sub 3} system near the morphotropic phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yongxing; Jin, Changqing; Ye, Pin; Xu, Gang [Xi' an Technological University, School of Materials and Chemical Engineering, Xi' an (China); Li, Peng [Northwest Institute For Nonferrous Metal Research, Xi' an (China); Zeng, Yiming [Kunming Institute of Precious Metals, State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming (China)

    2017-04-15

    The crystal structures, piezoelectric property, dielectric transition and electric-field-induced changes in the structures and dielectric constant of (0.8-x)PbTiO{sub 3}-xBiFeO{sub 3}-0.2BaZrO{sub 3} (0.3 ≤ x ≤ 0.4) ceramics near the morphotropic phase boundary have been studied. All the ceramics could be indexed on the base of a tetragonal symmetry. The increasing concentration of BiFeO{sub 3} induces a reduction in the c/a ratio, ranged from 1.022 for x = 0.3 to 1.007 for x = 0.4. Accordingly, the piezoelectric coefficient (d{sub 33}) reaches a maximum value at x = 0.34 (d{sub 33}, 138 pC/N). A relaxor-type dielectric anomaly could be found for all the ceramics. The temperature of the maximum dielectric constant (T{sub m}) at 1 MHz and the degree of the diffuseness for the dielectric anomaly (δ) increase with BiFeO{sub 3} concentration, from 544 and 96 K for x = 0.3 to 574 and 154 K for x = 0.4. After poling, the ceramic for x = 0.34 shows an increase in the c/a ratio and an obvious decrease in the dielectric constant. (orig.)

  18. The boundary-scan handbook

    CERN Document Server

    Parker, Kenneth P

    2016-01-01

    Aimed at electronics industry professionals, this 4th edition of the Boundary Scan Handbook describes recent changes to the IEEE1149.1 Standard Test Access Port and Boundary-Scan Architecture. This updated edition features new chapters on the possible effects of the changes on the work of the practicing test engineers and the new 1149.8.1 standard. Anyone needing to understand the basics of boundary scan and its practical industrial implementation will need this book. Provides an overview of the recent changes to the 1149.1 standard and the effect of the changes on the work of test engineers;   Explains the new IEEE 1149.8.1 subsidiary standard and applications;   Describes the latest updates on the supplementary IEEE testing standards. In particular, addresses: IEEE Std 1149.1                      Digital Boundary-Scan IEEE Std 1149.4                      Analog Boundary-Scan IEEE Std 1149.6                      Advanced I/O Testing IEEE Std 1149.8.1           �...

  19. Event boundaries and anaphoric reference.

    Science.gov (United States)

    Thompson, Alexis N; Radvansky, Gabriel A

    2016-06-01

    The current study explored the finding that parsing a narrative into separate events impairs anaphor resolution. According to the Event Horizon Model, when a narrative event boundary is encountered, a new event model is created. Information associated with the prior event model is removed from working memory. So long as the event model containing the anaphor referent is currently being processed, this information should still be available when there is no narrative event boundary, even if reading has been disrupted by a working-memory-clearing distractor task. In those cases, readers may reactivate their prior event model, and anaphor resolution would not be affected. Alternatively, comprehension may not be as event oriented as this account suggests. Instead, any disruption of the contents of working memory during comprehension, event related or not, may be sufficient to disrupt anaphor resolution. In this case, reading comprehension would be more strongly guided by other, more basic language processing mechanisms and the event structure of the described events would play a more minor role. In the current experiments, participants were given stories to read in which we included, between the anaphor and its referent, either the presence of a narrative event boundary (Experiment 1) or a narrative event boundary along with a working-memory-clearing distractor task (Experiment 2). The results showed that anaphor resolution was affected by narrative event boundaries but not by a working-memory-clearing distractor task. This is interpreted as being consistent with the Event Horizon Model of event cognition.

  20. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.